WorldWideScience

Sample records for suspended water removal

  1. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  2. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  3. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  4. Evaluating the Efficiency of Tragacanth Coagulant Aid in Removing Colloidal Materials and Suspended Solids Creating Turbidity from Karun River Water

    OpenAIRE

    Majid Farhadi; Afshin Takdastan; Roghayeh Baghbany

    2016-01-01

    Introduction: Colloidal materials and suspended solids cause turbidity in water. To remove turbidity, clarification method is used that includes processes of coagulation, flocculation, and sedimentation. Due to the long duration of coagulation process, coagulant aids are applied. Despite the favorable efficiency of synthetic polyelectrolytes as a coagulant aid, due to their harmful effects on human health, in this process, natural organic polymers are used instead. Materials and Methods: I...

  5. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  6. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.

    Science.gov (United States)

    Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter

    2015-12-15

    This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.

  7. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Science.gov (United States)

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  8. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  9. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  10. Experimental Design of Electrocoagulation and Magnetic Technology for Enhancing Suspended Solids Removal from Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Moh Faiqun Ni'am

    2014-10-01

    Full Text Available Design of experiments (DOE is one of the statistical method that is used as a tool to enhance and improve experimental quality. The changes to the variables of a process or system is supposed to give the optimal result (response and quite satisfactory. Experimental design can defined as a test or series of test series by varying the input variables (factors of a process that can known to cause changes in output (response. This paper presents the results of experimental design of wastewater treatment by electrocoagulation (EC technique. A combined magnet and electrocoagulation (EC technology were designed to increase settling velocity and to enhance suspended solid removal efficiencies from wastewater samples. In this experiment, a synthetic wastewater samples were prepared by mixing 700 mg of the milk powder in one litre of water and treated by using an acidic buffer solution. The monopolar iron (Fe plate anodes and cathodes were employed as electrodes. Direct current was varied in a range of between 0.5 and 1.1 A, and flowrate in a range of between 1.00 to 3.50 mL/s. One permanent magnets namely AlNiCo with a magnetic strength of 0.16T was used in this experiment. The results show that the magnetic field and the flowrate have major influences on suspended solids removal. The efficiency removals of suspended solids, turbidity and COD removal efficiencies at optimum conditions were found to be more than 85%, 95%, and 75%, respectively.

  11. Removal performance and water quality analysis of paper machine white water in a full-scale wastewater treatment plant.

    Science.gov (United States)

    Shi, Shuai; Wang, Can; Fang, Shuai; Jia, Minghao; Li, Xiaoguang

    2017-06-01

    Paper machine white water is generally characterized as a high concentration of suspended solids and organic matters. A combined physicochemical-biological and filtration process was used in the study for removing pollutants in the wastewater. The removal efficiency of the pollutant in physicochemical and biological process was evaluated, respectively. Furthermore, advanced technology was used to analyse the water quality before and after the process treatment. Experimental results showed that the removal efficiency of suspend solids (SS) of the system was above 99%, while the physicochemical treatment in the forepart of the system had achieved about 97%. The removal efficiency of chemical oxygen demand (COD) and colour had the similar trend after physicochemical treatment and were corresponding to the proportion of suspended and the near-colloidal organic matter in the wastewater. After biological treatment, the removal efficiency of COD and colour achieved were about 97% and 90%, respectively. Furthermore, molecular weight (MW) distribution analysis showed that after treatment low MW molecules (analysis showed that most humic-like substances were effectively removed during the treatment. The analyses of gas chromatography/mass spectrometry showed that the composition of organic matter in the wastewater was not complicated. Methylsiloxanes were the typical organic components in the raw wastewater and most of them were removed after treatment.

  12. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    Science.gov (United States)

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  13. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    Science.gov (United States)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  14. Effect of color removal agent on textiles waste water

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Selambakknu, Sarala; Jamaliah Shariff; Ting, Teo Ming; Khairul Zaman Dahlan

    2010-01-01

    The effect of color removal agent (CRA) on textile waste water has been studied. The aim of this work is to determine the optimum condition for CRA to react on the textile waste water and to see the effect of CRA on waste water with different Chemical Oxygen Demand. 8 ml CRA was used to treat 800 mls of sample with various COD ranging between 2500 mg/ l-500 mg/ l. The results showed that CRA totally remove the colour of textile waste water at pH ranging from 6 to 8. At an optimum condition CRA works efficiently on waste water with COD 2300 mg/ l for reduction of suspended solid and turbidity. It also observed, sludge accumulation was depended on COD concentration. Color removal curves for different initial COD concentration also obtained. (author)

  15. SAFL Baffle retrofit for suspended sediment removal in storm sewer sumps.

    Science.gov (United States)

    Howard, Adam; Mohseni, Omid; Gulliver, John; Stefan, Heinz

    2011-11-15

    Standard sumps (manholes) provide a location for pipe junctions and maintenance access in stormwater drainage systems. Standard sumps can also remove sand and silt particles from stormwater, but have a high propensity for washout of the collected sediment. With appropriate maintenance these sumps may qualify as a stormwater best management practice (BMP) device for the removal of suspended sediment from stormwater runoff. To decrease the maintenance frequency and prevent standard sumps from becoming a source of suspended sediment under high flow conditions, a porous baffle, named the SAFL Baffle, has been designed and tested as a retrofit to the sump. Multiple configurations with varying percent open area and different angles of attack were evaluated in scale models. An optimum configuration was then constructed at the prototype scale and evaluated for both removal efficiency and washout. Results obtained with the retrofit indicate that with the right baffle dimensions and porosity, sediment washout from the sump at high flow rates can be almost eliminated, and removal efficiency can be significantly increased at low flow rates. Removal efficiency and washout functions have been developed for standard sumps retrofitted with the SAFL Baffle. The results of this research provide a new, versatile stormwater treatment device and implemented new washout and removal efficiency testing procedures that will improve research and development of stormwater treatment devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  17. Deciphering the science behind electrocoagulation to remove suspended clay particles from water.

    Science.gov (United States)

    Holt, P K; Barton, G W; Mitchell, C A

    2004-01-01

    Electrocoagulation removes pollutant material from water by a combination of coagulant delivered from a sacrificial aluminium anode and hydrogen bubbles evolved at an inert cathode. Rates of clay particle flotation and settling were experimentally determined in a 7 L batch reactor over a range of currents (0.25-2.0 A) and pollutant loadings (0.1-1.7 g/L). Sedimentation and flotation are the dominant removal mechanism at low and high currents, respectively. This shift in separation mode can be explained by analysing the reactor in terms of a published dissolved air flotation model.

  18. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended

  19. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-01-01

    Highlights: • Novel amino-acid-modified-chitosan flocculants are employed to remove antibiotics. • Effects of different structures of amino acids and antibiotics are investigated. • Correlation analysis shows coexisted kaolin and HA have synergistic removal effect. • Theoretical DFT calculation clarifies the interactions in molecular level. - Abstract: Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4 mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5 mg/L), due to π–π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics’ removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  20. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shuying [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Yang, Zhen, E-mail: yangzhen@njnu.edu.cn [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Ren, Kexin [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Tian, Ziqi [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Dong, Chang; Ma, Ruixue; Yu, Ge [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Yang, Weiben, E-mail: yangwb007@njnu.edu.cn [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China)

    2016-11-05

    Highlights: • Novel amino-acid-modified-chitosan flocculants are employed to remove antibiotics. • Effects of different structures of amino acids and antibiotics are investigated. • Correlation analysis shows coexisted kaolin and HA have synergistic removal effect. • Theoretical DFT calculation clarifies the interactions in molecular level. - Abstract: Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4 mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5 mg/L), due to π–π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics’ removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  1. Colloids removal from water resources using natural coagulant: Acacia auriculiformis

    Science.gov (United States)

    Abdullah, M.; Roslan, A.; Kamarulzaman, M. F. H.; Erat, M. M.

    2017-09-01

    All waters, especially surface waters contain dissolved, suspended particles and/or inorganic matter, as well as several biological organisms, such as bacteria, algae or viruses. This material must be removed because it can affect the water quality that can cause turbidity and colour. The objective of this study is to develop water treatment process from Seri Alam (Johor, Malaysia) lake water resources by using natural coagulant Acacia auriculiformis pods through a jar test experiment. Jar test is designed to show the effectiveness of the water treatment. This process is a laboratory procedure that will simulate coagulation/flocculation with several parameters selected namely contact time, coagulant dosage and agitation speed. The most optimum percentage of colloids removal for each parameter is determined at 0.2 g, 90 min and 80 rpm. FESEM (Field-emission Scanning Electron Microscope) observed the small structures of final floc particles for optimum parameter in this study to show that the colloids coagulated the coagulant. All result showed that the Acacia auriculiformis pods can be a very efficient coagulant in removing colloids from water.

  2. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  3. REMOVING BIOMASS FROM WATER PONDS AND SMALL WATER RESERVOIRS BY USING NON-WOVEN FILTERS

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2015-10-01

    Full Text Available Small water bodies, for example garden ponds, play many functions in the environment, including biocenotic, hydrological, climatic, sozological, landfill-creative, and aesthetic. Due to their small size, these reservoirs are sensitive to external and internal factors, they are also a common natural contaminants receivers. Nonwoven filters have been investigated for several years as a useful device for treatment of domestic wastewater pre-treated in a septic tank. The aim of this study was to verify the possibility of using this type of filters for water originating from small water body purification. The effectiveness of filters were tested on the water originating from the garden pond, contained high levels of nutrients and intensive algal bloom. Research was carried out on three filters (each filter consisted of four geotextile TS 20 layers. Basic water quality indicators: total suspended solids, turbidity, COD and BOD5, temperature, pH and dissolved oxygen were measured. The research results can be considered as satisfactory in terms of mechanical treatment (removal of turbidity and total suspended solids. An important positive effect of the filters was the oxygenation of the treated water, which is especially important for fish.

  4. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).

    Science.gov (United States)

    Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe

    2010-01-01

    Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many

  5. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  6. Water Distribution and Removal Model

    International Nuclear Information System (INIS)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-01-01

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD and R) Model; (2) EBS Physical and Chemical Environment (P and CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD and R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment

  7. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  8. Capturing Flow-weighted Water and Suspended Particulates from Agricultural Canals During Drainage Events.

    Science.gov (United States)

    Bhadha, Jehangir H; Sexton, Anne; Lang, Timothy A; Daroub, Samira H

    2017-11-07

    The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.

  9. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  10. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  11. Remote sensing of suspended sediment water research: principles, methods, and progress

    Science.gov (United States)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  12. Removal of aluminum turbidity from heavy water reactors by precipitation ion exchange using magnesium hydroxide

    International Nuclear Information System (INIS)

    Venkateswarlu, K.S.; Shanker, R.; Velmurugan, S.; Venkateswaran, G.; Rao, M.R.

    1988-01-01

    A special magnesium hydroxide MG(OH)/sub 2/ sorber, loaded onto an ion-exchange matrix has been developed to remove hydrated alumina turbidity in heavy water. This sorber was applied to the coolant/moderator system in the research reactor Dhruva. The sorber not only removed turbidity but also suspended uranium at parts per billion levels and associated β, γ activity. The sorption is based on the attraction between the positively charged Mg(OH)/sub 2/ surface and the negatively charged hydrated alumina particles

  13. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  14. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  15. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  16. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  17. Efficiency of Oil Removal from Real Storm Water With Different Sorbents

    Directory of Open Access Journals (Sweden)

    Aušra Mažeikienė

    2011-12-01

    Full Text Available Suspended solids and oil products are considered as the most important pollutants in storm water. Surface water flow and changes in pollutant concentration complicate conventional matching techniques and prolong the duration of technological processes; therefore, a comprehensive study on this area is necessary. For this reason, the research and analysis of three different sorbents (“FIBROIL®”, “Duck”, “Reo-dry” were performed in the laboratory. According to the results of the conducted experiment, all three sorbents have similar treatment efficiency: “FIBROIL®” – 99%, “Reo-dry” – 95%, “Duck” – 98%. Filtering rate had an influence on the effectiveness of removing petrol products (slower speed increases effectiveness.Article in Lithuanian

  18. Water and suspended sediment dynamics in the Sungai Selangor estuary

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Kamarudin Samuding; Nazrul Hizam Yusoff

    2000-01-01

    Observations of salinity, temperature, suspended sediment concentration (SSC) and tidal current velocity were made in the lower and along the longitudinal axis sungai Selangor estuary over near-spring cycles. The variations of these parameters at the measurement stations and along the channel are presented to illustrate the water and sediment dynamics in the estuary. The results shows that the Sungai Selangor estuary changes from a partially-mixed type during neaps to a well-mixed one during springs. promoted by stronger tidal energy during the higher tidal ranges. The strong neap density stratification is also promoted by the high river discharges during the measurement period maximum concentration of suspended sediment 2000 mg,'/) occurs during maximum current velocities both during flood and ebb. The maximum salinity was achieved during high water slack but the salt water was totally flushed out of estuary during low water springs. The longitudinal axis measurement indicates that a partially-developed zone of turbidity maximum with a sediment concentration over 1000 mg/l was observed at the limit of salt water intrusion in salinity range less than 1 ppt. Tidal pumping as oppose to the estuarine circulation is the more dominant factor in the maximum formation as the salt water is totally excluded at low water. (author)

  19. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  20. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  1. Laboratory study on the adsorption of Mn(2+) on suspended and deposited amorphous Al(OH)(3) in drinking water distribution systems.

    Science.gov (United States)

    Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting

    2012-09-01

    Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet

  3. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  4. The role of sedimentation in the removal of radiocaesium from water column on an example of the lake Svyatskoe

    International Nuclear Information System (INIS)

    Derengovskaya, R.A.; Ostapenya, A.P.

    2002-01-01

    The contribution of sedimentation processes to the removal of radiocaesium from water column was determined in mesotrophic Lake Svyatskoe. During the period April till October 19,3 tons dry weight of the particle matter was precipitated on the lake bottom, which corresponds to 0,97*10 9 Bk radiocaesium associated with suspended matter

  5. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  6. The Analysis of Septic Tank Performance in Regard to Suspended Solids and Organic Matter Removal

    Directory of Open Access Journals (Sweden)

    Ala Kirjanova

    2011-12-01

    Full Text Available Abstract 117 The aim of this work was to evaluate the removal of suspended solids (SS and 7-day biochemical oxygen demand (BOD7 in a three chamber septic tank depending on theoretical wastewater retention time and the degree of septic tank cleanliness. It was found out that the performance of the septic tank depended on the degree of its cleanliness: when the septic tank was clean and retention time was three days, SS and BOS7 removal efficiency was 77±10% and 67±14% respectively, whereas two months later, after septic tank desludging, SS removal efficiency decreased to 53±22% and BOD7 to 32±31%. The performance of the septic tank also depended on theoretical wastewater retention time: when some amount of solids was accumulated at the bottom of the septic tank and wastewater retention time was one day, SS and BOS7 removal efficiency was 45±40% and 33±16% respectively; when retention time was three days, SS removal efficiency increased to 53±22% but BOD7 removal efficiency remained similar to one day retention time, i.e. 32±31%.Article in Lithuanian

  7. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay

  8. Removal of radium from drinking water

    International Nuclear Information System (INIS)

    Lauch, R.P.

    1992-08-01

    The report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water. Calcium cation exchange removes radium and can be used when hardness removal is not necessary. Iron removal processes are discussed in relation to radium removal. Iron oxides remove much less than 20 percent of the radium from water under typical conditions. Manganese dioxide removes radium from water when competition for sorption sites and clogging of sites is reduced. Filter sand that is rinsed daily with dilute acid will remove radium from water. Manganese dioxide coated filter sorption removes radium but more capacity would be desirable. The radium selective complexer selectively removes radium with significant capacity if iron fouling is eliminated

  9. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  10. Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system.

    Science.gov (United States)

    Ma, Xiaoyan Y; Li, Qiyuan; Wang, Xiaochang C; Wang, Yongkun; Wang, Donghong; Ngo, Huu Hao

    2018-07-01

    As reclaimed water use is increasing, its safety attracts growing attention, particularly with respect to the health risks associated with the wide range of micropollutants found in the reclaimed water. In this study, sophisticated analysis was conducted for water samples from a water reclamation and ecological reuse system where domestic wastewater was treated using an anaerobic-anoxic-oxic unit followed by a membrane bioreactor (A 2 O-MBR), and the reclaimed water was used for replenishing a landscape lake. A total of 58 organic micropollutants were detected in the system, consisting of 13 polycyclic aromatic hydrocarbons (PAHs), 16 phenols, 3 pesticides, and 26 pharmaceuticals and personal care products (PPCPs). After treatment by the A 2 O-MBR process, effective removal of pesticides and phenols was achieved, while when the reclaimed water entered the landscape lake, PPCPs were further removed. From the physicochemical properties of micropollutants, it could be inferred that phenols and dichlorphos (the only pesticide with considerable concentration in the influent) would have been mainly removed by biodegradation and/or volatilization in the biological treatment process. Additionally, it is probable that sludge adsorption also contributed to the removal of dichlorphos. For the predominant PPCP removal in the landscape lake, various actions, such as adsorption, biodegradation, photolysis, and ecologically mediated processes (via aquatic plants and animals), would have played significant roles. However, according to their logK oc , logK ow and logD (pH = 8) values, it could be concluded that adsorption by suspended solids might be an important action. Although carcinogenic and non-carcinogenic risks associated with all the detected micropollutants were at negligible levels, the hazard quotients (HQs) of PPCPs accounted for 92.03%-97.23% of the HQ Total . With the significant removal of PPCPs through the ecological processes in the landscape lake, the safety

  11. Zn (II) Removal from River Water Samples of Sembrong, Johor State, Malaysia by Electrokinetic Remediation

    Science.gov (United States)

    Zaidi, E.; Husna, MNF; Shakila, A.; Azhar, ATS; Arif, AM; Norshuhaila, MS

    2017-08-01

    Heavy metals pollution has become one of the most serious environmental problems today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. Even many physical, chemical and biological treatment processes have been proposed to remove heavy metals from river water, the use of these treatment processes are not efficient and relatively costly. This study focused on the potential application of electrokinetic (EK) remediation in Sembrong River water to remove zinc (Zn2+). The physicochemical and biological parameters and water quality index (WQI) of Sembrong River water was characterized. The electrokinetic remediation experiments were performed by controlling pH, and electric density on voltage were observed and investigated. The results indicated that all physicochemical and biological parameters of Sembrong River complied with the standard discharged limit set by the Department of Environment (DOE). However, suspended solids (SS) and pH can be categorized as Class III according to INWQS. The best performance of 88% efficiency of zinc can be achieved EK experiment run at a fixed voltage of 30 V at pH 5.14 after 60 min of the process operate. This technology may be proposed for faster and eco-friendly removal of heavy metals in the environment.

  12. Removal of radionuclides from household water

    International Nuclear Information System (INIS)

    Vesterbacka, P.; Turtiainen, T.; Haemaelaeinen, K.; Salonen, L.; Arvela, H.

    2007-02-01

    Research upon methods for removing radionuclides from household water was initiated in Finland in 1995. Three research projects, of which two were carried out with National Technology Agency of Finland and one with CEC, have been completed by the end of 2002. One of the main objectives of the research was to compose a guidebook for consumers and water treatment companies. Radon can be removed from household water by aeration and by activated carbon filtration. Aerators that are well designed and set up can remove over 90% of waterborne radon. The best aerators have achieved removal efficiencies that are nearly 100%. However, setting up an aeration system requires thorough planning. Also, activated carbon filtration removes radon efficiently. The removal efficiencies have been over 90%, often nearly 100%. Depending on the water quality and usage, the carbon batch inside the filter needs to be changed every 2 - 3 years. Since activated carbon filters emit gamma radiation while in use, they should not be installed inside the dwelling but in a separate building or by the well. It is recommended that uranium be removed from drinking water by anion exchange, which is the most efficient removal method for this purpose. Typically, the removal efficiencies are nearly 100%. The one exception is the so called tap filter, the removal efficiency of which depends on uranium concentration in raw water and the rate of water flow. High saline concentration in water may extricate uranium from ion exchange resin. Changes in plumbing pressure or pH-value do not have any significant influence in uranium retention. Removal efficiencies of lead and polonium vary a lot depending on the chemical form in which they occur in water. They can be reliably removed from water by reverse osmosis only. Other treatment methods, such as ion exchange and activated carbon filtration, remove lead and polonium partly. Lead and polonium are removed more efficiently when they are bound onto smaller

  13. Effects of Inoculated Bacillus subtilis on Geosmin and 2-Methylisoborneol Removal in Suspended Growth Reactors Using Aquacultural Waste for Biofloc Production.

    Science.gov (United States)

    Luo, Guozhi; Wang, Jiao; Ma, Niannian; Liu, Zefeng; Tan, Hongxin

    2016-08-28

    Geosmin and 2-methylisoborneol (2-MIB) are two of the most common taint compounds that adversely affect the quality of aquacultural animals. In the present study, 94% of geosmin and 97% of 2-MIB in suspended growth reactors producing bioflocs (SGRs) with aquaculture waste were removed after inoculation with Bacillus subtilis, significantly higher than that of control SGRs (70% of geosmin and 86.4% of 2-MIB). The lowest concentrations of geosmin and 2-MIB achieved in the effluent of the SGRs were 2.43 ± 0.42 ng/l and 2.23 ± 0.15 ng/l, respectively. The crude protein content of the bioflocs produced in the SGRs was 35 ± 4%. The NH4(+)-N and NO2(-)-N concentrations in the effluent of the reactors were 1.13 ± 0.21 mg/l and 0.42 ± 0.04 mg/l, respectively. These results suggest that inoculated with Bacillus subtilis, SGRs have a better performance to reuse the nitrogen in fish waste and to remove geosmin and 2-MIB from the culture water efficiently.

  14. Removal of radionuclides from household water

    International Nuclear Information System (INIS)

    Vesterbacka, P.; Turtiainen, T.; Haemaelaeinen, K.; Salonen, L.; Arvela, H.

    2003-10-01

    Research upon methods for removing radionuclides from household water was initiated in Finland in 1995. Three research projects, of which two were carried out with National Technology Agency of Finland and one with CEC, have been completed by the end of 2002. One of the main objectives of the research was to compose a guidebook for consumers and water treatment companies. Radon can be removed from household water by aeration and by activated carbon filtration. Aerators that are well designed and set up can remove over 90% of waterborne radon. The best aerators have achieved removal efficiencies that are nearly 100%. However, setting up an aeration system requires thorough planning. Also, activated carbon filtration removes radon efficiently. The removal efficiencies have been over 90%, often nearly 100%. Depending on the water quality and usage, the carbon batch inside the filter needs to be changed every 2-3 years. Since activated carbon filters emit gamma radiation while in use, they should not be installed inside the dwelling but in a separate building or by the well. It is recommended that uranium be removed from drinking water by anion exchange, which is the most efficient removal method for this purpose. Typically, the removal efficiencies are nearly 100%. The one exception is the so called tap filter, the removal efficiency of which depends on uranium concentration in raw water and the rate of water flow. High saline concentration in water may extricate uranium from ion exchange resin. Changes in plumbing pressure or pH-value do not have any significant influence in uranium retention. Removal efficiencies of lead and polonium vary a lot depending on the chemical form in which they occur in water. They can be reliably removed from water by reverse osmosis only. Other treatment methods, such as ion exchange and activated carbon filtration, remove lead and polonium partly. Lead and polonium are removed more efficiently when they are bound onto smaller particles

  15. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    Science.gov (United States)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  16. Method of removing suspended impurity from mixed floor type filtering desalter

    International Nuclear Information System (INIS)

    Oya, Takashi; Morikawa, Yoshitake; Hagiwara, Masahiro; Kozu, Hideo; Izumi, Takeshi.

    1989-01-01

    In BWR type nuclear power plants, since the inside of a nuclear reactor has to be always kept clean, condensates flowing from a condensator to the inside of the reactor are cleaned-up by a condensate desalting tower into a highly cleaned-up state and then utilized as coolants for the inside of the reactor. Upon processing primary coolants, a mixed floor is formed with a resin in which the crosslinking rate of granular or powdery cationic exchange resins is reduced as from 7.5 to 3% of divinyl benzene (DVB) content. Crud separating effect is larger as the DVB content (%) is lower. However, if the DVB content is too small fracture strength and heat exchange capacity of the resins are decreased making it difficult for handling and, accordingly, practical lower limit is set to 3%. This enables sufficient removal of cruds upon eliminating suspended impurities in a mixed floor type filtering desalter. (T.M.)

  17. Arsenic removal for ceramic water filters

    Directory of Open Access Journals (Sweden)

    Mishant Kumar

    2013-02-01

    Full Text Available Arsenic in drinking water is a hazard to human health and is a known carcinogen (Mass 1992. Resource Development International – Cambodia (RDIC has researched, developed, and manufactured simple ceramic water fi lters (CWF which have proved to be extremely effective in removing pathogens from water. These fi lters however, do not remove arsenic from water, which exists in the source water at levels above the World Health Organisation (WHO guideline of 10μg/L. The aims of this literature based study were to investigate conventional and non-conventional arsenic removal processes, and to discuss the options for applying an arsenic removal technology to the CWFs produced by RDIC. It was found that conventional arsenic removal technologies are diffi cult to implement in the context of household water treatment in a developing country. This study suggested that non-conventional arsenic removal technologies shall be more effective and that field studies must be undertaken to verify the success of such methods.

  18. Distribution of suspended particulate matter in the waters of eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.M.

    Distribution of total suspended matter (TSM) in surface and near bottom (approximately 5 m above sea bed) waters reveals a wide variation in concentration and composition. TSM varies from 0.05 to 122 mg.l/1 in surface waters, and from 0.25 top 231...

  19. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    Science.gov (United States)

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  20. Determination of radiocaesium in agriculture-related water samples containing suspended solids using gelling method

    International Nuclear Information System (INIS)

    Matsunami, Hisaya; Shin, Moono; Takahashi, Yoshihiko; Shinano, Takuro; Kitajima, Shiori; Tsuchiya, Takashi

    2015-01-01

    After the TEPCO Fukushima Dai-ichi Nuclear Power Plant accident in 2011, the radiocaesium, which flowed into the paddy fields via irrigation water, have been widely investigated. When the concentration of radiocaesium in the water samples containing suspended solids were directly measured using a high purity germanium detector with a 2 L marinelli beaker, the radiocaesium concentration might be overestimated due to the sedimentation of the suspended solids during the measurement time. In fact, the values obtained by the direct method were higher than those obtained by the filtering method and/or the gelling method in most of the agriculture-related water samples. We concluded that the gelling method using sodium polyacrylate can be widely adapted for the analysis of the total radiocaesium in the agriculture-related water samples because of its many advantage such as simple preparation procedure, accurate analysis values, excellent long-term stability of geometry and low operating cost. (author)

  1. Automatic high-sensitivity control of suspended pollutants in drinking and natural water

    Science.gov (United States)

    Akopov, Edmund I.; Karabegov, M.; Ovanesyan, A.

    1993-11-01

    This article presents a description of the new instrumental method and device for automatic measurement of water turbidity (WT) by means of photoelectron flow ultramicroscope (PFU). The method presents the WT determination by measuring the number concentration (number of particles suspended in 1 cm3 of water under study) using the PFU and demonstrates much higher sensitivity and accuracy in comparison with the usual methods--turbidimetry and nephelometry.

  2. Suspended solids moderate the degradation and sorption of waste water-derived pharmaceuticals in estuarine waters.

    Science.gov (United States)

    Aminot, Yann; Fuster, Laura; Pardon, Patrick; Le Menach, Karyn; Budzinski, Hélène

    2018-01-15

    This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. PRTR ion exchange vault water removal

    International Nuclear Information System (INIS)

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination

  4. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    OpenAIRE

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, C?cile; Froidefond, Jean-Marie; Andr?fou?t, Serge; Mu?oz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the C...

  5. Removal of bromates from water

    Science.gov (United States)

    Barlokova, D.; Ilavsky, J.; Marko, I.; Tkacova, J.

    2017-10-01

    Bromates are substances that are usually not present in drinking water. They are obtained by ozone disinfection in the presence of bromine ions in water, as an impurity of sodium hypochlorite, respectively. Because of their specific properties, bromates are classified as vary dangers substances, that can cause serious illnesses in humans. There are several technological processes that have been used to the removal of bromates from water at present. In this article, the removal of the bromates from water by the adsorption using various sorbent materials (activated carbon, zeolite, Klinopur-Mn, Bayoxide E33, GEH, Read-As and Activated alumina) are presented. The effectiveness of selected sorbent materials in the removal of bromates from drinking water moves in the interval from 10 to 40%. Based on laboratory results, the zeolite can be used to reduce the concentration of bromates in water.

  6. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    Science.gov (United States)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  7. Adaption of the suspension behavior of suspended matter in natural water

    International Nuclear Information System (INIS)

    Hattenbach, K.; Schreier, H.H.; Zimmermann, H.U.

    1980-01-01

    The particle size distribution of an artificial tracer is adapted to that of suspended matter in natural water. Therefore the material of a tracer was divided into fractions and afterwards mixed according to computed proportions. The determination of particle size distribution was carried out using a sedimentation balance. For calculation of the distribution curve a special mathematical function was assumed. (orig.) [de

  8. Water Pollution and Treatments Part II: Utilization of Agricultural Wastes to Remove Petroleum Oils From Refineries Pollutants Present in Waste Water

    International Nuclear Information System (INIS)

    Ali, N.A.; El-Emary, M.M.

    2011-01-01

    Several natural agricultural wastes, of lignocellulose nature, such as Nile flower plant (ward El-Nil), milled green leaves, sugar cane wastes, palm tree leaves (carina), milled cotton stems, milled linseed stems, fine sawdust, coarse sawdust and palm tree cover were dried and then crushed to suitable size to be evaluated and utilized as adsorbents to remove oils floating or suspended in the waste water effluents from refineries and petroleum installations. The parameters investigated include effect of adsorbent type (adsorptive efficiency), adsorbate (type and concentration), mixing time, salinity of the water, adsorbent ratio to treated water, temperature, ph and stirring. Two different Egyptian crude oils varying in their properties and several refined products such as gasoline, kerosene, gas oil, diesel oil, fuel oil and lubricating oil were employed in this work in addition to the skimmed oil from the skim basin separator. Most of the agricultural wastes proved to be very effective in adsorbing oils from waste water effluents.

  9. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  10. Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    International Nuclear Information System (INIS)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai; Zheng, Lei

    2017-01-01

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr 2+ , Cs + , and Co 2+ in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr 2+ , Cs + , and Co 2+ with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater

  11. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  12. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  13. 49 CFR 193.2173 - Water removal.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Water removal. 193.2173 Section 193.2173...: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2173 Water removal. (a) Impoundment areas must be constructed such that all areas drain completely to prevent water collection. Drainage...

  14. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    International Nuclear Information System (INIS)

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-01-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha (α) and gross beta (β) activity, uranium isotopes 233/234 U and 238 U, plutonium 239/240 Pu, and americium 241 Am. Particle measurement between 1--150 microns (μ) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross α was essentially removed 100%, and gross β was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150μ were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of 239/240 Pu and 241 Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species

  15. Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient

    Science.gov (United States)

    Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid

    2018-05-01

    In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.

  16. Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system.

    Science.gov (United States)

    Younger, Paul L; Henderson, Robin

    2014-05-15

    Wetland systems are now well-established unit processes in the treatment of diverse wastewater streams. However, the development of wetland technology for sewage treatment followed an entirely separate trajectory from that for polluted mine waters. In recent years, increased networking has led to recognition of possible synergies which might be obtained by hybridising approaches to achieve co-treatment of otherwise distinct sewage and mine-derived wastewaters. As polluted discharges from abandoned mines often occur in or near the large conurbations to which the former mining activities gave rise, there is ample scope for such co-treatment in many places worldwide. The first full-scale co-treatment wetland anywhere in the world receiving large inflows of both partially-treated sewage (∼100 L s(-)(1)) and mine water (∼300 L s(-1)) was commissioned in Gateshead, England in 2005, and a performance evaluation has now been made. The evaluation is based entirely on routinely-collected water quality data, which the operators gather in fulfillment of their regulatory obligations. The principal parameters of concern in the sewage effluent are suspended solids, BOD5, ammoniacal nitrogen (NH4-N) and phosphate (P); in the mine water the only parameter of particular concern is total iron (Fe). Aerobic treatment processes are appropriate for removal of BOD5, NH4-N and Fe; for the removal of P, reaction with iron to form ferric phosphate solids is a likely pathway. With these considerations in mind, the treatment wetland was designed as a surface-flow aerobic system. Sample concentration level and daily flow rate date from April 2007 until March 2011 have been analyzed using nonparametric statistical methods. This has revealed sustained, high rates of absolute removal of all pollutants from the combined wastewater flow, quantified in terms of differences between influent and effluent loadings (i.e. mass per unit time). In terms of annual mass retention rates, for instance

  17. Removal of oil from water by bentonite

    International Nuclear Information System (INIS)

    Moazed, H.; Viraraghavan, T.

    1999-01-01

    Many materials, included activated carbon, peat, coal, fiberglass, polypropylene, organoclay and bentonite have been used for removing oils and grease from water. However, bentonite has been used only rarely for this purpose. In this study Na-bentonite was used to remove oil from oil-in-water emulsions of various kinds such as standard mineral oil, cutting oils, refinery effluent and produced water from production wells at Estevan, Saskatchewan. Removal efficiencies obtained were 85 to 96 per cent for cutting oils, 84 to 86 per cent for produced water and 54 to 87 per cent for refinery effluent. Bentonite proved to be more effective in the removal of oil from oil-in-water emulsions than from actual waste waters; up to 96 percent from oil-in-water emulsions to only 87 per cent from actual waste water. The percentage of oil removed was found to be a function of the amount of bentonite added and the adsorption time up to the equilibrium time. Result also showed that the Langmuir, Freundlich and BET isotherms are well suited to describe the adsorption of oil by bentonite from the various oily waters employed in this study. 15 refs

  18. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    Science.gov (United States)

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input

  19. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  20. REMOVAL OF ARSENIC FROM DRINKING WATER SUPPLIES BY IRON REMOVAL PROCESS

    Science.gov (United States)

    This design manual is an in-depth presentation of the steps required to design and operate a water treatment plant for removal of arsenic in the As (V) form from drinking water using an iron removal process. The manual also discusses the capital and operating costs including many...

  1. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  2. Removal of silver nanoparticles by coagulation processes

    International Nuclear Information System (INIS)

    Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

    2013-01-01

    Highlights: • This study investigated the removal of AgNP suspensions by four regular coagulants. • The optimal removal efficiencies for the four coagulants were achieved at pH 7.5. • The removal efficiency of AgNPs was affected by the natural water characteristics. • TEM and XRD showed that AgNPs or silver-containing NPs were adsorbed onto the flocs. -- Abstract: Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca 2+ and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions

  3. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  4. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  5. Methods of removing uranium from drinking water. 1. A literature survey. 2. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Drury, J.S.; Michelson, D.; Ensminger, J.T.; Lee, S.Y.; White, S.K.

    1982-12-01

    Literature was searched for methods of removing uranium from drinking water. U.S. manufacturers and users of water-treatment equipment and products were also contacted regarding methods of removing uranium from potable water. Based on the results of these surveys, it was recommended that untreated, partially treated, and finished water samples from municipal water-treatment facilities be analyzed to determine the extent of removal of uranium by presently used procedures, and that additional laboratory studies be performed to determine what changes are needed to maximize the effectiveness of treatments that are already in use in existing water-treatment plants

  6. Water quality and treatment of river bank filtrate

    NARCIS (Netherlands)

    De Vet, W.W.J.M.; Van Genuchten, C.C.A.; Van Loosdrecht, M.C.M.; Van Dijk, J.C.

    2010-01-01

    In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the

  7. Water quality and treatment of river bank filtrate

    NARCIS (Netherlands)

    De Vet, W.W.J.M.; Van Genuchten, C.C.A.; Van Loosdrecht, M.C.M.; Van Dijk, J.C.

    2009-01-01

    In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the

  8. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  9. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  10. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  11. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  12. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    clarifier. The inlet zone of an existing rectangular storm water clarifier was redesigned to improve the fluid flow conditions and reduce the hydraulic head loss in order to remove the lamellar plates and adapt the clarifier to the needs of high-rate clarification of storm water with flocculant addition...... excessive local head losses and helped to select structural changes to reduce such losses. The analysis of the facility showed that with respect to hydraulic operation, the facility is a complex, highly non-linear hydraulic system. Within the existing constraints, a few structural changes examined......The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...

  13. Purification effects of five landscape plants on river landscape water

    Science.gov (United States)

    Ling, Sun; Lei, Zheng; Mao, Qinqing; Ji, Qingxin

    2017-12-01

    Five species of landscape plants which are scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens were used as experimental materials to study their removal effects on nitrogen, phosphorus, chemical oxygen demand (CODMn) and suspended solids (SS) in urban river water. The results show that the 5 landscape plants have good adaptability and vitality in water body, among them, water hyacinth had the best life signs than the other 4 plants, and its plant height and root length increased significantly. They have certain removal effects on the nitrogen, phosphorus, CODMn (Chemical Oxygen Demand) and SS (Suspended Substance) in the landscape water of Dalong Lake, Xuzhou. Scindapsus aureus, water hyacinth, cockscomb, calendula officinalis and salvia splendens on the removal rate of total nitrogen were 76.69%, 78.57%, 71.42%, 69.64%, 67.86%; the ammonia nitrogen removal rate were 71.06%, 74.28%, 67.85%, 63.02%, 59.81%;the total phosphorus removal rate were 78.70%, 81.48%, 73.15%, 72.22%, 68.52%;the orthophosphate removal rates were 78.37%, 80.77%, 75.96%, 75.96%, 71.15%;the removal rate of CODMn was 52.5%, 55.35%, 46.02%, 45.42%, 44.19%; the removal rate of SS was 81.4%, 86%, 79.1%, 76.7%, 74.42%.The purification effect of 5 kinds of landscape plants of Dalong Lake in Xuzhou City: water hyacinth> scindapsus aureus>cockscomb>calendula officinalis>salvia splendens.

  14. Removal of Strontium from Drinking Water by Conventional ...

    Science.gov (United States)

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.

  15. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    Science.gov (United States)

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Removal of Cs{sup +}, Sr{sup 2+}, and Co{sup 2+} ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Zheng, Lei [Southwest University of Science and Technology, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang (China)

    2017-04-15

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater.

  17. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  18. Trace-level mercury removal from surface water

    International Nuclear Information System (INIS)

    Klasson, K.T.; Bostick, D.T.

    1998-01-01

    Many sorbents have been developed for the removal of mercury and heavy metals from waters; however, most of the data published thus far do not address the removal of mercury to the target levels represented in this project. The application to which these sorbents are targeted for use is the removal of mercury from microgram-per-liter levels to low nanogram-per-liter levels. Sorbents with thiouronium, thiol, amine, sulfur, and proprietary functional groups were selected for these studies. Mercury was successfully removed from surface water via adsorption onto Ionac SR-4 and Mersorb resins to levels below the target goal of 12 ng/L in batch studies. A thiol-based resin performed the best, indicating that over 200,000 volumes of water could be treated with one volume of resin. The cost of the resin is approximately $0.24 per 1,000 gal of water

  19. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    International Nuclear Information System (INIS)

    Davloor, R.; Harper, B.

    2011-01-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  1. Removal of bulk contaminants from radioactive waste water at Bruce A using a clay based flocculent system

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Harper, B. [Bruce Power, Tiverton, ON (Canada)

    2011-07-01

    Bruce Power's Bruce Nuclear Generating Station 'A', located on Lake Huron, has a treatment system that processes all aqueous radioactive waste water originating from the station. This Active Liquid Waste Treatment System (ALWTS) consists of collection tanks for the collection of radioactive waste water, a Pre-Treatment System (PTS) for the removal of bulk contaminants and suspended solids, a Reverse Osmosis System (ROS) to remove dissolved solids, an Evaporation and Solidification System (ESS) to concentrate and immobilize solids contained in concentrated waste streams from the ROS, and discharge tanks for the dispersal of the treated water. The ALWTS has been in continuous service since 1999 and is used to treat approximately 100,000 litres of Active Liquid Waste (ALW) each day. With the exception of tritium, it discharges waste water containing near zero concentrations of radioactive and conventional contaminants to the lake. The original design of the Bruce A ALWTS used a Backwashable Filtration System (BFS) to provide solids free water to the ROS, as measured by the Silt Density Index (SDI). During commissioning, the BFS was not successful in backwashing the solids from the filter elements. For approximately one year, a temporary solution was implemented using a Disposable Filtration System (DFS). A cationic polymer was added upstream of the DFS to agglomerate the solids. The system proved to be highly unreliable. It was difficult to agglomerate solids in the waste stream containing high amounts of detergent. As a result, DFS consumption was high and very costly. The SDI specification for the RO membrane was not always met, resulting in a quick decline of performance of the first stage ROS membranes in the treatment process. In addition, the excess cationic polymer in the RO feed caused the membranes to become fouled. In-house station staff, together with personnel from Colloid Environmental Technologies (CETCO) Company, worked to develop and

  2. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  3. Radium removal from Australian spa waters

    International Nuclear Information System (INIS)

    Dickson, B.L.; Meakins, R.L.; Bland, C.J.

    1982-01-01

    The dissolved radium content of some mineral spring waters in Victoria and Queensland has been found to exceed the maximum permissible concentration in drinking water. Activities in excess of 40 pCi/1 were measured in some bottles. Studies revealed that the dissolved radium content decreased markedly if the spring water was aerated and filtered prior to bottling. The sediment removed contained ferric hydroxide which is a natural scavenging agent for radium. The formation of such sediments in storage tanks and their removal prior to bottling may create a possible radiation hazard

  4. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater.

    Science.gov (United States)

    Jamal Khan, S; Ilyas, Shazia; Javid, Sadaf; Visvanathan, C; Jegatheesan, V

    2011-05-01

    The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.

    2010-01-01

    Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose

  6. Comparison of nitrogen removal rates and nitrous oxide production from enriched anaerobic ammonium oxidizing bacteria in suspended and attached growth reactors.

    Science.gov (United States)

    Panwivia, Supaporn; Sirvithayapakorn, Sanya; Wantawin, Chalermraj; Noophan, Pongsak Lek; Munakata-Marr, Junko

    2014-01-01

    Attached growth-systems for the anaerobic ammonium oxidation (anammox) process have been postulated for implementation in the field. However, information about the anammox process in attached growth-systems is limited. This study compared nitrogen removal rates and nitrous oxide (N2O) production of enriched anammox cultures in both suspended and attached growth sequencing batch reactors (SBRs). Suspended growth reactors (SBR-S) and attached growth reactors using polystyrene sponge as a medium (SBR-A) were used in these experiments. After inoculation with an enriched anammox culture, significant nitrogen removals of ammonium (NH4 (+)) and nitrite (NO2 (-)) were observed under NH4 (+):NO2 (-) ratios ranging from 1:1 to 1:2 in both types of SBRs. The specific rates of total nitrogen removal in SBR-S and SBR-A were 0.52 mg N/mg VSS-d and 0.44 mg N/mg VSS-d, respectively, at an NH4 (+):NO2 (-) ratio of 1:2. N2O production by the enriched anammox culture in both SBR-S and SBR-A was significantly higher at NH4 (+):NO2 (-) ratio of 1:2 than at NH4 (+):NO2 (-) ratios of 1:1 and 1:1.32. In addition, N2O production was higher at a pH of 6.8 than at pH 7.3, 7.8, and 8.3 in both SBR-S and SBR-A. The results of this investigation demonstrate that the anammox process may avoid N2O emission by maintaining an NH4 (+):NO2 (-) ratio of less than 1:2 and pH higher than 6.8.

  7. Water removal from a dry barrier cover system

    International Nuclear Information System (INIS)

    Stormont, J.C.; Ankeny, M.D.; Tansey, M.K.

    1994-01-01

    The results of the numerical simulations reveal that horizontal air flow through the coarse with reasonable pressure gradients can remove large quantities of water from the cover system. Initially, the water removal from the cover system is dominated by the evaporation and advection of water vapor out of the coarse layer. Once the coarse layer is dry, removal of water by evaporation near the fine/coarse layer interface reduces the local water content and water potential, and water moves toward the fine-coarse layer interface and becomes available for evaporation. This result is important in that it suggests the fine layer water content may be moderated by air flow in the coarse layer. Incorporating diffusion of water vapor from the fine layer into the coarse layer substantially increases the water movement out of the fine layer

  8. The Effect of Water Chemistry on the Removal of Arsenic from Drinking Water During Iron Removal Treatment

    Science.gov (United States)

    This research investigates the effects of water chemistry, oxidant type and concentration on the removal of iron and arsenic from drinking water. The research will be conducted using one of the National Risk Management Research Laboratory’s Water Supply and Water Resources Divisi...

  9. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  10. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  11. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    Science.gov (United States)

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  12. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    Science.gov (United States)

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  13. Removal of radium from drinking water

    International Nuclear Information System (INIS)

    Clifford, D.A.

    1990-01-01

    The traditional, proven process for radium removal are sodium ion exchange softening, lime softening, and reverse osmosis. The newer, radium-specific column processes include adsorption onto the Dow RSC and BaSO 4 -impregnated alumina. The most promising new radium-specific treatment process for large-scale use is adsorption onto preformed manganese dioxide followed by multimedia or diatomaceous earth filtration The disposal of radium-contaminated wastewaters and sludges from processes under consideration will be a major factor in process selection. The processes of choice for municipal water supply treatment to remove radium are sodium ion exchange softening, lime softening, manganese dioxide adsorption-filtration, and selective adsorption onto the Dow RSC or BaSO 4 -impregnated alumina. Where the water is brackish, reverse osmosis hyperfiltration should also be considered. The radium removal process of choice for whole-house or point-of-entry treatment is sodium ion exchange softening. For point-of-use radium removal, a standard reverse osmosis system including cartridge filtration, activated carbon adsorption, and reverse osmosis hyperfiltration is recommended. Although no cost estimates have been made, the relative costs from most expensive to least expansive, for radium removal in small community water supplies are reverse osmosis, sodium ion exchange softening, lime soda softening, manganese dioxide adsorption-filtration, and the radium-selective adsorbents. 34 refs., 7 figs., 2 tabs

  14. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  15. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    Science.gov (United States)

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  16. Uranium speciation and removal from well water

    International Nuclear Information System (INIS)

    Ayaz, B.; DeVol, T.; Navratil, J.D.

    2001-01-01

    The purpose of this work was to determine the form of uranium present in the well water and to test the effectiveness of common household treatment devices to remove uranium and radium. Batch tests with activated carbon, iron powder, anion exchange resin and cation exchange resin were used to characterize the form of uranium in the drinking water. In the tests, water and the separation materials were first equilibrated, filtered and then analyzed by alpha spectrometry. The results of the batch tests showed that it is possible to remove greater than 90% of the uranium and radium in the drinking water by using any of the sorbents listed above. Simple filtration with 0.1 μm had little to no impact on uranium removal. Results of tests using household treatment devices will also be presented. (authors)

  17. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  18. Comparison of remote sensing algorithms for retrieval of suspended particulate matter concentration from reflectance in coastal waters

    Science.gov (United States)

    Freeman, Lauren A.; Ackleson, Steven G.; Rhea, William Joseph

    2017-10-01

    Suspended particulate matter (SPM) is a key environmental indicator for rivers, estuaries, and coastal waters, which can be calculated from remote sensing reflectance obtained by an airborne or satellite imager. Here, algorithms from prior studies are applied to a dataset of in-situ at surface hyperspectral remote sensing reflectance, collected in three geographic regions representing different water types. These data show the optically inherent exponential nature of the relationship between reflectance and sediment concentration. However, linear models are also shown to provide a reasonable estimate of sediment concentration when utilized with care in similar conditions to those under which the algorithms were developed, particularly at lower SPM values (0 to 20 mg/L). Fifteen published SPM algorithms are tested, returning strong correlations of R2>0.7, and in most cases, R2>0.8. Very low SPM values show weaker correlation with algorithm calculated SPM that is not wavelength dependent. None of the tested algorithms performs well for high SPM values (>30 mg/L), with most algorithms underestimating SPM. A shift toward a smaller number of simple exponential or linear models relating satellite remote sensing reflectance to suspended sediment concentration with regional consideration will greatly aid larger spatiotemporal studies of suspended sediment trends.

  19. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    Science.gov (United States)

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  20. Fluoride Removal from Water by Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Sara Namavar

    2013-09-01

    Full Text Available As fluoride concentration in drinking water is one of the effective parameters in human health, finding the way to remove excess amount of fluoride from drinking water is very important in water supply projects. Today, with developing in technology and finding new methods, the use of membrane technology for producing fresh water get improved. In this study the efficiency of reverse osmosis method to remove fluoride from water was investigated. Initial concentration of fluoride, sulfate and electrical conductivity in feed water and the effect of associated cation with fluoride ion were studied. All tests adapted from “Standard Methods for Examination of Water and Wastewater”. Determination of fluoride concentration was done according the standard SPANDS method by using a spectrophotometer DR/5000. Obtain results show that with increasing in concentration of fluoride and sulfate and electrical conductivity in feed water the efficiency of RO membrane to remove fluoride reduced. In addition, this efficiency for CaF2 was higher than NaF.

  1. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  2. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard)

    Science.gov (United States)

    Meslard, Florian; Bourrin, François; Many, Gaël; Kerhervé, Philippe

    2018-05-01

    An experiment was carried out during summer 2015 in the inner part of the Kongsfjorden to study the inputs of meltwater and behaviour of associated suspended particles. We used a wide range of oceanographic instruments to assess the hydrological and hydrodynamic characteristics of coastal waters. The transfer of suspended particles occurs from a large surface plume fed by two main sources: the most important one is the upwelling of fresh and turbid water coming from a tide-water glacier: the Kronebreen, and the second one from a continental glacier: the Kongsvegen. We estimated that these two sources discharged about 2.48 ± 0.37 × 106 t of suspended sediments during the two months of melting. The major part of these sediments is deposited within the first kilometre due to flocculation phenomena. Flocculation is initiated below the surface turbid plume and is mainly caused by the salinity gradient and high suspended particle concentration. Finally, our estimates of suspended particle fluxes by a typical Arctic coastal glacier showed the need to consider suspended sediment fluxes from high-latitude areas into global budgets in the context of climate change.

  3. Electrodialytic removal of cadmium from wastewater sludge

    DEFF Research Database (Denmark)

    Jakobsen, M. R.; Fritt-Rasmussen, Janne; Nielsen, S.

    2004-01-01

    This paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid....../solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO"3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal...... was approximately the same. Chemical extraction experiments with acidic solutions showed that 5-10 times more Cd could be extracted from decomposed sludge than from fresh sludge. It is likely that the mobilization of Cd during decomposition of the sludge contributes to the efficient removal of Cd...

  4. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  5. ADSORPTIVE REMOVAL OF FLUORIDE FROM WATER USING ...

    African Journals Online (AJOL)

    Preferred Customer

    Currently available treatment methods for removal of excess fluoride from water are broadly divided into three ... the application of nanoparticles as sorbents for fluoride removal. Sundaram [26] studied the ... Characterization of adsorbent.

  6. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  7. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  8. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  9. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  10. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    Science.gov (United States)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  11. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  12. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  13. REMOVAL OF HEXAVALENT CHROMIUM FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    A. R. Asgari ، F. Vaezi ، S. Nasseri ، O. Dördelmann ، A. H. Mahvi ، E. Dehghani Fard

    2008-10-01

    Full Text Available Removal of chromium can be accomplished by various methods but none of them is cost-effective in meeting drinking water standards. For this study, granular ferric hydroxide was used as adsorbent for removal of hexavalent chromium. Besides, the effects of changing contact time, pH and concentrations of competitive anions were determined for different amounts of granular ferric hydroxide. It was found that granular ferric hydroxide has a high capacity for adsorption of hexavalent chromium from water at pH≤7 and in 90 min contact time. Maximum adsorption capacity was determined to be 0.788 mg Cr+6/g granular ferric hydroxide. Although relatively good adsorption of sulfate and chloride had been specified in this study, the interfering effects of these two anions had not been detected in concentrations of 200 and 400 mg/L. The absorbability of hexavalent chromium by granular ferric hydroxide could be expressed by Freundlich isotherm with R2>0.968. However, the disadvantage was that the iron concentration in water was increased by the granular ferric hydroxide. Nevertheless, granular ferric hydroxide is a promising adsorbent for chromium removal, even in the presence of other interfering compounds, because granular ferric hydroxide treatment can easily be accomplished and removal of excess iron is a simple practice for conventional water treatment plants. Thus, this method could be regarded as a safe and convenient solution to the problem of chromium-polluted water resources.

  14. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    Science.gov (United States)

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  15. Treatment of discharge water from hydrostatic testing of natural gas pipelines. Volume 4. Topical report, January 1989-June 1992

    International Nuclear Information System (INIS)

    Tallon, J.T.; Lee-Ryan, P.B.; Volpi, K.A.; Fillo, J.P.

    1992-06-01

    The report presents results developed from bench- and full-scale treatment testing conducted on discharge water from hydrostatic testing of natural gas pipelines. Bench-scale testing examined sedimentation with and without chemical coagulants for reducing iron and total suspended solids, aeration for removal of volatile organics, and activated carbon adsorption for removal of organic constituents. Treatment results are provided for a full-scale treatment process, which utilized a hay bale structure and adsorbent booms for removing suspended solids and oil from the discharge water. Detailed characterization results are presented for test water collected before and after treatment. Results developed from an economic analysis of other potential treatment/disposal alternatives are also presented. A total of eight approaches that may be applied for managing constituents present in hydrostatic test waters are examined. The report is Volume 4 of a five-volume report series

  16. Compositions and methods for removing arsenic in water

    Science.gov (United States)

    Gadgil, Ashok Jagannth [El Cerrito, CA

    2011-02-22

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  17. An exploratory study of using external fluid loading on a vibrating tube for measuring suspended sediment concentration in water

    International Nuclear Information System (INIS)

    Hsu, Y-S; Hwang, Y-F; Huang, J H

    2008-01-01

    This paper presents an exploratory study of using external fluid loading on a vibrating tube for measuring the suspended sediment concentration (SSC) in bodies of water such as rivers and reservoirs. This new measuring concept provides an opportunity for an automated on-site monitoring of the conditions in a body of water by taking the fluid sample instantaneously in the area surrounding the vibrating tube. The physical properties of the fluid sample are those of the fluid that naturally flows around the tube, and are more representative of those of the water with SSC to be measured. The theoretical analysis presented in this paper shows that the resonance frequencies of an immersed vibrating tube change significantly with mass density variations that normally occur in bodies of water with suspended sediment. These changes are sensitive enough to have a possible 1% resolution of the measured fluid density. The signal processing issues are discussed, and a schematic of a conceptual measuring setup is proposed. Based on the theoretical analyses and other measurement issues presented in the paper, using the loading by external fluid on a vibrating tube is feasible for measuring the SSC in water bodies

  18. [The method to remove nitrite from tap water by tea].

    Science.gov (United States)

    Lu, M; Chen, L; Xian, H

    1997-03-01

    Drinking water (tap water) is polluted in pipelines by bacteria after long distance transportation. The water contains nitrite (NO2-) which is potentially harmful to human health. The nitrite concentrations range from 0.10 to 2.0 mg/L. Our experiment proved that NO2- could not be removed by boiling, but could be removed by tea. As a natural antioxidant, tea contains several antioxidants, such as ascorbic acid and catechins, which removed NO2- from tap water effectively.

  19. Analysis of microplastics and their removal from water

    OpenAIRE

    Oladejo, Abiola

    2017-01-01

    Removal of microplastics from water was studied using extraction with oil. The aim of the thesis was to remove microplastics from water using an organic medium, and to analyse the amount of microplastics in the media involved. The separation of different microplastic types was done by conducting experiments in the laboratory. The microplastics were made by grinding and sieving plastics with a grinding machine before adding them to water and oil, which serves as the organic medium. Tw...

  20. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.

    Science.gov (United States)

    Wan, Wei; Pepping, Troy J; Banerji, Tuhin; Chaudhari, Sanjeev; Giammar, Daniel E

    2011-01-01

    Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. N-Basin water removal plan

    International Nuclear Information System (INIS)

    Nellesen, A.L.

    1997-07-01

    This ALARA review provides a description of the engineering and administrative controls used to manage personnel exposure, control contamination levels, and airborne radioactivity concentrations, while removing water and stabilizing surfaces in the 105-N Fuel Storage Building

  2. Full-Scale and Bench-Scale Studies on the Removal of Strontium from Water (abstract)

    Science.gov (United States)

    Strontium (Sr) is a natural and commonly occurring alkaline earth metal which has an oxidation state of +2 under normal environmental conditions. Stable strontium is suspended in water and is dissolved after water runs through rocks and soil. It behaves very similar to calcium. G...

  3. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  4. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  5. Influence of microorganism content in suspended particles on the particle-water partitioning of mercury in semi-enclosed coastal waters.

    Science.gov (United States)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle-water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a]algae to transfer Hg to marine food chains. © 2013.

  6. Removal of ciprofloxacin from water by birnessite

    International Nuclear Information System (INIS)

    Jiang, Wei-Teh; Chang, Po-Hsiang; Wang, Ya-Siang; Tsai, Yolin; Jean, Jiin-Shuh; Li, Zhaohui; Krukowski, Keith

    2013-01-01

    Highlights: ► Ciprofloxacin removal by birnessite was accompanied by interlayer cation exchange. ► Layer expansion and FTIR data suggested ciprofloxacin intercalation into birnessite. ► Adsorption capacity of ciprofloxacin into birnessite was limited by surface area. ► Birnessite in soil systems may provide host for ciprofloxacin accumulation. -- Abstract: With more pharmaceuticals and personal care products detected in the surface and waste waters, studies on interactions between these contaminants and soils or sediments have attracted great attention. In this study, the removal of ciprofloxacin (CIP), a fluoroquinolone antibiotic, by birnessite, a layered manganese oxide, in aqueous solution was investigated by batch studies supplemented by X-ray diffraction (XRD) and Fourier transform infrared analyses. Stoichiometric release of exchangeable cations accompanying CIP removal from water confirmed cation exchange as the major mechanism for CIP uptake by birnessite. Interlayer expansion after CIP adsorption on birnessite as revealed by XRD analyses indicated that intercalation contributed significantly to CIP uptake in addition to external surface adsorption. Correlation of CIP adsorption to specific surface area and cation exchange capacity suggested that the former was the limiting factor for CIP uptake. At the adsorption maximum, CIP molecules formed a monolayer on the birnessite surfaces. The adsorbed CIP could be partially removed using a cationic surfactant at a low initial concentration and mostly removed by AlCl 3 at a higher initial concentration, which further supported the cation exchange mechanism for CIP removal by birnessite. The results indicated that the presence of layered Mn-oxide in the soil and waste water treatment systems may provide host for CIP accumulation

  7. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

    Directory of Open Access Journals (Sweden)

    Stephen P Rubin

    Full Text Available The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth. Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  8. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    Science.gov (United States)

    Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  9. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  10. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    Science.gov (United States)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte; Petersen, Jens Kjerulf

    2018-02-01

    Farming of suspended mussels is important for generating high protein food and animal feed or for removing nutrients in eutrophic systems. However, the harvested mussels must not be severely contaminated by pollutants posing a potential health risk for the consumers. The present study estimated the bioaccumulation of cadmium, copper, nickel, lead and zinc in suspended blue mussels (Mytilus edulis L.) in the Limfjorden, Denmark, based on observations and modelling. Modelling was used to assess the suitability of suspended blue mussels as animal feed and food products at sea water metal concentrations corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards (EQS) defined in the WFD priority substance daughter directives. Observations showed that suspended mussels were healthy with respect to metal pollution and generally less polluted than benthic mussels due to the smaller contact with the contaminated sediment. The model results showed that the WFD targets for Cd, Ni and Pb are not protective with respect to marine mussel production and probably should be reduced for marine waters. Climate changes may increase the metal contamination of mussels, but not to any critical level at the relatively unpolluted study sites. In conclusion, WFD targets should be revised to assure that the corresponding body burdens of metals in mussels are below the safety limits according to the EU Directives and the Norwegian classification for animal feed and food production.

  11. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  12. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  13. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  14. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.

    Science.gov (United States)

    Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin

    2010-03-01

    This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Biological effect on removal of Th-234, Po-210 and Pb-210 from surface water in Funka Bay, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N; Takeda, Y; Tsunogai, S [Hokkaido Univ., Hakodate (Japan). Dept. of Chemistry

    1983-10-01

    Vertical and temporal variations in the radioactivities of Th-234, Pb-210 and Po-210 were measured at a station in Funka Bay from April 1979 to February 1980. The inventory of Th-234 showed a minimum in early spring, when a spring bloom of phytoplankton was observed, then a steady increase to a maximum value in late summer, just before open sea water invaded the bay and a secondary phytoplankton bloom started. The inventories of Pb-210 and Po-210 also showed minima in early spring. These results suggest that the removal of these nuclides from sea water is accelerated by biological activity. The concentration of Th-234 decreased with depth, but those of Po-210 and Pb-210 were higher in the bottom water in August 1979 when the bay water was strongly stratified. This may be due to the supply of Pb-210 and Po-210 from the bottom. However, if the supply of these nuclides is expected in sediment particles, the concentrations of these nuclides in suspended matter were not sufficient to explain their increments in the bottom water. Residence times of Th, Pb and Po were estimated.

  16. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  17. 7 CFR 701.53 - Debris removal and water for livestock.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Debris removal and water for livestock. 701.53 Section... RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART § 701.53 Debris removal and water for livestock..., and for providing water for livestock. [71 FR 30265, May 26, 2006] ...

  18. Removal of ciprofloxacin from water by birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, Po-Hsiang; Wang, Ya-Siang; Tsai, Yolin; Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Krukowski, Keith [Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States)

    2013-04-15

    Highlights: ► Ciprofloxacin removal by birnessite was accompanied by interlayer cation exchange. ► Layer expansion and FTIR data suggested ciprofloxacin intercalation into birnessite. ► Adsorption capacity of ciprofloxacin into birnessite was limited by surface area. ► Birnessite in soil systems may provide host for ciprofloxacin accumulation. -- Abstract: With more pharmaceuticals and personal care products detected in the surface and waste waters, studies on interactions between these contaminants and soils or sediments have attracted great attention. In this study, the removal of ciprofloxacin (CIP), a fluoroquinolone antibiotic, by birnessite, a layered manganese oxide, in aqueous solution was investigated by batch studies supplemented by X-ray diffraction (XRD) and Fourier transform infrared analyses. Stoichiometric release of exchangeable cations accompanying CIP removal from water confirmed cation exchange as the major mechanism for CIP uptake by birnessite. Interlayer expansion after CIP adsorption on birnessite as revealed by XRD analyses indicated that intercalation contributed significantly to CIP uptake in addition to external surface adsorption. Correlation of CIP adsorption to specific surface area and cation exchange capacity suggested that the former was the limiting factor for CIP uptake. At the adsorption maximum, CIP molecules formed a monolayer on the birnessite surfaces. The adsorbed CIP could be partially removed using a cationic surfactant at a low initial concentration and mostly removed by AlCl{sub 3} at a higher initial concentration, which further supported the cation exchange mechanism for CIP removal by birnessite. The results indicated that the presence of layered Mn-oxide in the soil and waste water treatment systems may provide host for CIP accumulation.

  19. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    Science.gov (United States)

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  20. Desalination and Water Purification Technology Roadmap

    Science.gov (United States)

    2003-01-01

    Environmental Protection Agency EPS Extra-cellular Polymeric Substances M&E Materials and Energy MF Microfiltration MTBE Methyl Tertiary Butyl Ether NASA...and bays. On a regional scale, therefore, desalination could aid in restoring the balance between fresh water needs and fresh water supplies that has... Microfiltration (MF) membranes—used for turbidity reduction, removal of suspended solids and bacteria • Ultrafiltration (UF) membranes—used for color, odor

  1. CPP-603 Chloride Removal System Decontamination and Decommissioning

    International Nuclear Information System (INIS)

    Moser, C.L.

    1993-02-01

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D ampersand D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis', and D ampersand D plans' were prepared in 1991. Physical D ampersand D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D ampersand D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred

  2. Uranium removal from water by five aquatic plants

    International Nuclear Information System (INIS)

    Hu Nan; Ding Dexin; Li Guangyue; Wang Yongdong; Li Le; Zheng Jifang

    2012-01-01

    Hydroponic solution culture experiments were conducted on the growth of Eichhornia crassipes, Lemna minor L, Azolla imbircata, Potamogeton crispus, and Alligator alternanthera Herb in water with 0.15, 1.50 and 15.00 mg . L -1 concentrations of uranium, and on the uranium removal from the water by the aquatic plants. For the 21 days of hydroponic solution culture experiments, Azolla imbircata exhibited the strongest resistance to uranium and its growth inhibition rates induced by the water with 0.15, 1.50 and 15.00 mg · L -1 concentrations of uranium were 4.56%, 2.48%, 6.79%, respectively, and the uranium removal rates from the water by the plant amounted to 94%, 97% and 92%, respectively. Further experiments revealed that the most uranium removal could be achieved when 7.5 g Azolla imbircata was grown in 1 L of water, and the time required for the plant to reduce the uranium concentration in water with 1.25, 2.50, 5.00 and 10.00 mg · L -l concentrations of uranium below that stipulated in the national emission standards of China were 17, 19, 23 and 25 days, respectively. The results have laid foundation for further studies of phytoremediation of uranium contaminated water. (authors)

  3. Uranium removal from the water supply

    International Nuclear Information System (INIS)

    Miranzadeh, Mohammad Bagher.

    1996-01-01

    Uranium can be naturally occurring radionuclides that contaminate some potable water supplies. Uranium is found both in surface water and ground water supplies. The United States Environmental Protection Agency recently proposed a maximum contaminant of 20 micro gram/liter for uranium because of concerns about its association with kidney disease and cancer. uranium can be removed from the supply by strong base anion-resin. Exhausted resin is regenerated by sodium chloride solution. (Author)

  4. Carbon Nanotubes Technology for Removal of Arsenic from Water

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2012-08-01

    Full Text Available Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1:6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough point were carried out to determine the influence of these parameters on the adsorption capacity of the arsenic from water. Results: Adsorption capacities of single wall and multiwall carbon nanotubes were about 148 mg/g and 95 mg/g respectively. The experimental data were analyzed using Langmuir and Freundlich isotherm models and equilibrium data indicate the best fit obtained with Langmuir isotherm model. Conclusions: Carbon nanotubes can be considered as a promising adsorbent for the removal of arsenic from large volume of aqueous solutions. References: 1. Lomaquahu ES, Smith AH. Feasibility of new epidemiology studies on arsenic exposures at low levels. AWWA Inorganic Contaminants Workshop. San Antonio; 1998. 2. Burkel RS, Stoll RC. Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin. Ground Water Monit Remediat 1999;19(2:114-21. 3. Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 2006;137(1: 464-79. 4. Meenakshi RCM. Arsenic removal from water: a review. Asian J Water Environ Pollut 2006;3(1:133-9. 5. Wickramasinghe SR, Binbing H, Zimbron J, Shen Z, Karim MN. Arsenic removal by coagulation and filtration: comparison of ground waters from United States and Bangladesh. Desalination 2004;169:231-44. 6. Hossain MF. Arsenic contamination in Bangladesh-an overview. Agric Ecosyst Environ 2006;113(1-4:1-16. 7. USEPA, Arsenic. Final

  5. Removal of some radionuclides from water by bioaccumulation

    International Nuclear Information System (INIS)

    Miskovic, D.; Conkic, L.; Dalmacija, B.; Gantar, M.

    1992-01-01

    First objective of this study was to investigate the application of biologically activated carbon (BAC) as well as its comparison to adsorption, with the aim of removing some radionuclides from water. The isotopes Cs 134 and Cs 137 were bioaccumulated by BAC up to 50%, while the I 131 isotope was only physicochemically adsorbed (about 40%). Also, the process of radionuclides (Cs 137 , Ce 139 , Co 57 , Co 60 ) fixation on blue-green algae (Nostoc sp.) was investigated. The kinetics of the removal of these radionuclides from water was recorded. It was found that after a contact period of about half an hour 40-70% of the activity was removed. (Author)

  6. Method of arsenic removal from water

    Science.gov (United States)

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  7. Treatment techniques for the removal of radioactive contaminants from drinking water

    International Nuclear Information System (INIS)

    Logsdon, Gary S.

    1978-01-01

    Maximum contaminant levels have been set for radioactive contaminants, as required by the Safe Drinking Water Act (PL 93-523). Treatment techniques are available for removing radium and beta-gamma emitters. Presently-used methods of removing radium-226 are precipitative lime softening (80-90% removal) ion exchange softening (95% removal) and reverse osmosis (95% removal). The 5 p Ci/l limit for radium can be met with conventional technology for raw waters in the 5-100 p Ci/l concentration range. Treatment for removal of beta or gamma emitters must be based upon chemical rather than radioactive characteristics of the contaminant. Reverse osmosis can remove a broad spectrum of ions and molecules from water, so it is the process most likely to be used. The maximum contaminant level for beta and gamma radioactivity is an annual dose equivalent to the total body or any organ not to exceed 4 m rem/year. The fate of radionuclides after removal from drinking water should be considered. Presently radium is disposed with other process wastes at softening plants removing radium. Confinement and disposal as a radioactive waste would be very expensive. (author)

  8. Analysis of the Danube river suspended load regime

    International Nuclear Information System (INIS)

    Lukac, M.

    2004-01-01

    In this presentation author deals with the analysis of the Danube river suspended load regime at the Slovak section of Danube. It is concluded and recommended: Suspended load transport at the Slovak section of Danube decreases in the downstream directions - annual averages: Utilize relation of the Water Research Institute in Medvedov, the relation of the Slovak Hydrometeorological Institute is probably slightly underestimated; Distribution of suspended load concentration in the cross-section is influenced mainly with local hydraulic and morphological conditions; Measured flow velocity in the range 0.6 - 2.65 m/sec -1 , influenced with water level slope; Silt particles the most numerous, less numerous sandy and clayey particles; Bratislava 3.54 mil. tonnes, Medvedov 2.22 mil. tonnes, and Komarno 1.96 mil. tonnes; Recommendation to measure actual volume of the Cunovo reservoir, in order to validate sediment transport balance; Recommendation to continue in a complex monitoring programme of sediment transport

  9. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  10. Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and the Hawaiian Islands

    Science.gov (United States)

    Carlson, P. R. (Principal Investigator); Conomos, T. J.; Janda, R. J.; Peterson, D. H.

    1973-01-01

    The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current).

  11. Acceleration induced water removal from ear canals.

    Science.gov (United States)

    Kang, Hosung; Averett, Katelee; Jung, Sunghwan

    2017-11-01

    Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.

  12. Present changes in water soil erosion hazard and the response to suspended sediment load in the Czech landscape

    Science.gov (United States)

    Kliment, Zdenek; Langhammer, Jakub; Kadlec, Jiří; Vyslouzilová, Barbora

    2014-05-01

    A noticeable change in water soil erosion hazard and an increase of extreme meteorological effects at the same time have marked the Czech landscape in the last twenty years. Formerly cultivated areas have been grassed or forested in mountain and sub mountain regions. Crop management has also been substantially changed. Longer and more frequently dry periods, more intensive local rainfalls and more gentle winter periods we can observe in the present climate development. The aim of this contribution is to demonstrate the importance and spatial relationship between changes in water soil erosion hazard by way of example of model river basins in different areas of the Czech Republic. The field research, remote sensing data, GIS and model approaches (MEFEM- multicriteria erosion factors evaluation model, USLE, RUSLE, WaTEM/SEDEM, AnnAGNPS and SWAT) were used for erosion hazard assessment. The findings were comparing with the balance, regime and trends of suspended load. Research in the model Blšanka River basin, based on our fifteen-year monitoring of suspended load, can be considered as basic (Kliment et al. 2008, Langhammer et al. 2013). KLIMENT, Z., KADLEC, J., LANGHAMMER, J., 2008. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical models. Catena, 73(3): 286-299. LANGHAMMER, J., MATOUŠKOVÁ, M., KLIMENT, Z., 2013. Assessment of spatial and temporal changes of ecological status of streams in Czechia: a geographical approach. Geografie, 118(4): 309-333

  13. System to take up oil suspended in water. System zur Aufnahme von Wasser schwimmendem Oel

    Energy Technology Data Exchange (ETDEWEB)

    Skowronek, A; Hahnefeld, J

    1981-03-19

    This sytem for taking up oil suspended in water has the advantage that the material required can be jettisoned by aircraft in areas affected by an oil catastrophy. Two hoses about 100 metres distant from one another pull a plastic cover made of Perlon through the water. The upper edge of the cover widens into hose-like air containers, in order to keep the cover sufficiently above the water. The lower edge is loaded with quartz sand, in order to keep the cover vertical in the water. A connecting piece guides the oil into a connected plastic pontoon. There are two ships engines mounted in the front third of the connecting piece, which pump the oil into the first pontoon, which acts as storage container. Two dewatering valves are situated in it, which will separate the oil from the water. After passing through this pontoon, the oil reaches a second, much larger plastic pontoon, which acts as the collector for pure oil.

  14. Laser removal of water repellent treatments on limestone

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Rebollar, Esther; Oujja, Mohamed; Castillejo, Marta; Fort, Rafael

    2003-12-15

    Protective and water repellent treatments are applied on stone materials used on buildings or sculptures of artistic value to reduce water intrusion without limiting the natural permeability to water vapour of the material. The effect of the wavelength associated with the laser removal of two water repellent treatments applied on limestone, Paraloid B-72, a copolymer of methyl acrylate and ethyl methacrylate, and Tegosivin HL-100, a modified polysiloxane resin, was investigated by using the four harmonics of a Q-switched Nd:YAG laser (1064, 532, 355 and 266 nm). The modifications induced on the surface of limestone samples by laser irradiation were studied using colorimetry, roughness measurements and scanning electron microscopy (SEM). The removal of the treatments was found to be dependent on the laser irradiation conditions and on the characteristics of the coatings. The fundamental laser radiation was effective in removing both treatments, but thermal alteration processes were induced on the constituent calcite crystals. The best results were obtained by irradiation in the near UV at 355 nm.

  15. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  16. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... efficiency from 1% to 80% compared to experiments with no stirring but with the same operational conditions. This showed the crucial importance of having the solids in suspension and not settled during the remediation....

  17. Efficiency of lead removal from drinking water using cationic resin Purolite

    Directory of Open Access Journals (Sweden)

    Ashour Mohammad Merganpour

    2015-01-01

    Full Text Available Background: Today, issues such as water shortage, difficulties and costs related to supplying safe water, and anomalous concentrations of heavy metals in groundwater and surface water resources, doubled the necessity of access to technical methods on removing these pollutants from water resources. Methods: In this lab study, cationic resin Purolite S-930 (with co-polymer styrene di-vinyl benzene structure was used for lead removal from drinking water containing up to 22 μg/L. Using statistical analysis and designing a full factorial experiment are the most important effective parameters on lead removal obtained through ion exchange process. Results: Analysis of response and interaction parameters of ion exchange showed that the resin column height has maximum and pH value has minimum effect on the efficiency of lead removal from aquatic environment. Trinary interaction of “effective size, flow rate, resin column high” has the most important for lead removal efficiency in this system. So the maximum efficiency was obtained at the mesh = 40, bed height =1.6 meter, and pH= 6.5. At the best operation conditions, ability to remove 95.42% of lead concentration can be achieved. Conclusion: Using the resin Purolite S-930 during 21-day service with 91.12% of mean lead removal ratio from drinking water is an economic and technical feasibility.

  18. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  19. Removal of radionuclides from household water; Metoder foer avlaegsnande av radionuklider fraan hushaallsvatten

    Energy Technology Data Exchange (ETDEWEB)

    Vesterbacka, P.; Turtiainen, T.; Haemaelaeinen, K.; Salonen, L.; Arvela, H.

    2007-02-15

    Research upon methods for removing radionuclides from household water was initiated in Finland in 1995. Three research projects, of which two were carried out with National Technology Agency of Finland and one with CEC, have been completed by the end of 2002. One of the main objectives of the research was to compose a guidebook for consumers and water treatment companies. Radon can be removed from household water by aeration and by activated carbon filtration. Aerators that are well designed and set up can remove over 90% of waterborne radon. The best aerators have achieved removal efficiencies that are nearly 100%. However, setting up an aeration system requires thorough planning. Also, activated carbon filtration removes radon efficiently. The removal efficiencies have been over 90%, often nearly 100%. Depending on the water quality and usage, the carbon batch inside the filter needs to be changed every 2 - 3 years. Since activated carbon filters emit gamma radiation while in use, they should not be installed inside the dwelling but in a separate building or by the well. It is recommended that uranium be removed from drinking water by anion exchange, which is the most efficient removal method for this purpose. Typically, the removal efficiencies are nearly 100%. The one exception is the so called tap filter, the removal efficiency of which depends on uranium concentration in raw water and the rate of water flow. High saline concentration in water may extricate uranium from ion exchange resin. Changes in plumbing pressure or pH-value do not have any significant influence in uranium retention. Removal efficiencies of lead and polonium vary a lot depending on the chemical form in which they occur in water. They can be reliably removed from water by reverse osmosis only. Other treatment methods, such as ion exchange and activated carbon filtration, remove lead and polonium partly. Lead and polonium are removed more efficiently when they are bound onto smaller

  20. Removal of some radionuclides from water by bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, D.; Conkic, L.; Dalmacija, B.; Gantar, M. (Trg D. Obradvica 3, Novi Sad (Yugoslavia). Faculty of Sciences)

    1992-01-01

    First objective of this study was to investigate the application of biologically activated carbon (BAC) as well as its comparison to adsorption, with the aim of removing some radionuclides from water. The isotopes Cs[sup 134] and Cs[sup 137] were bioaccumulated by BAC up to 50%, while the I[sup 131] isotope was only physicochemically adsorbed (about 40%). Also, the process of radionuclides (Cs[sup 137], Ce[sup 139], Co[sup 57], Co[sup 60]) fixation on blue-green algae (Nostoc sp.) was investigated. The kinetics of the removal of these radionuclides from water was recorded. It was found that after a contact period of about half an hour 40-70% of the activity was removed. (Author).

  1. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  2. The effectiveness of conventional water treatment in removing ...

    African Journals Online (AJOL)

    Algal blooms are a global problem due to various negative effects that can compromise water quality, such as the production of metabolites that are responsible for odour, colour, taste and toxins. In drinking water supplies algae can reduce the aesthetics of potable water when not readily removed by conventional water ...

  3. Removal of natural radionuclides from drinking water from private wells in Finland

    International Nuclear Information System (INIS)

    Huikuri, Pia; Salonen, Laina; Turtiainen, Tuukka

    1999-01-01

    Removal of natural radionuclides is often necessary in Finland when household water is taken from a drilled well. Removal of radionuclides by various methods from Finnish groundwaters were studied in a EU-research project, TENAWA. The results indicated that radon can be removed very efficiently (up to 99%) by applying aeration or granular activated carbon (GAC) filtration. Uranium and radium were also removed (over 94%) by using strong base anion (SBA) and strong acid cation (SAC) resins. The capability of reverse osmosis (RO) equipment to remove radionuclides was over 90% for uranium, radium and polonium. The water quality analyses indicated that water quality remained mostly good during the water treatment. (au)

  4. Removal of arsenic from potable water by adsorptive media treatment techniques

    International Nuclear Information System (INIS)

    Yousuf, S.; Khan, S.; Aslam, M.T.; Khan, A.R.

    2012-01-01

    Summary: This study was conducted to investigate the arsenic removal efficiency of different adsorptive media from water. Different naturally occurring materials such as bauxite, plastic clay, plaster of Paris, lime, alum, and alumina etc. were used for the development of media to remove arsenic As/sup +5/ present in the artificially contaminated water. Different ratios of the selected materials were combined and ignited at 9000 C to enhance its arsenic removing efficiency. It was found that the media bauxite, plastic clay, lime (1:1:1) has a maximum removal (99%) of As +5 species from aqueous media and can be used on- site to reduce the arsenic contamination of potable water. Furthermore, the materials used in this experiment were cheaply and abundantly available within the country. The method is very simple and economically viable, for removal of arsenic from potable water. (author)

  5. Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2013-01-01

    The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell......, predominately working under overlimiting current density conditions. Soil 1 was sampled from a pile of excavated soil at a site with mixed industrial pollution (Cu and Cd), and soil 2 was sampled from the top layer of a wood preservation site (Cu and As). Results showed that pulse current improved...... the acidification by supplying more reactive H+ ions (defined as the H+ ions causing release of heavy metals from soil particles). The molar ratio of reactive H+ ions to total produced H+ ions (RH+/PH+) was higher in every pulse current experiment than in the corresponding constant current experiment. In addition...

  6. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay.

    Science.gov (United States)

    Borkman, David G; Smayda, Theodore J

    2016-06-15

    Dramatic changes occurred in Narragansett Bay during the 1980s: water clarity increased, while phytoplankton abundance and chlorophyll concentration decreased. We examine how changes in total suspended solids (TSS) loading from wastewater treatment plants may have influenced this decline in phytoplankton chlorophyll. TSS loading, light and phytoplankton observations were compiled and a light- and temperature-dependent Skeletonema-based phytoplankton growth model was applied to evaluate chlorophyll supported by TSS nitrogen during 1983-1995. TSS loading declined 75% from ~0.60×10(6)kgmonth(-1) to ~0.15×10(6)kgmonth(-1) during 1983-1995. Model results indicate that nitrogen reduction related to TSS reduction was minor and explained a small fraction (~15%) of the long-term chlorophyll decline. The decline in NBay TSS loading appears to have increased water clarity and in situ irradiance and contributed to the long-term chlorophyll decline by inducing a physiological response of a ~20% reduction in chlorophyll per cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  8. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  9. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Corletti, M.M.; Schulz, T.L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures

  10. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  11. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  12. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  13. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  14. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  15. Use of biofilters and suspended-growth reactors to treat VOC's

    Energy Technology Data Exchange (ETDEWEB)

    Neal, A.B.; Loehr, R.C.

    2000-07-01

    The greater limits placed on volatile organic compound (VOC) emissions by the Clean Air Act Amendments have stimulated evaluation of various VOC treatment methods. Two applicable gas phase treatment technologies are biofiltration and suspended growth reactors. Biofiltration removes contaminants from gas streams that are passed through a bed of biologically active solids. An aerobic suspended-growth reactor (SGR) removes VOCs by biologically treating contaminated air bubbled through an aqueous suspension of active microorganisms. This research compared the performance of a typical compost biofilter to a SGR for the removal of a common VOC (toluene) from gas streams. The objective was to evaluate the impact of mass loading on process performance. Major performance parameters investigated were (1) mass emitted and elimination capacity, (2) off-gas concentrations exiting each type of reactor for various mass loadings, and (3) removal efficiencies obtained by each type of reactor. The results indicated that SGRs can effectively treat gases containing VOCs. For mass loadings ranging from 5 to 30 mg/l-h, the biofilters and SGRs achieved similar VOC removals, in the range of 96--99.7%. Drying of the biofilter medium occurred a high mass loadings. In the SGRs, at mass loadings greater than 17 mg/l-h, process performance decreased when an unknown colored substance was present.

  16. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  17. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    Science.gov (United States)

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    The ability to accurately monitor suspended-sediment flux in rivers is needed to support many types of studies, because the sediment that typically travels in suspension affects geomorphology and aquatic habitat in a variety of ways (e.g. bank and floodplain deposition, bar morphology, light penetration and primary productivity, tidal wetland deposition in the context of sea-level rise, sediment-associated contaminants, reservoir sedimentation and potential erosion during dam removal, among others). In addition, human-induced changes to the landscape have resulted in substantially altered suspended-sediment loads (Syvitski et al., 2005). Thus, accurate monitoring of suspended-sediment flux is necessary for informed resource management of rivers. Because of this need, a variety of techniques have been developed and applied for suspendedsediment monitoring. The traditional approach in the United States, which was developed and has been used extensively by the U.S. Geological Survey (USGS), is to collect an isokinetic, velocity-weighted sample from a river cross-section, analyze the sample in the laboratory, and use water-discharge records to compute a record of suspended-sediment flux (Guy, 1969, Guy, 1970, Edwards and Glysson, 1999, Porterfield, 1972). The labor and expense associated with this traditional approach is substantial such that the number of USGS gages reporting daily records of suspended-sediment flux decreased from 364 in 1981 to 120 in 2003 (Osterkamp et al., 2004). Also, the traditional sampling approach is limited with respect to the temporal resolution that can be achieved, thus requiring the use of approximate relations between suspended-sediment concentration and water discharge to fill gaps between samples. To address these limitations, several indirect or "surrogate" measures have been investigated (see e.g. Gray and Gartner, 2009) most notably optical backscatter (i.e. turbidity), laser-diffraction, and acoustic backscatter. These indirect

  18. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1990-01-01

    This paper reports on the selection of an appropriate treatment system to remove radon from drinking water which depends primarily upon percent removal; capital and operating and maintenance costs; safety; raw water quality with respect to parameters such as Fe, Mn, bacteria, and organics. The radon removal efficiency of the diffused bubble and packed tower aeration exceeded 99% at A:W ratios of 15:1 and 5:1, respectively; the GAC system averaged 81 ± 7.7%. Though our field evaluations indicated that GAC systems may not be as efficient as aeration systems, the system tested was operated above design requirements for most of the study period. Other researchers have found removals of greater than 99% with GAC point-of-entry applications. Therefore, each of these processes has the potential to consistently remove 99% of the radon applied. However, even this percent removal may not be sufficient to meet an MCL in the range of 200 to 1000 pCi/L if the raw water contained more than 20,000 to 100,000 pCi/L, respectively

  19. Arsenic removal in water by means of coagulation-flocculation processes

    International Nuclear Information System (INIS)

    Franco, M. F.; Carro P, M. E.

    2014-01-01

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  20. Naturally occurring radionuclides in drinking water before and after radon removal

    International Nuclear Information System (INIS)

    Swedjemark, G.A.; Linden, A.

    1998-06-01

    Radon removal can, with a good effect, be used to remove radon from well water. The short-lived radon progeny have been investigated in the raw and cleaned water from six private wells where radon removal based on aeration and recirculation of the water have been installed. The results from this pilot study indicate that the short-lived radon progeny in some cases follow the water to the tap for consumption to such an extent that the problem should be considered. The extent of the study is not sufficient for general conclusions. However, it is important to stress that the effective dose from the short-lived progeny is always lower than it would have been from the radon, when no radon is removed

  1. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby

  2. Electrodialytic Remediation of Soil Slurry-Removal of Cu, Cr, and As

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Hansen, Henrik K.

    2009-01-01

    Severe soil contamination is often found at old wood preservation sites and a common combination of pollutants is Cu, Cr, and As. In the present work it is tested if simultaneous removal of Cu, Cr, and As can be obtained in an electrodialytic cell where the polluted soil is remediated as a stirred...... experiments; an experiment where the soil was suspended in distilled water and the remediation lasted 3 weeks with 2.5 mA and an experiment with acidification of the soil suspension with HNO3 to pH about 1.0 (2 weeks and 5 mA). The best separation of pollutants and soil was obtained in the experiment...... with suspension in distilled water. Based on soil concentrations, good Cu removal (95%) was obtained in both experiments. Removal of Cr was most efficient from the acidified soil suspension (74%). Both Cu and Cr concentrations were below the limiting values after the remediation. The As concentration, however...

  3. Removal method of radium in mine water by filter sand

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Naganuma, Masaki

    2003-01-01

    Trace radium is contained in mine water from the old mine road in Ningyo-Toge Environmental Engineering Center, JNC. We observed that filter sand with hydrated manganese oxide adsorbed radium in the mine water safely for long time. The removal method of radium by filter sand cladding with hydrated manganese oxide was studied. The results showed that radium was removed continuously and last for a long time from mine water with sodium hypochlorite solution by passing through the filter sand cladding with hydrated manganese. Only sodium hypochlorite solution was used. When excess of it was added, residue chlorine was used as chlorine disinfection. Filter sand cladding with hydrated manganese on the market can remove radium in the mine water. The removal efficiency of radium is the same as the radium coprecipitation method added with barium chloride. The cost is much lower than the ordinary methods. Amount of waste decreased to about 1/20 of the coprecipitation method. (S.Y.)

  4. Community Responses to the Removal of Bottled Water on a University Campus

    Science.gov (United States)

    Mikhailovich, Katja; Fitzgerald, Robert

    2014-01-01

    Purpose: This paper aimed to examine the impact of the removal of bottled water on the campus community. This paper presents the findings of a survey conducted at the first Australian university to remove single-use bottled water from sale on a small regional university campus. The removal of bottled water from sale at the university formed part…

  5. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    Science.gov (United States)

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    Science.gov (United States)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  7. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  9. A comparative study of reverse osmosis and activated charcoal, two inexpensive and very effective ways to remove waterborne radon

    International Nuclear Information System (INIS)

    Sullivan, K.T.; Mose, D.G.; Mushrush, G.W.

    1994-01-01

    A two year comparative study of waterborne radon removal reveals that reverse osmosis is consistently more effective than the use of activated charcoal. Reverse osmosis is a process by which water is forced under a pressure sufficient to overcome osmotic pressure through a semipermeable membrane, leaving behind impurities. Removal effectiveness for dissolved organic, dissolved ionic and suspended impurities are typically above 90%. Systems designed for home use to remove impurities from water dispensed at a convenient tap cost about $2000 and commonly consist of a sediment filter, a carbon prefilter, and a reverse osmosis container. A tank of activated charcoal can work equally well, and cost $500-$1000. However, the tank of charcoal becomes measurably enriched in gamma-emitters

  10. Suspended marine particulate proteins in coastal and oligotrophic waters

    Science.gov (United States)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  11. Removal of arsenic from ground water samples collected from West Bengal, India

    International Nuclear Information System (INIS)

    Ajith, Nicy; Swain, K.K.; Dalvi, Aditi A.; Verma, R.

    2015-01-01

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L -1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO 2 ) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO 2

  12. 40 CFR 1065.659 - Removed water correction.

    Science.gov (United States)

    2010-07-01

    ... water content according to paragraph (b)(1) of this section. (3) You may also use a nominal value of...) Use any of the techniques described in paragraph (b) of this section. (2) If the measurement comes.... (a) If you remove water upstream of a concentration measurement, x, or upstream of a flow measurement...

  13. Preozonation Effect on Total Organic Carbon Removal in Surface Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Torabian

    2006-06-01

    Full Text Available In drinking water treatment, preozonation is often applied in order to control the microorganisms and taste and odor causing materials, which may influence organics removal by preoxidation and adsorption. Using commercial and natural water humic substances, the positive effect of preozonation as an aid to coagulation-flocculation of these compounds was confirmed by removal of TOC removal in Tehranpars Water Treatment Plant in Tehran. These experiments were conducted as bench-scale studies through a series of jar tests using different pH coagulant dosages and total organic carbon concentration of approximately 4, 8 and 12 mg/L. In addition to TOC removal, the existence of an optimum preozonation dose (OPZD was also confirmed. Experiments show that preozonation can improve coagulation and flocculation depending on influent TOC concentration of raw water. The results demonstrate different effects of preozonation on removal of influent TOC. Preozonation showed a positive effect on a system with low influent TOC and very low molecular weight (noncolloidal humic substances.

  14. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  15. Removing Dissolved Silica from Waste Water with Catechol and Active Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sasan, Koroush [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanoscale Sciences Dept.; Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Energy Program; Krumhansl, James L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geosciences Dept.; Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Physical Chemical and Nano Sciences Center

    2017-01-01

    Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations. The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.

  16. Removal of different fractions of NOM foulants during demineralized water backwashing

    KAUST Repository

    Li, Sheng

    2012-09-01

    The effectiveness of demineralized water backwashing on fouling by different fractions of NOM was investigated in this study. Two types of natural surface water (Schie canal and Biesbosch reservoir) were tested to confirm the improvement of demineralized water backwashing on fouling control, and LC-OCD analysis was conducted on Schie canal water to find out which fraction of NOM was removed with those backwashes. Results derived from natural waters showed that demineralized water backwashing substantially improved UF fouling control. LC-OCD analyses showed both UF permeate and demineralized water backwashes were effective on removing part of biopolymers, but demineralized water is also effective for humic substances and a limited amount of low molecular weight substances. However, based on the LC-OCD results, even demineralized water backwashing is not effective to remove all humic substances and biopolymers rejected on the UF membranes. © 2012 Elsevier B.V. All rights reserved.

  17. Optimizing the air flotation water treatment process. Final report, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.

    1998-09-01

    The injection water for the Nelson Project is a combination of produced and make-up water, typical of many Eastern Kansas operations. The make-up water is a low-salinity salt water from the Arbuckle Formation and contains dissolved minerals and sulfides. The produced water contains suspended oil, suspended clay and silt particles, along with a combination of other dissolved minerals. The combination of the two waters causes several undesirable reactions. The suspended solids load contained in the combined waters would plug a 75-micron plant bag filter within one day. Wellhead filters of 75-micron size were also being used on the injection wells. The poor water quality resulted in severe loss of injectivity and frequent wellbore cleaning of the injection wells. Various mechanical and graded-bed filtration methods were considered for cleaning the water. These methods were rejected due to the lack of field equipment and service availability. A number of vendors did not even respond to the author`s request. The air flotation process was selected as offering the best hope for a long-term solution. The objective of this work is to: increase the cost effectiveness of the process through optimizing process design factors and operational parameters. A vastly modified air flotation system is the principal tool for accomplishing the project objective. The air flotation unit, as received from manufacturer Separation Specialist, was primarily designed to remove oil from produced water. The additional requirement for solids removal necessitated major physical changes in the unit. Problems encountered with the air flotation unit and specific modifications are detailed in the body of the report.

  18. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Mark R.; Lewis, Mark [EnergySolutions, Suite 100, Center Point II, 100 Center Point Circle, Columbia, SC 29210 (United States)

    2013-07-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the elimination of spent powdered filter media. (authors)

  19. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    International Nuclear Information System (INIS)

    Ping, Mark R.; Lewis, Mark

    2013-01-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the elimination of spent powdered filter media. (authors)

  20. PHOSPHATES REMOVAL FROM REJECT WATER FROM DIGESTION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    Elżbieta Sperczyńska

    2016-06-01

    Full Text Available The aim of the research work was to evaluate if coagulants used on technical scale are useful in phosphates removal from reject water. Effectiveness of phosphorus compounds removal from reject water from digestion of sewage sludge was examined. Selected prehydrolysed alkaline aluminium polychlorides were used. The results were compared to the ones obtained with aluminium sulphate. Reject water from digestion of sewage sludge form WWTP of 100 000 PE were examined. Commercial agents – prehydrolysed PAX 18, PAX XL10, PAX-XL1905 as well as aluminium sulphate were used. Various doses of coagulants: 0.7; 1.0; 1.5 – time higher than stoichiometric dose were applied. Stoichiometric dose was calculated based on chemical reaction of insoluble aluminium phosphate formation. Concentrations of Kiejdahl nitrogen (891 mgNKj/dm3, phosphates (125 mgPO43-/dm3 and organic compounds - COD (592 mgO2/dm3 in reject water were very high. The effectiveness of coagulation process increased as the doses of chemical agents increased. The most effective doses were the highest ones used during the experiment. The most effective agent was PAX 18 (96% removal efficiency. As the phosphates concentration decreased COD content declined simultaneously. Maximum COD removal (47% was obtained when highly alkaline PAX XL 1905 was used. Use of the lowest dose of Al2(SO43 allowed for 50% phosphates removal, whereas the lowest dose of PAX 18 decreased phosphates concentration by 83%.

  1. Winter Maintenance Wash-Water Heavy Metal Removal Pilot Scale Evaluation

    Directory of Open Access Journals (Sweden)

    Christopher M. Miller

    2016-01-01

    Full Text Available To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead removal in a filtration unit (maximum flow rate of 45 L/minute containing proprietary (MAR Systems Sorbster® media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.

  2. Nanoparticle Zere-valent Iron Affect on As (V Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    Hamed Koohpayehzadeh

    2012-10-01

    Full Text Available Arsenic which is present in the underground and surface water is one of the most toxic elements threating human health and animals. Arsenic has been removed in different type of ways. In this study Arsenic removal from drinking water and its decreasing rates were investigated by NZVI (nanoparticle zerovalent iron to standard limit (I.e.  0.01 mg/lit . The tests were conducted on reactor containing 100 ml water containing 1mg/L. Arsenic by virtue of Batch method. The mixture was executed in mixing was done an Oultrasnic device in order to have better mixture and complete distribution of nanoparticles in water. Then the arsenic was removed from the water by VATMAN paper of 0.45 Hm. The remained arsenic in the water was measured by ICP device. In this article the influence of the parameters including mixture time , PH ,NZVI and arcenic doses were examined . Having perfomed many tests the results showed that 1 mg arsenic can be removed 100 percent by 0.05 g NZVI in 8 min. It is possible to remove by 98 percent arsenic in 5-10 PH range. Iron nanopaticle way is an effective and rapid way to remove arsenic from water and various conditions have not considerable effect on it.

  3. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  4. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09

    Science.gov (United States)

    Sloto, Ronald A.; Olson, Leif E.

    2011-01-01

    Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the

  5. Process for removing polychlorinated biphenyls from soil

    Science.gov (United States)

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  6. Enteric virus removal from water by coal-based sorbents: development of low-cost water filters

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, M.; Sattar, S.A.

    1986-01-01

    Using poliovirus type 1 (Sabin) and dechlorinated tap water, several coal-based sorbents were tested for their capacity to remove viruses from water. The sorbents included bituminous coal from Giridih, India, pretreated/impregnated with either alum, ferric hydroxide, lime or manganese dioxide. Filtrasorb-400, commercially available active carbon, was used as a reference. In batch tests, with input virus concentration of 2.34-2.83x10/sup 6/ PFU/1 and sorbent concentration of 10 g/l, alum pretreated coal removed about 96% of the virus when pH of the water was between 6.3 and 8.9. Virus sorption was rapid and a plateau was reached in 30 min. Compared with the active carbon, alum pretreated coal exhibited greater sorption energy and about one log higher limiting poliovirus sorption capacity. Downflow column study indicated the potential of alum pretreated coal as a filter media for removing enteric viruses from water. A previous study showed this sorbent to be capable of removing enteric bacteria as well. Water filters prepared from such low-cost material may prove useful for domestic use in rural areas of India and other developing countries. 19 refs.

  7. Arsenic speciation in water, suspended particles, and coastal organisms from the Taehwa River Estuary of South Korea

    International Nuclear Information System (INIS)

    Hong, Seongjin; Kwon, Hye-Ok; Choi, Sung-Deuk; Lee, Jung-Suk; Khim, Jong Seong

    2016-01-01

    Water, suspended particulate matter (SPM), and biota samples were collected from the Taehwa River Estuary to determine the distributions, partitioning, and bioaccumulation of arsenicals. Six forms of As were quantitated by the use of HPLC-ICP/MS. As was found mainly near urban and industrial areas, and inorganic As V was the predominant As form in both water and SPM. Particulate arsenicals were found at the greatest concentrations in coarse particles (> 180 μm), followed by medium (30–180 μm) and fine (0.45–30 μm) particles, in freshwater. Arsenical concentrations were similar across the three particle fractions in saltwater. Field-based distribution coefficient (K d ) values for As depended strongly on SPM, with a less robust dependence on salinity. Concentrations of As were greater in macroalgae than in marine animals, such as fishes, bivalves, crabs, shrimps, and gastropods. Overall, the results of the present study provide useful information on the behaviors and fate of arsenicals in an estuarine environment. - Highlights: •Concentrations of As were greater in industrial and urban areas than in suburban area. •The predominant form of As in water and suspended particles was inorganic As V . •Particle-size distributions of arsenicals differed between freshwater and saltwater. •The K d values for As depended strongly on the presence of SPMs along the estuary. •Greater concentrations of arsenicals were found in macroalgae than in marine animals.

  8. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  9. Tests of some methods to remove I-131 from contaminated tap water

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2011-01-01

    Following the Fukushima Daiichi Nuclear Power Plant accident, iodine-131 concentrations in tap water higher than 100 Bq L"-"1 were reported by several local governments in the Kanto Plain in March 2011. To remove iodine-131 from tap water, five methods were tested in this study, that is, (1) boiling, (2) adding charcoals from oak or bamboo, (3) activated charcoals, (4) water purifiers, and (5) reverse osmosis (RO) treatments. Boiling was shown to be not effective in removing iodine-131 from tap water; indeed even higher concentrations may result from the liquid-volume reduction accompanying this process. Adding charcoals and activated charcoal treatment could not remove iodine-131, because no reduction of iodine-131 was observed in tap water samples after these treatments. Only limited effect was found with water purifiers with first several portions; no effect was expected with further water treatment. On the other hand, the RO showed high iodine-131 removal percentage of more than 95%, although the method needs about 5-10 L water to obtain 1 L of RO treated water. (author)

  10. Evaluation of the Efficiency of Clay Pots in Removal of Water Impurities

    Directory of Open Access Journals (Sweden)

    K Naddafi , AH Mahvi, S Nasseri, M Mokhtari, H Zeraati

    2005-04-01

    Full Text Available Recently, inexpensive technologies for drinking water supply in small communities are highly considered in developing countries. One of these technologies is the application of ceramic filters that are usually made of diatomaceous earth or clay soil. This research was carried out to determine the efficiency of clay pots (as a filter in removing water impurities. Pilot and the related clay parts were manufactured and its efficiency in removing TDS, hardness, NO3-, color and turbidity was measured by passing water through the clay pipes. The results showed that the clay filters had not the potential to remove hardness, EC, TDS and nitrate of water. However, they showed excellent efficiency in turbidity removal (≥ 90% and could significantly decrease the color of the water (≥ 60%.

  11. Removal of phages and viral pathogens in a full-scale MBR: Implications for wastewater reuse and potable water.

    Science.gov (United States)

    Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw

    2016-09-01

    The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pharmaceuticals as emerging contaminants and their removal from water. A review.

    Science.gov (United States)

    Rivera-Utrilla, José; Sánchez-Polo, Manuel; Ferro-García, María Ángeles; Prados-Joya, Gonzalo; Ocampo-Pérez, Raúl

    2013-10-01

    The main objective of this study was to conduct an exhaustive review of the literature on the presence of pharmaceutical-derived compounds in water and on their removal. The most representative pharmaceutical families found in water were described and related water pollution issues were analyzed. The performances of different water treatment systems in the removal of pharmaceuticals were also summarized. The water treatment technologies were those based on conventional systems (chlorine, chlorine dioxide, wastewater treatment plants), adsorption/bioadsorption on activated carbon (from lotus stalks, olive-waste cake, coal, wood, plastic waste, cork powder waste, peach stones, coconut shell, rice husk), and advanced oxidation processes by means of ozonation (O₃, O₃/H₂O₂, O₃/activated carbon, O₃/biological treatment), photooxidation (UV, UV/H₂O₂, UV/K₂S₂O₈, UV/TiO₂, UV/H₂O₂/TiO₂, UV/TiO₂/activated carbon, photo-Fenton), radiolysis (e-Beam, ⁶⁰Co, ¹³⁷Cs. Additives used: H₂O₂, SO₃²⁻, HCO₃⁻, CH₃₋OH, CO₃²⁻, or NO₃⁻), and electrochemical processes (Electrooxidation without and with active chlorine generation). The effect of these treatments on pharmaceutical compounds and the advantages and disadvantages of different methodologies used were described. The most important parameters of the above water treatment systems (experimental conditions, removal yield, pharmaceutical compound mineralization, TOC removal, toxicity evolution) were indicated. The key publications on pharmaceutical removal from water were summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Removal of Fe(II) from tap water by electrocoagulation technique

    International Nuclear Information System (INIS)

    Ghosh, D.; Solanki, H.; Purkait, M.K.

    2008-01-01

    Electrocoagulation (EC) is a promising electrochemical technique for water treatment. In this work electrocoagulation (with aluminum as electrodes) was studied for iron Fe(II) removal from aqueous medium. Different concentration of Fe(II) solution in tap water was considered for the experiment. During EC process, various amorphous aluminum hydroxides complexes with high sorption capacity were formed. The removal of Fe(II) was consisted of two principal steps; (a) oxidation of Fe(II) to Fe(III) and (b) subsequent removal of Fe(III) by the freshly formed aluminum hydroxides complexes by adsorption/surface complexation followed by precipitation. Experiments were carried out with different current densities ranging from 0.01 to 0.04 A/m 2 . It was observed that the removal of Fe(II) increases with current densities. Inter electrode distance was varied from 0.005 to 0.02 m and was found that least inter electrode distance is suitable in order to achieve higher Fe(II) removal. Other parameters such as conductivity, pH and salt concentration were kept constant as per tap water quality. Satisfactory iron removal of around 99.2% was obtained at the end of 35 min of operation from the initial concentration of 25 mg/L Fe(II). Iron concentration in the solution was determined using Atomic absorption spectrophotometer. By products obtained from the electrocoagulation bath were analyzed by SEM image and corresponding elemental analysis (EDAX). Cost estimation for the electrocoagulation was adopted and explained well. Up to 15 mg/L of initial Fe(II) concentration, the optimum total cost was 6.05 US$/m 3 . The EC process for removing Fe(II) from tap water is expected to be adaptable for household use

  14. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  15. Water hyacinths and alligator weeds for removal of silver, cobalt, and strontium from polluted waters

    Science.gov (United States)

    Wolverton, B. C.; Mcdonald, R. C.

    1975-01-01

    Water hyacinths and alligator weeds demonstrated the ability to rapidly remove heavy metals from an aqueous system by root absorption and concentration. Water hyacinths demonstrated the ability to remove 0.439 mg of silver, 0.568 mg of cobalt, and 0.544 mg of strontium in an ionized form per gram of dry plant material in a 24-hour period. Alligator weeds removed a maximum of 0.439 mg of silver, 0.130 mg of cobalt, and 0.161 mg of strontium per gram of dry plant material per day.

  16. The application of polyelectrolytes to improve liquid radwaste treatment system radionuclide removal efficiency

    International Nuclear Information System (INIS)

    Homyk, W.A.; Spall, M.J.; Vance, J.N.

    1990-01-01

    At nuclear plants, miscellaneous waste water treated in the liquid radwaste processing system contains a significant fraction of suspended particulate materials ranging in size from a few microns down to the submicron region. The fewer particles that typically exist as colloids are generally negatively charged by virtue of inorganic and organic anions absorbed onto the particle surfaces. Because many of the radionuclides exist as colloids and resist agglomeration and settling they are not easily removed by mechanical filtration or ion exchange processes. The colloidal materials will easily pass through most filters with conventional pore size ratings and through most ion exchange media. This leads to poor decontamination Factors (dFs) and higher radionuclide releases to the environment. A laboratory-scale testing program was conducted at Indian Point Unit No. 2 to determine the effectiveness of the use of organic polyelectrolytes to destabilize colloidal suspensions in liquid radwaste. Destabilizing colloidal suspensions will improve the removal efficiencies of the suspended material by typical filtration and ion exchange processes. The increased removal efficiencies will provide increased dFs in the liquid radwaste treatment system. The testing focused on identifying the specific organic polyelectrolytes and the associated dosages which would be effective in destabilizing the colloidal suspensions on actual waste water samples. The testing also examined the filtration characteristics of the water source to determine filter parameters such as: body feed material, body feed dosages, specific flow rates, etc., which would provide the basis for the design of filtration systems for these applications. The testing effort and the major conclusions from this investigation are given. 4 refs., 8 figs., 2 tabs

  17. Optoelectronic system to measure the concentration and turbidity of suspended solids in the water

    International Nuclear Information System (INIS)

    Valente, E.S.

    1984-01-01

    The selection of the site where a nuclear power plant is to be built requires intensive study of the environmental conditions. This work presents the results reached on the development of a measurement system of suspended solids based on turbidity characteristics of the water. The system consists of an optical transducer composed of an emitter and a detector of infrared light, both solid state type, whose electrical signal is electronically treated. The equipment was calibrated and certified against turbidity and concentration standards in laboratory use. The obtained results indicate the reliability of the experimental method. The utilization of the equipment at the shore reinforces its flexibility and commodity of use. (author)

  18. Rethinking Rice Preparation for Highly Efficient Removal of Inorganic Arsenic Using Percolating Cooking Water.

    Science.gov (United States)

    Carey, Manus; Jiujin, Xiao; Gomes Farias, Júlia; Meharg, Andrew A

    2015-01-01

    A novel way of cooking rice to maximize the removal of the carcinogen inorganic arsenic (Asi) is presented here. In conventional rice cooking water and grain are in continuous contact, and it is known that the larger the water:rice cooking ratio, the more Asi removed by cooking, suggesting that the Asi in the grain is mobile in water. Experiments were designed where rice is cooked in a continual stream of percolating near boiling water, either low in Asi, or Asi free. This has the advantage of not only exposing grain to large volumes of cooking water, but also physically removes any Asi leached from the grain into the water receiving vessel. The relationship between cooking water volume and Asi removal in conventional rice cooking was demonstrated for the rice types under study. At a water-to-rice cooking ratio of 12:1, 57±5% of Asi could be removed, average of 6 wholegrain and 6 polished rice samples. Two types of percolating technology were tested, one where the cooking water was recycled through condensing boiling water steam and passing the freshly distilled hot water through the grain in a laboratory setting, and one where tap water was used to cook the rice held in an off-the-shelf coffee percolator in a domestic setting. Both approaches proved highly effective in removing Asi from the cooking rice, with up to 85% of Asi removed from individual rice types. For the recycled water experiment 59±8% and 69±10% of Asi was removed, on average, compared to uncooked rice for polished (n=27) and wholegrain (n=13) rice, respectively. For coffee percolation there was no difference between wholegrain and polished rice, and the effectiveness of Asi removal was 49±7% across 6 wholegrain and 6 polished rice samples. The manuscript explores the potential applications and further optimization of this percolating cooking water, high Asi removal, discovery.

  19. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  20. Metal biosorption-flotation. Application to cadmium removal.

    Science.gov (United States)

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  1. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  2. Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks.

    Science.gov (United States)

    Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab

    2012-01-01

    In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.

  3. Applicability of MIEX(®)DOC process for organics removal from NOM laden water.

    Science.gov (United States)

    Karpinska, Anna M; Boaventura, Rui A R; Vilar, Vítor J P; Bilyk, Andrzej; Molczan, Marek

    2013-06-01

    The aim of this study was to evaluate applicability of ion exchange process for organics removal from Douro River surface water at the intake of Lever water treatment plant using magnetized ion exchange resin MIEX®. Qualitative analysis of the natural organic matter present in the surface water and prediction of its amenability to removal in conventional coagulation process were assessed. Results obtained in MIEX®DOC process kinetic batch experiments allowed determination of ion exchange efficiency in dissolved organic carbon (DOC), UV absorbing organics, and true color removal. The data were compared with the efficiencies of the conventional unit processes for organics removal at Lever WTP. MIEX®DOC process revealed to be more efficient in DOC removal than conventional treatment achieving the efficiencies in the range of 61-91 %, lowering disinfection by-products formation potential of the water. DOC removal efficiency at Lever WTP depends largely on the raw water quality and ranges from 28 % for water of moderated quality to 89 % of significantly deteriorated quality. In this work, MIEX®DOC process was also used as a reference method for the determination of contribution of anionic fraction to dissolved organic matter and selectivity of the unit processes at Lever WTP for its removal.

  4. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  5. Removal of Fe(II) from tap water by electrocoagulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.; Solanki, H. [Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039 (India); Purkait, M.K. [Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039 (India)], E-mail: mihir@iitg.ernet.in

    2008-06-30

    Electrocoagulation (EC) is a promising electrochemical technique for water treatment. In this work electrocoagulation (with aluminum as electrodes) was studied for iron Fe(II) removal from aqueous medium. Different concentration of Fe(II) solution in tap water was considered for the experiment. During EC process, various amorphous aluminum hydroxides complexes with high sorption capacity were formed. The removal of Fe(II) was consisted of two principal steps; (a) oxidation of Fe(II) to Fe(III) and (b) subsequent removal of Fe(III) by the freshly formed aluminum hydroxides complexes by adsorption/surface complexation followed by precipitation. Experiments were carried out with different current densities ranging from 0.01 to 0.04 A/m{sup 2}. It was observed that the removal of Fe(II) increases with current densities. Inter electrode distance was varied from 0.005 to 0.02 m and was found that least inter electrode distance is suitable in order to achieve higher Fe(II) removal. Other parameters such as conductivity, pH and salt concentration were kept constant as per tap water quality. Satisfactory iron removal of around 99.2% was obtained at the end of 35 min of operation from the initial concentration of 25 mg/L Fe(II). Iron concentration in the solution was determined using Atomic absorption spectrophotometer. By products obtained from the electrocoagulation bath were analyzed by SEM image and corresponding elemental analysis (EDAX). Cost estimation for the electrocoagulation was adopted and explained well. Up to 15 mg/L of initial Fe(II) concentration, the optimum total cost was 6.05 US$/m{sup 3}. The EC process for removing Fe(II) from tap water is expected to be adaptable for household use.

  6. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Ting Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2011-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw waste water was diluted using tap water to targeted concentration of COD 400 mg/l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The COD removal at lowest dose, 2 kGy is about 310 mg/l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/l. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This shows the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (Author)

  7. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    Alther, G.R.

    1995-01-01

    When bentonite or other clays and zeolite are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOGs (Free Oil and Grease) and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powdered organoclay is employed. Organoclay removes mechanically emulsified oil and grease at 5--7 times the rate of activated carbon, or 50% of its dry weight. Oil and grease and other large sparingly soluble chlorinated hydrocarbons and NOMs (Natural Organic Matter) blind the pores of activated carbon (and ion-exchange resins), reducing its effectiveness significantly. It is therefore economically advantageous for the end user to prepolish the water before it enters carbon vessels. Operating costs can often be reduced by 50% or more

  8. Arsenic removal from water using iron-coated seaweeds.

    Science.gov (United States)

    Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R

    2017-05-01

    Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. SEBARAN TOTAL SUSPENDED SOLID (TSS PADA PROFIL VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN

    Directory of Open Access Journals (Sweden)

    Aries Dwi Siswanto

    2015-04-01

    Full Text Available Sebaran sedimen tersuspensi (Total Suspended Solid (TSS dapat dipelajari secara horizontal maupun vertikal. Akumulasi sedimen tersuspensi (TSS secara horizontal sangat dipengaruhi oleh arus permukaan maupun gelombang yang dibangkitkan oleh angin. Keterdapatan TSS ini diduga berpengaruh terhadap sebarannya pada profil vertical. Kedua kondisi sebaran sedimen tersuspensi (TSS berpengaruh terhadap optimalisasi penetrasi cahaya matahari di perairan. Sedimen tersuspensi (TSS menjadi salah satu factor fisika yang penting sebagai indicator kondisi perairan. Penelitian ini bertujuan untuk mengetahui sebaran Total Suspended Solid (TSS di perairan Kabupaten Bangkalan. Materi utama yang digunakan dalam penelitian ini adalah contoh air dan data parameter lingkungan (pasang surut dan kecerahan yang diambil pada 7 stasiun pada bulan Agustus-September 2013 di Perairan Selat Madura, Kabupaten Bangkalan. Metode gravimetric (SNI-06-6989.3-2004 digunakan untuk analisa Total Suspended Solid (TSS. Data parameter lingkungan dianalisa secara deskriptif. Analisa TSS menunjukkan nilai yang berbeda pada beberapa stasiun penelitian untuk setiap minggunya. Konsentrasi TSS terendah sebesar 35 mg/L (Stasiun 3, profil permukaan, minggu pertama dan tertinggi sebesar 620 mg/L (Stasiun 4, profil dasar, minggu pertama. Secara umum, konsentrasi TSS secara vertikal (dari permukaan-dasar cenderung semakin besar, diduga dipengaruhi oleh jenis substrat dan parameter arus yang berpeluang untuk menimbulkan pengadukan di profil dasar. Kondisi lingkungan (kecerahan dan arus menunjukkan bahwa daerah dengan konsentrasi TSS yang tinggi cenderung memilki nilai kecerahan yang rendah dengan kecepatan arus yang lebih besar.Kata Kunci: kecerahan, pola arus, Total Suspended Solid (TSS DISTRIBUTION OF TOTAL SUSPENDED SOLID (TSS IN THE VERTICAL PROFILE IN THE MADURA STRAIT WATERS BANGKALAN DISTRICTABSTRACTDistribution of suspended sediment (Total Suspended Solid (TSS can be studied through

  10. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  11. Removal of tetracycline from contaminated water by Moringa oleifera seed preparations.

    Science.gov (United States)

    Santos, Andréa F S; Matos, Maria; Sousa, Ângela; Costa, Cátia; Nogueira, Regina; Teixeira, José A; Paiva, Patrícia M G; Parpot, Pier; Coelho, Luana C B B; Brito, António G

    2016-01-01

    The aim of this study was to evaluate tetracycline antibiotic (TA) removal from contaminated water by Moringa oleifera seed preparations. The composition of synthetic water approximate river natural contaminated water and TA simulated its presence as an emerging pollutant. Interactions between TA and protein preparations (extract; fraction and lectin) were also evaluated. TA was determined by solid-phase extraction followed by high-performance liquid chromatography-mass spectrometry. Moringa extract and flour removed TA from water. The extract removed TA in all concentrations, and better removal (40%) was obtained with 40 mg L(-1); seed flour (particles  5 mm (0.50 g L(-1)) removed 55% of antibiotic. Interactions between TA and seed preparations were assayed by haemagglutinating activity (HA). Specific HA (SHA) of extract (pH 7) was abolished with tetracycline (5 mg L(-1)); fraction (75%) and lectin HA (97%) were inhibited with TA. Extract SHA decreased by 75% at pH 8. Zeta potential (ZP) of extract 700 mg L(-1) and tetracycline 50 mg L(-1) , pH range 5-8, showed different results. Extract ZP was more negative (-10.73 to -16.00 mV) than tetracycline ZP (-0.27 to -20.15 mV); ZP difference was greater in pH 8. The focus of this study was achieved since Moringa preparations removed TA from water and compounds interacting with tetracycline involved at least lectin-binding sites. This is a natural process, which do not promote environmental damage.

  12. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  13. Mo and Ni Removal from Drinking Water Using Zeolitic Tuff from Jordan

    Directory of Open Access Journals (Sweden)

    Khalil M. Ibrahim

    2016-11-01

    Full Text Available Mo and Ni metals could be hazardous in natural waters. The initial Mo and Ni concentration in the sampled domestic drinking water of north Jordan is 550 and 110 μg/L, respectively. The efficiency of using natural faujasite–phillipsite and phillipsite–chabazite tuffs in removing Mo and Ni from contaminated drinking water was tested. Batch experiments using different weights of the adsorbent were conducted at different contact times to determine the optimum conditions. The maximal uptake capacity of Mo from drinking water was equivalent to 440–420 μg/g adsorbent. The maximum removal efficiency of Mo by faujasite–phillipsite, phillipsite–chabazite, and the modified surfactant phillipsite–chabazite tuffs were 80%, 76%, and 78%, respectively. The proportional relationship between contact time and removal efficiency of Ni from water samples was observed. The maximum removal efficiency of Ni by the zeolitic tuffs is up to 90% compared to the original groundwater sample.

  14. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  15. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    KAUST Repository

    Xiao, Xi

    2017-04-21

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3\\'s of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  16. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture

    KAUST Repository

    Xiao, Xi; Agusti, Susana; Lin, Fang; Li, Ke; Pan, Yaoru; Yu, Yan; Zheng, Yuhan; Wu, Jiaping; Duarte, Carlos M.

    2017-01-01

    China is facing intense coastal eutrophication. Large-scale seaweed aquaculture in China is popular, now accounting for over 2/3's of global production. Here, we estimate the nutrient removal capability of large-scale Chinese seaweed farms to determine its significance in mitigating eutrophication. We combined estimates of yield and nutrient concentration of Chinese seaweed aquaculture to quantify that one hectare of seaweed aquaculture removes the equivalent nutrient inputs entering 17.8 ha for nitrogen and 126.7 ha for phosphorus of Chinese coastal waters, respectively. Chinese seaweed aquaculture annually removes approximately 75,000 t nitrogen and 9,500 t phosphorus. Whereas removal of the total N inputs to Chinese coastal waters requires a seaweed farming area 17 times larger than the extant area, one and a half times more of the seaweed area would be able to remove close to 100% of the P inputs. With the current growth rate of seaweed aquaculture, we project this industry will remove 100% of the current phosphorus inputs to Chinese coastal waters by 2026. Hence, seaweed aquaculture already plays a hitherto unrealized role in mitigating coastal eutrophication, a role that may be greatly expanded with future growth of seaweed aquaculture.

  17. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  18. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  19. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  20. Performance of alum and assorted coagulants in turbidity removal of muddy water

    Science.gov (United States)

    Malik, Qasim H.

    2018-03-01

    Coagulation is a primary and cost effective process in water treatment plants. Under optimum conditions, not only it effectively removes turbidity but also results in reduced sludge volume and subsequently minimizes sludge management costs. Highly turbid water from streams, canals, rivers and rain run offs was run through jar test for turbidity removal. The brown water with 250NTU turbidity when coagulated with alum and assorted coagulants proved that maximum turbidity removal was witnessed using alum dose of 0.25 g/l at ph 6 with a sedimentation time of 30 min.

  1. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  2. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO 2 ) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO 2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca 2+ decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO 2 . Humic acid could largely low Tl removal efficiency during nMnO 2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO 2 and then removed accompanying with nMnO 2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen, E-mail: ioana.popescu@icpmrr.ro [R and D National Institute for Metals and Radioactive Resources – ICPMRR Bucharest B-dul Carol I No. 70, Sector 2, 202917 Bucharest (Romania); Filip, Petru [C. D. Nenitescu Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, 71141 Bucharest (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [Al.I. Cuza University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Humelnicu, Ionel [Al.I. Cuza University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Scott, Thomas Bligh; Crane, Richard Andrew [Interface Analysis Centre, University of Bristol, 121 St. Michael’s Hill, Bristol BS2 8BS (United Kingdom)

    2013-11-15

    Carboxy-methyl-cellulose (CMC), a common “delivery vehicle” for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC–INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Q{sub max}, of 185.18 mg/g and 322.58 mg/g for CMC and CMC–INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.

  4. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  5. Factors affecting radon removal from Rn-222 enriched water

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Mamoon, A.

    1994-01-01

    Continued use of potable well water that has elevated levels of Rn-222 is harmful to human health. activated carbon, aeration and heating can remove radon from treated water. Water artificially enriched with Rn-222 using a pitchblende source was studied in a laboratory scale model under controlled conditions. (author), 3 figs., 3 refs

  6. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  7. Materials removal by water jets with high relative velocity

    International Nuclear Information System (INIS)

    Schikorr, W.

    1986-01-01

    By way of introduction approaches to the systematic apprehension of the material removal by water jets up to 1000 bar are made. In drilling experiments the effects of jet dynamic are studied, using the controlled disintegration of the jet. Using model-layer-systems the removal of layers by the 'natural' disintegrating fluid-jet is examined. The mechanisms of material removal and the consequences on the praxis of cleaning are discussed. A concept to measure specially the effects of the dynamic jet components is developed. In conclusion aspects of progress in this methods of material removal are discussed. (orig.) [de

  8. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  9. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water

    International Nuclear Information System (INIS)

    Nasrabadi, T.; Ruegner, H.; Sirdari, Z.Z.; Schwientek, M.; Grathwohl, P.

    2016-01-01

    The present study was carried out in Haraz basin (Iran) that is located in south of the Caspian Sea. The goal of this study was to establish correlations amongst total suspended solids concentration (TSS) and turbidity with total pollutant concentrations to evaluate the dissolved and particle-bound concentrations of major toxic metals. It also aimed to validate TSS and/or turbidity measurements as proxies to monitor pollutant fluxes. Eight metals, namely nickel, lead, cadmium, copper, zinc, cobalt, arsenic and strontium were analyzed for dissolved and total concentrations in water at ten locations within the catchment. TSS and turbidity were also measured. Sampling campaigns were designed to cover both the rainy (December) and the dry (May) season within the basin. The robust relationship between TSS (202–1212 mg/l) and turbidity (63–501 NTUs) in both seasons warranted their interchangeable potential as proxies within the observed ranges. Total element concentrations were plotted in separate attempts versus TSS and turbidity for all locations and both events. Very good linear correlations were attained where the slopes represent the metals concentration on suspended solids and the intercept the dissolved concentration in water. The results achieved by these linear regressions were in very good agreement with independently measured values for dissolved concentration and concentrations on river bed sediments taken at the same locations. This demonstrates that turbidity and/or TSS measurements may be used for monitoring of metal loads if once calibrated against total concentration of metals. The results also revealed that in the lower Haraz catchment metal concentrations on suspended and river bed sediment were homogeneously distributed along the investigated river stretch. This is assumed to be due to intensive gravel and sand mining activities in the upper and middle part of the catchment. - Highlights: • Turbidity is evaluated as a feasible proxy to predict

  10. Effect of coexisting organic substances on radiation resistance of Bacillus pumilus spores suspended in water

    International Nuclear Information System (INIS)

    Kigawa, Akiko; Tateishi, Tsuneo; Iso, Katsuaki; Kimura, Toshio; Mamuro, Tetsuo

    1987-01-01

    D values of B. pumilus spores suspended in water have been shown to increase in the presence of some coexisting organic substances. For elucidation of a mechanism or mechanisms involved in such a phenomenon, D-values of B.p. spores were examined by suspending them in aqueous solutions containing various concentrations of ethanol, glycerin, inulin and PVA. All these substances showed abrupt changes in D value at a narrow concentration range of 1 - 10 weight ppm. Solutions containing these substances at their lower limit concentrations and upper limit were prepared, sealed in incubator bottles leaving no air layer and irradiated at 0.7 Mrad with γ-rays. Winkler's method was used for the determination of oxygen concentrations in these solutions. The initial concentration of dissolved oxygen was 8.2 ppm. After irradiation, 3 - 5 ppm of oxygen remained in those solutions containing the lower limit (1 ppm), whereas only less than 0.5 ppm in those containing the upper limits, 2.5 ppm of ethanol, 5 ppm of PVA and 10 ppm each of glycerin and inulin. Therefore, the observed effect of coexisting organic substances on radiation resistance of B. pumilus can be explained by the so-called ''oxygen effect''. (author)

  11. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake.

    Science.gov (United States)

    Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S

    2015-08-01

    Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Aluminium removal from water after defluoridation with the electrocoagulation process.

    Science.gov (United States)

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  13. Environmental effects of the Big Rapids dam remnant removal, Big Rapids, Michigan, 2000-02

    Science.gov (United States)

    Healy, Denis F.; Rheaume, Stephen J.; Simpson, J. Alan

    2003-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Big Rapids, investigated the environmental effects of removal of a dam-foundation remnant and downstream cofferdam from the Muskegon River in Big Rapids, Mich. The USGS applied a multidiscipline approach, which determined the water quality, sediment character, and stream habitat before and after dam removal. Continuous water-quality data and discrete water-quality samples were collected, the movement of suspended and bed sediment were measured, changes in stream habitat were assessed, and streambed elevations were surveyed. Analyses of water upstream and downstream from the dam showed that the dam-foundation remnant did not affect water quality. Dissolved-oxygen concentrations downstream from the dam remnant were depressed for a short period (days) during the beginning of the dam removal, in part because of that removal effort. Sediment transport from July 2000 through March 2002 was 13,800 cubic yards more at the downstream site than the upstream site. This increase in sediment represents the remobilized sediment upstream from the dam, bank erosion when the impoundment was lowered, and contributions from small tributaries between the sites. Five habitat reaches were monitored before and after dam-remnant removal. The reaches consisted of a reference reach (A), upstream from the effects of the impoundment; the impoundment (B); and three sites below the impoundment where habitat changes were expected (C, D, and E, in downstream order). Stream-habitat assessment reaches varied in their responses to the dam-remnant removal. Reference reach A was not affected. In impoundment reach B, Great Lakes and Environmental Assessment Section (GLEAS) Procedure 51 ratings went from fair to excellent. For the three downstream reaches, reach C underwent slight habitat degradation, but ratings remained good; reach D underwent slight habitat degradation with ratings changing from excellent to good; and, in an area

  14. La3+-modified activated alumina for fluoride removal from water

    International Nuclear Information System (INIS)

    Cheng, Jiemin; Meng, Xiaoguang; Jing, Chuanyong; Hao, Jumin

    2014-01-01

    Graphical abstract: - Highlights: • A La 3+ -modified activated alumina adsorbent was prepared for effective removal F − . • SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA. • The La-AA had much high adsorption rate and capacity than the AA. • The La-AA was promising adsorbent for effective removal of F − from water. - Abstract: A La 3+ -modified activated alumina (La-AA) adsorbent was prepared for effective removal of fluoride from water. The surface properties of adsorbent were characterized with zeta potential analysis, SEM-EDS and EXAFS. Batch and column experiments were conducted to evaluate improvement of F − removal by the La-AA. SEM/EDS and EXAFS analyses determined the formation of La(OH) 3 coating on the AA and strong bonding interactions between La 3+ and the Al atoms. The points of zero charge (pH PZC ) of AA and La-AA were at pH 8.94 and 9.57, respectively. Batch experimental results indicated that the La-AA had much higher adsorption rate and capacity than the AA. The F − adsorption processes on La-AA and AA followed the pseudo-second-order kinetics and the Langmuir isotherm. Column filtration results shows that the La-AA and AA treated 270 and 170 bed volumes of the F − -spiked tap water, respectively, before F − breakthrough occurred. The results demonstrated that the La-AA was a promising adsorbent for effective removal of F − from water

  15. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water

    Directory of Open Access Journals (Sweden)

    Morgan Adams

    2008-01-01

    Full Text Available Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes.

  16. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    International Nuclear Information System (INIS)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-01-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] −1 , the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem

  17. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jiyi [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Global Bioresources Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744 (Korea, Republic of); Kim, Hyunji [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Han, Seunghee, E-mail: shan@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] < 0.6 μg L{sup −1}, the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem.

  18. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  19. Nuclear reactor with makeup water assist from residual heat removal system

    International Nuclear Information System (INIS)

    Schulz, T.L.; Corletti, M.M.

    1994-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit by pumping water from an in-containment refueling water storage tank during staged depressurization of the coolant circuit, the final stage including passive emergency cooling by gravity feed from the refueling water storage tank to the coolant circuit and to flood the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and avoids the final stage of depressurization with its flooding of the containment when such action is not necessary, but does not prevent the final stage when it is necessary. A high pressure makeup water storage tank coupled to the reactor coolant circuit holds makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal system can also be coupled in a loop with the refueling water supply tanks for cooling the tank. (Author)

  20. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  1. Simplified Entropic Model for the Evaluation of Suspended Load Concentration

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-03-01

    Full Text Available Suspended sediment concentration is a key aspect in the forecasting of river evolution dynamics, as well as in water quality assessment, evaluation of reservoir impacts, and management of water resources. The estimation of suspended load often relies on empirical models, of which efficiency is limited by their analytic structure or by the need for calibration parameters. The present work deals with a simplified fully-analytical formulation of the so-called entropic model in order to reproduce the vertical distribution of sediment concentration. The simplification consists in the leading order expansion of the generalized spatial coordinate of the entropic velocity profile that, strictly speaking, applies to the near-bed region, but that provides acceptable results also near the free surface. The proposed closed-form solution, which highlights the interplay among channel morphology, stream power, secondary flows, and suspended transport features, allows reducing the needed number of field measurements and, therefore, the time of field activities. Its accuracy and robustness were successfully tested based on the comparison with laboratory data reported in literature.

  2. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  3. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  4. Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions

    Science.gov (United States)

    Variation in fluvial suspended sediment–discharge behavior is generally thought to be the product of changes in processes governing the delivery of sediment and water to the channel. The objective of this study was to infer sediment supply dynamics from the response of suspended ...

  5. Hydraulic washing removal efficiencies of Orimulsion from rock surfaces

    International Nuclear Information System (INIS)

    Harper, J.R.; Ward, S.; Sergy, G.

    2002-01-01

    Orimulsion is a fuel alternative composed of 70 per cent bitumen in 30 per cent water. It is shipped from Venezuela to New Brunswick where it is used as fuel oil for power plants. While there have not been any major spills of Orimulsion, it is recognized that very little is known regarding the dispersal and weathering processes of Orimulsion, or the behaviour and cleanup of the product on both rocky and course sediment shorelines. For that reason, this study was conducted to determine the efficiency of hydraulic washing under different water temperatures and pressures to remove bitumen from rocky shorelines. The results of the study make it possible to assess the physical effectiveness of the method and to determine the range of effective operational parameters. The coating protocol was refined to create uniform coating of both dispersed and coalesced bitumen of rock surfaces. The use of a chemical agent for enhancing removal efficiency was also assessed. Orimulsion could reach shorelines as low concentration dispersions of bitumen particles suspended in a water column, or as a high concentration mixture of bitumen, water and air. Granite tiles were coated with uniform coatings of both dispersed and coalesced bitumen. They were then washed under different pressures, temperatures and other treatments. Temperatures of more than 40 degrees C and pressures of more than 76 kPa were needed to effectively remove the bitumen coatings. Weathering significantly increased coating tenacity for dispersed coatings, but did not affect coalesced coating tenacity. Immediate washing was found to be very effective for removing dispersed coating, but not for coalesced coating. Coating tenacity was also affected by submergence times. Pre-treatment of the coating with a dispersion called Corexit significantly improved the removal efficiencies of dispersed coatings, but not coalesced coatings. 6 refs., 10 tabs., 5 figs

  6. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    Science.gov (United States)

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  8. Procedure to remove a dirt and/or oil film from water

    Energy Technology Data Exchange (ETDEWEB)

    Jager, T; Jager, G P.A.; Jager, K L.E.

    1970-12-11

    A procedure is described to remove dirt and/or oil films from a water surface. A number of rotating wiper scoops moves through the water. The top of the polluted water is brought into motion by the scoops and directed to a gutter system where it is removed. The advantage of the system is that the wiper scoops can be lowered selectively to the depth of the pollutant, thereby avoiding moving large quantities of unnecessary unpolluted liquid which later has to be separated. (12 claims)

  9. Effects of variation of flow and accumulation of suspended solids on the performance of anaerobic/aerobic biofilm system applied to grey water treatment. kenkiter dot koki roshoho no shori seino ni oyobosu ryuryo hendo oyobi kendaku busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, T; Sagehashi, M; Otsuka, N; Okada, M; Murakami, A [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1991-04-10

    In this study, effects of variation of flow and accumulation of suspended solids (SS) on the performance of anaerobic/aerobic biofilm system were investigated through the laboratory test using synthetic wastewater and the field test using grey water. Effects of flow variation scarcely appeared on the time change of effluent quality in both cases where daily average hydraulic retention time (HRT) in anaerobic filter was 20h and that of aerobic filter was 6.7h. In the field test, however, removal rate of organic substances was lower (20-30%) than that of the laboratory test (90%), since SS content in grey water accumulated in the anaerobic filter which led dissolution of organic substances from accumulated SS, blocking, and short-circuit flow. Moreover, it was confirmed by the batch test that constituent of grey water has lower resolution for microorganisms and is more difficult to nitrate than synthetic waste water. 24 refs., 11 figs., 4 tabs.

  10. Use of Moringa oleifera seeds for the removal of turbidity of water supply

    Directory of Open Access Journals (Sweden)

    Gustavo Lopes Muniz

    2015-04-01

    Full Text Available Water used for human consumption may contain various impurities and solid particles in suspension that increase its turbidity level. Moringa oleifera Lam is a plant that has the potential to be used as coagulating agent in removing turbidity. The objective of this work was to evaluate the efficiency of Moringa oleifera seeds used in shells and without shells in the removal of turbidity from waters with different degrees of turbidity. Waters were used with 70, 250 and 400 initial NTU obtained synthetically. The extract of moringa seeds was prepared using unshelled and shelled seeds, seeking a simplified procedure and practice. The sedimentation times and dose of coagulant solution used were based on existing recommendations in the literature. All treatments were performed with three replicates and the averages depicted in graphs. The results showed that the use of extract of moringa seeds in shells was more efficient than with unshelled seeds in the removal of turbidity of all treatments and that the shelled seeds removed more than 99% of the initial turbidity of the water samples. Furthermore, there was a direct relationship between turbidity removal efficiency and the level of initial turbidity of the samples. The seeds were more efficient in removing turbidity of the water with a higher level of initial turbidity.

  11. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    Science.gov (United States)

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  13. Turbidity removal from surface water using Tamarindus indica crude ...

    African Journals Online (AJOL)

    Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. This paper examined the turbidity removal efficiency of Tamarindus indica fruit crude pulp extract (CPE) towards evaluating a low-cost option for drinking-water treatment. Laboratory analysis was carried out on high ...

  14. Summary of oceanographic and water-quality measurements in Barnegat Bay, New Jersey, 2014–15

    Science.gov (United States)

    Suttles, Steven E.; Ganju, Neil K.; Montgomery, Ellyn T.; Dickhudt, Patrick J.; Borden, Jonathan; Brosnahan, Sandra M.; Martini, Marinna A.

    2016-09-26

    Scientists and technical support staff from the U.S. Geological Survey measured suspended-sediment concentrations, currents, pressure, and water temperature in two tidal creeks, Reedy Creek and Dinner Creek, in Barnegat Bay, New Jersey, from August 11, 2014, to July 10, 2015 as part of the Estuarine Physical Response to Storms project (GS2–2D). The oceanographic and water-quality data quantify suspended-sediment transport in Reedy Creek and Dinner Creek, which are part of a tidal marsh wetland complex in the Edwin B. Forsythe National Wildlife Refuge. All deployed instruments were removed between January 7, 2015, and April 14, 2015, to avoid damage by ice.

  15. Nutrient Removal of Grey Water from Wet Market Using Sequencing Batch Reactor

    International Nuclear Information System (INIS)

    Omar Danial; Mohd Razman Salim; Salmiati

    2016-01-01

    Fresh water scarcity has become an important issue in this world today. Water reuse is known as one of the strategies to overcome this problem. Grey water is one of the sources of reused water. Several researches were carried out on water reuse, but limited attention was focused on reusing grey water from wet market, which contains high nutrient and organic matters. This study was carried out on nutrient removal from grey water using sequencing batch reactor (SBR). The grey water sample was taken from a wet market (Pasar Peladang, Skudai). About 1L of grey water was fed into the reactor with a total volume of 4L. Anoxic-aerobic phase were divided with a ratio of 30 % - 70 % of total time respectively. Mixing was maintained at 30 rpm during the start of each cycle until settling phase to achieve uniform condition. Influent and effluent were set for 30 minutes. The SBR was operated with 3 cycles/ day, temperature 30 degree Celsius, cycle time 8 hours and hydraulic retention time (HRT) 1.2 days. Aeration at 35 L/ min was induced for ammonia conversion and assisting nitrification.. The results show that the bacteria growing in alternating anoxic/ aerobic systems could remove organic substrates and nutrient. The COD, Total Nitrogen and Total Phosphorus removal efficiencies were maximum at the levels of 94 %, 88 % and 70 % respectively. Anaerobic-Aerobic-Anoxic phase was proposed to increase the removal percentage. (author)

  16. Trace organics removal using three membrane bioreactor configurations: MBR, IFAS-MBR and MBMBR.

    Science.gov (United States)

    de la Torre, T; Alonso, E; Santos, J L; Rodríguez, C; Gómez, M A; Malfeito, J J

    2015-01-01

    Seventeen pharmaceutically active compounds and 22 other trace organic pollutants were analysed regularly in the influent and permeate from a semi-real plant treating municipal wastewater. The plant was operated during 29 months with different configurations which basically differed in the type of biomass present in the system. These processes were the integrated fixed-film activated sludge membrane bioreactor (IFAS-MBR), which combined suspended and attached biomass, the moving bed membrane bioreactor (MBMBR) (only attached biomass) and the MBR (only suspended biomass). Moreover, removal rates were compared to those of the wastewater treatment plant (WWTP) operating nearby with conventional activated sludge treatment. Reverse osmosis (RO) was used after the pilot plant to improve removal rates. The highest elimination was found for the IFAS-MBR, especially for hormones (100% removal); this was attributed to the presence of biofilm, which may lead to different conditions (aerobic-anoxic-anaerobic) along its profile, which increases the degradation possibilities, and also to a higher sludge age of the biofilm, which allows complete acclimation to the contaminants. Operating conditions played an important role, high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) being necessary to achieve these high removal rates. Although pharmaceuticals and linear alkylbenzene sulfonates showed high removal rates (65-100%), nonylphenols and phthalate could only be removed to 10-30%. RO significantly increased removal rates to 88% mean removal rate.

  17. Radionuclides in water/suspended matter/sediment systems, and assessment of radiation burden

    International Nuclear Information System (INIS)

    1988-01-01

    The 'General Instructions and Reference Values' (ABG) for calculating the radiation dose to the population from radioactive effluents discharged into the atmosphere or surface waters is the basis for assessing the dose commitment of the population with reference to the main exposure pathways. The ABG, however, contains little information on the deposition of radioactive substances with suspended matter in a river. Therefore, a number of specific studies have been carried out by various research institutes on behalf of the then competent Ministry of the Interior. The results are summarized in the book, methods and measuring programs are explained, and a full documentation of measured data and model parameters derived is given and discussed. The conclusions to be drawn from the field or laboratory analyses are set out, and are put together to build a more differentiating and hence more realistic model for assessing the radiation exposure of man due to contamination of sediments and sewage sludge. (orig./HP) With 83 figs., 52 tabs [de

  18. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  19. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  20. Improved Methods for Correlating Turbidity and Suspended Solids for Monitoring

    National Research Council Canada - National Science Library

    2000-01-01

    This technical note describes techniques normally used to measure turbidity and suspended solids in waters, how the two parameters relate to each other and to various environmental impacts, and why...

  1. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Improvement of NOM Removal from Water Resources by Modifying the Coagulation Process

    Directory of Open Access Journals (Sweden)

    F Vaezi, A Mohagheghian, J Nouri, MR Eshraghian, A Ghasri

    2005-01-01

    Full Text Available As a result of the regulations on DBPs, interest in NOM removal is increasing and many water treatment plants in developed countries have started to measure the concentration of TOC in their finished waters. Promulgation of the rules will substantially increase these efforts in other countries too. Since the cost of TOC (and DBPs determination was high, it was decided to study the traditional analysis of COD as a surrogate measure to detect the organic constituents in raw water and the extent to which optimized coagulation with ferric chloride can increase COD removal. The two water samples studied belonged to Karaj and Jajrood Rivers. For both samples the observed values of COD removal by coagulation at lower pH (about 1-1.5 pH values less than the regular pH were about 85-95 percent without making water turbidity unacceptable. In order to determine the effects of organic content on coagulation, synthetic samples were also prepared with much higher COD values. Again, considerable increases in COD removal have been observed for most of these samples only by decreasing 0.5-2 pH value. The results indicated that a modified coagulation process without need to much increasing the amount of coagulant can be developed for these water samples.

  3. The removal of uranium from mining waste water using algal/microbial biomass

    International Nuclear Information System (INIS)

    Kalin, Margarete; Wheeler, W.N.; Meinrath, G.

    2004-01-01

    We describe a three step process for the removal of uranium (U) from dilute waste waters. Step one involves the sequestration of U on, in, and around aquatic plants such as algae. Cell wall ligands efficiently remove U(VI) from waste water. Growing algae continuously renew the cellular surface area. Step 2 is the removal of U-algal particulates from the water column to the sediments. Step 3 involves reducing U(VI) to U(IV) and transforming the ions into stable precipitates in the sediments. The algal cells provide organic carbon and other nutrients to heterotrophic microbial consortia to maintain the low E H , within which the U is transformed. Among the microorganisms, algae are of predominant interest for the ecological engineer because of their ability to sequester U and because some algae can live under many extreme environments, often in abundance. Algae grow in a wide spectrum of water qualities, from alkaline environments (Chara, Nitella) to acidic mine drainage waste waters (Mougeotia, Ulothrix). If they could be induced to grow in waste waters, they would provide a simple, long-term means to remove U and other radionuclides from U mining effluents. This paper reviews the literature on algal and microbial adsorption, reduction, and transformation of U in waste streams, wetlands, lakes and oceans

  4. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    Science.gov (United States)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the

  5. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Nikolaos, Thomaidis S.; Athanasios, Stasinakis S.

    2014-01-01

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four ...

  6. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  7. Remote Sensing and Water Quality Indicators in the West Flood Canal Semarang City: Spatio-temporal Structures of Lansat-8 Derived Chlorophyll-a and Total Suspended Solids

    Science.gov (United States)

    Subiyanto, Sawitri

    2017-12-01

    One of the waters that has been contaminated by industrial waste and domestic waste is the waters of West Flood Canal in Semarang City which is the estuary of the river system, which passes through the Western City of Semarang which is dense with residential and industrial. So, it is necessary to have information about the assessment of water quality in the estuary of the West Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Lansat-8 Satellite images data from April, June, and August, 2017 and there are three selected algorithms. Based on the results of TSS and Chlorophyll-A processing, the TSS shows values greater than or equal to 100 which can be said that West Flood Canal is damaged (hypertrophic). While the chlorophyll-a shows a value less than 100 indicating Eutrophic status (threatened). This is caused by the number of suspended materials in the water surface and also because of the disturbance of water vegetation in the form of weeds that destroy the function of the actual West Canal Flood.

  8. Removal of mercury from water using pottery

    International Nuclear Information System (INIS)

    Helal, A.A.A.

    2006-01-01

    In a previous study, the sorption of radiocobalt by powdered pottery materials was investigated. The use of these materials as immobilization matrix for liquid radioactive waste requires the employment of pottery vessels. Therefore, the present study aims to give detailed investigations of the decontamination of radionuclides and toxic elements using pottery containers. These investigations are equally useful to elucidate how far these vessels can be utilized for water purification through decontamination of toxic and heavy metals. The radionuclide or heavy metal removal capability using pottery pots, as low cost sorbents, has been investigated for both radioactive ( 203 Hg) and stable mercury. The results indicated that Hg 2+ is better removed by pottery from neutral to alkaline solutions. The capacity of the used pottery container (100 ml in volume) for complete removal of mercury was found to reach 3 x 10 -4 mol/l, and the time needed was 8 hours. The sorption process was suggested to occur via adsorption and ion exchange. The effect of presence of humic or fulvic acid, as ligands abundant in water, is also investigated. The results imply that, in absence of humic or fulvic acid the sorption follows the expected behaviour, i.e. sorption sites with similar affinity for mercury. In presence of humic or fulvic acid, additional sorption sites are available by the organic molecule when it is associated to the pottery. (orig.)

  9. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.

    Science.gov (United States)

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-07-10

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  10. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.

    Science.gov (United States)

    Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A

    2016-03-01

    New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH).

  11. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment.

    Science.gov (United States)

    Westrick, Judy A; Szlag, David C; Southwell, Benjamin J; Sinclair, James

    2010-07-01

    This review focuses on the efficiency of different water treatment processes for the removal of cyanotoxins from potable water. Although several investigators have studied full-scale drinking water processes to determine the efficiency of cyanotoxin inactivation, many of the studies were based on ancillary practice. In this context, "ancillary practice" refers to the removal or inactivation of cyanotoxins by standard daily operational procedures and without a contingency operational plan utilizing specific treatment barriers. In this review, "auxiliary practice" refers to the implementation of inactivation/removal treatment barriers or operational changes explicitly designed to minimize risk from toxin-forming algae and their toxins to make potable water. Furthermore, the best drinking water treatment practices are based on extension of the multibarrier approach to remove cyanotoxins from water. Cyanotoxins are considered natural contaminants that occur worldwide and specific classes of cyanotoxins have shown regional prevalence. For example, freshwaters in the Americas often show high concentrations of microcystin, anatoxin-a, and cylindrospermopsin, whereas Australian water sources often show high concentrations of microcystin, cylindrospermopsin, and saxitoxins. Other less frequently reported cyanotoxins include lyngbyatoxin A, debromoaplysiatoxin, and beta-N-methylamino-L-alanine. This review focuses on the commonly used unit processes and treatment trains to reduce the toxicity of four classes of cyanotoxins: the microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins. The goal of this review is to inform the reader of how each unit process participates in a treatment train and how an auxiliary multibarrier approach to water treatment can provide safer water for the consumer.

  12. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  13. Removal of chromium (VI) from water by micro-alloyed aluminium ...

    African Journals Online (AJOL)

    This paper deals with Cr(VI) ion removal from water, by micro-alloyed aluminium composite (MAlC), under flow conditions. In a water environment the MAlC acts as a strong reducing agent. Dissolving it in water is accompanied by the generation of Al(III) ions and reduction of water to H2, with OH- ions. The final product is ...

  14. Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    Directory of Open Access Journals (Sweden)

    H. M. Abd El-Hady

    2001-01-01

    Full Text Available In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm. The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl. The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal.

  15. Water-quality assessment of the Lower Susquehanna River Basin, Pennsylvania and Maryland; sources, characteristics, analysis and limitations of nutrient and suspended-sediment data, 1975-90

    Science.gov (United States)

    Hainly, R.A.; Loper, C.A.

    1997-01-01

    This report describes analyses of available information on nutrients and suspended sediment collected in the Lower Susquehanna River Basin during water years 1975-90. Most of the analyses were applied to data collected during water years 1980-89. The report describes the spatial and temporal availability of nutrient and suspended-sediment data and presents a preliminary concept of the spatial and temporal patterns of concentrations and loads within the basin. Where data were available, total and dissolved forms of nitrogen and phosphorus species from precipitation, surface water, ground water, and springwater, and bottom material from streams and reservoirs were evaluated. Suspended-sediment data from streams also were evaluated. The U.S. Geological Survey National Water Information System (NWIS) database was selected as the primary database for the analyses. Precipitation-quality data from the National Atmospheric Deposition Program (NADP) and bottom-material-quality data from the National Uranium Resource Evaluation (NURE) were used to supplement the water-quality data from NWIS. Concentrations of nutrients were available from 3 precipitation sites established for longterm monitoring purposes, 883 wells (854 synoptic areal survey sites and 29 project and research sites), 23 springs (17 synoptic areal survey sites and 6 project and research sites), and 894 bottom-material sites (840 synoptic areal survey sites and 54 project and research sites). Concentrations of nutrients and (or) suspended sediment were available from 128 streams (36 long-term monitoring sites, 51 synoptic areal survey sites, and 41 project and research sites). Concentrations of nutrients and suspended sediment in streams varied temporally and spatially and were related to land use, agricultural practices, and streamflow. A general north-to-south pattern of increasing median nitrate concentrations, from 2 to 5 mg/L, was detected in samples collected in study unit streams. In streams that drain

  16. Recent developments in water purification technology

    International Nuclear Information System (INIS)

    Shah, G.C.

    2000-01-01

    Water is source of life. More than 70% surface of earth is covered with water. Water is extensively used in industries for various purposes like cooling, rinsing, steam generation and as process fluid etc. Water as found in nature cannot be used directly in industries since it contains various types of impurities which can affect smooth operation of equipment/plants. Quality of water requirement for industry greatly differs from the quality requirement for domestic use. Some industrial plant such as nuclear and thermal power plants, pharmaceutical plants and electronic industries require water of quality approaching that of ultra pure water. To get water of required quality from available natural resources, selection of proper treatment methods and control of necessary water conditioning procedures are essential analysis of water for different types of impurities involving various analytical techniques is also of great importance to select proper processes for its purification. In this talk, a survey of various types of impurities present in water from different sources, their harmful effects and general methods than can be used for removal of these impurities are detailed. Various methods of removing suspended and colloidal impurities, organic and gaseous impurities from water are also described

  17. Crud removal with deep bed type condensate demineralizer in Tokai-2 BWR

    International Nuclear Information System (INIS)

    Abe, Ayumi; Takiguchi, Hideki; Numata, Kunio; Saito, Toshihiko

    1996-01-01

    The major objective and functions for the installation of the deep bed type condensate polishers in BWR power plants is to remove both ionic impurities caused by sea water leakage and suspended impurities called crud mainly consisting of metal oxides which are produced from metal corrosion. In considering the reduction of occupational radiation exposure level, it is extremely important to remove the crud effectively. In recent Japanese BWR power plants, condensate pre-filters with powdered ion exchange resins or with hollow fiber membrane have been installed to remove the crud at the upper stream of the deep bed polishers. In such plants, the crud removal is conventionally the secondary objective for the deep bed polishers. The Japan Atomic Power Company has introduced the small particle ion exchange resin and a soak regeneration method since April 1985, and then applied the low cross-linked resin since July 1995 at Tokai-2 Power Station, to improve the crud removal performance by using only deep bed type condensate demineralizer, and as a result condensate demineralizer outlet iron level has been kept below 1 ppb since 1991

  18. Removing uranium from drinking water by metal hydroxides and anion-exchange resin

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1983-01-01

    Results of bench-scale testing on uranium removal from a natural water that was chosen as a good representative of uranium-bearing waters indicated that conventional coagulant and lime softening treatment removes more than 85 percent of dissolved uranium (83 μg U/L) when an optimum pH and dosage were provided. A strong base anion-exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  19. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    S. Mazloomi ، R. Nabizadeh ، S. Nasseri ، K. Naddafi ، S. Nazmara ، A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  20. Analysis of Multi Temporal Satellite Imagery for Total Suspended Sediments in a Wave-Active Coastal Area-Gaza Strip Coastal Water, Palestine

    Directory of Open Access Journals (Sweden)

    Midyan D.I. Aldabash

    2016-03-01

    Full Text Available Sediment load materials is one of the key factors that determine the surface water quality, both of oceanic and river water, and it specifies water optical properties. Thus it provides a background for a plenty of applications and projects in the water and oceanography community. Landsat detects and classifies reflected solar energy from bodies on the earth's surface. Suspended sediments existing in water column have an optical influences. So that, Landsat images could detect suspended sediments concentration in such a water surface. In this study we have three main objectives to be achieved as; TSS Concentration maps generation in the Gaza Strip coastal zone, achieving analysis processes on TSS trend itself and TSS related coastal phenomenon, and investigation of the ability of Landsat images to detect TSS comprehensively in a wavy coastal zone. For this purpose two landsat TM5 images acquired in 1999 and 2010, one Landsat TM7 images acquired in 2003, and 2 Landsat Oli 8 images acquired in 2014 and 2015 were used for TSS mapping. In addition, 64 TSS in-situ tested samples were also to calculate a correlation equation between Digital Numbers - DN in each image pixels and TSS values in the ground data. All image analysis and remote sensing steps have been done in this study using Integrated Land and Water Information System - ILWIS software version ILWIS academic 3.3. Green and Red bands in all used Landsat images contained the highest linear correlation factors -R- for the images acquired in 1999, 2003, 2010, 2014, and 2015. Resulted correlation factors were higher by reducing time difference between acquisition time and sampling time. Generated maps showed that circulation in Gaza coastal area are counterclockwise, and it brings the sediments from Nile River Delta toward Gaza Strip.

  1. Use of polymeric resins for removing contaminants from oily waters

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, M.D.; Queiros, Y.G.C.; Mauro, A.C.; Lucas, E.F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Barbosa, C.C.R. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Barbosa, L.C.F.; Louvisse, A.M.T. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 40 ppm were prepared. Data obtained from eluted waters did not outweigh 1% of the TOG values of starting solutions. The kinetic study showed that the contaminant removal efficiency depends on the system elution flow rate; optimum removal values were reached at a 7.0 mL/min flow rate. High efficiency and speed in the purification process were obtained at this optimum flow rate. The passage of a water volume 1,000 times the volume of the column bed was not sufficient to observe its saturation level. (author)

  2. Effect of gamma irradiation on textile waste water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, Teo Ming; Jamaliah Sharif; Khairul Zaman Dahlan

    2010-01-01

    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw wastewater was diluted to using tap water to targeted concentration of COD 400 mg/ l. The sample was irradiated at selected dose between the ranges of 2 kGy to 100 kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The degree of removal influenced by the dose introduced during the treatment process. As the dose increased, higher removal of organic pollutant was recorded. The COD removal at lowest dose, 2 kGy is about 310 mg/ l. Meanwhile, at highest dose, 100 kGy the COD reduced to 100 mg/ l. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This showed the concentration of pollutants and dose of irradiation applied are directly proportional to each other. (author)

  3. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  4. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.

    Science.gov (United States)

    Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs

    2015-12-22

    This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.

  5. Removal of arsenic from contaminated water using coagulation enhanced microfiltration

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Dumouchel, A.; Wong, W.P.; Brown, C.E.

    2002-01-01

    Results of an innovative arsenic removal process were presented. The process is based on a combination of coagulation and microfiltration processes. Coagulation-Enhanced Microfiltration (CEMF) may eventually become a full-scale commercial technology. This study focused on the process with respect to groundwater treatment because of the importance of arsenic contamination in drinking water. Most experiments were bench-scale using tap water spiked with arsenic. Ferric chloride, which is commonly used in arsenic removal processes was also added. In addition, some tests were conducted on actual arsenic-contaminated water from the effluent treatment plant of a former mining site in Ontario. Results indicate a high arsenic removal efficiency in both spiked and actual water solutions. The microfiltration significantly reduced the level of arsenic in the treatment. This paper described the characteristics of membrane separation. It also presented information regarding chemically enhanced membrane filtration and coagulation-enhanced microfiltration. Bench-scale tests were conducted with both tubular membranes and with immersed capillary membranes. The effect of iron to arsenic ratios on the effectiveness of the system was also tested. It was recommended that future research should include a field study of the process on a pilot-scale to optimize process parameters and to accurately determine the cost of the process. 16 refs., 8 tabs., 9 figs

  6. Nitrate removal from drinking water with a focus on biological methods: a review.

    Science.gov (United States)

    Rezvani, Fariba; Sarrafzadeh, Mohammad-Hossein; Ebrahimi, Sirous; Oh, Hee-Mock

    2017-05-31

    This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.

  7. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    Science.gov (United States)

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  8. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  9. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  10. Recycling of canteen waste water for irrigation purpose

    International Nuclear Information System (INIS)

    Ahmad, J.

    2005-01-01

    Recycling of wastewater of a canteen was done at Attock refinery Limited, Rawalpindi during 2002. The wastewater of the refinery canteen was recycled after a long process and was reused for irrigation of nearby garden and other landscape plants. The average outflow of the wastewater from the canteen was calculated as 4000 liters/day. Laboratory analysis for the quality of wastewater was conducted and it was found that suspended solid. Chemical Oxygen demand (COD) and biochemical oxygen demand (BOD) of the wastewater were above the National Environmental Quality Standards (NEQS) limits. Treatment system employed was composed of screening and settling tank for removing the suspended solids and aeration for decreasing the COD and BOD. It was a low cost system in which the materials used were mostly taken from the redundant stock. Air was given for aeration with the help of a compressor. The treated water was tested in the laboratory for the priority parameters i.e. temperature, pH, BOD, COD, Total suspended solids (TSS), Total dissolved (TDS), oil and grease and Phenols. These parameters were compared with the National Environmental Quality Standards (NEQS). Treated water was used for irrigation of the nearby garden and landscape. The recycling process was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was processes was successfully conducted and a huge quantity of 4000 liters water/day (1000 G water/day) was recycled with a daily saving of Rs.100 at the rate of Rs.1/10 G water that was taken from market survey. (author)

  11. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15

    Science.gov (United States)

    Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.

    2017-08-03

    Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.

  12. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    Science.gov (United States)

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  13. Application of carbon nanotube technology for removal of contaminants in drinking water: A review

    International Nuclear Information System (INIS)

    Upadhyayula, Venkata K.K.; Deng, Shuguang; Mitchell, Martha C.; Smith, Geoffrey B.

    2009-01-01

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  14. Manganese removal from mine waters - investigating the occurrence and importance of manganese carbonates

    International Nuclear Information System (INIS)

    Bamforth, Selina M.; Manning, David A.C.; Singleton, Ian; Younger, Paul L.; Johnson, Karen L.

    2006-01-01

    Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate

  15. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    Science.gov (United States)

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  16. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Science.gov (United States)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  17. The Use of Activated Alumina and Magnetic Field for the Removal Heavy Metals from Water

    Directory of Open Access Journals (Sweden)

    Ewa Szatyłowicz

    2018-05-01

    Full Text Available The objective of this work was to verify the granular activated alumina (AA sorption properties, during the process of removing copper, lead and cadmium from water, and to monitor the impact of magnetic field (MF on the effectiveness of removing copper, lead and cadmium from water. Activated alumina adsorption is known to be an effective and inexpensive technology for the removal of selenium and arsenic from water and was suggested by EPA as a BAT for point-of-use applications. The removal of copper, lead and cadmium from water using AA and impact of magnetic field was less reported. Pilot tests showed that the use of AA sorption materials with MF impact could possibly decrease the copper, lead and cadmium content in the model water. The MF had also a positive effect on the efficiency of removal copper, lead and cadmium on AA. Increasing the efficiency of heavy metals removal in the samples had been exposed magnetic field varied from 1.9% to 8.2% compared to the control samples.

  18. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    Alther, G.R.

    1995-01-01

    When bentonite or other clays and zeolites are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOG's and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powered organoclay is employed. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline

  19. Perchlorate: Health Effects and Technologies for Its Removal from Water Resources

    Directory of Open Access Journals (Sweden)

    Thiruvenkatachari Viraraghavan

    2009-04-01

    Full Text Available Perchlorate has been found in drinking water and surface waters in the United States and Canada. It is primarily associated with release from defense and military operations. Natural sources include certain fertilizers and potash ores. Although it is a strong oxidant, perchlorate is very persistent in the environment. At high concentrations perchlorate can affect the thyroid gland by inhibiting the uptake of iodine. A maximum contaminant level has not been set, while a guidance value of 6 ppb has been suggested by Health Canada. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed from water by anion exchange or membrane filtration. Biological and chemical processes are also effective in removing this species from water.

  20. Multivariate analysis of the influences of oceanic and meteorological processes on suspended particulate matter distributions in Mississippi coastal waters

    Science.gov (United States)

    O'Brien, S. J.; Fitzpatrick, P. J.; Dzwonkowski, B.; Dykstra, S. L.; Wallace, D. J.; Church, I.; Wiggert, J. D.

    2016-02-01

    The Mississippi Sound is influenced by a high volume of sediment discharge from the Biloxi River, Mobile Bay via Pas aux Herons, Pascagoula River, Pearl River, Wolf River, and Lake Pontchartrain through the Rigolets. The river discharge, variable wind speed, wind direction and tides have a significant impact on the turbidity and transport of sediments in the Sound. Level 1 Moderate Resolution Imaging Spectroradiometer (MODIS) data is processed to extract the remote sensing reflectance at the wavelength of 645 nm and binned into an 8-day composite at a resolution of 500 m. The study uses a regional ocean color algorithm to compute suspended particulate matter (SPM) concentration based on these 8-day composite images. Multivariate analysis is applied between the SPM and time series of tides, wind, turbidity and river discharge measured at federal and academic institutions' stations and moorings. The multivariate analysis also includes in situ measurements of suspended sediment concentration and advective exchanges through the Mississippi Sound's tidal inlets between the coastal shelf and the nearshore estuarine waters. Mechanisms underlying the observed spatiotemporal distribution of SPM, including material exchange between the Sound and adjacent shelf waters, will be explored. The results of this study will contribute to current understanding of exchange mechanisms and pathways with the Mississippi Bight via the Mississippi Sound's tidal inlets.

  1. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah

    2016-10-18

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  2. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Ng, Kim Choon; Missimer, Thomas M.

    2016-01-01

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  3. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon

    NARCIS (Netherlands)

    Hernandez Leal, L.; Temmink, B.G.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100–1600 µgL-1) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%):

  4. Efficiency of water removal from water/ethanol mixtures using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues

    2006-06-01

    Full Text Available Techniques involving supercritical carbon dioxide have been successfully used for the formation of drug particles with controlled size distributions. However, these processes show some limitations, particularly in processing aqueous solutions. A diagram walking algorithm based on available experimental data was developed to evaluate the effect of ethanol on the efficiency of water removal processes under different process conditions. Ethanol feeding was the key parameter resulting in a tenfold increase in the efficiency of water extraction.

  5. Heavy metal removal from waste waters by ion flotation

    OpenAIRE

    Polat, Hürriyet; Erdoğan, D.

    2007-01-01

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under o...

  6. Radon-removal techniques for small community public water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Malley, J.P.; Clement, J.A.; Quern, P.A.; Schell, G.S.

    1990-08-01

    The report presents the results of an evaluation, performed by the University of New Hampshire--Environmental Research Group (ERG), of radon removal in small community water supplies using full-scale granular activated carbon adsorption, diffused bubble aeration and packed tower aeration. Various low technology alternatives, such as loss in a distribution system and addition of coarse bubble aeration to a pilot-scale atmospheric storage tank were also evaluated. The report discusses each of the treatment alternatives with respect to their radon removal efficiency, potential problems (i.e., waste disposal, radiation exposure and intermedia pollution), and economics in small community applications. In addition, several sampling methods, storage times, scintillation cocktails and extraction procedures currently used in the liquid scintillation technique for analysis of radon in water were compared

  7. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Directory of Open Access Journals (Sweden)

    Alain Muñoz-Caravaca

    2008-07-01

    Full Text Available Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba, and sediment-rich waters in the Laucala Bay (Fiji. In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations. The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU. This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  8. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Science.gov (United States)

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach. PMID:27879929

  9. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Nina Ricci Nicomel

    2015-12-01

    Full Text Available This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.

  10. Removal of oil products from fitters in water treatment plants

    International Nuclear Information System (INIS)

    Carlson, B.B.; Olander, M.A.; Arvin, E.

    1996-01-01

    Gasoline and oil spills cause aromatic hydrocarbon pollution of ground water. Benzene, toluene and naphtalene can be found in water wells. The purpose of the experiment was to investigate the filtering of water and biological degradation of aromatics on water treatment filters. These filters were proved to reduce benzene, toluene and naphtalene concentration from 5-12 μg/l to 0,3-0,6 μg/l (86-98 % removal). (EG)

  11. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  12. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    Science.gov (United States)

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  13. Endotoxin Removal from Water Using Heterogenus Catalytic Ozonation by Bone Char

    Directory of Open Access Journals (Sweden)

    Abas Rezaee

    2011-10-01

    Full Text Available The endotoxin is one of pollutants with lipopolysaccharide structure which release from gram negative bacteria and cyanobacters. The aim of this study was removal of endotoxin from water using catalytic ozonation by bone char. The endotoxin for experiments have extracted from Escherichia coli bacterium cell wall by Stefan and Jan method. Chromogenic limulus ambusite lysate method in 405-410 nm wave length was used for analysing of endotoxin. The ozone have analysed by potassium iodine method. Results: Results of the research shown endotoxin removal rates using heterogenous catalytic ozonation were 6.0 Eu/ml.min and 0.5 Eu/ml.min for grey bone char and white bone char, respectively. The efficency of the process was found eighty percent. Primary concentration of basic compounds had no effect on endotoxin removal rate. Therefore, endotoxin removal kinetic of reaction is a zero order reaction. This study revealed that ozonation process using bone char is more efficient than other proposed methods such as ozonation or chlorination and can be used successfully for endotoxin removal from water as a efficient method.

  14. Removal of Fluoride from Drinking Water Using Modified Immobilized Activated Alumina

    Directory of Open Access Journals (Sweden)

    Aneeza Rafique

    2013-01-01

    Full Text Available The study describes the removal of fluoride from drinking water using modified immobilized activated alumina (MIAA prepared by sol-gel method. The modification was done by adding a specific amount of alum during the sol formation step. The fluoride removal efficiency of MIAA was 1.35 times higher as compared to normal immobilized activated alumina. A batch adsorption study was performed as a function of adsorbent dose, contact time, stirring rate, and initial fluoride concentration. More than 90% removal of fluoride was achieved within 60 minutes of contact time. The adsorption potential of MIAA was compared with activated charcoal which showed that the removal efficiency was about 10% more than the activated charcoal. Both the Langmuir and Freundlich adsorption isotherms fitted well for the fluoride adsorption on MIAA with the regression coefficient R2 of 0.99 and 0.98, respectively. MIAA can both be regenerated thermally and chemically. Adsorption experiments using MIAA were employed on real drinking water samples from a fluoride affected area. The study showed that modified immobilized activated alumina is an effective adsorbent for fluoride removal.

  15. Applicability of X-ray fluorescence analysis for heavy metal monitoring in sediments and suspended matter of surface bodies of water

    International Nuclear Information System (INIS)

    Kallenberg, U.

    1993-01-01

    Among the modern physical-chemical methods of analysis, X-ray fluorescence analysis is one of the most important owing to its wide spectrum of applications, especially as a precise and reliable method for monitoring heavy metals in air, water, and soil. The authors investigated whether it is also suitable for routine monitoring of heavy metals in sediments and suspended matter in accordance with the specifications of the Sewage Sludge Ordinance. (orig.) [de

  16. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  17. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  18. Ground water pollution by arsenic and its effects on health. Removal of arsenic from water; Suichu karano hiso no jokyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, S.

    1997-07-10

    Recently environmental standard for ground water is established. It is pointed out that the need of arsenic`s removal from water is expected in high level. Present condition of removal techniques of inorganic nitrogen and problems are explained. For example, ferro (III) chloride method is effective in As(V) and most suitable range is pH4{approx}5. Removal is possible until 0.005 when initial concentration is 0.2 mg{center_dot}l{sup -1}. As far as secondary problems are, there are dry treatment of generated sludge and disposal. Earth adsorbent as a new adsorbent is adsorption method is expected. Lanthanum and yttrium compounds possess adsorption for As(III) and As(V) and re-generation use is also possible. For example, removal of As(V) with initial concentration 19 mg{center_dot}l{sup -1} until 0.01 is possible at pH5{approx}77 range when hydroxide lanthanum is used as an adsorbent. Further special characteristics of each method are explained. It is concluded that a good removal method should be selected by considering raw water`s quality, capacity of treatment water, use of treatment water and economics. 29 refs., 2 figs.

  19. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  20. Aerial Photo Utilization in Estimating Suspended Sediment in the Wuryantoro Watershed, Wonogiri

    Directory of Open Access Journals (Sweden)

    Sugiharto Budi Santoso

    2004-01-01

    Full Text Available Suspended sediment load flowing out from a watershed is normally predicated by analysis os suspended sediment of water sample, and the volume of suspended sediment be calculated based on sediment concentration and river discharge. Such field measurements need a lot of field data and they are time consuming. Another method for prediction of suspended sediment by using remote sensing imagery data and recorded rainfall data. The objective of this research is to 1 examine the capability of remote sensing technique to obtain the parameters of the physical data of land in the prediction of suspended sediment; 2 examine the accuracy of the model for prediction suspended sediment. This research is carried out in Wuryantoro watershed, Wonogiri. The main data to obtain the parameters of the physical data of land is infrared aerial photograph on scale 1 : 10.000. the method that used in this research is interpretation of remote sensing imagery data, combined with rainfall data. The result show that the accuracy of landuse is 88.5%, the accuracy of slope is 87.67%. the accuracy of the prediction of suspended sediment by model A3 87.07%, model C1 86.63%, model C2 90.57%, model A8 84.13%, model A9 80.1%, and model C4 78.6%.

  1. performance of water filters towards the removal of selected

    African Journals Online (AJOL)

    Morohani Merinyo

    sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% ... associated diseases in developing countries ... The main drinking water risks in developing ... Tanzania Demographic and Health Survey.

  2. Element distribution of the barley plant grown in an agar slice suspended culture

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi

    1991-01-01

    An agar slice suspended culture was devised for the further study of the barley root. The roots were placed into an agar covered with a nylon cloth and suspended in a water culture vessel. Barley roots grown in the agar developed hardly any root hair. The element contents of the root grown in the agar culture and that in the water culture were measured by neutron activation analysis. The concentrations of K, Mg and Cl in the root grown in the agar were about half of these grown in the water. Na and Mn concentrations were the same and Ca concentration was slightly higher when grown in the agar. The agar system is expected to provide more information to study the root hair. (author)

  3. Development of iron-based nanoparticles for Cr(VI removal from drinking water

    Directory of Open Access Journals (Sweden)

    Vourlias G.

    2013-01-01

    Full Text Available A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  4. USE OF SYNTHETIC ZEOLITES FOR ARSENATE REMOVAL FROM POLLUTANT WATER

    Science.gov (United States)

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water below the current and proposed EPA MCL has been examined...

  5. Aluminum-Based Water Treatment Residue Reuse for Phosphorus Removal

    Directory of Open Access Journals (Sweden)

    Lai Yoke Lee

    2015-04-01

    Full Text Available Aluminum-based water treatment residue (Al-WTR generated during the drinking water treatment process is a readily available recycled material with high phosphorus (P adsorption capacity. The P adsorption capacity of Al-WTR generated from Singapore’s water treatment plant was evaluated with reference to particle size range, adsorption pH and temperature. Column tests, with WTR amendments in sand with and without compost, were used to simulate the bioretention systems. The adsorption rate decreased with increasing WTR sizes. Highest P adsorption capacity, 15.57 mg PO43−-P/g WTR, was achieved using fine WTR particles (>50% particles at less than 0.30 mm. At pH 4, the contact time required to reduce effluent P concentration to below the detectable range was half compared with pH 7 and 9. The adsorption rate observed at 40 ± 2 °C was 21% higher compared with that at 30 ± 2 °C. Soil mixes amended with 10% WTR and compost were able to maintain consistently high (90% total phosphorus (TP removal efficiency at a TP load up to 6.45 g/m3. In contrast, TP removal efficiencies associated with columns without WTR amendment decreased to less than 45% as the TP load increased beyond 4.5 g/m3. The results showed that WTR application is beneficial for enhanced TP removal in bioretention systems.

  6. Preparation of drinking water used in water supply systems of the towns Zrenjanin and Temerin by electrochemical methods.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikulic, Nenad

    2013-01-01

    The aim of this work was the development and application of the pilot plant with the capacity of 1000 L/day for the purification of groundwater used for human consumption characterized with high concentration of arsenic and increased values of organic pollutants, ammonia, nitrites, color and turbidity. For that purpose, groundwater from the production wells supplying the towns Zrenjanin and Temerin (Vojvodina, Serbia) was used. Due to its complex composition, the purification system required the combination of the electroreduction/electrocoagulation, using iron and aluminum electrode plates with/without ozonation, followed by the electromagnetic treatment and the finally by the simultaneous ozonation/UV treatment. The electroreduction was used for the removal of nitrates, nitrites, and Cr(VI), while the removal of arsenic, heavy metals, suspended solids, color and turbidity required the application of the electrocoagulation with simultaneous ozonation. Organic contaminants and ammonia were removed completely in the last treatment step by applying the simultaneous ozonation/UV treatment. All measured parameters in the purified water were significantly lower compared to the regulated values. Under the optimum treatment conditions, the removal efficiencies for color, turbidity, suspended solids, total arsenic, total chromium, Ni(II), total copper, sulfates, fluorides, chemical oxygen demand, ammonia, nitrates, and nitrites were 100%. The removal efficiencies of the total manganese and iron were 85.19% and 97.44%, respectively, whilst the final concentrations were 4 and 7 μg/L, respectively.

  7. Evaluating the Performance of Iron Nano-particle Resin in Removing Fluoride from Water

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2011-01-01

    Full Text Available Excessive amounts of fluoride in drinking water pose serious health problems. It is, therefore, essential to remove it from drinking water by appropriate water treatment processes down to standard levels for preventing the health risks associated. The aim of this study was to determine the performance of a kind of hybrid sorbent resin in removing fluoride from water. Batch experiments were performed to investigate adsorption isotherms and the effects of experimental parameters such as contact time (5-120 min and pH (3-9. Results revealed that fluoride adsorption rate was initially rapid but continued at a slower rate before it reached equilibrium in 120 min. Optimum fluoride removal was observed at a pH range of 3-5.5. The data obtained from the experiments were fitted with Langmiur model.

  8. Removal of antibiotics from urban wastewater by constructed wetland optimization.

    Science.gov (United States)

    Hijosa-Valsero, María; Fink, Guido; Schlüsener, Michael P; Sidrach-Cardona, Ricardo; Martín-Villacorta, Javier; Ternes, Thomas; Bécares, Eloy

    2011-04-01

    Seven mesocosm-scale constructed wetlands (CWs), differing in their design characteristics, were set up in the open air to assess their efficiency to remove antibiotics from urban raw wastewater. A conventional wastewater treatment plant (WWTP) was simultaneously monitored. The experiment took place in autumn. An analytical methodology including HPLC-MS/MS was developed to measure antibiotic concentrations in the soluble water fraction, in the suspended solids fraction and in the WWTP sludge. Considering the soluble water fraction, the only easily eliminated antibiotics in the WWTP were doxycycline (61±38%) and sulfamethoxazole (60±26%). All the studied types of CWs were efficient for the removal of sulfamethoxazole (59±30-87±41%), as found in the WWTP, and, in addition, they removed trimethoprim (65±21-96±29%). The elimination of other antibiotics in CWs was limited by the specific system-configuration: amoxicillin (45±15%) was only eliminated by a free-water (FW) subsurface flow (SSF) CW planted with Typha angustifolia; doxycycline was removed in FW systems planted with T. angustifolia (65±34-75±40%), in a Phragmites australis-floating macrophytes system (62±31%) and in conventional horizontal SSF-systems (71±39%); clarithromycin was partially eliminated by an unplanted FW-SSF system (50±18%); erythromycin could only be removed by a P. australis-horizontal SSF system (64±30%); and ampicillin was eliminated by a T. angustifolia-floating macrophytes system (29±4%). Lincomycin was not removed by any of the systems (WWTP or CWs). The presence or absence of plants, the vegetal species (T. angustifolia or P. australis), the flow type and the CW design characteristics regulated the specific removal mechanisms. Therefore, CWs are not an overall solution to remove antibiotics from urban wastewater during cold seasons. However, more studies are needed to assess their ability in warmer periods and to determine the behaviour of full-scale systems. Copyright

  9. Particle residence times in waters of the Yangtze and Amazon continental shelves

    International Nuclear Information System (INIS)

    McKee, B.A.; Nittrouer, C.A.; DeMaster, D.J.

    1986-01-01

    Water column and seabed samples were analyzed for naturally occurring Th-234 to determine particle residence times in Yangtze and Amazon continental-shelf waters. On the Yangtze shelf, the water column was vertically well-mixed and suspended-sediment concentrations decreased offshore (from 230 mg/l near the river mouth to 2 mg/l in mid-shelf waters). Particle residence times increased offshore and ranged from 3.2 hours (12 m water depth) to 7.3 days (60 m water depth). Particle residence times ranged from 3 to 30 times shorter than values predicted by settling of discrete (4-8 micron) particles, suggesting that particles were settling in aggregate form. On the Amazon shelf, a two-layer estuarine flow dominated shelf circulation. Suspended-sediment concentrations on the inner shelf (10-12 m water depth) were much greater in bottom waters (range: 100-880 mg/l) than in surface waters (range 5-60 mg/l) as a result of resuspension. Particle residence times ranged from 1.1 days in surface waters to 2.5 days in bottom waters. Particles probably underwent several cycles of resuspension before permanent removal from the water column

  10. Concerning a mechanism for removing clay particles of washing liquids from pores

    Energy Technology Data Exchange (ETDEWEB)

    Badzhurak, R F

    1982-01-01

    Examined is a mechanism for removing the clay particles of washing liquids from a pore space. All the experiments are conducted in 1-% clay, water and polymer solutions (with a viscosity of 120 in accordance with SPV-5), made of clay powder of the Makharadz'ye deposit with a particle size of 40-60 mkm, sorted by a screen method. The polymer solutions were made on the basis of hypane, metas, polyacrylamide, KMTs-500, KhS-1 biopolymer, modified and clusterized by an alkaline (NaOH) of cornstarch. Studied is the process of removal of the solid phase from an ''ideal pore'', that is, a quartz capillary. It is demonstrated that the break away of the basic mass of the bentonite particles sedimented from the washing liquids on the quartz surface from the capillary and the formation by them of ''suspended flocules'' occurs at a water current speed in the pore equal to 2.5-4.0 times 10/sup -3/m/s. The carry away of the particles sedimented from the polymer solutions of metase, hypane, clusterized and modified starch, KMTs-500 and water occurs at a stream speed above 5.4 times 10/sup -3/m/s. The greatest speeds are required for the removal of clay particles more than 15 mkm in size from the pore space. The complete removal of these particles from the capillary is observed at a current speed above 40 times 10/sup -3/m/s.

  11. Removal of arsenic from drinking water by natural adsorbents

    OpenAIRE

    MD SHAHNOOR ALAM KHAN

    2017-01-01

    The presence of arsenic in groundwater has been reported in many countries across the world and it is a serious threat to public health. The aim of this study was to identify prospective natural materials with high arsenic adsorption capacity and durable hydraulic property to produce adequate flow of water. The comparative study identified Skye sand as the best natural adsorbent. The prototype household filter with Skye sand achieved complete removal of arsenic and iron. Arsenic removal by du...

  12. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  13. Sorbents for phosphate removal from agricultural drainage water

    DEFF Research Database (Denmark)

    Lyngsie, Gry

    Subsurface transport of phosphate (P) from fertilized agricultural fields to freshwaters may lead to eutrophication and reduced biodiversity in inland waters. Mitigation of eutrophic waters is difficult and costly. Reduction of P export to surface waters using filters installed in agricultural...... drains comprising P sorbing materials (PSM) may be a more efficient and cost-effective way to improve water quality. Several materials have been proposed as PSMs for use for cleaning agricultural drainage water. The objective of the present study was to provide data on sorption behavior among a variety...... of PSMs in order to select a material that can quickly remove P from runoff water at both base and peak flow. This was done by screening 15 “local” PSMs’ for their ability to sorb and retain low orthophosphate concentrations (0-161 µM) at short equilibration time (

  14. Membrane Bioprocesses for Pharmaceutical Micropollutant Removal from Waters

    Directory of Open Access Journals (Sweden)

    Matthias de Cazes

    2014-10-01

    Full Text Available The purpose of this review work is to give an overview of the research reported on bioprocesses for the treatment of domestic or industrial wastewaters (WW containing pharmaceuticals. Conventional WW treatment technologies are not efficient enough to completely remove all pharmaceuticals from water. Indeed, these compounds are becoming an actual public health problem, because they are more and more present in underground and even in potable waters. Different types of bioprocesses are described in this work: from classical activated sludge systems, which allow the depletion of pharmaceuticals by bio-degradation and adsorption, to enzymatic reactions, which are more focused on the treatment of WW containing a relatively high content of pharmaceuticals and less organic carbon pollution than classical WW. Different aspects concerning the advantages of membrane bioreactors for pharmaceuticals removal are discussed, as well as the more recent studies on enzymatic membrane reactors to the depletion of these recalcitrant compounds.

  15. Kinetics of trace metal removal from tidal water by mangrove sediments under different redox conditions

    International Nuclear Information System (INIS)

    Suzuki, K.N.; Machado, E.C.; Machado, W.; Bellido, A.V.B.; Bellido, L.F.; Osso, J.A.; Lopes, R.T.

    2014-01-01

    The extent in which redox conditions can affect the removal kinetics of 58 Co and 65 Zn from tidal water by mangrove sediments was evaluated in microcosm experiments, simulating a tidal flooding period of 6 h. The average half-removal time (t 1/2 ) of 58 Co from overlaying water was slightly higher (7.3 h) under an N 2 -purged water column than under an aerated water column (5.4 h). A lower difference was found for 65 Zn (1.9 h vs. 1.5 h, respectively). Average removals of 58 Co activities from water were 54.6% (N 2 treatment) and 43.5% (aeration treatment), whereas these values were 88.0% and 92.7% for 65 Zn, respectively. Very contrasting sorption kinetics of different radiotracers occurred, while more oxidising conditions favoured only a slightly higher removal. Average 58 Co and 65 Zn inventories within sediments were 30.4% and 18.8% higher in the aeration treatment, respectively. A stronger particle-reactive behaviour was found for 65 Zn that was less redox-sensitive and more efficiently removed by sediments than 58 Co. - Highlights: ► Radiotracer experiments evidenced the role of mangrove sediments in trapping trace metals. ► Very contrasting removal kinetics from tidal water were observed for 65 Zn and 58 Co. ► Nearly 40%–50% of 58 Co activities and nearly 90% of 65 Zn activities in overlying water were removed. ► 65 Zn showed a stronger particle-reactive behaviour than observed for 58 Co. ► 58 Co was more sensitive to redox conditions in tidal water than observed for 65 Zn

  16. Experimental study on Kd of 137Cs at varying suspended load conditions

    International Nuclear Information System (INIS)

    Jaison, T.J.; Jain, Abhishek; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.

    2018-01-01

    137 Cs is one of the radionuclide likely to be released through liquid effluents from a nuclear facility. It is soluble in water, but its mobility in aquatic environments is highly retarded by its strong interaction with suspended sediment. The 137 Cs + sorption by suspended load, especially in the subtropics and tropics are not fully understood. Besides, according to IAEA document in emergency situation 137 Cs and 131 I being marker radionuclides, are easier to identify and representative of all the other radionuclides present. Hence a laboratory study is carried out on sorption of 137 Cs with varying silt load, using the upstream lake water and sediments to estimate site specific distribution coefficient (K d )

  17. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water.

    Science.gov (United States)

    Groh, Tyler A; Gentry, Lowell E; David, Mark B

    2015-05-01

    Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Biological nitrate removal processes from drinking water supply-a review.

    Science.gov (United States)

    Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali

    2013-12-19

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.

  19. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water

    International Nuclear Information System (INIS)

    Zhang Kai; Dwivedi, Vineet; Chi Chunyan; Wu Jishan

    2010-01-01

    A series of novel composites based on graphene oxide (GO) cross-linked with ferric hydroxide was developed for effective removal of arsenate from contaminated drinking water. GO, which was used as a supporting matrix here, was firstly treated with ferrous sulfate. Then, the ferrous compound cross-linked with GO was in situ oxidized to ferric compound by hydrogen peroxide, followed by treating with ammonium hydroxide. The morphology and composition of the composites were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The ferric hydroxide was found to be homogenously impregnated onto GO sheets in amorphous form. These composites were evaluated as absorbents for arsenate removal from contaminated drinking water. For the water with arsenate concentration at 51.14 ppm, more than 95% of arsenate was absorbed by composite GO-Fe-5 with an absorption capacity of 23.78 mg arsenate/g of composite. Effective arsenate removal occurred in a wide range of pH from 4 to 9. However, the efficiency of arsenate removal was decreased when pH was increased to higher than 8.

  20. How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@rmit.edu.a [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Zalizniak, Liliana [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Dunlop, Jason E. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia); Smart Water Research Facility, Griffith University, Queensland (Australia); Nugegoda, Dayanthi [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Choy, Satish C. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia)

    2010-02-15

    The effects of suspended and deposited sediments on the macroinvertebrates are well documented in upland streams but not in slower flowing lowland rivers. Using species found in lowland lotic environments, we experimentally evaluate mechanisms for sediments to affect macroinvertebrates, and in one experiment whether salinity alters the effect of suspended sediments. Suspended kaolin clay reduced feeding of Ischnura heterosticta (Odonata: Coenagrionidae) at high turbidity (1000-1500 NTU) but had no effects on feeding of Hemianax papuensis (Odonata: Aeshnidae) and Micronecta australiensis (Hemiptera: Corixidae). In freshwater (0.1 mS/cm), survival of Ischnura aurora was poor in clear water, but improved with suspended kaolin. Growth and feeding of I. aurora were unaffected by suspended sediments and salinity. Burial (1-5 mm) of eggs with kaolin or sand reduced hatching in Physa acuta (Gastropoda: Physidae), Gyraulus tasmanica (Gastropoda: Planorbidae) and Chironomus cloacalis (Diptera: Chironomidae). Settling sediments may pose greater risk to lowland lotic invertebrates than suspended sediments. - Sediment deposition may be more directly detrimental to macroinvertebrates of lowland rivers than suspended sediments.

  1. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  2. Fluoride Removal From Drinking Water by Electrocoagulation Using Iron and Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Takdastan

    2014-07-01

    Full Text Available Background Existence of fluoride in drinking water above the permissible level causes human skeletal fluorosis. Objectives Electrocoagulation by iron and aluminum electrodes was proposed for removing fluoride from drinking water. Materials and Methods Effects of different operating conditions such as treatment time, initial pH, applied voltage, type and number of electrodes, the spaces between aluminum and iron electrodes, and energy consumption during electrocoagulation were investigated in the batch reactor. Variable concentrations of fluoride solution were prepared by mixing proper amounts of sodium fluoride with deionized water. Results Experimental results showed that aluminum electrode is more effective in fluoride removal than iron, as in 40 minutes and initial pH of 7.5 at 20 V, the fluoride removal process reached to 97.86%. The final recommendable limit of fluoride (1.5 mg/L was obtained in 10 minutes at 20 V with the aluminum electrode. Conclusions In electrocoagulation with iron and aluminum electrodes, increase of voltage, number of electrodes and reaction time as well as decrease of the spaces between electrodes, enhanced the fluoride removal efficiency from drinking water. In addition the effect of pH and initial concentration of fluoride varied with types of electrodes.

  3. Combined biological treatment of sinter plant waste water, blast furnace gas scrubber water polluted groundwater and coke plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Antoine van Hoorn [Corus Staal, IJmuiden (Netherlands)

    2006-07-01

    Waste water from the Corus coke plant in IJmuiden had been handled by the activated sludge process since start-up in 1972 but in the eighties it was clear that although this removed most phenols, the rest of the COD and thiocyanate must also be removed before discharge. The paper describes the original water treatment process and the higher pressure gas scrubber system for removal of SO{sub 2}, heavy metals and other harmful components. It goes on to describe development of a combined biological treatment system, the heart of which is the so-called Bio 2000. The performance of this new plant is discussed. COD concentrations are very constant but Total Kjeldahl Nitrogen (TKN) concentrations fluctuate. COD, TKN and heavy metals are in compliance but cyanide and suspended solids are not always so. A method of overcoming this is being sought. This paper was presented at a COMA meeting in March 2005 held in Scunthorpe, UK. 10 figs., 2 tabs.

  4. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  5. Electrodialytic remediation of suspended soil – Comparison of two different soil fractions

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2012-01-01

    Electrodialytic remediation (EDR) can be used for removal of heavy metals from suspended soil, which allows for the soil remediation to be a continuous process. The present paper focused on the processing parameters for remediation of a soil polluted with Cu and As from wood preservation. Six...... electrodialytic treatments lasting from 5 to 22 days with different liquid to solid ratio (L/S) and current intensity were conducted. Among treatments, the highest removal was obtained from the soil fines with 5mA current at L/S 3.5 after 22 days where 96% of Cu and 64% of As were removed. Comparing the removal...... from the original soil and the soil fines in experiments with identical charge transportation, higher removal efficiency was observed from the soil fines. Constant current with 5mA could be maintained at L/S 3.5 for the soil fines while not for the original soil. Doubling current to 10mA could...

  6. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  7. An inversion of the estuarine circulation by sluice water discharge and its impact on suspended sediment transport

    Science.gov (United States)

    Schulz, Kirstin; Gerkema, Theo

    2018-01-01

    The Wadden Sea is characterized by a complex topography of branching channels and intertidal flats, in which the interplay between fresh water discharges, wind forcing and the tidal current causes sediment transport rates and direction to be highly variable in space and time. During three field campaigns, indications of a negative estuarine circulation have been found in a channel adjacent to the coast in the Western Dutch Wadden Sea. Contrary to the classical picture of estuarine circulation, a periodic density stratification was observed that builds up during flood and breaks down during ebb. This can be related to a large freshwater source at the mouth of the channel, the sluice in Kornwerderzand. In this study, observations of this phenomenon are presented, and with the help of a numerical model the different drivers for residual suspended matter transport in this area, namely tidal asymmetries in the current velocity and the above mentioned periodic stratification, are investigated. It is found that the residual current in the area of interest points in ebb direction, caused by both the elongated ebb flow phase and the periodic stratification. On the contrary, the stronger flood currents cause a transport of suspended matter in flood direction. This transport is counteracted and therefore diminished by the effects of the sluice discharge.

  8. Removal of Sulfate from Waste Water by Activated Carbon

    OpenAIRE

    Mohammed Sadeq Salman

    2009-01-01

    Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 9.) , agitation time (0 120)min and adsorbent dose (2 10) gm.The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm ...

  9. Removal of phenol from water : a comparison of energization methods

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Rutgers, W.R.

    2005-01-01

    Direct electrical energization methods for removal of persistent substances from water are under investigation in the framework of the ytriD-project. The emphasis of the first stage of the project is the energy efficiency. A comparison is made between a batch reactor with a thin layer of water and

  10. Physico-chemical forms of natural radionuclides in drilled well waters and their removal by ion exchange

    International Nuclear Information System (INIS)

    Vaaramaa, K.

    2003-01-01

    Appreciable concentrations of natural uranium and its daughter radionuclides may occur in drinking water obtained from drilled wells when the bedrock contains these nuclides. Effective methods are needed to remove these radionuclides. A wide range of ion exchange materials, both organic and inorganic, were evaluated for the removal of 234,238 U, 226 Ra, 210 Po and 210 Pb from ground waters. Screenin tests were carried out, in which distribution coefficients (KD) were determined for the ion exchangers. The ion exchangers that gave the highest KD's were tested in column-mode experiments for the removal of the radionuclides from drilled well water. The most efficient exchanger for the removal of U from neutral and slightly alkaline waters was the strong base anion resin. The chelating aminophosphonate resin removed uranium very efficiently from slightly acidic water. As well, it was an efficient exchanger for the removal of toxic and harmful transition metals from drilled well waters. The strong and weak acid cation resins and zeolite A removed radium most efficiently. Large fractions of the total activity of polonium and lead were found to adsorb on equipment in the ion exchange studies. In investigation of this, the well waters were filtered through membranes to determine the soluble and particle-bound forms of 234,238 U, 226 Ra, 210 Po and 210 Pb. Eight of the waters were of Ca type and two were of Na-Cl type. Some of the waters also had high concentrations of Fe, Mn and humic substances. Uranium was present entirely in soluble form, probably as uranyl ion in soluble carbonate complexes. 226 Ra was in soluble form in the waters with low concentrations of Fe and Mn, but 10% of the total radium activity was bound to particles in Fe-Mn-rich waters. The speciation of Po is complex in natural waters; polonium was present in both soluble and particle-bound forms. A correlation was observed between the fractions of particle-bound 210 Po and the concentrations of iron in

  11. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond......, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four PFCs using three different types of nanoscale zero-valent iron (nZVI) was investigated. Influencing...... factors such as, initial pH solution, reaction temperature and nZVI dosage were also studied. According to the results, target compounds were removed in the presence of chemically synthesized nZVI modified with Mg-aminoclay (MgAC) than under commercial iron powder and chemically synthesized uncoated n...

  12. Novel flow-through bioremediation system for removing nitrate from nursery discharge water.

    Science.gov (United States)

    Chris Wilson, P; Albano, Joseph P

    2013-11-30

    Nitrate losses in surface runoff water from nursery production areas can be significant. This study evaluated the potential use of microbial-based (denitrification), flow-through bioreactors for their nitrate-remediation ability. Duplicate bioreactor systems were constructed at a local foliage plant nursery. Each bioreactor system consisted of four 242 L tanks with connections alternating between bottom and top. Each tank was filled with approximately 113 L of Kaldness media to provide surface area for attachment of native microflora. Molasses was supplied as a carbon source for denitrification and water flow rates through the systems ranged from 5 to 18 L min(-1) during tests. Automatic water samplers were used to collect composite samples every 15 min from both the inflow and the exit flow water. Results indicate consistent removal of 80-100% of the nitrate flowing into the systems. Accumulation of ammoniacal and nitrite nitrogen did not occur, indicating that the nitrate-nitrogen was removed from the water, and not simply transformed into another water-soluble species. Occasions where removal rates were less than 80% were usually traced to faulty delivery of the carbon source. Results indicate that modular microbial-based bioremediation systems may be a useful tool for helping water managers meet stringent nitrogen water quality regulations, especially at nurseries with limited space for expansion of water retention facilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Water-quality assessment of the Rio Grande Valley study unit, Colorado, New Mexico, and Texas: analysis of selected nutrient, suspended-sediment, and pesticide data

    Science.gov (United States)

    Anderholm, S.K.; Radell, M.J.; Richey, S.F.

    1995-01-01

    This report contains a summary of data compiled from sources throughout the Rio Grande Valley study unit of the National Water-Quality Assessment program. Information presented includes the sources and types of water-quality data available, the utility of water-quality data for statistical analysis, and a description of recent water-quality conditions and trends and their relation to natural and human factors. Water-quality data are limited to concentrations of selected nutrient species in surface water and ground water, concentrations of suspended sediment and suspended solids in surface water, and pesticides in surface water, ground water, and biota.The Rio Grande Valley study unit includes about 45,900 square miles in Colorado, New Mexico, and Texas upstream from the streamflow-monitoring station Rio Grande at El Paso, Texas. The area also includes the San Luis Closed Basin and the surface-water closed basins east of the Continental Divide and north of the United States-Mexico international border. The Rio Grande drains about 29,300 square miles in these States; the remainder of the study unit area is in closed basins. Concentrations of all nutrients found in surface-water samples collected from the Rio Grande, with the exception of phosphorus, generally remained nearly constant from the northernmost station in the study unit to Rio Grande near Isleta, where concentrations were larger by an order of magnitude. Total nitrogen and total phosphorus loads increased downstream between Lobatos, Colorado, and Albuquerque, New Mexico. Nutrient concentrations remained elevated with slight variations until downstream from Elephant Butte Reservoir, where nutrient concentrations were lower. Nutrient concentrations then increased downstream from the reservoir, as evidenced by elevated concentrations at Rio Grande at El Paso, Texas.Suspended-sediment concentrations were similar at stations upstream from Otowi Bridge near San Ildefonso, New Mexico. The concentration and

  14. Ozone-assisted Regeneration of Magnetic Carbon Nanotubes for Removing Organic Water Pollutants

    DEFF Research Database (Denmark)

    Ateia, Mohamed; Ceccato, Marcel; Budi, Akin

    2018-01-01

    (MCNTs) after they have been used to remove organic pollutants from water. We ran MCNT through multiple regeneration cycles (i.e. magnetic collection → ozone regeneration → washing with ethanol then water) to adsorb atrazine. The results of our adsorption experiments show that the atrazine removal...... consecutive regeneration cycles. Additionally, we used a three layer graphite slab as a model system for CNTs and performed density functional theory (DFT) calculations to determine the free energy of adsorption and the free energy of solvation of atrazine and its byproducts in water and ethanol. The results...

  15. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    Directory of Open Access Journals (Sweden)

    S.A. Bapat

    2016-03-01

    Full Text Available Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  16. Parthenium hysterophorus: Novel adsorbent for the removal of heavy metals and dyes

    International Nuclear Information System (INIS)

    Bapat, S. A.; Jaspal, D. K.

    2016-01-01

    Heavy metals and dyes are major contributors in contamination of water streams. These contaminants enter into our eco- system, thus posing a significant threat to public health, ecological equilibrium and environment. Thus a combined discharge of these contaminants results in water pollution with high chemical oxygen demand, biological oxygen demand, color, particulate matter, suspended particles and odor. The mounting pollution of the water bodies has attracted attention of the researchers towards the development of novel techniques and materials for water pollution. The paper describes the use of such a material Parthenium hysterophorus, a weed, explored for water purification. The potential of the weed has been tested for several heavy metals and dyes as described in this paper. As per literature the weed is capable of showing adsorption tendency up to 90% in certain cases for some heavy metals and dyes. Powdered weed, activated carbon, ash etc. of Parthenium have been employed for the removal process.

  17. Removal of heavy metals using a microbial active, continuously operated sand filter

    International Nuclear Information System (INIS)

    Ebner, C.

    2001-01-01

    Heavy metals play an important role within the spectrum of the various pollutants, emitted into the environment via human activities. In contrast to most organic pollutants, heavy metal can not be degraded. Many soils, lakes and rivers show a high contamination with heavy metals due to the enrichment of these pollutants. In addition to existing chemical-physical and biological technologies for the treatment of heavy metal containing waste waters a demand for new, efficient and low-cost cleaning technologies exists, particularly for high volumes of weakly contaminated waters. Such a technology was developed within the framework of a scientific project of the European Union. The approach makes use of a continuously operated, moving-bed Astrasand filter, which has been operated as a continuous biofilm reactor. By inoculation of the reactor with bacteria providing different, defined mechanisms of metal immobilization, and by continuous supply of suitable nutrients, a metal-immobilizing biofilm is built up and regenerated continuously. Metal-enriched biomass is removed continuously from the system, and the contained metals can be recycled by pyrometallurgical treatment of the biomass. The subjects of the present work were the optimization of the nutrient supply for the process of metal removal, the investigation of the toxicity of different waste waters, the optimization of inoculation and biofilm formation, set-up and operation of a lab scale sand filter and the operation of a pilot scale sand filter treating rinsing water of a chemical nickel plating plant. First, basic parameters like toxicity of heavy metal-containing waste waters and the influence of the nutrition of bacteria on biosorption and total metal removal were examined, using freely suspended bacteria in batch culture. Concerning toxicity great differences could be found within the spectrum of heavy metal-containing waste waters tested. Some waters completely inhibited growth, while others did not

  18. Arsenic removal from water using low-cost adsorbents: A comparative study

    Directory of Open Access Journals (Sweden)

    Rajaković Ljubinka V.

    2011-01-01

    Full Text Available Inorganic arsenic removal from water using low-cost adsorbents is presented in this paper. Selective removal of As(III and As(V from water was performed with natural materials (zeolite, bentonite, sepiolite, pyrolusite and limonite and industrial by-products (waste filter sand as a water treatment residual and blast furnace slag from steel production; all inexpensive and locally available. Kinetic and equilibrium studies were realized using batch system techniques under conditions that are likely to occur in real water treatment systems. The natural zeolite and the industrial by-products were found to be good and inexpensive sorbents for arsenic while bentonite and sepiolite clays showed little affinity towards arsenic. The highest maximum sorption capacities were obtained for natural zeolite, 4.07 mg As(V g-1, and waste iron slag, 4.04 mg As(V g-1.

  19. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.

    Science.gov (United States)

    Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles

    2017-02-01

    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.

  20. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Song Jin et al

    2007-01-01

    Full Text Available We have identified synthetic layered double hydroxides (LDH nanocomposites as an effective group of material for removing bacteria and viruses from water. In this study, LDH nanocomposites were synthesized and tested for removing biological contaminants. LDH was used to remove MS2 and X174 (indicator viruses, and Escherichia coli (an indicator bacterium from synthetic groundwater and to remove mixed communities of heterotrophic bacteria from raw river water. Our results indicate that LDH composed of magnesium–aluminium or zinc–aluminium has a viral and bacterial adsorption efficiency ≥99% at viral concentrations between 5.9×106 and 9.1×106 plaque forming units (pfu/L and bacterial concentrations between 1.6×1010 and 2.6×1010 colony forming units (cfu/L when exposed to LDH in a slurry suspension system. Adsorption densities of viruses and bacteria to LDH in suspension ranged from 1.4×1010 to 2.1×1010 pfu/kg LDH and 3.2×1013–5.2×1013 cfu/kg LDH, respectively. We also tested the efficiency of LDH in removing heterotrophic bacteria from raw river water. While removal efficiencies were still high (87–99%, the adsorption capacities of the two kinds of LDH were 4–5 orders of magnitude lower than when exposed to synthetic groundwater, depending on if the LDH was in suspension or a packed column, respectively.

  1. Potabilization of brackish water by electrodialysis. Study of natural samples with a laboratory unit

    International Nuclear Information System (INIS)

    Sainz Sastre, J. A.; Alonso-Lopez, J.

    1972-01-01

    Potabilization of brackish waters from Ciguela (Toledo) and Riansares (Toledo) rivers, and from wells 1 and 2 at Torre Pacheco (Murcia), as well as of sea water diluted to 5,000 ppm has been studied in process conditions optimized from experiments with synthetic solutions. The study includes: removal of suspended and organic matter, determination of limit current density, power requirements, ion selectivity and daily maximum output of the unit. (Author) 8 refs

  2. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration

    NARCIS (Netherlands)

    Floris, R.; Nijmeijer, K.; Cornelissen, E. R.

    2016-01-01

    The potential environmental and health risks of engineered nanoparticles such as buckminsterfullerene C60 in water require their removal during the production of drinking water. We present a study focusing on (i) the removal mechanism and (ii) the elucidation of the role of the membrane pore size

  3. PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water.

    Science.gov (United States)

    DeFever, Ryan S; Geitner, Nicholas K; Bhattacharya, Priyanka; Ding, Feng; Ke, Pu Chun; Sarupria, Sapna

    2015-04-07

    We present results from experiments and atomistic molecular dynamics simulations on the remediation of naphthalene by polyamidoamine (PAMAM) dendrimers and graphene oxide (GrO). Specifically, we investigate 3rd-6th generation (G3-G6) PAMAM dendrimers and GrO with different levels of oxidation. The work is motivated by the potential applications of these emerging nanomaterials in removing polycyclic aromatic hydrocarbon contaminants from water. Our experimental results indicate that GrO outperforms dendrimers in removing naphthalene from water. Molecular dynamics simulations suggest that the prominent factors driving naphthalene association to these seemingly disparate materials are similar. Interestingly, we find that cooperative interactions between the naphthalene molecules play a significant role in enhancing their association to the dendrimers and GrO. Our findings highlight that while selection of appropriate materials is important, the interactions between the contaminants themselves can also be important in governing the effectiveness of a given material. The combined use of experiments and molecular dynamics simulations allows us to comment on the possible factors resulting in better performance of GrO in removing polyaromatic contaminants from water.

  4. Water removal characteristics of parallel serpentine channels

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, K.; Zhou, B.; Quan, P. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2005-07-01

    A study was conducted in which the liquid water behaviours in parallel serpentine channels with manifolds on the cathode side of a proton exchange membrane (PEM) fuel cell stack were examined. A 3-dimensional, unsteady two-phase flow model within the commercial computational fluid dynamics software package FLUENT was used. Membrane electrode assemblies (MEA) were placed on different sides in the numerical analysis. Several water management issues were identified for this type of fuel cell stack by examining the flow behaviours of liquid water and airflow velocity fields. It was shown that water in the outflow manifold could be blocked by air streams from the gas flow channels, with water flowing continuously into the outflow manifold. It was also shown that the pressure drop along all the unit cells can never increase or decrease at the same pace. Water which adheres to the end wall of both the inlet and outlet manifolds is difficult to remove. It was suggested that faster water drainage can be achieved by keeping the MEA side of the gas flow channels close to the outlet of the outflow manifold. It was also suggested that the collecting and separating effect at the serpentine gas flow channels could improve the water drainage. 8 refs., 10 figs.

  5. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    Science.gov (United States)

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  6. Small scale patches of suspended matter and phytoplankton in the Elbe river estuary, German Bight and tidal flats

    Energy Technology Data Exchange (ETDEWEB)

    Doerffer, R; Fischer, J; Stoessel, M; Brockmann, C [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.); Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.)

    1989-01-01

    Thematic mapper and ship data has been used to study small scale features in coastal waters of the North Sea. Three independent pieces of informations from all 7 TM channels were found with factor analysis: suspended matter concentration, atmospheric scattering and sea surface temperature. Near surface suspended matter concentrations may be detected within a factor of 2. For the required atmospheric correction the signal-to-noise ratio of the channels 5 and 7 has to be improved by averaging over 25 x 25 pixels. Thus TM allows to monitor aerosol optical depth and aerosol type over cloudfree water surfaces. Sea surface temperature is retrievable with an absolute accuracy of 1.0 K as long as radiosonde data are available for the correction of atmospheric effects, while relative temperature variations of 0.5 K are detectable. The patchiness of suspended matter and its relation to underwater topography was analysed with auto- and crosscorrelation: horizontal lengths, where the suspended matter concentration of single pixels are significantly correlated either with each another or with water depth, are < 800 m. (orig.).

  7. Application of chitosan/polyacrylamide nanofibres for removal of chromate and phosphate in water

    Science.gov (United States)

    Nthumbi, Richard M.; Catherine Ngila, J.; Moodley, Brenda; Kindness, Andrew; Petrik, Leslie

    Water pollution is an intractable environmental problem in South Africa. Management of the water resource is vital in order to address the water scarcity issues. Research on remediation of contaminated water has focused mainly on the removal of heavy metals such as Pb, Cd, Zn, Hg and Cu and neglected other inorganic pollutants. In this work we focus on the removal of anions, namely chromate and phosphate. Chromium is extensively used in the textile, leather and metallurgy industries and contaminates surface water and groundwater when inadequately treated industrial effluents are discharged. Chromium has been associated with irregular sugar metabolism, nosebleeds and ulcers, and it is also carcinogenic. The phosphate ion is an essential micronutrient responsible for healthy plant growth. However, excess phosphate intake stimulates rapid growth of photosynthetic algae and cyanobacteria, resulting in eutrophication. This phenomenon (algal bloom) causes other organisms to die due to reduced oxygen in the water. In order to offer remediation measures, this study reports the use of electrospun nanofibres for the removal of chromate and phosphate anions. Adsorption experiments were carried out using nanofibres electrospun from chitosan and polyacrylamide polymer blends, cross-linked with glutaraldehyde. Quantification of chromium was done using ICP-OES while UV-Vis spectrophotometry was used for the determination of phosphates. Batch adsorption experiments were done to determine optimum adsorption parameters such as pH, contact time, temperature and initial analyte concentration. Removal of the ions using a flow-adsorption technique through a micro-column was performed. The experimental data obtained were analysed using Langmuir and Freundlich models to study the adsorption mechanisms. The nanofibres had an adsorption capacity for Cr(VI) and PO43- of 0.26 mg g-1 and 392 mg g-1, respectively, and removal efficiencies of 93% and 97.4%, in the same order, in synthetic water

  8. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  9. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    International Nuclear Information System (INIS)

    Annanmaeki, M.; Turtiainen, T.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ( 222 Rn), uranium ( 238,234 U), radium ( 226 , 228 Ra), lead ( 210 Pb) and polonium ( 210 Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 μSv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong acidic cation exchange resins

  10. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    Energy Technology Data Exchange (ETDEWEB)

    Annanmaeki, M.; Turtiainen, T. [eds.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ({sup 222}Rn), uranium ({sup 238,234}U), radium ({sup 226}, {sup 228}Ra), lead ({sup 210}Pb) and polonium ({sup 210}Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 {mu}Sv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong

  11. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    Science.gov (United States)

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  12. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic

  13. The effect of magnesium on partial sulphate removal from mine water as gypsum.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Rämö, Jaakko; Lassi, Ulla

    2015-08-15

    The aim of this research was to investigate the effect of magnesium on the removal efficiency of sulphate as gypsum from mine water. The precipitation conditions were simulated with MINEQL + software and the simulation results were compared with the results from laboratory jar test experiments. Both the simulation and the laboratory results showed that magnesium in the mine water was maintaining sulphate in a soluble form as magnesium sulphate (MgSO4) at pH 9.6. Thus magnesium was preventing the removal of sulphate as gypsum (CaSO4·2H2O). However, change in the lime precipitation pH from 9.6 to 12.5 resulted in magnesium hydroxide (Mg(OH)2) precipitation and improved sulphate removal. Additionally, magnesium hydroxide could act as seed crystals for gypsum precipitation or co-precipitate sulphate further enhancing the removal of sulphate from mine water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Can Microalgae Remove Pharmaceutical Contaminants from Water?

    Science.gov (United States)

    Xiong, Jiu-Qiang; Kurade, Mayur B; Jeon, Byong-Hun

    2018-01-01

    The increase in worldwide water contamination with numerous pharmaceutical contaminants (PCs) has become an emerging environmental concern due to their considerable ecotoxicities and associated health issues. Microalgae-mediated bioremediation of PCs has recently gained scientific attention, as microalgal bioremediation is a solar-power driven, ecologically comprehensive, and sustainable reclamation strategy. In this review, we comprehensively describe the current research on the possible roles and applications of microalgae for removing PCs from aqueous media. We summarize several novel approaches including constructing microbial consortia, acclimation, and cometabolism for enhanced removal of PCs by microalgae, which would improve practical feasibility of these technologies. Some novel concepts for degrading PCs using integrated processes and genetic modifications to realize algal-based bioremediation technologies are also recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  16. Magnetite nanoparticles coated glass wool for As(V) removal from drinking water

    International Nuclear Information System (INIS)

    Kango, Sarita; Kumar, Rajesh

    2015-01-01

    Arsenic (As) removal from contaminated groundwater is a key environmental concern worldwide. In this study, glass wool was coated with magnetite nanoparticles under argon gas flow and magnetite coated glass wool have been investigated for application as an adsorbent for As(V) removal from water. The adsorbent was characterized by using Scanning Electron Microscopy (SEM) and arsenic contaminated water treated with adsorbent was analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-MS results showed that 10 g/L of adsorbent removed 99.4% of As(V) within 5 hours at pH-7 and initial arsenic concentration of 360µg/L. Adsorption kinetics data fitted well in pseudo-first-order kinetics model with high correlation coefficient (R 2 = 0.995). As magnetite nanoparticles coated glass wool showed favorable adsorption behavior for As(V), it can be a promising tool for water purification

  17. Magnetite nanoparticles coated glass wool for As(V) removal from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kango, Sarita; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, District Solan (H.P.)- 173 234 (India)

    2015-08-28

    Arsenic (As) removal from contaminated groundwater is a key environmental concern worldwide. In this study, glass wool was coated with magnetite nanoparticles under argon gas flow and magnetite coated glass wool have been investigated for application as an adsorbent for As(V) removal from water. The adsorbent was characterized by using Scanning Electron Microscopy (SEM) and arsenic contaminated water treated with adsorbent was analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-MS results showed that 10 g/L of adsorbent removed 99.4% of As(V) within 5 hours at pH-7 and initial arsenic concentration of 360µg/L. Adsorption kinetics data fitted well in pseudo-first-order kinetics model with high correlation coefficient (R{sup 2} = 0.995). As magnetite nanoparticles coated glass wool showed favorable adsorption behavior for As(V), it can be a promising tool for water purification.

  18. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    Science.gov (United States)

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  19. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. T. Amin

    2014-01-01

    Full Text Available The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. Nanotechnology-based multifunctional and highly efficient processes are providing affordable solutions to water/wastewater treatments that do not rely on large infrastructures or centralized systems. The aim of the present study is to review the possible applications of the nanoparticles/fibers for the removal of pollutants from water/wastewater. The paper will briefly overview the availability and practice of different nanomaterials (particles or fibers for removal of viruses, inorganic solutes, heavy metals, metal ions, complex organic compounds, natural organic matter, nitrate, and other pollutants present in surface water, ground water, and/or industrial water. Finally, recommendations are made based on the current practices of nanotechnology applications in water industry for a stand-alone water purification unit for removing all types of contaminants from wastewater.

  20. Removing efficiency of radon from water by different methods

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.; Gulasova, Z.; Polaskova, A.

    2008-01-01

    In this contribution problem of radon removing from water samples by different methods was tested. Lowest efficiency of deemanation was achieved at tossing of water from one vessel into the other. For increasing of efficiency deemanation of radon use of needle-bath principle was also used. Low efficiency deemanation was found at trapping of radon from sample of water by toluene (83 ± 5) %, too. Reversal highest efficiency deemanation of radon from water was reached at aerating by argon (95 ± 6)%. It is shown, that reduction of volume activity of radon in water under 0.1 Bq/dm l - 3 is big problem. Suppression of this limit will claim use of more completion and sophistic approaches. (author)

  1. Resuspension and transport of suspended solids in Eurajoensalmi Bay. Final report of monitoring activities in 2009-2011

    International Nuclear Information System (INIS)

    Mykkanen, J.; Kiirikki, M.; Lindfors, A.

    2012-11-01

    The goal of monitoring activities carried out in Eurajoensalmi Bay was to indentify factors affecting dispersal of river waters and suspended solid matter in the estuary area. In addition to suspended solids load and dispersal of river water, also release of sedimented particles from the sea bed in resuspension was studied. River water quality and discharge as well as resuspension in Eurajoensalmi estuary area were monitored with Luode automatic monitoring stations equipped with water quality, water level, wave height and weather sensors. Dynamics of Eurajoensalmi estuary area was studied by installing profiling current meters (ADCP) and water quality sensors to the sea floor at the mouth of Eurajoensalmi. Spatial variation of surface water quality was monitored with a flow-through method from a moving vessel and manual profiling several times during the monitoring period. Collected data was processed and used in determining suspended solids balance of Eurajoensalmi Bay. The balance was determined by creating a regression model for water exchange and sediment flux over the cross section at the mouth of Eurajoensalmi. Regression model was created also to determine resuspension in Eurajoensalmi area. Sediment flux and resuspension were modeled using long term wind data from Kylmaepihlaja meteorological station as a variable to determine overall sediment balance of Eurajoensalmi

  2. Studying Suspended Sediment Mechanism with Two-Phase PIV

    Science.gov (United States)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  3. Total Suspended Solid (TSS Distributed by Tidal Currents during Low to High Tide Phase in the Waters of Sayung, Demak: Its Relations to Water Quality Parameters

    Directory of Open Access Journals (Sweden)

    Ulung Jantama Wisha

    2017-05-01

    Full Text Available Sayung waters is a region highly vulnerable to catastrophic erosion along the coast, which is directly followed by an increase suspended sediments and particles from the bottom of the waters that was stirred by oceanography factors. The purpose of this study was to determine the concentration and distribution of the latest TSS condition and its effect on water quality parameters in the waters of Sayung. The sampling method is using purposive sampling, with the stations spread out along the coastal area of Sayung, the main data consist of current, tide, bathymetry, coastline and water quality, and the secondary data consist of RBI map and tide forecasting, those data is analyzed numerically and statistically. TSS value ranged between 23,1-199,6 mg.L-1, the distribution of TSS is simulated in the condition of ebb to tide with current speed ranged between 0-0.41 ms-1, that distribution also influenced by physical water factors such as salinity, temperature, and density and has  impacts to enhancing the turbidity and indirectly decrease the photosynthesis activity and inhibit the oxygen cycle in the Sayung waters.

  4. Research on How to Remove Efficiently the Condensate Water of Sampling System

    International Nuclear Information System (INIS)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo

    2015-01-01

    Corrosion was caused in the measurement chamber inside the O 2 and H 2 analyzer, and thus measuring the concentration of O 2 and H 2 was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O 2 and H 2 analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required

  5. Research on How to Remove Efficiently the Condensate Water of Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, SungHwan; Kim, MinSoo; Choi, HoYoung; In, WonHo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Corrosion was caused in the measurement chamber inside the O{sub 2} and H{sub 2} analyzer, and thus measuring the concentration of O{sub 2} and H{sub 2} was not possible. It was confirmed that the cause of the occurrence of condensate water is due to the temperature difference caused during the process of the internal gas of the disposal and degasifier tank being brought into the analyzer. Thus, a heating system was installed inside and outside of the sampling panel for gas to remove generated condensate water in the analyzer and pipe. For the case where condensate water is not removed by the heating system, drain port is also installed in the sampling panel for gas to collect the condensate water of the sampling system. It was verified that there is a great volume of condensate water existing in the pipe line during the purging process after installing manufactured goods. The condensate water was fully removed by the installed heating cable and drain port. The heating cable was operated constantly at a temperature of 80 to 90 .deg. C, which allows the precise measurement of gas concentration and longer maintenance duration by blocking of the condensate water before being produced. To install instruments for measuring the gas, such as an O{sub 2} and H{sub 2} analyzer etc., consideration regarding whether there condensate water is present due to the temperature difference between the measuring system and analyzer is required.

  6. Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater

    Science.gov (United States)

    Brown, Giles H.; Tranter, M.; Sharp, M. J.

    1996-04-01

    The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.

  7. Removal of emerging micropollutants from water using cyclodextrin.

    Science.gov (United States)

    Nagy, Zsuzsanna Magdolna; Molnár, Mónika; Fekete-Kertész, Ildikó; Molnár-Perl, Ibolya; Fenyvesi, Éva; Gruiz, Katalin

    2014-07-01

    Small scale laboratory experiment series were performed to study the suitability of a cyclodextrin-based sorbent (ß-cyclodextrin bead polymer, BCDP) for modelling the removal of micropollutants from drinking water and purified waste water using simulated inflow test solutions containing target analytes (ibuprofen, naproxen, ketoprofen, bisphenol-A, diclofenac, β-estradiol, ethinylestradiol, estriol, cholesterol at 2-6 μg/L level). This work was focused on the preliminary evaluation of BCDP as a sorbent in two different model systems (filtration and fluidization) applied for risk reduction of emerging micropollutants. For comparison different filter systems combined with various sorbents (commercial filter and activated carbon) were applied and evaluated in the filtration experiment series. The spiked test solution (inflow) and the treated outflows were characterized by an integrated methodology including chemical analytical methods gas chromatography-tandem mass spectrometry (GC-MS/MS) and various environmental toxicity tests to determine the efficiency and selectivity of the applied sorbents. Under experimental conditions the cyclodextrin-based filters used for purification of drinking water in most cases were able to absorb more than 90% of the bisphenol-A and of the estrogenic compounds. Both the analytical chemistry and toxicity results showed efficient elimination of these pollutants. Especially the toxicity of the filtrate decreased considerably. Laboratory experiment modelling post-purification of waste water was also performed applying fluidization technology by ß-cyclodextrin bead polymer. The BCDP removed efficiently from the spiked test solution most of the micropollutants, especially the bisphenol-A (94%) and the hormones (87-99%) The results confirmed that the BCDP-containing sorbents provide a good solution to water quality problems and they are able to decrease the load and risk posed by micropollutants to the water systems. Copyright © 2014

  8. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    Science.gov (United States)

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  9. An analysis of bedload and suspended load interactions

    Science.gov (United States)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  10. Method of removing tritium in exhaust water in a nuclear equipment

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, T

    1976-05-12

    A method is claimed to increase the efficiency of removing tritium from waste water through adsorption treatment. Steam is produced by heating waste water containing tritium, and it is passed through a tube filled with an adsorbent such as activated alumina, silica gel or zeolite. When a control limiting value is reached by the concentration of tritium within the steam, the flow of steam is stopped, and the adsorption tube is removed from the path of steam flow. Thereafter, another adsorption tube containing the afore-said adsorbent is provided in the steam flow path, and the steam is then allowed to flow again.

  11. Removal of organic compounds from shale gas flowback water

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P.; Rijnaarts, Huub H M

    2018-01-01

    Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback

  12. Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Addy, Susan E.A.

    2009-09-17

    ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.

  13. Simultaneous removal of water and BTEX from feed gas for a cryogenic plant

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.; Lee, S.; Evans, M.; Chen, R.

    1999-07-01

    The removal of water and benzene, toluene, ethyl benzene, xylene (BTEX) from the feed gas of a cryogenic plant is critical in order to avoid precipitation of these components in the cold section of the plant. The design of the Hannibal Gas Plant in Sfax, Tunisia, accomplishes the removal of water and BTEX simultaneously. The plant receives 7.1 million Nm{sub 3}/day of feed gas and produces high heating value pipeline quality sales gas by removing nitrogen in the cold box. A methyl diethanol amine (MDEA) treating system at the front end of the plant is designed to remove carbon dioxide. The glycol system takes the saturated gas from the MDEA contactor and reduces the water content to 7 lb/MMscf. The glycol system is also designed to remove more than half of the BTEX from the feed gas so that these aromatic components will not precipitate in the cold section of the plant. GPA experimental data were used to fit the interaction parameters for the computer simulator used to design the glycol system. The results of the plant performance test verify the validity of the design.

  14. Nitrogen and Organics Removal during Riverbank Filtration along a Reclaimed Water Restored River in Beijing, China

    Directory of Open Access Journals (Sweden)

    Weiyan Pan

    2018-04-01

    Full Text Available Reclaimed water has been widely used to restore rivers and lakes in water scarce areas as well as in Beijing municipality, China. However, refilling the rivers with reclaimed water may result in groundwater pollution. A three-year field monitoring program was conducted to assess the effect of a riverbank filtration (RBF system on the removal of nitrogen and organics from the Qingyang River of Beijing, which is replenished with reclaimed water. Water samples from the river, sediment, and groundwater were collected for NO3-N, NH4-N, and chemical oxygen demand (COD was measured. The results indicate that about 85% of NO3-N was removed from the riverbed sediments. Approximate 92% of NH4-N was removed during the infiltration of water from river to aquifer. On average, 54% of COD was removed by RBF. The attenuation of NO3-N through RBF to the groundwater varied among seasons and was strongly related to water temperature. On the other hand, no obvious temporal variability was identified in the removal of COD. These results suggest that the RBF system is an effective barrier against NO3-N, NH4-N and COD in the Qingyang River, as well as those rivers with similar geological and climatic conditions refilled with reclaimed water.

  15. Removal of endocrine disruptors PAEs in drinking water by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Zhao Yongfu; Zheng Zheng; Zheng Binguo; Wang Changbao; Li Lili

    2012-01-01

    Phthalic acid esters (PAEs) belong to environmental endocrine disruptor. The dimethyl phthalate (DMP), diethyl phthalate (DEP) and di-n-butyl phthalate (DBP) were selected for the radiation study. The removal efficiencies of DMP, DEP and DBP in drinking water by gamma-ray irradiation are discussed. The results show that these PAEs could be efficiently removed by gamma-ray irradiation. The removal efficiencies of DMP, DEP and DBP (12 mg/L) in aqueous solutions by 0.8 kGy gamma-ray treatment were 96.6%, 94.5% and 86.2%. The absorbed dose needed for the removal of total carbon in aqueous solutions was much larger than the doses for PAEs degradation. When 2 kGy was selected, the removal efficiencies of TC for DMP, DEP and DBP were only 23.6%, 14.3% and 12.9%. The study results also show that the radiation degradation reaction of PAEs should be divided into two stages: low dose addition reaction and high dose ring-opening reaction. This study is of significance in the disposal of micro-polluted drinking water. (authors)

  16. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    Science.gov (United States)

    Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko

    1997-03-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from

  17. Chlorine disinfection of grey water for reuse: effect of organics and particles.

    Science.gov (United States)

    Winward, Gideon P; Avery, Lisa M; Stephenson, Tom; Jefferson, Bruce

    2008-01-01

    Adequate disinfection of grey water prior to reuse is important to prevent the potential transmission of disease-causing microorganisms. Chlorine is a widely utilised disinfectant and as such is a leading contender for disinfection of grey water intended for reuse. This study examined the impact of organics and particles on chlorine disinfection of grey water, measured by total coliform inactivation. The efficacy of disinfection was most closely linked with particle size. Larger particles shielded total coliforms from inactivation and disinfection efficacy decreased with increasing particle size. Blending to extract particle-associated coliforms (PACs) following chlorine disinfection revealed that up to 91% of total coliforms in chlorinated grey water were particle associated. The organic concentration of grey water affected chlorine demand but did not influence the disinfection resistance of total coliforms when a free chlorine residual was maintained. Implications for urban water reuse are discussed and it is recommended that grey water treatment systems target suspended solids removal to ensure removal of PACs prior to disinfection.

  18. Centrifuge experiments for removal of aluminium turbidity from Dhruva heavy water

    International Nuclear Information System (INIS)

    Shetiya, R.S.; Unny, V.K.P.; Nayak, A.P.

    1989-01-01

    Aluminium turbidity and associated radioactivity was observed in the moderator cum coolant system of Dhruva during initial power operation. Ion exchange resin beds of the purification system were not able to remove aluminium turbidity and radioactivity of system heavy water. Centrifuge technique was used as a convenient alternative method to remove the turbidity and radioactivity. (author)

  19. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee

    2013-06-20

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  20. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee; Choi, Siwon; Dien, Vivian; Sow-Peh, Yoke Keow; Qi, Genggeng; Hatton, T. Alan; Doyle, Patrick S.; Thio, Beng Joo Reginald

    2013-01-01

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  1. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  2. Combined ion exchange / biological denitrification for nitrate removal from ground water

    NARCIS (Netherlands)

    Hoek, van der J.P.

    1988-01-01

    This thesis deals with the development of a new process for nitrate removal from ground water. High nitrate concentrations in ground water are a result of fertilization in agriculture. According to a directive of the European Community the maximum admissible concentration of nitrate in

  3. Banana peel as an adsorbent for removing atrazine and ametryne from waters.

    Science.gov (United States)

    Silva, Claudineia R; Gomes, Taciana F; Andrade, Graziela C R M; Monteiro, Sergio H; Dias, Ana C R; Zagatto, Elias A G; Tornisielo, Valdemar L

    2013-03-13

    The feasibility of using banana peel for removal of the pesticides atrazine and ametryne from river and treated waters has been demonstrated, allowing the design of an efficient, fast, and low-cost strategy for remediation of polluted waters. The conditions for removal of these pesticides in a laboratory scale were optimized as sample volume = 50 mL, banana mass = 3.0 g, stirring time = 40 min, and no pH adjustment necessary. KF(sor) values for atrazine and ametryne were evaluated as 35.8 and 54.1 μg g(-1) (μL mL(-1)) by using liquid scintillation spectrometry. Adsorption was also evaluated by LC-ESI-MS/MS. As quantification limits were 0.10 and 0.14 μg L(-1) for both pesticides, sample preconcentration was not needed. Linear analytical curves (up to 10 μg L(-1)), precise results (RSD 90% removal efficiency were attained for both pesticides. Water samples collected near an intensively cultivated area were adequately remedied.

  4. Removal of uranium from water media by bentonite and zeolite

    International Nuclear Information System (INIS)

    Viglasova, E.; Krajnak, A.; Galambos, M.; Rosskopfova, O.

    2014-01-01

    The removal and recovery of uranium from contaminated surface, environment and ground water, as result of nuclear industries, has attracted more and more attentions. Several methods are available for removing of uranium, but adsorption among the others, is the most attractive. In case of management of radioactive waste, the adsorption of radionuclides plays significant role. Among the natural sorbents applied to the adsorption of uranium zeolites and bentonites offer a number of advantages. The main aims of this work are investigations of adsorption properties of Greek zeolite Metaxades and Greek bentonite Kimolos during adsorption of uranium from water solutions, comparison of their adsorption characteristics, fitting with isotherms (Freundlich, Langmuir and DR isotherm) and its behaviour during kinetics process influenced by temperature. (authors)

  5. A biomimetic absorbent for removal of trace level persistent organic pollutants from water

    International Nuclear Information System (INIS)

    Liu Huijuan; Qu Jiuhui; Dai Ruihua; Ru Jia; Wang Zijian

    2007-01-01

    A novel biomimetic absorbent containing the lipid triolein was developed for removing persistent organic pollutants (POPs) from water. The structural characteristics of the absorbent were obtained by SEM and a photoluminescence method. Under optimum preparation conditions, triolein was perfectly embedded in the cellulose acetate (CA) spheres, the absorbent was stable and no triolein leaked into the water. Dieldrin, endrin, aldrin and heptachlor epoxide were effectively removed by the CA-triolein absorbent in laboratory batch experiments. This suggests that CA-triolein absorbent may serve as a good absorbent for those selected POPs. Triolein in the absorbent significantly increased the absorption capacity, and lower residual concentrations of POPs were achieved when compared to the use of cellulose acetate absorbent. The absorption rate for lipophilic pollutants was very fast and exhibited some relationship with the octanol-water partition coefficient of the analyte. The absorption mechanism is discussed in detail. - Triolein-embedded absorbent was developed and it could remove lipophilic pollutants from water effectively

  6. Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water.

    Science.gov (United States)

    Levchuk, Irina; Bhatnagar, Amit; Sillanpää, Mika

    2014-04-01

    Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water. Copyright © 2014. Published by Elsevier B.V.

  7. Investigation of the Effect of Water Removal from Wells Surrounding Parishan Lake on Groundwater and Surface Water Levels

    International Nuclear Information System (INIS)

    Shafiei, M.; Raini Sarjaz, M.; Fazloli, R.; Gholami Sefidkouhi, M. A.

    2017-01-01

    In recent decades the human impacts on global warming and, its consequences, climate change, stirred up earth ecosystems balance and has created many problems all over the world. Unauthorized underground water removal, especially in arid and semi-arid regions of Iran, along with recent decade drought occurrences significantly lowered underground and surface water levels. To investigate the impacts of water removal from surrounding wells in Parishan Lake water level, during 1996 to 2009 interval, 8 buffer layers surrounding the lake were mapped in ArcGIS 9.3 environment. Each buffer layer wells and their total annual discharges were determined. Using SPSS 16 software, the regression equations between wells water levels and water discharges were computed. By employing Thiessen function and creating Thiessen network (TIN) around observation wells, decline of groundwater levels was evaluated. Finally regression equations between wells discharges and groundwater level declines were created. The findings showed that there are highly significant correlations (p ≤ 0.01), in all buffer layers, between water levels and wells discharges. Investigation of the observation wells surrounding lake showed that severe groundwater level declines has been started since the beginning of the first decade of the 21st century. Using satellite images in ArcGIS 9.3 environment it was confirmed that lake’s area has been reduced significantly. In conclusion, it is obvious that human interferences on lake’s natural ecosystem by digging unauthorized wells and removing underground water more than annual recharges significantly impacted surface and groundwater levels.

  8. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    Science.gov (United States)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  9. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  10. Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water

    Directory of Open Access Journals (Sweden)

    Arzu KILIÇ

    2012-12-01

    Full Text Available In recent years, nitrogenous fertilizers used in agriculture, unconscious and without treatment wastewater is discharged led to an increase in groundwater nitrate pollution. In many countries, nitrate concentration in the ground waters used as drinking water source exceeded the maximum allowable concentration of 10 mg/L NO3-N. According to a study, some wells in the Harran Plain contain nitrate as high as 180 mg/L NO3--N and the average concentration for whole plain is 35 mg/L NO3--N (Yesilnacar et al., 2008. Additionally, increased water consumption, unconscious use of fertilizers and pesticides has led to the emergence of co-contaminant in drinking water. Recently, hazardous to human health co-contaminant such as arsenic, pesticides, perchlorate, selenate, chromate, uranium are observed in the nitrate pollution drinking water. There are many processes used for the removal of nitrate. The physical–chemical technologies that can be used for nitrate removal are reverse osmosis, ion exchange and electrodialysis (Alvarez et al., 2007. Important disadvantages of these processes are their poor selectivity, high operation and maintenance costs and the generation of brine wastes after treatment. Consequently, biological treatment processes to convert nitrates to benign dinitrogen gas, could be an interesting alternative for the remediation of groundwater contaminated with nitrates. The aim of this article, effective and cheap method for the removal of nitrate from drinking water biological denitrification is to examine the usability of contaminated drinking water with co-contaminant pollutions.

  11. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    Science.gov (United States)

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  12. Using Potato Peels as a Natural Coagulant in Drinking Water Treatment Plant “La Diana”

    Directory of Open Access Journals (Sweden)

    Ludyng Natalia Alvarado Carmona

    2012-06-01

    Full Text Available The following thesis presents the results of an analysis of experimental type, since residues of potato processing are not taken advantage of the best way by industries, causing organic waste and a bad use of biomass. That is why you want to evaluate their power coagulant in potable water treatment. Suspended particles impart undesirable color and turbidity superficial surface waters. Using chemicals such as aluminum sulfate can remove a significant proportion of the suspended solids, clarifying drinking water for subsequent stabilization. In this study we compared mixtures potato skins and aluminum sulphate, to evaluate which formulation is most suitable as coagulating agent in the treatment of drinking water, maintaining its characteristics of pH, color and turbidity. Through jar testing determined the optimal dose of aluminum sulfate ( 8 mg / L, standard formulation , in clarifying water sample Cane River and the gorge red (color of 41 UPC , 2 NTU turbidity and pH 7.76 and compared with other formulations of potato skins and aluminum sulfate. The results indicate that the greatest reduction in color was obtained with treatment 3 (2.5 g potato peel and similarly for the pH (7.46, thus the results of these two parameters are within the values required by the standard. Turbidity removal was the same in all treatments

  13. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    International Nuclear Information System (INIS)

    Cornejo, Lorena; Lienqueo, Hugo; Arenas, Maria; Acarapi, Jorge; Contreras, David; Yanez, Jorge; Mansilla, Hector D.

    2008-01-01

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L -1 . Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L -1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L -1 . This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed

  14. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Lorena [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile)], E-mail: lorenacp@uta.cl; Lienqueo, Hugo; Arenas, Maria [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Acarapi, Jorge [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile); Contreras, David; Yanez, Jorge; Mansilla, Hector D. [Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160C, Concepcion (Chile)

    2008-12-15

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 {mu}g L{sup -1}. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L{sup -1} of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 {mu}g L{sup -1}. This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed.

  15. PVP capped silver nanocubes assisted removal of glyphosate from water-A photoluminescence study.

    Science.gov (United States)

    Sarkar, Sumit; Das, Ratan

    2017-10-05

    Glyphosate [N-phosphono-methylglycine (PMG)] is the most used herbicide worldwide and it has been reported very recently that Glyphosate is very harmful and can produce lots of diseases such as alzheimer and parkinson's disease, depression, cancer, infertility including genotoxic effects. As it is mostly present in stable water body and ground water system, its detection and removal is very important. Here, we have shown a fluorescence technique for the removal of glyphosate from water using chemically synthesized polyvinylpyrrolidone (PVP) silver nanocrystals. Transmission Electron Microscopy (TEM) study shows the average size of silver nanocrystals of 100nm approximately with a morphology of cubic shape. Glyphosate does not show absorption in the visible region. But both glyphosate and silver nanocrystals show strong fluorescence in the visible region. So, photoluminescence study has been successfully utilized to detect the glyphosate in water samples and on treating the glyphosate contaminated water sample with silver nanocrystals, the sample shows no emission peak of glyphosate at 458nm. Thus, this approach is a promising and very rapid method for the detection and removal of glyphosate from water samples on treatment with silver nanocubes. NMR spectra further confirms that the silver nanocrystals treated contaminated water samples are glyphosate free. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters

    Directory of Open Access Journals (Sweden)

    James Macnamara

    2017-11-01

    Full Text Available The City of Sydney is constructing more than 21,000 square metres of street biofilter units (raingardens in terms of their Decentralised Water Master Plan (DWMP, for improving the quality of stormwater runoff to Port Jackson, the Cooks River, and the historical Botany Bay. Recharge of the Botany Sand Beds aquifer, currently undergoing remediation by extraction of industrial chlorinated hydrocarbon pollutants, is also envisaged. To anticipate the pollution removal efficiency of field biofilter designs, laboratory soil-column simulations were developed by Western Sydney University partnered with the City. Synthetic stormwater containing stoichiometric amounts of high-solubility pollutant salts in deionised water was passed through 104 mm columns that were layered to simulate monophasic and biphasic field designs. Both designs met the City’s improvement targets for total nitrogen (TN and total phosphorus (TP, with >65% median removal efficiency. Prolonged release of total suspended solids (SS on startup emphasised the need for specifications and testing of proprietary fills. Median removal efficiency for selected heavy metal ecotoxicants was >75%. The researchers suggested that Zinc be added to the targets as proxy for metals, polycyclic aromatic hydrocarbons (PAH and oils/greases co-generated during road use. Simulation results suggested that field units will play an important role in meeting regional stormwater improvement targets.

  17. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  18. Quantification of Surface Suspended Sediments along a River Dominated Coast with NOAA AVHRR and SeaWiFS Measurements: Louisiana, USA

    Science.gov (United States)

    Myint, S. W.; Walker, N. D.

    2002-01-01

    The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.

  19. Drugs in Your Drinking Water: Removing Pharmaceutical Pollution

    Science.gov (United States)

    Richardson, K.

    2017-12-01

    Pharmaceuticals, mostly estrogen-based hormones and antibiotics, are increasingly polluting waterways and contaminating municipal drinking water sources. A 2008 study funded by the American Water Works Association Research Foundation and the WateReuse Foundation tested 19 drinking water treatment plants across the United States. The study found pharmaceuticals and metabolites at all of the locations tested. These plants provide drinking water for over 28 million Americans - yet only five states test for pharmaceuticals. A 2007 US Government Accountability Office study of male smallmouth bass showed ovarian tissue in their gonads and concluded the combination of EDCs (Endocrine Disrupting Chemicals) likely caused the feminization of the male fish. The purpose of this project is to determine whether bivalves can effectively remove pharmaceuticals as well as other CECs (Contaminants of Emerging Concern).Pharmaceuticals, specifically ibuprofen, were found to be resistant to chemical and mechanical filtration methods, such as coffee grounds and activated carbon, so biological filtration methods are used. Three types of common mollusks (Sphaeriidae `fingernail clams', freshwater mussels, scallops) will be used to assess the potential for biological remediation of the chemical pollutants. Fifteen specimens of each species will be used - a total of 45 individuals. Each group of five will be introduced to either an NSAID (ibuprofen), oil (vegetable) or hormone (estrogen, pending approval). This creates an array of 3 species and 3 contaminants, for a 3x3 grid of nine sample groups. Water is contaminated with pollutant levels similar to EPA measurements. The concentration will be measured before and after the introduction of the specimens using a UV spectrophotometer, at regular time intervals. As mollusks are capable of filtering up to two liters of water a day, the 37.8 liter tanks are filtered at a rate of 10 liters a day. A successful trial of bivalves reducing and

  20. Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH4(+)-N.

    Science.gov (United States)

    Cai, Yan'an; Li, Dong; Liang, Yuhai; Zeng, Huiping; Zhang, Jie

    2014-11-01

    Ammonia (NH4(+)-N) removal pathways were investigated in a potable water treatment biofilter that simultaneously removes manganese (Mn) and NH4(+)-N. The results indicated a significant loss of nitrogen in the biofilter. Both the completely autotrophic nitrogen removal over nitrite (CANON) process and nitrification were more likely to contribute to NH4(+)-N removal. Moreover, the model calculation results demonstrated that the CANON process contributed significantly to the removal of NH4(+)-N. For influent NH4(+)-N levels of 1.030 and 1.749mg/L, the CANON process contribution was about 48.5% and 46.6%, respectively. The most important finding was that anaerobic ammonia oxidation (ANAMMOX) bacteria were detectable in the biofilter. It is interesting that the CANON process was effective even for such low NH4(+)-N concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.

  2. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-01-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and fullscale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used. © 2011 2011 Desalination Publications. All rights reserved.

  3. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  4. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  5. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  6. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    Science.gov (United States)

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fluoride removal from rural spring water using wood ash

    CSIR Research Space (South Africa)

    Makhado, R

    2006-05-01

    Full Text Available This paper presents an overview of a report on an investigation on the use of cheap wood ash as an effective means of removing excess fluoride from drinking water used by an impoverished rural community of the Didi village in Limpopo province....

  8. Survival of fish upon removal of cyanide from water

    International Nuclear Information System (INIS)

    Gacsi, Mariann; Czegeny, Ildiko; Nagy, Gabor; Banfalvi, Gaspar

    2005-01-01

    The effects of potassium cyanide and the removal of cyanide from water in vivo on the survival of fish were investigated. This research was initiated because of the catastrophe that took place at the end of January 2000 in the Carpathian basin, when an enormous amount of cyanide pollution swept through the Samos and Tisza rivers, and then to the Danube. Since nothing was done against the disaster, we have suggested a chemical solution to remove cyanide from waterways (Chem. Innovat. 30 (2000b) 53). Based on experiments, we describe that the most effective and harmless way to remove cyanide and to save the lives of fish from 40 to 160x the lethal doses of cyanide is to use carbogen gas containing 5% carbon dioxide and 95% oxygen followed by aeration with air

  9. Removal of fecal indicators and pathogens in a waste stabilization pond system treating municipal wastewater in India.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Kazmi, A A; Chopra, A K

    2008-11-01

    This study assess the removal of fecal indicators (i.e., total coliforms, fecal coliforms, E. coli, fecal streptococci, and pathogens [Salmonella sp. and helminth eggs]) in a full-scale facultative and maturation pond system with primary screening and manual grit removal facility. The capacity of the plant is 6 ML/d. The results showed that the system was able to remove approximately 2.0 to 3.5 log units of fecal indicators and almost 100% of helminth eggs. Meanwhile, Salmonella was not eliminated significantly, as only 1.26 log units removal was found. Removal efficiency of fecal indicator bacteria was reported maximum during summers (3.4 to 4.0 log units) and minimum (1.9 to 2.0 log units) in winters. Further efforts were made to seek the correlation between key physicochemical wastewater quality parameters (biochemical oxygen demand, turbidity, and suspended solids) and indicator microorganisms (total coliforms, fecal coliforms, and fecal streptococci). Among all these parameters, suspended solids showed the highest correlation coefficient (r2) with total coliforms (0.79), fecal coliforms (0.78), and fecal streptococci (0.75). These correlations manifest that the improvement of microbiological quality of wastewater is strongly linked to the removal of suspended solids.

  10. Development of equipment for migration control of radioactive cesium absorbed in suspended solid in the river water

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Ishikawa, Hiroyasu

    2015-01-01

    To prevent inflow of radiocesium with suspended solids (SS) into farmland and increase in dose rate of the river bank in the midstream and downstream, it is important to reduce SS in the river water; therefore we newly developed the test equipment using non-woven fabrics as a trapping material to capture and reduce the SS in running small river water. Authors installed this equipment into the small river which is located in mountainous area surrounded by forests where radionuclides released from the Fukushima Daiichi Nuclear Power Plant were deposited. Two turbidity gauges are installed in inflow and outflow point of this equipment and the turbidity has been continuously measured. From the result of a comparison of turbidity between inflow point and outflow point, a turbidity of inflow point is always higher than outflow point during ordinary water-level; this equipment can capture and reduce the SS in the river water. Through the analysis of particle size distribution, identification of minerals and measurement of concentration of radioactive Cs of the captured SS in the non-woven fabric should be carried out, to clarify the effectiveness of this equipment and non-woven fabrics for reducing the radioactive Cs in small rivers in the future. (author)

  11. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  12. Using Coagulation Process in Optimizing Natural Organic Matter Removal from Low Turbidity Waters

    Directory of Open Access Journals (Sweden)

    Alireza Mesdaghinia

    2006-03-01

    Full Text Available Optimization of coagulation process  for efficient removal of Natural Organic Matters (NOM has gained a lot of focus over the last years to meet the requirements of enhanced coagulation. NOM comprises both particulate and soluble components which the latter usually comprises the main portion. Removal of soluble NOM from low turbidity waters by coagulation is not a successful process unless enough attention is paid to stages of formation and development of both micro and macro-flocs. This study, which presents experimental results from pilot scale research studies aimed at optimizing coagulation process applied to synthetic raw waters supplemented by adding commercial humic acid with low turbidity levels, explains how pH and turbidity can be controlled to maximize soluble NOM removal. The removal of NOM at various coagulant doses and coagulation pHs has been assessed through raw and treated (coagulated-settled water measurements of total organic carbon (TOC. For low turbidity waters, essential floc nucleation sites can be provided by creating synthetic turbidities, for example by adding clay. Adjusting the initial pH at 5.5 or adding clay before coagulant addition allows the formation of micro-flocs as well as formation of the insoluble flocs at low coagulant doses.

  13. Biological and Physiochemical Techniques for the Removal of Zinc from Drinking Water: A Review

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2015-12-01

    Full Text Available Presence of Zinc (II in drinking water beyond permissible limits is considered unsafe for human health. Many different anthropogenic activities including mining, burning of petroleum, industrialization, and urbanization cause a release of considerably higher amounts of zinc into the waterbodies. A permissible limit of 5 mg/L is set by various environmental and pollution control authorities beyond which water may cause respiratory, liver, gonads, and brain disorders. Due to these health hazards, it is important to remove exceeding amounts of zinc from drinking water. Zinc enters drinking water from various sources such as corrosive pipelines, release of industrial effluents, and metal leaching. Different biological and physiochemical techniques are used to remove zinc involving chemical precipitation, ion exchange, adsorption, biosorbents, distillation, ozonation, and membrane filtration technology. Among these technologies, physical process of adsorption using low cost adsorbents is not only economical but abundant, efficient, and easily available. In present review different physiochemical and biological techniques are discussed for the removal of Zinc from drinking water.

  14. Activated soil filters for removal of biocides from contaminated run-off and waste-waters

    DEFF Research Database (Denmark)

    Bester, Kai; Banzhaf, Stefan; Burkhardt, Michael

    2011-01-01

    -Octyl-isothiazolinone, Dichloro-n-octylisothiazolinone). However, this removal is a considerable improvement compared to direct discharge into surface waters or infiltration into soil without appropriate removal. In the last experiment the removal efficiencies of the different layers were studied. Though the peat layer...

  15. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  16. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    Science.gov (United States)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg

  17. On-site phytoremediation applicability assessment in Alur Ilmu, Universiti Kebangsaan Malaysia based on spatial and pollution removal analyses.

    Science.gov (United States)

    Mahmud, Mohd Hafiyyan; Lee, Khai Ern; Goh, Thian Lai

    2017-10-01

    The present paper aims to assess the phytoremediation performance based on pollution removal efficiency of the highly polluted region of Alur Ilmu urban river for its applicability of on-site treatment. Thirteen stations along Alur Ilmu were selected to produce thematic maps through spatial distribution analysis based on six water quality parameters of Malaysia's Water Quality Index (WQI) for dry and raining seasons. The maps generated were used to identify the highly polluted region for phytoremediation applicability assessment. Four free-floating plants were tested in treating water samples from the highly polluted region under three different conditions, namely controlled, aerated and normal treatments. The selected free-floating plants were water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), rose water lettuce (Pistia sp.) and pennywort (Centella asiatica). The results showed that Alur Ilmu was more polluted during dry season compared to raining season based on the water quality analysis. During dry season, four parameters were marked as polluted along Alur Ilmu, namely dissolve oxygen (DO), 4.72 mg/L (class III); ammoniacal nitrogen (NH 3 -N), 0.85 mg/L (class IV); total suspended solid (TSS), 402 mg/L (class V) and biological oxygen demand (BOD), 3.89 mg/L (class III), whereas, two parameters were classed as polluted during raining season, namely total suspended solid (TSS), 571 mg/L (class V) and biological oxygen demand (BOD), 4.01 mg/L (class III). The thematic maps generated from spatial distribution analysis using Kriging gridding method showed that the highly polluted region was recorded at station AL 5. Hence, water samples were taken from this station for pollution removal analysis. All the free-floating plants were able to reduce TSS and COD in less than 14 days. However, water hyacinth showed the least detrimental effect from the phytoremediation process compared to other free-floating plants, thus made it a suitable

  18. Contemporary suspended sediment yield of a partly glaciated catchment, Riffler Bach (Tyrol, Austria)

    Science.gov (United States)

    Weber, Martin; Baewert, Henning; Morche, David

    2015-04-01

    Due to glacier retreat since the LIA (Little Ice Age) proglacial areas in high mountain landscapes are growing. These systems are characterized by a high geomorphological activity, especially in the fluvial subsystem. Despite the long tradition of geomorphological research in the European Alps there is a still a lack of understanding in the interactions between hydrology, sediment sources, sediments sinks and suspended sediment transport. As emphasized by ORWIN ET AL. (2010) those problems can be solved by gathering data in a higher frequency and/or in a higher spatial resolution or density - both leading to a big amount of data. In 2012 a gauging station was installed at the outlet of the partly glaciated catchment of the Riffler Bach (Kaunertal valley, Tyrol). During the ablation seasons in 2012 and 2013 water stage was logged automatically every 15 minutes. In both seasons discharge was measured at different water levels to calculate a stage-discharge relation. Additionally, water samples were taken by an automatic water sampler. Within 16 sampling cycles with sampling frequencies ranging from 1 to 24 hours 389 water samples have been collected. The samples were filtered to calculate the suspended sediment concentration (SSC) of each sample. Furthermore, the climate station Weißsee provided meteorological data at a 15 minute interval. Due to the high variability in suspended sediment transport in proglacial rivers it is impossible to compute a robust annual Q-SSC-relation. Hence, two other approaches were used to calculate the suspended sediment load (SSL) and the suspended sediment yield (SSY): A) Q-SSC-relations for every single sampling cycle (e.g. GEILHAUSEN ET AL. 2013) B) Q-SSC-relations based on classification of dominant runoff-generating processes (e.g. ORWIN AND SMART 2004). The first approach uses commonly operated analysis methods that are well understood. While the hydro-climatic approach is more feasible to explain discharge generation and to

  19. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    Science.gov (United States)

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  20. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.

    Science.gov (United States)

    Ibáñez, M; Gracia-Lor, E; Bijlsma, L; Morales, E; Pastor, L; Hernández, F

    2013-09-15

    Advanced oxidation processes (AOP) based on ozone treatments, assisted by ultrasounds, have been investigated at a pilot-plant scale in order to evaluate the removal of emerging contaminants in sewage water. Around 60 emerging contaminants, mainly pharmaceuticals from different therapeutically classes and drugs of abuse, have been determined in urban wastewater samples (treated and untreated) by LC-MS/MS. In a first step, the removal efficiency of these contaminants in conventional sewage water treatment plants was evaluated. Our results indicate that most of the compounds were totally or partially removed during the treatment process of influent wastewater. Up to 30 contaminants were quantified in the influent and effluent samples analysed, being antibiotics, anti-inflammatories, cholesterol lowering statin drugs and angiotensin II receptor antagonists the most frequently detected. Regarding drugs of abuse, cocaine and its metabolite benzoylecgonine were the most frequent. In a second step, the effectiveness of AOP in the removal of emerging contaminants remaining in the effluent was evaluated. Ozone treatments have been proven to be highly efficient in the removal, notably decreasing the concentrations for most of the emerging contaminants present in the water samples. The use of ultrasounds, alone or assisting ozone treatments, has been shown less effective, being practically unnecessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Aboul-Enein, S.; Ramadan, M.R.I.; El-Bialy, E. [Tanta University (Egypt). Faculty of Science

    2000-01-01

    In a previous study, a single-basin solar still with suspended absorber (SBSSBA) made from aluminium was constructed and investigated experimentally and theoretically. It was found that the daily productivity of the still was about 20% higher than that of the conventional single-basin solar still (SBSS). In this paper, the effect of thermal conductivity of the suspended absorber on the daily productivity of the still is investigated experimentally using aluminium, copper, stainless steel and mica plates as suspended absorbers. The results obtained are compared with those obtained for the SBSS tested under the same climatic conditions of Tanta (lat. 30{sup o} 47' N). The results indicate that it is advisable to use suspended plates made from insulating materials, such as mica, plastic, glass, etc. The daily productivity of the modified still with mica is found to be 42% higher than that of SBSS. Further, the effect of thickness of the suspended absorber on the productivity as well as the year-round performances of both SBSSBA and SBSS for the year 1996 are studied by computer simulation. There is good evidence that the productivity of SBSSBA is less dependent on the thickness of the suspended plate. The annual average productivities of the modified still with mica are found to be 23 and 15.8% higher than those of the conventional still when the basin water masses are 80 and 40 kg, respectively. This indicates that the suspended plate becomes more effective at higher masses of basin water. (author)

  2. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  3. Studies on the removal of arsenic (III) from water by a novel hybrid material

    International Nuclear Information System (INIS)

    Mandal, Sandip; Padhi, T.; Patel, R.K.

    2011-01-01

    Highlights: → The removal of As (III) is about 98% at pH 7 with the hybrid material (ZrO-EA). → The hybrid material exhibits specific surface area of 201.62 m 2 /g. → The adsorption of arsenic (III) from aqueous solution by the hybrid material is spontaneous. → The material could be easily regenerated with sodium hydroxide at pH 12. - Abstract: The present work provides a method for removal of the arsenic (III) from water. An ion-exchanger hybrid material zirconium (IV) oxide-ethanolamine (ZrO-EA) is synthesized and characterized which is subsequently used for the removal of selective arsenic (III) from water containing 10,50,100 mg/L of arsenic (III) solution. The probable practical application for arsenic removal from water by this material has also been studied. The various parameters affecting the removal process like initial concentration of As (III), adsorbent dose, contact time, temperature, ionic strength, and pH are investigated. From the data of results, it is indicated that, the adsorbent dose of 0.7 mg/L, contact time 50 min after which the adsorption process comes to equilibrium, temperature (25 ± 2), solution pH (5-7), which are the optimum conditions for adsorption. The typical adsorption isotherms are calculated to know the suitability of the process. The column studies showed 98% recovery of arsenic from water especially at low concentration of arsenic in water samples.

  4. Water-quality assessment of part of the Upper Mississippi River Basin Study Unit, Minnesota and Wisconsin- Nutrients, chlorophyll a, phytoplankton, and suspended sediment in streams, 1996-98

    Science.gov (United States)

    Kroening, Sharon E.; Lee, Kathy E.; Goldstein, R.M.

    2003-01-01

    Stream water-quality data from part of the Upper Mississippi River Basin Study Unit (Study Unit) from 1995 through 1998 was used to describe the distribution of nutrients, chlorophyll a, phytoplankton, and suspended sediment; and the influence of natural and anthropogenic factors on reported concentrations, loads, and yields. During the study period, streamflows generally were near to greater than average. Agricultural land cover, particularly on tile-drained soils, had the most substantial influence on nutrients, chlorophyll a, and suspended sediment in the Study Unit. The greatest concentrations and yields of total nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved nitrite nitrogen, total organic plus ammonia nitrogen, total phosphorus, and suspended sediment were measured in a stream representing agricultural land cover on tile-drained soils. Total nitrogen yields also were about 6 times greater in a stream representing agricultural land cover on tile-drained soils than in a stream representing agricultural land cover on naturally welldrained soils.

  5. Use of biochar amendments for removing bacteria from simulated tile-drainage waters

    Science.gov (United States)

    The addition of biochar has been shown to increase bacterial removal rates by several orders of magnitude in sand-packed columns, suggesting that biochar may be a suitable amendment for use in end-of-tile filter systems to remove indicator and pathogenic microorganisms in tile-drainage waters. Addit...

  6. Removal of bromide and bromate from drinking water using granular activated carbon.

    Science.gov (United States)

    Zhang, Yong-Qing; Wu, Qing-Ping; Zhang, Ju-Mei; Yang, Xiu-Hua

    2015-03-01

    Granular activated carbon (GAC) was used to remove bromide (Br⁻) and bromate (BrO(3)(-)) from drinking water in both bench- and pilot-scale experiments. The present study aims to minimize BrO(3)(-) formation and eliminate BrO(3)(-) generated during the ozonation of drinking water, particularly in packaged drinking water. Results show that the Br⁻ and BrO(3)(-) levels in GAC-treated water decreased in both bench- and pilot-scale experiments. In the bench-scale experiments, when the empty bed contact time (EBCT) was 5 min, the highest reduction rates of Br(-) in the mineral and ultrapure water were found to be 74.9% and 91.2%, respectively, and those of BrO(3)(-) were 94.4% and 98.8%, respectively. The GAC capacity for Br⁻ and BrO(3)(-) removal increased with the increase in EBCT. Reduction efficiency was better in ultrapure water than in mineral water. In the pilot-scale experiments, the minimum reduction rates of Br⁻ and BrO(3)(-) were 38.5% and 73.2%, respectively.

  7. Pilot-scale study of the radiation-induced silica removal from underground brackish water in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Aljohani, Mohammed S. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.

    2017-08-01

    Silica scaling deposition in industrial water systems is one of the biggest challenges facing the water treatment industry due the low solubility of the scalants in the feed waters. In this preliminary work, we investigated the effectiveness of the ionizing radiation induced removal of silica in water sample from the Salbukh, Saudi Arabia, water treatment plant by using metallic iron as the source of ferric hydroxide to co-precipitate the silica. The influence of several reaction parameters, i.e. iron powder dosage, radiation dose, initial pH and equilibrium pH effect were investigated. In the optimum conditions, up to 75% of silica was removed. This preliminary study showed that this environmentally friendly process is effective in silica removal from underground water.

  8. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    Science.gov (United States)

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (psand replacement, CFUs of Escherichia coli of sand filters regarding As removal, but indicate a potential risk for human health arising from the enrichment of coliform bacteria during filtration and from E. coli cells that are introduced by sand replacement. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    International Nuclear Information System (INIS)

    Sun, J.; Environment Canada, Ottawa, ON; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C.; Zheng, X.; Wong, S.; So, L.C.

    2009-01-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs

  10. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Zheng, X. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Wong, S. [Ottawa Univ., ON (Canada). Dept. of Chemistry; So, L.C. [Waterloo Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs.

  11. Heavy metal removal from waste waters by ion flotation.

    Science.gov (United States)

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  12. Removal of toxic chemicals from water with activated carbon

    Science.gov (United States)

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  13. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  14. Impact of suspended sediments on the survival of seagrass: Halodule pinifolia (Miki den Hartog

    Directory of Open Access Journals (Sweden)

    Satumanatpan, S.

    2006-07-01

    Full Text Available The research aimed to study the level of suspended sediments on the survival of Halodule pinifolia (Miki den Hartog. Three experiments were conducted. Broad concentration of suspended sediments covering the level found in nature were employed in the first experiment. The impact concentration of suspended sediments on the survival of H. pinifolia was extended in more detail in the second and third experiments. H. pinifolia was planted by washing off the mud and holding it with a grating. An air pump was used to stir the sediment in suspension during the experiments and necessary water parameters were strictly control. The suspended sediment was spread by siphon and conducted in a period of 30 days for the first and second experiments, and 45 days for the third experiment. The result indicated that suspended sediments with a concentration of 1-64 mg/l had no impact on the survival of H. pinifolia within 30 days. Initially, suspended sediments of 66 mg/l lowered H. pinifolia's survival to 95% at day 30. Concentration of suspended sediments higher than 66 mg/l affected the survival of H. pinifolia. The decreasing survival was noticed during days 20 -25 of the experiment and all died during days 40-45. However, the life span of H. pinifolia, would be very important and might also affect the survival of H. pinifolia after 30 days.

  15. Nitrogen Removal from Digested Black Water by One-stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.

    2009-01-01

    This study assessed the technical feasibility to treat digested black water from vacuum toilets (> 1000 mg NH4+-N L-1) in a lab-scale oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor. After an adaptation period of 2.5 months, a stable. nitrogen removal...... conversion was very low, in contrast to the high specific AnAOB activity. DGGE analysis showed that the dominant AerAOB and AnAOB species were resistant to the transition from synthetic medium to digested black water. This study demonstrates high-rate nitrogen removal from digested black water by one...

  16. Biochars made from agro-industrial by-products remove chlorine and lower water toxicity

    Science.gov (United States)

    Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.

    2016-04-01

    Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0

  17. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  18. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide

    International Nuclear Information System (INIS)

    Wazne, Mahmoud; Meng, Xiaoguang; Korfiatis, George P.; Christodoulatos, Christos

    2006-01-01

    A novel nanocrystalline titanium dioxide was used to treat depleted uranium (DU)-contaminated water under neutral and alkaline conditions. The novel material had a total surface area of 329 m 2 /g, total surface site density of 11.0 sites/nm 2 , total pore volume of 0.415 cm 3 /g and crystallite size of 6.0 nm. It was used in batch tests to remove U(VI) from synthetic solutions and contaminated water. However, the capacity of the nanocrystalline titanium dioxide to remove U(VI) from water decreased in the presence of inorganic carbonate at pH > 6.0. Adsorption isotherms, Fourier transform infrared (FTIR) spectroscopy, and surface charge measurements were used to investigate the causes of the reduced capacity. The surface charge and the FTIR measurements suggested that the adsorbed U(VI) species was not complexed with carbonate at neutral pH values. The decreased capacity of titanium dioxide to remove U(VI) from water in the presence of carbonate at neutral to alkaline pH values was attributed to the aqueous complexation of U(VI) by inorganic carbonate. The nanocrystalline titanium dioxide had four times the capacity of commercially available titanium dixoide (Degussa P-25) to adsorb U(VI) from water at pH 6 and total inorganic carbonate concentration of 0.01 M. Consequently, the novel material was used to treat DU-contaminated water at a Department of Defense (DOD) site

  19. Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products.

    Science.gov (United States)

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2012-05-15

    Excess nutrient input to water bodies frequently results in algal blooms and development of oxygen deficient conditions. Mining or metallurgical by-products can potentially be utilised as filtration media within water treatment systems such as constructed wetlands, permeable reactive barriers, or drain liners. These materials may offer a cost-effective solution for the removal of nutrients and dissolved organic carbon (DOC) from natural waters. This study investigated steel-making, alumina refining (red mud and red sand) and heavy mineral processing by-products, as well as the low-cost mineral-based material calcined magnesia, in laboratory column trials. Influent water and column effluents were analysed for pH and flow rate, alkalinity, nutrient species and DOC, and a range of major cations and anions. In general, by-products with high Ca or Mg, and to a lesser extent those with high Fe content, were well-suited to nutrient and DOC removal from water. Of the individual materials examined, the heavy mineral processing residue neutralised used acid (NUA) exhibited the highest sorption capacity for P, and removed the greatest proportions of all N species and DOC from influent water. In general, NUA and mixtures containing NUA, particularly those with calcined magnesia or red mud/red sand were the most effective in removing nutrients and DOC from influent water. Post-treatment effluents from columns containing NUA and NUA/steel-making by-product, NUA/red sand and NUA/calcined magnesia mixtures exhibited large reductions in DOC, P and N concentrations and exhibited a shift in nutrient ratios away from potential N- and Si-limitation and towards potential P-limitation. If employed as part of a large-scale water treatment scheme, use of these mining and metallurgical by-products for nutrient removal could result in reduced algal biomass and improved water quality. Identification and effective implementation of mining by-products or blends thereof in constructed wetlands

  20. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry

    International Nuclear Information System (INIS)

    Bruggen, Bart van der; Vandecasteele, Carlo

    2003-01-01

    The nanofiltration system has many potential uses in removing chemical and biological contaminants from water. - During the last decade, nanofiltration (NF) made a breakthrough in drinking water production for the removal of pollutants. The combination of new standards for drinking water quality and the steady improvement of the nanofiltration process have led to new insights, possible applications and new projects on lab-scale, pilot scale and industrial scale. This paper offers an overview of the applications in the drinking water industry that have already been realised or that are suggested on the basis of lab-scale research. Applications can be found in the treatment of surface water as well as groundwater. The possibility of using NF for the removal of hardness, natural organic material (NOM), micropollutants such as pesticides and VOCs, viruses and bacteria, salinity, nitrates, and arsenic will be discussed. Some of these applications have proven to be reliable and can be considered as known techniques; other applications are still studied on laboratory scale. Modelling is difficult due to effects of fouling and interaction between different components. The current insight in the separation mechanisms will be briefly discussed