WorldWideScience

Sample records for suspended solids concentration

  1. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  2. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  3. Application of Acoustic and Optic Methods for Estimating Suspended-Solids Concentrations in the St. Lucie River Estuary, Florida

    Science.gov (United States)

    Patino, Eduardo; Byrne, Michael J.

    2004-01-01

    Acoustic and optic methods were applied to estimate suspended-solids concentrations in the St. Lucie River Estuary, southeastern Florida. Acoustic Doppler velocity meters were installed at the North Fork, Speedy Point, and Steele Point sites within the estuary. These sites provide varying flow, salinity, water-quality, and channel cross-sectional characteristics. The monitoring site at Steele Point was not used in the analyses because repeated instrument relocations (due to bridge construction) prevented a sufficient number of samples from being collected at the various locations. Acoustic and optic instruments were installed to collect water velocity, acoustic backscatter strength (ABS), and turbidity data that were used to assess the feasibility of estimating suspended-solids concentrations in the estuary. Other data collected at the monitoring sites include tidal stage, salinity, temperature, and periodic discharge measurements. Regression analyses were used to determine the relations of suspended-solids concentration to ABS and suspended-solids concentration to turbidity at the North Fork and Speedy Point sites. For samples used in regression analyses, measured suspended-solids concentrations at the North Fork and Speedy Point sites ranged from 3 to 37 milligrams per liter, and organic content ranged from 50 to 83 percent. Corresponding salinity for these samples ranged from 0.12 to 22.7 parts per thousand, and corresponding temperature ranged from 19.4 to 31.8 ?C. Relations determined using this technique are site specific and only describe suspended-solids concentrations at locations where data were collected. The suspended-solids concentration to ABS relation resulted in correlation coefficients of 0.78 and 0.63 at the North Fork and Speedy Point sites, respectively. The suspended-solids concentration to turbidity relation resulted in correlation coefficients of 0.73 and 0.89 at the North Fork and Speedy Point sites, respectively. The adequacy of the

  4. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Science.gov (United States)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  5. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  6. Determination of the concentration of total suspends solids (TSS) and heavy metals in basin rio Morote, Nicoya, Guanacaste

    International Nuclear Information System (INIS)

    Sanchez Murillo, Ricardo; Leon, Sandra; Saravia, Ana Yuri; Mena Sanchez, Carlos de

    2009-01-01

    The total concentration of suspends solids and heavy metals were determined of the Basin of rio Morote. The study spanned six sampling campaigns between April 2003 and May 2005. Sampling points were selected to correspond to places from the high basin to the mouth of the rio Morote in the Golfo de Nicoya. Suspends total solids concentration (TSS) on average exceeds 200 mg/L during the rainy season at the mouth. Enrichment of metals as: Cu, Ni, Cd and Fe was found in riverbed sediments; but not in Pb. The concentration of Zn has been near the limit value (200 mg/kg) in the dry season, value which has been established for the Environmental Protection Agency of United States (EPA). (author) [es

  7. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  8. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  9. Distribution of Total Suspended Solids Concentration in a River

    Directory of Open Access Journals (Sweden)

    Ahmad Hanif Asyhar

    2012-08-01

    Full Text Available Disposal of either industrial or nonindustrial wastewater into a river has a potential to cause riverpollution. Because each load of wastewater discharged into a river contains physical, chemical, and biological parametersthat determine water quality, so that it can affect the dissolved oxygen concentration in a river. Therefore the conductedresearch was aimed to determine the pattern of pollutant dispersion in Surabaya River within the section that is closed tothe Karang Pilang Monitoring Station - Surabaya. Parameter used in this research was Total Suspended Solids (TSS. Themethod used was the finite volume method with Quadratic Upwind Interpolation Convective Kinematics (QUICK schemeby means of developing models of dispersion water pollutants in a river. The governing equation was controlled by the lawsof mass conservation, momentum conservation, and pollution transport equation. Further, these equations were solvedusing numerical calculation and followed by numerical simulation. From the numerical simulation results, it can beconcluded that the magnitude of pollutant dispersion is determined by the initial discharged TSS concentrations into theriver, however the longitudinal direction is more dominantly influenced than in lateral directions.

  10. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  11. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  12. Optoelectronic system to measure the concentration and turbidity of suspended solids in the water

    International Nuclear Information System (INIS)

    Valente, E.S.

    1984-01-01

    The selection of the site where a nuclear power plant is to be built requires intensive study of the environmental conditions. This work presents the results reached on the development of a measurement system of suspended solids based on turbidity characteristics of the water. The system consists of an optical transducer composed of an emitter and a detector of infrared light, both solid state type, whose electrical signal is electronically treated. The equipment was calibrated and certified against turbidity and concentration standards in laboratory use. The obtained results indicate the reliability of the experimental method. The utilization of the equipment at the shore reinforces its flexibility and commodity of use. (author)

  13. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  14. Factors influencing suspended solids concentrations in activated sludge settling tanks.

    Science.gov (United States)

    Kim, Y; Pipes, W O

    1999-05-31

    A significant fraction of the total mass of sludge in an activated sludge process may be in the settling tanks if the sludge has a high sludge volume index (SVI) or when a hydraulic overload occurs during a rainstorm. Under those conditions, an accurate estimate of the amount of sludge in the settling tanks is needed in order to calculate the mean cell residence time or to determine the capacity of the settling tanks to store sludge. Determination of the amount of sludge in the settling tanks requires estimation of the average concentration of suspended solids in the layer of sludge (XSB) in the bottom of the settling tanks. A widely used reference recommends averaging the concentrations of suspended solids in the mixed liquor (X) and in the underflow (Xu) from the settling tanks (XSB=0. 5{X+Xu}). This method does not take into consideration other pertinent information available to an operator. This is a report of a field study which had the objective of developing a more accurate method for estimation of the XSB in the bottom of the settling tanks. By correlation analysis, it was found that only 44% of the variation in the measured XSB is related to sum of X and Xu. XSB is also influenced by the SVI, the zone settling velocity at X and the overflow and underflow rates of the settling tanks. The method of averaging X and Xu tends to overestimate the XSB. A new empirical estimation technique for XSB was developed. The estimation technique uses dimensionless ratios; i.e., the ratio of XSB to Xu, the ratio of the overflow rate to the sum of the underflow rate and the initial settling velocity of the mixed liquor and sludge compaction expressed as a ratio (dimensionless SVI). The empirical model is compared with the method of averaging X and Xu for the entire range of sludge depths in the settling tanks and for SVI values between 100 and 300 ml/g. Since the empirical model uses dimensionless ratios, the regression parameters are also dimensionless and the model can be

  15. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations.

    Directory of Open Access Journals (Sweden)

    Aine Marie Gormley-Gallagher

    Full Text Available Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05 for Mn (r2 = 0.0063, Cu (r2 = 0.0002, Cr (r2 = 0.021, Ni (r2 = 0.0023, Cd (r2 = 0.00001, Co (r2 = 0.096, Hg (r2 = 0.116 or Pb (r2 = 0.164. The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water.

  16. An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

    International Nuclear Information System (INIS)

    Hylton, T.D.

    2000-01-01

    The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the tanks, transferred to treatment facilities (or other storage locations), and processed to stable waste forms. The sludge wastes will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the respective supernatants to create slurries that can be transferred by pipeline to the desired destination. Depending on the DOE site, these slurries may be transferred up to six miles. Since the wastes are radioactive, it is critically important for the transfers to be made without plugging a pipeline. To reduce such a risk, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis; however, this method is time-consuming, and costly, and it does not provide real-time information. In addition, personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the sample jar for these solid-liquid mixtures. The alternative method for determining the transport properties is in-line analysis. An in-line instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond

  17. Assessment of suspended solids concentration in highway runoff and its treatment implication.

    Science.gov (United States)

    Hallberg, M; Renman, G

    2006-09-01

    It is understood that the major pollution from storm water is related to the content of particulate matter. One treatment practice is based on the first flush, i.e. detention of the initial part of the runoff that is considered to contain the highest concentrations of pollutants. This study has evaluated the concentration of total suspended solids in 30 consecutive runoff events during the winter season for an area of 6.7 hectares. A six-lane highway (E4) that has an annual average daily traffic load of 120,000 dominates the area and road de-icing salt (NaCl) and studded tires were in regular use during the studied period. The effluent standard for wastewater of 60 mg TSS per litre applied in EU was used to assess the treatment requirement of storm water. In only two of the events the event mean concentration was below 60 mg 1(-1). In four runoff events a partial event mean concentration below 60 mg 1(-1) was found, in 26 %, 12 %, 11 %, and 2 % respectively of the runoff volume. This would suggest that a capture of the initial part of the runoff for subsequent treatment is less applicable in this type of urban watershed.

  18. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    Science.gov (United States)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  19. Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds

    Science.gov (United States)

    David J. Lewis; Kenneth W. Tate; Randy A. Dahlgren; Jacob Newell

    2002-01-01

    Resource agencies, private landowners, and citizen monitoring programs utilize turbidity (water clarity) measurements as a water quality indicator for total suspended solids (TSS – mass of solids per unit volume) and other constituents in streams and rivers. The dynamics and relationships between turbidity and TSS are functions of watershed-specific factors and...

  20. SEBARAN TOTAL SUSPENDED SOLID (TSS PADA PROFIL VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN

    Directory of Open Access Journals (Sweden)

    Aries Dwi Siswanto

    2015-04-01

    horizontal and vertical. Accumulation of suspended sediment (TSS horizontally greatly influenced by surface currents and waves generated by the wind. TSS discovery is supposed to influence the spreading on a vertical profile. The second condition of distribution of suspended sediment (TSS effect on optimizing the penetration of sunlight in the water. Suspended sediments (TSS became one of the important physical factor as an indicator of water conditions. This study aims to determine the distribution of Total Suspended Solid (TSS in the waters of Bangkalan. The main material used in this study is an example of water and environmental parameter data (tidal and brightness taken at 7 stations in August-September 2013 in the Madura Strait, Bangkalan. Gravimetric method (ISO-06-6989.3-2004 is used for the analysis of Total Suspended Solid (TSS. Environmental parameters data were analyzed descriptively. TSS analysis shows different value on some of the research station for TSS. Concentration per week low of 35 mg / L (Station 3, surface profile, the first week and the highest was 620 mg / L (Station 4, the basic profile, the first week. In general, concentrations of vertical TSS (from surface-basic tends to be greater, might be influenced by the type of substrate and flow parameters are likely to cause agitation in the basic profile. Environmental conditions (brightness and current shows that areas with high concentrations of TSS tend to have the value of a low brightness with the larger speed of currents.Keywords: brightness, current patterns, Total Suspended Solid (TSS

  1. Concentration, flux, and trend estimates with uncertainty for nutrients, chloride, and total suspended solids in tributaries of Lake Champlain, 1990–2014

    Science.gov (United States)

    Medalie, Laura

    2016-12-20

    The U.S. Geological Survey, in cooperation with the New England Interstate Water Pollution Control Commission and the Vermont Department of Environmental Conservation, estimated daily and 9-month concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids from 1990 (or first available date) through 2014 for 18 tributaries of Lake Champlain. Estimates of concentration and flux, provided separately in Medalie (2016), were made by using the Weighted Regressions on Time, Discharge, and Season (WRTDS) regression model and update previously published WRTDS model results with recent data. Assessment of progress towards meeting phosphorus-reduction goals outlined in the Lake Champlain management plan relies on annual estimates of phosphorus flux. The percent change in annual concentration and flux is provided for two time periods. The R package EGRETci was used to estimate the uncertainty of the trend estimate. Differences in model specification and function between this study and previous studies that used WRTDS to estimate concentration and flux using data from Lake Champlain tributaries are described. Winter data were too sparse and nonrepresentative to use for estimates of concentration and flux but were sufficient for estimating the percentage of total annual flux over the period of record. Median winter-to-annual fractions ranged between 21 percent for total suspended solids and 27 percent for dissolved phosphorus. The winter contribution was largest for all constituents from the Mettawee River and smallest from the Ausable River. For the full record (1991 through 2014 for total and dissolved phosphorus and chloride and 1993 through 2014 for nitrogen and total suspended solids), 6 tributaries had decreasing trends in concentrations of total phosphorus, and 12 had increasing trends; concentrations of dissolved phosphorus decreased in 6 and increased in 8 tributaries; fluxes of total phosphorus decreased in 5 and

  2. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  3. The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2014-04-01

    Full Text Available The implementation and development of managed aquifer recharge (MAR have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp and median grain size of suspended solids (d50 was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp and different level of grain diameter of suspended solids (di, were developed to predict the potential suspended solids types.

  4. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    Science.gov (United States)

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  5. Operational Test Report for the 241-AZ-101 Suspended Solids Profiler

    International Nuclear Information System (INIS)

    STENKAMP, D.M.

    2000-01-01

    This document comprises the Operational Test Report for the 241-AZ-101 Suspended Solids Profiler. This document presents the results of Operational Testing of the 241-AZ-101 Suspended Solids Profiler (SSP). Testing of the SSP was performed in accordance with OTP-260-005, ''SUSPENDED SOLIDS PROFILER OPERATIONAL TEST PROCEDURE''. The objective of the testing was to verify that all equipment and components functioned as designed, following construction completion and turnover to operations

  6. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  7. Effect of the exposure to suspended solids on the enzymatic activity in the bivalve Sinonovacula constricta

    Directory of Open Access Journals (Sweden)

    Guojun Yang

    2017-01-01

    Full Text Available Aquatic animals are susceptible to sudden changes of their living environment but they adopt strategies to cope with adverse environmental challenges. Contamination by suspended solids, often associated with a dramatic change in the concentrations of important water-quality variables is a frequent occurrence in China's coastal waters and estuaries. Here we studied the impact of suspended solids on the activities of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT, as well as adenosine triphosphates (including Na+ K+-ATPase, Mg+ +-ATPase, Ca+ +-ATPase and H+ K+-ATPase in the gills and visceral mass tissues of the molluscan bivalve Sinonovacula constricta exposed (4, 8, 12, 16, 20, and 24 days to various concentrations of suspended solids. Our results showed that the antioxidant enzymes cooperated closely to effectively scavenge superoxide anion free radicals and H2O2 (which can ultimately inhibit gill activity through the modification of SOD and/or CAT enzymatic activities. ATPases activity (considered to be a sensitive indicator of toxicity could play an effective role in the maintenance of functional integrity of the plasma membranes as well as some other intracellular functions. After the exposure, a decrease in the Na+ K+-ATPase, Mg+ +-ATPase, and Ca+ +-ATPase activity of the gills was observed suggesting that they were inhibited by the treatments. These results also indicated that, from day 4 to day 16, exposure to high concentrations of suspended solids had an inhibitory effect on the activity of H+-K+-ATPase in the visceral mass of S. constricta. However, after a period of adaptation the H+-K+-ATPase activity was restored to original levels. Our results suggest that long-term exposure to high levels of suspended solids disturb osmoregulation, gastric acid secretion and digestion, cause oxidative damage, as a consequence of antioxidant enzymes inactivation which eventually damages the gills, affect the food intake

  8. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  9. Determination of radiocaesium in agriculture-related water samples containing suspended solids using gelling method

    International Nuclear Information System (INIS)

    Matsunami, Hisaya; Shin, Moono; Takahashi, Yoshihiko; Shinano, Takuro; Kitajima, Shiori; Tsuchiya, Takashi

    2015-01-01

    After the TEPCO Fukushima Dai-ichi Nuclear Power Plant accident in 2011, the radiocaesium, which flowed into the paddy fields via irrigation water, have been widely investigated. When the concentration of radiocaesium in the water samples containing suspended solids were directly measured using a high purity germanium detector with a 2 L marinelli beaker, the radiocaesium concentration might be overestimated due to the sedimentation of the suspended solids during the measurement time. In fact, the values obtained by the direct method were higher than those obtained by the filtering method and/or the gelling method in most of the agriculture-related water samples. We concluded that the gelling method using sodium polyacrylate can be widely adapted for the analysis of the total radiocaesium in the agriculture-related water samples because of its many advantage such as simple preparation procedure, accurate analysis values, excellent long-term stability of geometry and low operating cost. (author)

  10. Suspended solids moderate the degradation and sorption of waste water-derived pharmaceuticals in estuarine waters.

    Science.gov (United States)

    Aminot, Yann; Fuster, Laura; Pardon, Patrick; Le Menach, Karyn; Budzinski, Hélène

    2018-01-15

    This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  12. Quantifying suspended solids in small rivers using satellite data.

    Science.gov (United States)

    Isidro, Celso M; McIntyre, Neil; Lechner, Alex M; Callow, Ian

    2018-09-01

    The management of suspended solids and associated contaminants in rivers requires knowledge of sediment sources. In-situ sampling can only describe the integrated impact of the upstream sources. Empirical models that use surface reflectance from satellite images to estimate total suspended solid (TSS) concentrations can be used to supplement measurements and provide spatially continuous maps. However, there are few examples, especially in narrow, shallow and hydrologically dynamic rivers found in mountainous areas. A case study of the Didipio catchment in Philippines was used to address these issues. Four 5-m resolution RapidEye images, from between the years 2014 and 2016, and near-simultaneous ground measurements of TSS concentrations were used to develop a power law model that approximates the relationship between TSS and reflectance for each of four spectral bands. A second dataset using two 2-m resolution Pleiades-1A and a third using a 6-m resolution SPOT-6 image along with ground-based measurements, were consistent with the model when using the red band data. Using that model, encompassing data from all three datasets, gave an R 2 value of 65% and a root mean square error of 519mgL -1 . A linear relationship between reflectance and TSS exists from 1mgL -1 to approximately 500mgL -1 . In contrast, for TSS measurements between 500mgL -1 and 3580mgL -1 reflectance increases at a generally lower and more variable rate. The results were not sensitive to changing the pixel location within the vicinity of the ground sampling location. The model was used to generate a continuous map of TSS concentration within the catchment. Further ground-based measurements including TSS concentrations that are higher than 3580mgL -1 would allow the model to be developed and applied more confidently over the full relevant range of TSS. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Assessment of the contribution of sewer deposits to suspended solids loads in combined sewer systems during rain events.

    Science.gov (United States)

    Hannouche, A; Chebbo, G; Joannis, C

    2014-04-01

    Within the French observatories network SOERE "URBIS," databases of continuous turbidity measurements accumulating hundreds of events and many dry weather days are available for two sites with different features (Clichy in Paris and Ecully in Lyon). These measurements, converted into total suspended solids (TSS) concentration using TSS-turbidity relationships and combined with a model of runoff event mean concentration, enable the assessment of the contribution of sewer deposits to wet weather TSS loads observed at the outlet of the two watersheds. Results show that the contribution of sewer deposits to wet weather suspended solid's discharges is important but variable (between 20 and 80 % of the mass at the outlet depending on the event), including a site allegedly free of (coarse) sewer deposits. The uncertainties associated to these results are assessed too.

  14. Contrasts between channels and backwaters in a large, floodplain river: Testing our understanding of nutrient cycling, phytoplankton abundance, and suspended solids dynamics

    Science.gov (United States)

    Houser, Jeff N.

    2016-01-01

    In floodplain rivers, variability in hydraulic connectivity interacts with biogeochemistry to determine the distribution of suspended and dissolved substances. Nutrient, chlorophyll a, and suspended solids data spanning longitudinal (5 study reaches across 1300 river km), lateral (main channel and backwaters), and temporal (1994–2011) gradients in the Upper Mississippi River (UMR) were used to examine the extent to which observed differences between the main channel and backwaters were consistent with expectations based on current understanding of biogeochemical processes in large rivers. For N and P, the results largely conformed to expectations. N concentrations were greater in the main channel than in the backwaters in 82 to 96% of the observations across river reaches. Maximum TP concentrations generally occurred in backwaters during summer, when backwater TP often exceeded that of the main channel. Flux of P from sediments may be a substantial source of water-column P in UMR backwaters in summer. The data for suspended solids and chlorophyll a suggest that some refinements are needed of our understanding of ecosystem processes in large rivers. During low-discharge conditions, concentrations of inorganic suspended solids often were greater in backwaters than in the main channel, suggesting the importance of sediment resuspension. Chlorophyll a concentrations were usually greater in backwaters than in the main channel, but exceptions indicate that phytoplankton abundance in the main channel of the UMR can sometimes be greater than is typically expected for large rivers.

  15. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  16. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  17. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    Science.gov (United States)

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  19. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  20. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water

    International Nuclear Information System (INIS)

    Nasrabadi, T.; Ruegner, H.; Sirdari, Z.Z.; Schwientek, M.; Grathwohl, P.

    2016-01-01

    The present study was carried out in Haraz basin (Iran) that is located in south of the Caspian Sea. The goal of this study was to establish correlations amongst total suspended solids concentration (TSS) and turbidity with total pollutant concentrations to evaluate the dissolved and particle-bound concentrations of major toxic metals. It also aimed to validate TSS and/or turbidity measurements as proxies to monitor pollutant fluxes. Eight metals, namely nickel, lead, cadmium, copper, zinc, cobalt, arsenic and strontium were analyzed for dissolved and total concentrations in water at ten locations within the catchment. TSS and turbidity were also measured. Sampling campaigns were designed to cover both the rainy (December) and the dry (May) season within the basin. The robust relationship between TSS (202–1212 mg/l) and turbidity (63–501 NTUs) in both seasons warranted their interchangeable potential as proxies within the observed ranges. Total element concentrations were plotted in separate attempts versus TSS and turbidity for all locations and both events. Very good linear correlations were attained where the slopes represent the metals concentration on suspended solids and the intercept the dissolved concentration in water. The results achieved by these linear regressions were in very good agreement with independently measured values for dissolved concentration and concentrations on river bed sediments taken at the same locations. This demonstrates that turbidity and/or TSS measurements may be used for monitoring of metal loads if once calibrated against total concentration of metals. The results also revealed that in the lower Haraz catchment metal concentrations on suspended and river bed sediment were homogeneously distributed along the investigated river stretch. This is assumed to be due to intensive gravel and sand mining activities in the upper and middle part of the catchment. - Highlights: • Turbidity is evaluated as a feasible proxy to predict

  1. Improved Methods for Correlating Turbidity and Suspended Solids for Monitoring

    National Research Council Canada - National Science Library

    2000-01-01

    This technical note describes techniques normally used to measure turbidity and suspended solids in waters, how the two parameters relate to each other and to various environmental impacts, and why...

  2. Application of nuclear techniques to the measurement of rock density and transport of solid particles suspended in rivers

    International Nuclear Information System (INIS)

    Seddiki, A.

    1984-10-01

    In order to better understand hydron phenomens in semi-arid regions characterized by torrential rains, we measured solid particles suspended to dums and in rivers. We also determined the density profile of a drilling and density of saline solutions. We designed an automatic nuclear gauge used for measuring the concentration of particles suspended to rivers. The installation, calibration and operations of a LABEN gauge were done in BENI SLIMANE on the 27th and 28th of February, 1984. The first results we obtained were received on the 24th of April, 1984

  3. Characteristics of suspended solids affect bifenthrin toxicity to the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi.

    Science.gov (United States)

    Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M

    2015-10-01

    Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms. © 2015 SETAC.

  4. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  5. Geochemistry of suspended and settling solids in two freshwater lakes.

    NARCIS (Netherlands)

    Koelmans, A.A.

    1998-01-01

    This study describes the 1987–1992 time variationof the bulk chemical composition, levels of heavymetals, arsenic, nitrogen and phosporous insuspended and settling solids in Lake Volkerak andLake Zoom (The Netherlands). Suspended and setlingsolids were collected with continuous flowcentrifuges and

  6. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    Science.gov (United States)

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  7. The clam (Chamelea gallina: evaluation of the effects of solids suspended in seawater on bivalve molluscs

    Directory of Open Access Journals (Sweden)

    Salvatora Angela Angioni

    2010-03-01

    Full Text Available The study was designed to evaluate the effects of solids in suspension in seawater on clams (Chamelea gallina. The aim was to investigate the possible correlation between the widespread deaths of clams in the coastal waters of the central and northern Adriatic in the last five years and increased concentrations of solids in suspension. The research involved conducting 96-hour tests on clams farmed in aquariums containing filtered seawater. The tests were preceded by a 7-day adaptation stage to allow the molluscs to acclimatise. During this period, the clams were fed on unicellular seaweed (Dunaliella tertiolecta. The molluscs were exposed to particles of solids in suspension consisting of pools of silica gel (SiO2 granules of various sizes, similar to those constituting silt, whose presence and suspension in the sea considerably increase after heavy rain and heavy seas. The study established that the number of deaths caused by solids suspended in seawater at the concentrations used in the tests was not statistically significant.

  8. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen

    1990-01-01

    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  9. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  10. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    Science.gov (United States)

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and

  11. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    Science.gov (United States)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  12. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  13. Characteristic of total suspended particulate (TSP) containing Pb and Zn at solid waste landfill

    Science.gov (United States)

    Budihardjo, M. A.; Noveandra, K.; Samadikun, B. P.

    2018-05-01

    Activities conducted at municipal solid waste landfills (MSWLs) potentially cause air pollution. Heavy vehicles in MSWLs release various pollutants that can have negative impacts for humans. One noticeable pollutant at MSWLs is airborne total suspended particulate (TSP) which may contain heavy metals such as Pb and Zn and can cause disease when inhaled by humans. In this study, TSP from a landfill in Semarang, Indonesia was collected and characterized to quantify the concentration of Pb and Zn. Meteorological factors (i.e. temperature, humidity and wind velocity) and landfill activities were considered as factors affecting pollutant concentrations. TSP was sampled using dust samplers while the concentrations of heavy metals in TSP were analyzed using an Atomic Absorption Spectrophotometer (AAS). Pb concentration ranged from 0.84 to 1.78 µg/m3 while Zn concentration was from 7.87 to 8.76 µg/m3. The levels of Pb were below the threshold specified by the Indonesian Government. Meanwhile, the threshold for Zn has not yet been determined.

  14. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  15. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  16. Suspended particle and drug ingredient concentrations in hospital dispensaries and implications for pharmacists' working environments.

    Science.gov (United States)

    Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro

    2016-03-01

    The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.

  17. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Science.gov (United States)

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  18. Effect of the mixed liquor suspended solid on permeate in a membrane bioreactor system applied for the treatment of sewage mixed with wastewater of the milk from the dairy industry.

    Science.gov (United States)

    Poyatos, José M; Molina-Muñoz, Marisa; Moreno, Begoña; González-López, Jesús; Hontoria, Ernesto

    2007-06-01

    The performance of a bench-scale submerged membrane bioreactor (MBR) equipped with ultrafiltration membranes (ZENON) was investigated at different mixed liquor suspended solid (MLSS) concentrations (3069, 4314 and 6204 mg/L). The pilot plant was located in the wastewater treatment plant of the city of Granada (Puente de los Vados, Granada, Spain), which receives the wastewater of the milk from the dairy industry of Granada. The results showed the capacity of the MBR systems to remove organic material (COD and BOD5), suspended solids, turbidity, color and microbial indicators such as E. coli and coliphages. Therefore, the results suggest that the transmembrane pressure (TMP) was influence by the MLSS concentration assayed. However, an increase in the MLSS concentration increases the nitrification processes and consequently the amount of NO3- in permeate.

  19. Computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.

    2010-01-01

    Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.

  20. Simplified Entropic Model for the Evaluation of Suspended Load Concentration

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-03-01

    Full Text Available Suspended sediment concentration is a key aspect in the forecasting of river evolution dynamics, as well as in water quality assessment, evaluation of reservoir impacts, and management of water resources. The estimation of suspended load often relies on empirical models, of which efficiency is limited by their analytic structure or by the need for calibration parameters. The present work deals with a simplified fully-analytical formulation of the so-called entropic model in order to reproduce the vertical distribution of sediment concentration. The simplification consists in the leading order expansion of the generalized spatial coordinate of the entropic velocity profile that, strictly speaking, applies to the near-bed region, but that provides acceptable results also near the free surface. The proposed closed-form solution, which highlights the interplay among channel morphology, stream power, secondary flows, and suspended transport features, allows reducing the needed number of field measurements and, therefore, the time of field activities. Its accuracy and robustness were successfully tested based on the comparison with laboratory data reported in literature.

  1. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  2. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  3. Quantitative cross-sectional measurement of solid concentration distribution in slurries using a wire-mesh sensor

    International Nuclear Information System (INIS)

    Dos Santos, Eduardo Nunes; Da Silva, Marco Jose; Schleicher, Eckhard; Reinecke, Sebastian; Hampel, Uwe

    2016-01-01

    Wire-mesh sensors have so far been widely applied in gas–liquid flows where resistance or capacitance distributions are measured and converted into gas or liquid holdup distributions. In this work we report on the qualification of the wire-mesh imaging technique for the measurement of cross-sectional solid concentrations in solid–liquid mixtures. As the dielectric constants of solid particles are different from those of gas, water or oil in the flow, measuring this property can be used as an indication of solid distribution. Experiments were performed in a stirred tank of 100 mm diameter equipped with a capacitance wire-mesh sensor. The wire-mesh sensor was operated at an acquisition speed of 4000 frames per second and has a spatial resolution of 6.25 mm. As solids we used silica sand particles (diameter ∼250 μm) which were suspended in water in a volume concentration range of 1% to 35% to form slurries. By varying the stirring speed, different solid concentration distributions were produced and investigated. In order to convert the measured relative permittivity distribution into a solid concentration distribution, an empirical approach was employed. (paper)

  4. Concentration of elements in suspended matter discharges to Lerma River, Mexico

    International Nuclear Information System (INIS)

    Avila-Perez, P.; Tejeda, S.; Carapia, L.; Barcelo-Quintal, I.; Martinez, T.

    2011-01-01

    The S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn and Pb concentration and the elemental composition of particles in suspended matter from principal discharges to Lerma River, have been evaluated. The elemental concentration in suspended matter has been obtained by Energy Dispersive X-Ray Fluorescence Spectrometry. The elemental composition of particles has been obtained by means of Energy Dispersive X-Ray Spectrometry (EDS). The results show that K, Ca, Ti, Mn and Fe are mainly from natural origin in the Upper Course of the Lerma River (UCLR), where the principal contributions probably come from dragging of soils and sediments in the rainy season and Cr, Cu, Zn and Pb are mainly from anthropogenic origin where the principal contributions come from urban and industrial untreated discharge. The application of Energy Dispersive X-Ray Spectrometry plus Scanning Electron Microscopy is useful in the characterization of suspended matter in natural, anthropogenic and mixed water discharges. (author)

  5. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  6. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States.

    Science.gov (United States)

    Smalling, Kelly L; Reilly, Timothy J; Sandstrom, Mark W; Kuivila, Kathryn M

    2013-03-01

    To document the environmental occurrence and persistence of fungicides, a robust and sensitive analytical method was used to measure 34 fungicides and an additional 57 current-use pesticides in bed sediments and suspended solids collected from areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within agricultural research farms using prophylactic fungicides at rates and types typical of their geographic location. At least two fungicides were detected in 55% of the bed and 83% of the suspended solid samples and were detected in conjunction with herbicides and insecticides. Six fungicides were detected in all samples including pyraclostrobin (75%), boscalid (53%), chlorothalonil (41%) and zoxamide (22%). Pyraclostrobin, a strobilurin fungicide, used frequently in the United States on a variety of crops, was detected more frequently than p,p'-DDE, the primary degradate of p,p'-DDT, which is typically one of the most frequently occurring pesticides in sediments collected within highly agricultural areas. Maximum fungicide concentrations in bed sediments and suspended solids were 198 and 56.7 μg/kg dry weight, respectively. There is limited information on the occurrence, fate, and persistence of many fungicides in sediment and the environmental impacts are largely unknown. The results of this study indicate the importance of documenting the persistence of fungicides in the environment and the need for a better understanding of off-site transport mechanisms, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases. Published by Elsevier B.V.

  7. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  8. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  9. Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids.

    Science.gov (United States)

    Kim, Hae-Cheol; Son, Seunghyun; Kim, Yong Hoon; Khim, Jong Seong; Nam, Jungho; Chang, Won Keun; Lee, Jung-Ho; Lee, Chang-Hee; Ryu, Jongseong

    2017-08-15

    The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Analysis of suspended solids transport processes in primary settling tanks.

    Science.gov (United States)

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  11. Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended- and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2-6, 2004

    Science.gov (United States)

    Milliman, J. D.; Lee, T. Y.; Huang, J. C.; Kao, S. J.

    2017-05-01

    Small mountainous rivers deliver disproportionately large quantities of suspended and dissolved solids to the global ocean, often in response to catastrophic events such as earthquakes or floods. Here we report on the impact of a major flood on the Choshui River, central-western Taiwan, generated by typhoon Mindulle, July 2-6, 2004, five years after the nearby Mw 7.6 Chichi earthquake. Water samples taken at 3-h intervals at three stations along main stem, as well as from two downriver tributaries, allow us to delineate the temporal and spatial variability in concentrations and fluxes of suspended and dissolved constituents within the middle and lower portions of the river in response to this flood. High suspended-sediment concentrations, some as high as 200 g/l, reflected the rapid erosion of landslide scars and debris deposits generated by super-typhoon Herb in 1996 and the 1999 Chichi earthquake. Dissolved-solid and suspended-sediment discharges totaled 0.22 and 70 million tons (mt), 50 mt of which were discharged in just two days. Particulate organic carbon (POC) discharge, most of which was pre-modern in age, was 195,000 t. More than half of the discharged water, POC and dissolved solids came from upriver, whereas about 70% of the suspended sediment and 60% of the dissolved nitrate came from two downriver tributaries, the Chenyoulan and Qingshui rivers. Spatial and temporal differences in the character and discharge of suspended and dissolved solids within and between rivers in the Choshui drainage basin reflect different geologies, landslide histories, the effects of human impact, and the abrupt draining of the Tsaoling landslide lake in the Qingshui basin, as well as the possible shifting of importance of groundwater vs. overland flow. Neither wind-blown pollutants nor sea salts appear to have contributed significantly to dissolved solid character or discharge. Sediment contribution from the landslides in the Chenyoulan basin generated by super-typhoon Herb

  12. Trends in suspended-sediment loads and concentrations in the Mississippi River Basin, 1950–2009

    Science.gov (United States)

    Heimann, David C.; Sprague, Lori A.; Blevins, Dale W.

    2011-01-01

    Trends in loads and concentrations of suspended sediment and suspended sand generally were downward for stations within the Mississippi River Basin during the 60-, 34-, and 12-year periods analyzed. Sediment transport in the lower Mississippi River has historically been, and continues to be, most closely correlative to sediment contributions from the Missouri River, which generally carried the largest annual suspended-sediment load of the major Mississippi River subbasins. The closure of Fort Randall Dam in the upper Missouri River in 1952 was the single largest event in the recorded historical decline of suspended-sediment loads in the Mississippi River Basin. Impoundments on tributaries and sediment reductions as a result of implementation of agricultural conservation practices throughout the basin likely account for much of the remaining Mississippi River sediment transport decline. Scour of the main-stem channel downstream from the upper Missouri River impoundments is likely the largest source of suspended sand in the lower Missouri River. The Ohio River was second to the Missouri River in terms of sediment contributions, followed by the upper Mississippi and Arkansas Rivers. Declines in sediment loads and concentrations continued through the most recent analysis period (1998–2009) at available Mississippi River Basin stations. Analyses of flow-adjusted concentrations of suspended sediment indicate the recent downward temporal changes generally can be explained by corresponding decreases in streamflows.

  13. Temporal and spatial variations in total suspended and dissolved solids in the upper part of Manoa stream, Hawaii

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Fares, Ali; Tran, Dai Ngia

    2011-01-01

    Hawaiian watersheds are small, steep, and receive high intensity rainfall events of non-uniform distribution. These geographic and weather patterns result in flashy streams of strongly variable water quality even within various stream segments. Total suspended solids (TSS) and total dissolved solids

  14. Resuspension and transport of suspended solids in Eurajoensalmi Bay. Final report of monitoring activities in 2009-2011

    International Nuclear Information System (INIS)

    Mykkanen, J.; Kiirikki, M.; Lindfors, A.

    2012-11-01

    The goal of monitoring activities carried out in Eurajoensalmi Bay was to indentify factors affecting dispersal of river waters and suspended solid matter in the estuary area. In addition to suspended solids load and dispersal of river water, also release of sedimented particles from the sea bed in resuspension was studied. River water quality and discharge as well as resuspension in Eurajoensalmi estuary area were monitored with Luode automatic monitoring stations equipped with water quality, water level, wave height and weather sensors. Dynamics of Eurajoensalmi estuary area was studied by installing profiling current meters (ADCP) and water quality sensors to the sea floor at the mouth of Eurajoensalmi. Spatial variation of surface water quality was monitored with a flow-through method from a moving vessel and manual profiling several times during the monitoring period. Collected data was processed and used in determining suspended solids balance of Eurajoensalmi Bay. The balance was determined by creating a regression model for water exchange and sediment flux over the cross section at the mouth of Eurajoensalmi. Regression model was created also to determine resuspension in Eurajoensalmi area. Sediment flux and resuspension were modeled using long term wind data from Kylmaepihlaja meteorological station as a variable to determine overall sediment balance of Eurajoensalmi

  15. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  16. Experimental Design of Electrocoagulation and Magnetic Technology for Enhancing Suspended Solids Removal from Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Moh Faiqun Ni'am

    2014-10-01

    Full Text Available Design of experiments (DOE is one of the statistical method that is used as a tool to enhance and improve experimental quality. The changes to the variables of a process or system is supposed to give the optimal result (response and quite satisfactory. Experimental design can defined as a test or series of test series by varying the input variables (factors of a process that can known to cause changes in output (response. This paper presents the results of experimental design of wastewater treatment by electrocoagulation (EC technique. A combined magnet and electrocoagulation (EC technology were designed to increase settling velocity and to enhance suspended solid removal efficiencies from wastewater samples. In this experiment, a synthetic wastewater samples were prepared by mixing 700 mg of the milk powder in one litre of water and treated by using an acidic buffer solution. The monopolar iron (Fe plate anodes and cathodes were employed as electrodes. Direct current was varied in a range of between 0.5 and 1.1 A, and flowrate in a range of between 1.00 to 3.50 mL/s. One permanent magnets namely AlNiCo with a magnetic strength of 0.16T was used in this experiment. The results show that the magnetic field and the flowrate have major influences on suspended solids removal. The efficiency removals of suspended solids, turbidity and COD removal efficiencies at optimum conditions were found to be more than 85%, 95%, and 75%, respectively.

  17. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake.

    Science.gov (United States)

    Ayana, Essayas K; Worqlul, Abeyou W; Steenhuis, Tammo S

    2015-08-01

    Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin. The result showed that at a monthly time scale TSS at the river mouth can be replicated with Nash-Sutcliffe efficiency (NS) of 0.34 for calibration and 0.21 for validation periods. Percent bias (PBIAS) and ratio of the root-mean-square error to the standard deviation of measured data (RSR) are all within range. Given the inaccessibility and costliness to measure TSS at river mouths to a lake the results found here are considered useful for suspended sediment budget studies in water bodies of the basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH.

    Science.gov (United States)

    McFadden, M; Loconsole, J; Schockling, A J; Nerenberg, R; Pavissich, J P

    2017-12-01

    Peracetic acid (PAA) is an alternative disinfectant that may be effective for combined sewer overflow (CSO) disinfection, but little is known about the effect of particle size on PAA disinfection efficiency. In this work, PAA and hypochlorite were compared as disinfectants, with a focus on the effect of wastewater particles. Inactivation experiments were conducted on suspended cultures of Escherichia coli and wastewater suspended solids. Tested size fractions included particle diameters disinfection efficiency decreased with increasing solids size. However, solids size had little effect on PAA disinfection. The PAA disinfection efficiency decreased at pH values above 7.5. Live/dead staining revealed that PAA disinfection leaves most cells in a viable but non-culturable condition. Fourier transform infrared spectroscopy (FTIR) analyses suggests that PAA and hypochlorite may inactivate E. coli bacteria by similar mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spatio-temporal Analysis of suspended sediment Concentration in the Yongjiang Estuary Based on GOCI

    Science.gov (United States)

    Kang, Yanyan; Dong, Chuan

    2018-01-01

    The concentration and spatio-temporal variation of suspended sediment concentration in the estuary area are of great significance to the nearshore engineering, port construction and coastal evolution. Based on multi-period GOCI images and corresponding measured suspended sediment concentration (SSC) data, three inversion models (the linear regression model, the power exponent model and the neural network model) were established after rapid atmospheric correction. The results show that the absolute error of the three models is 0.20, 0.16 and 0.10kg/m3 respectively, and the relative errors are 38%, 23% and 18% respectively. The accuracy of the neural network (8-17-17-1) is the best. The SSC distribution diagrams in an ebb and flow cycle are obtained using this ANN model. The results show that with Yongjiang estuary for segmentation, the high concentration area is located in the north and the lower is in the south around Jintang Island deeper water area. When the tide rises, the water flow disturbs a large amount of sediment, and then the sediment concentration increases and high area high concentrations water body moves along the SE-NW. When the tide falls, flow rate decreases and the sediment concentration decreases. However, with the falling tide, the concentration of suspended sediment in the northern sea areas gradually increases, and is higher than 1kg/m3, and gradually moves along the NW-SE until to the estuary.

  20. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  1. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production.

    Science.gov (United States)

    Umaiyakunjaram, R; Shanmugam, P

    2016-09-01

    This study deals with the treatment of high suspended solids raw tannery wastewater using flat sheet Submerged Anaerobic Membrane (0.4μm) Bioreactor (SAMBR) acclimatized with hypersaline anaerobic seed sludge for recovering biogas. The treatability of SAMBR achieved higher CODremoval efficiency (90%) and biogas yield (0.160L.g(-1) CODremoved) coincided with high r(2) values between permeate flux and TSS (0.95), biogas and COD removed (0.96). The acidification of hypersaline influent wastewater by biogas mixing with high CO2, achieved quadruplet benefit of gas liquid and solid separation, in-situ pH and NH3 control, in-situ CH4 enrichment, and prevention of membrane fouling. The initial high VFA became stable as time elapsed reveals the hydrolysing ability of particulate COD into soluble COD and into biogas, confirms the suitability of SAMBR for high suspended solids tannery wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Filterability and Sludge Concentration in Membrane Bioreactors

    NARCIS (Netherlands)

    Lousada-Ferreira, M.

    2011-01-01

    The Thesis entitled “Filterability and Sludge Concentration in Membrane Bioreactors” aims at explaining the relation between Mixed Liquid Suspended Solids (MLSS) concentration, the amount of solids in the wastewater being treated, also designated as sludge, and filterability, being the ability of

  3. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    J. Guillén

    2000-12-01

    Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.

  4. The use of hand-held 35 mm color infrared imagery for estimates of suspended solids - A progress report. [in water pollution monitoring

    Science.gov (United States)

    Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.

    1975-01-01

    A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.

  5. Effectiveness of foam-based and traditional green roofs in reducing nitrogen, phosphorus, organic carbon and suspended solids in urban installations

    Science.gov (United States)

    MacAvoy, S. E.; Mucha, S.; Williamson, G.

    2017-12-01

    While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.

  6. Loads of nitrate, phosphorus, and total suspended solids from Indiana watersheds

    Science.gov (United States)

    Bunch, Aubrey R.

    2016-01-01

    Transport of excess nutrients and total suspended solids (TSS) such as sediment by freshwater systems has led to degradation of aquatic ecosystems around the world. Nutrient and TSS loads from Midwestern states to the Mississippi River are a major contributor to the Gulf of Mexico Hypoxic Zone, an area of very low dissolved oxygen concentration in the Gulf of Mexico. To better understand Indiana’s contribution of nutrients and TSS to the Mississippi River, annual loads of nitrate plus nitrite as nitrogen, total phosphorus, and TSS were calculated for nine selected watersheds in Indiana using the load estimation model, S-LOADEST. Discrete water-quality samples collected monthly by the Indiana Department of Environmental Management’s Fixed Stations Monitoring Program from 2000–2010 and concurrent discharge data from the U. S. Geological Survey streamflow gages were used to create load models. Annual nutrient and TSS loads varied across Indiana by watershed and hydrologic condition. Understanding the loads from large river sites in Indiana is important for assessing contributions of nutrients and TSS to the Mississippi River Basin and in determining the effectiveness of best management practices in the state. Additionally, evaluation of loads from smaller upstream watersheds is important to characterize improvements at the local level and to identify priorities for reduction.

  7. A passive collection system for whole size fractions in river suspended solids

    International Nuclear Information System (INIS)

    Takeshi Matsunaga; Takahiro Nakanishi; Mariko Atarashi-Andoh; Erina Takeuchi; Katsunori Tsuduki; Syusaku Nishimura; Jun Koarashi; Shigeyoshi Otosaka; Tsutomu Sato; Seiya Nagao

    2015-01-01

    In order to solve difficulties in collection of river suspended solids (SS) such as frequent observations during stochastic rainfall events, a simple passive collection system of SS has been developed. It is composed of sequentially connected two large-scale filter vessels. A portion of river water flows down into the filter vessels utilizing a natural drop of streambed. The system enable us to carry out long-term, unmanned SS collection. It is also compatible with dissolved component collection. Its performance was validated in a forested catchment by applying to radiocesium and stable carbon transport. (author)

  8. Trends in nutrients and suspended solids at the Fall Line of five tributaries to the Chesapeake Bay in Virginia, July 1988 through June 1995

    Science.gov (United States)

    Bell, C.F.; Belval, D.L.; Campbell, J.P.

    1996-01-01

    Water-quality samples were collected at the Fall Line of five tributaries to the Chesapeake Bay in Virginia during a 6- to 7-year period. The water-quality data were used to estimate loads of nutrients and suspended solids from these tributaries to the non-tidal part of Chesapeake Bay Basin and to identify trends in water quality. Knowledge of trends in water quality is required to assess the effectiveness of nutrient manage- ment strategies in the five basins. Multivariate log-linear regression and the seasonal Kendall test were used to estimate flow-adjusted trends in constituent concentration and load. Results of multivariate log-linear regression indicated a greater number of statistically significant trends than the seasonal Kendall test; how-ever, when both methods indicated a significant trend, both agreed on the direction of the trend. Interpre- tation of the trend estimates for this report was based on results of the parametric regression method. No significant trends in total nitrogen concentration were detected at the James River monitoring station from July 1988 through June 1995, though total Kjeldahl nitrogen concen- tration decreased slightly in base-flow samples. Total phosphorus concentration decreased about 29 percent at this station during the sampling period. Most of the decrease can be attributed to reductions in point-source phosphorus loads in 1988 and 1989, especially the phosphate detergent ban of 1988. No significant trends in total suspended solids were observed at the James River monitoring station, and no trends in runoff- derived constituents were interpreted for this river. Significant decreases were detected in concentrations of total nitrogen, total Kjeldahl nitrogen, dissolved nitrite-plus-nitrate nitrogen, and total suspended solids at the Rappahannock River monitoring station between July 1988 and June 1995. A similar downward trend in total phosphorus concentration was significant at the 90-percent confidence level, but not the

  9. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  10. Fate of cocaine drug biomarkers in sewer system: the role of suspended solids in biotransformation and sorption

    DEFF Research Database (Denmark)

    Ramin, Pedram; Brock, Andreas Libonati; Polesel, Fabio

    on the fate of illicit drugs in sewer systems. This study aims at assessing the role of suspended solids on the biotransformation and sorption in raw sewage of eight illicit drug biomarkers (cocaine, heroin, methadone, mephedrone, ketamine, methamphetamine, MDMA and THC and their urinary metabolites...

  11. Karakteristik Total Padatan Tersuspensi (Total Suspended Solid Dan Kekeruhan (Turbidity Secara Vertikal Di Perairan Teluk Benoa, Bali

    Directory of Open Access Journals (Sweden)

    I Gede Hendrawan

    2016-06-01

    Full Text Available Benoa bay is one of estuary that located in the Southern part of Bali Island, and as a strategic tourism destination. The increased of the human activity has an important role to give an ecological pressure for the seawater ecosystem in the Benoa bay. Total suspended solid (TSS and turbidity is one of the important indicators that could be determining the quality of the seawater. As the estuary, Benoa bay received fresh water from the river discharge that also potentially carries any material to the bay. In addition, port activity is also has an important role in contributing a various material to the Benoa bay. From this research, we found that the TSS concentration and the turbidity are higher in the surface water and also in the bottom layer. TSS concentration and the turbidity also varied from the bay mouth trough the line of vessel onto the inner of bay. TSS concentration and turbidity in the bay mouth has a smaller concentration rather than in the inner part of bay. TSS concentration and turbidity in the inner of bay could be caused by the port activity. In addition, seawater circulation is also has an importan factor to contributing the TSS concentration and the turbidity. Sea current would be erroted the seabottom and with the different shape of the topography could be increased the TSS and turbidity.

  12. Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    International Nuclear Information System (INIS)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai; Zheng, Lei

    2017-01-01

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr 2+ , Cs + , and Co 2+ in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr 2+ , Cs + , and Co 2+ with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater

  13. Conditions of concentration and composition of suspended load in the Vistula River between Wyszogród and Chełmno

    Science.gov (United States)

    Kaszubski, Michal

    2014-05-01

    The main objective of the study is to explain causes of variations of concentration, particle size distribution and composition of suspended load in the riverbed of the lower Vistula between Wyszogród and Chełmno. The study was conducted in seven bridge cross-sections (three above and four below the Włocławek reservoir). In each cross-section, three water samples were collected in the characteristic parts of the riverbed. Since July 2012 fifteen measurement series were carried out. During each measurement series 22 samples of water were collected. In each sample the overall concentration of suspended load, the proportion of the organic matter and particle size distribution of the mineral fraction were measured. Variation of concentration and characteristics of suspended load were studied both in the cross-sections of the Vistula riverbed and along its longitudinal profile. The study focus primarily on determining the qualitative and quantitative variation in the properties of suspended load in the cross-sections located in different morphological riverbed type, various level of its hydrotechnical management, including the operation on the Włocławek reservoir, and the diversity of the water flow conditions. The author tested the correlation occurring between the size of suspended load concentration as well as the flow rate and flow velocity at the water sampling sites. Moreover, the author determined the effect of morphological variation of the Vistula riverbed (the riverbed depth and the location of points of collecting water samples relative to the riverbed mesoforms) on the concentration size, composition structure and the particle size distribution of suspended load. Measurement sessions were chosen in such a way as to cover the widest possible spectrum of the water flow conditions in the riverbed of the Vistula. In addition to the low and medium flow the variability in concentration during flood flows of various types (ice jam, snowmelt and rainfall) were

  14. The spatial and temporal variation of total suspended solid concentration in Pearl River Estuary during 1987-2015 based on remote sensing.

    Science.gov (United States)

    Wang, Chongyang; Li, Weijiao; Chen, Shuisen; Li, Dan; Wang, Danni; Liu, Jia

    2018-03-15

    The movement and migration of total suspended solid (TSS) are the essential component of global material cycling and change. Based on the TSS concentrations retrieved from 112 scenes of Landsat remote sensing imageries during 1987-2015, the spatial and temporal variations of TSS concentration in high flow season and low flow seasons of six sub-regions (west shoal, west channel, middle shoal, east channel, east shoal and Pearl River Estuary Chinese White Dolphin National Nature Reserve and its adjacent waters (NNR)) of Pearl River Estuary (PRE) were analyzed and compared by statistical simulation. It was found that TSS concentrations in east and west shoals were about 23mg/L and 64mg/L higher than that of the middle shoal, respectively. There was a significant decreasing trend of TSS concentration from the northwest (223.7mg/L) to southeast (51.4mg/L) of study area, with an average reduction of 5.86mg/Lperkm, which mainly attributes to unique interaction of runoff and tide in PRE. In high flow season, there existed a significant and definite annual cycle period (5-8years) of TSS concentration change primarily responding to the periodic variation of precipitation. There were five full-fledged period changes of TSS detected in west shoal and west channel (the years of changes in 1988, 1994, 1998, 2003, 2010, 2015), while there were the last four cycle periods found in middle shoal, east channel, east shoal and NNR only. TSS concentrations in shoals and channels of PRE showed a significant decreased trend mainly due to the dam construction at the same time, with an average annual TSS concentration decrease of 5.7-10.1mg/L in high flow season from 1988 to 2015. There was no significant change trend of TSS concentration in NNR before 2003, but the TSS concentration decreased significantly after the establishment of the NNR since June 2003, with an average annual decrease of 9.7mg/L from 2004 to 2015. It was deduced that man-made protection measures had a great influence

  15. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  16. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    Science.gov (United States)

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  17. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    Science.gov (United States)

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  18. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    Science.gov (United States)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  19. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm.

    Science.gov (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  20. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  1. Concentration of aqueous extracts of defatted soy flour by ultrafiltration; Effect of suspended particles on the filtration flux

    NARCIS (Netherlands)

    Noordman, T.R.; Kooiker, K.; Bel, W.; Dekker, M.; Wesselingh, J.A.

    2003-01-01

    Suspended particles can have a positive effect on the flux and concentration curve of soy flour extracts during ultrafiltration. This is described by a simple empirical model. The suspended particles in this study were insoluble milled bean material (mean particle size 25 m). It is shown that it is

  2. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  3. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  4. Estimation of suspended sediment concentration in rivers using acoustic methods.

    Science.gov (United States)

    Elçi, Sebnem; Aydin, Ramazan; Work, Paul A

    2009-12-01

    Acoustic Doppler current meters (ADV, ADCP, and ADP) are widely used in water systems to measure flow velocities and velocity profiles. Although these meters are designed for flow velocity measurements, they can also provide information defining the quantity of particulate matter in the water, after appropriate calibration. When an acoustic instrument is calibrated for a water system, no additional sensor is needed to measure suspended sediment concentration (SSC). This provides the simultaneous measurements of velocity and concentration required for most sediment transport studies. The performance of acoustic Doppler current meters for measuring SSC was investigated in different studies where signal-to-noise ratio (SNR) and suspended sediment concentration were related using different formulations. However, these studies were each limited to a single study site where neither the effect of particle size nor the effect of temperature was investigated. In this study, different parameters that affect the performance of an ADV for the prediction of SSC are investigated. In order to investigate the reliability of an ADV for SSC measurements in different environments, flow and SSC measurements were made in different streams located in the Aegean region of Turkey having different soil types. Soil samples were collected from all measuring stations and particle size analysis was conducted by mechanical means. Multivariate analysis was utilized to investigate the effect of soil type and water temperature on the measurements. Statistical analysis indicates that SNR readings ob tained from the ADV are affected by water temperature and particle size distribution of the soil, as expected, and a prediction model is presented relating SNR readings to SSC mea surements where both water temperature and sediment characteristics type are incorporated into the model. The coefficients of the suggested model were obtained using the multivariate anal ysis. Effect of high turbidity

  5. Solid and suspended/dissolved waste (N, P, O) from rainbow trout (Oncorynchus mykiss)

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2011-01-01

    differences between the dietary treatment groups in the waste produced. On average, 48% of the ingestedNwas recovered in thewater (TANconstituting 64–79%of this)and7% inthesolids. In comparison, 1% of the ingested P was recovered in the water and 43% in the solids. A breakpoint value of 5.6 g standardized......Quantifying aquaculture waste into different waste fractions will make it possible to design different treatment setups for obtaining specific cleaning objectives. The aim of this study was therefore to measure “all” solid and suspended/dissolved (i.e. unsedimented) waste from juvenile rainbow...... trout (Oncorynchus mykiss) fed three commonly applied commercial diets, “all” waste referring to: total nitrogen (N), total ammonia nitrogen (TAN=NH3-N+NH4-N), total phosphorus (P), and organicmatter characterized by the chemical oxygen demand (COD) and the biological oxygen demand after 5 days (BOD5...

  6. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    Science.gov (United States)

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    . Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex solids would likely have little effect on Operable Unit B Marine sediments because of high concentrations of mercury already present in the sediment.

  7. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay.

    Science.gov (United States)

    Borkman, David G; Smayda, Theodore J

    2016-06-15

    Dramatic changes occurred in Narragansett Bay during the 1980s: water clarity increased, while phytoplankton abundance and chlorophyll concentration decreased. We examine how changes in total suspended solids (TSS) loading from wastewater treatment plants may have influenced this decline in phytoplankton chlorophyll. TSS loading, light and phytoplankton observations were compiled and a light- and temperature-dependent Skeletonema-based phytoplankton growth model was applied to evaluate chlorophyll supported by TSS nitrogen during 1983-1995. TSS loading declined 75% from ~0.60×10(6)kgmonth(-1) to ~0.15×10(6)kgmonth(-1) during 1983-1995. Model results indicate that nitrogen reduction related to TSS reduction was minor and explained a small fraction (~15%) of the long-term chlorophyll decline. The decline in NBay TSS loading appears to have increased water clarity and in situ irradiance and contributed to the long-term chlorophyll decline by inducing a physiological response of a ~20% reduction in chlorophyll per cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  9. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  10. Removal of Cs{sup +}, Sr{sup 2+}, and Co{sup 2+} ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Zheng, Lei [Southwest University of Science and Technology, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang (China)

    2017-04-15

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater.

  11. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    Science.gov (United States)

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    A 3-year study was conducted by the U.S. Geological Survey and the University of Wisconsin-Green Bay to characterize water quality in agricultural streams in the Fox/Wolf watershed in northeastern Wisconsin and provide information to assist in the calibration of a watershed model for the area. Streamflow, phosphorus, and suspended solids data were collected between October 1, 2003, and September 30, 2006, in five streams, including Apple Creek, Ashwaubenon Creek, Baird Creek, Duck Creek, and the East River. During this study, total annual precipitation was close to the 30-year normal of 29.12 inches. The 3-year mean streamflow was highest in the East River (113 ft3/s), followed by Duck Creek (58.2 ft3/s), Apple Creek (26.9 ft3/s), Baird Creek (12.8 ft3/s), and Ashwaubenon Creek (9.1 ft3/s). On a yield basis, during these three years, the East River had the highest flow (0.78 ft3/s/mi2), followed by Baird Creek (0.61 ft3/s/mi2), Apple Creek (0.59 ft3/s/mi2), Duck Creek (0.54 ft3/s/mi2), and Ashwaubenon Creek (0.46 ft3/s/mi2). The overall median total suspended solids (TSS) concentration was highest in Baird Creek (73.5 mg/L), followed by Apple and Ashwaubenon Creeks (65 mg/L), East River (40 mg/L), and Duck Creek (30 mg/L). The median total phosphorus (TP) concentration was highest in Ashwaubenon Creek (0.60 mg/L), followed by Baird Creek (0.47 mg/L), Apple Creek (0.37 mg/L), East River (0.26 mg/L), and Duck Creek (0.22 mg/L).

  12. Comparison of remote sensing algorithms for retrieval of suspended particulate matter concentration from reflectance in coastal waters

    Science.gov (United States)

    Freeman, Lauren A.; Ackleson, Steven G.; Rhea, William Joseph

    2017-10-01

    Suspended particulate matter (SPM) is a key environmental indicator for rivers, estuaries, and coastal waters, which can be calculated from remote sensing reflectance obtained by an airborne or satellite imager. Here, algorithms from prior studies are applied to a dataset of in-situ at surface hyperspectral remote sensing reflectance, collected in three geographic regions representing different water types. These data show the optically inherent exponential nature of the relationship between reflectance and sediment concentration. However, linear models are also shown to provide a reasonable estimate of sediment concentration when utilized with care in similar conditions to those under which the algorithms were developed, particularly at lower SPM values (0 to 20 mg/L). Fifteen published SPM algorithms are tested, returning strong correlations of R2>0.7, and in most cases, R2>0.8. Very low SPM values show weaker correlation with algorithm calculated SPM that is not wavelength dependent. None of the tested algorithms performs well for high SPM values (>30 mg/L), with most algorithms underestimating SPM. A shift toward a smaller number of simple exponential or linear models relating satellite remote sensing reflectance to suspended sediment concentration with regional consideration will greatly aid larger spatiotemporal studies of suspended sediment trends.

  13. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  14. Chemical composition shape form and size of suspended solids in the atmosphere carried by rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2001-01-01

    The interest of this work is to know about shape form, size and chemical composition of the suspended solids in the atmosphere of Toluca city and which are carried by the rains. The harvest of the samples was carried out during january to november 1999. The separation of the particulate matter from the rain water was realized through centrifugation. The solids were analysed by Scanning Electron Microscopy to know the shape form and size and the chemical composition was determined by X-ray dispersive energy in general form and of some particles individually analysed. The p H was measured to the solutions and the quantification of some dissolved ions by the Icp technique was realized. The results of the solids showed C, O, Na, Mg, Al, Si, S, P, K, Ca, Ti and Fe. Moreover they present sizes which varying from a ten of nanometers until some tens of microns. (Author)

  15. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  16. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-05-15

    The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.

  17. Resuspension and transport of suspended solids in Eurajoensalmi Bay. Final report of monitoring activities in 2009-2011; Resuspensio ja kiintoaineen kulkeutuminen Eurajoensalmessa. Vesistoemittausten loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Mykkanen, J.; Kiirikki, M.; Lindfors, A. [Luode Consulting Oy, Espoo (Finland)

    2012-11-15

    The goal of monitoring activities carried out in Eurajoensalmi Bay was to indentify factors affecting dispersal of river waters and suspended solid matter in the estuary area. In addition to suspended solids load and dispersal of river water, also release of sedimented particles from the sea bed in resuspension was studied. River water quality and discharge as well as resuspension in Eurajoensalmi estuary area were monitored with Luode automatic monitoring stations equipped with water quality, water level, wave height and weather sensors. Dynamics of Eurajoensalmi estuary area was studied by installing profiling current meters (ADCP) and water quality sensors to the sea floor at the mouth of Eurajoensalmi. Spatial variation of surface water quality was monitored with a flow-through method from a moving vessel and manual profiling several times during the monitoring period. Collected data was processed and used in determining suspended solids balance of Eurajoensalmi Bay. The balance was determined by creating a regression model for water exchange and sediment flux over the cross section at the mouth of Eurajoensalmi. Regression model was created also to determine resuspension in Eurajoensalmi area. Sediment flux and resuspension were modeled using long term wind data from Kylmaepihlaja meteorological station as a variable to determine overall sediment balance of Eurajoensalmi.

  18. Comparison between thermo balance and classic gravimetric method for determination of suspended solids in sludge from wastewater treatment plant

    International Nuclear Information System (INIS)

    Bruzzone, E.

    2009-01-01

    In this paper two methods for determination of suspended solids in sludge from wastewater treatment plants (activated, thickened and dry, in a range from 0.1 to 20-25%) are compared. Results are similar from statistic point of view between classic gravimetric method and thermo balance method. However the later seems better for its rapid and easy execution. [it

  19. Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin

    Science.gov (United States)

    Danz, Mari E.; Corsi, Steven R.; Graczyk, David J.; Bannerman, Roger T.

    2010-01-01

    Knowledge of the daily, monthly, and yearly distribution of contaminant loadings and streamflow can be critical for the successful implementation and evaluation of water-quality management practices. Loading data for solids (suspended sediment and total suspended solids) and total phosphorus and streamflow data for 23 watersheds were summarized for four ecoregions of Wisconsin: the Driftless Area Ecoregion, the Northern Lakes and Forests Ecoregion, the North Central Hardwoods Ecoregion, and the Southeastern Wisconsin Till Plains Ecoregion. The Northern Lakes and Forests and the North Central Hardwoods Ecoregions were combined into one region for analysis due to a lack of sufficient data in each region. Urban watersheds, all located in the Southeastern Wisconsin Till Plains, were analyzed separately from rural watersheds as the Rural Southeastern Wisconsin Till Plains region and the Urban Southeastern Wisconsin Till Plains region. Results provide information on the distribution of loadings and streamflow between base flow and stormflow, the timing of loadings and streamflow throughout the year, and information regarding the number of days in which the majority of the annual loading is transported. The average contribution to annual solids loading from stormflow periods for the Driftless Area Ecoregion was 84 percent, the Northern Lakes and Forests/North Central Hardwoods region was 71 percent, the Rural Southeastern Wisconsin Till Plains region was 70 percent, and the Urban Southeastern Wisconsin Till Plains region was 90 percent. The average contributions to annual total phosphorus loading from stormflow periods were 72, 49, 61, and 76 percent for each of the respective regions. The average contributions to annual streamflow from stormflow periods are 20, 23, 31, and 50 percent for each of the respective regions. In all regions, the most substantial loading contributions for solids were in the late winter (February through March), spring (April through May), and

  20. Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland.

    Science.gov (United States)

    Bilotta, G S; Krueger, T; Brazier, R E; Butler, P; Freer, J; Hawkins, J M B; Haygarth, P M; Macleod, C J A; Quinton, J N

    2010-03-01

    This paper quantifies the yields of suspended solids (SS) from a headwater catchment managed as improved temperate grassland, providing the first direct, catchment-scale evidence of the rates of erosion from this land-use in the UK and assessing the threat posed to aquatic ecosystems. High-resolution monitoring of catchment hydrology and the concentrations of SS and volatile organic matter (VOM) were carried out in the first-order channel of the Den Brook headwater catchment in Devon (UK) during the 2006-2007 hydrological season. The widely used 'rating curve' (discharge-concentration) approach was employed to estimate yields of SS, but as demonstrated by previous researchers, this study showed that discharge is a poor predictor of SS concentrations and therefore any yields estimated from this technique are likely to be highly uncertain. Nevertheless, for the purpose of providing estimates of yields that are comparable to previous studies on other land uses/sources, this technique was adopted albeit in an uncertainty-based framework. The findings suggest that contrary to the common perception, grasslands can be erosive landscapes with SS yields from this catchment estimated to be between 0.54 and 1.21 t ha(-1) y(-1). In terms of on-site erosion problems, this rate of erosion does not significantly exceed the commonly used 'tolerable' threshold in the UK ( approximately 1 t ha(-1) y(-1)). In terms of off-site erosion problems, it is argued here that the conventional expression of SS yield as a bulk annual figure has little relevance to the water quality and ecological status of surface waters and therefore an alternative technique (the concentration-frequency curve) is developed within this paper for the specific purpose of assessing the ecological threat posed by the delivery of SS into surface waters. This technique illustrates that concentrations of SS recorded at the catchment outlet frequently exceed the water quality guidelines, such as those of the EU

  1. Genome?resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings

    OpenAIRE

    Rahman, Sumayah F.; Kantor, Rose S.; Huddy, Robert; Thomas, Brian C.; van Zyl, Andries W.; Harrison, Susan T.L.; Banfield, Jillian F.

    2017-01-01

    Abstract Thiocyanate (SCN?) is a toxic compound that forms when cyanide (CN?), used to recover gold, reacts with sulfur species. SCN??degrading microbial communities have been studied, using bioreactors fed synthetic wastewater. The inclusion of suspended solids in the form of mineral tailings, during the development of the acclimatized microbial consortium, led to the selection of an active planktonic microbial community. Preliminary analysis of the community composition revealed reduced mic...

  2. Twelve Years of Monitoring Phosphorus and Suspended-Solids Concentrations and Yields in the North Fork Ninnescah River above Cheney Reservoir, South-Central Kansas 1997-2008

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.; Ziegler, Andrew C.

    2009-01-01

    Cheney Reservoir, located on the North Fork Ninnescah River in south-central Kansas, is the primary water supply for the city of Wichita and an important recreational resource. Concerns about taste-and-odor occurrences in Cheney Reservoir have drawn attention to potential pollutants, including total phosphorus (TP) and total suspended solids (TSS). July 2009 was the 15th anniversary of the establishment of the Cheney Reservoir Watershed pollution management plan. The U.S. Geological Survey (USGS), in cooperation with the city of Wichita, has collected water-quality data in the basin since 1996, and has monitored water quality continuously on the North Fork Ninnescah River since 1998. This fact sheet describes 12 years (1997-2008) of computed TP and TSS data and compares these data with water-quality goals for the North Fork Ninnescah River, the main tributary to Cheney Reservoir.

  3. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  4. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.; Bakker, G. L.; Li, S.; Vreeburg, J. H G; Verberk, J. Q J C; Medema, G. J.; Liu, W. T.; Van Dijk, J. C.

    2014-01-01

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected

  5. Regional estimation of extreme suspended sediment concentrations using watershed characteristics

    Science.gov (United States)

    Tramblay, Yves; Ouarda, Taha B. M. J.; St-Hilaire, André; Poulin, Jimmy

    2010-01-01

    SummaryThe number of stations monitoring daily suspended sediment concentration (SSC) has been decreasing since the 1980s in North America while suspended sediment is considered as a key variable for water quality. The objective of this study is to test the feasibility of regionalising extreme SSC, i.e. estimating SSC extremes values for ungauged basins. Annual maximum SSC for 72 rivers in Canada and USA were modelled with probability distributions in order to estimate quantiles corresponding to different return periods. Regionalisation techniques, originally developed for flood prediction in ungauged basins, were tested using the climatic, topographic, land cover and soils attributes of the watersheds. Two approaches were compared, using either physiographic characteristics or seasonality of extreme SSC to delineate the regions. Multiple regression models to estimate SSC quantiles as a function of watershed characteristics were built in each region, and compared to a global model including all sites. Regional estimates of SSC quantiles were compared with the local values. Results show that regional estimation of extreme SSC is more efficient than a global regression model including all sites. Groups/regions of stations have been identified, using either the watershed characteristics or the seasonality of occurrence for extreme SSC values providing a method to better describe the extreme events of SSC. The most important variables for predicting extreme SSC are the percentage of clay in the soils, precipitation intensity and forest cover.

  6. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    Science.gov (United States)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  7. Modeling the Impacts of Suspended Sediment Concentration and Current Velocity on Submersed Vegetation in an Illinois River Pool, USA

    National Research Council Canada - National Science Library

    Best, Elly

    2004-01-01

    This technical note uses a modeling approach to examine the impacts of suspended sediment concentrations and current velocity on the persistence of submersed macrophytes in a shallow aquatic system...

  8. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Pandey, P.; Kunte, P.D.

    , it can be used for a better output. The month of November also has a good amount of sediments. The study of Landsat 7 could not be done for monsoon and post-monsoon season due to non-availability of cloud-free data. The software package is developed... concentration and transport has been made much easier using the satellite imagery due to continuous and synoptic view. Temporal satellites monitoring of the area offers a better opportunity for the monthly, seasonal and yearly study of the suspended sediments...

  9. Evaluating the Efficiency of Tragacanth Coagulant Aid in Removing Colloidal Materials and Suspended Solids Creating Turbidity from Karun River Water

    OpenAIRE

    Majid Farhadi; Afshin Takdastan; Roghayeh Baghbany

    2016-01-01

    Introduction: Colloidal materials and suspended solids cause turbidity in water. To remove turbidity, clarification method is used that includes processes of coagulation, flocculation, and sedimentation. Due to the long duration of coagulation process, coagulant aids are applied. Despite the favorable efficiency of synthetic polyelectrolytes as a coagulant aid, due to their harmful effects on human health, in this process, natural organic polymers are used instead. Materials and Methods: I...

  10. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  11. Evaluation of Intake Efficiencies and Associated Sediment-Concentration Errors in US D-77 Bag-Type and US D-96-Type Depth-Integrating Suspended-Sediment Samplers

    Science.gov (United States)

    Sabol, T. A.; Topping, D. J.; Griffiths, R. E.

    2011-12-01

    Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically with an intake-efficiency of 1.0 ± 0.10. Results from 1940s Federal Interagency Sedimentation Project (FISP) laboratory experiments show that when the intake efficiency does not equal 1.0, suspended-sediment samplers either under- or oversample sediment relative to water, leading to biases in suspended-sediment concentration. The majority of recent FISP sampler development and testing has been conducted under uniform flow conditions using flume and slack-water tow tests, with little testing in actual turbulent rivers. Recent work has focused on the hydraulic characteristics and intake efficiencies of these samplers, without field investigations of the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the non-uniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling. This introduces errors into the suspended-sediment data that may not be predictable on the basis of flume and tow tests alone. This study (1) evaluates the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96 samplers at multiple river cross sections under a range of flow conditions; (2) examines if water temperature and sampling duration explain measured differences in intake efficiency between samplers and between laboratory and field tests; (3) models and predicts the directions and magnitudes of errors in measured suspended-sand concentration; and (4) determines if the relative differences in suspended-sediment concentration in a variety of size classes are consistent with the differences expected on the basis of the 1940s FISP-laboratory experiments. Results indicate that under river conditions, the intake efficiency of the US D-96 sampler is superior to that of the US D-77 bag-type sampler and

  12. Rheology of dilute acid hydrolyzed corn stover at high solids concentration.

    Science.gov (United States)

    Ehrhardt, M R; Monz, T O; Root, T W; Connelly, R K; Scott, C T; Klingenberg, D J

    2010-02-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20-35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

  13. Review of Oceanographic and Geochemical Data Collected in Massachusetts Bay during a Large Discharge of Total Suspended Solids from Boston's Sewage-Treatment System and Ocean Outfall in August 2002

    Science.gov (United States)

    Bothner, Michael H.; Butman, Bradford; Casso, Michael A.

    2010-01-01

    During the period August 14-23, 2002, the discharge of total suspended solids (TSS) from the Massachusetts Water Resources Authority sewage-treatment plant ranged from 32 to 132 milligrams per liter, causing the monthly average discharge to exceed the limit specified in the National Pollution Discharge Elimination System permit. Time-series monitoring data collected by the U.S. Geological Survey in western Massachusetts Bay were examined to evaluate changes in environmental conditions during and after this exceedance event. The rate of sediment trapping and the concentrations of near-bottom suspended sediment measured near the outfall in western Massachusetts Bay increased during this period. Because similar increases in sediment-trapping rate were observed in the summers of 2003 and 2004, however, the increase in 2002 cannot be definitively attributed to the increased TSS discharge. Concentrations of copper and silver in trapped sediment collected 10 and 20 days following the 2002 TSS event were elevated compared to those in pre-event samples. Maximum concentrations were less than 50 percent of toxicity guidelines. Photographs of surficial bottom sediments obtained before and after the TSS event do not show sediment accumulation on the sea floor. Concentrations of silver, Clostridium perfringens, and clay in surficial bottom sediments sampled 10 weeks after the discharge event at a depositional site 3 kilometers west of the outfall were unchanged from those in samples obtained before the event. Simulation of the TSS event by using a coupled hydrodynamic-wave-sediment-transport model could enhance understanding of these observations and of the effects of the exceedance on the local marine environment.

  14. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  15. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... efficiency from 1% to 80% compared to experiments with no stirring but with the same operational conditions. This showed the crucial importance of having the solids in suspension and not settled during the remediation....

  16. Suppression of local haze variations in MERIS images over turbid coastal waters for retrieval of suspended sediment concentration

    NARCIS (Netherlands)

    Shen, F.; Verhoef, W.

    2010-01-01

    Atmospheric correction over turbid waters can be problematic if atmospheric haze is spatially variable. In this case the retrieval of water quality is hampered by the fact that haze variations could be partly mistaken for variations in suspended sediment concentration (SSC). In this study we propose

  17. Estimation of suspended sediment flux in streams using continuous turbidity and flow data coupled with laboratory concentrations

    Science.gov (United States)

    Jack Lewis

    2002-01-01

    The widening use of sediment surrogate measurements such as turbidity necessitates consideration of new methods for estimating sediment flux. Generally, existing methods can be simply be used in new ways. The effectiveness of a method varies according to the quality of the surrogate data and its relation to suspended sediment concentration (SSC). For this discussion,...

  18. Development of equipment for migration control of radioactive cesium absorbed in suspended solid in the river water

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Ishikawa, Hiroyasu

    2015-01-01

    To prevent inflow of radiocesium with suspended solids (SS) into farmland and increase in dose rate of the river bank in the midstream and downstream, it is important to reduce SS in the river water; therefore we newly developed the test equipment using non-woven fabrics as a trapping material to capture and reduce the SS in running small river water. Authors installed this equipment into the small river which is located in mountainous area surrounded by forests where radionuclides released from the Fukushima Daiichi Nuclear Power Plant were deposited. Two turbidity gauges are installed in inflow and outflow point of this equipment and the turbidity has been continuously measured. From the result of a comparison of turbidity between inflow point and outflow point, a turbidity of inflow point is always higher than outflow point during ordinary water-level; this equipment can capture and reduce the SS in the river water. Through the analysis of particle size distribution, identification of minerals and measurement of concentration of radioactive Cs of the captured SS in the non-woven fabric should be carried out, to clarify the effectiveness of this equipment and non-woven fabrics for reducing the radioactive Cs in small rivers in the future. (author)

  19. How do changes in suspended sediment concentration alone influence the size of mud flocs under steady turbulent shearing?

    Science.gov (United States)

    Tran, Duc; Kuprenas, Rachel; Strom, Kyle

    2018-04-01

    Modeling the size and settling velocity of sediment under the influence of flocculation is crucial for the accurate prediction of mud movement and deposition in sediment transport modeling of environments such as agricultural streams, large coastal rivers, estuaries, river plumes, and turbidity currents. Yet, collecting accurate and high resolution data on mud flocs is difficult. As a result, models that account for the influence of flocculation on mud settling velocity are based on sparse data that often present non-congruent relationship in floc properties with basic influencers of flocculations such as suspended sediment concentration. This study examines the influence of suspended sediment concentration on floc size populations within a turbulent suspension. Specifically, the work investigates: (1) the relationship between the equilibrium floc size and suspended sediment concentration under conditions of steady concentration and turbulent shearing; and (2) the speed at which mature flocs adapt to an unsteady drop in the concentration when turbulent shear is constant. Two sets of experiments were used to investigate the target processes. All work was conducted in laboratory mixing tanks using a floc camera and a newly developed image acquisition method. The new method allows for direct imaging and sizing of flocs within turbulent suspensions of clay in concentrations ranging from 15 to 400 mg/L, so that no transfer of the sample to another settling column or imaging tank is needed. The primary conclusions from the two sets of experiments are: (1) that the equilibrium floc size in an energetic turbulent suspension is linearly and positively related to concentration over the range of C = 50 to 400 mg/L, yet with a smaller-than-expected slope based on previous data and models from low-energy environments; and (2) that floc sizes decrease quickly (with a time lag on the order of 1-15 min) to time-varying decreases in concentration at turbulent shearing of G = 50s-1

  20. Turbidity and Total Suspended Solids on the Lower Cache River Watershed, AR.

    Science.gov (United States)

    Rosado-Berrios, Carlos A; Bouldin, Jennifer L

    2016-06-01

    The Cache River Watershed (CRW) in Arkansas is part of one of the largest remaining bottomland hardwood forests in the US. Although wetlands are known to improve water quality, the Cache River is listed as impaired due to sedimentation and turbidity. This study measured turbidity and total suspended solids (TSS) in seven sites of the lower CRW; six sites were located on the Bayou DeView tributary of the Cache River. Turbidity and TSS levels ranged from 1.21 to 896 NTU, and 0.17 to 386.33 mg/L respectively and had an increasing trend over the 3-year study. However, a decreasing trend from upstream to downstream in the Bayou DeView tributary was noted. Sediment loading calculated from high precipitation events and mean TSS values indicate that contributions from the Cache River main channel was approximately 6.6 times greater than contributions from Bayou DeView. Land use surrounding this river channel affects water quality as wetlands provide a filter for sediments in the Bayou DeView channel.

  1. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    Nelson, D.M.; Lovett, M.B.

    1980-01-01

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  2. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  3. Stochastic modeling of total suspended solids (TSS) in urban areas during rain events.

    Science.gov (United States)

    Rossi, Luca; Krejci, Vladimir; Rauch, Wolfgang; Kreikenbaum, Simon; Fankhauser, Rolf; Gujer, Willi

    2005-10-01

    The load of total suspended solids (TSS) is one of the most important parameters for evaluating wet-weather pollution in urban sanitation systems. In fact, pollutants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), phosphorous and organic compounds are adsorbed onto these particles so that a high TSS load indicates the potential impact on the receiving waters. In this paper, a stochastic model is proposed to estimate the TSS load and its dynamics during rain events. Information on the various simulated processes was extracted from different studies of TSS in urban areas. The model thus predicts the probability of TSS loads arising from combined sewer overflows (CSOs) in combined sewer systems as well as from stormwater in separate sewer systems in addition to the amount of TSS retained in treatment devices in both sewer systems. The results of this TSS model illustrate the potential of the stochastic modeling approach for assessing environmental problems.

  4. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  5. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  6. Estuarine Suspended Sediment Dynamics: Observations Derived from over a Decade of Satellite Data

    Directory of Open Access Journals (Sweden)

    Anthony Reisinger

    2017-12-01

    Full Text Available Suspended sediment dynamics of Corpus Christi Bay, Texas, USA, a shallow-water wind-driven estuary, were investigated by combining field and satellite measurements of total suspended solids (TSS. An algorithm was developed to transform 500-m Moderate Resolution Imaging Spectroradiometer (MODIS Aqua satellite reflectance data into estimated TSS values. The algorithm was developed using a reflectance ratio regression of MODIS Band 1 (red and Band 3 (green with TSS measurements (n = 54 collected by the Texas Commission on Environmental Quality for Corpus Christi Bay and other Texas estuaries. The algorithm was validated by independently collected TSS measurements during the period of 2011–2014 with an uncertainty estimate of 13%. The algorithm was applied to the period of 2002–2014 to create a synoptic time series of TSS for Corpus Christi Bay. Potential drivers of long-term variability in suspended sediment were investigated. Median and IQR composites of suspended sediments were generated for seasonal wind regimes. From this analysis it was determined that long-term, spatial patterns of suspended sediment in the estuary are related to wind-wave resuspension during the predominant northerly and prevalent southeasterly seasonal wind regimes. The impact of dredging is also apparent in long-term patterns of Corpus Christi Bay as concentrations of suspended sediments over dredge spoil disposal sites are higher and more variable than surrounding areas, which is most likely due to their less consolidated sediments and shallower depths requiring less wave energy for sediment resuspension. This study highlights the advantage of how long-synoptic time series of TSS can be used to elucidate the major drivers of suspended sediments in estuaries.

  7. The Analysis of Septic Tank Performance in Regard to Suspended Solids and Organic Matter Removal

    Directory of Open Access Journals (Sweden)

    Ala Kirjanova

    2011-12-01

    Full Text Available Abstract 117 The aim of this work was to evaluate the removal of suspended solids (SS and 7-day biochemical oxygen demand (BOD7 in a three chamber septic tank depending on theoretical wastewater retention time and the degree of septic tank cleanliness. It was found out that the performance of the septic tank depended on the degree of its cleanliness: when the septic tank was clean and retention time was three days, SS and BOS7 removal efficiency was 77±10% and 67±14% respectively, whereas two months later, after septic tank desludging, SS removal efficiency decreased to 53±22% and BOD7 to 32±31%. The performance of the septic tank also depended on theoretical wastewater retention time: when some amount of solids was accumulated at the bottom of the septic tank and wastewater retention time was one day, SS and BOS7 removal efficiency was 45±40% and 33±16% respectively; when retention time was three days, SS removal efficiency increased to 53±22% but BOD7 removal efficiency remained similar to one day retention time, i.e. 32±31%.Article in Lithuanian

  8. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  9. Occurrence of tributyltin (TBT)-resistant bacteria is not related to TBT pollution in Mekong River and coastal sediment: with a hypothesis of selective pressure from suspended solid.

    Science.gov (United States)

    Suehiro, Fujiyo; Mochizuki, Hiroko; Nakamura, Shinji; Iwata, Hisato; Kobayashi, Takeshi; Tanabe, Shinsuke; Fujimori, Yoshifumi; Nishimura, Fumitake; Tuyen, Bui Cach; Tana, Touch Seang; Suzuki, Satoru

    2007-07-01

    Tributyltin (TBT) is organotin compound that is toxic to aquatic life ranging from bacteria to mammals. This study examined the concentration of TBT in sediment from and near the Mekong River and the distribution of TBT-resistant bacteria. TBT concentrations ranged from TBT-resistant bacteria ranged TBT-resistant bacteria ranged from TBT in the sediment and of TBT-resistant bacteria were unrelated, and chemicals other than TBT might induce TBT resistance. TBT-resistant bacteria were more abundant in the dry season than in the rainy season. Differences in the selection process of TBT-resistant bacteria between dry and rainy seasons were examined using an advection-diffusion model of a suspended solid (SS) that conveys chemicals. The estimated dilution-diffusion time over a distance of 120 km downstream from a release site was 20 days during dry season and 5 days during rainy season, suggesting that bacteria at the sediment surface could be exposed to SS for longer periods during dry season.

  10. Daily variability of suspended particulate concentrations and yields and their effect on river particulates chemistry

    Directory of Open Access Journals (Sweden)

    M. Meybeck

    2015-03-01

    Full Text Available Daily total suspended solids concentrations (TSS, mg L-1, yields (Y, kg day-1 km-2 and runoff (q, L s-1 km-2 in world rivers are described by the median (C50, the upper percentile (C99, the discharge-weighted average concentrations (C*, and by their corresponding yields (Y50, Y99, Y* and runoff (q*, q50, q99. These intra-station descriptors range over two to six orders of magnitude at a given station. Inter-station variability is considered through three sets of dimensionless metrics: (i q*/q50, C*/C50 and Y*/Y50, defining the general temporal variability indicators, and q99/q50, C99/C50 and Y99/Y50, defining the extreme variability indicators; (ii river flow duration (W2 and flux duration (M2 in 2% of time; and (iii the truncated rating curve exponent (b50sup of the C vs q relationship for the upper flows. The TSS and Y variability, measured on US, French and world rivers, are first explained by hydrological variability through the b50sup metric, the variability amplifier, then by basin size, erodibility, relief and lake occurrence. Yield variability is the product of runoff variability × TSS variability. All metrics are considerably modified after river damming. The control of river particulate matter (RPM composition by TSS or yields depends on the targeted component. For major elements (Al, Fe, Mn, Ti, Si, Ca, Mg, Na, K, the average RPM chemistry is not dependent on C* and Y* in most world hydroregions, except in the tropical hydrobelt where it is controlled by basin relief. By contrast, the particulate organic carbon content (POC, as a percentage of RPM is inversely correlated to TSS concentrations for (i intra-station measurements in any hydroregion, and (ii inter-station average POC and TSS figures in world rivers. TSS controls heavy metal content (ppm in highly contaminated basins (e.g. Cd in the Seine vs the Rhone, and total metal concentration (ng/L in all cases. Relations between RPM composition and TSS should be taken into account

  11. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  12. Quantification of Surface Suspended Sediments along a River Dominated Coast with NOAA AVHRR and SeaWiFS Measurements: Louisiana, USA

    Science.gov (United States)

    Myint, S. W.; Walker, N. D.

    2002-01-01

    The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.

  13. Determination of the origin of suspended matter and sediments in the Elbe estuary using natural tracers

    International Nuclear Information System (INIS)

    Schoer, J.H.

    1990-01-01

    The clay mineral composition, the concentrations of carbonates, the proportions of carbon and oxygen isotopes in carbonates and organic matter, as well as the concentrations of different nonanthropogenic metals were used to determine the origin of different grain size fractions of sediments and suspended matter in the Elbe estuary. Analysis of the smectite/kaolinite proportion revealed that solid material · 2 μm from the North Sea is transported up the river, about 40 km beyond the most upstream position of the salt wedge. In the 2-20 μm fraction, the 16 O/ 18 O ratio in carbonates and the kaolinite/chlorite proportion demonstrate a transport of North Sea material between 40 and 20 km upstream of the marine water limit. The transport behavior of the 20-63 μm grain size fraction could be determined by the hafnium concentration, representative for the heavy mineral zircon. In this case, the transport distance beyond the salt wedge was up to 20 km. No information was available on the origin of the fine organic matter, whereas the coarser fractions were derived primarily from debris of salt marsh vegetation. The results demonstrate that in the Elbe estuary mixing between marine and fluvial solid material occurs upstream of the salt wedge and is significantly responsible for the observed decrease in the concentration of various pollutants in sediments and suspended matter along the estuary. The cause of the upstream particle transport is probably a scour lag mechanism based on asymmetries of the flood- and ebb-tide current distribution, especially their differing maximum velocities

  14. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  15. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended

  16. Effects of wind farm construction on concentrations and fluxes of dissolved organic carbon and suspended sediment from peat catchments at Braes of Doune, central Scotland

    Directory of Open Access Journals (Sweden)

    I. Grieve

    2008-07-01

    Full Text Available This paper assesses the impacts of disturbance associated with the construction of a wind farm on fluxes of dissolved organic carbon (DOC and suspended sediment from a blanket peat catchment in central Scotland during the period immediately following completion of construction. Six streams draining the site were sampled on six dates from October 2006, when construction was completed, and an additional three control streams to the west of the site were sampled on the same dates. Turbidity and stage were recorded semi-continuously in the two largest streams (one disturbed and one control, which were also sampled during storm events. Absorbance (400 nm and DOC concentrations were determined on all samples, and suspended sediment was determined on the event samples. Absorbance and DOC were closely correlated in both the disturbed and undisturbed streams, with slightly greater absorbance per unit DOC in the disturbed streams. DOC concentrations in disturbed tributaries were always greater than those in undisturbed streams, with mean differences ranging from 2 to around 5 mg L-1. DOC and stage were positively correlated during events with maximum concentrations in excess of 30 mg L 1 at peak flow. Suspended sediment concentrations were markedly elevated in the disturbed stream with maximum concentrations at peak flow some 4–5 times greater than in the control. The colour of the sediment suggested that it was highly organic in nature at peak flow, and suspended particulate organic carbon represented a further loss of C from the site. Using flow-weighted mean DOC concentrations calculated for the storms monitored in autumn 2007, dissolved carbon losses can be estimated for the catchments of the disturbed and control streams. From these data the additional DOC loss related to disturbance associated with the wind farm is estimated at 5 g m-2.

  17. Estimating concentrations of fine-grained and total suspended sediment from close-range remote sensing imagery

    Science.gov (United States)

    Mosbrucker, Adam; Spicer, Kurt R.; Christianson, Tami; Uhrich, Mark A.

    2015-01-01

    Fluvial sediment, a vital surface water resource, is hazardous in excess. Suspended sediment, the most prevalent source of impairment of river systems, can adversely affect flood control, navigation, fisheries and aquatic ecosystems, recreation, and water supply (e.g., Rasmussen et al., 2009; Qu, 2014). Monitoring programs typically focus on suspended-sediment concentration (SSC) and discharge (SSQ). These time-series data are used to study changes to basin hydrology, geomorphology, and ecology caused by disturbances. The U.S. Geological Survey (USGS) has traditionally used physical sediment sample-based methods (Edwards and Glysson, 1999; Nolan et al., 2005; Gray et al., 2008) to compute SSC and SSQ from continuous streamflow data using a sediment transport-curve (e.g., Walling, 1977) or hydrologic interpretation (Porterfield, 1972). Accuracy of these data is typically constrained by the resources required to collect and analyze intermittent physical samples. Quantifying SSC using continuous instream turbidity is rapidly becoming common practice among sediment monitoring programs. Estimations of SSC and SSQ are modeled from linear regression analysis of concurrent turbidity and physical samples. Sediment-surrogate technologies such as turbidity promise near real-time information, increased accuracy, and reduced cost compared to traditional physical sample-based methods (Walling, 1977; Uhrich and Bragg, 2003; Gray and Gartner, 2009; Rasmussen et al., 2009; Landers et al., 2012; Landers and Sturm, 2013; Uhrich et al., 2014). Statistical comparisons among SSQ computation methods show that turbidity-SSC regression models can have much less uncertainty than streamflow-based sediment transport-curves or hydrologic interpretation (Walling, 1977; Lewis, 1996; Glysson et al., 2001; Lee et al., 2008). However, computation of SSC and SSQ records from continuous instream turbidity data is not without challenges; some of these include environmental fouling, calibration, and

  18. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    Science.gov (United States)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  19. Response of suspended sediment concentration to tidal dynamics at a site inside the mouth of an inlet: Jiaozhou Bay (China

    Directory of Open Access Journals (Sweden)

    S. L. Yang

    2004-01-01

    Full Text Available Observations of fair weather currents and suspended sediment concentrations (SSC were made using an acoustic Doppler current profiler and two YSI turbidity sensors over a neap to spring time cycle at a site near the inner mouth of a semi-enclosed mesotidal-macrotidal embayment (Jiaozhou Bay to examine the influence of tidal dynamics on concentration and transport of suspended sediment. During the investigation, SSC varied from about 3 to 16 mg L–1 at the surface and about 6 to 40 mg L–1 close to the bed, while the current velocity reached 79 cm s–1 at the surface and 61 cm s–1 near the bed. SSC was tidally cyclic. The near-bed instantaneous SSC was closely related to current velocity with almost no time lag, indicating that the variability of SSC was governed by current-induced settling/resuspension. At the surface, however, instantaneous SSC was poorly related to instantaneous current velocity because the peak SSC tended to occur around ebb slack water. This suggests that the surface SSC was controlled by horizontal advection from landward higher concentration areas. Both at the surface and near the bed, on the other hand, tidally-averaged SSC was well correlated to tidal range and current speed. Current velocity and SSC were flood-dominated for all the tides investigated, which resulted in significant landward residual suspended sediment transport at the study site. The observed flood dominance was mainly attributed to the location of the study site on the landward side of the bay’s inlet where flow separation is favoured during flood tide. It was concluded that tides are the dominant hydrodynamic component controlling the variability of SSC during fair weather at the study area. Keywords: sediment, concentration, suspension, advection, currents, shoalling effect, Jiaozhou Bay, China

  20. Solids-based concentrated solar power receiver

    Science.gov (United States)

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  1. The influence of air-suspended particulate concentration on the incidence of suicide attempts and exacerbation of schizophrenia

    Science.gov (United States)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2014-01-01

    The main objective of this study was to evaluate the role of the concentration of solid air-suspended particles (SSP) in the incidence of mental disorders. The study is based on 1,871 cases, registered in the Beer-Sheva Mental Health Center (BS-MHC) at Ben-Gurion University (Israel) during a 16-month period from 2001 to 2002; 1,445 persons were hospitalized due to exacerbation of schizophrenia (ICD-10: F20-F29) and 426 after committing a suicide attempt using a variety of means as coded in the ICD-10 (ICD-10: X60-X84). Pearson and Spearman test correlations were used; the statistical significance was tested at p suicide attempts, N SU , was found ( ρ > 0.3, p 0.2). A trend towards positive correlation ( ρ > 0.2, p 0.1). Obviously, concentration of SSP is not the one and only parameter of air pollution state determining meteorological-biological impact, involving incidence of mental disorders, although its role can scarcely be overstated. However, since it is one of the simplest measured parameters, it could be widely used and helpful in the daily struggle for human life comfort in semi-arid areas as well as urban and industrial surroundings, where air pollution reaches crucial values. This study may permit determination of the limits for different external factors, which do not overcome threshold values (without provoking avalanche situations), to single out the group of people at increased risk (with according degree of statistic probability), whose reactions to the weather violations can involve the outbreak of frustration points and prevent or alleviate detrimental mental effects.

  2. Prediction and forecast of Suspended Sediment Concentration (SSC) on the Upper Yangtze basin

    Science.gov (United States)

    Matos, José Pedro; Hassan, Marwan; Lu, Xixi; Franca, Mário J.

    2017-04-01

    Sediment transport in suspension may represent 90% or more of the global annual flux of sediment. For instance, more than 99% of the sediment supplied to the sea by the Yangtze River is suspended load. Suspended load is an important component for understanding channel dynamics and landscape evolution. Sediments transported in suspension are a major source of nutrients for aquatic organisms in riparian and floodplain habitats, and play a beneficial role acting as a sink in the carbon cycle. Excess of fine sediments may also have adverse effects. It can impair fish spawning by riverbed clogging, disturb foraging efficiency of hunting of river fauna, cause algae and benthos scouring, reduce or inhibit exchanges through the hyporheic region. Accumulation of fine sediments in reservoirs reduces storage capacity. Although fine sediment dynamics has been the focus of many studies, the current knowledge of sediment sources, transfer, and storage is inadequate to address fine sediment dynamics in the landscape. The theoretical derivation of a complete model for suspended sediment transport at the basin scale, incorporating small scale processes of production and transport, is hindered because the underlying mechanisms are produced at different non-similar scales. Availability of long-term reliable data on suspended sediment dynamics is essential to improve our knowledge on transport processes and to develop reliable sediment prediction models. Over the last 60 years, the Yangtze River Commission has been measuring the daily Suspended Sediment Concentration (SSC) at the Pingshan station. This dataset provides a unique opportunity to examine temporal variability and controls of fine sediment dynamics in the Upper Yangtze basin. The objective of this study is to describe temporal variation of fine sediment dynamics at the Pingshan station making use of the extensive sediment monitoring program undertaken at that location. We test several strategies of prediction and forecast

  3. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    Science.gov (United States)

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  4. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico

    Science.gov (United States)

    A. C. Gellis; NO-VALUE

    2013-01-01

    The significant characteristics controlling the variability in storm-generated suspended-sediment loads and concentrations were analyzed for four basins of differing land use (forest, pasture, cropland, and urbanizing) in humid-tropical Puerto Rico. Statistical analysis involved stepwise regression on factor scores. The explanatory variables were attributes of flow,...

  5. Parameterization of Time-Averaged Suspended Sediment Concentration in the Nearshore

    Directory of Open Access Journals (Sweden)

    Hyun-Doug Yoon

    2015-11-01

    Full Text Available To quantify the effect of wave breaking turbulence on sediment transport in the nearshore, the vertical distribution of time-averaged suspended sediment concentration (SSC in the surf zone was parameterized in terms of the turbulent kinetic energy (TKE at different cross-shore locations, including the bar crest, bar trough, and inner surf zone. Using data from a large-scale laboratory experiment, a simple relationship was developed between the time-averaged SSC and the time-averaged TKE. The vertical variation of the time-averaged SSC was fitted to an equation analogous to the turbulent dissipation rate term. At the bar crest, the proposed equation was slightly modified to incorporate the effect of near-bed sediment processes and yielded reasonable agreement. This parameterization yielded the best agreement at the bar trough, with a coefficient of determination R2 ≥ 0.72 above the bottom boundary layer. The time-averaged SSC in the inner surf zone showed good agreement near the bed but poor agreement near the water surface, suggesting that there is a different sedimentation mechanism that controls the SSC in the inner surf zone.

  6. Evaluation of intake efficiencies and associated sediment-concentration errors in US D-77 bag-type and US D-96-type depth-integrating suspended-sediment samplers

    Science.gov (United States)

    Sabol, Thomas A.; Topping, David J.

    2013-01-01

    Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically, within an intake-efficiency range of 1.0 ± 0.10, where intake efficiency is defined as the ratio of the velocity of the water through the sampler intake to the local ambient stream velocity. Local ambient stream velocity is defined as the velocity of the water in the river at the location of the nozzle, unaffected by the presence of the sampler. Results from Federal Interagency Sedimentation Project (FISP) laboratory experiments published in the early 1940s show that when the intake efficiency is less than 1.0, suspended-sediment samplers tend to oversample sediment relative to water, leading to potentially large positive biases in suspended-sediment concentration that are positively correlated with grain size. Conversely, these experiments show that, when the intake efficiency is greater than 1.0, suspended‑sediment samplers tend to undersample sediment relative to water, leading to smaller negative biases in suspended-sediment concentration that become slightly more negative as grain size increases. The majority of FISP sampler development and testing since the early 1990s has been conducted under highly uniform flow conditions via flume and slack-water tow tests, with relatively little work conducted under the greater levels of turbulence that exist in actual rivers. Additionally, all of this recent work has been focused on the hydraulic characteristics and intake efficiencies of these samplers, with no field investigations conducted on the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the more nonuniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling, thus introducing errors into the suspended-sediment data collected by these samplers that may not be predictable on the basis

  7. Air quality of the industrial area of Padova. SO2 and micropollutants concentration measurements around the incenerator of domestic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baracco, L [Amministrazione Provinciale di Padova; Boschi, G

    1986-04-01

    Some data related to one year measurements of SO2 concentrations and of suspended solid particles taken by Environmental Monitoring Station of the Provincial Network of Padua, located near the Industrial Area, are reported. In addition is reported a series of analytical determinations of heavy metals and organic micropollutants carried out in the same area by the Municipal Refuse Collection and public Health Services. The obtained results indicate that the concentration of SO2 in the area is well within the law limits while, as far as the suspended solid particles are concerned, it points out that the respect of the imposed limits, must be carefully evaluated in regards to new urbans developments and air cleaning plants which are going to be arranged by the Veneto.

  8. The effects of Hurricane Hugo on suspended-sediment loads, Lago Loiza Basin, Puerto Rico

    Science.gov (United States)

    Gellis, A.

    1993-01-01

    In the two main tributaries that enter Lago Loiza, Rio Grande de Loiza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58.2??106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Rio Grande de Loiza for Hurricane Hugo was 2290 mgl-1, the second lowest for the 12 storms that have been monitored at this site. In Rio Gurabo the storm-average suspended-sediment concentration was 1420 mg l -1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Rio Grande de Loiza, suspended-sediment concentrations were as low as 33 mg l-1 during peak runoff of 20m3s-1. Normally the suspended-sediment concentrations at this discharge are 300 mg l-1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads. High winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads. -from Author

  9. Quantification of Suspended Sediment Load by Double Correlation in the Watershed of Chellif (Algeria

    Directory of Open Access Journals (Sweden)

    Bouchelkia Hamid

    2014-07-01

    Full Text Available The sediment transport in rivers in Algeria is very high. However, it is poorly quantified in some wadis because of the absence and the shortage of data especially the concentration of fine particles and also the unavailability of gauging stations. To fill this gap, a technique for estimating sediment yield, based on data recorded at the gauging station has been developed. The estimation of suspended sediment yield was conducted by a statistical analysis with double correlation on average daily flow and solid concentrations. The results obtained by applying this model to the watershed Chellif are very encouraging because the correlation coefficients of the found models are between 61% and 91% for the first correlation and between 86% and 97% for the second correlation. The estimated quantity of suspended sediment load is between 2.35 and 4.12 million tonnes per year, it appears important; This is due to the vulnerability of the Chellif basin facing erosion, the importance of its area and the importance of fluid flows in wadi Cheliff and its torrential regime. Mention here some of the results and their significance to the study.

  10. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  11. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    Science.gov (United States)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  12. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    Science.gov (United States)

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  13. Assessments of lake profiling on temperature, Total Suspended ...

    African Journals Online (AJOL)

    Interpolation were performed on temperature, total suspended solid (TSS) and turbidity (TUR) based on in-situ and ex-situ analyses according to the correlation matrix and linear regression at 14 different depths for the Chomor River and Mahadir Island. The result showed outlet significantly decreased over depth caused the ...

  14. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2012-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  15. Avaliação da concentração de mercúrio em sedimentos e material particulado no rio Acre, estado do Acre, Brasil Mercury concentration assessment in botton sediments and suspended solids from Acre river, in the State of Acre, Brazil

    Directory of Open Access Journals (Sweden)

    Artur Fernando Silva Mascarenhas

    2004-01-01

    Full Text Available A avaliação dos teores de mercúrio em sistemas aquáticos sem influência direta de fontes antropogênicas conhecidas não tem sido conduzida com freqüência na região Amazônica. Visando contribuir para esclarecer a ocorrência de valores elevados de Hg em peixes consumidos pela população de Rio Branco - AC, o Instituto Evandro Chagas - IEC, realizou um estudo para quantificar os teores de Hg em sedimentos de fundo e material particulado no rio Acre e alguns afluentes, além da caracterização físico-química das águas entre as cidades de Brasiléia e Assis Brasil. As amostras de sedimentos foram peneiradas na fração Mercury levels assessment in aquatic systems areas without influences of antropogenic sources have not been well studied in the Amazon region. For the identification of the origin of high values of Hg in fish consumed by population of Rio Branco City - AC, the Evandro Chagas Institute - IEC, studied the mercury levels in sediments, suspended solids and studied also the physical-chemical characterization of waters, in the Acre river and also some in afluents, between Brasiléia and Assis Brasil cities. Bottom sediments samples were sieved to <250 mesh fraction after drying. The suspended solid was obtained by precipitation with Al2SO4. About 250 mg of the material was submitted the acid digestion and the determinations of Hg were made by Could Vapor Atomic Absorption Spectrometry. The physical-chemical parameters pH, electric conductivity, temperature and dissolved total solids, were studied in the field, by potenciometric methods. The Hg levels in bottom sediments range 0,018 and 0,184 mug g-1, mean of 0,054 ± 0,034 mug g-1, while the suspended solids varied between 0,067 and 0,220 mug g-1, average of 0,098 ± 0,037 mug g-1. The waters were slightly acid with pH varying among 5,80 - 6,95 and conductivity electric 151,60 - 1.151,00 muS cm-1. The mercury levels in the analyzed materials was below of standard levels for

  16. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  17. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    Science.gov (United States)

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  18. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    Science.gov (United States)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was

  19. Laboratory study on the adsorption of Mn(2+) on suspended and deposited amorphous Al(OH)(3) in drinking water distribution systems.

    Science.gov (United States)

    Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting

    2012-09-01

    Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  1. Spatiotemporal dynamics of suspended sediment within an actively urbanizing peri-urban catchment in Portugal

    Science.gov (United States)

    Walsh, Rory; Ferreira, Carla; Ferreira, Antonio

    2016-04-01

    Suspended sediment levels tend to be enhanced in urban catchments, but vary considerably with (amongst many other factors) the degree of active urban development or redevelopment within the catchment and 'urbanization style'. Relatively little, however, is known about the relationship between suspended solids and urbanization style in peri-urban Mediterranean environments. This paper focuses on spatiotemporal suspended sediment dynamics within a typical Portuguese peri-urban catchment, Ribeira dos Covoes, that is undergoing rapid urbanization. The catchment currently has a 40% urban cover, with 17% impervious surfaces, dispersed between woodland (56%) and agricultural areas (4%). The study uses suspended sediment concentration measurements made at the catchment outlet (ESAC) and in three upstream tributaries: (i) Espírito Santo, with a largest urban area (49%); (ii) Porto Bordalo, 39% urbanized; and (iii) Quinta, 22% urbanized, most of which (18%) being an enterprise park under construction. Water sampling was carried out manually during 10 storm hydrographs between October 2011 and March 2013. Suspended sediment concentrations (SSC) were derived by laboratory analysis of the filtered samples using the gravimetric method. In addition total dissolved solids concentrations (TDS) were estimated using conductivity readings. Greatest SSCs were recorded in the Quinta sub-catchment and at the catchment outlet at ESAC (113-4320 mg L-1 and 200-1656 mg L-1, respectively) than in the Espírito Santo and Porto Bordalo sub-catchments (183-852 mg L-1 and 47-598 mg L-1 respectively, despite their greater impervious cover. The greatest SSCs for Quinta result from it containing the construction site, but it showed lower TDS (56-4010 mg L-1), perhaps due to the coarse sandy nature of the construction site. Higher TDS concentrations, however, were displayed in Porto Bordalo (27-5400 mg L-1), possibly due to the loamy soil. Espírito Santo, comprising sandy-loam soils, displayed 27

  2. Impact of suspended sediments on the survival of seagrass: Halodule pinifolia (Miki den Hartog

    Directory of Open Access Journals (Sweden)

    Satumanatpan, S.

    2006-07-01

    Full Text Available The research aimed to study the level of suspended sediments on the survival of Halodule pinifolia (Miki den Hartog. Three experiments were conducted. Broad concentration of suspended sediments covering the level found in nature were employed in the first experiment. The impact concentration of suspended sediments on the survival of H. pinifolia was extended in more detail in the second and third experiments. H. pinifolia was planted by washing off the mud and holding it with a grating. An air pump was used to stir the sediment in suspension during the experiments and necessary water parameters were strictly control. The suspended sediment was spread by siphon and conducted in a period of 30 days for the first and second experiments, and 45 days for the third experiment. The result indicated that suspended sediments with a concentration of 1-64 mg/l had no impact on the survival of H. pinifolia within 30 days. Initially, suspended sediments of 66 mg/l lowered H. pinifolia's survival to 95% at day 30. Concentration of suspended sediments higher than 66 mg/l affected the survival of H. pinifolia. The decreasing survival was noticed during days 20 -25 of the experiment and all died during days 40-45. However, the life span of H. pinifolia, would be very important and might also affect the survival of H. pinifolia after 30 days.

  3. Seasonal changes in suspended sediment load in the Gauthami-Godavari Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, B.P.; Rao, K.M.; Rao, V.S.

    Studies carried out on suspended matter characteristics of the the Gautami Godavari Estuary revealed that the concentration of suspended matter (CSM) during southwest monsoon influenced mainly by the increased run off at both Neelarevu and Vrudha...

  4. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Aparna, E-mail: aparna.27889@gmail.com; Howell, Nathan L., E-mail: nlhowell@central.uh.edu; Rifai, Hanadi S., E-mail: rifai@uh.edu

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K{sub oc} values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K{sub ow}, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs.

  5. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Balasubramani, Aparna; Howell, Nathan L.; Rifai, Hanadi S.

    2014-01-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K oc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K ow , organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  6. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  7. Treatment of petroleum refinery wastewater using a sequential anaerobic-aerobic moving-bed biofilm reactor system based on suspended ceramsite.

    Science.gov (United States)

    Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao

    2013-01-01

    In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.

  8. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.

    2012-01-01

    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  9. Quantification and Analysis of Suspended Sediments Concentration Using Mobile and Static Acoustic Doppler Current Profiler Instruments

    Directory of Open Access Journals (Sweden)

    Angga Dwinovantyo

    2017-01-01

    Full Text Available The application of Acoustic Doppler Current Profiler (ADCP can be used not only for measuring ocean currents, but also for quantifying suspended sediment concentrations (SSC from acoustic backscatter strength based on sonar principle. Suspended sediment has long been recognized as the largest sources of sea contaminant and must be considered as one of the important parameters in water quality of seawater. This research was to determine SSC from measured acoustic backscattered intensity of static and mobile ADCP. In this study, vertically mounted 400 kHz and 750 kHz static ADCP were deployed in Lembeh Strait, North Sulawesi. A mobile ADCP 307.2 kHz was also mounted on the boat and moved to the predefined cross-section, accordingly. The linear regression analysis of echo intensity measured by ADCP and by direct measurement methods showed that ADCP is a reliable method to measure SSC with correlation coefficient (r 0.92. Higher SSC was observed in low water compared to that in high water and near port area compared to those in observed areas. All of this analysis showed that the combination of static and mobile ADCP methods produces reasonably good spatial and temporal data of SSC.

  10. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  11. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    Science.gov (United States)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  12. Real-time measurements of suspended sediment concentration and particle size using five techniques

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  13. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    International Nuclear Information System (INIS)

    Liu Yunguo; Zhou Ming; Zeng Guangming; Li Xin; Xu Weihua; Fan Ting

    2007-01-01

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals

  14. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: axore@163.com; Zhou Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Li Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Xu Weihua [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Fan Ting [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2007-03-06

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals.

  15. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet

  16. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    Science.gov (United States)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  17. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  18. Characterization and radionuclides sorption of suspended particulate matters in freshwater according to their settling kinetics

    International Nuclear Information System (INIS)

    Brach-Papa, C.; Boyer, P.; Amielh, M.; Anselmet, F.

    2004-01-01

    In freshwater, the transfers of radionuclides depend both on exchanges between liquid and solid phases and on mass transfers between suspended matter and bottom sediment. Whereas the former ones depend on chemical processes (such as sorption/desorption, complexation, the latter ones are regulated by hydrological and sedimentary considerations (dispersion, erosion, deposit closely related to the interactions between flow, suspended matter and bed sediment. Some of our previous studies highlight the need to consider the matter heterogeneity and its specific sediment dynamics to correctly report the inhomogeneity of fluxes in time and in space. These considerations lead us to develop experimental methods to distinguish the different matter classes, present in natural water, mainly according to their erosion threshold and settling kinetics. In this context, this paper presents the experimental protocol TALISMEN to characterize a natural bulk suspension according the identification of its main settling kinetics groups. In a first step, this identification is achieved by the use of a settling tank, that allows the monitoring of the suspended solid concentration at various depths, combined to a vertical mono-dimensional settling model applying a multi-class approach. In a second step, the particle groups are isolated and their physico-chemical properties are determined ( i.e mineral composition, specific surface area, particulate organic carbon, in order to fully characterized them. In a last one, the sorption property of each group toward radionuclides is determined by the measurements of its distribution coefficients (Kd). The results confirm the interest to consider these heterogeneities for the modelling of the radionuclides transfer in freshwater. From one group to other, these heterogeneities appear at two levels: 1) their sediment dynamics and 2) their radionuclides sorption properties. These conclusions can be equally applying to others xenobiotics as heavy metals

  19. Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure.

    Science.gov (United States)

    Custer, Kevin W; Hammerschmidt, Chad R; Burton, G Allen

    2016-01-01

    Nickel bioavailability is reduced in the presence of dissolved organic carbon (DOC), suspended solids (TSS), and other complexing ligands; however, no studies have examined the relative importance of Ni exposure through different compartments (water, sediment, food). Hyalella azteca and Lymnaea stagnalis were exposed to Ni-amended water, sediment, and food, either separately or in combination. Both organisms experienced survival and growth effects in several Ni compartment tests. The DOC amendments attenuated L. stagnalis Ni effects (survival, growth, and (62)Ni bioaccumulation), and presence of TSS exposures demonstrated both protective and synergistic effects on H. azteca and L. stagnalis. (62)Ni trophic transfer from food to H. azteca and L. stagnalis was negligible; however, bioaccumulating (62)Ni was attributed to (62)Ni-water ((62)Ni flux from food), (62)Ni-TSS, and (62)Ni-food. Overall, H. azteca and L. stagnalis Ni compartment toxicity increased in the following order: Ni-water > Ni-sediment > Ni-all (water, sediment, food) > Ni-food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nitrogen and phosphorus associating with different size suspended solids in roof and road runoff in Beijing, China.

    Science.gov (United States)

    Wu, Junliang; Ren, Yufen; Wang, Xuemei; Wang, Xiaoke; Chen, Liding; Liu, Gangcai

    2015-10-01

    Roofs and roads, accounting for a large portion of the urban impervious land surface, have contributed significantly to urban nonpoint pollution. In this study, in Beijing, China, roof and road runoff are sampled to measure the suspended solids (SS), nitrogen (N), and phosphorus (P) contained in particles with different sizes. The SS content in the road runoff (151.59 mg/L) was sevenfold that in the roof runoff (21.13 mg/L, p runoff than in road runoff. The small particulates in the range of 0.45-50 μm consisted of 59 % SS in the roof runoff and 94 % SS in the road runoff. P was mainly attached to particle sizes of 10-50 μm in the roof (73 %) and road (48 %) runoffs, while N was mainly in a dissolved phase state in both runoffs. So, the different associations of N and P raise a challenge in preventing stormwater pollution in urban environments.

  1. Numerical simulation of the motion of charged suspended particle in multi-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    A method for computing numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  2. Numerical Simulation of the Motion of Charged Suspended Particle in Multi-Phase Flow

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    A method for computing Numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  3. Construction of Multi-Year Time-Series Profiles of Suspended Particulate Inorganic Matter Concentrations Using Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Pannimpullath R. Renosh

    2017-12-01

    Full Text Available Hydro-sedimentary numerical models have been widely employed to derive suspended particulate matter (SPM concentrations in coastal and estuarine waters. These hydro-sedimentary models are computationally and technically expensive in nature. Here we have used a computationally less-expensive, well-established methodology of self-organizing maps (SOMs along with a hidden Markov model (HMM to derive profiles of suspended particulate inorganic matter (SPIM. The concept of the proposed work is to benefit from all available data sets through the use of fusion methods and machine learning approaches that are able to process a growing amount of available data. This approach is applied to two different data sets entitled “Hidden” and “Observable”. The hidden data are composed of 15 months (27 September 2007 to 30 December 2008 of hourly SPIM profiles extracted from the Regional Ocean Modeling System (ROMS. The observable data include forcing parameter variables such as significant wave heights ( H s and H s 50 (50 days from the Wavewatch 3-HOMERE database and barotropic currents ( U b a r and V b a r from the Iberian–Biscay–Irish (IBI reanalysis data. These observable data integrate hourly surface samples from 1 February 2002 to 31 December 2012. The time-series profiles of the SPIM have been derived from four different stations in the English Channel by considering 15 months of output hidden data from the ROMS as a statistical representation of the ocean for ≈11 years. The derived SPIM profiles clearly show seasonal and tidal fluctuations in accordance with the parent numerical model output. The surface SPIM concentrations of the derived model have been validated with satellite remote sensing data. The time series of the modeled SPIM and satellite-derived SPIM show similar seasonal fluctuations. The ranges of concentrations for the four stations are also in good agreement with the corresponding satellite data. The high accuracy of the

  4. Time-series MODIS image-based retrieval and distribution analysis of total suspended matter concentrations in Lake Taihu (China).

    Science.gov (United States)

    Zhang, Yuchao; Lin, Shan; Liu, Jianping; Qian, Xin; Ge, Yi

    2010-09-01

    Although there has been considerable effort to use remotely sensed images to provide synoptic maps of total suspended matter (TSM), there are limited studies on universal TSM retrieval models. In this paper, we have developed a TSM retrieval model for Lake Taihu using TSM concentrations measured in situ and a time series of quasi-synchronous MODIS 250 m images from 2005. After simple geometric and atmospheric correction, we found a significant relationship (R = 0.8736, N = 166) between in situ measured TSM concentrations and MODIS band normalization difference of band 3 and band 1. From this, we retrieved TSM concentrations in eight regions of Lake Taihu in 2007 and analyzed the characteristic distribution and variation of TSM. Synoptic maps of model-estimated TSM of 2007 showed clear geographical and seasonal variations. TSM in Central Lake and Southern Lakeshore were consistently higher than in other regions, while TSM in East Taihu was generally the lowest among the regions throughout the year. Furthermore, a wide range of TSM concentrations appeared from winter to summer. TSM in winter could be several times that in summer.

  5. The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone

    Science.gov (United States)

    Jaffe, Bruce E.

    2015-01-01

    Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.

  6. Platform for monitoring water and solid fluxes in mountainous rivers

    Science.gov (United States)

    Nord, Guillaume; Esteves, Michel; Aubert, Coralie; Belleudy, Philippe; Coulaud, Catherine; Bois, Jérôme; Geay, Thomas; Gratiot, Nicolas; Legout, Cédric; Mercier, Bernard; Némery, Julien; Michielin, Yoann

    2016-04-01

    The project aims to develop a platform that electronically integrates a set of existing sensors for the continuous measurement at high temporal frequency of water and solid fluxes (bed load and suspension), characteristics of suspended solids (distribution in particle size, settling velocity of the particles) and other variables on water quality (color, nutrient concentration). The project is preferentially intended for rivers in mountainous catchments draining areas from 10 to 1000 km², with high suspended sediment concentrations (maxima between 10 and 300 g/l) and highly dynamic behavior, water discharge varying of several orders of magnitude in a short period of time (a few hours). The measurement of water and solid fluxes in this type of river remains a challenge and, to date, there is no built-in device on the market to continuously monitor all these variables. The development of this platform is based on a long experience of measurement of sediment fluxes in rivers within the French Critical Zone Observatories (http://portailrbv.sedoo.fr/), especially in the Draix-Bléone (http://oredraixbleone.irstea.fr/) and OHMCV (http://www.ohmcv.fr/) observatories. The choice was made to integrate in the platform instruments already available on the market and currently used by the scientific community (water level radar, surface velocity radar, turbidity sensor, automatic water sampler, video camera) and to include also newly developed instruments (System for the Characterization of Aggregates and Flocs - see EGU2016-8542 - and hydrophone) or commercial instruments (spectrophotometer and radiometer) to be tested in surface water with high suspended sediment concentration. Priority is given to non-intrusive instruments due to their robustness in this type of environment with high destructive potential. Development work includes the construction of a platform prototype "smart" and remotely configurable for implantation in an isolated environment (absence of electric

  7. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea)

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2011-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  8. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    Science.gov (United States)

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  9. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  10. Frequency Selection for Multi-frequency Acoustic Measurement of Suspended Sediment

    Science.gov (United States)

    Chen, X.; HO, H.; Fu, X.

    2017-12-01

    Multi-frequency acoustic measurement of suspended sediment has found successful applications in marine and fluvial environments. Difficult challenges remain in regard to improving its effectiveness and efficiency when applied to high concentrations and wide size distributions in rivers. We performed a multi-frequency acoustic scattering experiment in a cylindrical tank with a suspension of natural sands. The sands range from 50 to 600 μm in diameter with a lognormal size distribution. The bulk concentration of suspended sediment varied from 1.0 to 12.0 g/L. We found that the commonly used linear relationship between the intensity of acoustic backscatter and suspended sediment concentration holds only at sufficiently low concentrations, for instance below 3.0 g/L. It fails at a critical value of concentration that depends on measurement frequency and the distance between the transducer and the target point. Instead, an exponential relationship was found to work satisfactorily throughout the entire range of concentration. The coefficient and exponent of the exponential function changed, however, with the measuring frequency and distance. Considering the increased complexity of inverting the concentration values when an exponential relationship prevails, we further analyzed the relationship between measurement error and measuring frequency. It was also found that the inversion error may be effectively controlled within 5% if the frequency is properly set. Compared with concentration, grain size was found to heavily affect the selection of optimum frequency. A regression relationship for optimum frequency versus grain size was developed based on the experimental results.

  11. Use of biofilters and suspended-growth reactors to treat VOC's

    Energy Technology Data Exchange (ETDEWEB)

    Neal, A.B.; Loehr, R.C.

    2000-07-01

    The greater limits placed on volatile organic compound (VOC) emissions by the Clean Air Act Amendments have stimulated evaluation of various VOC treatment methods. Two applicable gas phase treatment technologies are biofiltration and suspended growth reactors. Biofiltration removes contaminants from gas streams that are passed through a bed of biologically active solids. An aerobic suspended-growth reactor (SGR) removes VOCs by biologically treating contaminated air bubbled through an aqueous suspension of active microorganisms. This research compared the performance of a typical compost biofilter to a SGR for the removal of a common VOC (toluene) from gas streams. The objective was to evaluate the impact of mass loading on process performance. Major performance parameters investigated were (1) mass emitted and elimination capacity, (2) off-gas concentrations exiting each type of reactor for various mass loadings, and (3) removal efficiencies obtained by each type of reactor. The results indicated that SGRs can effectively treat gases containing VOCs. For mass loadings ranging from 5 to 30 mg/l-h, the biofilters and SGRs achieved similar VOC removals, in the range of 96--99.7%. Drying of the biofilter medium occurred a high mass loadings. In the SGRs, at mass loadings greater than 17 mg/l-h, process performance decreased when an unknown colored substance was present.

  12. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  13. About Error in Measuring Oxygen Concentration by Solid-Electrolyte Sensors

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2008-01-01

    Full Text Available The paper evaluates additional errors while measuring oxygen concentration in a gas mixture by a solid-electrolyte cell. Experimental dependences of additional errors caused by changes in temperature in a sensor zone, discharge of gas mixture supplied to a sensor zone, partial pressure in the gas mixture and fluctuations in oxygen concentrations in the air.

  14. Concentration Impedance in Testing of Solid Oxide Cells Revisited

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard

    2017-01-01

    The concentration impedance originating from diffusion and reactant conversion impedance of the Ni-YSZ supported fuel electrode in solid oxide cell has been treated many times during the latest couple of decades. In spite of this, the separation of the diffusion impedance from the conversion...

  15. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  16. Ambient concentrations of total suspended particulate matter and its elemental constituents at the wider area of the mining facilities of TVX Hellas in Chalkidiki, Greece.

    Science.gov (United States)

    Gaidajis, George

    2003-01-01

    To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.

  17. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    -2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi...... extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3 y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty...

  18. RECENT DYNAMICS (1975 - 2012 OF COŞUŞTEA RIVER'S SUSPENDED SEDIMENT LOAD AT CORCOVA HYDROMETRIC STATION

    Directory of Open Access Journals (Sweden)

    Gabriela Adina MOROȘANU

    2016-03-01

    Full Text Available This paper aims to assess, from a statistical standpoint, the solid discharge at Corcova hydrometric station for the recent period between 1975 and 2012. The Corcova hydrometric station is located in the lowermost sector of the Coşuştea River Basin, at a distance of 2 km north-west from its confluence with Motru River. The usefulness of this study results from the endeavor to determine the years and months when the river presents an accumulation potential due to a higher transmission rate of the suspended sediment load. The statistical techniques applied in this study made use of the monthly, as well as the annual averages, minimum and maximum values of suspended sediment loads, in order to obtain the multiannual trends, seasonal and monthly differences. Thus, by using the Mann-Kendall test, the statistical distributions and frequency analysis, we could notice that the average solid discharge decreased in the last decades during the winter period, while between April and November, average solid discharge rose slightly, with a greater significance in May. Conversely, minimum solid discharge values were likely to indicate the years and months when the river’s solid intake was low, with the potential for bank erosion. The minimum values of suspended sediment loads showed little variation from year to year in all months, except for May and June, based on the influence of the peak liquid discharge on the potential erosion and sediment transport of Cosustea river. As a general conclusion, the most important aspects turned out to be the variations in April - June period, an interval well known for flash floods and high waters records, as well as for rapid changes in average, minimum and maximum solid flows.

  19. An exploratory study of using external fluid loading on a vibrating tube for measuring suspended sediment concentration in water

    International Nuclear Information System (INIS)

    Hsu, Y-S; Hwang, Y-F; Huang, J H

    2008-01-01

    This paper presents an exploratory study of using external fluid loading on a vibrating tube for measuring the suspended sediment concentration (SSC) in bodies of water such as rivers and reservoirs. This new measuring concept provides an opportunity for an automated on-site monitoring of the conditions in a body of water by taking the fluid sample instantaneously in the area surrounding the vibrating tube. The physical properties of the fluid sample are those of the fluid that naturally flows around the tube, and are more representative of those of the water with SSC to be measured. The theoretical analysis presented in this paper shows that the resonance frequencies of an immersed vibrating tube change significantly with mass density variations that normally occur in bodies of water with suspended sediment. These changes are sensitive enough to have a possible 1% resolution of the measured fluid density. The signal processing issues are discussed, and a schematic of a conceptual measuring setup is proposed. Based on the theoretical analyses and other measurement issues presented in the paper, using the loading by external fluid on a vibrating tube is feasible for measuring the SSC in water bodies

  20. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  1. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    Science.gov (United States)

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, Psoil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, Psoil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, Psoil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  2. Concentration, size, and density of total suspended particulates at the air exhaust of concentrated animal feeding operations.

    Science.gov (United States)

    Yang, Xufei; Lee, Jongmin; Zhang, Yuanhui; Wang, Xinlei; Yang, Liangcheng

    2015-08-01

    Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m⁻³ (swine gestation in summer) to 10.9 ± 3.9 mg m⁻³ (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm⁻³) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤ 10 and ≤ 2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP's particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

  3. MFT homogeneity study at TNX: Final report on the low weight percent solids concentration

    International Nuclear Information System (INIS)

    Jenkins, W.J.

    1993-01-01

    A statistical design and analysis of both elemental analyses and weight percent solids analyses data was utilized to evaluate the MFT homogeneity at low heel levels and low agitator speed at both high and low solids feed concentrations. The homogeneity was also evaluated at both low and high agitator speed at the 6000+ gallons static level. The dynamic level portion of the test simulated feeding the Melter from the MFT to evaluate the uniformity of the solids slurry composition (Frit-PHA-Sludge) entering the melter from the MFT. This final report provides the results and conclusions from the second half of the study, the low weight percent solids concentration portion, as well as a comparison with the results from the first half of the study, the high weight percent solids portion

  4. Consequences of hydrological events on the delivery of suspended sediment and associated radionuclides from the Rhone River to the Mediterranean Sea

    Energy Technology Data Exchange (ETDEWEB)

    Eyrolle, Frederique; Antonelli, Christelle; Ferrand, Emmanuelle [IRSN, Saint Paul Lez Durance (France). Pole Radioprotection environnement, dechets et crise, PRP-ENV, Service d' Etude et de Surveillance de la Radioactivite dans l' Environnement; Raimbault, Patrick [Institut Mediterraneen d' Oceanologie, OSU Pytheas, Marseille (France); Aubert, Dominique [CEFREM, Univ. de Perpignan Via Domitia CNRS UMR, Perpignan (France); Jacquet, Stephanie; Radakovitch, Olivier; Raccasi, Guillaume [Aix-Marseille Univ.-CNR-IRD-College de France, Aix en Provence (France); Charmasson, Sabine [IRSN, La Seyne sur mer (France). Pole Radioprotection, environnement, dechets et crise, PRP-ENV, Service d' Etude et de Surveillance de la Radioactivite dans l' Environnement; Gurriaran, Rodolfo [IRSN, Orsay (France). Pole Radioprotection, environnement, dechets et crise, PRP-ENV, Service de Traitement des echantillos et de Metrologie pour l' Environnement

    2012-10-15

    level and fate of suspended solids and radionuclide concentrations during flood events occurring in a large river system that could be contaminated by chronic or accidental radioactive releases. These results are of fundamental importance for further interpretations of sediment dynamics at the river mouth.

  5. Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

    Science.gov (United States)

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics. Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended

  6. Effects of Spray-Drying and Choice of Solid Carriers on Concentrations of Labrasol® and Transcutol® in Solid Self-Microemulsifying Drug Delivery Systems (SMEDDS

    Directory of Open Access Journals (Sweden)

    Christopher Wai-Kei Lam

    2013-01-01

    Full Text Available Solid self-microemulsifying drug delivery systems (SMEDDS have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC and microcrystalline cellulose (MCC were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  7. Air pollution in Aleppo city, gases,suspended particulates

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-06-01

    Total suspended particulates measured by using High Volume Air Sampler. The Co and O 3 were measured during weekday and weekend. The concentration of all pollutants at city center are higher than other measured areas. (author). 10 figs., 10 tabs

  8. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  9. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  10. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    Science.gov (United States)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  11. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard)

    Science.gov (United States)

    Meslard, Florian; Bourrin, François; Many, Gaël; Kerhervé, Philippe

    2018-05-01

    An experiment was carried out during summer 2015 in the inner part of the Kongsfjorden to study the inputs of meltwater and behaviour of associated suspended particles. We used a wide range of oceanographic instruments to assess the hydrological and hydrodynamic characteristics of coastal waters. The transfer of suspended particles occurs from a large surface plume fed by two main sources: the most important one is the upwelling of fresh and turbid water coming from a tide-water glacier: the Kronebreen, and the second one from a continental glacier: the Kongsvegen. We estimated that these two sources discharged about 2.48 ± 0.37 × 106 t of suspended sediments during the two months of melting. The major part of these sediments is deposited within the first kilometre due to flocculation phenomena. Flocculation is initiated below the surface turbid plume and is mainly caused by the salinity gradient and high suspended particle concentration. Finally, our estimates of suspended particle fluxes by a typical Arctic coastal glacier showed the need to consider suspended sediment fluxes from high-latitude areas into global budgets in the context of climate change.

  12. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  13. Estimating the concentration of uranium in some environmental samples in Kuwait after the 1991 Gulf War

    International Nuclear Information System (INIS)

    Bou-Rabee, F.

    1995-01-01

    The concentration of uranium in Kuwait soil samples as well as in solid fall-out and surface air-suspended matter samples has been assayed by inductively coupled plasma mass spectrometry (ICP-MS). It was found that average U concentration in the soil samples (∼ 0.7 μg/g) is half of that in solid fall-out and air particulate matter samples. The average U concentration in the latter samples in the summer season was 2 μg g -1 and decreased to 1 μg g -1 during the winter of 1993/94. The higher concentration in the solid fall-out and air samples cannot be explained by fall-out from the oil fired power station as the U average concentration of the escaping fly ashes from the station was only 0.22 μg g -1 . The uranium concentration in the tap water was a very low 0.02 μg L -1 . The total per capita annual intake of uranium via inhalation by Kuwait inhabitants was appraised to be ''approx =''0.05 Bq, which is <0.2% of the recommended annual limit on intake for members of the general population. (author)

  14. Analysis of the Danube river suspended load regime

    International Nuclear Information System (INIS)

    Lukac, M.

    2004-01-01

    In this presentation author deals with the analysis of the Danube river suspended load regime at the Slovak section of Danube. It is concluded and recommended: Suspended load transport at the Slovak section of Danube decreases in the downstream directions - annual averages: Utilize relation of the Water Research Institute in Medvedov, the relation of the Slovak Hydrometeorological Institute is probably slightly underestimated; Distribution of suspended load concentration in the cross-section is influenced mainly with local hydraulic and morphological conditions; Measured flow velocity in the range 0.6 - 2.65 m/sec -1 , influenced with water level slope; Silt particles the most numerous, less numerous sandy and clayey particles; Bratislava 3.54 mil. tonnes, Medvedov 2.22 mil. tonnes, and Komarno 1.96 mil. tonnes; Recommendation to measure actual volume of the Cunovo reservoir, in order to validate sediment transport balance; Recommendation to continue in a complex monitoring programme of sediment transport

  15. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    Science.gov (United States)

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Recent studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, domestic, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey’s National Water Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model that has improved the understanding of sources, loads, yields, and concentrations of dissolved solids in streams of the conterminous United States.

  16. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.

    Science.gov (United States)

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che; Hsieh, Feng-Ming

    2007-09-30

    The degradability of phenol and trichloroethene (TCE) by Pseudomonas putida BCRC 14349 in both suspended culture and immobilized culture systems are investigated. Chitosan beads at a size of about 1-2mm were employed to encapsulate the P. putida cells, becoming an immobilized culture system. The phenol concentration was controlled at 100 mg/L, and that of TCE was studied from 0.2 to 20 mg/L. The pH, between 6.7 and 10, did not affect the degradation of either phenol or TCE in the suspended culture system. However, it was found to be an important factor in the immobilized culture system in which the only significant degradation was observed at pH >8. This may be linked to the surface properties of the chitosan beads and its influence on the activity of the bacteria. The transfer yield of TCE on a phenol basis was almost the same for the suspended and immobilized cultures (0.032 mg TCE/mg phenol), except that these yields occurred at different TCE concentrations. The transfer yield at a higher TCE concentration for the immobilized system suggested that the cells immobilized in carriers can be protected from harsh environmental conditions. For kinetic rate interpretation, the Monod equation was employed to describe the degradation rates of phenol, while the Haldane's equation was used for TCE degradation. Based on the kinetic parameters obtained from the two equations, the rate for the immobilized culture systems was only about 1/6 to that of the suspended culture system for phenol degradation, and was about 1/2 for TCE degradation. The slower kinetics observed for the immobilized culture systems was probably due to the slow diffusion of substrate molecules into the beads. However, compared with the suspended cultures, the immobilized cultures may tolerate a higher TCE concentration as much less inhibition was observed and the transfer yield occurred at a higher TCE concentration.

  17. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Salvacion, J.; Murayama, M.; Otaguchi, K.; Koide, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The effects of alcohols, column dimensions, gas velocity, physical properties of liquids, and gel particles on the gas holdup e{sub G} and the volumetric liquid-phase mass transfer coefficient k{sub L}a in a gel-particle-suspended bubble column under liquid-solid batch operation were studied experimentally. It was shown that addition of at alcohols to water generally increases e{sub G}. However, k{sub L}a values in aqueous solutions of alcohols became larger or smaller than those in water, according to the kind and concentration of the alcohol added to water. It was also shown that the presence of suspended gel-particles in the bubble column reduces values of e{sub G} and k{sub L}a. Based on these observations, empirical equations for e{sub G} in the transition regime in an ethanol solution, for e{sub G} in the heterogeneous now regime applicable to various alcohol solutions and for k{sub L}a in both now regimes were proposed. 18 refs., 12 figs., 3 tabs.

  18. Effect of phosphate ion on filtration characteristics of solids generated in simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.

    1998-01-01

    The effect of phosphate ion on the filtration characteristics of solids generated in a high level liquid waste was experimentally examined. Addition of phosphate ion into the simulated HLLW induced the formation of phosphate such as zirconium phosphate and phosphomolybdic acid. The filtration rate of zirconium phosphate abruptly dropped in the midst of filtration because of a gel-cake formation on the filter surface. The denitration of the simulated HLLW contained zirconium phosphate improved the filterability of this gelatinous solid. The filtration rates of denitrated HLLW decreased with increase of the phosphate ion concentration, since the solids formed by denitration had irregular particle size and configuration in the simulated HLLW with phosphate ion. To increase the filtration rate of denitrated HLLW, a solid suspension filtration tester was designed. The solid-suspension accelerated the filtration rate only in the simulated HLLW with more than 1500 ppm phosphate ion concentration. Under this condition, the simple agitation can easily suspend the constituent solids of filter cake in the solution and a much higher filtration rate can be obtained because the filter cake is continuously swept from the filter surface by rotation of propellers. (authors)

  19. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    Science.gov (United States)

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  1. A Synopsis of Technical Issues for Monitoring Sediment in Highway and Urban Runoff

    Science.gov (United States)

    Bent, Gardner C.; Gray, John R.; Smith, Kirk P.; Glysson, G. Douglas

    2000-01-01

    processing raw sediment samples (including homogenization and subsampling) for subsequent analysis for total suspended solids or suspended-sediment concentration often increase variance and may introduce bias. Processing artifacts can be substantial if the methods used are not appropriate for the concentrations and particle-size distributions present in the samples collected. Analytical methods for determining sediment concentrations include the suspended-sediment concentration and the total suspended solids methods. Although the terms suspended-sediment concentration and total suspended solids are often used interchangeably to describe the total concentration of suspended solid-phase material, the analytical methods differ and can produce substantially different results. The total suspended solids method, which commonly is used to produce highway- and urban-runoff sediment data, may not be valid for studies of runoff water quality. Studies of fluvial and highway-runoff sediment data indicate that analyses of samples by the total suspended solids method tends to under represent the true sediment concentration, and that relations between total suspended solids and suspended-sediment concentration are not transferable from site to site even when grain-size distribution information is available. Total suspended solids data used to calculate suspended-sediment loads in highways and urban runoff may be fundamentally unreliable. Consequently, use of total suspended solids data may have adverse consequences for the assessment, design, and maintenance of sediment-removal best management practices. Therefore, it may be necessary to analyze water samples using the suspended-sediment concentration method. Data quality, comparability, and utility are important considerations in collection, processing, and analysis of sediment samples and interpretation of sediment data for highway- and urban-runoff studies. Results from sediment studies must be comparable and readily transf

  2. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    Directory of Open Access Journals (Sweden)

    Xiaopeng Jia

    2014-01-01

    Full Text Available The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  3. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  4. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    Science.gov (United States)

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  5. Investigation of suspended sediment transport using ultrasonic techniques

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1994-01-01

    The results of the initial experimental studies involving the scattering of ultrasonic signals from canonical and non-canonical shaped suspended particles with known elastical qualities are reported. These results have formed the basis for the development of a numerical model for ultrasound...... propagation through low-concentration suspensions of sand particles...

  6. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Directory of Open Access Journals (Sweden)

    Amit Kumar Nayak

    2010-01-01

    Full Text Available The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae as an innovative suspending agent. Zinc oxide suspensions (20% w/v were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite.

  7. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Pany, Dipti Ranjan; Mohanty, Biswaranjan

    2010-01-01

    The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae) as an innovative suspending agent. Zinc oxide suspensions (20% w/v) were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC) at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite. PMID:22247868

  8. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15

    Science.gov (United States)

    Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.

    2017-08-03

    Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.

  9. Suspended Particulates Concentration (PM10 under Unstable Atmospheric Conditions over Subtropical Urban Area (Qena, Egypt

    Directory of Open Access Journals (Sweden)

    M. El-Nouby Adam

    2013-01-01

    Full Text Available The main purpose of this study is to evaluate the suspended particulates (PM10 in the atmosphere under unstable atmospheric conditions. The variation of PM10 was investigated and primary statistics were employed. The results show that, the PM10 concentrations values ranged from 6.00 to 646.74 μg m−3. The average value of PM10 is equal to 114.32 μg m−3. The high values were recorded in April and May (155.17 μg m−3 and 171.82 μg m−3, respectively and the low values were noted in February and December (73.86 μg m−3 and 74.05 μg m−3, respectively. The average value of PM10 of the hot season (125.35 × 10−6 g m−3 was higher than its value for the cold season (89.27 μg m−3. In addition, the effect of weather elements (air temperature, humidity and wind on the concentration of PM10 was determined. The multiple R between PM10 and these elements ranged from 0.05 to 0.47 and its value increased to reach 0.73 for the monthly average of the database used. Finally, the PM10 concentrations were grouped depending on their associated atmospheric stability class. These average values were equal to 122.80 ± 9 μg m−3 (highly unstable or convective, 109.37 ± 12 μg m−3 (moderately unstable and 104.42 ± 15 μg m−3 (slightly unstable.

  10. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  11. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P practices which may call for local or regional planning based on natural (i.e., precipitation amount, type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  12. A cost-benefit analysis of methods for the determination of biomass concentration in wastewater treatment.

    Science.gov (United States)

    Hernandez, J E; Bachmann, R T; Edyvean, R G J

    2006-01-01

    The measurement of biomass concentration is important in biological wastewater treatment. This paper compares the accuracy and costs of the traditional volatile suspended solids (VSS) and the proposed suspended organic carbon (SOC) methods. VSS and SOC values of a dilution system were very well correlated (R(2)=0.9995). VSS and SOC of 16 samples were determined, the mean SOC/VSS ratio (0.52, n=16, sigma=0.01) was close to the theoretical value (0.53). For costing analysis, two hypothetical cases were analysed. In case A, it is assumed that 108 samples are analysed annually from two continuous reactors. Case B represents a batch experiment to be carried out in 24 incubated serum bottles. The savings, when using the SOC method, were 11,987 pounds for case A and 90 pounds for case B. This study suggests the use of SOC method as a time saving and lower cost biomass concentration measurement.

  13. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  14. Element distribution of the barley plant grown in an agar slice suspended culture

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi

    1991-01-01

    An agar slice suspended culture was devised for the further study of the barley root. The roots were placed into an agar covered with a nylon cloth and suspended in a water culture vessel. Barley roots grown in the agar developed hardly any root hair. The element contents of the root grown in the agar culture and that in the water culture were measured by neutron activation analysis. The concentrations of K, Mg and Cl in the root grown in the agar were about half of these grown in the water. Na and Mn concentrations were the same and Ca concentration was slightly higher when grown in the agar. The agar system is expected to provide more information to study the root hair. (author)

  15. Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals

    DEFF Research Database (Denmark)

    Falås, Per; Baillon-Dhumez, Aude; Andersen, Henrik Rasmus

    2012-01-01

    Removal of seven active pharmaceutical substances (ibuprofen, ketoprofen, naproxen, diclofenac, clofibric acid, mefenamic acid, and gemfibrozil) was assessed by batch experiments, with suspended biofilm carriers and activated sludge from several full-scale wastewater treatment plants. A distinct...... and attached solids for the carriers) of diclofenac, ketoprofen, gemfibrozil, clofibric acid and mefenamic acid compared to the sludges. Among the target pharmaceuticals, only ibuprofen and naproxen showed similar removal rates per unit biomass for the sludges and biofilm carriers. In contrast...

  16. Aerial Photo Utilization in Estimating Suspended Sediment in the Wuryantoro Watershed, Wonogiri

    Directory of Open Access Journals (Sweden)

    Sugiharto Budi Santoso

    2004-01-01

    Full Text Available Suspended sediment load flowing out from a watershed is normally predicated by analysis os suspended sediment of water sample, and the volume of suspended sediment be calculated based on sediment concentration and river discharge. Such field measurements need a lot of field data and they are time consuming. Another method for prediction of suspended sediment by using remote sensing imagery data and recorded rainfall data. The objective of this research is to 1 examine the capability of remote sensing technique to obtain the parameters of the physical data of land in the prediction of suspended sediment; 2 examine the accuracy of the model for prediction suspended sediment. This research is carried out in Wuryantoro watershed, Wonogiri. The main data to obtain the parameters of the physical data of land is infrared aerial photograph on scale 1 : 10.000. the method that used in this research is interpretation of remote sensing imagery data, combined with rainfall data. The result show that the accuracy of landuse is 88.5%, the accuracy of slope is 87.67%. the accuracy of the prediction of suspended sediment by model A3 87.07%, model C1 86.63%, model C2 90.57%, model A8 84.13%, model A9 80.1%, and model C4 78.6%.

  17. Association of uranium with colloidal and suspended particulate matter in Arabian sea near the west coast of Maharashtra (India)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, S.N.; Hegde, A.G.

    2004-01-01

    Association of natural uranium in seawater with colloidal and suspended-particulate matter was determined. The separation of suspended particulate material (>0.45 ) and colloidal fraction (as dissolved fractions) in seawater were done by suction and ultra filtration techniques. Seawater samples were collected at 1 km away from the shore and subjected to sequential fractionation in nine stages ranging from 2.7 μm to 1.1 nm. Suspended particulate matter were separated in three different size groups namely >2.7 μm, 0.45 μm and 0.22 μm by suction filtration using cellulose acetate and nitrate membranes filters. To concentrate the solution with colloidal particles <0.22 μm-1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit (NMWL), the solution obtained from filtration through <0.22 μm was passed through stirred ultra-filtration cell. The pH and conductivity at different stages of fractionation (dissolved) showed minor variations. The concentration of uranium was measured in suspended and dissolved fractions by using a pulsed nitrogen laser at 337.1 nm. In order to evaluate the role of mineral colloids in various stages of filtration, concentration of calcium, magnesium, potassium were measured by using ion chromatography and atomic absorption spectrometry. The clay mineral at seawater pH (approximately 8) behave as negative ions and provides binding site for the positively charge species of uranium. Among the dissolved fraction, the maximum concentrations of colloidal uranium was observed about 4 times higher than that compared to average concentration of 6.93 ± 3.10 ppb in other fractions. In the case of suspended particulate matter, the concentration of uranium was below detection limits (<1 ppb). The maximum concentration of Ca, Mg and K in the dissolved fraction were in the <1.1 nm fraction, while for suspended particulate matter, the concentration of Ca, Mg and K decreased with the decrease in size and it is highest in the fraction of 0.22 -0.45 μm.(author)

  18. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  19. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  20. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  1. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    Science.gov (United States)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  2. Application of digital image processing to a β-gauge for determining mass concentration of suspending particulate matter in atmosphere

    International Nuclear Information System (INIS)

    Gotoh, Takao

    1992-01-01

    A two-dimensional image of the mass concentration of suspending particulate matter (SPM) collected on Millipore filter paper was photographed with Ultrofilm- 3 H. The printed paper image was transformed into a digital image (256 x 256 pixels) with 256 gray levels. Two results were obtained. The averaged values of gray level over all pixels of the digital image was found to correlate with the mass value measured by a β-gauge. The characteristic range of the digital image which was transformed to frequency by two-dimensional fast fourier transformation was found in the low frequency. It was presumed to relate to SPM from anthropogenic sources because the SPMs usually show higher density and smaller particle size than SPMs from natural sources. (author)

  3. Evaluating Suspended Particles Concentration of the Inside and Outside Air of the Classroom and Its Influencing Factors in Middle schools and High Schools of Yazd

    Directory of Open Access Journals (Sweden)

    MH Ehrampoosh

    2015-11-01

    Full Text Available Abstract Introduction: Airborne pollution in such public environments as schools has adverse health effects on pupils and teachers who spend a noticeable amount of time in the school. Therefore, this study aimed to measure the suspended particles concentration of indoor and outdoor air of Yazd schools as well as to determine the influencing parameters on the pollution intensity. Methods: This analytical cross-sectional study was conducted in 20 middle-schools and high schools of males and females in winter of 2013. The environmental aerosol monitoring device, (HAZ-DUST EPAM5000 model was used to measure the concentration of PM1, PM2.5 and PM10. The study data were analyzed via applying correlation, simple linear regression and means comparison tests. Moreover, the study results were compared with the standards of World health organization(WHO and Environmental Health Organization(EPA. Results: The mean concentration of PM10, PM2.5 and PM1 in indoor class air was reported higher compared to the outdoor air. The indoor and outdoor air quality of schools in terms of Air Quality Index9 (AQI Calculator indicated an average condition for PM10, and an unhealthy condition for PM2.5 in regard with the vulnerable groups. A significant relationship was detected between indoor and outdoor air concentration particles (P<0.05. The mean indoor per outdoor air particles ratio (I/O was 1.68, 1.31, 1.46 respectively for PM10, PM2.5, PM1. Conclusion: The study findings revealed a significant relationship between indoor and outdoor suspended particle concentration demonstrating the particles penetration into the classrooms. Therefore, utilizing appropriate air conditioner systems are regarded effective in order to mitigate indoor class pollution.  

  4. Relationship between particle size and radiocesium in fluvial suspended sediment related to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kazuya Tanaka

    2014-01-01

    We collected fluvial suspended sediments in Fukushima after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and analyzed the 137 Cs concentration in bulk and size-fractioned samples to investigate the particle-size-dependent distribution of radiocesium. The 137 Cs concentration in bulk suspended sediments decreased from August to December 2011, possibly reflecting a decrease of radiocesium concentration in its source materials. Smaller particles had higher radiocesium concentrations, reflecting larger specific surface areas. Silt- and sand-size fractions occupied more than 95 % of the total 137 Cs in the suspended sediments. The contribution of clay-size fractions, which had the highest 137 Cs concentration, was quite small because of their low frequency. A line of the data showed that the particle size distribution of radiocesium was essential to evaluate the migration and distribution of radiocesium in river systems where radiocesium is mainly present as particulate form after the FDNPP accident. (author)

  5. Suspended sediment transport and shoaling in the Munambam fishery harbour, Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Abraham, P.; Josanto, V.; Sankaranarayanan, V.N.

    Results of the monthly synoptic field observations of vertical profiles of suspended sediment concentration, current velocity and salinity carried out in the Azhicode Estuary are presented with a view to understand the shoaling and siltation...

  6. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  7. Small scale patches of suspended matter and phytoplankton in the Elbe river estuary, German Bight and tidal flats

    Energy Technology Data Exchange (ETDEWEB)

    Doerffer, R; Fischer, J; Stoessel, M; Brockmann, C [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.); Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.)

    1989-01-01

    Thematic mapper and ship data has been used to study small scale features in coastal waters of the North Sea. Three independent pieces of informations from all 7 TM channels were found with factor analysis: suspended matter concentration, atmospheric scattering and sea surface temperature. Near surface suspended matter concentrations may be detected within a factor of 2. For the required atmospheric correction the signal-to-noise ratio of the channels 5 and 7 has to be improved by averaging over 25 x 25 pixels. Thus TM allows to monitor aerosol optical depth and aerosol type over cloudfree water surfaces. Sea surface temperature is retrievable with an absolute accuracy of 1.0 K as long as radiosonde data are available for the correction of atmospheric effects, while relative temperature variations of 0.5 K are detectable. The patchiness of suspended matter and its relation to underwater topography was analysed with auto- and crosscorrelation: horizontal lengths, where the suspended matter concentration of single pixels are significantly correlated either with each another or with water depth, are < 800 m. (orig.).

  8. Evaluation of the suspending properties of Cola acuminata gum on ...

    African Journals Online (AJOL)

    Calamine suspensions were formulated with CAG between the concentration range of 1 – 4 % w/v and compared with suspensions formulated with two standard suspending agents (tragacanth and acacia gums). Sedimentation volume, flow rate, rheology and redispersibility were used as evaluating parameters.

  9. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.

    Science.gov (United States)

    Patziger, M; Kainz, H; Hunze, M; Józsa, J

    2012-05-01

    Secondary settling is the final step of the activated sludge-based biological waste water treatment. Secondary settling tanks (SSTs) are therefore an essential unit of producing a clear effluent. A further important function of SSTs is the sufficient thickening to achieve highly concentrated return sludge and biomass within the biological reactor. In addition, the storage of activated sludge is also needed in case of peak flow events (Ekama et al., 1997). Due to the importance of a high SST performance the problem has long been investigated (Larsen, 1977; Krebs, 1991; Takács et al., 1991; Ekama et al., 1997; Freimann, 1999; Patziger et al., 2005; Bürger et al., 2011), however, a lot of questions are still to solve regarding e.g. the geometrical features (inflow, outflow) and operations (return sludge control, scraper mechanism, allowable maximum values of surface overflow rates). In our study we focused on SSTs under dynamic load considering both the overall unsteady behaviour and the features around the peaks, investigating the effect of various sludge return strategies as well as the inlet geometry on SST performance. The main research tool was a FLUENT-based novel mass transport model consisting of two modules, a 2D axisymmetric SST model and a mixed reactor model of the biological reactor (BR). The model was calibrated and verified against detailed measurements of flow and concentration patterns, sludge settling, accompanied with continuous on-line measurement of in- and outflow as well as returned flow rates of total suspended solids (TSS) and water. As to the inlet arrangement a reasonable modification of the geometry could result in the suppression of the large scale flow structures of the sludge-water interface thus providing a significant improvement in the SST performance. Furthermore, a critical value of the overflow rate (q(crit)) was found at which a pronounced large scale circulation pattern develops in the vertical plane, the density current in

  10. Large theoretical thermoelectric power factor of suspended single-layer MoS2

    International Nuclear Information System (INIS)

    Babaei, Hasan; Khodadadi, J. M.; Sinha, Sanjiv

    2014-01-01

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS 2 utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS 2 on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS 2 to peak at ∼2.8 × 10 4 μW/m K 2 at 300 K, at an electron concentration of 10 12 cm −2 . This figure is higher than that in bulk Bi 2 Te 3 , for example. Given its relatively high thermal conductivity, suspended SL-MoS 2 may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized

  11. [Effect of suspended silt from dredging at Yangtze estuary on Brachionus plicatilis].

    Science.gov (United States)

    Wang, Jinqui; Xu, Zhaoli; Shi, Chun; Chen, Yaqu

    2002-07-01

    The effect of suspended silt from dredging at Yangtze estuary on Brachionus plicatilis was investigated by clonal culture (to construct life table) and population accumulative culture. The intrinsic increasing rate of the rotifer population was greatly reduced under different concentrations (1, 3, 5, 7 and 9 mg.ml-1) of silt, from 29.6% to 64.1%, and to a maximum of 130.0%. The suspended silt affected population survival rate, rather than its reproduction rate. In accumulative culture, the densities of female, males, parthenogenetic eggs, and resting eggs in the population were not affected by silt. It was concluded that the presence of suspended silt should have a certain negative influence on the rotifer population in dredging Yangtze estuary.

  12. Temporal and spatial changes of cadmium in the near-bottom suspended matter of the Pomeranian Bay - Arkona Deep system

    Directory of Open Access Journals (Sweden)

    Andrzej Staniszewski

    2000-12-01

    Full Text Available Owing to the high toxicity of cadmium (Cd towards biota and the considerable quantities of this element entering the environment from anthropogenic sources, interest in its biogeochemistry is increasing. This is also true for the marine environment, which serves as a sink for both natural and anthropogenic Cd loads entering the hydrosphere and the atmosphere. The distribution of Cd in the coastal zone of the marine environment is governed primarily by the flux of the so-called fluffy layer suspended matter (FLSM, which spreads across the top of the sea floor as a several-centimetre-thick layer containing highly concentrated suspended matter. Both total contents and solid speciation of Cd was measured in FLSM collected in the Pomeranian Bay - Arkona Deep system (Western Baltic Proper in the course of the three-year-long study. Seasonal changes in the total Cd content (0.5-1.8 µg g–1 dry matter were attributed to the contribution of organic suspensions originating from algal blooms. The decreasing content of Cd in FLSM offshore is due to the input of Cd-rich suspended matter from the River Odra (Oder, and the decreasing organic matter content in FLSM with increasing depth. The contribution of labile fractions (adsorbed and bound to iron III hydroxides was found to be from 50 to 75% of the total content. In view of the substantial mobility and bioavailability of the fractions, this is a highly alarming feature.

  13. Gravitational settling of a highly concentrated system of solid spherical particles

    Science.gov (United States)

    Arkhipov, V. A.; Usanina, A. S.

    2017-09-01

    In the present paper, we report on the results of an experimental study of the process of gravity sedimentation of a cloud of monodispersed solid spherical particles with initial volume concentration C > 0.03, which was performed in a wide range of Reynolds numbers. An analytical estimate of the settling regimes of spherical particle clouds is presented. A new method for creating a spherical particle cloud with a high concentration of particles is proposed. A qualitative picture of the settling process of a highly concentrated particle cloud under gravity is revealed. A criterial dependence for the drag coefficient of a sedimenting spherical particle cloud as an entity is obtained.

  14. Remote Sensing and Water Quality Indicators in the West Flood Canal Semarang City: Spatio-temporal Structures of Lansat-8 Derived Chlorophyll-a and Total Suspended Solids

    Science.gov (United States)

    Subiyanto, Sawitri

    2017-12-01

    One of the waters that has been contaminated by industrial waste and domestic waste is the waters of West Flood Canal in Semarang City which is the estuary of the river system, which passes through the Western City of Semarang which is dense with residential and industrial. So, it is necessary to have information about the assessment of water quality in the estuary of the West Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Lansat-8 Satellite images data from April, June, and August, 2017 and there are three selected algorithms. Based on the results of TSS and Chlorophyll-A processing, the TSS shows values greater than or equal to 100 which can be said that West Flood Canal is damaged (hypertrophic). While the chlorophyll-a shows a value less than 100 indicating Eutrophic status (threatened). This is caused by the number of suspended materials in the water surface and also because of the disturbance of water vegetation in the form of weeds that destroy the function of the actual West Canal Flood.

  15. Studying Suspended Sediment Mechanism with Two-Phase PIV

    Science.gov (United States)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  16. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  17. Piezoresistance of top-down suspended Si nanowires

    International Nuclear Information System (INIS)

    Koumela, A; Mercier, D; Dupre, C; Jourdan, G; Marcoux, C; Ollier, E; Duraffourg, L; Purcell, S T

    2011-01-01

    Measurements of the gauge factor of suspended, top-down silicon nanowires are presented. The nanowires are fabricated with a CMOS compatible process and with doping concentrations ranging from 2 x 10 20 down to 5 x 10 17 cm -3 . The extracted gauge factors are compared with results on identical non-suspended nanowires and with state-of-the-art results. An increase of the gauge factor after suspension is demonstrated. For the low doped nanowires a value of 235 is measured. Particular attention was paid throughout the experiments to distinguishing real resistance change due to strain modulation from resistance fluctuations due to charge trapping. Furthermore, a numerical model correlating surface charge density with the gauge factor is presented. Comparison of the simulations with experimental measurements shows the validity of this approach. These results contribute to a deeper understanding of the piezoresistive effect in Si nanowires.

  18. The effects of wind and rainfall on suspended sediment concentration related to the 2004 Indian Ocean tsunami

    International Nuclear Information System (INIS)

    Zhang Xinfeng; Tang Danling; Li Zizhen; Zhang Fengpan

    2009-01-01

    The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean-atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air-sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.

  19. Development of novel cilostazol-loaded solid SNEDDS using a SPG membrane emulsification technique: Physicochemical characterization and in vivo evaluation.

    Science.gov (United States)

    Mustapha, Omer; Kim, Kyung Soo; Shafique, Shumaila; Kim, Dong Shik; Jin, Sung Giu; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-02-01

    The objective of this study was to develop a novel solid self-nanoemulsifying drug delivery system (SNEDDS) using a membrane emulsification technique involving Shirasu porous glass (SPG) which produced very small and uniform emulsion droplets, resulting in enhanced solubility, dissolution and oral bioavailability of poorly water-soluble cilostazol. The effects of carriers on the drug solubility were assessed, and pseudo-ternary phase diagrams were plotted. Among the liquid SNEDDS formulations tested, the liquid SNEDDS composed of peceol (oil), Tween 20 (surfactant) and Labrasol (cosurfactant) at a weight ratio of 15/55/30, produced the smallest emulsion droplet size. The cilostazol-loaded liquid SNEDDS formulation was suspended in the distilled water and subjected to SPG membrane emulsification. Calcium silicate was added as a solid carrier in this liquid SNEDDS, completely suspended and spray-dried, leading to the production of a cilostazol-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of the emulsified solid SNEDDS were assessed as compared to the solid SNEDDS prepared without emulsification. Moreover, the physicochemical characteristics and pharmacokinetics in rats were evaluated with the emulsified solid SNEDDS. The emulsified solid SNEDDS provided significantly smaller and more uniform nanoemulsions than did the non-emulsified solid SNEDDS. The emulsified solid SNEDDS showed significantly higher drug solubility and dissolution as compared to the non-emulsified solid SNEDDS. The crystalline drug in it was converted into the amorphous state. Moreover, in rats, it gave significantly higher initial plasma concentrations and AUC compared to the drug powder, suggesting its improved oral bioavailability of cilostazol. Thus, this novel solid SNEDDS developed using a membrane emulsification technique represents a potentially powerful oral delivery system for cilostazol. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A splitting integration scheme for the SPH simulation of concentrated particle suspensions

    Science.gov (United States)

    Bian, Xin; Ellero, Marco

    2014-01-01

    Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.

  1. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  2. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.

    Science.gov (United States)

    Rymszewicz, A; O'Sullivan, J J; Bruen, M; Turner, J N; Lawler, D M; Conroy, E; Kelly-Quinn, M

    2017-09-01

    The use of turbidity for indicating environmentally detrimental levels of suspended and colloidal matter in freshwater systems, and for defining acceptable water quality standards in national and European drinking water regulations, is well established. Turbidity is therefore frequently adopted as a surrogate for suspended sediment concentrations (SSC), or as a relative and objective measure of water clarity in monitoring programmes. Through systematic, controlled experimentation, we tested the response of 12 commercially available turbidity sensors, of various designs, to gauge their measurement consistency when benchmarked against pre-prepared sediment suspensions of known SSC. Results showed that despite calibration to a Formazin standard, sensor responses to identical SSC solutions (in the range of 20-1000 mg L -1 ) varied considerably. For a given SSC, up to five-fold differences in recorded turbidity were recorded across the tested instruments. Furthermore, inconsistent measurements were identified across instruments, regardless of whether they operated using backscatter or side-scatter optical principles. While the findings may have implications for compliance with turbidity-based water quality standards, they are less likely to be an issue when turbidity is being used as a surrogate for SSC, provided that instrument use remains constant and that instrument drift is not an issue. In this study, a field comparison of a subset of four study sensors showed that despite very different absolute turbidity readings for a given SSC, well correlated and reliable turbidity - SSC ratings were established (as evidenced by r 2 coefficients from 0.92 to 0.98). This led to reasonably consistent suspended sediment load estimates of between 64.7 and 70.8 tonnes for a rainfall event analysed. This study highlights the potential for issues to arise when interpreting water turbidity datasets that are often assumed to be comparable, in that measurement inconsistency of the

  3. Transport of phosphorus, wash load and suspended sediment in the River Varde A in southwest Jutland, Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Hasholt, Bent; Pejrup, Morten

    2004-01-01

    Total phosphorus (TP) concentrations, suspended sediment concentrations (SSC) and wash load have been measured at three river monitoring stations in the River Varde Angstrom system since 1998. This provides the possibility of studying the link between SSC and wash load and concentrations of TP...... at the end of a small impoundment. Transport rates at the upstream stations were 57% higher for suspended sediment and 27% higher for wash load than at the downstream station, while transport of TP was the same. This indicates that phosphorus is transported adhered to the finest grain size fractions that do...

  4. Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China.

    Science.gov (United States)

    Yao, Hong; Zhuang, Wei; Qian, Yu; Xia, Bisheng; Yang, Yang; Qian, Xin

    2016-01-01

    Turbidity (T) has been widely used to detect the occurrence of pollutants in surface water. Using data collected from January 2013 to June 2014 at eleven sites along two rivers feeding the Taihu Basin, China, the relationship between the concentration of five metals (aluminum (Al), titanium (Ti), nickel (Ni), vanadium (V), lead (Pb)) and turbidity was investigated. Metal concentration was determined using inductively coupled plasma mass spectrometry (ICP-MS). The linear regression of metal concentration and turbidity provided a good fit, with R(2) = 0.86-0.93 for 72 data sets collected in the industrial river and R(2) = 0.60-0.85 for 60 data sets collected in the cleaner river. All the regression presented good linear relationship, leading to the conclusion that the occurrence of the five metals are directly related to suspended solids, and these metal concentration could be approximated using these regression equations. Thus, the linear regression equations were applied to estimate the metal concentration using online turbidity data from January 1 to June 30 in 2014. In the prediction, the WASP 7.5.2 (Water Quality Analysis Simulation Program) model was introduced to interpret the transport and fates of total suspended solids; in addition, metal concentration downstream of the two rivers was predicted. All the relative errors between the estimated and measured metal concentration were within 30%, and those between the predicted and measured values were within 40%. The estimation and prediction process of metals' concentration indicated that exploring the relationship between metals and turbidity values might be one effective technique for efficient estimation and prediction of metal concentration to facilitate better long-term monitoring with high temporal and spatial density.

  5. Protection against suspended sand: the function of the branchial membrane in the blue mussel Mytilus edulis

    Science.gov (United States)

    de Vooys, C. G. N.

    2006-09-01

    Blue mussels ( Mytilus edulis) living in estuaries have to cope with varying concentrations of suspended sand. Sand flowing through the inhalant siphons comes into the infrabranchial chamber. The inhalant siphon can be partially closed by the branchial membrane. As a result the inward flow decreases, and suspended sand sinks and can be eliminated. Experiments with mussels from three ecologically different locations showed about the same response of the branchial membrane on contact with suspended sand. The presence and function of the branchial membrane appears to be an adaptation of mussels to their estuarine environment.

  6. Experimental use of produced waters for waterflooding fields of Kuibyshev region

    Energy Technology Data Exchange (ETDEWEB)

    Palii, P A; Gavura, V E; Redkin, I I; Sokolov, A G

    1970-01-01

    Large volumes of produced waters have been used for waterflooding in the Kuibyshev region. Before underground injection, the water is conditioned by short-term storage. The treated water contains emulsified oil, suspended solids, hydrogen sulfide, and ferrous iron. This water is readily injected into fractured porous formations, even if suspended solids reach 42 mg/liter and emulsifed oil 67 mg/liter. However, better quality water has to be injected into nonfractured formations. In this case, the concentration of emulsified oil and suspended solids needs to be kept below 5 mg/liter. If concentration of suspended material exceeds this limit, water injectivity decreases rapidly. The partially plugged wells can be restored by acid treatment. Water injection has shown large economic gains in this region.

  7. Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  8. Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  9. In vitro storage characteristics of platelet concentrates suspended in 70% SSP+(TM) additive solution versus plasma over a 14-day storage period.

    Science.gov (United States)

    Saunders, C; Rowe, G; Wilkins, K; Holme, S; Collins, P

    2011-08-01

    The non-paired two-arm study compared the in vitro storage characteristics of platelets suspended as concentrates in either 100% plasma or a mixture of additive solution (SSP+™, MacoPharma, Mouveaux, France) and autologous plasma in a 70:30 ratio over a 14-day storage period. The buffy coat-derived pooled platelet concentrates were sampled on days 1, 2, 3, 6, 8, 10 and 14 and tests performed to determine platelet morphology, function, metabolism, activation and apoptosis-like activity. Swirling remained strong (score=3) in SSP+™, whilst scores of 1 and 0 were noted for plasma units by end of storage. In contrast to units in plasma, pH levels remained above seven in SSP+™ units, increasing after day 10. Percent positive expression of CD62P was similar in both groups on day 1 (median of 54% and 56% for plasma (n=13) and SSP+™ (n=12), respectively), with SSP+™ units showing a more moderate increase in activation after day 10. A progressive decrease in mitochondrial membrane potential was evident in both groups from day 1, whilst annexin V binding was relatively stable from days 1 to 3, with median values remaining below 6%. Subsequent to this, the percentage of platelets binding annexin V increased to approximately 30% by day 14. Platelets suspended in a medium of 70:30 SSP+™ to plasma ratio performed at least as well as platelets in 100% autologous plasma for up to 10 days of storage. Further, results are suggestive of an apoptosis-like process being involved in the platelet storage lesion. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.

  10. Suspended sediment assessment by combining sound attenuation and backscatter measurements - analytical method and experimental validation

    Science.gov (United States)

    Guerrero, Massimo; Di Federico, Vittorio

    2018-03-01

    The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.

  11. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments

    International Nuclear Information System (INIS)

    Bessell-Browne, Pia; Negri, Andrew P.; Fisher, Rebecca; Clode, Peta L.; Duckworth, Alan; Jones, Ross

    2017-01-01

    As part of an investigation of the effects of water quality from dredging/natural resuspension on reefs, the effects of suspended sediment concentrations (SSCs) (0, 30, 100 mg L −1 ) and light (~ 0, 1.1, 8.6 mol photons m −2 d −1 ) were examined alone and in combination, on the corals Acropora millepora, Montipora capricornis and Porites spp. over an extended (28 d) period. No effects were observed at any sediment concentrations when applied alone. All corals in the lowest light treatments lost chlorophyll a and discoloured (bleached) after a week. Coral mortality only occurred in the two lowest light treatments and was higher when simultaneously exposed to elevated SSCs. Compared to water quality data collected during large dredging programs and natural resuspension events (and in the absence of sediment deposition as a cause-effect pathway) these data suggest the light reduction associated with turbidity poses a proportionally greater risk than effects of elevated SSCs alone. - Highlights: • Exposure of corals to low light conditions results in reduced quantum yields followed by bleaching of tissue. • Suspended sediment concentrations, without a reduction in light, have no impact on coral health. • An interaction between elevated suspended sediment concentrations and reduced light result in partial mortality of corals. • Management of dredging should minimise exposure of corals to low light to avoid unnecessary stress and impacts upon health.

  12. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  13. Effect of Hydrograph Separation on Suspended Sediment Concentration Predictions in a Forested Headwater with Thick Soil and Weathered Gneiss Layers

    Directory of Open Access Journals (Sweden)

    Naoki Kabeya

    2014-06-01

    Full Text Available Two-component hydrograph separation using oxygen-18 concentrations was conducted at a sediment runoff observation weir installed in a small subcatchment of a forested gneiss catchment in Japan. The mean soil thickness of this catchment is 7.27 m, which comprises 3.29 m of brown forest soil (A and B layers and a 3.98-m layer of heavily weathered gneiss. Data were collected for a storm on 20–21 May 2003, and the percentage of event water separated by the stable isotope ratio in comparison with the total rainfall amount was about 1%. This value is within the ratio of a riparian zone in a drainage area. Temporal variation of suspended sediment concentration exhibited higher correlation with the event water component than with the total runoff or pre-event water component. This shows that the riparian zone causes rainwater to flow out quickly during a rain event, and that this is an important area of sediment production and transportation in a forested headwater with thick soil and weathered gneiss layers.

  14. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  15. Concentrations and loads of suspended sediment-associated pesticides in the San Joaquin River, California and tributaries during storm events

    Science.gov (United States)

    Hladik, M.L.; Domagalski, Joseph L.; Kuivila, K.M.

    2009-01-01

    Current-use pesticides associated with suspended sediments were measured in the San Joaquin River, California and its tributaries during two storm events in 2008. Nineteen pesticides were detected: eight herbicides, nine insecticides, one fungicide and one insecticide synergist. Concentrations for the herbicides (0.1 to 3000 ng/g; median of 6.1 ng/g) were generally greater than those for the insecticides (0.2 to 51 ng/g; median of 1.5 ng/g). Concentrations in the tributaries were usually greater than in the mainstem San Joaquin River and the west side tributaries were higher than the east side tributaries. Estimated instantaneous loads ranged from 1.3 to 320 g/day for herbicides and 0.03 to 53 g/day for insecticides. The greatest instantaneous loads came from the Merced River on the east side. Instantaneous loads were greater for the first storm of 2008 than the second storm in the tributaries while the instantaneous loads within the San Joaquin River were greater during the second storm. Pesticide detections generally reflected pesticide application, but other factors such as physical-chemical properties and timing of application were also important to pesticide loads.

  16. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  17. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby

  18. Hydrology and water quality in 13 watersheds in Gwinnett County, Georgia, 2001–15

    Science.gov (United States)

    Aulenbach, Brent T.; Joiner, John K.; Painter, Jaime A.

    2017-02-23

    The U.S. Geological Survey (USGS), in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds in Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and currently [2016] includes 13 watersheds.As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured every 15 minutes for water years 2001–15 at 12 of the 13 watershed monitoring stations and for water years 2010–15 at the other watershed. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally.The 13 watersheds were characterized for basin slope, population density, land use for 2012, and the percentage of impervious area from 2000 to 2014. Several droughts occurred during the study period—water years 2002, 2007–08, and 2011–12. Watersheds with the highest percentage of impervious areas had the highest runoff ratios, which is the portion of precipitation that occurs as runoff. Watershed base-flow indexes, the ratio of base-flow runoff to total runoff, were inversely correlated with watershed impervious area.Flood-frequency estimates were computed for 13 streamgages in the study area that have 10 or more years of annual

  19. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China

    Science.gov (United States)

    Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu

    2018-06-01

    A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.

  20. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Sakaguchi, Aya; Yamamoto, Masayoshi; Matsuura, Yuki

    2015-01-01

    An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (K d ) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean K d was calculated as 3.6 × 10 5 with a 95% confidence interval of 2.6–5.1 × 10 5 . - Highlights: • Particulate radiocaesium concentration correlated with catchment inventory. • Particulate size can be an important factor of the correlation. • Solid/liquid distribution coefficients were obtained for extensive area

  1. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  2. Suspended ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, C.

    1991-05-01

    The retrofitting of existing conventional ceiling systems to suspended ceiling type systems represents an interesting energy savings solution since this method, in addition to providing additional protection against space heat loss and thermal bridges, also creates the possibility of housing, in the void, additional mechanical and electrical lines which may be necessary due to other savings interventions. This paper reviews the various suspended ceiling systems (e.g., those making use of mineral fibre, gypsum panels, wood, vermiculite, etc.) currently marketed in Europe, and reports, for each, some key technical, economic and architectural advantages which include thermal efficiency, noise abatement, as well as, resistance to fire and humidity. Information is also given on the relative installation and maintenance requirements.

  3. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    Science.gov (United States)

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input

  4. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  5. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Science.gov (United States)

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  6. Influence of lactose hydrolysis and solids concentration on alcohol production by yeast in acid whey ultrafiltrate

    Energy Technology Data Exchange (ETDEWEB)

    O' leary, V S; Sutton, C; Bencivengo, M; Sullivan, B; Holsinger, V H

    1977-11-01

    Alcohol yields of 6.5 percent were obtained with Saccharomyces cerevisiae in lactase-hydrolyzed acid whey permeate containing 30 to 35 percent total solids. Maximum alcohol yields obtained with Kluyveromyces fragilis were 4.5 percent in lactase-hydrolyzed acid whey permeate at a solids concentration of 20 percent and 3.7 percent in normal permeate at a solids concentration of 10 percent. Saccharomyces cerevisiae efficiently converted the glucose present in lactase-hydrolyzed whey permeates containing 5 to 30 percent total solids (2 to 13 percent glucose) to alcohol. However, the galactose, which comprised about half the available carbohydrate in lactase-hydrolyzed whey, was not utilized by S. cerevisiae, so that even though alcohol yields were higher when this organism was used, the process was wasteful in that a substantial proportion of the substrate was not fermented. For the process to become commercially feasible, an efficient means of rapidly converting both the galactose and glucose to alcohol must be found.

  7. LOCAL ALGORITHM FOR MONITORING TOTAL SUSPENDED SEDIMENTS IN MICRO-WATERSHEDS USIN DRONES AND REMOTE SENSING APPLICATIONS. CASE STUDY: TEUSACÁ RIVER, LA CALERA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    N. A. Sáenz

    2015-08-01

    Full Text Available An empirical relationship of Total Suspended Sediments (TSS concentrations and reflectance values obtained with Drones’ aerial photos and processed using remote sensing tools was set up as the main objective of this research. A local mathematic algorithm for the micro-watershed of the Teusacá River at La Calera, Colombia, was developed based on the computing of four component of bands from consumed-grade cameras obtaining from each their corresponding reflectance values from procedures for correcting digital camera imagery and using statistical analysis for study the fit and RMSE of 25 regressions. The assessment was characterized by the comparison of reflectance values and 34 in-situ data measurements concentrations between 1.6 and 33 mg L−1 taken from the superficial layer of the river in two campaigns. A large data set of empirical and referenced algorithm from literature were used to evaluate the accuracy and precision of the relationship. For estimation of TSS, a higher accuracy was achieved using the Tassan’s algorithm with the BAND X/ BANDX ratio. The correlation coefficient with R2 = X demonstrate the feasibility of use remote sensed data with consumed-grade cameras as an effective tool for a frequent monitoring and controlling of water quality parameters such as Total Suspended Solids of watersheds, these being the most vulnerable and less compliance with environmental regulations.

  8. Round Robin test for the determination of nitrogen concentration in solid Lithium

    International Nuclear Information System (INIS)

    Favuzza, P.; Antonelli, A.; Furukawa, T.; Groeschel, F.; Hedinger, R.; Higashi, T.; Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T.; Knaster, J.; Kondo, H.; Miccichè, G.; Nitti, F.S.; Ohira, S.; Severi, M.; Sugimoto, M.; Suzuki, A.; Traversi, R.; Wakai, E.

    2016-01-01

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  9. Round Robin test for the determination of nitrogen concentration in solid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    Favuzza, P., E-mail: paolo.favuzza@enea.it [ENEA Center, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Antonelli, A. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Hermann-von-Helmholtz-Platz 1,76344 Eggenstein-Leopoldshafen (Germany); Hedinger, R. [F4E Research Center, Boltzmannstraße 2, 85748 Garching (Germany); Higashi, T. [University of Tokyo (Japan); Hirakawa, Y.; Iijima, M.; Ito, Y.; Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF-EVEDA Project Team, Rokkasho (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Miccichè, G.; Nitti, F.S. [ENEA Research Center, Brasimone, 40035, Camugnano (Italy); Ohira, S. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Severi, M. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho (Japan); Suzuki, A. [University of Tokyo (Japan); Traversi, R. [University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2016-06-15

    Highlights: • Nitrogen contained in solid Lithium is converted into Ammonium ion. • Ammonium ion is suitably quantified by ionic chromatograph or by Ammonia sensor. • Good agreement of the partner’s results has been achieved. • Maximum operative reproducibility and blank subtraction are necessary. - Abstract: Three different partners, ENEA, JAEA ed University of Tokyo, have been involved during 2014–2015 in the Round Robin experimentation for the assessment of the soundness of the analitycal procedure for the determination of the Nitrogen impurities contained inside a solid Lithium sample. Two different kinds of Lithium samples, differing by about an order of magnitude in Nitrogen concentration (∼230 wppm; ∼20–30 wppm), have been selected for this cross analysis. The agreement of the achieved results appears very good for what concerns the most concentrated Lithium and indicates each partner’s procedure is appropriate and intrinsecally able to lead to meaningful values, characterized by a relative uncertainty of just few %. The smaller agreement in the case of the less concentrated Lithium anyway points out that particular attention must be paid to reduce as much as possible any source of external contamination and highlights the importance of the proper blank subtraction.

  10. Complete Evaluation of Suspended Air Particles and Their Composition in the Central Area of Yazd City

    Directory of Open Access Journals (Sweden)

    M Younesian

    2009-01-01

    Full Text Available Introduction: Air pollution is one of the problems of the recent century caused by vehicles, industries and other urban activities. The City of Yazd faces air pollution due to its high population, vehicular traffic and industrial places around the city. One of the important parameters of air pollution is suspended air particles that have harmful effects on the health of people, plants and objects. Methods: This research has been carried out by first determining a station in the central area of the city (Shahid Beheshti Square of Yazd. The suspended particles were measured during a five-month period from March to July, 2006. A high volume sampler was used for measuring Total Suspended Particles (TSP. The amount of lead content of TSP was measured in samples by using atomic absorption method. In the next stage, the percentage of organic and inorganic particles in the TSP of all samples was measured by using gravimetric methods and by burning in the oven. Results: The results of this study showed that amount of suspended particles in the city of Yazd is higher than national standard and the general mean average of the suspended particles of air in five months was 233 micrograms per cubic meter. The average concentration of suspended air particles from end of March to August during the five month period was 118, 193, 231, 267and 333, respectively. The average concentration of lead was 0.04 microgram per cubic meter and amount of organic and inorganic particles in TSP was 25.31% and 74.68%, respectively. Conclusion: With respect to the results, the minimum amount of TSP concentration was in March. This could be due to reduction in trading and industrial activities and New Year vacations. In addition, the average monthly TSP increased from March to July; the cause of which could be relative decrease in humidity and increase in temperature. The amount of lead in samples was much less than standard, which could be due to omission of lead from petrol

  11. THE STRUCTURE AND CONCENTRATION OF SOLIDS IN PHOTORECEPTOR CELLS STUDIED BY REFRACTOMETRY AND INTERFERENCE MICROSCOPY

    Science.gov (United States)

    Sidman, Richard L.

    1957-01-01

    Fragments of freshly obtained retinas of several vertebrate species were studied by refractometry, with reference to the structure of the rods and cones. The findings allowed a reassessment of previous descriptions based mainly on fixed material. The refractometric method was used also to measure the refractice indices and to calculate the concentrations of solids and water in the various cell segments. The main quantitative data were confirmed by interference microscopy. When examined by the method of refractometry the outer segments of freshly prepared retinal rods appear homogeneous. Within a few minutes a single eccentric longitudinal fiber appears, and transverse striations may develop. These changes are attributed to imbibition of water and swelling in structures normally too small for detection by light microscopy. The central "core" of outer segments and the chromophobic disc between outer and inner segments appear to be artifacts resulting from shrinkage during dehydration. The fresh outer segments of cones, and the inner segments of rods and cones also are described and illustrated. The volumes, refractive indices, concentrations of solids, and wet and dry weights of various segments of the photoreceptor cells were tabulated. Rod outer segments of the different species vary more than 100-fold in volume and mass but all have concentrations of solids of 40 to 43 per cent. Cone outer segments contain only about 30 per cent solids. The myoids, paraboloids, and ellipsoids of the inner segments likewise have characteristic refractive indices and concentrations of solids. Some of the limitations and particular virtues of refractometry as a method for quantitative analysis of living cells are discussed in comparison with more conventional biochemical techniques. Also the shapes and refractive indices of the various segments of photoreceptor cells are considered in relation to the absorption and transmission of light. The Stiles-Crawford effect can be accounted

  12. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  13. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers

    NARCIS (Netherlands)

    Haftka, Joris J H; Scherpenisse, Peter; Oetter, G??nter; Hodges, Geoff; Eadsforth, Charles V.; Kotthoff, Matthias; Hermens, Joop L M

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibres were used in the present study to measure CMC values of twelve nonionic, anionic, cationic and zwitterionic surfactants. The SPME derived CMC

  14. Water and suspended sediment dynamics in the Sungai Selangor estuary

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Kamarudin Samuding; Nazrul Hizam Yusoff

    2000-01-01

    Observations of salinity, temperature, suspended sediment concentration (SSC) and tidal current velocity were made in the lower and along the longitudinal axis sungai Selangor estuary over near-spring cycles. The variations of these parameters at the measurement stations and along the channel are presented to illustrate the water and sediment dynamics in the estuary. The results shows that the Sungai Selangor estuary changes from a partially-mixed type during neaps to a well-mixed one during springs. promoted by stronger tidal energy during the higher tidal ranges. The strong neap density stratification is also promoted by the high river discharges during the measurement period maximum concentration of suspended sediment 2000 mg,'/) occurs during maximum current velocities both during flood and ebb. The maximum salinity was achieved during high water slack but the salt water was totally flushed out of estuary during low water springs. The longitudinal axis measurement indicates that a partially-developed zone of turbidity maximum with a sediment concentration over 1000 mg/l was observed at the limit of salt water intrusion in salinity range less than 1 ppt. Tidal pumping as oppose to the estuarine circulation is the more dominant factor in the maximum formation as the salt water is totally excluded at low water. (author)

  15. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    Science.gov (United States)

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using

  16. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    Science.gov (United States)

    Thiros, Susan A.; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some

  17. Near-Bed Monitoring of Suspended Sediment during a Major Flood Event Highlights Deficiencies in Existing Event-Loading Estimates

    Directory of Open Access Journals (Sweden)

    Alistair Grinham

    2018-01-01

    Full Text Available Rates of fluvial sediment discharge are notoriously difficult to quantify, particularly during major flood events. Measurements are typically undertaken using event stations requiring large capital investment, and the high cost tends to reduce the spatial coverage of monitoring sites. This study aimed to characterise the near-bed suspended sediment dynamics during a major flood event using a low-cost approach. Monitoring nodes consisted of a total suspended sediment (TSS logger, a single stage sampler, and a time-lapse camera for a total cost of less than US$420. Seven nodes were deployed across an elevation gradient on the stream bank of Laidley Creek, Queensland, Australia, and two of these nodes successfully characterised the near-bed suspended sediment dynamics across a major flood event. Near-bed TSS concentrations were closely related to stream flow, with the contribution of suspended bed material dominating the total suspended load during peak flows. Observed TSS concentrations were orders of magnitude higher than historical monitoring data for this site collected using the State government event station. This difference was attributed to the event station pump inlet screening the suspended bed material prior to sample collection. The ‘first flush’ phenomenon was detected and attributed to a local resuspension of muddy crusts immediately upstream of the study site. This low-cost approach will provide an important addition to the existing monitoring of fluvial sediment discharge during flood events.

  18. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  19. Short communication: The influence of solids concentration and bleaching agent on bleaching efficacy and flavor of sweet whey powder.

    Science.gov (United States)

    Jervis, M G; Smith, T J; Drake, M A

    2015-04-01

    Recent studies have demonstrated the effect of bleaching conditions and bleaching agent on flavor and functional properties of whey protein ingredients. Solids concentration at bleaching significantly affected bleaching efficacy and flavor effects of different bleaching agents. It is not known if these parameters influence quality of sweet whey powder (SWP). The purpose of this study was to determine the effects of solids concentration and bleaching agent on the flavor and bleaching efficacy of SWP. Colored cheddar whey was manufactured, fat separated, and pasteurized. Subsequently, the whey (6.7% solids) was bleached, concentrated using reverse osmosis (RO) to 14% solids, and then spray dried, or whey was concentrated before bleaching and then spray dried. Bleaching treatments included a control (no bleaching, 50 °C, 60 min), hydrogen peroxide (HP; 250 mg/kg, 50 °C, 60 min), benzoyl peroxide (50 mg/kg, 50 °C, 60 min), lactoperoxidase (20 mg/kg of HP, 50 °C, 30 min), and external peroxidase (MaxiBright, DSM Food Specialties, Delft, the Netherlands; 2 dairy bleaching units/mL, 50 °C, 30 min). The experiment was repeated in triplicate. Sensory properties and volatile compounds of SWP were evaluated by a trained panel and gas chromatography-mass spectrometry, respectively. Bleaching efficacy (norbixin destruction) and benzoic acid were measured by HPLC. Differences in bleaching efficacy, sensory and volatile compound profiles, and benzoic acid were observed with different bleaching agents, consistent with previous studies. Solids concentration affected bleaching efficacy of HP, but not other bleaching agents. The SWP from whey bleached with HP or lactoperoxidase following RO had increased cardboard and fatty flavors and higher concentrations of lipid oxidation compounds compared with SWP from whey bleached before RO. The SWP bleached with benzoyl peroxide after RO contained less benzoic acid than SWP from whey bleached before RO. These results indicate that

  20. Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Hasan, E-mail: babaei@illinois.edu, E-mail: babaei@auburn.edu [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States); Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Khodadadi, J. M. [Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Sinha, Sanjiv [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States)

    2014-11-10

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized.

  1. Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta.

    Science.gov (United States)

    Kerr, Jason G; Cooke, Colin A

    2017-10-15

    Erosion is important in the transport of heavy metals from terrestrial to fluvial environments. In this study, we investigated riverine heavy metal (Cd, Cu, Hg and Pb) dynamics in the Red Deer River (RDR) watershed at sites upstream (n=2) and downstream (n=7) of the Alberta badlands, an area of naturally high erosion. At sites draining the badlands, total water column Cd, Cu, Hg and Pb concentrations frequently exceeded guidelines for the protection of freshwater biota. Furthermore, peak concentrations of total Cd (9.8μgL -1 ), Cu (212μgL -1 ), Hg (649ngL -1 ) and Pb (361μgL -1 ) were higher than, or comparable to, values reported for rivers and streams heavily impacted by anthropogenic activities. Total suspended solids (TSS) explained a large proportion (r 2 =0.34-0.83) of the variation in total metal concentrations in the RDR and tributaries and metal fluxes were dominated by the particulate fraction (60-98%). Suspended sediment concentrations (C sed ) and metal to aluminum ratios were generally not indicative of substantial sediment enrichment. Rather, the highly variable and elevated metal concentrations in the RDR watershed were a function of the high and variable suspended sediment fluxes which characterize the river system. While the impact of this on aquatic biota requires further investigation, we suggest erosion in the Alberta badlands may be contributing to Hg-based fish consumption advisories in the RDR. Importantly, this highlights a broader need for information on contaminant dynamics in watersheds subject to elevated rates of erosion. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Analysis of Thematic Mapper data for studying the suspended matter distribution in the coastal area of the German Bight (North Sea)

    Science.gov (United States)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Thematic Mapper data were analyzed with respect to its capability for mapping the complex structure and dynamics of suspended matter distribution in the coastal area of the German Bight (North Sea). Three independent pieces of information were found by factor analysis of all seven TM channels: suspended matter concentration, atmospheric scattering, and sea surface temperature. For the required atmospheric correction, the signal-to-noise ratios of Channels 5 and 7 have to be improved by averaging over 25 x 25 pixels, which also makes it possible to monitor the aerosol optical depth and aerosol type over cloud-free water surfaces. Near-surface suspended matter concentrations may be detected with an accuracy of factor less than 2 by using an algorithm derived from radiative transfer model calculation. The patchiness of suspended matter and its relation to underwater topography was analyzed with autocorrelation and cross-correlation.

  3. Suspended particulate studies over the Madeira Abyssal Plain

    International Nuclear Information System (INIS)

    Simpson, W.R.

    1987-01-01

    Various aspects relating to suspended matter over the Madeira Abyssal Plain are discussed. Special attention is paid to the nepheloid layer including resuspension and transport processes; time variabilities in particle concentrations and fluxes; particle morphology, microbiology and chemical composition; phase association of metals. Also, tentative predictions of the behaviour of some radionuclides are made based on theory and data on rare earth elements. Instrumentation developed for the project is detailed - the deep water particle sampler. (author)

  4. Flow modelling to estimate suspended sediment travel times for two Canadian Deltas

    Directory of Open Access Journals (Sweden)

    S. R. Fassnacht

    2000-01-01

    Full Text Available The approximate travel times for suspended sediment transport through two multi-channel networks are estimated using flow modelling. The focus is on the movement of high sediment concentrations that travel rapidly downstream. Since suspended sediment transport through river confluences and bifurcation movement is poorly understood, it is assumed that the sediment moves at approximately the average channel velocity during periods of high sediment load movement. Calibration of the flow model is discussed, with an emphasis on the incorporation of cross-section data, that are not referenced to a datum, using a continuous water surface profile. Various flow regimes are examined for the Mackenzie and the Slave River Deltas in the Northwest Territories, Canada, and a significant variation in travel times is illustrated. One set of continuous daily sediment measurements throughout the Mackenzie Delta is used to demonstrate that the travel time estimates are reasonable. Keywords: suspended sediment; multi-channel river systems; flow modelling; sediment transport

  5. Role of natural dissolved organic compounds in determining the concentrations of americium in natural waters

    International Nuclear Information System (INIS)

    Nelson, D.M.; Orlandini, K.A.

    1985-01-01

    Concentrations of 241 Am, both in solution and bound to suspended particulate matter, have been measured in several North American lakes. Dissolved concentrations vary from 0.4 μBq/L to 85 μBq/L. The 241 Am in these lakes originated solely from global fallout and hence entered all lakes in the same physiocochemical form. The observed differences in solubility behavior must, therefore, be attributable to chemical and/or hydrological differences among the lakes. Concentrations of dissolved 241 Am are highly correlated with the corresponding concentrations of /sup 239, 240/Pu(III,IV), suggesting that a common factor is responsible for maintaining both in solution. The K/sub D/ values for 241 Am and /sup 239, 240/Pu(III,IV) are highly correlated with the concentrations of dissolved organic carbon (DOC) in the waters, suggesting that the common factor is the formation of soluble complexes with natural DOC for both elements. This hypothesis was tested in a series of laboratory experiments in which the DOC from several of the lakes was isolated by ultrafiltration. Plots of K/sub D/, as a function of DOC concentration, show K/sub D/ to be very high (approx.10 6 ) at low DOC concentrations. Above critical concentrations (a few mg/L DOC) the K/sub D/ values begin a progressive decrease with increasing DOC. We conclude that in most surface waters, the dissolved 241 Am concentration is regulated by an adsorption/desorption equilibrium with the sediments (and suspended solids) and the value of K/sub D/ that characterizes this equilibrium is largely determined by the concentration of natural DOC in the water. 11 refs., 3 figs., 2 tabs

  6. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    Science.gov (United States)

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    The ability to accurately monitor suspended-sediment flux in rivers is needed to support many types of studies, because the sediment that typically travels in suspension affects geomorphology and aquatic habitat in a variety of ways (e.g. bank and floodplain deposition, bar morphology, light penetration and primary productivity, tidal wetland deposition in the context of sea-level rise, sediment-associated contaminants, reservoir sedimentation and potential erosion during dam removal, among others). In addition, human-induced changes to the landscape have resulted in substantially altered suspended-sediment loads (Syvitski et al., 2005). Thus, accurate monitoring of suspended-sediment flux is necessary for informed resource management of rivers. Because of this need, a variety of techniques have been developed and applied for suspendedsediment monitoring. The traditional approach in the United States, which was developed and has been used extensively by the U.S. Geological Survey (USGS), is to collect an isokinetic, velocity-weighted sample from a river cross-section, analyze the sample in the laboratory, and use water-discharge records to compute a record of suspended-sediment flux (Guy, 1969, Guy, 1970, Edwards and Glysson, 1999, Porterfield, 1972). The labor and expense associated with this traditional approach is substantial such that the number of USGS gages reporting daily records of suspended-sediment flux decreased from 364 in 1981 to 120 in 2003 (Osterkamp et al., 2004). Also, the traditional sampling approach is limited with respect to the temporal resolution that can be achieved, thus requiring the use of approximate relations between suspended-sediment concentration and water discharge to fill gaps between samples. To address these limitations, several indirect or "surrogate" measures have been investigated (see e.g. Gray and Gartner, 2009) most notably optical backscatter (i.e. turbidity), laser-diffraction, and acoustic backscatter. These indirect

  7. Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast

    NARCIS (Netherlands)

    van der Hout, C.M.; Gerkema, T.; Nauw, J.J.; Ridderinkhof, H.

    2015-01-01

    The objective of the study described in this paper is to localize the transport path of suspended particulate matter (SPM) in the Dutch coastal zone in the southern North Sea. It is known that a large mass of SPM is transported northward from the Strait of Dover, which is however mostly hidden from

  8. Spatial distributions and temporal trends in polybrominated diphenyl ethers in Detroit River suspended sediments.

    Science.gov (United States)

    Marvin, Chris; Waltho, Jasmine; Jia, Julia; Burniston, Debbie

    2013-05-01

    Suspended sediments from the Detroit River were collected using sediment traps at sites ranging from western Lake Erie to southern Lake St. Clair to assess spatial distributions and temporal trends of polybrominated diphenyl ethers (PBDEs). The distribution of PBDEs in suspended sediments in the Detroit River appeared influenced by shoreline-based contemporary urban and industrial activities, which stood in contrast to PCBs that were associated with areas of historic industrial activity. Temporal trend data indicate that total PBDE concentrations decreased in the period after 2000 in response to cessation of production of the penta- and octa BDE formulations. Concentrations of total PBDEs ranged from roughly 7 ng g(-1) (4 ng g(-1) BDE 209) in southern Lake St. Clair to several hundred ng g(-1) (60-180 ng g(-1) BDE 209) in the lower reaches of the Detroit River. The widespread occurrence of PBDEs in Detroit River suspended sediments suggests that large urban areas can act as diffuse sources of these chemicals that are used in modern industrial applications and consumer products. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  10. Some properties of suspended sediment absorbed cations in turbid freshwaters of South Africa

    International Nuclear Information System (INIS)

    Grobbelaar, J.U.; Stegmann, P.; Keulder, P.C.

    1980-01-01

    Large quantities of suspended sediments are common in many of South Africa's freshwaters. Temporal and spatial variations in the amounts of cations adsorbed were recorded. The adsorption appears to be dependent on valency, because greater quantities of the higher valencies are adsorbed. Ca++ dominated the adsorbed cations and Mg++ the dissolved fraction. Water originating from the Beaufort Series contained high sodium concentrations. Fe++ dominated the adsorbed minor cations. Large quantities of sediments transported by rivers enter impoundments. The adsorbed ions transported in this way are influenced by the type of suspended sediment and form a significant part of the total input of ions

  11. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela)

    Science.gov (United States)

    Yepez, Santiago; Laraque, Alain; Martinez, Jean-Michel; De Sa, Jose; Carrera, Juan Manuel; Castellanos, Bartolo; Gallay, Marjorie; Lopez, Jose L.

    2018-01-01

    In this study, 81 Landsat-8 scenes acquired from 2013 to 2015 were used to estimate the suspended sediment concentration (SSC) in the Orinoco River at its main hydrological station at Ciudad Bolivar, Venezuela. This gauging station monitors an upstream area corresponding to 89% of the total catchment area where the mean discharge is of 33,000 m3·s-1. SSC spatial and temporal variabilities were analyzed in relation to the hydrological cycle and to local geomorphological characteristics of the river mainstream. Three types of atmospheric correction models were evaluated to correct the Landsat-8 images: DOS, FLAASH, and L8SR. Surface reflectance was compared with monthly water sampling to calibrate a SSC retrieval model using a bootstrapping resampling. A regression model based on surface reflectance at the Near-Infrared wavelengths showed the best performance: R2 = 0.92 (N = 27) for the whole range of SSC (18 to 203 mg·l-1) measured at this station during the studied period. The method offers a simple new approach to estimate the SSC along the lower Orinoco River and demonstrates the feasibility and reliability of remote sensing images to map the spatiotemporal variability in sediment transport over large rivers.

  12. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  13. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  14. Dispersion of suspended material from an operating sand suction dredge in the Øresund (Denmark)

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Møhlenberg, F.

    1981-01-01

    The concentration of suspended material in the immediate vicinity of an operating sand suction dredge in the Oresund was 3-5000mg/l. Concentrations > 100 mg/l were restricted to a downstream distance of .apprx. 150m and ambient levels were reached within .apprx. 1 km of the dredge. The natural...

  15. A New Measure for Transported Suspended Sediment

    Science.gov (United States)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  16. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    Science.gov (United States)

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-06-01

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  17. Characterization of the Particle Size Fraction associated with Heavy Metals in Suspended Sediments of the Yellow River

    Directory of Open Access Journals (Sweden)

    Qingzhen Yao

    2015-06-01

    Full Text Available Variations in the concentrations of particulate heavy metals and fluxes into the sea in the Yellow River were examined based on observational and measured data from January 2009 to December 2010. A custom-built water elutriation apparatus was used to separate suspended sediments into five size fractions. Clay and very fine silt is the dominant fraction in most of the suspended sediments, accounting for >40% of the samples. Cu, Pb, Zn, Cr, Fe and Mn are slightly affected by anthropogenic activities, while Cd is moderate affected. The concentrations of heavy metals increased with decrease in particle size. For suspended sediments in the Yellow River, on average 78%–82% of the total heavy metal loading accumulated in the <16 μm fraction. About 43% and 53% of heavy metal in 2009 and 2010 respectively, were readily transported to the Bohai Sea with “truly suspended” particles, which have potentially harmful effects on marine organisms.

  18. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.

    Science.gov (United States)

    Rasolomanana, Santatriniaina Denise; Lessard, Paul; Vanrolleghem, Peter A

    2012-01-01

    To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective optimization. The goal of the present study is to evaluate which approach can improve the daily performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus (TP). The influence of weights assigned to the different variables included in the objective function has also been tested. The results showed that: (i) the model performance depends not only on the choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective calibration estimating at once all parameters related to all measured variables is the best approach to model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a single-objective optimization, an excellent water quality modelling performance may hide a loss of performance of predicting flows and unbalanced internal model components.

  19. Concentration-Discharge Responses to Storm Events in Coastal California Watersheds

    Science.gov (United States)

    Aguilera, Rosana; Melack, John M.

    2018-01-01

    Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Nonlinear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON, and PO43-) and total suspended solids (TSS) during storms across 10 sites and water years 2002-2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types in the ˜400 storms included in our study. Concentrations of constituents associated with sediment transport (PO43- and TSS) peaked during high flows. Conversely, nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anticlockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anticlockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. Slopes by the middle of the rainy season showed that the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation at the end of the season, which implied high initial concentrations and proximal sources.

  20. Atmospheric trace metal concentrations in Suspended Particulate ...

    African Journals Online (AJOL)

    The air particulate samples were collected from the kitchens, living rooms and outdoor environment of five households in the community. The quantification of the trace metals was done using Atomic Absorption spectrometry method, employing HNO based wet digestion. High baseline concentration of SPMwere obtained ...

  1. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    Science.gov (United States)

    Ivan Arismendi; Jeremiah D. Groom; Maryanne Reiter; Sherri L. Johnson; Liz Dent; Mark Meleason; Alba Argerich; Arne E. Skaugset

    2017-01-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time...

  2. Generalization of the Nernst-Einstein equation for self-diffusion in high-defect-concentration solids

    International Nuclear Information System (INIS)

    McKee, R.A.

    1981-01-01

    It is shown that the Nernst-Einstein equation can be generalized for a high defect concentration solid to relate the mobility or conductivity to the self-diffusion coefficient. This relationship is derived assuming that the diffusing particles interact strongly and that the mobility is concentration-dependent. It is derived for interstitial disordered structures, but it is perfectly general to any mechanism of self diffusion as long as diffusion in a pure system is considered

  3. Estimation of suspended sediment concentration by acoustic ...

    African Journals Online (AJOL)

    concentration of sediments such as glass spheres or sand. However, the acoustic properties of natural sediments vary and depend on many parameters such as particle size, shape, mineralogy and distribution of those parameters in sample. Therefore, this study was conducted to determine the possibility of soil sediment ...

  4. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  5. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    Science.gov (United States)

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at

  6. International Odra project (IOP) 'Interdisciplinary German Polish studies on the behaviour of pollutants in the Oder system'. Sub project 4: the state of suspended particulate matter in the Odra River system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, K.H.; Damke, H.; Kasbohm, J.; Puff, T.; Breitenbach, E.; Theel, O.; Kiessling, A.

    2001-05-20

    The purpose of the present project was to characterise the pollutant freight of suspended matter and suspended-matter-borne sediments in the Oder river system on the basis of large samples drawn at selected sampling sites. One of the major goals was to assess and draw up a balance of the transport regime of suspended matter between the compartments water, suspended matter and sediments. Special attention was given to the composition and structure of suspended matter as well as to the distribution of trace elements in the various components. Furthermore, the study was intended to provide ecology-related information on the basis of selected biogenic components. Statements on the time course of pollution of estuarine waters and the Baltic Sea by way of the Oder can be derived from a characterisation of current fluviatile solids (suspended matter and suspended-matter-borne sediments) and determination of their quantitative proportions. The following research strategy was derived from these goals: for a characterisation of suspended matter in terms of composition, structure and biogenic origin it is necessary to determine the concentration of suspended matter, its granulometric composition, carbon and sulphur content, biogenic opal content, mineral content, phase composition, metal content, structure of suspended flakes and association of diatoms in the suspended flakes and on the periphyton. [German] Das Vorhaben ist darauf ausgerichtet, den Belastungszustand der Schwebstoffe und schwebstoffbuertigen Sedimente im Oderflusssystem anhand von Grossproben ausgewaehlter Probenahmeorte zu charakterisieren. Ein wesentliches Ziel ist die Beurteilung des Transportregimes der Schwebstoffe zwischen den Kompartimenten Wasser, Schwebstoff und Sediment sowie seine Bilanzierung. Dabei gilt die besondere Aufmerksamkeit der Zusammensetzung und der Struktur der Schwebstoffe sowie die Spurenelementspeziation an die unterschiedlichen Bestandteile. Weiterhin werden oekologische Aussagen

  7. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  8. Dynamics of suspended sediment load in the upper part of the Rasina River Basin in 2010

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2013-01-01

    Full Text Available The paper treats the issue of the suspended sediment load transport in the upper part of the Rasina River Basin, upstream from the "Ćelije" reservoir during the year of 2010. Measurements of the suspended sediment concentrations were being done at two hydrological profiles Brus and Ravni. Total quantity of the suspended sediment load that was transported at the profile of Brus in 2010 amounted to 3,437.3 t, which gave the specific transport of 16.4 t/km2/year. At the downstream profile of Ravni, 43,165 t of the suspended sediment load was transported, that is, 95.7 t/km2/year. The basin on the whole is characterized by the existence of two seasons, which by their characteristics in the load transport represent the extreme variants. During the winter-spring season, 74-85.8 % of the total annual load was transported, аnd during the summer-autumn season between 14.2 and 26 %.

  9. Impact of surface and residual stresses and electro-/magnetostatic axial loading on the suspended nanomechanical based mass sensors: A theoretical study

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo

    2014-01-01

    Roč. 115, č. 21 (2014), "214310-1"-"214310-7" ISSN 0021-8979 R&D Projects: GA ČR GAP107/12/0800 Institutional support: RVO:68378271 Keywords : suspended nanomechanical resonators * mass sensors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  10. Numerical modelling of suspended radioactive sediment transport in a stream using matlab

    International Nuclear Information System (INIS)

    Sarpong, Linda

    2017-07-01

    The use of materials that contain radioactive substances has gained grounds in Ghana due to numerous benefits derived from them. These radioactive materials can be found in the areas of medicine, agriculture and industries such as mining. Though there are strict measures to ensure such material do not find its way into the environment, improper management of the waste poses a threat to the environment. To be able to understand the impact the radioactive material has on the environment, mathematical models play a very relevant role in tracking the level of pollution in any medium. This thesis was concerned with the numerical modelling for the transport of the radioactive solute material that suspends in a stream using Matlab at different velocities as a result of flooding or an accident for research purposes. The modelling was done by using partial differential equations describing relevant physical processes evolution which includes water level, dissolved and suspended substances concentration and velocities. The equation system basis are the mass conservation and momentum laws, state equation and state transport equations. The implicit finite difference scheme was used to evaluate the transport equation, Advection-Dispersion Equation (ADE) with respect to time and space. Solution algorithms for Matlab programming were developed and implemented for generating results for analysis. The results obtained showed that the model was able to simulate accurately the various levels of suspended radioactive sediment concentration changes in the flowing stream longitudinally. (au)

  11. Multi-residue determination of the sorption of illicit drugs and pharmaceuticals to wastewater suspended particulate matter using pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Baker, David R; Kasprzyk-Hordern, Barbara

    2011-11-04

    Presented is the first comprehensive study of drugs of abuse on suspended particulate matter (SPM) in wastewater. Analysis of SPM is crucial to prevent the under-reporting of the levels of analyte that may be present in wastewater. Analytical methods to date analyse the aqueous part of wastewater samples only, removing SPM through the use of filtration or centrifugation. The development of an analytical method to determine 60 compounds on SPM using a combination of pressurised liquid extraction, solid phase extraction and liquid chromatography coupled with tandem mass spectrometry (PLE-SPE-LC-MS/MS) is reported. The range of compounds monitored included stimulants, opioid and morphine derivatives, benzodiazepines, antidepressants, dissociative anaesthetics, drug precursors, and their metabolites. The method was successfully validated (parameters studied: linearity and range, recovery, accuracy, reproducibility, repeatability, matrix effects, and limits of detection and quantification). The developed methodology was applied to SPM samples collected at three wastewater treatment plants in the UK. The average proportion of analyte on SPM as opposed to in the aqueous phase was 10% with regard to methadone, EDDP, EMDP, BZP, fentanyl, nortramadol, norpropoxyphene, sildenafil and all antidepressants (dosulepin, amitriptyline, nortriptyline, fluoxetine and norfluoxetine). Consequently, the lack of SPM analysis in wastewater sampling protocol could lead to the under-reporting of the measured concentration of some compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Remote Sensing Analysis of Temperature and Suspended Sediment Concentration in Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thanda Ko, Nyein; Rutten, Martine

    2017-04-01

    Detailed spatial coverage of water quality parameters are crucial to better manage rivers. However, collection of water quality parameters is both time consuming and costly for large rivers. This study demonstrates that Operational Land Image (OLI) Sensor on board of Landsat 8 can be successfully applied for the detection of spatial patterns of water temperature as well as suspended sediment concentration (SSC) using the Ayeyarwady river, Myanmar as a case study. Water temperature estimation was obtained from the brightness thermal Band 10 by using the Split-Window algorithm. The study finds that there is a close agreement between the remote sensing temperature and in-situ temperature with relative error in the range from 4.5% to 8.2%. The sediment load of Ayeyarwady river is ranked as the third-largest sediment load among the world's rivers but there is very little known about this important parameter, due to a lack of adequate gauge data. The single band reflectance of Landsat image (Band 5) seems a good indicator for the estimation of SSC with relative error in the range of less than 10% but the developed empirical formula by the power relation with the only seven ground reference points is uncertain to apply for the entire river basin. It is to note that an important constraint for the sediment analysis is the availability of spatial and temporal ground reference data. Future studies should also focus on the improvement of ground reference data points to become more reliable, because most of the river in Asia, especially in Myanmar, don't have readily available continuous ground sediment data points due to lack of measurement gauge stations through the river.

  13. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  14. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    OpenAIRE

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, C?cile; Froidefond, Jean-Marie; Andr?fou?t, Serge; Mu?oz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the C...

  15. Intermodal resonance of vibrating suspended cables

    NARCIS (Netherlands)

    Rienstra, S.W.

    2010-01-01

    The weakly nonlinear free vibrations of a single suspended cable, or a coupled system of suspended cables, may be classified as gravity modes (no tension variations to leading order) and elasto-gravity modes (tension and vertical displacement equally important). It was found earlier [12] that the

  16. Validation of a field filtration technique for characterization of suspended particulate matter from freshwater. Part II. Minor, trace and ultra trace elements

    International Nuclear Information System (INIS)

    Odman, Fredrik; Ruth, Thomas; Rodushkin, Ilia; Ponter, Christer

    2006-01-01

    A field filtration method for the concentration and separation of suspended particulate matter (SPM) from freshwater systems and the subsequent determination of minor, trace and ultra trace elements (As, Ba, Be, Cd, Co, Cr, Cs, Cu, Ga, Hf, Mo, Nb, Ni, Pb, Rb, Sb, Sc, Sn, Sr, Ta, Th, Tl, U, V, W, Zn and Zr) is validated with respect to detection limits, precision and bias. The validation comprises the whole procedure including filtration, sample digestion and instrumental analysis. The method includes two digestion procedures (microwave acid digestion and alkali fusion) in combination with inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). Total concentrations of these 27 trace and minor elements have been determined in suspended particulate matter (SPM) from lake and river water with low levels of suspended solids ( -1 DW), and a wide range of element concentrations. The precision of the method including filtration, digestion and instrumental determination ranges between 8% and 18% RSD for most elements on a dry weight basis. Higher recovery after acid digestion is found for some elements, probably because of volatilization or retention losses in the fusion procedure. Other elements show higher recovery after fusion, which is explained by more efficient decomposition of refractory mineral phases relative to the non-total acid digestion. Non-detectable concentrations of some elements are reported due to small differences between blank filter levels and the amounts of elements present on the filters after sampling. The method limits of detection range between 0.7 ng and 2.65 μg, as estimated from the blank filter samples. These detection limits are 10-550 times higher compared to the corresponding instrumental limits of detection. The accuracy and bias of the overall analytical procedure was assessed from replicate analysis of certified reference materials. A critical evaluation of

  17. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Science.gov (United States)

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  18. Deriving Total Suspended Matter Concentration from the Near-Infrared-Based Inherent Optical Properties over Turbid Waters: A Case Study in Lake Taihu

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2018-02-01

    Full Text Available Normalized water-leaving radiance spectra nLw(λ, particle backscattering coefficients bbp(λ in the near-infrared (NIR wavelengths, and total suspended matter (TSM concentrations over turbid waters are analytically correlated. To demonstrate the use of bbp(λ in the NIR wavelengths in coastal and inland waters, we used in situ optics and TSM data to develop two TSM algorithms from measurements of the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-orbiting Partnership (SNPP using backscattering coefficients at the two NIR bands bbp(745 and bbp(862 for Lake Taihu. The correlation coefficients between the modeled TSM concentrations from bbp(745 and bbp(862 and the in situ TSM are 0.93 and 0.92, respectively. A different in situ dataset acquired between 2012 and 2016 for Lake Taihu was used to validate the performance of the NIR TSM algorithms for VIIRS-SNPP observations. TSM concentrations derived from VIIRS-SNPP observations with these two NIR bbp(λ-based TSM algorithms matched well with in situ TSM concentrations in Lake Taihu between 2012 and 2016. The normalized root mean square errors (NRMSEs for the two NIR algorithms are 0.234 and 0.226, respectively. The two NIR-based TSM algorithms are used to compute the satellite-derived TSM concentrations to study the seasonal and interannual variability of the TSM concentration in Lake Taihu between 2012 and 2016. In fact, the NIR-based TSM algorithms are analytically based with minimal in situ data to tune the coefficients. They are not sensitive to the possible nLw(λ saturation in the visible bands for highly turbid waters, and have the potential to be used for estimation of TSM concentrations in turbid waters with similar NIR nLw(λ spectra as those in Lake Taihu.

  19. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    Science.gov (United States)

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  20. Transformation and sorption of illicit drug biomarkers in sewer systems: understanding the role of suspended solids in raw wastewater

    DEFF Research Database (Denmark)

    Ramin, Pedram; Brock, Andreas Libonati; Polesel, Fabio

    2016-01-01

    substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended biomass. Sixteen drug biomarkers were targeted, including mephedrone, methadone, cocaine, heroin, codeine and tetrahydrocannabinol (THC) and their major human metabolites. Batch...

  1. Anaerobic treatment of complex wastewater and waste activated sludge - Appl. of an upflow anaerobic solid removal (UASR).

    NARCIS (Netherlands)

    Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G.

    1997-01-01

    The application of one phase anaerobic wastewater systems for the treatment of complex wastewaters containing high amounts of suspended solids or lipids is usually limited by accumulation of these compounds in the sludge bed. This accumulation reduces the solid retention time and methanogenic

  2. Numerical analysis of the motion of a suspended charged particle in multi-phase flow. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The motion of a suspended charged particle in a two component viscous fluid through two infinite parallel plates was studied. The motion takes place under constant magnetic field normal to the plane of the motion. The effect of some parameters as particle volume, fluid density, viscosity of the fluid, and the magnetic force used on the motion were investigated. The particle is assumed moving initially from the midpoint of the channel with a velocity equal to the velocity of the fluid. The trajectory of solid spherical suspended charged particle is calculated by integrating the equations of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about the path lines were deduced. 5 figs.

  3. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  4. Effect of initial total solids concentration on volatile fatty acid production from food waste during anaerobic acidification.

    Science.gov (United States)

    Wang, Quan; Jiang, Jianguo; Zhang, Yujing; Li, Kaimin

    2015-01-01

    The effect of initial total solids (TS) concentration on volatile fatty acid (VFAs) production from food waste under mesophilic conditions (35 °C) was determined. VFAs concentration and composition, biogas production, soluble chemical oxygen demand concentration, TS and volatile solids (VS) reduction, and ammonia nitrogen [Formula: see text] release were investigated. The VFAs concentrations were 26.10, 39.68, 59.58, and 62.64 g COD/L at TS contents of 40, 70, 100, and 130 g/L, respectively. While the VFAs' yields ranged from 0.467 to 0.799 g COD/g VSfed, decreased as initial TS increased. The percentage of propionate was not affected by TS concentration, accounting for 30.19-34.86% of the total VFAs, while a higher percentage of butyrate and lower percentage of acetate was achieved at a higher TS concentration. Biogas included mainly hydrogen and carbon dioxide and the maximum hydrogen yield of 148.9 ml/g VSfed was obtained at 130 g TS/L. [Formula: see text] concentration, TS and VS reductions increased as initial TS increased. Considering the above variables, we conclude that initial TS of 100 g/L shall be the most appropriate to VFAs production.

  5. Distribution of suspended particulate matter in the waters of eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.M.

    Distribution of total suspended matter (TSM) in surface and near bottom (approximately 5 m above sea bed) waters reveals a wide variation in concentration and composition. TSM varies from 0.05 to 122 mg.l/1 in surface waters, and from 0.25 top 231...

  6. Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.

    Science.gov (United States)

    Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur

    2011-06-01

    In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.

  7. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    Science.gov (United States)

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014

  8. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  9. Mixing and solid suspension in a stirred precipitator

    International Nuclear Information System (INIS)

    Chang, T.P.

    1986-04-01

    Full-scale mixing and solid suspension studies have been conducted to determine the optimum agitator design for precipitators used in plutonium processing. Design considerations include the geometry of precipitator vessels, feed locations, flow patterns, and product requirements. Evaluations of various agitator designs are based on their capabilities: (1) to achieve uniform mixing of reactants in minimum time, (2) to suspend slurry uniformly throughout the vessel, and (3) to minimize power consumption without inducing air entrainment. Tests of full-scale agitator designs showed that significant improvements in mixing, solid suspension, and energy consumption were achieved

  10. Effect of coexisting organic substances on radiation resistance of Bacillus pumilus spores suspended in water

    International Nuclear Information System (INIS)

    Kigawa, Akiko; Tateishi, Tsuneo; Iso, Katsuaki; Kimura, Toshio; Mamuro, Tetsuo

    1987-01-01

    D values of B. pumilus spores suspended in water have been shown to increase in the presence of some coexisting organic substances. For elucidation of a mechanism or mechanisms involved in such a phenomenon, D-values of B.p. spores were examined by suspending them in aqueous solutions containing various concentrations of ethanol, glycerin, inulin and PVA. All these substances showed abrupt changes in D value at a narrow concentration range of 1 - 10 weight ppm. Solutions containing these substances at their lower limit concentrations and upper limit were prepared, sealed in incubator bottles leaving no air layer and irradiated at 0.7 Mrad with γ-rays. Winkler's method was used for the determination of oxygen concentrations in these solutions. The initial concentration of dissolved oxygen was 8.2 ppm. After irradiation, 3 - 5 ppm of oxygen remained in those solutions containing the lower limit (1 ppm), whereas only less than 0.5 ppm in those containing the upper limits, 2.5 ppm of ethanol, 5 ppm of PVA and 10 ppm each of glycerin and inulin. Therefore, the observed effect of coexisting organic substances on radiation resistance of B. pumilus can be explained by the so-called ''oxygen effect''. (author)

  11. А mathematical model study of suspended monorail

    OpenAIRE

    Viktor GUTAREVYCH

    2012-01-01

    The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  12. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    Science.gov (United States)

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  13. Effects of fine suspended sediment releases on benthic communities in artificial flumes

    International Nuclear Information System (INIS)

    Bruno, Maria Cristina; Carolli, Mauro; Zolezzi, Guido; Palmia, Beatrice

    2016-01-01

    The Italian Alps feed a large number of reservoirs for hydropower production, which are losing storage capacity due to natural inflow of sediment of different origin (alluvial, glacial). Local government and local environmental agencies authorize periodical sediment flushes with a mandatory release regime when such measure is technically feasible. Management of reservoirs often includes fine sediment pulses, which cause several ecological impacts on downstream water bodies. We conducted a set of simulations in five semi artificial flumes naturally fed by an un-impacted Alpine stream (Trentino region, NE Italy), to: i) identify possible thresholds of concentration of fine suspended sediment inducing drift in the benthic community and, ii) assess the dynamics and intensity of the drift responses in the dominant taxa. The results can help to identify the least impacting release management practices. Sediment pulses were simulated by adding fine material of known concentration to the upstream end of the flumes. The benthic organisms drifting from the whole flume were collected by filtering the whole outflow for consecutive short time intervals. We tested four different concentration values, i.e. 10x,100x, 250x, 500x the base concentration of 4 NTU, and we repeated the simulations in two periods: July, when the community is composed mainly of young larval instars and the sediment wave lasted 10 minutes, and October, when later larval stages are dominant and the wave lasted 20 minutes. In July, the maximum concentration induced a significantly higher drift response than the three lower ones. In October, even if the sediment wave was twice as long as July one, drift responses where lower, and only the responses to the highest and lowest concentrations differed significantly. In our simulation, the only possible cause for the observed increase in drift was the sediment in the suspended phase, as the deposition of sediment was negligible, and discharge did not increase

  14. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.

    2011-11-11

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis determined pump requirements to suspend the solids with no 'dead zones', but did not determine the pump requirements to produce a homogeneous suspension. In addition, the analysis determined the pump requirements to prevent the accumulation of a large amount of solid particles under the telescoping transfer pump. The conclusions from this analysis follow: (1) The analysis shows that three Quad Volute pumps should be able to suspend the solid particles expected ({approx}0.6 g/L insoluble solids, {approx}5 micron) in Tank 50H. (2) Three standard slurry pumps may not be able to suspend the solid particles in Tank 50H; (3) The ability of two Quad Volute pumps to fully suspend all of the solid particles in Tank 50H is marginal; and (4) One standard slurry pump should be able to

  15. Sediment movement along the U.S. east coast continental shelf—II. Modelling suspended sediment concentration and transport rate during storms

    Science.gov (United States)

    Lyne, Vincent D.; Butman, Bradford; Grant, William D.

    1990-05-01

    Long-term near-bottom wave and current observations and a one-dimensional sediment transport model are used to calculate the concentration and transport of sediment during winter storms at 60-80 m water depth along the southern flank of Georges Bank and in the Mid-Atlantic Bight. Calculations are presented for five stations, separated by more than 600 km alongshelf, that have different bottom sediment texture, bedforms and current conditions. A modified version of the sediment transport model presented by GRANT and GLENN (1983, Technical Report to the American Gas Association), GLENN (1983, D.Sc. Thesis, M.I.T.), and GLENN and GRANT (1987, Journal of Geophysical Research, 92, 8244-8264) is used to examine the influence of wave-current interaction, sediment stratification, and limitations on the erodibility of the bottom sediments on the concentration of sediment in the water column and on transport. Predicted suspended sediment concentrations are higher than observed, based on beam transmissometer measurements, unless an erosion limit of order a few millimeters for sediments finer than 94 μm is imposed. The agreement between predicted and measured beam attenuation is better at stations that have significant amounts of silt plus clay in the surficial sediments than for stations with sandy sediments. Sediment concentrations during storms estimated by MOODYet al. (1987, Continental Shelf Research, 7, 609-628) are within 50% of the model predictions. Sediment transport rates for sediments 94 μm and finer are determined largely by the concentrations in the surficial sediment and the erosion depth limit. Large alongshelf transports in the direction of storm-driven currents are inferred for stations in the Mid-Atlantic Bight. During a 115-day period in winter 1979-1980, the net transport of sediment along the shelf was westward; benthic storms (defined as periods when the bottom wave stress exceeded the current stress by 2 dyn cm -2) occurred between 23 and 73% of the

  16. Application of Cross-Flow Filtration Technique in Purification and Concentration of Juice from Vietnamese Fruits

    Directory of Open Access Journals (Sweden)

    Huynh Cang Mai

    2017-09-01

    Full Text Available This study is to offer a 1st insight in the use of membrane process for the purification and concentration of Vietnamese fruit juices: cashew apple (Anacardium occidentale Line., dragon fruit (Cactus hémiépiphytes, pineapple (Ananas comosus, pomelo (Citrus grandis L., and gac aril oil (Momordica cochinchinensis Spreng.. On a laboratory scale, the effect of different operating parameters such as trans-membrane pressures (TMP, temperature and membrane pore sizes on permeate flux was determined in order to optimize process conditions that would ensure acceptable flux with adequate juice quality. The quality of the samples coming from the ultrafiltration (UF process was evaluated in terms of: total soluble solids (TSS, suspended solids (SS, and vitamin C. For example, the purification process of cashew apple juice by cross-flow filtration was optimized at 0.5 μm membrane pore size, 2.5 bars TMP, and 60 min filtration time. Besides, this technique was applied to enhance carotenoids concentration from gac oil. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. Carotenoids were concentrated higher than that in feeding oil.

  17. А mathematical model study of suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2012-01-01

    Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  18. Variation of Soluble Solids Concentration During the Day in Three Pastures During the Dry Season in the Middle River Sinú Valley

    Directory of Open Access Journals (Sweden)

    Emiro Suárez Paternina

    2015-07-01

    Full Text Available The aim of this study was to determine the concentration of soluble solids at different times of the day in three tropical pastures. The experiment was conducted at the Research Center Turipaná of Colombian Agricultural Research Corporation, located in Cereté, Colombia. During January and February of 2011, we assessed the concentration of soluble solids in three fertirrigated pastures: Panicum maximum, Cynodon nlemfuensis and Brachiaria hybrid cv. Mulato II, in an intensive model of meat production at different sampling times 7:00 and 10:00 a. m., 1:00 and 4:00 p.m. The statistical design of the experiment consisted of a block design completely randomized three-factor under 3*3*4 (pasture*stocking*time and three replicates for each evaluation day. An analysis of variance and differences were statistically significant when the means were separated by Tukey test (p<0.05. The analysis found highly significant differences (p<0.01 in the concentration of soluble solids in different pastures, in all periods of the day evaluated, with the cultivar Mulato II that presented the highest values with 9.19 %, followed by Cynodon nlemfuensis and Panicum maximum with 8.27 % and 7.07 %, respectively. The soluble solids concentration varied during the day and between pastures. The time periods close to noon —10:00 a. m. and 1:00 p. m.— presented the highest concentrations of soluble solids in all pastures; this can be used as a tool for paddock rotation.

  19. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  20. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    Science.gov (United States)

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Hoekstra, P.

    2005-01-01

    The ability of a 1.2-MHz Acoustic Doppler Current Profiler (ADCP) to measure suspended sediment concentration (SSC) and particle size variation in a mud-dominated environment has been investigated. Experiments were conducted in the Bay of Banten, Indonesia, where clays and silts in the range of 3-55

  2. Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka

    2017-01-01

    Radiocesium ( 137 Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of 137 Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the 137 Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The 137 Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The 137 Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The 137 Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of 137 Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual 137 Cs discharge from the catchment was 0.02-0.3% of the deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN

    2015-01-01

    A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys

  4. Influence of mixing and solid concentration on sodium bicarbonate secondary nucleation rate in stirred tank

    Energy Technology Data Exchange (ETDEWEB)

    Wylock, C.; Debaste, F.; Haut, B. [Transfers, Interfaces and Processes - Chemical Engineering Unit, ULB, Brussels (Belgium); Gutierrez, V.; Delplancke-Ogletree, M.P. [Chemicals and Materials Department, ULB, Brussels (Belgium); Cartage, T. [Solvay SA, Brussels (Belgium)

    2010-09-15

    This work aims to investigate the influence of the solid concentration in suspension on the contact secondary nucleation rate of sodium bicarbonate crystallization in a stirred tank crystallizer and to show the necessity of a local description of the mixing for a nucleation rate influence study. Experiments and computational fluid dynamics (CFD) simulations are realized. Crystallization kinetic parameters are extracted from experimental data using a mass distribution fitting approach. CFD and the experimental results allow identifying that a mixing property correlated with the measurements of the secondary nucleation rate in the stirred tank crystallizer appears to be the turbulent dissipation rate on the edge of the impeller. Its influence and the influence of the solid concentration in the suspension on the secondary nucleation rate are estimated by the evaluation of their exponents in a kinetic law. The obtained exponent values are then discussed qualitatively. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    Science.gov (United States)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of

  6. Geomorphic versus land use controls on suspended sediment rating curves

    Science.gov (United States)

    Belmont, P.; Vaughan, A. A.; Fisher, A. C. N.

    2017-12-01

    The relation between river discharge (Q) and suspended sediment (SS) concentration reflects the degree to which sediment sources are accessed or depleted across the range of flow conditions. Increased availability of high resolution topography and land use data greatly enhance our ability to evaluate linkages between characteristics of these sediment rating curves (SRCs) and the geomorphic features that influence them. We evaluated Q-SS relations at 45 gages throughout Minnesota, USA representing a wide variety of landscape settings in terms of topography, land use, and geologic history. We characterized the SRCs according to the overall shape, steepness (exponent), vertical offset (coefficient) and SS concentration under low flow (90% exceedance) conditions. Rivers exhibited three distinct SRC shapes, simple power functions, threshold power functions and peaked power functions. We used random forest models to analyze relations between SRC parameters and attributes of the watershed as well as the near-channel environment. The model correctly classified 78% of SRC shapes and explained 60% of variance in the SRC exponent, 43% of the SRC coefficient for rising limb samples, and 45% of variance under low flow conditions. Notably, the random forest models predict that near-channel morphology predominately controls both the shape and steepness of the sediment rating curves. Land use predominately controls the vertical offset (coefficient) and SS concentration under low flow conditions. These findings suggest that land use and watershed restoration practices may have little capacity to alter the shape and steepness of these curves as these characteristics may be dictated by the geologic and geomorphic setting. Rather, human influences in the watershed may exhibit the greatest influence on suspended sediment concentrations at moderate to low flows. Criteria to evaluate improvements in water quality as a result of changes in land management might be most meaningful if they

  7. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  8. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  9. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, De-Gao, E-mail: degaowang@dlmu.edu.cn; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L{sup −1} and 0.343 μg L{sup −1}; the total removal efficiency of VMSs is > 60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg{sup −1}. High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg{sup −1}. No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d{sup −1} 1000 inhabitants{sup −1} derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. - Highlights: • A mass balance model for siloxanes was developed in sequencing batch reactor. • Total suspended solid in effluent has the most influence on removal efficiency. • Enhancement of suspended solid removal reduces the release to aquatic environment.

  10. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative poolutants using disposable solid-phase microextraction fibers

    NARCIS (Netherlands)

    Mayer, P.; Vaes, W.H.J.; Wijnker, F.; Legierse, K.C.H.M.; Kraaij, R.H.; Tolls, J.; Hermens, J.L.M.

    2000-01-01

    Polymer coated glass fibers were applied as disposable samplers to measure dissolved concentrations of persistent and bioaccumulative pollutants (PBPs) in sediment porewater. The method is called matrix solid-phase microextraction (matrix-SPME), because it utilizes the entire sediment matrix as a

  11. A 2-D process-based model for suspended sediment dynamics : A first step towards ecological modeling

    NARCIS (Netherlands)

    Minikowski Achete, F.; van der Wegen, M.; Roelvink, D.; Jaffe, Bruce E.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space

  12. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  13. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  14. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia

    Science.gov (United States)

    Kaba, Essayas; Philpot, William; Steenhuis, Tammo

    2014-02-01

    Government and NGO funded conservation programs are being implemented in developing countries with the potential benefit of reduced sediment inflow into fresh water lakes. However, these claims are difficult to verify due to limited historical sediment concentration data in lakes and rivers. Remote sensing can potentially aid in monitoring sediment concentration. With almost daily availability over the past ten years and consistent atmospheric correction applied to the images, Moderate Resolution Imaging Spectroradiometer (MODIS) 250 meter images are potential resources capable of monitoring future concentrations and reconstructing historical sediment concentration records. In this paper, site-specific relationships are developed between reflectance in near-infrared (NIR) images and three factors: total suspended solids (TSS), turbidity and Secchi depth for Lake Tana near the mouth of the Gumara River. The first two sampling campaigns on November 27, 2010 and May 13, 2011 are used in calibration. Reflectance in the NIR varies linearly with turbidity (R2 = 0.89) and TSS (R2 = 0.95). Secchi depth fit best to an exponential relation with R2 of 0.74. The relationships are validated using a third sample set collected on November 7, 2011 with RMSE of 11 Nephelometric Turbidity Units (NTU) for Turbidity, 16.5 mg l-1 for TSS and 0.12 meters for Secchi depth. The MAE was 10% for TSS, 14% for turbidity and 0.1% for Secchi depth. Using the relationship for TSS, a 10-year time series of sediment concentration in Lake Tana near the Gumara River was plotted. It was found that after the severe drought of 2002 and 2003 the concentration in the lake increased significantly. The results showed that MODIS images are potential cost effective tools to monitor suspended sediment concentration and obtain a past history of concentration for evaluating the effect of best management practices.

  15. The solid molecular hydrogens in the ordered state as function of density and ortho-para concentration: a far infrared study

    International Nuclear Information System (INIS)

    Jochemsen, R.

    1978-01-01

    In this thesis, the results of far infrared absorption experiments on solid molecular hydrogen and deuterium are presented. In Chapter I an introduction to the properties of solid molecular hydrogens in given. The experimental system used for the high pressure infrared measurements and the data handling procedures are discussed in Chapter II. The theory of infrared absorption and the averaging of the dipole moment over the motion of the molecules is contained in Chapter III. In this chapter a general sum rule for the integrated absorption is derived. The remaining chapters present the results of the measurements and the discussion. In Chapter IV the author concentrates on the phonon frequencies as a function of ortho-para concentration and density, while in Chapter V measuremtns of phonon lineshape and integrated absorption intensities are presented. Finally, in Chapter VI, a study is given of the phase transition in solid hydrogen and deuterium. This study provides accurate values for the transition temperature as a function of density (in deuterium) and as a function of ortho-para concentration (in hydrogen) as well as the dependence of the order parameter on the temperature and the ortho-para concentration. (Auth.)

  16. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    Science.gov (United States)

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District; City of Corpus Christi; Guadalupe-Blanco River Authority; San Antonio River Authority; and San Antonio Water System, developed, calibrated, and tested a Hydrological Simulation Program-FORTRAN (HSPF) watershed model to simulate streamflow and suspended-sediment concentrations and loads during 1958-2010 in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary in south Texas. Data available to simulate suspended-sediment concentrations and loads consisted of historical sediment data collected during 1942-82 in the study area and suspended-sediment concentration data collected periodically by the USGS during 2006-7 and 2010 at three USGS streamflow-gaging stations (08211000 Nueces River near Mathis, Tex. [the Mathis gage], 08211200 Nueces River at Bluntzer, Tex. [the Bluntzer gage], and 08211500 Nueces River at Calallen, Tex. [the Calallen gage]), and at one ungaged location on a Nueces River tributary (USGS station 08211050 Bayou Creek at Farm Road 666 near Mathis, Tex.). The Mathis gage is downstream from Wesley E. Seale Dam, which was completed in 1958 to impound Lake Corpus Christi. Suspended-sediment data collected before and after completion of Wesley E. Seale Dam provide insights to the effects of the dam and reservoir on suspended-sediment loads transported by the lower Nueces River downstream from the dam to the Nueces Estuary. Annual suspended-sediment loads at the Nueces River near the Mathis, Tex., gage were considerably lower for a given annual mean discharge after the dam was completed than before the dam was completed.

  17. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  18. Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor.

    Science.gov (United States)

    Lu, Chaoyang; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Ge, Xumeng; Xia, Chenxi; Zhao, Jia; Wang, Yi; Jing, Yanyan; Li, Yameng; Zhang, Quanguo

    2018-01-01

    Effect of substrate concentration on photo-fermentative hydrogen production was studied with a self-designed 4m 3 pilot-scale baffled photo-fermentative hydrogen production reactor (BPHR). The relationships between parameters, such as hydrogen production rate (HPR, mol H 2 /m 3 /d), hydrogen concentration, pH value, oxidation-reduction potential, biomass concentration (volatile suspended solids, VSS) and reducing sugar concentration, during the photo-fermentative hydrogen production process were investigated. The highest HPR of 202.64±8.83mol/m 3 /d was achieved in chamber #3 at a substrate concentration of 20g/L. Hydrogen contents were in the range of 42.19±0.94%-49.71±0.27%. HPR increased when organic loading rate was increased from 3.3 to 20g/L/d, then decreased when organic loading rate was further increased to 25g/L/d. A maximum HPR of 148.65±4.19mol/m 3 /d was obtained when organic loading rate was maintained at 20g/L/d during continuous bio-hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  20. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  1. Influence of solids concentration on the sedimentation rate of the mud in the aggregate industry

    Directory of Open Access Journals (Sweden)

    Benigno Leyva-de la Cruz

    2016-12-01

    Full Text Available The objective of this investigation is to determine, for the mud resulting from the wash process in the Jobo community arid industry in Sagua de Tánamo, the impact of solids percent on the theoretical sedimentation velocity that is predicted by the Stokes velocity Law. Samples of the discharge pipeline and the mud sedimentation area were analyzed from granulometric, density and solids concentration points of view. The solids percentage variable (S was analyzed in four scenarios (4, 12, 20 and 28 % and time (t was evaluated at intervals of 20 minutes for 5 hours. The behavior of mud sedimentation was characterized through the sedimentation velocity. The results indicate that the Stokes velocity law does not apply for estimating the mud sedimentation velocity with a 95% confidence. Therefore, a correction function is obtained for the Stokes velocity law expressed through the polynomial mathematical model of second degree.

  2. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    Science.gov (United States)

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time

  3. Hydrologic data summary for the St. Lucie River Estuary, Martin and St. Lucie Counties, Florida, 1998-2001

    Science.gov (United States)

    Byrne, Michael J.; Patino, Eduardo

    2004-01-01

    A hydrologic analysis was made at three canal sites and four tidal sites along the St. Lucie River Estuary in southeastern Florida from 1998 to 2001. The data included for analysis are stage, 15-minute flow, salinity, water temperature, turbidity, and suspended-solids concentration. During the period of record, the estuary experienced a drought, major storm events, and high-water discharge from Lake Okeechobee. Flow mainly occurred through the South Fork of the St. Lucie River; however, when flow increased through control structures along the C-23 and C-24 Canals, the North Fork was a larger than usual contributor of total freshwater inflow to the estuary. At one tidal site (Steele Point), the majority of flow was southward toward the St. Lucie Inlet; at a second tidal site (Indian River Bridge), the majority of flow was northward into the Indian River Lagoon. Large-volume stormwater discharge events greatly affected the St. Lucie River Estuary. Increased discharge typically was accompanied by salinity decreases that resulted in water becoming and remaining fresh throughout the estuary until the discharge events ended. Salinity in the estuary usually returned to prestorm levels within a few days after the events. Turbidity decreased and salinity began to increase almost immediately when the gates at the control structures closed. Salinity ranged from less than 1 to greater than 35 parts per thousand during the period of record (1998-2001), and typically varied by several parts per thousand during a tidal cycle. Suspended-solids concentrations were observed at one canal site (S-80) and two tidal sites (Speedy Point and Steele Point) during a discharge event in April and May 2000. Results suggest that most deposition of suspended-solids concentration occurs between S-80 and Speedy Point. The turbidity data collected also support this interpretation. The ratio of inorganic to organic suspended-solids concentration observed at S-80, Speedy Point, and Steele Point

  4. Acoustic Doppler velocimeter backscatter for quantification of suspended sediment concentration in South San Francisco Bay, USA

    Science.gov (United States)

    Öztürk, Mehmet; Work, Paul A.

    2016-01-01

    A data set was acquired on a shallow mudflat in south San Francisco Bay that featured simultaneous, co-located optical and acoustic sensors for subsequent estimation of suspended sediment concentrations (SSC). The optical turbidity sensor output was converted to SSC via an empirical relation derived at a nearby site using bottle sample estimates of SSC. The acoustic data was obtained using an acoustic Doppler velocimeter. Backscatter and noise were combined to develop another empirical relation between the optical estimates of SSC and the relative backscatter from the acoustic velocimeter. The optical and acoustic approaches both reproduced similar general trends in the data and have merit. Some seasonal variation in the dataset was evident, with the two methods differing by greater or lesser amounts depending on which portion of the record was examined. It is hypothesized that this is the result of flocculation, affecting the two signals by different degrees, and that the significance or mechanism of the flocculation has some seasonal variability. In the earlier portion of the record (March), there is a clear difference that appears in the acoustic approach between ebb and flood periods, and this is not evident later in the record (May). The acoustic method has promise but it appears that characteristics of flocs that form and break apart may need to be accounted for to improve the power of the method. This may also be true of the optical method: both methods involve assuming that the sediment characteristics (size, size distribution, and shape) are constant.

  5. Waste activated sludge fermentation: effect of solids retention time and biomass concentration.

    Science.gov (United States)

    Yuan, Q; Sparling, R; Oleszkiewicz, J A

    2009-12-01

    Laboratory scale, room temperature, semi-continuous reactors were set-up to investigate the effect of solids retention time (SRT, equal to HRT hydraulic retention time) and biomass concentration on generation of volatile fatty acids (VFA) from the non-methanogenic fermentation of waste activated sludge (WAS) originating from an enhanced biological phosphorus removal process. It was found that VFA yields increased with SRT. At the longest SRT (10d), improved biomass degradation resulted in the highest soluble to total COD ratio and the highest VFA yield from the influent COD (0.14g VFA-COD/g TCOD). It was also observed that under the same SRT, VFA yields increased when the biomass concentration decreased. At a 10d SRT the VFA yield increased by 46%, when the biomass concentration decreased from 13g/L to 4.8g/L. Relatively high nutrient release was observed during fermentation. The average phosphorus release was 17.3mg PO(4)-P/g TCOD and nitrogen release was 25.8mg NH(4)-N/g TCOD.

  6. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure.

    Science.gov (United States)

    Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun

    2016-04-01

    Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles.

  7. Studies on influence of environmental factors on concentration on concentration of radionuclides

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Environmental factors which seemed to influence the concentration of radionuclides to marine organisms including illumination, water temperature, coexisting stable elements, salt concentration, suspended matters in sea water and residue were studied. The influence of illumination was examined by algae using 137 Cs, 60 Co, 85 Sr, and 106 Ru as tracers, within 24 hours of illumination. The concentration of 137 Cs and 60 Co revealed remarkable increase of uptake in accordance with increasing illumination intensity, and 24 hours illumination showed 2 times concentration of that by 4 hours'. 85 Sr and 106 Ru showed no effect of illumination, and suggested their concentration was depending on adsorption to the surface. As for water temperature, the concentration factor of 65 Zn, 137 Cs obtained from fishes and shells by 22 0 C breeding was 2 times of that by 12 0 C breeding. Concerning the influence of coexisting stable elements, fishes and shells were examined by 54 Mn, 60 Co, and 65 Zn as tracers. When the stable elements concentration in sea water became 10 times the normal, concentration factor depending on adsorption and metabolism became respective one tenth and one second of the normal value. The influence of salt concentration was examined using 85 Sr, 65 Zn, and 137 Cs, and revealed that 28 to 40 per cent changes of salt level gave slight influence on concentration factor. In order to study the influence of suspended matters and quality of residue, 3 kinds of 106 Ru complex species were added. Concentration factor of Hijiki (Hijikia fusiforme) showed no remarkable difference between breeding in filtrated and non-filtrated sea water. However, clams living in the sand should be taken care of the concentration by the residue in the sea bottom. (Kanao, N.)

  8. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    Science.gov (United States)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and

  9. Effect of fermentation time of mixture of solid and liquid wastes from tapioca industry to percentage reduction of TSS (Total Suspended Solids)

    Science.gov (United States)

    Pandia, S.; Tanata, S.; Rachel, M.; Octiva, C.; Sialagan, N.

    2018-02-01

    The waste from tapioca industry is as an organic waste that contains many important compounds such as carbohydrate, protein, and glucose. This research as aimed to know the effect of fermentation time from solid waste combined with waste-water from the tapioca industry to percentage reduction of TSS. The study was started by mixing the solid and liquid wastes from tapioca industry at a ratio of 70:30, 60:40, 50:50, 40:60, and 30:70 (w/w) with a starter from solid waste of cattle in a batch anaerobic digester. The percentage reduction of TSS was 72.2289 at a ratio by weight of the composition of solid and liquid wastes from tapioca industry was 70:30 after 30 days of fermentation time.

  10. Indoor concentrations of nitrogen dioxide and sulfur dioxide from burning solid fuels for cooking and heating in Yunnan Province, China

    NARCIS (Netherlands)

    Seow, Wei Jie; Downward, George S; Wei, Hu; Rothman, Nathaniel; Reiss, Boris; Xu, Jun; Bassig, Bryan A; Li, Jihua; He, Jun; Hosgood, H Dean; Wu, Guoping; Chapman, Robert S; Tian, Linwei; Wei, Fusheng; Caporaso, Neil E; Vermeulen, Roel; Lan, Qing

    2016-01-01

    The Chinese national pollution census has indicated that the domestic burning of solid fuels is an important contributor to nitrogen dioxide (NO2 ) and sulfur dioxide (SO2 ) emissions in China. To characterize indoor NO2 and SO2 air concentrations in relation to solid fuel use and stove ventilation

  11. 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal: Local enhancement of natural levels by wastes from phosphate ore processing industry

    International Nuclear Information System (INIS)

    Carvalho, Fernando P.

    1994-01-01

    Results of analyses of uranium series radionuclides in phosphate ore and in wastes released by the phosphate fertilizer industry confirm their potential for the enhancement of environmental radioactivity levels. Therefore, concentrations of 210 Pb and 210 Po were measured in bottom sediments and suspended matter in the Tagus estuary, Portugal, to assess the enhancement of radioactivity due to wastes from the phosphate industry. The concentration of 210 Pb in surface sediments in the estuary increased inversely with sediment grain-size; conversely, increased percentage of sand has a dilution effect on the concentration of 210 Pb measured in bulk sediment samples. By normalizing the data to the 210 Pb in sediments was found to be 68 ± 19 Bq kg -1 (dry wt.) in background sediments. Higher 210 Pb levels, up to 1580 Bq kg -1 (dry wt.), were measured in some bulk sediment samples. It was verified that this radionuclide has been introduced by the discharge of wastes from a phosphate fertilizer plant but enhanced concentrations are localized near the point of discharge. In other zones of the estuary, the concentrations of 210 Pb in sediments and suspended matter were generally below those measured in the zone of phosphatic releases at the Barreiro Peninsula. Concentrations higher than the predicted average concentration of unsupported 210 Pb from natural sources (atmospheric deposition, river input) were also measured in the upper estuary, both in bottom sediments and in suspended matter. It is suggested that these relatively elevated concentrations are due to the highly efficient scavenging of soluble naturally-occurring unsupported 210 Pb onto suspended matter and to co-precipitation with iron-manganese hydroxides in the fresh water-salt water mixing zone

  12. Automatic high-sensitivity control of suspended pollutants in drinking and natural water

    Science.gov (United States)

    Akopov, Edmund I.; Karabegov, M.; Ovanesyan, A.

    1993-11-01

    This article presents a description of the new instrumental method and device for automatic measurement of water turbidity (WT) by means of photoelectron flow ultramicroscope (PFU). The method presents the WT determination by measuring the number concentration (number of particles suspended in 1 cm3 of water under study) using the PFU and demonstrates much higher sensitivity and accuracy in comparison with the usual methods--turbidimetry and nephelometry.

  13. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  14. Water-quality assessment of the Rio Grande Valley study unit, Colorado, New Mexico, and Texas: analysis of selected nutrient, suspended-sediment, and pesticide data

    Science.gov (United States)

    Anderholm, S.K.; Radell, M.J.; Richey, S.F.

    1995-01-01

    This report contains a summary of data compiled from sources throughout the Rio Grande Valley study unit of the National Water-Quality Assessment program. Information presented includes the sources and types of water-quality data available, the utility of water-quality data for statistical analysis, and a description of recent water-quality conditions and trends and their relation to natural and human factors. Water-quality data are limited to concentrations of selected nutrient species in surface water and ground water, concentrations of suspended sediment and suspended solids in surface water, and pesticides in surface water, ground water, and biota.The Rio Grande Valley study unit includes about 45,900 square miles in Colorado, New Mexico, and Texas upstream from the streamflow-monitoring station Rio Grande at El Paso, Texas. The area also includes the San Luis Closed Basin and the surface-water closed basins east of the Continental Divide and north of the United States-Mexico international border. The Rio Grande drains about 29,300 square miles in these States; the remainder of the study unit area is in closed basins. Concentrations of all nutrients found in surface-water samples collected from the Rio Grande, with the exception of phosphorus, generally remained nearly constant from the northernmost station in the study unit to Rio Grande near Isleta, where concentrations were larger by an order of magnitude. Total nitrogen and total phosphorus loads increased downstream between Lobatos, Colorado, and Albuquerque, New Mexico. Nutrient concentrations remained elevated with slight variations until downstream from Elephant Butte Reservoir, where nutrient concentrations were lower. Nutrient concentrations then increased downstream from the reservoir, as evidenced by elevated concentrations at Rio Grande at El Paso, Texas.Suspended-sediment concentrations were similar at stations upstream from Otowi Bridge near San Ildefonso, New Mexico. The concentration and

  15. Biological and Irradiation Treatment of Mix Industrial Wastewater in Flood Mitigation Pond at Prai Industrial Zone

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Jamaliah Sharif; Selambakkanu, S.; Ming, T.M.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2014-01-01

    In this work, activated sludge process and E-Beam was used to treat mixed industrial waste water from mitigation pond A. The objectives of this study to analyze the effect of mix liquor volatile suspended solid (MLVSS) concentration on the properties of wastewater and duration of time taken to achieve steady stage condition for biological treatment. Besides that, effect of electron beam energy on the characteristic of wastewater after irradiation with electron beam machine EPS 3000 was studied as well. The result shows removal percentage of COD, suspended solid and color was linearly proportional with MLVSS. Maximum reduction values recorded for COD, suspended solid and color removal was 69.4, 73.0 and 43.7 % respectively with 3500 mg/l MLVSS at 48 h HRT. In irradiation treatment, significant reduction of COD was obtained with the increase of electron beam energy but the results for suspended solid and color was not favorable. (author)

  16. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    Science.gov (United States)

    Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja

    2018-01-01

    The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  17. How much suspended particulate matter enters long-term in-channel storage?

    Science.gov (United States)

    Dietrich, Stephan; Kleisinger, Carmen; Kehl, Nora; Schubert, Birgit; Hillebrand, Gudrun

    2017-04-01

    The route of suspended particulate matter (SPM) downstream rivers strongly depends on discharge conditions and involves transport times and periods with resting times in deposits e.g. at areas with low-flow conditions near the channel bed. It is, however, difficult to estimate the contribution of SPM on the bed load. In this study, particle-bound polychlorinated biphenyls (PCB), which were released by an incident in the Elbe river (Central Europe) in spring 2015, could be used as unique tracer for transport pathways of SPM along the whole river stretch (over 700 km length), including low mountain ranges, lowlands, and the estuary. In 2015 the Elbe River was characterized by low-discharge conditions. Thus, the export of SPM on flood plains was strongly limited. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from ten monitoring stations (settling tanks) are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal (hereafter PCB6 ratio). We demonstrate that both the load of PCB as well as its chemical fingerprint allows the estimation of transport durations for the transport processes involved. Only a little part of the suspension has been transported via wash load. The PCB6 ratio is used to estimate mean transport velocities of the wash load fraction. A direct transport of wash load via the mean flow velocity of the water was not observed. Shortly after the incident, the PCB6 ratio was monitored 257 km downstream of the incident site in April 2015, in May first occurrence was monitored 514 km downstream of

  18. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review

    OpenAIRE

    Sun, Jingyuan; Yan, Yong

    2016-01-01

    Gas-solid fluidization is a well-established technique to suspend or transport particles and has been applied in a variety of industrial processes. Nevertheless, our knowledge of fluidization hydrodynamics is still limited for the design, scale-up and operation optimization of fluidized bed reactors. It is therefore essential to characterize the two-phase flow behaviours in gas-solid fluidized beds and monitor the fluidization processes for control and optimization. A range of non-intrusive t...

  19. Two-phase air-solid stationary turbulent flow in a cylindrical tube, with a high massive concentration

    International Nuclear Information System (INIS)

    Fortier, Andre; Chen, Che Pen

    1976-01-01

    The momentum theorem, applied separately to the two phases (fluid and solid particles), together with the equations of continuity, gives two differential equations by which the pressure and the concentration along the longitudinal profile x can be computed. These equations can be obtained by introduction of several averaging procedures of physical significance. These quantities are defined in a simple manner for the general case. Using experimental measurements of solid particle velocities in a horizontal tube by radio-tracers, it is shown how to determine the three average coefficients: Λsub(g) friction coefficient of gas, Λsub(s) momentum loss coefficient of solid particles by impacts, against the wall, and Csub(D) drag coefficient due to the velocity difference between the two phases. This determination is based on the numerical solution of the two differential equations conveniently simplified [fr

  20. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  1. Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary

    Directory of Open Access Journals (Sweden)

    Hai-bo Yang

    2017-10-01

    Full Text Available Implementation of the water-sediment regulation (WSR scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary. Using coastline delineation and suspended sediment concentration (SSC retrieval methods, this study investigated water and sediment changes, identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period (NP: 1986–2001, before and after the flood season and WSR period (WSRP: 2002–2013, before and after WSR. The results indicate that (1 the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward; (2 the inter-annual coastline changes could be divided into an accretion stage (1986–1996, a slow erosion stage (1996–2002, and a slow accretion stage (2002–2013; (3 an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and (4 the mean intra-annual accretion area was 0.789 km2 in the NP and 4.73 km2 in the WSRP, and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP.

  2. Optimization and development of analytical methods for the determination of new brominated flame retardants and polybrominated diphenyl ethers in sediments and suspended particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P. [VU University Amsterdam, Institute for Environmental Studies (IVM), Amsterdam (Netherlands); Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Retieseweg 111, 2440, Geel (Belgium); Brandsma, S.A.; Leonards, P.E.G.; Boer, J. de [VU University Amsterdam, Institute for Environmental Studies (IVM), Amsterdam (Netherlands)

    2011-05-15

    With more stringent legislation on brominated flame retardants, it is expected that increasing amounts of substitutes would replace polybrominated diphenylethers (PBDEs). Therefore, the development and optimization of analytical methodologies that allow their identification and quantification are of paramount relevance. This work describes the optimization of an analytical procedure to determine pentabromochlorocyclohexane, tetrabromo-o-chlorotoluene, 2,3,5,6-tetrabromo-p-xylene, tetrabromophthalic anhydride, 2,3,4,5,6-pentabromotoluene, tris(2,3-dibromopropyl)phosphate, decabromodiphenylethane and 1,2-bis(2,4,6-tribromophenoxy)ethane together with PBDEs in sediments and in suspended particulate matter. This method comprises a pressurized liquid extraction followed by three cleanup steps (gel permeation chromatography and solid phase extraction on Oasis trademark HLB and on silica cartridges). Gas chromatography-mass spectrometry, using electron capture negative chemical ionization, is used for the final analysis. The proposed method provides recoveries >85%. The method was applied to sediment and suspended particulate matter samples from different locations in the Western Scheldt estuary (the Netherlands). To the best of our knowledge, this is the first time that the occurrence of the additive flame retardants 2,3,5,6-tetrabromo-p-xylene, 3,4,5,6-tetrabromo-o-chlorotoluene and 2,3,4,5,6-pentabromochlorocyclohexane is reported in the literature. The concentrations of these new flame retardants ranged from 0.05 to 0.30 {mu}g/kg dry weight. (orig.)

  3. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  4. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  5. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  6. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    Science.gov (United States)

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  7. Infrared Spectroscopy of Noh Suspended in Solid Parahydrogen: Part Two

    Science.gov (United States)

    Balabanoff, Morgan E.; Mutunga, Fredrick M.; Anderson, David T.

    2015-06-01

    The only report in the literature on the infrared spectroscopy of the parent oxynitrene NOH was performed using Ar matrix isolation spectroscopy at 10 K. In this previous study, they performed detailed isotopic studies to make definitive vibrational assignments. NOH is predicted by high-level calculations to be in a triplet ground electronic state, but the Ar matrix isolation spectra cannot be used to verify this triplet assignment. In our 2013 preliminary report, we showed that 193 nm in situ photolysis of NO trapped in solid parahydrogen can also be used to prepare the NOH molecule. Over the ensuing two years we have been studying the infrared spectroscopy of this species in more detail. The spectra reveal that NOH can undergo hindered rotation in solid parahydrogen such that we can observe both a-type and b-type rovibrational transitions for the O-H stretch vibrational mode, but only a-type for the mode assigned to the bend. In addition, both observed a-type infrared absorption features (bend and OH stretch) display fine structure; an intense central peak with weaker peaks spaced symmetrically to both lower and higher wavenumbers. The spacing between the peaks is nearly identical for both vibrational modes. We now believe this fine structure is due to spin-rotation interactions and we will present a detailed analysis of this fine structure. Currently, we are performing additional experiments aimed at making 15NOH to test these preliminary assignments. The most recent data and up-to-date analysis will be presented in this talk. G. Maier, H. P. Reisenauer, M. De Marco, Angew. Chem. Int. Ed. 38, 108-110 (1999). U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 136, 164303 (2012). David T. Anderson and Mahmut Ruzi, 68th Ohio State University International Symposium on Molecular Spectroscopy, talk TE01 (2013).

  8. Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.

    Science.gov (United States)

    Li, Peng; Zhang, Dongzhi; Jiang, Chuanxing; Zong, Xiaoqi; Cao, Yuhua

    2017-12-15

    The extraordinary properties of black phosphorus (BP) make it a promising candidate for next-generation transistor chemical sensors. However, BP films reported so far are supported on substrate, and substrate scattering drastically deteriorates its electrical properties. Consequentially, the potential sensing capability of intrinsic BP is highly underestimated and its sensing mechanism is masked. Additionally, the optimum sensing regime of BP remains unexplored. This article is the first demonstration of suspended BP sensor operated in subthreshold regime. BP exhibited significant enhancement of sensitivity for ultra-low-concentration mercury detection in the absence of substrate, and the sensitivity reached maximum in subthreshold regime. Without substrate scattering, the suspended BP device demonstrated 10 times lower 1/f noise which contributed to better signal-to-noise ratio. Therefore, rapid label-free trace detection of Hg 2+ was achieved with detection limit of 0.01 ppb, lower than the world health organization (WHO) tolerance level (1 ppb). The time constant for ion detection extracted was 3s. Additionally, experimental results revealed that good stability, repeatability, and selectivity were achieved. BP sensors also demonstrated the ability of detecting mercury ions in environment water samples. The underling sensing mechanism of intrinsic BP was ascribed to the carrier density variation resulted from surface charge gating effect, so suspended BP in subthreshold regime with optimum gating effect demonstrated the best sensitivity. Our results show the prominent advantages of intrinsic BP as a sensing material. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  10. Quantifying suspended sediment dynamics in mega deltas using remote sensing data: A case study of the Mekong floodplains

    Science.gov (United States)

    Dang, Thanh Duc; Cochrane, Thomas A.; Arias, Mauricio E.

    2018-06-01

    Temporal and spatial concentrations of suspended sediment in floodplains are difficult to quantify because in situ measurements can be logistically complex, time consuming and costly. In this research, satellite imagery with long temporal and large spatial coverage (Landsat TM/ETM+) was used to complement in situ suspended sediment measurements to reflect sediment dynamics in a large (70,000 km2) floodplain. Instead of using a single spectral band from Landsat, a Principal Component Analysis was applied to obtain uncorrelated reflectance values for five bands of Landsat TM/ETM+. Significant correlations between the scores of the 1st principal component and the values of continuously gauged suspended sediment concentration, shown via high coefficients of determination of sediment rating curves (R2 ranging from 0.66 to 0.92), permit the application of satellite images to quantify spatial and temporal sediment variation in the Mekong floodplains. Estimated suspended sediment maps show that hydraulic regimes at Chaktomuk (Cambodia), where the Mekong, Bassac, and Tonle Sap rivers diverge, determine the amount of seasonal sediment supplies to the Mekong Delta. The development of flood prevention systems to allow for three rice crops a year in the Vietnam Mekong Delta significantly reduces localized flooding, but also prevents sediment (source of nutrients) from entering fields. A direct consequence of this is the need to apply more artificial fertilizers to boost agricultural productivity, which may trigger environmental problems. Overall, remote sensing is shown to be an effective tool to understand temporal and spatial sediment dynamics in large floodplains.

  11. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  12. Concentrations, loads, and yields of nutrients and suspended sediment in the South Pacolet, North Pacolet, and Pacolet Rivers, northern South Carolina and southwestern North Carolina, October 2005 to September 2009

    Science.gov (United States)

    Journey, Celeste A.; Caldwell, Andral W.; Feaster, Toby D.; Petkewich, Mattew D.; Bradley, Paul M.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Spartanburg Water, evaluated the concentrations, loads, and yields of suspended sediment, dissolved ammonia, dissolved nitrate plus nitrite, total organic nitrogen, total nitrogen, dissolved orthophosphate, dissolved phosphorus, and total phosphorus at sites in the South Pacolet, North Pacolet, and Pacolet Rivers in northern South Carolina and southwestern North Carolina from October 1, 2005, to September 30, 2009 (water years 2006 to 2009). Nutrient and sediment loads and yields also were computed for the intervening subbasin of the Pacolet River not represented by the South and North Pacolet River Basins. Except for a few outliers, the majority of the measurements of total nitrogen concentrations were well below the U.S. Environmental Protection Agency recommended guideline of 0.69 milligram per liter for streams and rivers in the nutrient ecoregion IX, which includes the study area within the Pacolet River Basin. Dissolved orthophosphate, dissolved phosphorus, and total phosphorus concentrations were significantly lower at the South Pacolet River site compared to the North Pacolet and Pacolet River sites. About 90 percent of the total phosphorus concentrations at the South Pacolet River site were below the U.S. Environmental Protection Agency recommended guideline of 0.37 milligram per liter, and more than 75 percent of the total phosphorus concentrations at the North Pacolet and Pacolet River sites were above that guideline. At all sites, minimum annual nutrient loads for the estimation period were observed during water year 2008 when severe drought conditions were present. An estimated mean annual total nitrogen load of 37,770 kilograms per year and yield of 2.63 kilograms per hectare per year were determined for the South Pacolet River site for the estimation period. The North Pacolet River site had a mean annual total nitrogen load of 65,890 kilograms per year and yield of 2.19 kilograms per hectare per year

  13. Loading Concentrations of Pollutant in Alur Ilmu at UKM Bangi Campus: Event Mean Concentration (EMC) Approach

    International Nuclear Information System (INIS)

    Haslinur Md Din; Mohd Ekhwan Toriman; Mazlin Mokhtar

    2012-01-01

    Water pollutant loadings and river discharge are among the basic data used in determining the dynamicity of a river. The input of water quality and river discharge are usually available through the collection of water samples in the field or at the observatory, and are done automatically using the data logger sensor. This paper discusses the concentrations pollutant load water quality and its relationship with discharge (m 3 / s) using Event Mean Concentration (EMC) in the Alur Ilmu, UKM source from the Diptrokarp forest at Hutan Simpan Bangi (2 degree 55' 1 4.72 N 101 degree 46' 5 7.37 E). Alur Ilmu is a 1.79 km long stretching across the main campus of National University of Malaysia before flowing into the Langat River. Water quality was measured using automatic gauging and continuous water quality stations which are installed at downstream of Alur Ilmu (2 degree 55 ' 40.33 N 100 degree 46 ' 47.15 E) and involves in measuring the parameters of total dissolved solid (TDS) and dissolved oxygen (DO). Laboratory analysis carried out for chemical parameters such as ammonia nitrogen (NH 3 -N), total suspended solid (TSS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in accordance with guidelines American Public Health Association (APHA, 1995). The normal discharge rate recorded at Alur Ilmu is 0.33 m 3 / s and the wet discharge is 13.04 m 3 / s.The total estimated pollutant loadings according to EMC as DO (18.51±3.01 mg/ L), TDS (794.92±186.72 mg/ L), BOD (11.57±0.28 mg/ L), COD (201.29±1.55 mg/ l), TSS (470.03±27.63 mg/ L) and Ammonia Nitrogen (2.52±0.0 mg/ L). Correlation test showed a direct relationship between rainfall and flow (Q) and several pollutant loadings with R 2 =1 at a significance level of 0.05. The study also classified some of the pollutants concentrations in class III and IV as determined by the Water Quality Index (WQI). (author)

  14. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P.; Ding, H.; Wang, X.B. [Harvard University, Boston, MA (United States). Dept. of Environmental Health

    1995-11-01

    The acute effects of air pollution on preterm delivery were examined in a prospective cohort in Beijing, China. From early pregnancy until delivery in 1988, we followed all registered pregnant women who lived in four residential areas of Beijing. Information for both mothers and infants was collected. Daily air pollution and meteorological data were obtained independently. The sample for analysis included 25 370 resident women who gave first live births in 1988. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on gestational age and preterm delivery (i.e. {lt} 37 wk), with adjustment for outdoor temperature and humidity, day of the week, season, maternal age, gender of child, and residential area. Very high concentrations of ambient sulfur dioxide (mean = 102 {mu}g/m{sup 3}), (maximum = 630 {mu}g/m{sup 3}) and total suspended particulates (mean = 375 {mu}g/m{sup 3}), (maximum =1 003 {mu}g/m{sup 3}) were observed in these areas. There was a significant dose-dependent association between gestational age and sulfur dioxide and total suspended particulate concentrations. The estimated reduced duration of gestation was 0.075 wk (12.6 h) and 0.042 wk (7.1 h) for each 100 {mu}g/m{sup 3} increase in sulfur dioxide and total suspended particulates 7-d lagged moving average, respectively. We concluded that high levels of total suspended particulates and sulfur dioxide, or of a more complex pollution mixture associated with these pollutants, appear to contribute to excess risk of preterm delivery in this population. Further work needs to be carried out, with more detailed information on personal exposure and effect modifiers.

  15. Thermodynamic properties of solid H2 at intermediate orthohydrogen concentration

    International Nuclear Information System (INIS)

    Haase, D.G.; Perrell, L.R.

    1983-01-01

    The authors measured the specific heat of solid hydrogen samples grown under vapor pressure for orthohydrogen molar concentrations 0.65 < X < 0.2 and between 1 and 0.15 K. A thermal relaxation technique was used for the measurements to negate the heating effect of orthohydrogen conversion and to allow examination of long time heat release. The specific heat results showed no transitions or permanence which might be associated with a glass phase, with one exception. It was found that all relaxations were exponential with a single time constant regardless of sample thermal history. Measurements were made of samples isothermally converted at T = 0.3K from the ordered fcc phase to the hcp phase, in which case a gradual disorientation of the rotational moments is seen despite the relatively sharp fcc to hcp structural transition. 14 references, 5 figures

  16. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  17. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    International Nuclear Information System (INIS)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-01-01

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times

  18. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    Science.gov (United States)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall

  19. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    Science.gov (United States)

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the

  20. Suspended sediment measurements and calculation of the particle load at HPP Fieschertal

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    In the scope of a research project on hydro-abrasive erosion of Pelton turbines, a field study was conducted at the high-head HPP Fieschertal in Valais, Switzerland. The suspended sediment mass concentration (SSC) and particle size distribution (PSD) in the penstock have been continuously measured since 2012 using a combination of six measuring techniques. The SSC was on average 0.52 g/l and rose to 50 g/l in a major flood event in July 2012. The median particle size d 50 was usually 15 pm, rising up to 100 μm when particles previously having settled in the headwater storage tunnel were re-suspended at low water levels. The annual suspended sediment loads (SSL) varied considerably depending on flood events. Moreover, so-called particle loads (PLs) according to the relevant guideline of the International Electrotechnical Commission (IEC 62364) were calculated using four relations between particle size and the relative abrasion potential. For the investigated HPP, the time series of the SSL and the PLs had generally similar shapes over the three years. The largest differences among the PLs were observed during re-suspension events when the particles were considerably coarser than usual. Further investigations on the effects of particle sizes on hydroabrasive erosion of splitters and cut-outs of coated Pelton turbines are recommended.

  1. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    Science.gov (United States)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  2. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  3. Methods of and system for swing damping movement of suspended objects

    Science.gov (United States)

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  4. Co-digestion of ruminal content and blood from slaughterhouse industries: influence of solid concentration and ammonium generation.

    Science.gov (United States)

    López, I; Passeggi, M; Borzacconi, L

    2006-01-01

    At the present time, organic solid wastes from industries and agricultural activities are considered to be promising substrates for biogas production via anaerobic digestion. Moreover solids stabilisation is required before reutilization or disposal. Slaughterhouses are among the most important industries in Uruguay and produce 150,000 tons of ruminal content (RC) and 30,000 tons of blood per year. In order to determine the influence of the solids and blood contents, the ammonia inhibition and the inoculum adaptation co-digestion batch tests were performed. A set of experiences with TS concentration of 2.5%, 5% and 7.5% and different ratios of RC/blood were carried out using an inoculum from an UASB reactor. In all experiences fast blood hydrolisation was observed. A higher methane production was detected in the experiences with higher TS content. However, the fraction of solids degradation was lower in these experiences. A plateau in the biogas production was found. The free ammonia level, which was above the reported inhibitory levels, could explain this behaviour. After the inhibition period the biogas production restarted probably due to the biomass acclimatisation to the ammonia. In order to determine the inoculum adaptation a new experiment was performed. The inoculum used was the sludge coming from the first set of experiences. Based upon batch tests a 3.5 m3 pilot reactor was designed and started up. Ammonia inhibition was avoided by the start-up strategy and in two weeks the biogas production was 3.5 m3/d. The VS stabilisation with a solid retention time of 20 days was of 43%. The pilot reactor working at steady state had a TS concentration of 3-4% with a ratio of RC/blood of 10:1 at the entrance.

  5. Solid phase transport in series fluidised bed reactors

    International Nuclear Information System (INIS)

    Hayes, M.R.

    1980-01-01

    In a multistage counter-current fluidised bed column, fluidised bed material is recycled within each stage and a fraction is continuously withdrawn to the next lower stage at a rate dependent only on the rate of removal of the fluidised bed material from the base of the column. It has a particular application to the ion exchange treatment of liquids containing suspended solids, for example leach solutions from uranium ores. (author)

  6. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi'an, China.

    Science.gov (United States)

    Wang, Qian; Lu, Xinwei; Pan, Huiyun

    2016-10-01

    A study on heavy metal pollution was undertaken in the re-suspended road dusts from different functional areas in Xi'an City of China to investigate the impacts of human activities and land uses on urban environment. The concentrations of Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined using X-ray fluorescence spectrometry, and their accumulations were analyzed using enrichment factor. Correlation analysis, principal component analysis, and cluster analysis, combined with the concentration property and enrichment factor, were used to identify the possible sources of heavy metals investigated. The investigated re-suspended road dusts had Co, Cr, Cu, Pb, and Zn concentrations higher than background levels. Samples from different functional areas had diverse heavy metal concentration levels. Co, Cr, Cu, Pb, and Zn presented moderate/significant enrichment in the samples. The source analyses indicated that Mn, Ni, V, Pb, and Zn had the mixed sources of nature and traffic, Cr and Cu mainly originated from traffic source, while Co was primarily derived from construction source. Traffic and construction activities had a significant impact on urban environment. This preliminary research provides a valuable basis for urban environment protection and management.

  7. Behaviour of suspended particulate matter (SPM and selected trace metals during the 2002 summer flood in the River Elbe (Germany at Magdeburg monitoring station

    Directory of Open Access Journals (Sweden)

    M. Baborowski

    2004-01-01

    Full Text Available In August 2002, in the worst flooding in more than 100 years, the River Elbe destroyed built-up areas and caused widespread erosion and the relocation of soils and river sediments. To assess the pollutants entering the water, surveys of dissolved constituents and suspended particulate matter (SPM were carried out daily during the flood at a monitoring station near Magdeburg. The sampling point is part of the network of the International Commission for the Protection of the Elbe (ICPE. The results were compared with those of previous flood studies which used the same sampling strategy. Unlike past floods, the 2002 flood was characterised by the transport of relatively fine suspended material with a low mass concentration. Owing to different input sources, the maxima of dry weight and of particle number concentration occurred at different times. Hg, Fe, Mn, Zn, Cu, Ni and Cr showed a maximum concentration concurrent with the dry weight of the SPM, whereas the maximum concentrations of As, Pb, and Cd coincided with the particle number concentration peak. The concentration of particulate matter decreased rapidly, unlike the concentrations of dissolved substances such as DOC and trace metals, as well as the values of UV extinction, all of which remained high for a longer period. Comparing the results of the 2002 flood with the winter floods in 1995, 1999 and 2000, revealed increased values of As and Pb as well as higher concentrations of dissolved compounds. Keywords: river, flood, transport, suspended particulate matter, trace metals, dissolved compounds, Elbe

  8. Applicability of a numerical model to predict vertical distribution of suspended sediment concentration along the depth in Dithmarschen Bight

    Science.gov (United States)

    Rahbani, M.

    2012-04-01

    A three dimensional numerical model of Delft3d-flow was developed to simulate the current velocity and sediment transport of Piep tidal channel system. This channel system is part of Dithmarschen Bight located in the German North Sea coast. It consists of two main channel namely Norderpiep, and Süderpiep. These two channels conjunct together to form Piep channel near the land on tidal flat. The source of the required field data for this study was those collected under "Prediction of Medium Term Coastal Morphodynamics", known as the PROMORPH project. It was executed during the period May 1999 to June 2002. Those measured data used for calibration and validation of the model were current velocity and suspended sediment concentration (SSC). Current velocities were collected using ADCP devise. Suspended sediment concentration data was prepared by converting the measured values of light transmission. These data was collected using transmissometer. On the basis of some in situ mechanical sampler data an equation was developed to convert light transmission to the SSC. Field data were carried out at several stations along the width of three cross sections from the surface to the bottom, taking into account the limitations. To verify the performance of the calibrated model, its results were compared with the field data. The comparison between the modeled and measured current velocity shows an accuracy of about 0.2 m/s. Factor of two of measured SSC were used to evaluate the performance of the model regarding these values. Some dissimilarity was found between the modeled SSC and those of the field data.To verify the cause of this dissimilarity, two comparing procedures were carried out. First the evolution of the vertical profile of the SSC from the model and those from the field were prepared and compared. In another procedure the snapshot of distribution of SSC at each cross section during different phases of a tidal cycle were prepared using the model results and

  9. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  10. The effects of cellulase on capsaicin production in freely suspended cells and immobilized cell cultures of capsicum annuum

    International Nuclear Information System (INIS)

    Islek, C.

    2014-01-01

    The effect of different concentrations of cellulase on the production of capsaicin in freely suspended cell and immobilized cell cultures of Kahramanmara pepper seeds (Capsicum annuum L.) were studied. Calluses were obtained from in vitro germinated hypocotyl explants of pepper seedlings and cell suspensions were prepared from these calluses. Immobilized cell suspension cultures with calcium alginate and free cell suspension cultures were obtained by using cell suspensions. Elicitor such as cellulase (5-30 micro g/ml), was applied both for the free and immobilized cell suspensions and control group without elicitor was prepared. The concentration of capsaicin in freely suspended cells, immobilized cells and their filtrates were identified by HPLC after extraction with ethyl acetate. It was found that the immobilization process had an increasing effect on the capsaicin accumulation. The concentration of capsaicin in the immobilized cells for both control groups and elicitor added samples was higher than the free cells. In general, capsaicin concentration in the filtrate for free cells was higher than the immobilized cells. When all the cellulase and the sampling hours were compared, the highest capsaicin concentration for the immobilized cells was determined as 362,91 micro g/ml f.w. at the 24th hour for 30 micro g/ml cellulase applied samples. (author)

  11. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    Science.gov (United States)

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  12. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems

    DEFF Research Database (Denmark)

    Svagan, Anna J; Benjamins, Jan-Willem; Al-Ansari, Zeinab

    2016-01-01

    acceptable surfactant (lauric acid sodium salt). The drug was suspended in the wet-stable foams followed by a drying step to obtain dry foams. Flexible cellular solid materials of different thicknesses, shapes and drug loadings (up to 50wt%) could successfully be prepared. The drug was released from...... the solid foams in a diffusion-controlled, sustained manner due to the presence of intact air bubbles which imparted a tortuous diffusion path. The diffusion coefficient was assessed using Franz cells and shown to be more than one order of magnitude lower for the cellular solids compared to the bubble...

  13. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Science.gov (United States)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  14. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  15. Compilation, quality control, analysis, and summary of discrete suspended-sediment and ancillary data in the United States, 1901-2010

    Science.gov (United States)

    Lee, Casey J.; Glysson, G. Douglas

    2013-01-01

    Human-induced and natural changes to the transport of sediment and sediment-associated constituents can degrade aquatic ecosystems and limit human uses of streams and rivers. The lack of a dedicated, easily accessible, quality-controlled database of sediment and ancillary data has made it difficult to identify sediment-related water-quality impairments and has limited understanding of how human actions affect suspended-sediment concentrations and transport. The purpose of this report is to describe the creation of a quality-controlled U.S. Geological Survey suspended-sediment database, provide guidance for its use, and summarize characteristics of suspended-sediment data through 2010. The database is provided as an online application at http://cida.usgs.gov/sediment to allow users to view, filter, and retrieve available suspended-sediment and ancillary data. A data recovery, filtration, and quality-control process was performed to expand the availability, representativeness, and utility of existing suspended-sediment data collected by the U.S. Geological Survey in the United States before January 1, 2011. Information on streamflow condition, sediment grain size, and upstream landscape condition were matched to sediment data and sediment-sampling sites to place data in context with factors that may influence sediment transport. Suspended-sediment and selected ancillary data are presented from across the United States with respect to time, streamflow, and landscape condition. Examples of potential uses of this database for identifying sediment-related impairments, assessing trends, and designing new data collection activities are provided. This report and database can support local and national-level decision making, project planning, and data mining activities related to the transport of suspended-sediment and sediment-associated constituents.

  16. Coagulation / flocculation process in the removal of trace metals ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    elements such as Cu, Zn, Ni and Cr, as well as ... solids, (2) separation of suspended solids by chemical ... Total Metal Concentration Of The Wastewater: The .... Copper adsorption by esterifies and unesterified fractions of sphagnum peat ...

  17. Effects of effects of suspended sediment on early-life stage survival of Yaqui chub, an endangered USA–Mexico borderlands cyprinid

    Science.gov (United States)

    Barkalow, Stephani L. Clark; Bonar, Scott A.

    2015-01-01

    High levels of total suspended sediment (TSS) can have negative consequences on fishes, such as altering food supply, lowering food acquisition, clogging gills, and disrupting reproduction. While effects of TSS on salmonids and estuarine fish are well studied, less is known about possible negative impacts of suspended sediment on desert fishes. Several imperiled desert fishes inhabit streams and springs near the U.S.–Mexico border and are potentially threatened by increased sediment loads from borderlands activity such as livestock grazing, road building, illegal traffic, and law enforcement patrols. One such species is the Yaqui Chub Gila purpurea, a federally listed endangered cyprinid. We exposed Yaqui Chub embryos and fry (mean TL = 12.6 mm; SE = 0.42) to a range of TSS levels commonly found in one of the only streams they inhabit, Black Draw, which crosses the Arizona–Mexico border. We tested effects of 0; 300; 500; 1,000; 5,000; and 10,000 mg/L TSS loads on fry and embryos over a 5-d period in three replicate containers for each treatment. Fifty percent hatch rate (i.e., median lethal concentration, LC50) was 3,977 mg/L for embryos. The LC50 for fry (concentration at which half died) was 8,372 mg/L after 12 h of exposure; however, after 5-d exposure, LC50 leveled at 1,197 mg/L. The TL of fry did not change significantly in any treatment over the 5-d period. Suspended sediment in Black Draw reached concentrations lethal to Yaqui Chub embryo and fry during four floods in 2012. Although some desert fishes have evolved in rivers and streams subject to elevated TSS and are tolerant to high TSS concentrations, other fish species are less tolerant and may be impacted by land practices which increase erosion into stream systems. Management of critically endangered desert fishes should include considerations of the effects of increased suspended sediment.

  18. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    Science.gov (United States)

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.

  20. Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chalermsinsuwan, Benjapon; Thummakul, Theeranan; Piumsomboon, Pornpote [Chulalongkorn University, Bangkok (Thailand); Gidaspow, Dimitri [Armour College of Engineering, Chicago (United States)

    2014-02-15

    The hydrodynamics inside a high solid particle concentration circulating fluidized bed reactor was investigated using computational fluid dynamics simulation. Compared to a low solid particle reactor, all the conventional fluidization regimes were observed. In addition, two unconventional fluidization regimes, circulating-turbulent and dense suspension bypassing regimes, were found with only primary gas injection. The circulating-turbulent fluidization regime showed uniformly dense solid particle distribution in all the system directions, while the dense suspension bypassing fluidization regime exhibited the flow of solid particles at only one side system wall. Then, comprehensive fluidization regime clarification and mapping were evaluated using in-depth system parameters. In the circulating-turbulent fluidization regime, the total granular temperature was low compared to the adjacent fluidization regimes. In the dense suspension bypassing fluidization regime, the highest total granular temperature was obtained. The circulating-turbulent and dense suspension bypassing fluidization regimes are suitable for sorption and transportation applications, respectively.

  1. Remote Sensing of Sub-Surface Suspended Sediment Concentration by Using the Range Bias of Green Surface Point of Airborne LiDAR Bathymetry

    Directory of Open Access Journals (Sweden)

    Xinglei Zhao

    2018-04-01

    Full Text Available Suspended sediment concentrations (SSCs have been retrieved accurately and effectively through waveform methods by using green-pulse waveforms of airborne LiDAR bathymetry (ALB. However, the waveform data are commonly difficult to analyze. Thus, this paper proposes a 3D point-cloud method for remote sensing of SSCs in calm waters by using the range biases of green surface points of ALB. The near water surface penetrations (NWSPs of green lasers are calculated on the basis of the green and reference surface points. The range biases (ΔS are calculated by using the corresponding NWSPs and beam-scanning angles. In situ measured SSCs (C and range biases (ΔS are used to establish an empirical C-ΔS model at SSC sampling stations. The SSCs in calm waters are retrieved by using the established C-ΔS model. The proposed method is applied to a practical ALB measurement performed by Optech Coastal Zone Mapping and Imaging LiDAR. The standard deviations of the SSCs retrieved by the 3D point-cloud method are less than 20 mg/L.

  2. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1999-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  3. Simultaneous measurement of local particle movement, solids concentrations and bubble properties in fluidized bed reactors using a novel fiber optical technique

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, Davoud

    1998-12-31

    This thesis develops a new method for simultaneous measurements of local flow properties in highly concentrated multiphase flow systems such as gas-solid fluidized bed reactors. The method is based on fiber optical technique and tracer particles. A particle present in the measuring volume in front of the probe is marked with a fluorescent dye. A light source illuminates the particles and the detecting fibres receive reflected light from uncoated particles and fluorescent light from the tracer particle. Using optical filters, the fluorescent light can be distinguished and together with a small fraction of background light from uncoated particles can be used for determination of local flow properties. Using this method, one can simultaneously measure the local movement of a single tracer particle, local bubble properties and the local solids volume fractions in different positions in the bed. The method is independent of the physical properties of the tracer particles. It is also independent of the local solids concentrations in the range of 0 to 60 vol.-%, but is mainly designed for highly concentrated flow systems. A computer programme that uses good signals from at least three sensors simultaneously to calculate the tracer particle velocity in two dimensions have been developed. It also calculates the bubble properties and local solids volume fractions from the same time series. 251 refs., 150 figs., 5 tabs.

  4. Dynamic model of movement of mine suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2014-03-01

    Full Text Available In the article we have developed the dynamic model of interaction of rolling stock during the movement, on the suspended monorail, taking into account the side-sway. We have received the motion equations, carried out their analysis and determined the own oscillation frequencies of rolling stock of suspended monorail.

  5. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  6. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  7. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  8. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  9. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: ambient concentrations, origin and effects on human health

    Directory of Open Access Journals (Sweden)

    Kuskowska Karolina

    2018-01-01

    Full Text Available The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs associated with total suspended particles (TSP and their respirable fraction (PM4 in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.

  10. Integrated pretreatment and desalination by electrocoagulation (EC)-ion concentration polarization (ICP) hybrid.

    Science.gov (United States)

    Choi, Siwon; Kim, Bumjoo; Han, Jongyoon

    2017-06-13

    Conventional water treatment process is composed of multiple stages, including desalination (salt removal) and pre/post-treatment of desalination to remove particles, chemicals, and other potential foulants for desalination. In this work, we developed a microfluidic proof-of-concept for a single device water treatment system, which removes both salt ions and non-salt contaminants. Our system combines electrocoagulation (EC), a versatile contaminant removal process, and ion concentration polarization (ICP) desalination, which is an electromembrane desalination process. We demonstrated a continuous EC-ICP operation that removed >95% of suspended solids and reduced the salinity from brackish range (20 mM NaCl) to a potable level (<8.6 mM NaCl). We also demonstrated that our system is flexible in terms of the type and concentration of contaminants it can handle. Combining two different electrochemical processes into a single system, we can reduce unnecessary voltage drop by having a shared anode, and achieve both seamless integration and energy efficient operation. Our system will find applications as a small-scale water treatment system, if properly scaled up in the future.

  11. Biogas production from organic wastes in suspended cell cultures and in biofilms

    International Nuclear Information System (INIS)

    Simenonov, I.; Chorukova, E.; Mamatarkova, V.; Nikolov, L.

    2010-01-01

    The results of a comparative study of two biogas production bioprocess systems are presented. The systems submitted to comparison are based on the suspended cells cultures and the biofilm formed on solid inert support. A comprehensive research concept is formulated and discussed. It includes the main considerations regarding the choice of substrate, bioagent as mixed microbial society, type of bioreactors, regimes of functioning, analytical determinations and method of comparison. The main requirements for efficient experimental activity in comparative investigations are formulated. Their satisfaction can grant correctness of the experimental design and data acquisition. On this basis the key parameter of comparison of the two systems is defined as the specific productivity of the bioprocess systems. Under these conditions series of preliminary experiments are carried out for testing the readiness of experimental set ups for long time stable functioning and monitoring devices capabilities to maintain the bioprocess parameters at the determined intervals. These tests grant continuous incessant experimentation with the investigated bioprocess systems. The results obtained show that biofilm bioprocess systems possess up to two and half time higher specific productivity in comparison with the bioprocess systems with the suspended cells. Some visions about the future developments of comparative research on the influence of additional parameters like the mixer rotation steed, organic loads, and higher values of dilution rates are outlined.

  12. Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    Science.gov (United States)

    Grassl, H.; Doerffer, R.; Fischer, J.; Brockmann, C.; Stoessel, M.

    1987-01-01

    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes.

  13. Time changes in radiocesium concentration in aquatic systems affected by the Fukushima Daiichi NPP accident

    Science.gov (United States)

    Onda, Yuichi; Taniguchi, Keisuke; Kato, Hiroaki; Yoshimura, Kazuya; Wakiyama, Yoshifumi; Iwagami, Sho; Tsujimura, Maki; Sakaguchi, Aya; Yamamoto, Masatoshi

    2015-04-01

    Due to Fukushima Daiichi Nuclear Power Plant accident, radioactive materials including Cs-134 and Cs-137 were widely distributed in surrounded area. The radiocesiums have been transported in river networks. The monitoring started at 6 sites from June 2011. Subsequently, additional 24 monitoring sites were installed between October 2012 and January 2013. Flow and turbidity (for calculation of suspended sediment concentration) were measured at each site, while suspended sediments and river water were collected every one or half month to measure Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Also detailed field monitoring has been condcuted in Yamakiya-district, Kawamata town, Fukushima prefecture. These monitoring includes, 1) Radiocesium wash-off from the runoff-erosion plot under different land use, 2) 2. Measurement of radiocesium transfer in forest environment, in association with hydrological pathways such as throughfall and overlandflow on hillslope, 3) Monitoring on radiocesium concentration in soil water, ground water, and spring water, 4)Monitoring of dissolved and particulate radiocesium concentration in river water, and stream water from the forested catchment, and 5)Measurement of radiocesium content in drain water and suspended sediment from paddy field. Our monitoring result demonstrated that the Cs-137 concentration in eroded sediment from the runoff-erosion plot has been almost constant for the past 3 years, however the Cs-137 concentration of suspended sediment from the forested catchment showed slight decrease through time. On the other hand, the suspended sediment from paddy field and those in river water from large catchments exhibited rapid decrease in Cs-137 concentration with time. The decreasing trend of Cs-137 concentration were fitted by the two-component exponential model, differences in decreasing rate of the model were compared and discussed among various land uses and catchment scales. Such analysis can provide

  14. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  15. Characterization of the compounds of nitrogen and total suspended particles in the municipality Regla, Havana

    International Nuclear Information System (INIS)

    Wallo Vazquez, Antonio; Cuesta Santos, Osvaldo

    2006-01-01

    The questions related with the atmospheric contamination in urban areas every day they charge bigger importance for the affectations that it can take place so much in the health of the human beings as in the materials, constructions, etc. In the city of Havana those made up of nitrogen and the particles suspended totals are of the pollutants whose concentrations are elevated in the atmosphere. Inside this context, the present work intends the analysis of the behavior of this concentrations, taken as experimental polygon the municipality Regla in city of Havana

  16. Effect of mixture ratio, solids concentration and hydraulic retention time on the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Fongsatitkul, Prayoon; Elefsiniotis, Panagiotis; Wareham, David G

    2010-09-01

    This paper describes how the degradation of the organic fraction of municipal solid waste (OFMSW) is affected through codigestion with varying amounts of return activated sludge (RAS). Solid waste that had its inorganic fraction selectively removed was mixed with RAS in ratios of 100% OFMSW, 50% OFMSW/50% RAS, and 25% OFMSW/75% RAS. The total solids (TS) concentration was held at 8% and three anaerobic digester systems treating the mixtures were held (for the first run) at a total hydraulic retention time (HRT) of 28 days. Increasing amounts of RAS did not however improve the mixture's digestability, as indicated by little change and/or a drop in the main performance indices [including percentage volatile solids (VS) removal and specific gas production]. The optimum ratio in this research therefore appeared to be 100% OFMSW with an associated 85.1 ± 0.6% VS removal and 0.72 ± 0.01 L total gas g(- 1) VS. In the second run, the effect of increasing percentage of TS (8, 12% and 15%) at a system HRT of 28 days was observed to yield no improvement in the main performance indices (i.e. percentage VS removal and specific gas production). Finally, during the third run, variations in the total system HRT were investigated at an 8% TS, again using 100% OFMSW. Of the HRTs explored (23, 28 and 33 days), the longest HRT yielded the best performance overall, particularly in terms of specific gas production (0.77 ± 0.01 L total gas g(-1) VS).

  17. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  18. 76 FR 49449 - Continuation of Antidumping Duty Order on Solid Fertilizer Grade Ammonium Nitrate From the...

    Science.gov (United States)

    2011-08-10

    ... nitrate (``ammonium nitrate'') from the Russian Federation (``Russia'') would likely lead to continuation... Duty Order on Solid Fertilizer Grade Ammonium Nitrate From the Russian Federation AGENCY: Import... ammonium nitrate suspended investigation. See Initiation of Five-Year (``Sunset'') Review, 76 FR 11202...

  19. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  20. Electron stimulated reactions of methyl iodide coadsorbed with amorphous solid water

    International Nuclear Information System (INIS)

    Perry, C. C.; Faradzhev, N. S.; Madey, T. E.; Fairbrother, D. H.

    2007-01-01

    The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons

  1. Elemental compositions of suspended particles released in glass manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Mamuro, T; Mizohata, A; Kubota, T [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1980-03-01

    Suspended particles released in glass manufacture were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. Suspended particles emitted from glass manufacture generally consist of both particles emitted from glass fusion and those produced through fuel combustion (mainly oil combustion). Elemental compositions of suspended particles emitted from glass fusion were found to be strongly dependent on the kind and recipe of raw materials and additives. Of the various metallic elements involved in suspended particles emitted from glass fusion, the elements, As, Se, Cd, Sb, Pb and so on are regarded to produce the most serious air pollution. The amount of emission of these elements to the environment is, howerer, quite varied from manufacturer to manufacturer. The replacement of electric furnace by oil combustion in opal glass manufacture remarkably reduced the emission of metallic elements to the environment.

  2. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  3. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    Science.gov (United States)

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay

  4. Solid-state laser pumping with a planar compound parabolic concentrator.

    Science.gov (United States)

    Panteli, D V; Pani, B M; Beli, L Z

    1997-10-20

    A novel solid-state laser-pumping scheme is proposed that combines a reflective lamp chamber and a compound parabolic concentrator (CPC) as a light guide. The CPC is made of a transparent material of high refractive index, and light is guided by the total internal reflection, with drastically reduced reflection losses. Material is chosen so that the absorption losses are minimized in the pumping wavelength range. The lamp chamber is designed with the principles of nonimaging optics, which ensures that the radiation is efficiently transferred from the lamp to the input aperture of the CPC. The pumping efficiency was first estimated theoretically, which gave us enough justification for the more accurate calculations with ray tracing. Single as well as multiple pumping cavities are discussed. New pumping geometry results in significantly increased pumping efficiency compared with conventional geometries. Also the lamp and the laser rod are separated, leading to reduced thermal load. We found that the proposed pumping method is also applicable to diode-pumped lasers.

  5. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    Science.gov (United States)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte; Petersen, Jens Kjerulf

    2018-02-01

    Farming of suspended mussels is important for generating high protein food and animal feed or for removing nutrients in eutrophic systems. However, the harvested mussels must not be severely contaminated by pollutants posing a potential health risk for the consumers. The present study estimated the bioaccumulation of cadmium, copper, nickel, lead and zinc in suspended blue mussels (Mytilus edulis L.) in the Limfjorden, Denmark, based on observations and modelling. Modelling was used to assess the suitability of suspended blue mussels as animal feed and food products at sea water metal concentrations corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards (EQS) defined in the WFD priority substance daughter directives. Observations showed that suspended mussels were healthy with respect to metal pollution and generally less polluted than benthic mussels due to the smaller contact with the contaminated sediment. The model results showed that the WFD targets for Cd, Ni and Pb are not protective with respect to marine mussel production and probably should be reduced for marine waters. Climate changes may increase the metal contamination of mussels, but not to any critical level at the relatively unpolluted study sites. In conclusion, WFD targets should be revised to assure that the corresponding body burdens of metals in mussels are below the safety limits according to the EU Directives and the Norwegian classification for animal feed and food production.

  6. The LISST-SL streamlined isokinetic suspended-sediment profiler

    Science.gov (United States)

    Gray, John R.; Agrawal, Yogesh C.; Pottsmith, H. Charles

    2004-01-01

    The new manually deployed Laser In Situ Scattering Transmissometer-StreamLined profiler (LISST-SL) represents a major technological advance for suspended-sediment measurements in rivers. The LISST-SL is being designed to provide real-time data on sediment concentrations and particle-size distributions. A pressure sensor and current meter provide real-time depth and ambient velocity data, respectively. The velocity data are also used to control pumpage across an internal laser so that the intake velocity is constantly adjusted to match the ambient stream velocity. Such isokinetic withdrawal is necessary for obtaining representative sedimentary measurements in streamflow, and ensures compliance with established practices. The velocity and sediment-concentration data are used to compute fluxes for up to 32 particle-size classes at points, verticals, or in the entire stream cross section. All data are stored internally, as well as transmitted via a 2-wire conductor to the operator using a specially developed communication protocol. The LISST-SL's performance will be measured and compared to published sedimentological accuracy criteria, and a performance summary will be placed on-line.

  7. Molybdenum-rhenium superconducting suspended nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio [Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  8. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Science.gov (United States)

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  9. Fluid-solid boundary conditions for multiparticle collision dynamics

    International Nuclear Information System (INIS)

    Whitmer, Jonathan K; Luijten, Erik

    2010-01-01

    The simulation of colloidal particles suspended in solvent requires an accurate representation of the interactions between the colloids and the solvent molecules. Using the multiparticle collision dynamics method, we examine several proposals for stick boundary conditions, studying their properties in both plane Poiseuille flow (where fluid interacts with the boundary of a stationary macroscopic solid) and particle-based colloid simulations (where the boundaries are thermally affected and in motion). In addition, our simulations compare various collision rules designed to remove spurious slip near solid surfaces, and the effects of these rules on the thermal motion of colloidal particles. Furthermore, we demonstrate that stochastic reflection of the fluid at solid boundaries fails to faithfully represent stick boundary conditions, and conclude that bounce-back conditions should be applied at both mobile and stationary surfaces. Finally, we generalize these ideas to create partial slip boundary conditions at both stationary and mobile surfaces.

  10. Arsenic speciation in water, suspended particles, and coastal organisms from the Taehwa River Estuary of South Korea

    International Nuclear Information System (INIS)

    Hong, Seongjin; Kwon, Hye-Ok; Choi, Sung-Deuk; Lee, Jung-Suk; Khim, Jong Seong

    2016-01-01

    Water, suspended particulate matter (SPM), and biota samples were collected from the Taehwa River Estuary to determine the distributions, partitioning, and bioaccumulation of arsenicals. Six forms of As were quantitated by the use of HPLC-ICP/MS. As was found mainly near urban and industrial areas, and inorganic As V was the predominant As form in both water and SPM. Particulate arsenicals were found at the greatest concentrations in coarse particles (> 180 μm), followed by medium (30–180 μm) and fine (0.45–30 μm) particles, in freshwater. Arsenical concentrations were similar across the three particle fractions in saltwater. Field-based distribution coefficient (K d ) values for As depended strongly on SPM, with a less robust dependence on salinity. Concentrations of As were greater in macroalgae than in marine animals, such as fishes, bivalves, crabs, shrimps, and gastropods. Overall, the results of the present study provide useful information on the behaviors and fate of arsenicals in an estuarine environment. - Highlights: •Concentrations of As were greater in industrial and urban areas than in suburban area. •The predominant form of As in water and suspended particles was inorganic As V . •Particle-size distributions of arsenicals differed between freshwater and saltwater. •The K d values for As depended strongly on the presence of SPMs along the estuary. •Greater concentrations of arsenicals were found in macroalgae than in marine animals.

  11. Solidification of liquid concentrate and solid waste generated as by-products of the liquid radwaste treatment systems in light-water reactors

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1977-01-01

    The treatment of liquid concentrate and solid waste produced in light-water reactors as by-products of liquid radwaste treatment systems consists of five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging (solidification) and waste package handling. This paper will concern itself primarily with the solidification operation, however, the other operations enumerated as well as the types of wastes treated and their origins will be briefly described, especially with regards to their effects on solidification. During solidification, liquid concentrate and solid wastes are incorporated with a solidification agent to form a monolithic, free-standing solid. The basic solidification agent types either currently used in the United States or proposed for use include absorbants, hydraulic cement, urea-formaldehyde, other polymer systems, and bitumen. The operation, formulations and limitations of these agents as used for radwaste solidification will be discussed. Properties relevant to the evaluation of solidified waste forms will be identified and relative comparisons made for wastes solidified by various processes

  12. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  13. Suspended sediment concentration–discharge relationships in the (sub- humid Ethiopian highlands

    Directory of Open Access Journals (Sweden)

    C. D. Guzman

    2013-03-01

    Full Text Available Loss of top soil and subsequent filling up of reservoirs in much of the lands with variable relief in developing countries degrades environmental resources necessary for subsistence. In the Ethiopia highlands, sediment mobilization from rain-fed agricultural fields is one of the leading factors causing land degradation. Sediment rating curves, produced from long-term sediment concentration and discharge data, attempt to predict suspended sediment concentration variations, which exhibit a distinct shift with the progression of the rainy season. In this paper, we calculate sediment rating curves and examine this shift in concentration for three watersheds in which rain-fed agriculture is practiced to differing extents. High sediment concentrations with low flows are found at the beginning of the rainy season of the semi-monsoonal climate, while high flows and low sediment concentrations occur at the end of the rainy season. Results show that a reasonably unique set of rating curves were obtained by separating biweekly data into early, mid, and late rainfall periods and by making adjustments for the ratio of plowed cropland. The shift from high to low concentrations suggests that diminishing sediment supply and dilution from greater base flow during the end of the rainfall period play important roles in characterizing changing sediment concentrations during the rainy season.

  14. Rising Sludge in Secondary Settlers Due to Denitrification

    DEFF Research Database (Denmark)

    Henze, Mogens; Dupont, Rene; Grau, Peter

    1993-01-01

    High suspended solids concentrations in settler effluents can be caused by rising sludge, which is the effect of flotation of solids by nitrogen gas resulting from biological denitrification. Many factors influence the nitrogen gas bubble evolution. The most important factor is the rate...

  15. Characterisation of the suspended particulate matter in a stratified estuarine environment employing complementary techniques

    Science.gov (United States)

    Thomas, Luis P.; Marino, Beatriz M.; Szupiany, Ricardo N.; Gallo, Marcos N.

    2017-09-01

    The ability to predict the sediment and nutrient circulation within estuarine waters is of significant economic and ecological importance. In these complex systems, flocculation is a dynamically active process that is directly affected by the prevalent environmental conditions. Consequently, the floc properties continuously change, which greatly complicates the characterisation of the suspended particle matter (SPM). In the present study, three different techniques are combined in a stratified estuary under quiet weather conditions and with a low river discharge to search for a solution to this problem. The challenge is to obtain the concentration, size and flux of suspended elements through selected cross-sections using the method based on the simultaneous backscatter records of 1200 and 600 kHz ADCPs, isokinetic sampling data and LISST-25X measurements. The two-ADCP method is highly effective for determining the SPM size distributions in a non-intrusive way. The isokinetic sampling and the LISST-25X diffractometer offer point measurements at specific depths, which are especially useful for calibrating the ADCP backscatter intensity as a function of the SPM concentration and size, and providing complementary information on the sites where acoustic records are not available. Limitations and potentials of the techniques applied are discussed.

  16. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2014-01-01

    Full Text Available Elements associated with total suspended particulate matter (TSP in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high levels of all measured elements. Concentrations of most elements at the two sites exhibit strong spatial gradients and concentrations of elements at these sites are higher than other locations. The highest concentrations of elements were observed during June–August because of dust storms, significant increase in energy consumption, and active surface winds. Enrichment factors of elements at the high-level sites have values in the range >10~60 while for Cu and Zn the enrichment factors are much higher (~0–>700 indicating that greater percentage of TSP composition for these three elements in air comes from anthropogenic activities.

  17. Numerical Simulations of the Impact and Spreading of a Particulate Drop on a Solid Substrate

    Directory of Open Access Journals (Sweden)

    Hyun Jun Jeong

    2012-01-01

    Full Text Available We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.

  18. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  19. Remote sensing of suspended sediment water research: principles, methods, and progress

    Science.gov (United States)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  20. Suspended Matter, Chl-a, CDOM, Grain Sizes, and Optical Properties in the Arctic Fjord-Type Estuary, Kangerlussuaq, West Greenland During Summer

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Andersen, T. J.; Nielsen, Morten Holtegaard

    2010-01-01

    Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66A degrees) in August 2007 along with optical properties. These comprised diffuse...... water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K (d...... from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K (d)(PAR), particle beam attenuation coefficients (c (p)), and reflectance R(-0, PAR) at the melt...