WorldWideScience

Sample records for suspended particles pollution

  1. Assessment of the Atmospheric Suspended Particles Pollution in the Madrid Air Quality Networks

    International Nuclear Information System (INIS)

    Salvador, P.; Artinano, B.

    2000-01-01

    Suspended particles are a very complex type of atmospheric pollution because of their chemical composition and size. In fact, there are a quite high number of particles sources which are linked to different physicochemical processes that determine their size. At present particles smaller than 10 μm are considered the most dangerous, as has been recently pointed out by numerous epidemiologic studies. In this way, more restrictive concentration limit values have been approved in the EU countries, so an assessment of present airborne concentration values and the sources apportionment in their most representative areas is needed. In the Madrid Community a first approaching of these and other aims, has been carried out from an analysis of the Madrid Air Quality networks data. This will contribute to the establishment of concentration levels abatement strategies. (Author) 111 refs

  2. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  3. [Distributions and pollution status of heavy metals in the suspended particles of the estuaries and coastal area of eastern Hainan].

    Science.gov (United States)

    Xin, Cheng-Lin; Ren, Jing-Ling; Zhang, Gui-Ling; Shao, Ya-Ping; Zhang, Guo-Ling; Liu, Su-Mei

    2013-04-01

    The distributions and pollution status of heavy metals in the suspended particles were investigated in the Wanquan and Wenchang/Wenjiao estuaries and the coastal area of eastern Hainan in July 2008. The concentrations of metal elements (Al, Fe, Mn, Cr, Cu, Ni, V, Zn) were determined by ICP-AES after microwave digestion. Multivariate statistical methods (e. g. correlation analysis and principal factor analysis) were used to discuss the major factors controlling the variability of heavy metal concentrations and the pollution status in those areas. There was an obvious variability in particulate metal concentrations from upstream to estuary of both rivers. The concentrations first increased with increasing salinity and then decreased with further increase of the salinity; the concentrations were slightly higher at the coastal area in the east. The variability of particulate metal concentrations reduced significantly after the normalization by Al, indicating the effects of grain size. Enrichment factor calculation results showed that there was heavy metal pollution (especially Cu, Ni) in the Wenchang/Wenjiao River and estuary, while the situation in Wanquan River remained at pristine level. Concentrations of particulate metals in the study area were mainly controlled by source geology and provenance, as well as contamination from the discharge of waste water and biological activity.

  4. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    Science.gov (United States)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  5. Suspended particles, colloids and radionuclide transport

    International Nuclear Information System (INIS)

    Chapman, N.; McKinley, I.; Shea, M.; Smellie, J.

    1993-01-01

    Radionuclide can be transported either in true solution or associated with suspended particles and colloids. The definitions of colloids and suspended particles are introduced and the mechanisms by which they can influence radionuclide transport discussed. The aim of the Pocos de Caldas investigations was to characterise the natural particulate material in the groundwater, to investigate the association of trace elements with this material and to obtain information on the stability and mobility of the particles. The concentration of suspended particles measured in the groundwater samples were low; the particles also appear to be immobile. (author) 4 figs

  6. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    , zinc and nickel) transported in ... Suspended sediment concentration; heavy metal concentration; regression model; particle size distribution;. Kojour watershed; Iran. ..... contaminants in a uranium mine pite–Lake; Water Res. 39 3055–3061.

  7. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  8. Macromodel for assessing residential concentrations of combustion-generated pollutants: Model development and preliminary predictions for CO, NO/sub 2/, and respirable suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W.; Aceti, J.C.; Apte, M.G.; Smith, B.V.; Green, L.L.; Smith-Reiser, A.; Novak, K.M.; Moses, D.O.

    1989-01-01

    A simulation model (also called a ''macromodel'') has been developed to predict residential air pollutant concentration distributions for specified populations. The model inputs include the market penetration of pollution sources, pollution source characteristics (e.g., emission rates, source usage rates), building characteristics (e.g., house volume, air exchange rates), and meteorological parameters (e.g., outside temperature). Four geographically distinct regions of the US have been modeled using Monte Carlo and deterministic simulation techniques. Single-source simulations were also conducted. The highest predicted CO and NO/sub 2/ residential concentrations were associated with the winter-time use of unvented gas and kerosene space heaters. The highest predicted respirable suspended particulate concentrations were associated with indoor cigarette smoking and the winter-time use of non-airtight wood stoves, radiant kerosene heaters, convective unvented gas space heaters, and oil forced-air furnaces. Future field studies in this area should (1) fill information gaps identified in this report, and (2) collect information on the macromodel input parameters to properly interpret the results. It is almost more important to measure the parameters that affect indoor concentration than it is to measure the concentrations themselves.

  9. Assessment of the Atmospheric Suspended Particles Pollution in the Madrid Air Quality Networks; Evaluacion de la Contaminacion Atmosferica producida por Particulas en Suspension en las Redes de Calidad del Aire de la Comunidad de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P.; Artinano, B.

    2000-07-01

    Suspended particles are a very complex type of atmospheric pollution because of their chemical composition and size. In fact, there are a quite high number of particles sources which are linked to different physico-chemical processes that determine their size. At present particles smaller than 10 {mu}m are considered the most dangerous, as has been recently pointed out by numerous epidemiologic studies. In this way, more restrictive concentration limit values have been approved in the EU countries, so an assessment of present airborne concentration values and the sources apportionment in their most representative areas is needed. In the Madrid Community a first approaching of these and other aims, has been carried out from an analysis of the Madrid Air Quality networks data. This will contribute to the stablishment of concentration levels abatement strategies. (Author) 111 refs.

  10. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    Science.gov (United States)

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10

  11. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  12. Air pollution in Aleppo city, gases,suspended particulates

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-06-01

    Total suspended particulates measured by using High Volume Air Sampler. The Co and O 3 were measured during weekday and weekend. The concentration of all pollutants at city center are higher than other measured areas. (author). 10 figs., 10 tabs

  13. Suspended particles and the gravitational instability of a rotating plasma

    International Nuclear Information System (INIS)

    Sharma, R.C.; Sharma, K.C.

    1980-01-01

    The gravitational instability of an infinite homogeneous self-graviting and finitely conducting, rotating gas-particle medium, in the presence of a uniform vertical magnetic field, is studied to include finite Larmor radius and suspended particles effects. The particular cases of the effects of rotation, finite conductivity, finite Larmor radius and suspended particles on the waves propagated along and perpendicular to magnetic field have been discussed. Jeans's criterion determines the gravitational instability. (orig.)

  14. Health Effects of Ozone and Particle Pollution

    Science.gov (United States)

    ... this page: Health Effects of Ozone and Particle Pollution Two types of air pollution dominate in the ... So what are ozone and particle pollution? Ozone Pollution It may be hard to imagine that pollution ...

  15. System for concentrating and analyzing particles suspended in a fluid

    Science.gov (United States)

    Fiechtner, Gregory J [Bethesda, MD; Cummings, Eric B [Livermore, CA; Singh, Anup K [Danville, CA

    2011-04-26

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  16. Transport of suspended particles in turbulent open channel flows

    NARCIS (Netherlands)

    Breugem, W.A.

    2012-01-01

    Two experiments are performed in order to investigate suspended sediment transport in a turbulent open channel flow. The first experiment used particle image velocimetry (PIV) to measure the fluid velocity with a high spatial resolution, while particle tracking velocimetry (PTV) was used to measure

  17. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    The relationship between SSC and particle size distribution (PSD) were correlated with HMC by using bivariate and multivariate regression models. Proposed models were then selected based on statistical criteria. The results showed high correlation between dissolved and particulate chromium content with efficiency ...

  19. Suspended Particles: Their Role in Estuarine Biogeochemical Cycles

    Science.gov (United States)

    Turner, A.; Millward, G. E.

    2002-12-01

    Suspended particles are instrumental in controlling the reactivity, transport and biological impacts of substances in aquatic environments, and provide a crucial link for chemical constituents between the water column, bed sediment and food chain. This article reviews the role of suspended particles in the chemical and biological cycling of trace constituents (trace metals, organo-metallic compounds and hydrophobic organic micropollutants; HOMs) in estuaries, with particular emphasis on the effects of and changes to particle reactivity and composition. The partitioning (or distribution coefficient, KD ) and bioavailability of chemical constituents, and assimilation efficiency (AE) of such by bivalve suspension feeders, are identified as key parameters requiring definition for accurate biogeochemical modelling, and the discussion centres around the determination of and controls on these parameters. Particle-water interactions encompass a variety of physical, biological, electrostatic and hydrophobic effects, and are largely dependent on the character and concentration of suspended particles and salinity. The salinity-dependence results from the competing and complexing effects of seawater ions for trace metals, and the compression of water in the presence of dissolved seawater ions and consequent salting out of neutral solute (HOMs, organo-metallic compounds and some trace metal complexes). The extent of biological solubilization of chemical constituents from suspended particles is dependent on the nature of chemical components of the gastro-intestinal environment and their interactions with ingested particles, and the physiological (e.g. gut passage time) and chemical (e.g. redox conditions and pH) constraints imposed on these interactions. Generally, chemicals that associate with fine, organic-rich particles (or, for some HOMs, fine inorganic particles), and desorb at pH 5-6 and/or complex with digestive enzymes or surfactants are most readily solubilized in the

  20. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    GREGORY

    2012-01-10

    Jan 10, 2012 ... 7000, and 11000 mg/l, increased the samples of river water; and then they are mixed in JAR TEST apparatus twice for one and ... Key words: Chalus River, adsorption, heavy metal, suspended particle, sediment. INTRODUCTION .... concentrations using the conventional method of flame atomic absorption ...

  1. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    Directory of Open Access Journals (Sweden)

    T. I. Fortoul

    2011-01-01

    Full Text Available There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature.

  2. Complete Evaluation of Suspended Air Particles and Their Composition in the Central Area of Yazd City

    Directory of Open Access Journals (Sweden)

    M Younesian

    2009-01-01

    Full Text Available Introduction: Air pollution is one of the problems of the recent century caused by vehicles, industries and other urban activities. The City of Yazd faces air pollution due to its high population, vehicular traffic and industrial places around the city. One of the important parameters of air pollution is suspended air particles that have harmful effects on the health of people, plants and objects. Methods: This research has been carried out by first determining a station in the central area of the city (Shahid Beheshti Square of Yazd. The suspended particles were measured during a five-month period from March to July, 2006. A high volume sampler was used for measuring Total Suspended Particles (TSP. The amount of lead content of TSP was measured in samples by using atomic absorption method. In the next stage, the percentage of organic and inorganic particles in the TSP of all samples was measured by using gravimetric methods and by burning in the oven. Results: The results of this study showed that amount of suspended particles in the city of Yazd is higher than national standard and the general mean average of the suspended particles of air in five months was 233 micrograms per cubic meter. The average concentration of suspended air particles from end of March to August during the five month period was 118, 193, 231, 267and 333, respectively. The average concentration of lead was 0.04 microgram per cubic meter and amount of organic and inorganic particles in TSP was 25.31% and 74.68%, respectively. Conclusion: With respect to the results, the minimum amount of TSP concentration was in March. This could be due to reduction in trading and industrial activities and New Year vacations. In addition, the average monthly TSP increased from March to July; the cause of which could be relative decrease in humidity and increase in temperature. The amount of lead in samples was much less than standard, which could be due to omission of lead from petrol

  3. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  4. Ratios of total suspended solids to suspended sediment concentrations by particle size

    Science.gov (United States)

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  5. Drift of suspended ferromagnetic particles due to the Magnus effect

    Science.gov (United States)

    Denisov, S. I.; Pedchenko, B. O.

    2017-01-01

    A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.

  6. Electrooptical behaviour and control of a suspended particle device

    Science.gov (United States)

    Vergaz, R.; Pena, J. M. S.; Barrios, D.; Pérez, I.; Torres, J. C.

    2007-09-01

    A suspended particle device is made by electrophoretic rod-shape particles suspended in an organic gel. These particles can twist and order with an applied voltage. The light crossing the material suffers more or less scattering according to that voltage. A commercial device is analyzed in this work. Several electrical models are tested, being the best one a series configuration including a shunt double layer capacitance and a Warburg element. Main parameter errors are below 2%, showing the quality of this new electrical model for this kind of devices. A quick method to improve the manufacturing process on-line is also proposed. Impedance measurements will be fitted to the selected electrical model, in order to check physical aspects such as charge diffusion lengths and response times. An electronic driver to obtain several levels of device transmission has been also developed, being its linearity demonstrated too. Colour changes are negligible for the main part of the bleaching process. All these features allow the use of this set in domotics application.

  7. Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City

    Science.gov (United States)

    Suryani, Sri; Fahrunnisa

    2018-03-01

    Research on the status of suspended particulate matters pollution in four traditional markets located in Makassar city has been done. The purpose of this research is to know the air quality in the traditional market areas, especially caused by suspended particulate matters. The background of this research is because traders who trade in traditional markets generally peddle their goods along dusty roads and suspended particulate matters in dust can be inhaled when the vehicle passes. These suspended particulate matters pollutant can cause lung diseases. The results showed that the level of suspended particulate matters pollution fluctuates every year depending on the local wind speed, humidity, and temperature. Research results also showed the values were over the standard value according to the governor of South Sulawesi regulation.

  8. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  9. Interactions of radionuclides with sediments and suspended particles

    International Nuclear Information System (INIS)

    Carpenter, R.

    1997-01-01

    This chapter reviews fundamental principles of the rates and extents of radionuclide uptake by sedimentary and suspended particles, defines sediment-water partition coefficients, and shows how they can explain first order features of radionuclide partitioning in aquatic environments. It then explains how sediment accumulation and mixing rates can be calculated from profiles of radionuclide activity measured in sediment cores. Such rates can be combined with profiles of other chemicals to establish the extent of temporal changes in chemical composition of the overlying water body. Since sediment processing and counting in the laboratory take much longer than the time required to collect the sample, suggestions are made to ensure that the sediment samples are not ruined or comprised during collection and handling in the field, and so are worth all the subsequent time and effort to analyze. (author)

  10. Physical and biological changes of suspended particles in a free surface flow constructed wetland

    NARCIS (Netherlands)

    Mulling, B.T.M.; van den Boomen, R.M.; Claassen, T.H.L.; van der Geest, H.G.; Kappelhof, J.W.N.M.; Admiraal, W.

    2013-01-01

    Suspended particles are considered as contaminants in treated wastewater and can have profound effects on the biological, physical and chemical properties of receiving aquatic ecosystems, depending on the concentration, type and nature of the suspended particles. Constructed wetlands are known to

  11. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  12. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  13. Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Querol, X.; Alastuey, A.; Lopez-Soler, A.; Boix, A.; Sanfeliu, T.; Martynov, V.V.; Piven, P.I.; Kabina, L.P.; Souschov, P.A.

    1997-01-01

    This study focuses on the determination of trace element concentrations in total suspended particles by instrumental neutron activation analysis (INAA) in two different areas in Northeastern Spain (a rural area influenced by the emissions of a large coal-fired power station, and the urban and industrial areas of Castellon). Total suspended particles were sampled by means of standard MCV high- and medium-volume captors, using cellulose membrane filters of 0.8 and 0.45 μm pore size. Preliminary research was performed on the homogeneous distribution of elements in the sample filters and on the study of blank filters for the calculations of the background average element contents. The results obtained allowed to distinguish different major anthropogenic sources of trace elements in the atmosphere at the sampling sites: (a) Zr, Hf, Sc, U and Th are related to atmospheric pollution derived from the ceramic industry of the Castellon area; (b) As, Cr, Cs, Rb, Sb, Se, Zn are related to traffic and other industrial emission in the Castellon area, and As, Cr, Sb and Zn to power generation emissions in the rural area. (orig.). With 3 figs., 5 tabs

  14. Dynamics of Single Chains of Suspended Ferrofluid Particles

    Science.gov (United States)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  15. Elemental compositions of suspended particles released from iron and steel works

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira; Kubota, Torahide

    1980-01-01

    Suspended particles released from iron and steel works were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry, and their characteristics in elemental composition were examined in detail. Elemental compositions of suspended particles from electric furnaces producing medium steel and special steel were rather similar with each other. The suspended particles from these electric steel furnaces were found to be enriched in the elements listed below. Fe (Geometric mean of measured concentrations: 16%), Zn (5.2%), Ca (4.5%), Cl (3.4%), Mn (2.2%), Na (1.4%), Pb (1.4%), K (1.3%), Al (1.0%), Cu (0.4%), Cr (0.3%), Ni (0.3%) and Ti (0.1%). elemental compositions of suspended particles from cupolas were found to be similar with those of the suspended particles from the electric steel furnaces, but, it was noticed that the cupola particles were condiderably higher in Si concentration (--25%). Suspended particles from heating furnaces for processing various iron and steel products, which are heated by oil combustion, were found to be quite similar in elemental composition with suspended particles released from heavy oil boilers, as was expected, being quite different from the particles from the electric steel furnaces and the cupolas. The electric steel furnace particles were 15 to 180 times more enriched in the elements, Cl, K, Ca, Sc, Cr, Mn, Fe, Zn, Br, Sb and Pb, and one 70th less enriched in the element V than oil boiler particles. The contributions of iron and steel works to aerosols over two big cities, Osaka and Kawasaki, in a particle size range below several micron, were roughly estimated under simple assumptions. High contributions of iron and steel works were found for various elements, being especially large for Cr, Mn, Ni, Zn, Cl, Fe and so on. (J.P.N.)

  16. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    Nowadays, it is important to evaluate the self-purifying capacity of rivers because of the different kinds of pollutants discharged into them. Important kind of pollutants and heavy metals exist in wastewaters industries. When the Sorb Dona mine is placed in Upper Chalus River, in the west of Mazandaran, products of mine ...

  17. Suspended particle capture by synthetic vegetation in a laboratory flume

    Science.gov (United States)

    Fauria, Kristen E.; Kerwin, Rachel E.; Nover, Daniel; Schladow, S. Geoffrey

    2015-11-01

    Vegetated floodplains and wetlands trap particles, a process that is important for water quality and wetland function and morphology. The rates of particle removal by vegetation remain poorly characterized, especially for small particles and vegetation coated with biofilm. In this study, we measured capture rates of road dust by arrays of grass-like synthetic vegetation in a laboratory flume. We performed 40 experiments in which stem density, flow velocity, the presence of biofilm, and initial particle concentration varied, and used an in situ particle size analyzer to measure the concentration of a continuous particle size distribution (1.25-250 µm diameter). We fit first-order decay models to the particle concentration measurements to determine particle capture rates and found that capture rates increased with particle size, stem density, and the presence of biofilm. Capture rates decreased with increasing flow velocity, which suggests that fast flows may resuspend particles from stems. We also calculated percent particle capture efficiencies and fit a new empirical model for capture efficiency to our results. We found that particle capture efficiency was highest for low stem density treatments and propose that stem density affects capture by altering turbulent kinetic energy.

  18. Apparatus and method for concentrating and filtering particles suspended in a fluid

    Science.gov (United States)

    Fiechtner, Gregory J [Bethesda, MD; Cummings, Eric B [Livermore, CA; Singh, Anup K [Danville, CA

    2009-05-19

    Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.

  19. Photophoresis-Light induced motion of particles suspended in gas

    International Nuclear Information System (INIS)

    Jovanovic, Olga

    2009-01-01

    When irradiated sideways, by visible light, a particle can perform different kinds of motion, (e.g. in direction of irradiation, opposite to irradiation, vertical movement, helicoidally, etc.). This phenomenon is called photophoresis. Photophoresis is based on momentum transfer between the aerosol particle and surrounding gas molecules. Photophoresis strongly depends on the pressure of the surrounding gas. Particles mostly influenced by photophoresis are those of μm size. Two main types of forces describe photophoretic motion: ΔT force: The thermal accommodation coefficient α is constant over the particle surface. As a result of the thermal accommodation, gas molecules on the warm side of a particle leave the surface faster than gas molecules on the cold side. This leads to ΔT force on the particle towards the colder side. Typical motion of the particle will be either away from light irradiation (positive photophoresis), or in direction of light irradiation (negative photophoresis). In the case of negative photophoresis, the back side of the particle, due the nature of light absorption, will be heated more than front side of the particle. Δα force: If the particle is at a constant temperature, which is different from the temperature of the surrounding gas, and the thermal accommodation coefficient α varies over the particle surface, the net momentum between gas molecules and particle will be transferred. In this case, the result will be body fixed Δα force. Depending on the particle surface properties, Δα force can direct the particle in any possible photophoresis could also play important role in planet formation and astrophysics.

  20. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  1. Total suspended particles (TSP) and breathable particles (PM10) in Aburra Valley, Colombia

    International Nuclear Information System (INIS)

    Saldarriaga Molina, Julio Cesar; Echeverri Londono, Carlos Alberto; Molina Perez Francisco Jose

    2004-01-01

    In the Aburra's valley, nor-western region of Colombia, inhabited by 3 million people, crossed by 400,000 vehicles; with the presence of establishments of industrial sectors: textile, foods and metal-mechanical; The concentrations of total suspended particles (PST) and breathable particles (PM 1 0) were evaluated, during the period: December of 2000 to June of 2001. The determinations of PST and PM 1 0 were performed in ten stations, distributed of north to the south, covering urban and rural zones with the municipalities of: Girardota, Bello, Medellin, Itagui, Sabaneta and Caldas. When analyzing relation PM 1 0/PST, was that the best statistical correlations are located in the zones center and the south of the valley. In addition the increasing tendency in relation PM 1 0/PST was observed, from 0.527 for the rural station Girardota (North), to 0.813 in the urban station Caldas (South). This gradient in relation PM 1 0/PST apparently this related to the wind regime that predominates in the Valley of Aburra with direction the north-south, which causes that the fine particles migrate of north to the south, increasing relation PM 1 0/PST in the same direction

  2. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK

    Science.gov (United States)

    Walling; Owens; Waterfall; Leeks; Wass

    2000-05-05

    This paper presents information on the absolute (chemically-dispersed) particle size characteristics of the suspended sediment transported by rivers in the Humber and Tweed basins during the period 1994-1998. For most of the rivers, > 95% of the suspended sediment load at the time of sampling was 63 microm (i.e. sand-sized material). The sediment transported in the two basins were similar. There were, however, noticeable spatial variations in the particle size composition of suspended sediment within the study basins, which reflected the particle size of the sediment sources and their spatial variation, and the selectivity of the sediment mobilization and delivery processes. When particle size parameters were plotted against discharge, there were no significant relationships, although there was some evidence of trends varying between sites. The lack of significant relationships with discharge reflects the fact that sediment particle size is largely supply-controlled, rather than a function of flow and hydraulics. When particle size variations were examined during individual storm events, there was evidence of a pulse of coarse sediment on the rising limb of the hydrograph. This may reflect the remobilization of coarse channel bed sediment as flow velocity and shear stress increase. Finer sediment was transported subsequently during the hydrograph peak and on the falling limb. The findings reported have important implications for understanding and modelling suspended sediment, and associated contaminant, dynamics in river basins.

  3. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2014-01-01

    Full Text Available Elements associated with total suspended particulate matter (TSP in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high levels of all measured elements. Concentrations of most elements at the two sites exhibit strong spatial gradients and concentrations of elements at these sites are higher than other locations. The highest concentrations of elements were observed during June–August because of dust storms, significant increase in energy consumption, and active surface winds. Enrichment factors of elements at the high-level sites have values in the range >10~60 while for Cu and Zn the enrichment factors are much higher (~0–>700 indicating that greater percentage of TSP composition for these three elements in air comes from anthropogenic activities.

  4. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  5. Viscous constraints on squirmer microswimmers approaching suspended particles

    Science.gov (United States)

    Jabbarzadeh, Mehdi; Fu, Henry C.

    2015-11-01

    Microscopic self-propelled organisms often approach other particles to capture food, mate, or find new environments. The viscous Stokes flow around these small organisms push away particles, severely hindering approach. Previously, we investigated approach hydrodynamics by modeling a swimming organism as a sphere pushed by a constant force towards a force-free spherical target particle. We measured approach efficiency by examining how far the swimmer must travel before getting close to the target. For targets which are of bigger or comparable size to the swimmer, the swimmer travels less than 1.5 times the initial separation distance; for smaller targets the swimmer must travel farther, making approach infeasible. The constant force reliably models propulsion by a flagellum, but many microorganisms feed by using cilia-coated surfaces for propulsion or generation of feeding currents. Therefore, here we consider a force-free spherical squirmer model for the swimmer approaching a spherical force-free target particle. For squirmers, the ``squirmer parameter'' distinguishes whether the swimmer is a puller or pusher. We find that pullers can always approach any size target and a larger squirmer parameter will generate a stronger feeding current leading to less traveled distance. On the other hand, pushers approach targets only when the squirmer parameter is less than 1; for values larger than 1, the swimmer cannot get close to the target.

  6. The Influence of Suspended Inert Solid Particles on Zinc Corrosion

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1996-01-01

    The rate of corrosion of electroplated zinc in near-neutral chloride solutions can be lowered by as much as 75% by adding fine, inert particles of substances such as MnO2, Fe3O4, SiC and TiN to the well-stirred solution. Spreading of local areas of etching is also stopped. Copyright (C) 1996...

  7. Magnetic particles as tracers of industrial pollution

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Kapička, Aleš; Jordanova, Neli; Fialová, Hana

    č. 26 (2002), s. 131-132 ISSN 1590-2595. [Fundamental rock magnetism and environmental applications. Erice, 26.06.2002-01.07.2002] Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetic particles * industrial pollution * fly ashes * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Numerical Simulation of Suspended Sediment Transportation Based on Particle Tracking Model

    Science.gov (United States)

    Yao, W. W.; Ying, C.; Mu, J. B.

    2017-08-01

    Coastal engineering that carried out on the muddy seabed were always accompanied by diffusion of suspended sediment, and that would impact on the surrounding marine environment. A 2-D tidal flow mathematical model of the Yueqing Bay was established based on the Lagrange particle tracking model, the diffusion of suspended sediment in pile foundation construction process of a new wharf in the Yueqing Bay was simulated through a continuous moving points method, the calculation results were compared with the one calculated by the traditional convection diffusion method, it showed that the results calculated from the two different methods were similar, therefore it proved the suitability of the Lagrange particle tracing model in the suspended sediment diffusion problems.

  9. Suspended sediment measurements and calculation of the particle load at HPP Fieschertal

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    In the scope of a research project on hydro-abrasive erosion of Pelton turbines, a field study was conducted at the high-head HPP Fieschertal in Valais, Switzerland. The suspended sediment mass concentration (SSC) and particle size distribution (PSD) in the penstock have been continuously measured since 2012 using a combination of six measuring techniques. The SSC was on average 0.52 g/l and rose to 50 g/l in a major flood event in July 2012. The median particle size d 50 was usually 15 pm, rising up to 100 μm when particles previously having settled in the headwater storage tunnel were re-suspended at low water levels. The annual suspended sediment loads (SSL) varied considerably depending on flood events. Moreover, so-called particle loads (PLs) according to the relevant guideline of the International Electrotechnical Commission (IEC 62364) were calculated using four relations between particle size and the relative abrasion potential. For the investigated HPP, the time series of the SSL and the PLs had generally similar shapes over the three years. The largest differences among the PLs were observed during re-suspension events when the particles were considerably coarser than usual. Further investigations on the effects of particle sizes on hydroabrasive erosion of splitters and cut-outs of coated Pelton turbines are recommended.

  10. Automatic high-sensitivity control of suspended pollutants in drinking and natural water

    Science.gov (United States)

    Akopov, Edmund I.; Karabegov, M.; Ovanesyan, A.

    1993-11-01

    This article presents a description of the new instrumental method and device for automatic measurement of water turbidity (WT) by means of photoelectron flow ultramicroscope (PFU). The method presents the WT determination by measuring the number concentration (number of particles suspended in 1 cm3 of water under study) using the PFU and demonstrates much higher sensitivity and accuracy in comparison with the usual methods--turbidimetry and nephelometry.

  11. Suspended particle transport through constriction channel with Brownian motion

    Science.gov (United States)

    Hanasaki, Itsuo; Walther, Jens H.

    2017-08-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the deviation from the dynamics of the surrounding fluid. We show by numerical analysis that the particle injection into the narrower part of the channel is affected by thermal fluctuation, where the particles have spherical symmetry and are smaller than the height of the constriction. The Péclet number (Pe) is the order parameter that governs the phenomena, which clarifies the spatio-temporal significance of Brownian motion compared to hydrodynamics. Furthermore, we find that there exists an optimal condition of Pe to attain the highest flow rate of particles relative to the dispersant fluid flow. Our finding is important in science and technology from nanopore DNA sequencers and lab-on-a-chip devices to filtration by porous materials and chromatography.

  12. Experimental study of the viscosity of suspensions: effect of solid fraction, particle size and suspending liquid

    NARCIS (Netherlands)

    Konijn, B.J.; Sanderink, O.B.J.; Kruyt, Nicolaas P.

    2014-01-01

    The behaviour of nearly neutrally-buoyant suspensions has been studied experimentally, using a concentric-cylinder rheometer. The effect on the suspension viscosity of: (i) solid fraction, (ii) diameter of the solid, spherical particles, (iii) viscosity of the suspending liquid, and (iv) shear rate

  13. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island

    Science.gov (United States)

    Szymczak, Ewa

    2017-12-01

    In this study, the characterization of particle size distribution of suspended sediment that is transported by streams (Ornithologist Creek, Ecology Glacier Creeks, Petrified Forest Creek, Czech Creek, Vanishing Creek, Italian Creek) in the area of the Arctowski Polish Antarctic Station is presented. During the first period of the summer season, the aforementioned streams are supplied by the melting snow fields, while later on, by thawing permafrost. The water samples were collected from the streams at monthly intervals during the Antarctic summer season (January - March) of 2016. The particle size distribution was measured in the laboratory with a LISST-25X laser diffraction particle size analyser. According to Sequoia Scientific Inc., LISST-25X can measure particle sizes (Sauter Mean Diameter) between 2.50 and 500 μm. The results of particle size measurements were analysed in relation to flow velocity (0.18–0.89 m/s), the cross-sectional parameters of the streams, suspended sediment concentration (0.06–167.22 mg/dm3) and the content of particulate organic matter (9.8–84.85%). Overall, the mean particle size ranged from 28.8 to 136 μm. The grain size of well-sorted sediments ranged from 0.076 to 0.57, with the skewness and kurtosis values varying from -0.1 to 0.4, and from 0.67 to 1.3, respectively. Based on the particle size characteristics of suspended sediment, the streams were divided into two groups. For most of the streams, the sediment was very well sorted, while fine sand and very fine sand were dominant fractions displaying symmetric and platykurtic distributions, respectively. Only in two streams, the suspended sediment consisted of silt-size grains, well or moderately well sorted, with coarse-skewness and mostly mesokurtic distribution. The C-M chart suggested that the transportation processes of suspended sediment included the suspended mode only. The grain-size distribution of suspended sediment was mainly influenced by the stream runoff

  14. Speciation of Suspended Particles By Individual Particle Analysis In The Japan Sea And The Western Tropical Pacific Ocean

    Science.gov (United States)

    Nakaguchi, Y.; Asatani, T.; Fujita, A.; Kabuki, J.; Shitashima, K.

    2008-12-01

    Trace elements such as Fe, Cd, Ni, Cu, Zn and Co are called "gbioactive trace metal"h. Reports have been made on bioactive trace metals distribution in sea water for various ocean: the North Pacific (Bruland, 1980; Boyle et al., 1981; Bruland et al., 1994; Ezoe, 2004;), the North Atlantic (Boyle et al., 1981; Bruland and Franks, 1983) and the South China Sea (Wen et al., 2006). The most of bioactive trace metals are taken up by marine organisms such as phytoplankton and bacteria. Consumption and decomposition of particulate matter sinking from surface waters return the bioactive trace metals to solution. On the other hand, some suspended particulate matters come from terrestrial sources transported to the ocean by rivers and by winds in particulate forms, and by rivers in dissolved forms. The bulk composition of suspended particulate matter in the various oceans is well known, whereas, the speciation of elements in suspended particle still remains poorly known. Individual particulate analysis can provide detailed information about the source, formation, transport and reactions of suspended particulate matter. The purpose of this work (1) the determination of dissolved bioactive trace metals (Fe, Co, Ni, Cu, Zn and Cd) in the Japan Sea and the western tropical Pacific Ocean by using the commercial PAPC type chelating resin solid phase extraction with ICP-MS method, (2) investigation for source of bioactive trace metals by the speciation of suspended particles by individual particulate analysis.

  15. A differentiation method for separating a mixture of suspended particle size distributions

    Directory of Open Access Journals (Sweden)

    H. Q. Wang

    1999-01-01

    Full Text Available A simple method is proposed to partition a mixture of two populations in suspended particle size data. The method, termed here 'the differentiation method' is based on the function of the lognormal distribution. Suspended material in marine or estuarine situations often consists of difficult-to-interpret complex populations. The treatment of particle size data by the method described enables the confirmation of the lognormal law and also the demonstration of the occurrence of a combination of a number of populations which may not be distinguished by the classical Gaussian transformation or automatic methods. A simple combination of graphical and numerical techniques permits the decomposition and the easy determination of the various statistical parameters (median diameter, mean diameter, etc.... The method is applied to interpret observed size distributions of suspended particulate matter in the Seine estuary. The method enables the determination of the relative sizes of the constituent sub-populations that comprise the total suspended matter. In the example used to illustrate the method, particles are shown to be resuspended as a function of different hydrodynamic parameter.

  16. Parchar – Characterization of Suspended Particles Through Image Processing in Matlab

    Directory of Open Access Journals (Sweden)

    Thor Nygaard Markussen

    2016-07-01

    Full Text Available Studies of suspended particles and particle dynamics in aquatic environments increasingly rely on camera systems to characterize the particles. Numerous systems exist and all use different codes and practises to process the images from the systems. Here, a step-by-step guide to an image processing and particle characterization code for Matlab is presented with the aim of bringing the particle community towards standardized image processing techniques. The code uses morphological reconstruction and simple block processing to filter out noise, out-of-focus particles and light source inconsistencies. It has been implemented on a specific camera system but is applicable to numerous systems and on highly variable particle types due to the standardized setup.

  17. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  18. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  19. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    International Nuclear Information System (INIS)

    Daniel Molloy

    2003-01-01

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter

  20. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Molloy

    2003-08-04

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.

  1. Transfer of suspended particles from liquid effluents of nuclear generating stations through the environment

    International Nuclear Information System (INIS)

    Devereaux, F.J.

    1989-07-01

    Due to the complexity of the environmental transfer of suspended particles in aquatic systems, the available literature usually deals with specific pathways and mechanisms of the transfer process. This paper attempts to give a brief overview of the entire transfer process. Potential routes of transfer in both the marine and freshwater environments are examined, and tentative conclusions presented. This work was performed while the author was employed by Atomic Energy Control Board under the McMaster University cooperative program

  2. Study of Hydrophilic Electrospun Nanofiber Membranes for Filtration of Micro and Nanosize Suspended Particles

    Directory of Open Access Journals (Sweden)

    Nurxat Nuraje

    2013-11-01

    Full Text Available Polymeric nanofiber membranes of polyvinyl chloride (PVC blended with polyvinylpyrrolidone (PVP were fabricated using an electrospinning process at different conditions and used for the filtration of three different liquid suspensions to determine the efficiency of the filter membranes. The three liquid suspensions included lake water, abrasive particles from a water jet cutter, and suspended magnetite nanoparticles. The major goal of this research work was to create highly hydrophilic nanofiber membranes and utilize them to filter the suspended liquids at an optimal level of purification (i.e., drinkable level. In order to overcome the fouling/biofouling/blocking problems of the membrane, a coagulation process, which enhances the membrane’s efficiency for removing colloidal particles, was used as a pre-treatment process. Two chemical agents, Tanfloc (organic and Alum (inorganic, were chosen for the flocculation/coagulation process. The removal efficiency of the suspended particles in the liquids was measured in terms of turbidity, pH, and total dissolved solids (TDS. It was observed that the coagulation/filtration experiments were more efficient at removing turbidity, compared to the direct filtration process performed without any coagulation and filter media.

  3. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  4. Statistical modeling of road contribution as emission sources to total suspended particles (TSP) under MCF model downtown Medellin - Antioquia - Colombia, 2004

    International Nuclear Information System (INIS)

    Gomez, Miryam; Saldarriaga, Julio; Correa, Mauricio; Posada, Enrique; Castrillon M, Francisco Javier

    2007-01-01

    Sand fields, constructions, carbon boilers, roads, and biologic sources are air-contaminant-constituent factors in down town Valle de Aburra, among others. the distribution of road contribution data to total suspended particles according to the source receptor model MCF, source correlation modeling, is nearly a gamma distribution. Chi-square goodness of fit is used to model statistically. This test for goodness of fit also allows estimating the parameters of the distribution utilizing maximum likelihood method. As convergence criteria, the estimation maximization algorithm is used. The mean of road contribution data to total suspended particles according to the source receptor model MCF, is straightforward and validates the road contribution factor to the atmospheric pollution of the zone under study

  5. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  6. Hydromagnetic thermosolutal instability of Rivlin-Ericksen rotating fluid permeated with suspended particles and variable gravity field in porous medium

    Directory of Open Access Journals (Sweden)

    Rana G. C.

    2014-10-01

    Full Text Available The thermosolutal instability of Rivlin-Ericksen elasticoviscous rotating fluid permeated with suspended particles (fine dust and variable gravity field in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, gravity field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions. The effect of rotation, suspended particles, magnetic field, stable solute gradient and medium permeability has also been shown graphically.

  7. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  8. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays

    Science.gov (United States)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Cruz Minguillón, Mari; Pey, Jorge; Rodriguez, Sergio; Vicente Miró, José; Felis, Carles; Gibbons, Wes

    The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L'Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO 2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m -3), aluminium (as Al 2O 3 from around 600 to 2200 ng m -3), titanium (from 200 to 700 ng m -3), magnesium (from 100 to 500 ng m -3), lead (from 17 to 379 ng m -3), barium (from 39 to 322 ng m -3), strontium (from 3 to 112 ng m -3), copper (from 12 to 71 ng m -3), and antimony (from 1 to 52 ng m -3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.

  9. A flowrate measurement method by counting of radioactive particles suspended in a liquid

    International Nuclear Information System (INIS)

    Daniel, G.

    1983-04-01

    By external counting of fine #betta# emitting radioactive particles suspended in a liquid, the flowrate in a system of pipes can be measured. The study comprises three phases: 1. - The hydraulic validity of the method is demonstrated in laminar as well as in turbulent flow under certain conditions of particles size and density and of liquid viscosity. 2. - Radioactive labelling of microspheres of serumalbumin or ion exchange resins with indium 113m delivered by a generator Tin 113 → Indium 113m. 3. - Counting with a scintillation detector: a method of threshold overstepping is experimented with a mechanical or electronic simulator; the statistical study of particle superposition under the detector enables a correction for the resulting counting losses to be proposed. The method provides absolute measurements, but is particularly suitable to measure relative flowrates in a hydraulic network. It can be continuous and does not perturb the flow and the network. The accuracy of the method is analysed in details [fr

  10. Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    Science.gov (United States)

    Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos

    2017-12-01

    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.

  11. Holographic characterization of contaminants in water: Differentiation of suspended particles in heterogeneous dispersions.

    Science.gov (United States)

    Philips, Laura A; Ruffner, David B; Cheong, Fook Chiong; Blusewicz, Jaroslaw M; Kasimbeg, Priya; Waisi, Basma; McCutcheon, Jeffrey R; Grier, David G

    2017-10-01

    Determining the size distribution and composition of particles suspended in water can be challenging in heterogeneous multicomponent samples. Light scattering techniques can measure the distribution of particle sizes, but provide no basis for distinguishing different types of particles. Direct imaging techniques can categorize particles by shape, but offer few insights into their composition. Holographic characterization meets this need by directly measuring the size, refractive index, and three-dimensional position of individual particles in a suspension. The ability to measure an individual colloidal particle's refractive index is a unique capability of holographic characterization. Holographic characterization is fast enough, moreover, to build up population distribution data in real time, and to track time variations in the concentrations of different dispersed populations of particles. We demonstrate these capabilities using a model system consisting of polystyrene microbeads co-dispersed with bacteria in an oil-in-water emulsion. We also demonstrate how the holographic fingerprint of different contaminants can contribute to identifying their source. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater.

    Science.gov (United States)

    Davidson, Marion C F; Berardi, Terra; Aguilar, Beatriz; Byrne, Barbara A; Shapiro, Karen

    2015-03-01

    The bacterium Salmonella enterica can infect marine mammals and has been increasingly implicated in seafood-borne disease outbreaks in humans. Despite the risk this zoonotic agent poses to animals and people, little is known regarding the environmental factors that affect its persistence in the sea. The goal of this study was to evaluate the impact of two constituents on the survival of Salmonella in the marine environment: transparent exopolymer particles (TEP) and suspended particles. A decay experiment was conducted by spiking Salmonella into bottles containing seawater, seawater with alginic acid as a source of TEP, filtered seawater or filtered seawater with alginic acid. Survival of Salmonella was monitored using culture followed by enrichment assays to evaluate if the bacteria entered a viable but non-cultivable (VBNC) state. Salmonella cell counts dropped significantly faster (P ≤ 0.05) in the unfiltered seawater samples with and without TEP. The slowest decay occurred in filtered seawater containing alginic acid, with VBNC Salmonella persisting for 17 months. These findings suggest that TEP may favor Salmonella survival while suspended particles facilitate its decay. Insight on the survival of allochthonous, zoonotic pathogens in seawater can guide monitoring, management and policy decisions relevant to wildlife and human public health. © FEMS 2015. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  14. Evaluating Suspended Particles Concentration of the Inside and Outside Air of the Classroom and Its Influencing Factors in Middle schools and High Schools of Yazd

    Directory of Open Access Journals (Sweden)

    MH Ehrampoosh

    2015-11-01

    Full Text Available Abstract Introduction: Airborne pollution in such public environments as schools has adverse health effects on pupils and teachers who spend a noticeable amount of time in the school. Therefore, this study aimed to measure the suspended particles concentration of indoor and outdoor air of Yazd schools as well as to determine the influencing parameters on the pollution intensity. Methods: This analytical cross-sectional study was conducted in 20 middle-schools and high schools of males and females in winter of 2013. The environmental aerosol monitoring device, (HAZ-DUST EPAM5000 model was used to measure the concentration of PM1, PM2.5 and PM10. The study data were analyzed via applying correlation, simple linear regression and means comparison tests. Moreover, the study results were compared with the standards of World health organization(WHO and Environmental Health Organization(EPA. Results: The mean concentration of PM10, PM2.5 and PM1 in indoor class air was reported higher compared to the outdoor air. The indoor and outdoor air quality of schools in terms of Air Quality Index9 (AQI Calculator indicated an average condition for PM10, and an unhealthy condition for PM2.5 in regard with the vulnerable groups. A significant relationship was detected between indoor and outdoor air concentration particles (P<0.05. The mean indoor per outdoor air particles ratio (I/O was 1.68, 1.31, 1.46 respectively for PM10, PM2.5, PM1. Conclusion: The study findings revealed a significant relationship between indoor and outdoor suspended particle concentration demonstrating the particles penetration into the classrooms. Therefore, utilizing appropriate air conditioner systems are regarded effective in order to mitigate indoor class pollution.  

  15. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  16. Suspended-sediment concentrations, yields, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2015-01-01

    Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, as well as transporting harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentration (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples were collected from 14 sites from 2007 through 2011. Analyses of these data indicated that the Zumbro River at Kellogg in southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. The single highest SSC of 1,250 mg/L was measured at the Zumbro River during the 2011 spring runoff. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis-St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been known to underrepresent the amount of suspended sediment. For this study, comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong

  17. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    Science.gov (United States)

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  18. Turbidimetric method for evaluation of photocatalytic activities of suspended fine particles

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2010-10-01

    Full Text Available Hideki Aoyagi1, Katsumi Yabusaki21Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; 2Electronics and Optics Research Laboratory, Kowa Ltd, Chofugaoka, Chofu City, Tokyo, JapanAbstract: A spectrophotometer with special cuvette was developed for evaluating the photocatalytic activities of suspended fine particles. The spectrophotometer can continuously irradiate UV light using LED to the sample solution, and changes in the absorbance at 664 nm during photocatalytic degradation of methylene blue (MB were monitored continuously. From the onset of MB degradation, the absorbance decreased and reached a steady value at the end of the reaction. This process was expressed by first order kinetics and the photocatalytic activities of various fine particles could be evaluated quantitatively based on the reaction rate constant (k. The effect of photocatalysis using various TiO2 fine particles on the physiological activities of Euglena gracilis was related with k value.Keywords: photocatalyst, fine nano sized particles, specialized spectrophotometer, Euglena gracilis, rate constant

  19. Magnetic isolation of particles suspended in synovial fluid for diagnostics of natural joint chondropathies.

    Science.gov (United States)

    Mendel, Kalia; Eliaz, Noam; Benhar, Itai; Hendel, David; Halperin, Nahum

    2010-11-01

    Millions of people are stricken with the degenerative joint disease known as osteoarthritis. Osteoarthritis is associated with biochemical and mechanical processes, and is characterized by loss of articular cartilage and hypertrophy of bone. As cartilage and bone particles are released into the synovial fluid, a variety of biomarkers have been suggested for the analysis of this fluid. Here we have developed a method for isolating bone and cartilage wear particles suspended in the synovial fluid of the hip, knee and ankle joints of humans, based on specific magnetization of collagens I and II. Bio-ferrography is used to capture the particles on glass slides, allowing microscopic, chemical and statistical analyses. The relations between the level of the disease and the number, dimensions, shape and chemical composition of the particles were established. The method, which was found to be sensitive and reliable, can easily be extended to other applications, such as diagnosis of cancer and infectious diseases, determination of the efficacy of drugs or optimization of implants. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Relationship between particle size and radiocesium in fluvial suspended sediment related to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kazuya Tanaka

    2014-01-01

    We collected fluvial suspended sediments in Fukushima after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and analyzed the 137 Cs concentration in bulk and size-fractioned samples to investigate the particle-size-dependent distribution of radiocesium. The 137 Cs concentration in bulk suspended sediments decreased from August to December 2011, possibly reflecting a decrease of radiocesium concentration in its source materials. Smaller particles had higher radiocesium concentrations, reflecting larger specific surface areas. Silt- and sand-size fractions occupied more than 95 % of the total 137 Cs in the suspended sediments. The contribution of clay-size fractions, which had the highest 137 Cs concentration, was quite small because of their low frequency. A line of the data showed that the particle size distribution of radiocesium was essential to evaluate the migration and distribution of radiocesium in river systems where radiocesium is mainly present as particulate form after the FDNPP accident. (author)

  1. Hydromagnetic thermosolutal instability of compressible walters' (model B' rotating fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.

  2. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  3. The oceanographic toolbox for the collection of sinking and suspended marine particles

    Science.gov (United States)

    McDonnell, Andrew M. P.; Lam, Phoebe J.; Lamborg, Carl H.; Buesseler, Ken O.; Sanders, Richard; Riley, Jennifer S.; Marsay, Chris; Smith, Helen E. K.; Sargent, Elizabeth C.; Lampitt, Richard S.; Bishop, James K. B.

    2015-04-01

    Marine particles play a central role in controlling the transport, cycling, and inventories of many major elements and trace elements and isotopes throughout the oceans. Studies seeking to elucidate the biogeochemical roles of marine particles often require reliable ways to collect them from the ocean. Here, we review the oceanographic toolbox of techniques and instrumentation that are employed to collect both suspended and sinking particles. With these tools, it is possible to determine both the concentrations and vertical fluxes of important elements and individual particle types. We describe the various methods for quantifying the concentrations of particulate matter with in situ pumps, towed sampling devices, bottle collectors, and large volume capture devices. The uses of various types of flux collection platforms are discussed including surface tethered, neutrally buoyant, and bottom moored devices. We address the issues of sediment trap collection biases and the apparent inconsistencies that can arise due to differences in the temporal and spatial scales sampled by the various methodologies. Special attention is given to collection considerations made for the analysis of trace metals and isotopes, as these methodologies are of high importance to the ongoing GEOTRACES program which seeks to identify the processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean. With the emergence of new particle collection methodologies and the continued reliance on traditional collection methods, it is imperative that we combine these multiple approaches in ways that will help improve their accuracy and precision while enhancing their utility in advancing understanding of the biogeochemical and ecological roles of marine particles.

  4. A mathematical theorem on the onset of Couple-Stress fluid permeated with suspended dust particles saturating a porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available In this paper, the effect of suspended particles on thermal convection in Couple-Stress fluid saturating a porous medium is considered. By applying linear stability theory and normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pl, the couple-stress parameter F and suspended particles parameter B, satisfy the inequality

  5. Application of nuclear techniques to the measurement of rock density and transport of solid particles suspended in rivers

    International Nuclear Information System (INIS)

    Seddiki, A.

    1984-10-01

    In order to better understand hydron phenomens in semi-arid regions characterized by torrential rains, we measured solid particles suspended to dums and in rivers. We also determined the density profile of a drilling and density of saline solutions. We designed an automatic nuclear gauge used for measuring the concentration of particles suspended to rivers. The installation, calibration and operations of a LABEN gauge were done in BENI SLIMANE on the 27th and 28th of February, 1984. The first results we obtained were received on the 24th of April, 1984

  6. Optimized goniometer for determination of the scattering phase function of suspended particles: simulations and measurements.

    Science.gov (United States)

    Foschum, Florian; Kienle, Alwin

    2013-08-01

    We present simulations and measurements with an optimized goniometer for determination of the scattering phase function of suspended particles. We applied the Monte Carlo method, using a radially layered cylindrical geometry and mismatched boundary conditions, in order to investigate the influence of reflections caused by the interfaces of the glass cuvette and the scatterer concentration on the accurate determination of the scattering phase function. Based on these simulations we built an apparatus which allows direct measurement of the phase function from ϑ=7  deg to ϑ=172  deg without any need for correction algorithms. Goniometric measurements on polystyrene and SiO2 spheres proved this concept. Using the validated goniometer, we measured the phase function of yeast cells, demonstrating the improvement of the new system compared to standard goniometers. Furthermore, the scattering phase function of different fat emulsions, like Intralipid, was determined precisely.

  7. Insights into particle cycling in the Sargasso Sea from lipid biomarkers in suspended particles: Seasonality and physical forcing

    Science.gov (United States)

    Pedrosa Pàmies, R.; Conte, M. H.; Weber, J.

    2017-12-01

    Lipid biomarkers elucidate organic material (OM) sources and cycling within the water column. Biomarker composition and bulk properties (organic carbon (OC), nitrogen (N), OC/N ratio, CaCO3 and stable isotopes) were determined in suspended particles (30-4400 m, 100 mab) collected at Oceanic Flux Program site offshore Bermuda in April/November 2015 and October 2016, three periods of contrasting oceanographic conditions. Key lipid biomarkers were used to evaluate the relative importance of phytoplankton-, bacterial- and zooplankton-OM sources, diagenetic reprocessing, and the impact of upper ocean environmental forcing on the carbon pump. Additionally, we assessed benthic remineralization by comparing particles above and within the nepheloid layer (4400 m). N-fatty acids, n-alcohols and sterols comprise up to 85%, 12% and 7%, respectively, of total extractable lipids. Higher lipid concentrations in April vs November 2015 mirror seasonality in primary production, while change in sterol composition reflect shifts in phytoplankton community structure. In the mesopelagic zone, increased cholesterol/phytosterol ratios and percentages of C16 and C18 n-alcohols, odd-chain and branched n-fatty acids document a transition from algal to animal OM sources as well as bacterial reprocessing of labile OM. The impact of Hurricane Nicole (October 2016) on the mixed layer and subsequent increases in production/flux was evident in higher concentrations as well as greater depth penetration of particulate N and fresh/labile algal biomarkers (e.g. 18:5 ω3 and 22:6 ω3 polyunsaturated fatty acids) in the upper 1000 m. Suspended particles in the nepheloid layer had higher concentrations of OC and N and were more depleted in d13C than particles at 4200 m for all dates. While nepheloid lipid composition was similar for all dates, lipid concentrations in April 2015 (seasonal production peak) and October 2016 (hurricane physical forcing) were higher than in November 2015, consistent with the

  8. Suspended particles in the Canada Basin from optical and bottle data, 2003–2008

    Directory of Open Access Journals (Sweden)

    F. A. McLaughlin

    2010-09-01

    Full Text Available It is expected that coastal erosion, upwelling, and increased river runoff from Arctic warming will increase the concentration of suspended particles in the Arctic Ocean. Here we analyze in situ transmissometer and fluorometer data from the summers of 2003 through 2008 and bottle-derived particulate organic carbon (POC and total suspended solids (TSS measurements sampled in the summers of 2006 and 2007 from the Canada Basin and surrounding shelves. We divided our study area into five regions to account for the significant spatial variability and found that the highest attenuation, POC and TSS values were observed along the Beaufort shelf and the lowest values were located along the eastern shelf of the Canada Basin. We then explored the correlation of POC and TSS with beam attenuation coefficients to assess the viability of estimating POC concentrations from archived transmissometer data. POC (but not TSS and attenuation were well-correlated over the Northwind Ridge, in the Canada Basin interior, and along the eastern shelf of the Canada Basin. Neither TSS nor POC were well-correlated with attenuation along the entire Beaufort shelf. An interannual comparison of the attenuation and fluorescence data was done. We found no evidence of increasing attenuation from the summers of 2003 through 2008 and, although not statistically significant, it even appeared that attenuation decreased over time in the upper 25 m of the Northwind Ridge and in the 25–100 m layer (that includes the chlorophyll maximum of the eastern Beaufort shelf and within the Canada Basin. In the Canada Basin interior, the subsurface chlorophyll maximum deepened at a rate of 3.2 m per year from an average of 45 m in 2003 to 61 m in 2008, an example of how changes to the Arctic climate are impacting its ecology.

  9. Laser Doppler spectrometer method of particle sizing. [for air pollution

    Science.gov (United States)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  10. [Grain Size Distribution Characteristics of Suspended Particulate Matter as Influenced by the Apparent Pollution in the Eutrophic Urban Landscape Water Body].

    Science.gov (United States)

    Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian

    2016-03-15

    Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material

  11. TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles

    Science.gov (United States)

    Tomiyasu, Bunbunoshin; Hoshi, Takahiro; Owari, Masanori; Nihei, Yoshimasa

    2003-01-01

    Three kinds of particulate matter were collected: diesel and gasoline exhaust particles emitted directly from exhaust nozzle, and suspended particulate matter (SPM) near the traffic route. Soxhlet extraction was performed on each sample. By gas-chromatograph-mass spectrometer (GC-MS) analysis of these extracts, di-ethyl phthalate and di- n-butyl phthalate were detected from the extract of SPM and diesel exhaust particles (DEPs). Because these phthalates were sometimes suspected as contamination, time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements were also performed on the samples collected at the same environment. By comparing obtained spectra, it is clear that these environmental endocrine disrupters (EEDs) were adsorbed on DEP surface. Thus, we concluded that the combination of conventional method and TOF-SIMS measurement is one of the most powerful techniques for analyzing the toxic air pollutants adsorbed on SPM surface.

  12. Particle Size Distribution Controls the Threshold Between Net Sediment Erosion and Deposition in Suspended Load Dominated Flows

    Science.gov (United States)

    Dorrell, R. M.; Amy, L. A.; Peakall, J.; McCaffrey, W. D.

    2018-02-01

    The central problem of describing most environmental and industrial flows is predicting when material is entrained into, or deposited from, suspension. The threshold between erosional and depositional flow has previously been modeled in terms of the volumetric amount of material transported in suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flow's ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a new particle entrainment function, where erosion is defined in terms of the power used to lift mass from the bed. While current suspended load transport models commonly use a single characteristic particle size, the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow. The new model offers an order of magnitude, or better, improvement in predicting the erosional-depositional threshold and significantly outperforms existing particle-laden flow models.

  13. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure.

    Science.gov (United States)

    Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun

    2016-04-01

    Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles.

  14. Biologically induced deposition of fine suspended particles by filter-feeding bivalves in land-based industrial marine aquaculture wastewater.

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    Full Text Available Industrial aquaculture wastewater contains large quantities of suspended particles that can be easily broken down physically. Introduction of macro-bio-filters, such as bivalve filter feeders, may offer the potential for treatment of fine suspended matter in industrial aquaculture wastewater. In this study, we employed two kinds of bivalve filter feeders, the Pacific oyster Crassostrea gigas and the blue mussel Mytilus galloprovincialis, to deposit suspended solids from marine fish aquaculture wastewater in flow-through systems. Results showed that the biodeposition rate of suspended particles by C. gigas (shell height: 8.67 ± 0.99 cm and M. galloprovincialis (shell height: 4.43 ± 0.98 cm was 77.84 ± 7.77 and 6.37 ± 0.67 mg ind(-1 • d(-1, respectively. The total solid suspension (TSS deposition rates of oyster and mussel treatments were 3.73 ± 0.27 and 2.76 ± 0.20 times higher than that of the control treatment without bivalves, respectively. The TSS deposition rates of bivalve treatments were significantly higher than the natural sedimentation rate of the control treatment (P < 0.001. Furthermore, organic matter and C, N in the sediments of bivalve treatments were significantly lower than those in the sediments of the control (P < 0.05. It was suggested that the filter feeders C. gigas and M. galloprovincialis had considerable potential to filter and accelerate the deposition of suspended particles from industrial aquaculture wastewater, and simultaneously yield value-added biological products.

  15. Controlled human exposures to ambient pollutant particles in susceptible populations

    Directory of Open Access Journals (Sweden)

    Ghio Andrew J

    2009-07-01

    Full Text Available Abstract Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in susceptible subjects, including the elderly and patients with cardiopulmonary diseases. Controlled human exposure studies have been used to confirm the causal relationship between pollution particle exposure and adverse health effects. Earlier studies enrolled mostly young healthy subjects and have largely confirmed the capability of particles to cause adverse health effects shown in epidemiological studies. In the last few years, more studies involving susceptible populations have been published. These recent studies in susceptible populations, however, have shown that the adverse responses to particles appear diminished in these susceptible subjects compared to those in healthy subjects. The present paper reviewed and compared control human exposure studies to particles and sought to explain the "unexpected" response to particle exposure in these susceptible populations and make recommendations for future studies. We found that the causes for the discrepant results are likely multifactorial. Factors such as medications, the disease itself, genetic susceptibility, subject selection bias that is intrinsic to many controlled exposure studies and nonspecificity of study endpoints may explain part of the results. Future controlled exposure studies should select endpoints that are more closely related to the pathogenesis of the disease and reflect the severity of particle-induced health effects in the specific populations under investigation. Future studies should also attempt to control for medications and genetic susceptibility. Using a different study design, such as exposing subjects to filtered air and ambient levels of particles, and assessing the improvement in

  16. Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China.

    Science.gov (United States)

    Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen

    2016-08-01

    The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.

  17. Improving suspended sediment measurements by automatic samplers.

    Science.gov (United States)

    Gettel, Melissa; Gulliver, John S; Kayhanian, Masoud; DeGroot, Gregory; Brand, Joshua; Mohseni, Omid; Erickson, Andrew J

    2011-10-01

    Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.

  18. Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke particles) fluid

    Science.gov (United States)

    Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy

    2017-04-01

    The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  19. Protamine precipitation of two reovirus particle types from polluted waters.

    OpenAIRE

    Adams, D J; Ridinger, D N; Spendlove, R S; Barnett, B B

    1982-01-01

    Two forms of virus particle are released from reovirus-infected cell cultures, infectious reovirus and potentially infectious reovirus (PIV). PIV particle forms have a complete outer coat and are not infectious until the outer coat is altered or removed. The PIV concentration in polluted waters, however, has not been determined. Protamine sulfate precipitation, using 0.25% fetal bovine serum and 0.005% protamine sulfate for the first precipitation of the sample and 0.0025% for the second, was...

  20. Meteorological phenomena affecting the presence of solid particles suspended in the air during winter

    Science.gov (United States)

    Cariñanos, P.; Galán, C.; Alcázar, P.; Dominguez, E.

    Winter is not traditionally considered to be a risky season for people who suffer from pollen allergies. However, increasing numbers of people are showing symptoms in winter. This prompted our investigation into the levels of solid material in the air, and some of the meteorological phenomena that allow their accumulation. This study showed a possible relationship between the phenomenon of thermal inversion, which occurs when very low temperatures, cloudless skies and atmospheric calms coincide, and an increase in the concentration of solid material in the atmosphere. Frequently, this situation is associated with other predictable phenomena such as fog, dew and frost. This may allow a warning system to be derived for urban pollution episodes. The effect caused by parameters such as wind and rainfall was also analysed. Solid material was differentiated into non-biological material from natural and non-natural sources (e.g. soot, dust, sand, diesel exhaust particles, partially burnt residues) and biological material. The latter mainly comprises pollen grains and fungal spores. Owing to its abundance and importance as a causal agent of winter allergies, Cupressaceae pollen was considered separately.

  1. Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Ido, Y; Inagaki, T; Yamaguchi, T

    2010-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in magnetorheological (MR) fluids is investigated using the particle method simulation based on simplified Stokesian dynamics. Spherical nonmagnetic particles are rearranged in the field direction due to the formation of magnetic particles in chain-like clusters. Cluster formation of spherocylindrical magnetic particles forces spherical nonmagnetic particles to arrange in the direction of the field. In contrast, the spherocylindrical nonmagnetic particles, with an aspect ratio of two or three, are not sufficiently rearranged in the field direction by cluster formation of spherical magnetic particles. Even after cluster formation in the presence of a magnetic field, the uniformity of distribution of particles on the plane perpendicular to the field direction shows very little change. However, the deviation of uniformity in particle distribution is reduced when the volume fraction of magnetic particles is the same as that of nonmagnetic particles.

  2. Mutagenicity of organic pollutants adsorbed on suspended particulate matter in the center of Wrocław (Poland)

    Science.gov (United States)

    Bełcik, Maciej; Trusz-Zdybek, Agnieszka; Galas, Ewa; Piekarska, Katarzyna

    2014-10-01

    Mutagenicity of pollutants adsorbed on suspended dust of the PM10 fraction, collected in winter and summer season alike over the Wrocław city centre (Poland) was studied using the standard Salmonella assay (plate-incorporation) and the Kado modified assay (microsuspension method). The dust was collected using Staplex high volume air sampler. Further on it was extracted with dichloromethane in a Soxhlet apparatus. PAH content in extracts was determined by the high performance liquid chromatography technique using fluorescence detection, whereas the nitro-PAH content- by the gas chromatography using mass detection. Two Salmonella typhimurium strains, TA98 and YG1041, were used in the assays. The assays were conducted with and without a metabolic activation. Investigated air pollution extracts differed against each other with regard to a total content as well as to a percentage of individual compounds, depending on the sampling season. Both the total PAH content and the nitro-PAH content in the tested samples, and their spectrum as well, were found the highest in winter season. Higher mutagenic effect was noted for the dust extract from samples collected in wintertime than from those collected in summer. Pollutants directly affecting the genetic material and those showing such indirect action were present in the examined samples. The YG1041 strain turned out to be the most sensitive, which was the sign that large amounts of nitro-aromatic compounds were present in the tested samples. Obtained results proved that the Kado modified Salmonella assay would be useful for the atmospheric air pollution monitoring in urban agglomerations. Mutagenic effect in assays conducted according to the Kado procedure was obtained by using in the assays lower concentrations of tested extracts, compared to the classical assay.

  3. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  4. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  5. Urban sediment particle size and pollutants in Southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Poleto, Cristiano; Merten, Gustavo H. [Federal Univ. of Rio Grande do Sul - UFRGS, Porto Alegre, RS (BR). Hydraulic Research Inst. (IPH); Bortoluzzi, Edson C. [Univ. of Passo Fundo - UPF, RS (Brazil); Charlesworth, Susanne M. [Coventry Univ. (United Kingdom). Dept. of Geography, Environment and Disaster Management

    2009-08-15

    Background, aim and scope: Studies of particulate-associated pollutants, or PAPs, in urban areas have become necessary due to their potentially deleterious effects on the environment. However, it is not just the sediments themselves which are problematic but also their particle size composition, which has a great influence on their capacity to adsorb and transport pollutants. This paper presents the particle size distributions and concentrations of five metals (Cr, Cu, Ni, Pb and Zn) of urban sediments collected from paved streets and gully pots from 20 cities in southern Brazil. The cities have different characteristics and hence sources of PAPs associated with differing geologies, soil types and type of urbanisation. Studies of this nature enable elucidation of the relationship between diffuse sources such as streets and gully pots and the likelihood of PAPs to subsequently pollute the urban aquatic environment. Materials and methods: Sediment samples were taken at random from paved streets and gully pots in 20 cities in Rio Grande do Sul state, southern Brazil by means of a portable vacuum cleaner to avoid loss of finer particles. The particle sizes of the samples were measured using a Cilas {sup registered} 1180 laser particle analyzer, and the concentrations of five metals (Cr, Cu, Ni, Pb and Zn) were determined by wet acid digestion (HCl-HF-HClO{sub 4}-HNO{sub 3}) followed by inductively coupled plasma atomic emission spectroscopy on the <63-{mu}m fraction. Results: It was found that in comparison to sediments collected from the streets, gully pot sediments were more heterogeneous in terms of particle size and also that sediment samples from the gully pots were predominantly coarser than those originating on the streets. From the gully pot results, analysis of the modal particle diameter enabled the cities to be divided into three categories. The concentrations of metals in the street sediments were similar across all 20 cities, with all concentrations above

  6. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    Science.gov (United States)

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles

    International Nuclear Information System (INIS)

    Fogelson, A.L.; Peskin, C.S.

    1988-01-01

    A new fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles is presented. The fluid dynamics equations are solved on a lattice. A particle is represented by a set of points each of which moves at the local fluid velocity and is not constrained to lie on the lattice. These points are coupled by forces which resist deformation of the particle. These forces contribute to the force density in the Stokes' equations. As a result, a single set of fluid dynamics equations holds at all points of the domain and there are no internal boundaries. Particles size, shape, and deformability may be prescribed. Computational work increases only linearly with the number of particles, so large numbers (500--1000) of particles may be studied efficiently. The numerical method involves implicit calculation of the particle forces by minimizing an energy function and solution of a finite-difference approximation to the Stokes' equations using the Fourier--Toeplitz method. The numerical method has been implemented to run on all CRAY computers: the implementation exploits the CRAY's vectorized arithmetic, and on machines with insufficient central memory, it performs efficient disk I/O while storing most of the data on disk. Applications of the method to sedimentation of one-, two-, and many-particle systems are described. Trajectories and settling speeds for two-particle sedimentation, and settling speed for multiparticle sedimentation from initial distributions on a cubic lattice or at random give good quantitative agreement with existing theories. copyright 1988 Academic Press, Inc

  8. Suspended organic particles drive the development of attached algal communities in degraded peatlands

    NARCIS (Netherlands)

    Goldenberg Vilar, Alejandra; Vonk, J. Arie; van der geest, Harm; van Dam, Herman; Bichebois, Simon; Admiraal, Wim

    2014-01-01

    Mineral particles in rivers have been shown to cover adnate algal species, promoting motile and filamentous species. Such effects and the role of detrital particles have not been studied in stagnant waters. In degraded peat lands, detrital particles are very prominent and therefore we studied the

  9. Nature of suspended particles in hydrothermal plume at 3°40'N Carlsberg ridge: A comparison with deep oceanic suspended matter

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Babu, E.V.S.S.K.; SuryaPrakash, L

    relatively enriched with Fe, P, Mn, rare earth elements (except Ce) and U, but had other trace element concentration analogous to that found in deep-oceanic suspended matter. Efficient scavenging of elements from hydrothermal fluid and sea water makes...

  10. Measuring the porosity and compressibility of liquid-suspended porous particles using ultrasound.

    Science.gov (United States)

    Han, Endao; Van Ha, Nigel; Jaeger, Heinrich M

    2017-05-21

    A key parameter describing the behavior of suspensions is the volume fraction ϕ of the solid particles that are dispersed in the liquid. Obtaining accurate values for ϕ becomes difficult for porous particles, because they can absorb some of the liquid. A prime example are the widely used cornstarch suspensions, for which ϕ usually is only estimated from the mass fraction of particles. Here we present a method to measure the effective porosity and compressibility of porous particles with ultrasound. We obtain the speed of sound in dilute cornstarch suspensions at multiple particle concentrations and with different solvent compressibilities. With the measured particle porosity of 0.31 we are able to calculate the volume fraction of the saturated particles reliably.

  11. Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts.

    Science.gov (United States)

    Radonic, Jelena; Sekulic, Maja Turk; Miloradov, Mirjana Vojinovic; Cupr, Pavel; Klánová, Jana

    2009-01-01

    Bombing and destruction of the industrial and military targets accompanied by complete or incomplete combustion during the war conflict and NATO operation in former Yugoslavia caused the emission of persistent organic pollutants into the atmosphere, water, and soil. A total of 129 ambient air samples from 24 background, urban, and industrial sites, including hot spots, were collected to assess a gas-particle partitioning behavior of various persistent organic pollutants. High volume sampling technique was applied with quartz filters that collect the atmospheric particles and polyurethane foam filters (PUF) that retain the gaseous compounds. Three to ten samples were taken at each site. GFs and PUFs were analyzed separately for their content of polychlorinated biphenyls, organochlorine pesticides, and polyaromatic hydrocarbons. Gas phase and particle phase concentrations of selected persistent organic pollutants (POPs) in all samples were converted into the particle-bound fractions Phi. These fractions were found to be highly variable, but generally highest in Bosnia and Herzegovina due to the elevated levels of total suspended material in ambient air. Experimental values of particle-associated fraction were compared to the Junge-Pankow model. Interestingly, a model for urban/industrial environments provided a better prediction of partitioning behavior than a model for background and rural background sites. That is probably because the total amount of atmospheric particles is higher in the Balkan region than found in the previously published studies. Even though it has been stated in previous studies that less than 5% of polychlorinated biphenyls (PCBs) are bound to the particles, up to 67% of PCBs were particle associated at several sampling sites in this study. PCB-contaminated soils are probably still one of the strong sources of particles to the atmosphere. Information on the particle-bound fractions of POPs is important not only for prediction of their fate but

  12. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow

    Science.gov (United States)

    Rosén, T.; Do-Quang, M.; Aidun, C. K.; Lundell, F.

    2015-05-01

    This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Rep=G d2ν-1 (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St =α Rep (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St =Rep ) at low Rep, particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Rep, fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕc to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α , particle aspect ratio rp, and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high rp and low α .

  13. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.

    Science.gov (United States)

    Rosén, T; Do-Quang, M; Aidun, C K; Lundell, F

    2015-05-01

    This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Re(p)=Gd(2)ν(-1) (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St=αRe(p) (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St=Re(p)) at low Re(p), particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Re(p), fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕ(c) to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α, particle aspect ratio r(p), and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high r(p) and low α.

  14. Detectable elements in a particles pattern of suspended urban matter analysed by neutron activation

    International Nuclear Information System (INIS)

    Herrera, L.; Beltran, C.; Alemon, E.; Ortiz, M.E.

    2001-01-01

    The multielement composition of a Standard Reference Material 1648 pattern certified is reported and it is used for the suspended in air aerosol samples analysis from urban localities of the Valley of Mexico, which was irradiated in the same geometry of the sample. The bottom of laboratory is analysed where was made the gamma spectrometry and it is compared the ratio of country up of bottom photo peaks with pattern photo peaks in nearer interest regions. The bottom natural gamma transmitters were identified and those of the activated pattern in the TRIGA Mark III nuclear reactor. (Author)

  15. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    Science.gov (United States)

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  16. DNS-DEM of Suspended Sediment Particles in an Open Channel Flow

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh; Finn, Justin

    2016-11-01

    DNS with point-particle based discrete element model (DEM) is used to study particle-turbulence interactions in an open channel flow at Reτ of 710, corresponding to the experimental observations of Righetti & Romano. Large particles of diameter 200 microns (10 in wall units) with volume loading on the order of 10-3 are simulated using four-way coupling with closure models for drag, added mass, lift, pressure, and inter-particle collision forces. The point-particle model is able to accurately capture the effect of particles on the fluid flow in the outer layer. However, the particle is significantly larger than the wall-normal grid in the near-wall region, but slightly smaller than the axial and longitudinal grid resolutions. The point-particle model fails to capture the interactions in the near-wall region. In order to improve the near-wall predictions, particles are represented by Lagrangian material points which are used to perform interpolations from the grid to the Lagrangian points and to distribute the two-way coupling force to the Eulerian grid. Predictions using this approach is compared with the experimental data to evaluate its effectiveness. NSF project #1133363, Sediment-Bed-Turbulence Coupling in Oscillatory Flows.

  17. [Particle pollution effects on the risk of cardiovascular diseases].

    Science.gov (United States)

    Massamba, V K; Coppieters, Y; Mercier, G; Collart, P; Levêque, A

    2014-02-01

    The effects of air pollution on health are quite well-documented and the influence of particulate pollution on morbidity and mortality from myocardial infarction and stroke is increasingly evident. The objective of this literature review is to identify and synthesize articles on the impact of air pollution by PM10 and PM2.5 of myocardial infarction and stroke. A total of 14 studies were reported on the effects of PM10 and five on the effects of PM2.5. Nine out of 14 studies for PM10 and two studies of five for PM2.5 have found a significant association with myocardial infarction and/or stroke. Particle composition according to location, study period and population must be considered in interpreting the results on the health effects of air pollution. The integration of these elements is important for decision making in tune with social and economic conditions specific to each environment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Single particle aerodynamic relaxation time analyzer. [for aerosol pollutants

    Science.gov (United States)

    Mazumder, M. K.; Kirsch, K. J.

    1977-01-01

    An instrument employing a laser Doppler velocimeter and a microphone to measure the phase lag of the motion of aerosol particulates relative to the motion of the fluid medium within an acoustic field is described. The relaxation times and aerodynamic diameters of the particles or droplets are determined in real time from the measured values of phase lag; thus, the size analysis is independent of the electrostatic charges and refractive indices of the particulates. The instrument is suitable for analyzing the aerodynamic size spectrum of atmospheric particulate pollutants with aerodynamic diameters ranging from 0.1 to 10.0 microns.

  19. Exactly solvable model for drift of suspended ferromagnetic particles induced by the Magnus force

    Science.gov (United States)

    Denisov, S. I.; Pedchenko, B. O.; Kvasnina, O. V.; Denisova, E. S.

    2017-12-01

    The phenomenon of drift motion of single-domain ferromagnetic particles induced by the Magnus force in a viscous fluid is studied analytically. We use a minimal set of equations to describe the translational and rotational motions of these particles subjected to a harmonic force and a non-uniformly rotating magnetic field. Assuming that the azimuthal angle of the magnetic field is a periodic triangular function, we analytically solve the rotational equation of motion in the steady state and calculate the drift velocity of particles. We study in detail the dependence of this velocity on the model parameters, discuss the applicability of the drift phenomenon for separation of particles in suspensions, and verify numerically the analytical predictions.

  20. Particle size distributions and the vertical distribution of suspended matter in the upwelling region off Oregon

    Science.gov (United States)

    Kitchen, J. C.

    1977-01-01

    Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.

  1. Measurements of Plutonium and Americium in Soil Samples from Project 57 using the Suspended Soil Particle Sizing System (SSPSS)

    International Nuclear Information System (INIS)

    John L. Bowen; Rowena Gonzalez; David S. Shafer

    2001-01-01

    As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site

  2. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    Science.gov (United States)

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  3. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study.

    Science.gov (United States)

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-11-05

    Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ultrasonic method for microscopic analysis of suspended particle aggregation and floc properties - new developments in the water industry

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, J.F. [Gelsenwasser AG, Gelsenkirchen (Germany). Abt. PIA; Jekel, M. [Technische Univ. Berlin (Germany). Dept. of Water Quality Control; Coakley, W.T. [Cardiff Univ., Cardiff (United Kingdom). School of Biosciences

    2002-07-01

    This work reports the investigation, development and optimisation of methods employing MHz ultrasonic standing waves (USSW) for analytical applications in the water industry. The performance of large-scale processing methods for suspensions a significantly influenced by aggregate properties. Laboratory-scale studies on the aggregation efficiency and the settling behaviour of suspensions under varied suspension stability ('Jar-Test') is e.g. a common method to optimise focculation/sedimentation processes. A novel microscopic method, employing an acoustic 'mini-chamber', has been introduced here. The set-up facilitates the observation of aggregation processes under defined conditions in real-time and in-situ. It was successfully used with a number of suspensions to visualise floc growth, the final aggregate structure and other aggregate properties of practical importance (strength, settling velocity, density). Image analysis was employed for quantitative floc characterisation by e.g. the fractal dimension. The findings were consistent with the DLVO theory of suspension stability and qualitative models of particle aggregation dynamics. Aggregation kinetics has been quantitatively studied by particle image velocimetry (PIV) analysis. These novel investigations suggest the principal applicability of the mini-chamber/microscope system for various research fields and suspended particle investigations, which are of interest not only for water industry purposes but also for the processing of heterogeneous systems in general. Design studies of simple, low-cost and disposable ultrasonic devices for such studies have been developed and a prototype tested successfully. (orig.)

  5. Particle Tracking Model for Suspended Sediment Transport and Streambed Clogging Under Losing and Gaining Conditions

    Science.gov (United States)

    Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.

    2017-12-01

    Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.

  6. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    Science.gov (United States)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  7. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  8. Study of seasonal dynamics of sedimentation evacuation of suspended matter, nutrients and pollutants from the surface water layer of the Black Sea during 1992-1994

    International Nuclear Information System (INIS)

    Gulin, S.B.; Polikarpov, G.G.; Egorov, V.N.; Krivenko, O.V.; Stokozov, N.A.; Zherko, N.V.

    1995-01-01

    A series of regular measurements of sedimentation evacuation of suspended matter, nutrients (carbon, nitrogen) and pollutants (mercury, polychlorided biphenyls) from the surface water layer was carried out with 1-2 month interval between the measurements using 234 Th in the region of western cyclonic circulation of the Black Sea. It allowed to estimate the seasonal dynamics and to obtain average annual values of dientrophication and sedimentational self-purification of the euphotic zone of the Western part of the Black Sea. The parallel measurements of the rates of sedimentation evacuation of suspended organic nitrogen from the euphotic zone, which were performed using 234 Th and determining the so called products of phitoplankton by the absorption of 15 N traced nitrates and ammonium, give practically identical results. 19 refs.; 5 figs

  9. Geochemistry and magnetic measurements of suspended sediment in urban sewage water vis-à-vis quantification of heavy metal pollution in Ganga and Yamuna Rivers, India.

    Science.gov (United States)

    Chakarvorty, Munmun; Dwivedi, Akhil Kumar; Shukla, Anil Dutt; Kumar, Sujeet; Niyogi, Ambalika; Usmani, Mavera; Pati, Jayanta Kumar

    2015-09-01

    Sewage water is becoming a key source of heavy metal toxicity in large river systems worldwide and the two major Himalayan Rivers in India (Ganga and Yamuna) are severely affected. The high population density in the river banks combined with increased anthropogenic and industrial activities is contributing to the heavy metal pollution in these rivers. Geochemical data shows a significant increase in the concentration of all heavy metals (Pb, 48-86 ppm; Zn, 360-834 ppm; V, 45-101 ppm; Ni, 20-143 ppm; Cr, 79-266 ppm; Co, 8.62-22.12 ppm and Mn, 313-603 ppm) in sewage and mixed water (sewage and river water confluence site) samples due to increased effluent discharge from the catchment area. The ΣREE content of sewage water (129 ppm) is lower than the average mixed water samples (142 ppm). However, all the samples show similar REE pattern. The mass magnetic susceptibility (Xlf) values of suspended sediments (28 to 1000 × 10(-8) m(3) kg(-1)) indicate variable concentration of heavy metals. The Xlf values show faint positive correlation with their respective bulk heavy metal contents in a limited sample population. The present study comprising geochemical analysis and first magnetic measurement data of suspended sediments in water samples shows a strongly polluted nature of Ganga and Yamuna Rivers at Allahabad contrary to the previous report mainly caused by overtly polluted city sewage water.

  10. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    International Nuclear Information System (INIS)

    Anderson, B.S.; Phillips, B.M.; Hunt, J.W.; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2006-01-01

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River

  11. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shuying [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Yang, Zhen, E-mail: yangzhen@njnu.edu.cn [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Ren, Kexin [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Tian, Ziqi [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Dong, Chang; Ma, Ruixue; Yu, Ge [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Yang, Weiben, E-mail: yangwb007@njnu.edu.cn [School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China)

    2016-11-05

    Highlights: • Novel amino-acid-modified-chitosan flocculants are employed to remove antibiotics. • Effects of different structures of amino acids and antibiotics are investigated. • Correlation analysis shows coexisted kaolin and HA have synergistic removal effect. • Theoretical DFT calculation clarifies the interactions in molecular level. - Abstract: Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4 mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5 mg/L), due to π–π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics’ removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  12. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study

    International Nuclear Information System (INIS)

    Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben

    2016-01-01

    Highlights: • Novel amino-acid-modified-chitosan flocculants are employed to remove antibiotics. • Effects of different structures of amino acids and antibiotics are investigated. • Correlation analysis shows coexisted kaolin and HA have synergistic removal effect. • Theoretical DFT calculation clarifies the interactions in molecular level. - Abstract: Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4 mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5 mg/L), due to π–π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics’ removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.

  13. Air pollution, asthma and allergy - the importance of different types of particles

    International Nuclear Information System (INIS)

    Ormstad, Heidi; Loevik, Martinus

    2002-01-01

    Particulate air pollution has been much discussed in Norway during the last few years. Coarse particles from asphalt are likely to have quite different properties than the far smaller particles from diesel exhaust. On the basis of data from the literature and our own research, we discuss the health problem of different types of particles with a focus on allergy and respiratory symptoms. Diesel exhaust particles have well-documented adverse effects in relation to allergic airway disease. They increase symptoms load in already allergic individuals and also seem to contribute to the increased prevalence of allergy. PM 10 is today measured on the basis of weight, not on number. Diesel exhaust particles are much smaller than road surface particles; hence PM 10 measurements reflect road surface dust pollution more than exhaust particles. Focus should now be given to diesel exhaust particles in order to reduce the adverse health effects of particulate air pollution in Norwegian cities. (author)

  14. Hydroclimatic influence on particle size distribution of suspended sediments evacuated from debris-covered Chorabari Glacier, upper Mandakini catchment, central Himalaya

    Science.gov (United States)

    Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad

    2016-07-01

    Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of

  15. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps

    International Nuclear Information System (INIS)

    Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore

    2008-01-01

    Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB 7 in the urban runoff sediments ranged between 16 , the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 μm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients

  16. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...... of PM sampled at different locations or times. Small air pollution particles did not appear more hazardous than larger particles, which is consistent with the notion that constituents such as metals and organic compounds also are important determinants for PM-generated oxidative stress and inflammation....... In addition, the results indicate that PM-mediated ROS production is involved in the generation of inflammation and activated inflammatory cells can increase their ROS production. The observations indicate that air pollution particles generate oxidatively damaged DNA by promoting a milieu of oxidative stress...

  17. Study of the heavy metals speciation in the atmospheric suspended particles in Sevilla (Spain); Estudio de la especiacion de metales pesados en la materia particulada atmosferica de la ciudad de Sevilla

    Energy Technology Data Exchange (ETDEWEB)

    Ternero Rodriguez, M.; Sequeiros Madueno, L.; Jimenez Sanchez, C.; Barragan de la Rosa, J.; Bello Lopez, M.; Fernandez Espinosa, A.J.; Perez Bernal, J.L. [Facultad de Quimica, Universidad de Sevilla (Spain)

    1997-06-01

    This work develops analytical methods for the heavy metals speciation in the atmospheric suspended particles. In base to these methods, we study the atmospheric contamination of the city of Seville, determining the metals Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb. We also study the effects of metallic species in the alteration processes on rocks material, in base to the SO{sub 2}/SO{sub 4}{sup {minus}{minus}}. The project develops in two years: in the first, we develop the methods of chemistry speciation based on the extraction with different reagents and the methods of physical speciation based on the particle size distribution with cascade impactors. Also, we develop the methodology for the environmental simulation of alteration processes, in base to the heterogeneous catalysis, by metallic ions, of the SO{sub 2} on the surface of the stone. In the second year we apply the methods of speciation to the study of the contamination by heavy metals in the city of Seville. This part divides in two phases: a first of the preliminary study in the city in order to identify the different polluting focuses, and a secondary of study of the contamination produced by punctual sources, in the more polluted points of the city. On the other hand, the study of the alteration processes of rock materials has centred on materials employees in monuments of the city and on application of the catalyzers found in the particulate matter of the true environment of the materials. (Author)

  18. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  19. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  20. A new device to measure the settling properties of suspended particles : instrumental development and first applications during runoff events in small watersheds

    Science.gov (United States)

    Legoût, Cédric; Wendling, Valentin; Gratiot, Nicolas; Mercier, Bernard; Coulaud, Catherine; Nord, Guillaume; Droppo, Ian; Ribolzi, Olivier

    2016-04-01

    Most equations describing suspended particle transport balances the settling flux of particles against the turbulent flux of the flow. Although in-situ techniques have been developed to measure settling velocities of suspended particles in coastal areas, floodplain rivers and estuaries, they are not easily transferable to small and meso-scale watersheds. The main limitation lies in the range of concentrations frequently reaching several tens of grams per liter during runoff events. To overcome this instrumental limitation we developed an original System for the Characterization of Aggregates and Flocs (SCAF). An optical settling column, equipped with a vertical array of 16 optical sensors, was used to provide light transmission through a suspension during quiescent settling. It was specifically designed to be inserted in plastic bottles contained in classical sequential samplers, in order to obtain automatic measurements of the suspension immediately after its collection in the river. From the SCAF measurements, we calculate both the particle settling velocity distributions and the propensity of particles to flocculate. The prototypes were tested in laboratory conditions for a wide range of concentrations and material types, leading to consistent measurements with flocculation indices comprised between 0 and 80, respectively for non-cohesive and cohesive materials. First measurements in the field were achieved during runoff events at the outlet of small nested catchments in Lao PDR (MSEC network of environmental observatories) in order to explore the non-conservative behavior of the settling properties of eroded soil aggregates during their transfer.

  1. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease

    Science.gov (United States)

    Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air p...

  2. Characterization of road runoff with regard to seasonal variations, particle size distribution and the correlation of fine particles and pollutants.

    Science.gov (United States)

    Hilliges, R; Endres, M; Tiffert, A; Brenner, E; Marks, T

    2017-03-01

    Urban runoff is known to transport a significant pollutant load consisting of e.g. heavy metals, salts and hydrocarbons. Interactions between solid and dissolved compounds, proper understanding of particle size distribution, dissolved pollutant fractions and seasonal variations is crucial for the selection and development of appropriate road runoff treatment devices. Road runoff at an arterial road in Augsburg, Germany, has been studied for 3.5 years. A strong seasonal variation was observed, with increased heavy metal concentrations with doubled and tripled median concentrations for heavy metals during the cold season. Correlation analysis showed that de-icing salt is not the only factor responsible for increased pollutant concentrations in winter. During the cold period, the fraction of dissolved metals was lower compared to the warm season. In road dust, the highest metal concentrations were measured for fine particles. Metals in road runoff were found to show a significant correlation to fine particles SS63 (removal rates.

  3. Particle (Soot) Pollution in Port Harcourt Rivers State, Nigeria—Double Air Pollution Burden? Understanding and Tackling Potential Environmental Public Health Impacts

    OpenAIRE

    Okhumode H. Yakubu

    2017-01-01

    Residents of Port Harcourt in Rivers State, Nigeria, and its environs have since the last quarter of 2016 been experiencing adverse environmental impacts of particle (soot) pollution. This “double air pollution burden”—the unresolved prevailing widespread air pollution and the “added” emergence of particle pollution considered an environmental health threat, led to protests against government inaction in some parts of the state. In February 2017, several months following the onset of the poll...

  4. Documentation of particle-size analyzer time series, and discrete suspended-sediment and bed-sediment sample data collection, Niobrara River near Spencer, Nebraska, October 2014

    Science.gov (United States)

    Schaepe, Nathaniel J.; Coleman, Anthony M.; Zelt, Ronald B.

    2018-04-06

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and U.S. Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data.

  5. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    International Nuclear Information System (INIS)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-01-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] −1 , the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem

  6. Investigation to describe the dynamics of contamination with heavy metals and organic pollutants in relation to suspended particulate matter during flood events

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, M.; Baborowski, M.; Tuempling, W. von Jr. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung

    2001-07-01

    Heavy metals and non-polar anthropogenic organic substances like polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and chloropesticides can be adsorbed on suspended particulate matter (SPM). In rivers thereby SPM can be a major carrier of such contaminants. The deposition of SPM in rivers results in an enrichment of these substances in sediments, while their resuspension leads to a pollution of river water again. Until the end of the 80{sup th} the Elbe river was contaminated with high amounts of chloropesticides and SPM by several chemical plants located in the former GDR and CSSR. Sediments in groynefields and flood plains are highly contaminated with these substances. Whether there is any recontamination of river water during flood events is a subject of several projects in our institute.

  7. Residence time of suspended particles in the Garonne River (SW France): indications derived from Th-234, Be-7 and Pb-210

    Science.gov (United States)

    Schmidt, Sabine; Saari, Hanna-Kaïsa

    2013-04-01

    Particulates that enter the ocean from rivers are the products of integrated basin-wide processes (soil erosion, sediment transport and deposition in watersheds). The fate of sediments in river is therefore challenging and generally analysed using hydrodynamics models. An alternative method relies on the use of fallout radioactive tracers to identify sediment source regions and/or to estimate suspended sediment age or the fraction of the suspended sediment recently eroded from the landscape. This work presents the application of naturally occurring radionuclides: Pb-210 (T1/2 = 22.3 years) and Be-7 (T1/2 = 53 days), both delivered by atmospheric fallout, and Th-234 (T1/2 = 24.1 days), to investigate residence times of particles in the lower Garonne River (South-West France). Th-234, produced continuously by decay of U-238, is widely used in marine sciences for studying particle dynamic on time-scales of days to weeks, but a major limitation to extend its application from the ocean to river is the activity (level, variability) of its parent, U-238, in contrast with the high and rather constant levels of oceanic uranium. The Garonne River has a watershed of 55 000 km2 with a mean discharge of 650 m3 s-1 (range: 12500 m3 s-1). It flows westward about 647 km from the Spanish Pyrenees, ending into the Gironde, its common estuary with the Dordogne River. To investigate suspended particle dynamic of the lower Garonne River, monthly samplings were performed from January 2006 to December 2007 at selected sites along this river system, including a site in its estuarine section. Dissolved and particulate activities of radionuclides were determined using a low-background, well-shaped gamma spectrometer. Additional data (river discharge, rain rate, suspended particulate concentrations) were also collected to better interpret radionuclide data. Whereas dissolved fractions are always negligible, particulate Th-234, Be-7 and Pb-210 activities present marked spatio

  8. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C

    2017-04-01

    In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (rivers. The ratio of turbidity to TSS increased with the proportion of fine particles and was associated with the accumulation of pollutants and settling ability of particles, which shows that it can be used as an index when monitoring runoff pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  10. Role of microbial Fe(III) reduction and solution chemistry in aggregation and settling of suspended particles in the Mississippi River Delta plain, Louisiana, USA

    Science.gov (United States)

    Jaisi, Deb P.; Ji, Shanshan; Dong, Hailiang; Blake, Ruth E.; Eberl, Dennis D.; Kim, Jinwook

    2008-01-01

    River-dominated delta areas are primary sites of active biogeochemical cycling, with productivity enhanced by terrestrial inputs of nutrients. Particle aggregation in these areas primarily controls the deposition of suspended particles, yet factors that control particle aggregation and resulting sedimentation in these environments are poorly understood. This study was designed to investigate the role of microbial Fe(III) reduction and solution chemistry in aggregation of suspended particles in the Mississippi Delta. Three representative sites along the salinity gradient were selected and sediments were collected from the sediment-water interface. Based on quantitative mineralogical analyses 88–89 wt.% of all minerals in the sediments are clays, mainly smectite and illite. Consumption of SO42− and the formation of H2S and pyrite during microbial Fe(III) reduction of the non-sterile sediments by Shewanella putrefaciens CN32 in artificial pore water (APW) media suggest simultaneous sulfate and Fe(III) reduction activity. The pHPZNPC of the sediments was ≤3.5 and their zeta potentials at the sediment-water interface pH (6.9–7.3) varied from −35 to −45 mV, suggesting that both edges and faces of clay particles have negative surface charge. Therefore, high concentrations of cations in pore water are expected to be a predominant factor in particle aggregation consistent with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Experiments on aggregation of different types of sediments in the same APW composition revealed that the sediment with low zeta potential had a high rate of aggregation. Similarly, addition of external Fe(II) (i.e. not derived from sediments) was normally found to enhance particle aggregation and deposition in all sediments, probably resulting from a decrease in surface potential of particles due to specific Fe(II) sorption. Scanning and transmission electron microscopy (SEM, TEM) images showed predominant face-to-face clay aggregation in

  11. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  12. International Odra project (IOP) 'Interdisciplinary German Polish studies on the behaviour of pollutants in the Oder system'. Sub project 4: the state of suspended particulate matter in the Odra River system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, K.H.; Damke, H.; Kasbohm, J.; Puff, T.; Breitenbach, E.; Theel, O.; Kiessling, A.

    2001-05-20

    The purpose of the present project was to characterise the pollutant freight of suspended matter and suspended-matter-borne sediments in the Oder river system on the basis of large samples drawn at selected sampling sites. One of the major goals was to assess and draw up a balance of the transport regime of suspended matter between the compartments water, suspended matter and sediments. Special attention was given to the composition and structure of suspended matter as well as to the distribution of trace elements in the various components. Furthermore, the study was intended to provide ecology-related information on the basis of selected biogenic components. Statements on the time course of pollution of estuarine waters and the Baltic Sea by way of the Oder can be derived from a characterisation of current fluviatile solids (suspended matter and suspended-matter-borne sediments) and determination of their quantitative proportions. The following research strategy was derived from these goals: for a characterisation of suspended matter in terms of composition, structure and biogenic origin it is necessary to determine the concentration of suspended matter, its granulometric composition, carbon and sulphur content, biogenic opal content, mineral content, phase composition, metal content, structure of suspended flakes and association of diatoms in the suspended flakes and on the periphyton. [German] Das Vorhaben ist darauf ausgerichtet, den Belastungszustand der Schwebstoffe und schwebstoffbuertigen Sedimente im Oderflusssystem anhand von Grossproben ausgewaehlter Probenahmeorte zu charakterisieren. Ein wesentliches Ziel ist die Beurteilung des Transportregimes der Schwebstoffe zwischen den Kompartimenten Wasser, Schwebstoff und Sediment sowie seine Bilanzierung. Dabei gilt die besondere Aufmerksamkeit der Zusammensetzung und der Struktur der Schwebstoffe sowie die Spurenelementspeziation an die unterschiedlichen Bestandteile. Weiterhin werden oekologische Aussagen

  13. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  14. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas

    Science.gov (United States)

    Zhang, Qunfang; Zhu, Yifang

    2010-01-01

    Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.

  15. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.; Jardon, R.T. [Centro de Ciencias de la Atmosfera (Mexico). Seccion de Contaminacion Ambiental

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozone is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.

  16. Evaluation of atmospheric pollution in Kenitra city (MOROCCO) (Particles and Metals)

    International Nuclear Information System (INIS)

    Zghaid, M.; Noack, Y.; Tahiri, M.; Zahry, F.; Bounakhla, M.; Benyaich, F

    2008-01-01

    Full text: All Recent epidemiological studies show that air pollution in general and especially particulate pollution have a strong influence on human health, particularly on the respiratory and cardio-vascular systems, but also affect the developing fetus. Like developed countries, countries under development are subject to significant air pollution both urban and industrial. The car park is often old, sometimes uncontrolled industrialization, the regulations of atmospheric emissions are infancy and the network monitoring rare. The aim of this work is to focus on the problem of particulate air pollution in Kenitra (50 km north of Rabat, Morocco) by characterizing the pollution in both quantity and quality, to assess the impact potential health and provide decision makers with reliable data. Initial results show that the OMS recommendations, along with European standards on sulfur dioxide as well as PM10 are largely outdated (80 ug / Nm 3 instead of 40 in average). This is also the case for some metals: Lead concentrations are approximately ten times greater than those encountered in urban sites in Europe; nickel is fifteen times higher than the European standard. The metals are mainly present in the thin fraction (particles below 2.5 um). The low proportion of thin particles in the total particles, show the influence of resuspension events and other natural inputs from arid or desert. The SO2 average concentrations are also quite important (60 ug / m 3 ). The concentrations near the site are much higher than those that can be measured on similar sites in Europe. It is more than probable that in this city, the health impacts are not negligible. We will look to continue this work in three aspects: Spatial distribution of particulate pollution in Kenitra; The health impact of air pollution in Kenitra; Cyto-and geno-toxicity of airborne particles in Kenitra [fr

  17. Urban cyclist exposure to fine particle pollution in a rapidly growing city

    Science.gov (United States)

    Luce, B. W.; Barrett, T. E.; Ponette-González, A.

    2017-12-01

    Urban cyclists are exposed to elevated atmospheric concentrations of fine particulate matter (particles pollution. Recent research indicates that common exposure hotspots include traffic signals, junctions, bus stations, parking lots, and inclined streets. To identify these and other hotspots, a bicycle equipped with a low-cost, portable, battery-powered particle counter (Dylos 1700) coupled with a Trimble Geo 5T handheld Global Positioning System (GPS; ≤1 m ± resolution) will be used to map and measure particle mass concentrations along predetermined routes. Measurements will be conducted during a consecutive four-month period (Sep-Dec) during morning and evening rush hours when PM2.5 levels are generally highest, as well as during non-rush hour times to determine background concentrations. PM2.5 concentrations will be calculated from particle counts using an equation developed by Steinle et al. (2015). In addition, traffic counts will be conducted along the routes coinciding with the mobile monitoring times. We will present results on identified "hotspots" of high fine particle concentrations and PM2.5 exposure in the City of Denton, where particle pollution puts urban commuters most at risk, as well as average traffic counts from monitoring times. These data can be used to determine pollution mitigation strategies in rapidly growing urban areas.

  18. Characterization of anthropogenic sediment particles after a transboundary water pollution of river Tisza using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Osan, Janos E-mail: osan@sunserv.kfki.hu; Toeroek, Szabina; Alfoeldy, Balint; Falkenberg, Gerald

    2004-05-21

    At the beginning of 2000, a major mining accident occurred in the Romanian part of the Tisza catchment area due to tailings dam failure releasing huge amounts of heavy metals to the river. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to characterize the anthropogenic particles in river sediment previously selected by single-particle electron probe X-ray microanalysis (EPMA). The trace element composition, heterogeneity and heavy metal speciation of individual particles was studied using synchrotron radiation-based microbeam X-ray emission and absorption methods. Particles were selected only from samples regarded as polluted sediment. White-beam micro X-ray fluorescence ({mu}-XRF) allowed the quantitative determination of heavy metals such as cadmium in individual particles. The maximum observed concentration of cadmium (>700 {mu}g/g) indicates that this highly toxic heavy metal is concentrated in individual anthropogenic particles. Using the combination of micro X-ray absorption near-edge structure and target-transformation principle component analysis, quantitative chemical speciation of copper and zinc was feasible on individual sediment particles. Heavy metals in most of the particles released from the pollution site remained in the sulfide form resulting in a limited mobility of these metals. Based on the information obtained using microanalytical methods, the estimation of the environmental mobility of heavy metals connected to microparticles becomes possible.

  19. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    International Nuclear Information System (INIS)

    Zhou, Zheng; Dionisio, Kathie L; Verissimo, Thiago G; Kerr, Americo S; Coull, Brent; Arku, Raphael E; Koutrakis, Petros; Spengler, John D; Vallarino, Jose; Hughes, Allison F; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-01-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m −3 (37%) of fine particle (PM 2.5 ) mass and 128 μg m −3 (42%) of PM 10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m −3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda. (letter)

  20. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    Science.gov (United States)

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  1. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    Science.gov (United States)

    Zhou, Zheng; Dionisio, Kathie L.; Verissimo, Thiago G.; Kerr, Americo S.; Coull, Brent; Arku, Raphael E.; Koutrakis, Petros; Spengler, John D.; Hughes, Allison F.; Vallarino, Jose; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-12-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m-3 (37%) of fine particle (PM2.5) mass and 128 μg m-3 (42%) of PM10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m-3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda.

  2. Impact of roadside noise barriers on particle size distributions and pollutants concentrations near freeways

    Science.gov (United States)

    Ning, Zhi; Hudda, Neelakshi; Daher, Nancy; Kam, Winnie; Herner, Jorn; Kozawa, Kathleen; Mara, Steven; Sioutas, Constantinos

    2010-08-01

    Increasing epidemiological evidence has established an association between a host of adverse health effects and exposure to ambient particulate matter (PM) and co-pollutants, especially those emitted from motor vehicles. Although PM and their co-pollutants dispersion profiles near the open freeway have been extensively characterized by means of both experimental measurements and numerical simulations in recent years, such investigations near freeways with roadside barriers have not been well documented in the literature. A few previous studies suggested that the presence of roadside structures, such as noise barriers and vegetation, may impact the decay of pollutant concentrations downwind of the freeway by limiting the initial dispersion of traffic emissions and increasing their vertical mixing due to the upward deflection of airflow. Since the noise barriers are now common roadside features of the freeways, particularly those running through populated urban areas, it is pertinent to investigate the impact of their presence on the particles and co-pollutants concentrations in areas adjacent to busy roadways. This study investigated two highly trafficked freeways (I-710 and I-5) in Southern California, with two sampling sites for each freeway, one with and the other without the roadside noise barriers. Particle size distributions and co-pollutants concentrations were measured in the immediate proximity of freeways and at different distances downwind of the freeways. The results showed the formation of a "concentration deficit" zone in the immediate vicinity of the freeway with the presence of roadside noise barrier, followed by a surge of pollutant concentrations further downwind at 80-100 m away from freeway. The particle and co-pollutants concentrations reach background levels at farther distances of 250-400 m compared to 150-200 m at the sites without roadside noise barriers.

  3. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    Science.gov (United States)

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  4. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Cedergreen, Nina; Kronvang, Brian

    2016-01-01

    on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L-1). Mortality of G. pulex...... was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L-1 adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments...... in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity...

  5. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aerosol pollution in urban and industrialized area under marine influence: physical-chemistry of particles

    International Nuclear Information System (INIS)

    Rimetz, J.

    2007-12-01

    Harbors for trade are known as highly urbanized and industrialized areas with important maritime, railway and road traffic. Industries are mainly represented by steel, cement works, and oil refineries. The maritime sector is becoming an even larger source of air pollution. Atmospheric NO x , SO 2 , O 3 levels and chemical analysis of airborne particulate matter were monitored in Dunkerque conurbation in 2005 and 2006. This study was included in the IRENI program. In low-pressure conditions, local pollutants are spread out far away the agglomeration, whereas, in high-pressure regimes, the atmospheric stability and sea-breezes allow an accumulation of pollutants over the urban zone. Size-resolved chemical analyses of particulate matter collected as function of the aerodynamic diameter (D a ) were performed. Ions (Na + , NH 4 + , Cl - , NO 3 - , SO 4 2- ), metals (Fe, Zn, Pb, Cd,...) and organic fraction (EC, OC) are associated with sub- or/and super-micron particles. The size, morphology and chemical species of individual particles collected selectively in the 12O 3 , Fe 3 O 4 , PbO,... containing particles emitted in the Dunkerque harbour area and aged sea-salt aerosol particles (NaCl, NaNO 3 ,...) from long range transport of air masses. Thin organic coatings from natural and anthropogenic origin are observed on the particles by ToF-SIMS imaging. (author)

  7. Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.

    Science.gov (United States)

    Li, Jingyan; Xu, Tingting; Lu, Xiaohui; Chen, Hong; Nizkorodov, Sergey A; Chen, Jianmin; Yang, Xin; Mo, Zhaoyu; Chen, Zhiming; Liu, Huilin; Mao, Jingying; Liang, Guiyun

    2017-03-01

    Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO 2 , coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size distributions were identified as primary emissions from firework displays. The fireworks-related particles accounted for more than 70% of the total analyzed particles during severe firework detonations. The formation of secondary particulate sulfate and nitrate during firework events was investigated on single particle level. An increase of sulfite peak (80SO 3 - ) followed by an increase of sulfate peaks (97HSO 4 - +96SO 4 - ) in the mass spectra during firework displays indicated the aqueous uptake and oxidation of SO 2 on particles. High concentration of gaseous SO 2 , high relative humidity and high particle loading likely promoted SO 2 oxidation. Secondary nitrate formed through gas-phase oxidation of NO 2 to nitric acid, followed by the condensation into particles as ammonium nitrate. This study shows that under worm, humid conditions, both primary and secondary aerosols contribute to the particulate air pollution during firework displays. Copyright © 2016. Published by Elsevier B.V.

  8. Time-series forecasting of pollutant concentration levels using particle swarm optimization and artificial neural networks

    Directory of Open Access Journals (Sweden)

    Francisco S. de Albuquerque Filho

    2013-01-01

    Full Text Available This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.

  9. RADIOACTIVE POLLUTION ESTIMATE FOR FUKUSHIMA NUCLEAR POWER PLANT BY A PARTICLE MODEL

    Directory of Open Access Journals (Sweden)

    K. Saito

    2016-06-01

    Full Text Available On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and

  10. Effects of suspended particles on the rate of mass transfer to a rotating disk electrode. [Ferric cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Roha, D.J.

    1981-06-01

    Limiting currents for the reduction of ferric cyanide at a rotating disk were determined in the presence of 0 to 40 percent by volume of spherical glass beads. Experiments were conducted with six different particle diameters, and with rotation speeds in the range of 387 to 270 rpm, usong both a 0.56 cm and a 1.41 cm radius disk electrode. It was established that at a given rpm upon addition of glass beads in the limiting current, i/sub L/, may increase to more than three times its value without solids. This increase in limiting current density is greater at high rotation speeds and with the larger disk electrode. i/sub L/ as a function of particle diameter yields at maximum at approx. 10 ..mu..m. Two mass transfer models are offered to explain this behavior, both of which assume that the beads are in contact with the disk electrode and moving parallel to its surface. In the surface renewal model it is assumed that complete mixing takes place with the passage of each bead and the boundary layer is replaced with fresh bulk solution. While with the particle film model it is assumed the bead and a clinging film of fluid rotate together. The film promotes mass transfer by alternately absorbing and desorbing the diffusing species. The particle film model best explains the observed behavior of the limiting current density. Calculations of stirring power required verses i/sub L/ observed, show that adding beads to increase i/sub L/ consumes less additional power than simply increasing the rotation speed alone and even permits a decrease in the amount of stirring energy required per unit reactant consumed, at limiting current conditions.

  11. Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    Science.gov (United States)

    Doxaran, D.; Ehn, J.; Belanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-01-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future

  12. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition

    Science.gov (United States)

    Kheireddine, Malika; Ouhssain, Mustapha; Organelli, Emanuele; Bricaud, Annick; Jones, Burton H.

    2018-02-01

    The light absorption properties of phytoplankton (aph(λ)) and nonalgal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by nonalgal particles to the total particulate light absorption (aph(λ) + anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton-specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440), and aph∗(676) were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph∗(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph∗(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.

  14. Modelling the light absorption properties of particulate matter forming organic particles suspended in sea water. Part 3. Practical applications

    Directory of Open Access Journals (Sweden)

    Roman Majchrowski

    2006-12-01

    Full Text Available This paper brings to a close our cycle of articles on modelling the light absorption properties of particulate organic matter (POM in the sea. In the first two parts of this cycle (Woźniaket al. 2005a,b we discussed these properties with reference to various model chemical classes and physical types of POM. We have put these results into practice in the present third part. As a result of the appropriate theoretical speculations, logically underpinned by empirical knowledge, we selected 25 morphological variants of marine organic detritus, to which we ascribed definite chemical compositions and physical types. On this basis and using known spectra of the mass-specific coefficients of light absorption by various naturally occurring organic substances (systematised in Parts 1 and 2, we determined the absorption properties of these 25 morphological groups of particles, that is, the spectra of the imaginary part of the refractive index n'p(λ (in the 200-700 nm range of the particulate matter. They can be applied, with the aid of Mie's or some other similar theory, to calculate the bulk optical properties (absorbing and scattering of such sets of particles in the sea.

  15. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition

    KAUST Repository

    Kheireddine, Malika

    2018-01-10

    The light absorption properties of phytoplankton (aph(λ)) and non-algal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by non-algal particles to the total particulate light absorption (aph(λ)+ anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440) and aph*(676), were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph*(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph*(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.

  16. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants.

    Science.gov (United States)

    Azuma, Kenichi; Ikeda, Koichi; Kagi, Naoki; Yanagi, U; Osawa, Haruki

    2018-03-01

    We conducted a cross-sectional epidemiological study to examine the correlation between indoor air quality (IAQ) and building-related symptoms (BRSs) of office workers in air-conditioned office buildings. We investigated 11 offices during winter and 13 offices during summer in 17 buildings with air-conditioning systems in Tokyo, Osaka, and Fukuoka, and we included 107 office workers during winter and 207 office workers during summer. We conducted environmental sampling for evaluating IAQ and concurrently administered self-reported questionnaires to collect information regarding work-related symptoms. Multivariate analyses revealed that upper respiratory symptoms showed a significant correlation with increased indoor temperature [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.11-2.18] and increased indoor concentration of suspended particles released from the ambient air pollution via air-conditioning systems (OR, 1.31; 95% CI, 1.08-1.59) during winter. In particular, smaller particles (particle size>0.3μm), which possibly penetrated through the filter media in air-conditioning systems from ambient air, were correlated with upper respiratory symptoms. The use of high-efficiency particulate air filters in air-conditioning systems and their adequate maintenance may be an urgent solution for reducing the indoor air concentration of submicron particles. Several irritating volatile organic compounds (VOCs) (e.g., formaldehyde, acetaldehyde, ethylbenzene, toluene, and xylenes) that were positively correlated with the indoor air concentration among their VOCs, were associated with upper respiratory symptoms, although their indoor air concentrations were lower than those specified by the indoor air quality guideline. A new approach and strategy for decreasing the potential combined health risks (i.e., additive effect of risks) associated with multiple low-level indoor pollutants that have similar hazardous properties are required. Copyright © 2017 Elsevier B

  17. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    Science.gov (United States)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  18. Proposed Pathophysiologic Framework to Explain Some Excess Cardiovascular Death Associated with Ambient Air Particle Pollution: Insights for Public Health Translation

    Science.gov (United States)

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regularory en...

  19. Contributions of fuel combustion to pollution by airborne particles in urban and non-urban environments

    International Nuclear Information System (INIS)

    1995-06-01

    The application of ion beam analysis (IBA) techniques to aerosol pollution problems has been used in a number of countries since the late 1970's and early 1980's. The technique, however, had not been tested in Australia. This document is the final report of a project which aimed to establish a fine particle monitoring network covering the greater Wollongong/Sydney/ Newcastle ares, investigate the relationships between fuel combustion and fine particle aerosols in urban and non urban environments, add to the limited database of baseline information on concentrations of fine particles resulting from such processes as fossil fuel burning and industrial manufacturing, identify and quantify sources of fine particles in New South Wales, and introduce into Australia accelerator based IBA techniques for the analysis of filter papers obtained from large scale monitoring networks. These objectives were addressed by the project which identified and quantified some sources of fine particles and established some relationships between fuel combustion and fine aerosols. More work is required to fully quantify relationships between natural and anthropogenic fine particle sources. 24 tabs., 44 figs., 83 refs

  20. Occupational exposure to airborne particles and other pollutants in an aviation base

    International Nuclear Information System (INIS)

    Buonanno, Giorgio; Bernabei, Manuele; Avino, Pasquale; Stabile, Luca

    2012-01-01

    The occupational exposure to airborne particles and other pollutants in a high performance jet engine airport was investigated. Three spatial scales were considered: i) a downwind receptor site, ii) close to the airstrip, iii) personal monitoring. Particle number, surface area, mass concentrations and distributions were measured as well as inorganic and organic fractions, ionic fractions and Polycyclic Aromatic Hydrocarbons. Particle number distribution measured at a receptor site presents a mode of 80 nm and an average total concentration of 6.5 × 10 3 part. cm −3 ; the chemical analysis shows that all the elements may be attributed to long-range transport from the sea. Particle number concentrations in the proximity of the airstrip show short term peaks during the working day mainly related to takeoff, landing and pre-flight operations of jet engines. Personal exposure of workers highlights a median number concentration of 2.5 × 10 4 part. cm −3 and 1.7 × 10 4 part. cm −3 for crew chief and hangar operator. - Highlights: ► Air quality measures were performed at different spatial scales in an aviation base. ► Exposure to Polycyclic Aromatic Hydrocarbons was estimated. ► Particles at downwind receptor site show a marine origin typical of a coastal site. ► Main exposure peaks are related to pre-flight operations of jet engine aircrafts. ► Crew chief are exposed to highest concentrations even if these were not worrisome. - A negligible impact of a high performance jet engine airport, in terms of airborne particles and other pollutants, was measured through an experimental campaign at three spatial scales.

  1. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    Science.gov (United States)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No consistent pattern was observed for UFPs under parallel wind conditions. However, regardless of wind conditions, particle concentrations returned to background levels within a few hundred meters of the roadway. Within measured UFP size ranges, smaller particles (6-25 nm) decayed faster than larger ones (100-300 nm). Similar decay rates were observed among UFP number, surface, and volume.

  2. Seasonal and spatial variations of rare earth elements in rainwaters, river waters and total suspended particles in air in South Korea

    International Nuclear Information System (INIS)

    Ryu, J.S.; Lee, K.S.; Lee, S.G.; Lee, D.; Chang, H.W.

    2007-01-01

    In order to investigate the seasonal and spatial variations of rare earth element (REE) concentrations in natural waters in the central part of South Korea, rain and river waters were collected during 2003-2004. Total suspended particles (TSP) in air were also sampled to investigate the effect of the Asian dust (the Yellow sand) on the chemistry of rainwaters. All samples showed that the absolute concentrations of the light REEs (LREEs) were higher than those of the heavy REEs (HREEs). The post-Archean Australian shale (PAAS)-normalized REE patterns indicate that the REEs in TSP and rainwaters were affected by Asian dust and anthropogenic contaminant, whereas those of river waters were mainly controlled by the geology of their drainage basin and seasonal changes in water regime. The calculated fluxes and yields of total REEs (REEs plus Y) in the South Han River were much greater than those in the North Han River due to the more widespread distribution of sedimentary rocks in the drainage area and more efficient chemical weathering

  3. Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River.

    Science.gov (United States)

    Rivetti, Claudia; Gómez-Canela, Cristian; Lacorte, Silvia; Díez, Sergi; Lázaro, Wilkinson L; Barata, Carlos

    2015-04-01

    Identifying chemicals causing adverse effects in organisms present in water remains a challenge in environmental risk assessment. This study aimed to assess and identify toxic compounds bound to suspended solids re-suspended during a prolonged period of flushing flows in the lower part of Ebro River (NE, Spain). This area is contaminated with high amounts of organochlorine and mercury sediment wastes. Chemical characterization of suspended material was performed by solid phase extraction using a battery of non-polar and polar solvents and analyzed by GC-MS/MS and LC-MS/MS. Mercury content was also determined for all sites. Post-exposure feeding rates of Daphnia magna were used to assess toxic effects of whole and filtered water samples and of re-constituted laboratory water with re-suspended solid fractions. Organochlorine and mercury residues in the water samples increased from upstream to downstream locations. Conversely, toxic effects were greater at the upstream site than downstream of the superfund Flix reservoir. A further analysis of the suspended solid fraction identified a toxic component eluted within the 80:20 methanol:water fraction. Characterization of that toxic component fraction by LC-MS/MS identified the phytotoxin anatoxin-a, whose residue levels were correlated with observed feeding inhibition responses. Further feeding inhibition assays conducted in the lab using anatoxin-a produced from Planktothrix agardhii, a filamentous cyanobacteria, confirmed field results. This study provides evidence that in real field situation measured contaminant residues do not always agree with toxic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Particle (Soot Pollution in Port Harcourt Rivers State, Nigeria—Double Air Pollution Burden? Understanding and Tackling Potential Environmental Public Health Impacts

    Directory of Open Access Journals (Sweden)

    Okhumode H. Yakubu

    2017-12-01

    Full Text Available Residents of Port Harcourt in Rivers State, Nigeria, and its environs have since the last quarter of 2016 been experiencing adverse environmental impacts of particle (soot pollution. This “double air pollution burden”—the unresolved prevailing widespread air pollution and the “added” emergence of particle pollution considered an environmental health threat, led to protests against government inaction in some parts of the state. In February 2017, several months following the onset of the pollution, the government declared an Emergency, and set up a Task Force to investigate and find a solution to the problem. Global research suggests that particle pollution correlates positively with a range of morbidities and an increased risk of mortality among exposed populations. This underscores the need for rigorous implementation of existing environmental legislations established to protect the environment and public health. Nigeria’s rapid response to the 2014–2015 Ebola Virus Disease (EVD and successful prevention of its spread provides some lessons for addressing such environmental health emergencies—strategic action, including effective environmental risk communication, environmental audit, and monitoring is key. Epidemiological studies of the affected population is imperative. A concerted effort by the Rivers State Ministries of Environment and Health, as well as academia and private organizations is required. Public service campaign in terms of government providing up to date information on the existing situation is required.

  5. The OCAPI collaborative platform: study of two particle pollution episodes in 2016 in Paris

    Science.gov (United States)

    Foret, Gilles; Michoud, Vincent; Formenti, Paola; Gratien, Aline; Beekmann, Matthias; Peinado, Florian; Favez, Olivier; Haeffelin, Martial; Dupont, Jean-Charles; Bodichon, Renaud; Gros, Valérie; Ghersi, Véronique; Meleux, Frédérik; Xuéref-Rémy, Irène

    2017-04-01

    Air pollution and its impacts are subject to an expanded interest since the middle of the 20th century, especially in urban areas which gathered an important part of emission sources. These polluted urban air masses are composed by a complex mixture of gases and aerosols coming from various emission sources (vehicular traffic, industries, residential heating, agricultural activities, natural sources) or chemical processes. To efficiently reduce this pollution and its impacts on population, it is important to understand its drivers, its sources and its impact on human health. To get some insights in Paris air pollution, a collaborative measurement platform called OCAPI ("Observation de la Composition Atmosphérique Parisienne de l'IPSL") has been built and implies several Parisian research laboratories of IPSL institute (CEREA, LSCE, LMD, LISA, LATMOS, LERMA and METIS) as well as public agencies and institutes in charge of Paris air pollution monitoring (AIRPARIF, INERIS). OCAPI platform aims at gathering skills and instruments of these laboratories to measure the composition and dynamics of Paris atmosphere. In this framework, multi-site measurements were performed during two intense particle pollution episodes which occurred in March 2016 and between November and December 2016. These two episodes were characterized by different meteorological conditions and different type of emission sources. Indeed, March episode was related to intense agricultural activities and high ammonium nitrate contribution to aerosol composition; while end of year episode was related to low wind speed, cold conditions and thin boundary layer which favoured the stagnation of locally emitted pollutants. This latter episode was characterized by large contribution of organics in aerosol composition. In this presentation, a study of these two episodes will be presented. We will first present the context and the OCAPI platform. Then, first results of dynamics and aerosol composition

  6. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China

    International Nuclear Information System (INIS)

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Rutherford, Shannon; Guo, Lingchuan; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; He, Zhihui; Xu, Yanjun; Ma, Wenjun

    2016-01-01

    Though significant associations between particulate matter (PM) air pollution and cardiovascular diseases have been widely reported, it remains unclear what characteristics, such as particle size and chemical constituents, may be responsible for the effects. A time-series model was applied to examine the cardiovascular effects of particle size (for the period of 2009–2011) and chemical constituents (2007–2010) in Guangzhou, we controlled for potential confounders in the model, such as time trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant associations of cardiovascular mortality with PM 10 , PM 2.5 and PM 1 ; the excess risk (ER) was 6.10% (95% CI: 1.76%, 10.64%), 6.11% (95% CI: 1.76%, 10.64%) and 6.48% (95% CI: 2.10%, 11.06%) for per IQR increase in PM 10 , PM 2.5 and PM 1 at moving averages for the current day and the previous 3 days (lag 03 ), respectively. We did not find significant effects of PM 2.5-10 and PM 1-2.5 . For PM 2.5 constituents, we found that organic carbon, elemental carbon, sulfate, nitrate and ammonium were significantly associated with cardiovascular mortality, the corresponding ER for an IQR concentration increase at lag 03 was 1.13% (95% CI: 0.10%, 2.17%), 2.77% (95% CI: 0.72%, 4.86%), 2.21% (95% CI: 1.05%, 3.38%), 1.98% (95% CI: 0.54%, 3.44%), and 3.38% (95% CI: 1.56%, 5.23%), respectively. These results were robust to adjustment of other air pollutants and they remained consistent in various sensitivity analyses by changing model parameters. Our study suggests that PM 1 and constituents from combustion and secondary aerosols might be important characteristics of PM pollution associated with cardiovascular mortality in Guangzhou. - Highlights: • PM 10 , PM 2.5 and PM 1 were significantly associated with cardiovascular mortality. • We did not find significant cardiovascular effects of PM 2.5-10 and PM 1-2.5 . • PM 1 might be most responsible for cardiovascular effects of

  7. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  8. The use of hand-held 35 mm color infrared imagery for estimates of suspended solids - A progress report. [in water pollution monitoring

    Science.gov (United States)

    Miller, W. F.; Whisler, F. D.; Robinette, H. R.; Finnie, D.; Cannon, T.

    1975-01-01

    A cost-effective aerial surveillance technique is proposed for detection and identification of suspended solids which would be operational for both governmental monitoring organizations and private individuals operating catfish farms. Sixteen catfish ponds were flown daily for seven days using two hand-held 35 mm cameras with both Kodachrome X and Ektachrome infrared film. Hue, value, and chroma designations were recorded for each pond on each date by three interpreters, and the accepted color was that recorded by at least two of the interpreters, or if there was a three hue range, the median was accepted. Relations between suspended solids and color designations were analyzed graphically, and chroma was discarded due to an apparent lack of correlation. The data obtained were then analyzed by multiple regression. Significant correlations were revealed between hue and value and total and inorganic suspended solids. If perfected, this technique could be developed to sufficent accuracy for large-scale reconnaissance surveys to monitor the quality of rivers and streams.

  9. Application of spherical fly-ash particles to study spatial deposition of atmospheric pollutants in northen-eastern Estonia

    International Nuclear Information System (INIS)

    Alliksaar, T.

    2000-01-01

    Spherical fly-ash particles, emitted to the atmosphere in the high-temperature combustion process of fossil fuels, were found in considerable amounts in analysed snow samples of north-eastern Estonia. Spatial deposition of particles in snow cover is compared with the results of surface sediment samples of lakes. The results from snow characterise well the distribution of pollution sources and the distance from the main power plants in north eastern Estonia. Variations in particle deposition of closely situated snow samples were found to be negligible. Fly-ash particle influxes in snow samples correlate well with modelled maximum concentration fields of flyash in the near-surface air layer. (author)

  10. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    Science.gov (United States)

    Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P. M.

    Motor vehicles are the dominant source of oxides of nitrogen (NO x), particulate matter (PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (˜6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated with readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles.

  11. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles

    International Nuclear Information System (INIS)

    Fruin, S.; Sioutas, C.

    2008-01-01

    Motor vehicles are the dominant source of oxides of nitrogen (NO x ), particulate matter(PM), and certain air toxics (e.g., benzene, 1,3-butadiene) in urban areas. On roadways, motor vehicle-related pollutant concentrations are typically many times higher than ambient concentrations. Due to high air exchange rates typical of moving vehicles, this makes time spent in vehicles on roadways a major source of exposure. This paper presents on-road measurements for Los Angeles freeways and arterial roads taken from a zero-emission electric vehicle outfitted with real-time instruments. The objective was to characterize air pollutant concentrations on roadways and identify the factors associated with the highest concentrations. Our analysis demonstrated that on freeways, concentrations of ultrafine particles (UFPs), black carbon, nitric oxide, and PM-bound polycyclic aromatic hydrocarbons (PM-PAH) are generated primarily by diesel-powered vehicles, despite the relatively low fraction (∼6%) of diesel-powered vehicles on Los Angeles freeways. However, UFP concentrations on arterial roads appeared to be driven primarily by proximity to gasoline-powered vehicles undergoing hard accelerations. Concentrations were roughly one-third of those on freeways. By using a multiple regression model for the freeway measurements, we were able to explain 60-70% of the variability in concentrations of UFP, black carbon, nitric oxide, and PM-PAH using measures of diesel truck density and hour of day (as an indicator of wind speed). Freeway concentrations of these pollutants were also well correlated wth readily available annual average daily truck counts, potentially allowing improved population exposure estimates for epidemiology studies. Based on these roadway measurements and average driving time, it appears that 33-45% of total UFP exposure for Los Angeles residents occurs due to time spent traveling in vehicles. (author)

  12. Differential embryotoxicity of the organic pollutants in rural and urban air particles

    International Nuclear Information System (INIS)

    Mesquita, Sofia R.; Drooge, Barend L. van; Oliveira, Eva; Grimalt, Joan O.; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2015-01-01

    Airborne particulate matter (PM) is a recognized risk factor for human populations. Here we assessed the toxic potential of the organic constituents from PM collected in urban and rural sites during warm and cold periods of 2012/2013, and fractionated into 6 size fractions. The finest PM fraction (<0.5 μm) showed the highest biological activity (dioxin-like activity and fish embryotoxicity) in all samples, and the maximal activity was observed in rural samples from the cold period. Zebrafish embryo transcriptome analysis showed a strong induction of the AhR signaling pathway correlated to PAH concentrations. Oxidative stress-related genes and pancreatic and eye-lens gene markers appeared de-regulated in embryos exposed to urban extracts, whereas exposure to rural extracts affected genes implicated in basic cellular functions. The observed effects can be directly related to air pollution-related human disorders, suggesting different potential adverse outcomes for human populations exposed to air pollution from specific sources. - Highlights: • Embryotoxicity of airborne organic compounds collected in urban and rural areas. • Ultrafine particles (<0.5 μm) accumulated most of the observed toxicity. • Strong seasonal differences in rural areas, probably linked to wood combustion. • Rural and urban samples showed quantitative and qualitative differences in toxicity. • At least one independent toxic modes of action especially linked to urban emissions. - Quantitative and qualitative differences in embryotoxic effects of airborne particulate matter from urban and rural areas.

  13. Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended solid particles of the sea Part A: Theories and mathematical calculations

    NARCIS (Netherlands)

    Duursma, E.K.; Hoede, C.

    1967-01-01

    The best way to describe the kinetics of the uptake of radioisotopes from sea water by bottom sediments and suspended solid matter is by molecular diffusion. The basic diffusion laws can be applied for finding the important parameter of the diffusion, the diffusion coefficient, which will

  14. Air pollution control and decreasing new particle formation lead to strong climate warming

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-02-01

    Full Text Available The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN, which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000 and future (year 2100 conditions. The present-day total aerosol forcing is increased from −1.0 W m−2 to −1.6 W m−2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m−2 to +1.4 W m−2. Two climate feedbacks are studied, resulting in additional negative forcings of −0.1 W m−2 (+10% DMS emissions in year 2100 and −0.5 W m−2 (+50% BVOC emissions in year 2100. With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  15. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    L. Shu

    2017-11-01

    Full Text Available Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10 in 16 cities and Terra/MODIS AOD (aerosol optical depth products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m−3, respectively, in Nanjing. The PM2.5  :  PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby

  16. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    Science.gov (United States)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air

  17. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  18. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ..., particulate specific gravity, particle shape, and physical and chemical properties of particle surfaces. (b... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates..., usually smaller than silt, and organic particles. Suspended particulates may enter water bodies as a...

  19. Removal of Particles from the Supply Air of Ventilation Systems Avoiding the Formation of Sensory Pollution Source

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2008-01-01

    with filtration. Finally, an experiment was designed to test the effect of different particle filters, activated carbon filters and their combinations on the perceived air quality after several months of continuous use. A commercially available HVAC filter that has low emissions of pollutants, even after...... an important role. Sensory pollutants emitted from used filters can have significant adverse impact on occupant performance. Therefore, removal of particles from the supply air of ventilation systems without the subsequent emission of pollutants into the airstream seems to be essential. Correct maintenance...... substantial time in service, would mean a step forward towards finding an engineering solution to the problem. Additional measurements examined the effect of different pressure sensing techniques and several modifications of an air handling unit on the accuracy of the measurements of pressure drop over...

  20. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution.

    Science.gov (United States)

    Chen, Rui; Hu, Bin; Liu, Ying; Xu, Jianxun; Yang, Guosheng; Xu, Diandou; Chen, Chunying

    2016-12-01

    Air pollution constitutes the major threat to human health, whereas their adverse impacts and underlying mechanisms of different particular matters are not clearly defined. Ultrafine particles (UFPs) are high related to the anthropogenic emission sources, i.e. combustion engines and power plants. Their composition, source, typical characters, oxidative effects, potential exposure routes and health risks were thoroughly reviewed. UFPs play a major role in adverse impacts on human health and require further investigations in future toxicological research of air pollution. Unlike PM2.5, UFPs may have much more impacts on human health considering loads of evidences emerging from particulate matters and nanotoxicology research fields. The knowledge of nanotoxicology contributes to the understanding of toxicity mechanisms of airborne UFPs in air pollution. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Size distribution of particle-phase molecular markers during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Jakober, Chris A

    2008-09-01

    Airborne particulate matter was collected using filter samplers and cascade impactors in six size fractions below 1.8 microm during a severe winter air pollution event at three sites in the Central Valley of California. The smallest size fraction analyzed was 0.056 0.8) for retene, benzo[ghi]flouranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, coronene, MW302 polycyclic aromatic hydrocarbon (PAHs), 17beta(H)-21alpha(H)-30-norhopane, 17alpha(H)-21beta(H)-hopane, alphabetabeta-20R-C29-ethylcholestane, levoglucosan, and cholesterol. Of these compounds, levoglucosan was present in the highest concentration (60-2080 ng m(-3)) followed by cholesterol (6-35 ng m(-3)), PAHs (2-38 ng m(-3)), and hopanes and steranes (0-2 ng m(-3)). Nighttime concentrations were higher than daytime concentrations in all cases. Organic compound size distributions were generally similar to the total carbon size distributions during the nighttime but showed greater variability during the daytime. This may reflect the dominance of fresh emission in the stagnant surface layer during the evening hours and the presence of aged organic aerosol at the surface during the daytime when the atmosphere is better mixed. All of the measured organic compound particle size distributions had a single mode that peaked somewhere between 0.18 and 0.56 microm, but the width of each distribution varied by compound. Cholesterol generally had the broadest particle size distribution, while benzo[ghi]perylene and 17alpha(H)-21beta(H)-29-norhopane generally had sharper peaks. The difference between the size distributions of the various particle-phase organic compounds reflects the fact that these compounds exist in particles emitted from different sources. The results of the current study will prove useful for size-resolved source apportionment exercises.

  2. Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse).

    Science.gov (United States)

    Dekov, V M; Komy, Z; Araújo, F; Van Put, A; Van Grieken, R

    1997-08-18

    Sediment, suspended matter, river water and ground water samples were collected at twelve sites in the drainage valley of the Nile River, around Sohag (Central Egypt) and close to the Aswan High Dam. Elemental composition of the river water (27 elements), ground water (eight elements), suspended matter (12 elements) and sediments (12 elements) was studied. Aswan High Dam construction, agricultural and industrial human activities have led to dramatic changes in the Nile River chemistry. Nowadays, the Nile River has the highest dissolved salt content among the major African rivers. Dissolved transport is a major process for Ca, K, Sr, Zn, Cu, Ni and V. Manganese, Fe and Cr are mainly carried by suspended matter. The Nile suspended matter is exhausted in almost all elements studied (except for Mn) compared to the world average river suspended matter. Along the course of the river, the distribution of elements in the suspended matter and sediments is generally controlled by natural processes: the relative importance of elemental transport phases; and the oxidation, precipitation and sedimentation of mineral species through the varying physico-chemical conditions of the environment. Pollution input in the Nile particulate load is not major, as compared to the natural inputs. Eight genetic particle types describe the composition of the Nile suspended matter and sediments: (1) biogenous-aeolian (or silica); (2) terrigenous (Fe-aluminosilicate); (3) authigenic (calcium carbonate); (4) biogenous (apatite); (5) authigenous-terrigenous (Fe-oxyhydroxide-montmorillonite); (6) diagenetic (iron-sulfide); (7) terrigenous (titanium oxide); (8) authigenous (Mn-Fe-oxyhydroxide).

  3. The Effect of Pollution on Newly-Formed Particle Composition in Boreal Forest

    Science.gov (United States)

    Vaattovaara, Petri

    2010-05-01

    the composition behaviour of the particles during multiple nucleation events. The overall results show a clear anthropogenic influence on the nucleation and Aitken mode particle compositions during the events. The SO2/MTOP and NOx/MTOP (MTOP, monoterpene oxidation products) ratios explain most strongly the variation in the nucleation mode composition during clean and pollution-affected events, suggesting also the importance of organic sulfur compounds, in addition to other sulfur, nitrogen and organic compounds, in particle formation, composition and properties. During the cleanest events, MTOP explain significantly the time behaviour of the 10 nm particle composition with an estimated organic fraction of over 95%. [1] P. Tunved et al., 2006, Science, 312, 261-263. [2] P. Vaattovaara et al., 2005, Atmos. Chem. Phys., 5, 3277-3287. [3] K. Hämeri et al., 2000, J. Geophys. Res. 105(D17), 22231-22242. [4] K. Sellegri et al., Atmos. Chem. Phys., 5, 373-384. [5] M. Boy et al., Atmos. Chem. Phys., 5, 863-878.

  4. Estudo das partículas totais em suspensão e metais associados em áreas urbanas Study of total suspended particles and the associated metals in urban areas

    Directory of Open Access Journals (Sweden)

    Fabiana Goulart de Carvalho

    2000-10-01

    Full Text Available This work aims at the study of the air quality determination regarding the total suspended particles (TSP and the associated metals in the counties of Charqueadas and Sapucaia do Sul at the state of Rio Grande do Sul. The TSP samples were collected using high volume samplers and the analysis of the metallic elements was accomplished through ICP-AES. The results revealed that the TSP concentrations, found in the two studied regions, have exceded the current air quality patterns established by the Brazilian Legislation. They also revealed high levels of several of the elements being attributed to the presence of anthropogenic sources. The correlation between meteorological data (speed and wind direction and TSP concentrations were significant and revealed strong influence in particle dispersion.

  5. A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary.

    Science.gov (United States)

    Araújo, Daniel; Machado, Wilson; Weiss, Dominik; Mulholland, Daniel S; Boaventura, Geraldo R; Viers, Jerome; Garnier, Jeremie; Dantas, Elton L; Babinski, Marly

    2017-07-01

    The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ 66 Zn JMC  = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ 66 Zn JMC  = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Occurrence of tributyltin (TBT)-resistant bacteria is not related to TBT pollution in Mekong River and coastal sediment: with a hypothesis of selective pressure from suspended solid.

    Science.gov (United States)

    Suehiro, Fujiyo; Mochizuki, Hiroko; Nakamura, Shinji; Iwata, Hisato; Kobayashi, Takeshi; Tanabe, Shinsuke; Fujimori, Yoshifumi; Nishimura, Fumitake; Tuyen, Bui Cach; Tana, Touch Seang; Suzuki, Satoru

    2007-07-01

    Tributyltin (TBT) is organotin compound that is toxic to aquatic life ranging from bacteria to mammals. This study examined the concentration of TBT in sediment from and near the Mekong River and the distribution of TBT-resistant bacteria. TBT concentrations ranged from TBT-resistant bacteria ranged TBT-resistant bacteria ranged from TBT in the sediment and of TBT-resistant bacteria were unrelated, and chemicals other than TBT might induce TBT resistance. TBT-resistant bacteria were more abundant in the dry season than in the rainy season. Differences in the selection process of TBT-resistant bacteria between dry and rainy seasons were examined using an advection-diffusion model of a suspended solid (SS) that conveys chemicals. The estimated dilution-diffusion time over a distance of 120 km downstream from a release site was 20 days during dry season and 5 days during rainy season, suggesting that bacteria at the sediment surface could be exposed to SS for longer periods during dry season.

  7. TLR-2 is involved in airway epithelial cell response to air pollution particles

    International Nuclear Information System (INIS)

    Becker, Susanne; Dailey, Lisa; Soukup, Joleen M.; Silbajoris, Robert; Devlin, Robert B.

    2005-01-01

    Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of several oxidant stress response genes. Components of ambient air PM responsible for stimulating epithelial cells have not been conclusively identified, although metal contaminants, benzo[a]pyrene and biological matter have been implicated. Stimulation of IL-8 release from NHBE with coarse (PM 2.5-10 ), fine (PM 2.5 ), and UF particle fractions has shown that the coarse particle fraction has the greatest effect on the epithelial cells as well as alveolar macrophages (AM). Since this fraction concentrates fugitive dusts and particle-associated microbial matter, it was hypothesized that NHBE may recognize PM through microbial pattern recognition receptors TLR2 and TLR4, as has been previously shown with AM. NHBE were shown to release IL-8 when exposed to a Gram-positive environmental isolate of Staphylococcus lentus, and lower levels when exposed to Gram-negative Pseudomonas spp. Comparison of TLR2 and TLR4 mRNA expression in NHBE and AM showed that NHBE express similar levels of TLR2 mRNA as the AM, but expressed very low levels of TLR4. When NHBE were stimulated with PM 2.5-10 , PM 2.5 , and UF PM, in the presence or absence of inhibitors of TLR2 and TLR4 activation, a blocking antibody to TLR2 inhibited production of IL-8, while TLR4 antagonist E5531 or the LPS inhibitor Polymixin B had no effect. Furthermore, effects on expression of TLR2 and TLR4 mRNA, as well as the stress protein HSP70 was assessed in NHBE exposed to PM. TLR4 expression was increased in these cells while TLR2 mRNA levels were unchanged. Hsp70 was increased by PM 2.5-10 > PM 2.5 > UF PM suggesting the possibility of indirect activation of TLR pathway by this endogenous TLR2/4 agonist

  8. Aging of black carbon particles under polluted urban environments: timescale, hygroscopicity and enhanced absorption and direct radiative forcing

    Science.gov (United States)

    Peng, J.; Hu, M.; Guo, S.; Du, Z.; Zheng, J.; Shang, D.; Levy Zamora, M.; Shao, M.; Wu, Y.; Zheng, J.; Wang, Y.; Zeng, L.; Collins, D. R.; Molina, M.; Zhang, R.

    2017-12-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the hygroscopic and optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using an outdoor environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. The κ (kappa) values of coating materials are calculated as 0.04 at both subsaturation and supersaturation conditions, respectively, indicating that the initial photochemical aging of BC particles does not appreciably alter the BC hygroscopicity. Our findings suggest that BC aging under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  9. Relationship of atmospheric pollution characterized by gas (NO2) and particles (PM10) to microbial communities living in bryophytes at three differently polluted sites (rural, urban, and industrial).

    Science.gov (United States)

    Meyer, Caroline; Gilbert, Daniel; Gaudry, André; Franchi, Marielle; Nguyen, Hung Viet; Fabure, Juliette; Bernard, Nadine

    2010-02-01

    Atmospheric pollution has become a major problem for modern societies owing to its fatal effects on both human health and ecosystems. We studied the relationships of nitrogen dioxide atmospheric pollution and metal trace elements contained in atmospheric particles which were accumulated in bryophytes to microbial communities of bryophytes at three differently polluted sites in France (rural, urban, and industrial) over an 8-month period. The analysis of bryophytes showed an accumulation of Cr and Fe at the rural site; Cr, Fe, Zn, Cu, Al, and Pb at the urban site; and Fe, Cr, Pb, Al, Sr, Cu, and Zn at the industrial site. During this study, the structure of the microbial communities which is characterized by biomasses of microbial groups evolved differently according to the site. Microalgae, bacteria, rotifers, and testate amoebae biomasses were significantly higher in the rural site. Cyanobacteria biomass was significantly higher at the industrial site. Fungal and ciliate biomasses were significantly higher at the urban and industrial sites for the winter period and higher at the rural site for the spring period. The redundancy analysis showed that the physico-chemical variables ([NO(2)], relative humidity, temperature, and site) and the trace elements which were accumulated in bryophytes ([Cu], [Sr], [Pb]) explained 69.3% of the variance in the microbial community data. Moreover, our results suggest that microbial communities are potential biomonitors of atmospheric pollution. Further research is needed to understand the causal relationship underlined by the observed patterns.

  10. X-Ray analysis of riverbank sediment of the Tisza (Hungary): identification of particles from a mine pollution event

    Science.gov (United States)

    Osán, J.; Kurunczi, S.; Török, S.; Van Grieken, R.

    2002-03-01

    A serious heavy metal pollution of the Tisza River occurred on March 10, 2000, arising from a mine-dumping site in Romania. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to distinguish the anthropogenic and crustal erosion particles in the river sediment. The samples were investigated using both bulk X-ray fluorescence (XRF) and thin-window electron probe microanalysis (EPMA). For EPMA, a reverse Monte Carlo method calculated the quantitative elemental composition of each single sediment particle. A high abundance of pyrite type particles was observed in some of the samples, indicating the influence of the mine dumps. Backscattered electron images proved that the size of particles with a high atomic number matrix was in the range of 2 μm. In other words the pyrites and the heavy elements form either small particles or are fragments of larger agglomerates. The latter are formed during the flotation process of the mines or get trapped to the natural crustal erosion particles. The XRF analysis of pyrite-rich samples always showed much higher Cu, Zn and Pb concentrations than the rest of the samples, supporting the conclusions of the single-particle EPMA results. In the polluted samples, the concentration of Cu, Zn and Pb reached 0.1, 0.3 and 0.2 wt.%, respectively. As a new approach, the abundance of particle classes obtained from single-particle EPMA and the elemental concentration obtained by XRF were merged into one data set. The dimension of the common data set was reduced by principal component analysis. The first component was determined by the abundance of pyrite and zinc sulfide particles and the concentration of Cu, Zn and Pb. The polluted samples formed a distinct group in the principal component space. The same result was supported by powder diffraction data. These analytical data combined with Earth Observation Techniques can be further used to estimate the quantity of

  11. Laboratory report on iodine (129I and 127I) speciation, transformation and mobility in Handford groundwater, suspended particles and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Santschi, P. H. [Texas A & M Univ., College Station, TX (United States); Xu, C. [Texas A & M Univ., College Station, TX (United States); Zhang, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ho, Y. [Texas A & M Univ., College Station, TX (United States); Li, H. [Texas A & M Univ., College Station, TX (United States); Schwehr, K. [Texas A & M Univ., College Station, TX (United States); Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2012-09-01

    were on average 89% greater than iodide Kd values, and the Kd values for both species tended to increase with the amount of organic carbon (OC) present in the sediment. It is especially noteworthy that this trend existed at the very low OC concentrations that naturally exist in the Hanford sediments. Iodine and OC can form essentially irreversible covalent bonds, thereby providing a yet unstudied 129I retardation reaction at the Hanford Site. In addition to the transformation of iodine species, the sediment collected from the vadose zone also released stable iodide into the aqueous phase. It was found that the three sediments all took up the ambient iodate from the groundwater and slowly transformed it into iodide under the laboratory conditions, likely dependent on the abundance of reducing agents such as organic matter and Fe2+. Therefore two competitive iodine processes were identified, the tendency for the sediment to reduce iodate to iodide, and the groundwater chemistry to maintain the iodine as iodate, presumably it is largely the result of natural pH and dissolved O2/Eh levels. Suspended carbonate (and silica) particles collected from Hanford groundwater contained elevated amounts of iodine (142 ± 8 μg/g iodine), consisting mainly of iodate (>99%). Iodate was likely incorporated into the carbonate structure during calcite precipitation upon degasing of CO2 as the groundwater samples were removed from the subsurface. This concentration of groundwater iodate in precipitated carbonate has implication to long-term fate and transport of 129I and on active in-situ 129I groundwater remediation. This study provides some of the first groundwater radioiodine speciation studies conducted in arid environments and provides much needed mechanistic descriptions to permit making informed decisions about low-cost/high intellectual input remediation options, such as monitored natural

  12. Placental circadian pathway methylation and in utero exposure to fine particle air pollution.

    Science.gov (United States)

    Nawrot, Tim S; Saenen, Nelly D; Schenk, Julie; Janssen, Bram G; Motta, Valeria; Tarantini, Letizia; Cox, Bianca; Lefebvre, Wouter; Vanpoucke, Charlotte; Maggioni, Cristina; Bollati, Valentina

    2018-03-07

    In mammals, a central clock maintains the daily rhythm in accordance with the external environment. At the molecular level, the circadian rhythm is maintained by epigenetic regulation of the Circadian pathway. Here, we tested the role of particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM 2.5 ) exposure during gestational life on human placental Circadian pathway methylation, as an important molecular target for healthy development. In 407 newborns, we quantified placental methylation of CpG sites within the promoter regions of the following genes: CLOCK, BMAL1, NPAS2, CRY1-2 and PER1-3 using bisulfite-PCR-pyrosequencing. Daily PM 2.5 exposure levels were estimated for each mother's residence, using a spatiotemporal interpolation model. We applied mixed-effects models to study the methylation status of the Circadian pathway genes and in utero PM 2.5 exposure, while adjusting for a priori chosen covariates. In a multi-gene model, placental Circadian pathway methylation was positively and significantly (p < 0.0001) associated with 3rd trimester PM 2.5 exposure. Consequently, the single-gene models showed relative methylation differences [Log(fold change)] in placental NPAS2 (+0.16; p = 0.001), CRY1 (+0.59; p = 0.0023), PER2 (+0.36; p = 0.0005), and PER3 (+0.42; p = 0.0008) for an IQR increase (8.9 μg/m 3 ) in 3rd trimester PM 2.5 exposure. PM 2.5 air pollution, an environmental risk factor leading to a pro-inflammatory state of the mother and foetus, is associated with the methylation pattern of genes in the Circadian pathway. The observed alterations in the placental CLOCK epigenetic signature might form a relevant molecular mechanism through which fine particle air pollution exposure might affect placental processes and foetal development. Copyright © 2018. Published by Elsevier Ltd.

  13. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    Directory of Open Access Journals (Sweden)

    J. V. Niemi

    2006-01-01

    Full Text Available Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east, intermediate period (PM1~5 µg m−3, backtrajectories from north-east and clean period (PM1~2 µg m−3, backtrajectories from north-west/north. The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM coupled with energy dispersive X-ray (EDX microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2–1 and PM1–3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2–1 samples were 1 soot and 2 (ammoniumsulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2–1 samples were 0–12% and 83–97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high (26–48% in the PM1–3.3 and PM3.3–11 samples, while the PM0.2–1 and PM1–3.3 samples contained elevated proportions of silicates (22–33%, metal oxides/hydroxides (1–9% and tar balls (1–4%. These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1–3.3 samples contained mainly sea salt particles (67–89% with a variable rate of Cl substitution (mainly by NO3−. During the intermediate period, the PM1–3.3 sample contained porous (sponge-like Na-rich particles (35% with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments

  14. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    OpenAIRE

    Niemi , J. V.; Saarikoski , S.; Tervahattu , H.; Mäkelä , T.; Hillamo , R.; Vehkamäki , H.; Sogacheva , L.; Kulmala , M.

    2006-01-01

    Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east), intermediate period (PM1~5 µg m−3, backtrajectories from north-east) and clean period (PM1~2 µg m−3, backtrajectories from north-west/north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were st...

  15. Ice nucleation, shape, and composition of aerosol particles in one of the most polluted cities in the world: Ulaanbaatar, Mongolia

    Science.gov (United States)

    Hasenkopf, Christa A.; Veghte, Daniel P.; Schill, Gregory P.; Lodoysamba, Sereeter; Freedman, Miriam Arak; Tolbert, Margaret A.

    2016-08-01

    Air pollution is attributable to 7 million deaths per year, or one out of every eight deaths globally. In particular, high concentrations of particulate matter (PM), a major air pollutant, have significant impacts on health and regional climate in urban centers. Many of the most polluted places, largely in developing countries, go severely understudied. Additionally, high particulate matter levels can have an impact on the microphysical properties of clouds, impacting precipitation and regional climate. Semi-arid regions can be especially affected by small changes in precipitation. Here we characterize the physical and chemical properties of PM in one of the most PM-polluted cities in the world: Ulaanbaatar, Mongolia, a semi-arid region in central Asia. Twice monthly aerosol samples were collected over 10 months from a central location and analyzed for composition and ice nucleation activity. Almost all particles collected were inhalable, consisting primarily of mineral dust, soot, and sulfate-organic. In winter, all classes of PM increase in concentration, with increased sulfur concentrations, and the particles are less active towards heterogeneous ice nucleation. In addition, concurrent monthly average PM10, SO2, NOx, and O3 levels and meteorological data at a nearby location are reported and made publicly available. These measurements provide an unprecedented seasonal characterization of the size, shape, chemical structure, and ice nucleating activity of PM data from Ulaanbaatar. This 10-month field study, exploring a variety of aerosol properties in Ulaanbaatar, Mongolia, is one of very few such studies conducted in the region or in such a highly polluted environment. The results of this study may inform work done in other similarly situated and polluted cities in Asia and elsewhere.

  16. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines

    Science.gov (United States)

    Kecorius, Simonas; Madueño, Leizel; Vallar, Edgar; Alas, Honey; Betito, Grace; Birmili, Wolfram; Cambaliza, Maria Obiminda; Catipay, Grethyl; Gonzaga-Cayetano, Mylene; Galvez, Maria Cecilia; Lorenzo, Genie; Müller, Thomas; Simpas, James B.; Tamayo, Everlyn Gayle; Wiedensohler, Alfred

    2017-12-01

    Ultrafine soot particles (black carbon, BC) in urban environments are related to adverse respiratory and cardiovascular effects, increased cases of asthma and premature deaths. These problems are especially pronounced in developing megacities in South-East Asia, Latin America, and Africa, where unsustainable urbanization ant outdated environmental protection legislation resulted in severe degradation of urban air quality in terms of black carbon emission. Since ultrafine soot particles do often not lead to enhanced PM10 and PM2.5 mass concentration, the risks related to ultrafine particle pollution may therefore be significantly underestimated compared to the contribution of secondary aerosol constituents. To increase the awareness of the potential toxicological relevant problems of ultrafine black carbon particles, we conducted a case study in Metro Manila, the capital of the Philippines. Here, we present a part of the results from a detailed field campaign, called Manila Aerosol Characterization Experiment (MACE, 2015). Measurements took place from May to June 2015 with the focus on the state of mixing of aerosol particles. The results were alarming, showing the abundance of externally mixed refractory particles (soot proxy) at street site with a maximum daily number concentration of approximately 15000 #/cm3. That is up to 10 times higher than in cities of Western countries. We also found that the soot particle mass contributed from 55 to 75% of total street site PM2.5. The retrieved refractory particle number size distribution appeared to be a superposition of 2 ultrafine modes at 20 and 80 nm with a corresponding contribution to the total refractory particle number of 45 and 55%, respectively. The particles in the 20 nm mode were most likely ash from metallic additives in lubricating oil, tiny carbonaceous particles and/or nucleated and oxidized organic polymers, while bigger ones (80 nm) were soot agglomerates. To the best of the authors' knowledge, no other

  17. Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai

    Science.gov (United States)

    Gong, Xianda; Zhang, Ci; Chen, Hong; Nizkorodov, Sergey A.; Chen, Jianmin; Yang, Xin

    2016-04-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 averaged 3.2 µg m-3, with the peak value of 12.1 µg m-3 at 04:26 LT on 7 December. The number of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into five major classes: (1) Pure BC; (2) BC attributed to biomass burning (BBBC); (3) K-rich BC-containing (KBC); (4) BC internally mixed with OC and ammonium sulfate (BCOC-SOx); (5) BC internally mixed with OC and ammonium nitrate (BCOC-NOx). The size distribution of internally mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ˜ 230 nm and droplet mode peaked around ˜ 380 nm, with a clear valley in the size distribution around ˜ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small rBC core (˜ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ˜ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The biomass burning particles had a larger rBC core (˜ 80-130 nm) and a thick ACT (˜ 110-300 nm). The highly aged traffic emissions had a smaller core (˜ 60-80 nm) and a very thick ACT (˜ 130-300 nm), which is larger than reported in any previous literature. A fast growth rate (˜ 20 nm h-1) of rBC with small core sizes was observed during the experiment. High concentrations pollutants like NO2 likely accelerated the aging process and resulted in a continuous size growth of r

  18. Particle-associated contaminants in street dust, parking lot dust, soil, lake-bottom sediment, and suspended and streambed sediment, Lake Como and Fosdic Lake watersheds, Fort Worth, Texas, 2004

    Science.gov (United States)

    Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning

    2006-01-01

    A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.

  19. Heavy metal pollution in sediment from Sisimiut, Greenland. Adsorption to organic matter and fine particles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Villumsen, Arne

    2006-01-01

    . The pollution could be linked to human activities in Sisimiut, a link that have not been investigated previously in Greenland. Except from the most polluted samples there was good correlation between heavy metal concentration and organic matter. Also some relation between fine fraction and heavy metal...

  20. Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Zbořil, R.; Matys Grygar, Tomáš; Kotlík, B.; Novák, J.; Kapička, Aleš; Grison, Hana

    2013-01-01

    Roč. 57, č. 4 (2013), s. 755-770 ISSN 0039-3169 R&D Projects: GA ČR GAP210/10/0554 Institutional support: RVO:67985530 ; RVO:61388980 Keywords : magnetite * atmospheric dust * pollution * rock magnetism Subject RIV: DI - Air Pollution ; Quality Impact factor: 0.752, year: 2013

  1. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  2. Seasonal trends of benzo(apyrene in suspended particulate matter in urban areas of Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Snežana Matić-Besarabić

    2010-09-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs were identified to be one of the major toxic air pollutants in urban environment. PAHs are mostly formed during incomplete combustion or pyrolysis of organic material. According to Serbian National Legislation, benzo(apyrene (BaP concentration in total suspended particles (TSP in ambient air in the Belgrade metropolitan area has been determined in the last ten years, as a part of a local air pollution monitoring program performed by the Public Health Institute of Belgrade and funded by Belgrade’s Municipality. Air samples for analysis of BaP in suspended particleshave been collected (as 24 h sample once per month at selected onitoring sites within the municipal air quality monitoring network. At the beginning, according to National Regulation, all samples were taken as total suspended particles (TSP. Since mid-2008, the procedure of sampling methodology was harmonized with EU requirements and solid fraction PM10 has been collected and analyzed using GC/MS. In this study, we have analyzed results of TSP collected between 2005 and 2008. Looking through the results obtained during the period of a whole year, it can be noticed that concentrations of BaP were much higher during winter season at almost all measuring sites.

  3. Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study

    Science.gov (United States)

    Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

    2009-04-01

    , which act as adsorption sites either as a proton-donor or as a donor of the lone pair of electrons. Such adsorption-induced relaxation explains the dependence of physico-chemical properties of icy particles on the presence of atmospheric gases. Spectra HCN/D2O and ND3/D2O mixed icy films with low (1:10) dopant/water ratios do not manifest any changes in the acidic or basic properties of dangling hydroxyl groups or surface oxygen atoms, but reveal a difference in the proportion between the concentrations of these sites as compared with that for pure water ice. For high dopant concentrations (1:1), the dangling hydroxyls were not observed; the dominant adsorption sites for CO are likely to be the unsaturated oxygen atoms, while serious structural changes occur in the bulk of ices. Ecologically important reactions of atmospheric pollutants such as ozonolysis of ethene, chlorinated ethenes, hydrogen cyanide, and methyl bromide adsorbed on water ice film as well as the influence of UV radiation on this process have been studied in 77 - 200 K temperature range by FTIR spectroscopy. Ozone co-adsorption with ethene or C2H3Cl readily leads to ozonolysis reaction, which also starts for C2H2Cl2 isomers but only at temperatures elevated up to 120 - 150 K. Co-adsorption of O3 with HCN or CH3Br molecules in the dark does not lead to any noticeable spectral changes. Irradiation of HCN or CH3Br deposited on ice films in the presence of ozone leads to appearance of new bands revealing the formation of ozonolysis products. The same "synergetic effect" of simultaneous action of ozone and UV radiation at 77 K, was found for C2H2Cl2 isomers and C2Cl4, which are resistant against O3 even at higher temperatures. The obtained spectral dependence of photo-ozonolysis of C2Cl4 and HCN at 77 K shows that photoexcitation or photodissociation of ozone, evidently, accounts for the observed processes. The surface of ice particles, thus, plays the role of a condenser of atmospheric pollutants and acts

  4. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  5. Comparative discussion on some measurements of the atmospheric natural radioactivity and pollution with coal smoke particles

    International Nuclear Information System (INIS)

    Zoran, M.

    1977-01-01

    The results of measuring the natural radioactivity and coal smoke pollution are discussed for two sites in an industrial town, as well as for two heights at the same site, in connection with large scale and local atmospheric stability. The effects of the radiation fog upon the radon daughters acumulation near the ground are examined in some detail. By comparing the pollutant diurnal variations during two periods of similar atmospheric stability in autumn, respectively in winter, the contribution from the dwelling coal heating has been estimated to be about half of the total pollution in the town. (author)

  6. Seasonal variations and evidence for the effectiveness of pollution controls on water-soluble inorganic species in total suspended particulates and fine particulate matter from Xi'an, China.

    Science.gov (United States)

    Shen, Zhenxing; Arimoto, Richard; Cao, Junji; Zhang, Renjian; Li, Xuxiang; Du, Na; Okuda, Tomoaki; Nakao, Shunsuke; Tanaka, Shigeru

    2008-12-01

    Total suspended particulate (TSP) and particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) samples were collected over Xi'an for a 1-yr period to characterize the seasonal variations of water-soluble inorganic ions and to evaluate the effectiveness of the pollution policies and controls during the past 10 yr. Mass concentrations of five cations (sodium [Na+], potassium [K+], ammonium [NH4+], calcium [Ca2+], and magnesium [Mg2+]) and four anions (fluoride [F-], chloride [Cl-], nitrate [NO3-], and sulfate [SO4(2-)]) were determined by ion chromatography. The yearly arithmetic-mean mass concentrations of the total measured water-soluble ions in TSP and PM2.5 were 83.9 +/- 58.4 and 45 +/- 34.3 microg x m(-3). The most abundant ions in TSP were SO4(2-), NO3-, Ca2+, and NH4+; whereas in PM2.5 the dominant ions were SO4(2-), NH4 +, and NO3-. Most of the ions were more concentrated in the PM2.5 than in TSP, but two exceptions were Ca2+ and Mg2+. Comparisons of the molar ratios of Mg2+/Ca2+ in TSP indicated that fugitive dust was the main source for these two ions, and the influence of soil dust from outside of the city was most evident during dust storms. The mass concentrations of SO4(2-), NO3-, , NH4+, and K+ in TSP were highest in winter and lowest in spring, but Ca2+ was much higher in spring than other seasons because of suspended mineral dust. In PM2.5, NO3- and K+ also showed winter maxima, but SO4(2-) and NH4+ were highest in summer. Calculations of ion equivalents showed that TSP samples were more alkaline than PM2.5, the latter being weakly acidic in winter and autumn. High sulfur and nitrogen oxidation ratios occurred in summer and autumn, and there was evidence for the formation of ammonium bisulfate in TSP, ammonium sulfate in PM2.5, and ammonium nitrate in both fractions. Comparisons with the results of prior studies indicate that pollution controls in Xi'an have reduced the levels of air pollution over the past 10 yr. The SO4

  7. Jamming/flowing transition of non-Brownian particles suspended in a iso-density fluid flowing in a 2D rectangular duct

    Directory of Open Access Journals (Sweden)

    Burel Maxym

    2017-01-01

    Full Text Available We present the results of an experimental study on the jamming/flowing transition. A suspension of neutrally buoyant large particles flows in an horizontal rectangular duct, where an artificial restriction triggers jamming. We show that the avalanche distribution size is exponential, that is memoryless. We further demonstrate that the avalanche size diverges when the restriction size approaches a critical value and that this divergence is well described by a power law. The parameters (critical opening size and divergence velocity are compared to literature values and show a strong similarity with others systems. Another result of this paper is the study of the influence of the particle morphology. We show that, for a moderate restriction size, the dead-zone formed right upstream of the restriction is larger for angular particles but, paradoxically, that the avalanche size is larger for polyhedra compared to spheres by at least one order of magnitude.

  8. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-01

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment

  9. A comparison of strategies for estimation of ultrafine particle number concentrations in urban air pollution monitoring networks

    International Nuclear Information System (INIS)

    Reggente, Matteo; Peters, Jan; Theunis, Jan; Van Poppel, Martine; Rademaker, Michael; De Baets, Bernard; Kumar, Prashant

    2015-01-01

    We propose three estimation strategies (local, remote and mixed) for ultrafine particles (UFP) at three sites in an urban air pollution monitoring network. Estimates are obtained through Gaussian process regression based on concentrations of gaseous pollutants (NOx, O 3 , CO) and UFP. As local strategy, we use local measurements of gaseous pollutants (local covariates) to estimate UFP at the same site. As remote strategy, we use measurements of gaseous pollutants and UFP from two independent sites (remote covariates) to estimate UFP at a third site. As mixed strategy, we use local and remote covariates to estimate UFP. The results suggest: UFP can be estimated with good accuracy based on NOx measurements at the same location; it is possible to estimate UFP at one location based on measurements of NOx or UFP at two remote locations; the addition of remote UFP to local NOx, O 3 or CO measurements improves models' performance. - Highlights: • UFP number concentrations are estimated using Gaussian process regression. • The independent variables include local and/or remote gaseous measurements. • Three modelling strategies (local, remote and mixed) used for UFP estimations. • NOx was the most important independent variable. • The best models explained >90% of the variance. - UFP can be estimated with good accuracy at one location based on NOx measurements at the same location and based on measurements of NOx or UFP at two remote locations

  10. Evaluation of pollutant build-up and wash-off from selected land uses at the Port of Brisbane, Australia.

    Science.gov (United States)

    Goonetilleke, Ashantha; Egodawatta, Prasanna; Kitchen, Brad

    2009-02-01

    The quality of stormwater runoff from seaports can be an important source of pollution to the marine environment. Currently, little knowledge exists with regards to the pollutant generation capacity specific to seaports as they do not necessarily compare well with conventional urban land use. The research project focussed on the assessment of pollutant build-up and wash-off. The study was undertaken using rainfall simulation and small impervious plots for different port land uses with the results obtained compared to typical urban land uses. The study outcomes confirmed that the Port land uses exhibit comparatively lower pollutant concentrations. However, the pollutant characteristics varied across different land uses. Hence, the provision of stereotypical water quality improvement measures could be of limited value. Particle size < 150microm was predominant in suspended solids. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this particle size range needs to be removed.

  11. The anthropogenic magnetic particles contain in indoor dust as markers of pollution emitted by different outside sources.

    Science.gov (United States)

    Szczepaniak, Iga; Górka-Kostrubiec, Beata

    2015-04-01

    The aim of the study was to explain the impact of magnetic particles originated from different external sources of pollution on the air quality inside apartments. We used the indoor dust as an indicator of air pollution inside apartments. For the study, a small town was chosen, in which dominated the local sources of pollution: (1) vehicle traffic (in the city center), (2) local heating plant, (3) individual households (in the suburbs) and (4) re-emission of soil particles from the contaminated post-industrial area. In each of four areas were selected several private apartments as a sampling points. Dust samples were collected by the owners of apartments from the floor surface using vacuum cleaners in the same time period (September 2014). The concentration-dependent magnetic parameters (magnetic susceptibility - and magnetization MS) were used to determine the level of the magnetic pollution of the indoor dust. The properties of magnetic particles (mineralogy, domain structure and grain size), and their chemical composition were used to describe and identify the source of air pollution inside the apartments. Generally, the results showed that in each of studied areas were observed flats with both: very high and low values of parameters depending on the concentration of magnetic particles. The biggest differences between the areas were visible in mineralogy of magnetic fraction of pollution. The research of apartments exposed to pollution generated by vehicle traffic (located in the city center) show a wide range of values χ (75-1021 -10-8 m3kg-1) and MS (35-656 -10-3 Am2kg-1). These differences were due to the high contribution of pure iron to magnetic fraction of pollution. Detailed analysis of the M (T) curves revealed two magnetic transitions: first at a temperature Tc = 585oC for magnetite and the second at Tc = 760oC for pure iron. For the dust samples from the city center the high values of χ and MS well correlated with high level of anthropogenic elements

  12. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    Science.gov (United States)

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  13. Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling.

    Science.gov (United States)

    Ghassoun, Yahya; Ruths, Matthias; Löwner, Marc-Oliver; Weber, Stephan

    2015-12-01

    The microscale intra-urban variation of ultrafine particle concentrations (UFP, diameter Dpland use regression model (LUR) using different urban morphology parameters as input is compared to a multiple regression type model driven by pollutant and meteorological parameters (PDR). While the LUR model was trained with UFP concentration the PDR model was trained with measured particle number size distribution data. The UFP concentration was then calculated from the modelled size distributions. Both statistical approaches include explanatory variables that try to address the 'process chain' of particle emission, dilution and deposition. LUR explained 74% and 85% of the variance of UFP for the full data set with a root mean square error (RMSE) of 668 cm(-3) and 1639 cm(-3) in summer and winter, respectively. PDR explained 56% and 74% of the variance with RMSE of 4066 cm(-3) and 6030 cm(-3) in summer and winter, respectively. Both models are capable to depict the spatial variation of UFP across the study area and in different outdoor microenvironments. The deviation from measured UFP concentrations is smaller in the LUR model than in PDR. The PDR model is well suited to predict urban particle number size distributions from the explanatory variables (total particle number concentration, black carbon and wind speed). The urban morphology parameters in the LUR model are able to resolve size dependent concentration variations but not as adequately as PDR. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  15. Use of instrumental nuclear activation methods in the study of particles from major air pollution sources

    International Nuclear Information System (INIS)

    Gordon, G.E.; Zoller, W.H.; Gladney, E.S.; Greenberg, R.R.

    1974-01-01

    Nuclear methods have been used effectively in the study of particles emitted by a coal-fired power plant and a municipal incinerator. In the coal-fired plant there is appreciable fractionation of only five of the observed elements. By contrast, particles from the incinerator are highly enriched in several trace elements

  16. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater.Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2005-06-01

    Full Text Available Data on organic substances in the sea are applied to distinguish hypothetical chemical classes and physical types of suspended particulate organic matter (POM in seawater. Spectra of the light absorption coefficients of particulate matter apm(λ and the imaginary refractive index n'p(λ, are assessed for some of these classes and types of POM in seawater, that is, for live phytoplankton cells and phytoplankton-like particles. The spectral characteristics of these coefficients are established and the probable ranges of variability of their absolute magnitudes defined on the basis of the mass-specific coefficients of light absorption by the various organic substances forming the particles. Also presented are mathematical relationships linking the coefficients apm(λ and n'p(λ for the various chemical classes of POM with their physical parameters, such as the relative contents of organic matter, water, air or some other gas. This article is part of a bio-optical study undertaken by the authors, the objective of which is to implement remote sensing techniques in the investigation of Baltic ecosystems (Woźniak et al. 2004.

  17. Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution.

    Science.gov (United States)

    Knox, R B; Suphioglu, C; Taylor, P; Desai, R; Watson, H C; Peng, J L; Bursill, L A

    1997-03-01

    Grass pollen allergens are known to be present in the atmosphere in a range of particle sizes from whole pollen grains (approx. 20 to 55 microns in diameter) to smaller size fractions Lol p 1, immunogold labelling with specific monoclonal antibodies and a high voltage transmission electron-microscopic imaging technique. DECP are visualized as small carbon spheres, each 30-60 nm in diameter, forming fractal aggregates about 1-2 microns in diameter. Here we test our hypothesis and show by in vitro experiments that the major grass pollen allergen, Lol p 1, binds to one defined class of fine particles, DECP. DECP are in the respirable size range, can bind to the major grass pollen allergen Lol p 1 under in vitro conditions and represent a possible mechanism by which allergens can become concentrated in polluted air and thus trigger attacks of asthma.

  18. The behaviour of cesium 137, chromium 51, cobalt 60, Manganese 54, sodium 22 and zinc 65 in simulated estuarine environments. Effects of suspended mineral particles and dissolved organic matters

    International Nuclear Information System (INIS)

    Mahler, P.

    1985-09-01

    This laboratory investigation studied the retention of 6 radionuclides (cesium 137, chrome 51, cobalt 60, manganese 54, sodium 22 and zinc 65) on three types of clay particles (kaolinite, illite, montmorillonite) and on sediments, suspended in media with salinities ranging between 0 and 34 per mill, with or without organic matters. Measurement of the radioactivity retained by the particles after 5 days' contact with the radionuclide made it possible to calculate the percentages retained and the distribution coefficients, and to follow their evolution versus salinity. Parallel experiments studied the behaviours of the 6 radionuclides as a function of experimental factors (wall effect, contact time..). An exhaustive bibliographic review gives the state-of-the-art of the knowledge. The following conclusions were derived: - the retention of all the radionuclides but chromium 51 decreased as soon as a low salinity appeared. Chromium (available as Cr 3+ ) precipitated quickly and strongly during fixation whatever the surfaces or the conditions: - as for the role of the clay type, illite showed a strong affinity for cesium 137; manganese 54 had a particular behaviour with montmorillonite that enhanced its precipitation into MnO 2 ; with cobalt, sodium and zinc, the percentages retained were always [fr

  19. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period

    International Nuclear Information System (INIS)

    Cruz C, M. E.; Quintero N, M.; Gomez A, A.; Varela S, J.

    2013-01-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 μg/m 3 ), while in the three sites the annual average was higher than the maximum annual permissible level (75 μg/m 3 ) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions, meteorological and

  20. Carbon sources in suspended particles and surface sediments from the Beaufort Sea revealed by molecular lipid biomarkers and compound-specific isotope analysis

    Directory of Open Access Journals (Sweden)

    I. Tolosa

    2013-03-01

    Full Text Available Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids and compound-specific isotope analysis of suspended particulate organic matter (SPM and surface sediments of the Mackenzie Shelf and slope (southeast Beaufort Sea, Arctic Ocean were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital algal, fossil, C3 terrestrial plants, bacterial and zooplankton material in the organic matter (OM of this area. Fossil and detrital algal contributions were the major fractions of the freshwater SPM from the Mackenzie River with ~34% each of the total molecular biomarkers. Fresh algal, C3 terrestrial, bacterial and zooplanktonic components represented much lower percentages, 17, 10, 4 and 80%, with a minor contribution of fossil and C3 terrestrial biomarkers. Characterization of the sediments revealed a major sink of refractory algal material mixed with some fresh algal material, fossil hydrocarbons and a small input of C3 terrestrial sources. In particular, the sediments from the shelf and at the mouth of the Amundsen Gulf presented the highest contribution of detrital algal material (60–75%, whereas those from the slope contained the highest proportion of fossil (40% and C3 terrestrial plant material (10%. Overall, considering that the detrital algal material is marine derived, autochthonous sources contributed more than allochthonous sources to the OM lipid pool. Using the ratio of an allochthonous biomarker (normalized to total organic carbon, TOC found in the sediments to those measured at the river mouth water, we estimated that the fraction of terrestrial material preserved in the sediments accounted for 30–40% of the total carbon in the inner shelf sediments, 17% in the outer shelf and Amundsen Gulf and up to 25% in the slope sediments. These estimates are low

  1. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    Science.gov (United States)

    Pablo A. Garcia-Chevesich; Sergio Alvarado; Daniel G. Neary; Rodrigo Valdes; Juan Valdes; Juan Jose Aguirre; Marcelo Mena; Roberto Pizarro; Paolo Jofre; Mauricio Vera; Claudio Olivares

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of...

  2. Is particle pollution in outdoor air associated with metabolic control in type 2 diabetes?

    Directory of Open Access Journals (Sweden)

    Teresa Tamayo

    Full Text Available BACKGROUND: There is growing evidence that air pollutants are associated with the risk of type 2 diabetes. Subclinical inflammation may be a mechanism linking air pollution with diabetes. Information is lacking whether air pollution also contributes to worse metabolic control in newly diagnosed type 2 diabetes. We examined the hypothesis that residential particulate matter (PM10 is associated with HbA1c concentration in newly diagnosed type 2 diabetes. METHODS: Nationwide regional levels of particulate matter with a diameter of ≤ 10 µm (PM10 were obtained in 2009 from background monitoring stations in Germany (Federal Environmental Agency and assigned to place of residency of 9,102 newly diagnosed diabetes patients registered in the DPV database throughout Germany (age 65.5 ± 13.5 yrs; males: 52.1%. Mean HbA1c (% levels stratified for air pollution quartiles (PM10 in µg/m(3 were estimated using linear regression models adjusting for age, sex, BMI, diabetes duration, geographic region, year of ascertainment, and social indicators. FINDINGS: In both men and women, adjusted HbA1c was significantly lower in the lowest quartile of PM10 exposure in comparison to quartiles Q2-Q4. Largest differences in adjusted HbA1c (95% CI were seen comparing lowest quartiles of exposure with highest quartiles (men %: -0.42 (-0.62; -0.23/mmol/mol: -28.11 (-30.30; -26.04, women, %: -0.28 (-0.47; -0.09/mmol/mol: -0.28 (-0.47; -0.09. INTERPRETATION: Air pollution may be associated with higher HbA1c levels in newly diagnosed type 2 diabetes patients. Further studies are warranted to examine this association.

  3. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring.

    Science.gov (United States)

    Hankey, Steve; Marshall, Julian D

    2015-08-04

    Land Use Regression (LUR) models typically use fixed-site monitoring; here, we employ mobile monitoring as a cost-effective alternative for LUR development. We use bicycle-based, mobile measurements (∼85 h) during rush-hour in Minneapolis, MN to build LUR models for particulate concentrations (particle number [PN], black carbon [BC], fine particulate matter [PM2.5], particle size). We developed and examined 1224 separate LUR models by varying pollutant, time-of-day, and method of spatial and temporal smoothing of the time-series data. Our base-case LUR models had modest goodness-of-fit (adjusted R(2): ∼0.5 [PN], ∼0.4 [PM2.5], 0.35 [BC], ∼0.25 [particle size]), low bias (<4%) and absolute bias (2-18%), and included predictor variables that captured proximity to and density of emission sources. The spatial density of our measurements resulted in a large model-building data set (n = 1101 concentration estimates); ∼25% of buffer variables were selected at spatial scales of <100m, suggesting that on-road particle concentrations change on small spatial scales. LUR model-R(2) improved as sampling runs were completed, with diminishing benefits after ∼40 h of data collection. Spatial autocorrelation of model residuals indicated that models performed poorly where spatiotemporal resolution of emission sources (i.e., traffic congestion) was poor. Our findings suggest that LUR modeling from mobile measurements is possible, but that more work could usefully inform best practices.

  4. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    The elemental contents of suspended particulate matter (dust) samples from Maiduguri, Nigeria, were determined which showed appreciably high levels for especially Pb, Fe, Cu, Zn, K, Ca, and. Na. Wister albino rats were exposed to graded doses of phosphate buffered saline carried dust particles. The hematological ...

  5. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  6. Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles.

    Science.gov (United States)

    Xiong, Tiantian; Leveque, Thibault; Shahid, Muhammad; Foucault, Yann; Mombo, Stéphane; Dumat, Camille

    2014-09-01

    When plants are exposed to airborne particles, they can accumulate metals in their edible portions through root or foliar transfer. There is a lack of knowledge on the influence of plant exposure conditions on human bioaccessibility of metals, which is of particular concern with the increase in urban gardening activities. Lettuce, radish, and parsley were exposed to metal-rich ultrafine particles from a recycling factory via field atmospheric fallouts or polluted soil. Total lead (Pb) and cadmium (Cd) concentrations in of the edible plant parts and their human bioaccessibility were measured, and Pb translocation through the plants was studied using Pb isotopic analysis. The Pb and Cd bioaccessibility measured for consumed parts of the different polluted plants was significantly higher for root exposure (70% for Pb and 89% for Cd in lettuce) in comparison to foliar exposure (40% for Pb and 69% for Cd in lettuce). The difference in metal bioaccessibility could be linked to the metal compartmentalization and speciation changes in relation to exposure conditions. Metal nature strongly influences the measured bioaccessibility: Cd presents higher bioaccessibility in comparison to Pb. In the case of foliar exposure, a significant translocation of Pb from leaves toward the roots was observed. To conclude, the type of pollutant and the method of exposure significantly influences the phytoavailability and human bioaccessibility of metals, especially in relation to the contrasting phenomena involved in the rhizosphere and phyllosphere. The conditions of plant exposure must therefore be taken into account for environmental and health risk assessment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Illicit utilization of arsenic compounds in pyrotechnics? An analysis of the suspended particle emission during Vienna’s New Year fireworks

    International Nuclear Information System (INIS)

    Sterba, J.H.; Georg Steinhauser; Fritz Grass

    2013-01-01

    In the course of an investigation of an electrostatic precipitation technique as a sampling method for airborne dust particles, elevated concentrations of As were found in the data collected during New Years Eve celebrations in Vienna. The original study confirmed the applicability of the new sampling device as a useful sampling method, showing elevated values for the elements Na, Mg, Al, Si, S, K, Cu, As, Br, Rb, Sr, Sb, Te and Ba, all associated with the use of pyrotechnics. The measured values for As could not be explained as a impurity in some other substances used. Thus, several unburned pyrotechnic products were investigated to find the source of As in the dust collected. The results showed only one product with higher than expected As contents (1.4 μg g -1 ), leading to the assumption of intentional - but illicit - use of arsenic compounds in pyrotechnics as a colouring agent for the production of blue light. (author)

  8. Light absorption coefficients by phytoplankton pigments, suspended particles and colored dissolved organic matter in the Crimea coastal water (the Black sea) in June 2016

    Science.gov (United States)

    Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.

    2017-11-01

    Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.

  9. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    Science.gov (United States)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  10. [Environment of high temperature or air particle matter pollution, and health promotion of exercise].

    Science.gov (United States)

    Zhao, Jie-xiu; Xu, Min-xiao; Wu, Zhao-zhao

    2014-10-01

    It is important to keep human health in special environment, since the special environment has different effects on health. In this review, we focused on high temperature and air particle matter environment, and health promotion of exercise. Exercise and high temperature are the main non-pharmacological therapeutic interventions of insulin resistance (IR). PGC-1α is key regulatory factor in health promotion of exercise and high temperature. The novel hormone Irisin might be the important pathway through which heat and exercise could have positive function on IR. Air particle matter (PM) is associated with onset of many respiratory diseases and negative effects of exerciser performance. However, regular exercise plays an important role in improving health of respiratory system and lowering the risk induced by PM. Furthermore, free radicals and inflammatory pathways are included in the possible mechanisms of positive physiological effects induced by exercise in air particle matter environment.

  11. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  12. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    Science.gov (United States)

    Yue, D. L.; Hu, M.; Wu, Z. J.; Guo, S.; Wen, M. T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X. S.; Li, Y. P.; Zeng, L. M.; Zhang, Y. H.

    2010-10-01

    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm-3, about 40% lower than that at GZ, (2.9±1.1)×104 cm-3. The total particle volume concentration at BG was 94±34 μm3 cm-3, similar to that at GZ, 96±43 μm3 cm-3. More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m-3) and BG (69±58 μg m-3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42-, NO3- accounted for about 60% in 100-660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42-, NO3-, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.

  13. [Light scattering extinction properties of atmospheric particle and pollution characteristics in hazy weather in Hangzhou].

    Science.gov (United States)

    Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan

    2014-12-01

    In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.

  14. PREVENTING POLLUTION USING ISO 14001 AT A PARTICLE ACCELERATOR THE RELATIVISTIC HEAVY ION COLLIDER PROJECT

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.; MUSOLINO, S.V.

    2001-01-01

    In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations

  15. SEM-EDX IDENTIFICATION OF PARTICLES FROM FOG IN AN INDUSTRIALLY POLLUTED REGION OF CZECH REPUBLIC

    Czech Academy of Sciences Publication Activity Database

    Stoyanova, V.; Shoumkova, A.; Fišák, Jaroslav; Tsacheva, Ts.

    Vol. II - BUA32, č. 1 (2010), s. 269-276 ISSN 1314-2704. [International Multidisciplinary Scientific GeoConference SGEM 2010 /10./. Albena, 20.06.2010-26.06.2010] Institutional research plan: CEZ:AV0Z30420517 Keywords : SEM-EDX * solid atmospheric pollutants * trace elements * heavy metals * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.ipc.bas.bg/PPages/Shoumkova/Publications/Articles/2010%20SEM-EDX%20identification%20of%20FP.pdf

  16. Global source identification of Arctic air pollution using statistical analysis of particle dispersion model output and measurement data

    Science.gov (United States)

    Hirdman, D. A.; Burkhart, J. F.; Eckhardt, S.; Sodemann, H.; Stohl, A.

    2008-12-01

    Arctic air pollution has received renewed interest recently because of its contribution to climate change in the Arctic. Nevertheless, its sources are still not known with sufficient accuracy. Most of our understanding of Arctic air pollution sources is based on model simulations, analysis of air pollution episodes or, at best, statistical analysis of air mass back-trajectories. Here, we present a new approach, namely combining the output of a Lagrangian particle dispersion model, FLEXPART, with measurement data from Arctic air pollution monitoring sites (Alert, Barrow, Summit, Zeppelin). This approach is similar to existing statistical methods for analyzing back-trajectories in conjunction with air pollution monitoring data. However, it has the advantage that the underlying model calculations also take into account turbulence and convection in the atmosphere, which are ignored by ordinary trajectory calculations. FLEXPART is run 20 days backward in time from each of the stations and every three hours, for several years. With every calculation, a so-called potential emission sensitivity (PES) field is obtained, which identifies where the measured air mass has come into contact with the Earth's surface. It quantitatively measures the sensitivity of the signal obtained at the station, to emissions occurring at or near the surface. By combining these PES fields with measured concentrations of several trace species e.g., carbon monoxide, sulphate, black carbon, and ozone. By performing a statistical analysis, we identify where the measured species most likely originate. Statistical analyses are performed both for average concentrations as well as the 10th and 90th percentiles of the measured frequency distribution. We implement a bootstrap resampling procedure to verify the statistical significance of the patterns observed in our retrieved PES maps. Some of our findings are: carbon monoxide and sulphate measured at Zeppelin originate from the Eurasian continent

  17. [Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at Mount Dinghu in autumn season].

    Science.gov (United States)

    Liu, Zi-Rui; Wang, Yue-Si; Liu, Quan; Liu, Lu-Ning; Zhang, De-Qiang

    2011-11-01

    Real-time measurements of PM2.5, secondary inorganic compounds in PM2.5 (SO4(2-), NH4(+), and NO3(-)) and related gaseous pollutants were conducted at Mount Dinghu, a regional background station of the Pearl River Delta (PRD), in October and November 2008 by using a conventional R&P TEOM and a system of rapid collection of fine particles and ion chromatography (RCFP-IC). Sources and transportation of atmospheric particles during the experiment were discussed with principal component analysis and backward trajectories calculated using HYSPLIT model. The average daily mass concentrations of PM2.5 were 76.9 microg x m(-3) during sampling period, and average daily mass concentrations of SO4(2-), NH4(+), and NO3(-) were 20.0 microg x m(-3), 6.8 microg x m(-3) and 2.6 microg x m(-3), respectively. The sum of these three secondary inorganic compounds accounted for more than one third of the PM2.5 mass concentration, which had become the major source of atmospheric fine particles at Mount Dinghu. The diurnal variation of PM2.5, SO4(2-), and NH4(+) all showed a "bimodal" distribution with two peaks appeared at 10:00 am and at 16:00 pm, respectively, whereas NO3(-s) howed "single peak" distribution peaked at 10:00 am. The mass concentrations of SO4(2-) in PM2.5 had the similar diurnal variation with that of SO2, SO4(2-) in PM2.5 was mainly transformed from SO2, whereas NO3(-) showed difference diurnal variation with that of NO2, and the second conversion rate of NO2 was far lower than that of SO2. NH4(+) in PM2.5 existed mainly in the form of sulfate, nitrate and chloride. Both of principal component analysis and back trajectory analysis showed that the variations of PM2.5 and secondary inorganic compounds at Mount Dinghu were mainly affected by the long-range transport air mass passed over Guangzhou, Huizhou and other highly industrialized areas which carried air pollutants to the observation site, at the same time local sulfate originated from secondary formation also

  18. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany.

    Science.gov (United States)

    Wolf, Kathrin; Cyrys, Josef; Harciníková, Tatiana; Gu, Jianwei; Kusch, Thomas; Hampel, Regina; Schneider, Alexandra; Peters, Annette

    2017-02-01

    Important health relevance has been suggested for ultrafine particles (UFP) and ozone, but studies on long-term effects are scarce, mainly due to the lack of appropriate spatial exposure models. We designed a measurement campaign to develop land use regression (LUR) models to predict the spatial variability focusing on particle number concentration (PNC) as indicator for UFP, ozone and several other air pollutants in the Augsburg region, Southern Germany. Three bi-weekly measurements of PNC, ozone, particulate matter (PM 10 , PM 2.5 ), soot (PM 2.5 abs) and nitrogen oxides (NO x , NO 2 ) were performed at 20 sites in 2014/15. Annual average concentration were calculated and temporally adjusted by measurements from a continuous background station. As geographic predictors we offered several traffic and land use variables, altitude, population and building density. Models were validated using leave-one-out cross-validation. Adjusted model explained variance (R 2 ) was high for PNC and ozone (0.89 and 0.88). Cross-validation adjusted R 2 was slightly lower (0.82 and 0.81) but still indicated a very good fit. LUR models for other pollutants performed well with adjusted R 2 between 0.68 (PM coarse ) and 0.94 (NO 2 ). Contrary to previous studies, ozone showed a moderate correlation with NO 2 (Pearson's r=-0.26). PNC was moderately correlated with ozone and PM 2.5 , but highly correlated with NO x (r=0.91). For PNC and NO x , LUR models comprised similar predictors and future epidemiological analyses evaluating health effects need to consider these similarities. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    Science.gov (United States)

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Atmosphere pollutants-their health and environmental effects

    International Nuclear Information System (INIS)

    Issa, Ali Sasi; Ibsaim, Rajab A.

    2006-01-01

    The conducted studies, continuous monitoring and measuring of the atmosphere pollution surrounding the world cities for a decade in the last century demonstrated increased rates of some pollutants, often exceeded the levels which are considered to be safe for health. Most of the dangerous pollutants in the atmosphere are suspended particles, sulfur oxides, nitrogen oxides, ozone troposphere and lead, these are the main responsible pollutant in contaminating the atmosphere leading to increase of death percentage in the major cities. For a duration of nearly a century, atmosphere pollution accidents in cities like London approved that inhaling contaminated air is dangerous and deadly sometimes. In 1880 2200 person from London inhabitants have died when coal smoke with heating and industrial gases have been accumulated to form a toxic smog of sulfur oxide gas and suspended particles in the atmosphere of the city. In this paper we discuss type of atmosphere pollutants and their health and environmental effects on human being, creatures and earth and ways of eliminating that.(Author)

  1. Association of Air Pollution Exposures With High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Bell, Griffith; Mora, Samia; Greenland, Philip; Tsai, Michael; Gill, Ed; Kaufman, Joel D

    2017-05-01

    The relationship between air pollution and cardiovascular disease may be explained by changes in high-density lipoprotein (HDL). We examined the cross-sectional relationship between air pollution and both HDL cholesterol and HDL particle number in the MESA Air study (Multi-Ethnic Study of Atherosclerosis Air Pollution). Study participants were 6654 white, black, Hispanic, and Chinese men and women aged 45 to 84 years. We estimated individual residential ambient fine particulate pollution exposure (PM 2.5 ) and black carbon concentrations using a fine-scale likelihood-based spatiotemporal model and cohort-specific monitoring. Exposure periods were averaged to 12 months, 3 months, and 2 weeks prior to examination. HDL cholesterol and HDL particle number were measured in the year 2000 using the cholesterol oxidase method and nuclear magnetic resonance spectroscopy, respectively. We used multivariable linear regression to examine the relationship between air pollution exposure and HDL measures. A 0.7×10 - 6 m - 1 higher exposure to black carbon (a marker of traffic-related pollution) averaged over a 1-year period was significantly associated with a lower HDL cholesterol (-1.68 mg/dL; 95% confidence interval, -2.86 to -0.50) and approached significance with HDL particle number (-0.55 mg/dL; 95% confidence interval, -1.13 to 0.03). In the 3-month averaging time period, a 5 μg/m 3 higher PM 2.5 was associated with lower HDL particle number (-0.64 μmol/L; 95% confidence interval, -1.01 to -0.26), but not HDL cholesterol (-0.05 mg/dL; 95% confidence interval, -0.82 to 0.71). These data are consistent with the hypothesis that exposure to air pollution is adversely associated with measures of HDL. © 2017 American Heart Association, Inc.

  2. Air pollution profile of Bursa.

    Science.gov (United States)

    Ozer, U; Cebe, M; Güneş, M; Aydin, R

    1996-01-01

    Rapid urbanization and industrial development are the most important causes of air pollution in Bursa. Smoke and sulfur dioxide concentrations were measured at five stations over a period of 20 months between 1986 and 1987; the concentrations of the total suspended particles were determined in the samples collected at two stations in June and October 1986. Some of the trace elements (Fe, Pb, Cd, Zn) were measured in October 1988 by atomic absorption spectroscopy of 28 samples from two stations. The first-order regression equations were calculated in order to find the relationship between the concentrations of smoke, sulfur dioxide, and meteorological conditions. The trends in the concentrations of measured air pollutants were compared by the long- and short-term limit values, as specified in the regulation.

  3. Design of Polymeric Nanofiber Gauze Mask to Prevent Inhaling PM2.5 Particles from Haze Pollution

    Directory of Open Access Journals (Sweden)

    Xingzhou Li

    2015-01-01

    Full Text Available Recently, PM2.5 (particulate matter with diameter of 2.5 micron or less has become a major health hazard from the polluted air in many cities in China. The regular gauze masks are used to prevent inhaling the PM2.5 fine particles; however, those masks are not able to filter out the PM2.5 because of the large porosity of the mask materials. Some well-prevented masks usually have poor breathability, which increases other health risks. In this study, a polysulfone based nanofiber for mask filtration material was synthesized by electrospinning. That nanofiber mask material was characterized by SEM, air permeability test, and PM2.5 trapping experiment. The results indicate that nanofiber mask material can efficiently filter out the PM2.5 particles and simultaneously preserve a good breathability. We attribute such improvement to the nanoscaled fibers, having the same porosity as that of regular gauze mask but with extremely reduced local interfiber space.

  4. Urban snow indicates pollution originating from road traffic.

    Science.gov (United States)

    Kuoppamäki, Kirsi; Setälä, Heikki; Rantalainen, Anna-Lea; Kotze, D Johan

    2014-12-01

    Traffic is a major source of pollutants in cities. In this well-replicated study we analysed a broad array of contaminants in snowpacks along roads of different traffic intensities. The majority of pollutants showed a similar pattern with respect to traffic intensity: pH and conductivity as well as concentrations of PAHs, total suspended solids, phosphorus and most heavy metals were higher next to high intensity roads compared to low intensity roads. These pollutant levels also decreased considerably up to 5 m distance from the roads. Furthermore, apart from nitrogen, these variables increased in concentration from control sites in urban forest patches to road bank sites next to roads of low, intermediate and high traffic intensities. The deposition pattern of various traffic-derived pollutants--whether gaseous or particle-bound--was the same. Such information can be useful for the purposes of managing pollutants in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  6. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  7. Measurement of aerosol particles, gases and flux radiation in the Pico de Orizaba National Park, and its relationship to air pollution transport

    Science.gov (United States)

    Márquez, C.; Castro, T.; Muhlia, A.; Moya, M.; Martínez-Arroyo, A.; Báez, A.

    Continuous atmospheric measurements were carried out at the Pico de Orizaba National Park (PONP), Mexico, in order to evaluate the characteristics and sources of air quality. This action allowed one to identify specific threats for the effective protection of natural resources and biodiversity. Results show the presence of particles and polluted gases transported by winds from the urban zones nearby (cities of Mexico, Puebla and Tlaxcala), as well as their measurable influence on the optical properties of the park environment. Nitrogen dioxide, carbon monoxide and sulfur dioxide show a daily pattern suggesting an influence of pollution generated by anthropogenic processes. Average concentration of SO 2 was higher than recorded at the southern part of Mexico City. Ozone concentrations ranging from 0.035 to 0.06 ppm suggest residual or background ozone character. Back trajectory analysis of air parcels arriving at the site confirm pollution caused by biomass burning and mass transport from urban zones. The SO 42-/TC ratio exhibited values (0.88±0.33) similar to urban areas. Ratios BC/TC and OC/BC for PONP are similar to those reported as influenced by burning emissions of fossil fuels. Typical rural aerosols were also found at the site, and sulfate and ammonium concentrations were correlated. The most predominating mode in surface particles size distribution was at 0.32 μm with no significant presence of coarse particles. Total carbon (OC+BC) content of fine particle mass (PM less than 1 μm) comprised, on average, 75%. Optical properties retrieved from photometric data show intermittent influence from urban pollution. Time periods with low absorbing particles, great visibility and abundance of small particles alternating with short times with bigger particles and high turbidity indicated by the optical depth.

  8. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    K, Fukushima T, Mizugaki S and Onda Y 2008 Devel- opment, evaluation and interpretation of sediment rat- ing curves for a Japanese small mountainous reforested watershed; Geoderma 144 198–211. Sadeghi S H R and Saeidi P 2010 Reliability of sediment rating curves for a deciduous forest watershed in Iran; J. Hydrol ...

  9. Hourly composition of gas and particle phase pollutants at a central urban background site in Milan, Italy

    Science.gov (United States)

    Bigi, A.; Bianchi, F.; De Gennaro, G.; Di Gilio, A.; Fermo, P.; Ghermandi, G.; Prévôt, A. S. H.; Urbani, M.; Valli, G.; Vecchi, R.; Piazzalunga, A.

    2017-04-01

    A comprehensive range of gas and particle phase pollutants were sampled at 1-hour time resolution in urban background Milan during summer 2012. Measurements include several soluble inorganic aerosols (Cl-, NO2-, NO3-, SO42-, Ca2+, K+, Mg2+, Na+, NH4+) and gases (HCl, HNO2,HNO3, NH3, NO, NO2,O3, SO2), organic, elemental and black carbon and meteorological parameters. Analysis methods used include mean diurnal pattern on weekdays and Sundays, pollution roses, bivariate polar plots and statistical models using backtrajectories. Results show how nitrous acid (HONO) was mainly formed heterogeneously at nighttime, with a dependence of its formation rate on NO2 consistent with observations during the last HONO campaign in Milan in summer 1998, although since 1998 a drop in HONO levels occurred following to the decrease of its precursors. Nitrate showed two main formation mechanisms: one occurring through N2O5 at nighttime and leading to nitrate formation onto existing particles; another occurring both daytime and nighttime following the homogeneous reaction of ammonia gas with nitric acid gas. Air masses reaching Milan influenced nitrate formation depending on their content in ammonia and the timing of arrival. Notwithstanding the low level of SO2 in Milan, its peaks were associated to point source emissions in the Po valley or shipping and power plant emissions SW of Milan, beyond the Apennines. A distinctive pattern for HCl was observed, featured by an afternoon peak and a morning minimum, and best correlated to atmospheric temperature, although it was not possible to identify any specific source. The ratio of primary-dominated organic carbon and elemental carbon on hourly PM2.5 resulted 1.7. Black carbon was highly correlated to elemental carbon and the average mass absorption coefficient resulted MAC = 13.8 ± 0.2 m2 g-1. It is noteworthy how air quality for a large metropolitan area, in a confined valley and under enduring atmospheric stability, is nonetheless

  10. Assessment of particle emissions inventories in northeastern U.S., using remote sensing, Lidar technology, air pollution sensors, and a Lagrangian particle dispersion model

    Science.gov (United States)

    Barrera, Y.; Swofsy, S. C.; Li, L.; Hegarty, J. D.; Nehrkorn, T.; Koutrakis, P.

    2017-12-01

    In the most recent issue of the New England Journal of Medicine, a new study found that 95% of Medicare beneficiaries over the age of 65 showed an increased risk of mortality, even at fine particulate matter (PM2.5) levels below the National Ambient Air Quality Standards (NAAQS). This new finding suggests that although a state may be designated under attainment for meeting the primary and secondary PM2.5 NAAQS, sensitive populations dispersed throughout the region may still be experiencing adverse health effects. To conduct accurate public health impact assessments, reliable information regarding PM2.5 concentrations in cities are required at high spatial and temporal resolutions. A newly developed particle emissions inventory using remote sensing (PEIRS) captured both primary and secondary formation in northeastern U.S. at a 1km x 1km spatial resolution during the period 2002-2014 (Tang et al., 2017). The PEIRS annual emissions inventory used the MODIS satellite to fill-in the spatial gaps where, EPA monitoring stations were not available. However, simulations of the planetary boundary layer (PBL) were a key factor in estimating PM2.5 concentrations on the ground and hence, testing PEIRS products with observationally based quantifications are critical. Recent advances in light ranging and detection (Lidar) technology allow us to estimate PBL heights in cities. This study combines information from a network of Mini Micropulse Lidar (MPL) instruments, meteorological and air pollution measuring sensors, and a Lagrangian particle dispersion model to test the performance of PEIRS at the neighborhood and urban scale. MPL observations were processed using image recognition and fuzzy logic to estimate PBL heights that were inputted into PEIRS to predict daily PM2.5 concentrations. To compare vertical distribution of aerosols, we use our LPDM model "footprints" to predict vertical profiles of PM2.5 distribution at our Lidar locations. Our model-data assimilation improved

  11. Air Pollution

    OpenAIRE

    Ababsa, Myriam

    2014-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  12. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    Directory of Open Access Journals (Sweden)

    D. L. Yue

    2010-10-01

    Full Text Available In order to characterize the features of particulate pollution in the Pearl River Delta (PRD in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ and Back-garden downwind regional site (BG in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8×104 cm−3, about 40% lower than that at GZ, (2.9±1.1×104 cm−3. The total particle volume concentration at BG was 94±34 μm3 cm−3, similar to that at GZ, 96±43 μm3 cm−3. More 20–100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100–660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m−3 and BG (69±58 μg m−3 with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42−, NO3 accounted for about 60% in 100–660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase

  13. Particle transport and deposition: basic physics of particle kinetics.

    Science.gov (United States)

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  14. Sea-urchin-like Fe3O4@C@Ag particles: an efficient SERS substrate for detection of organic pollutants

    Science.gov (United States)

    Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai

    2013-06-01

    Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e

  15. Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities

    Science.gov (United States)

    Su, H.; Wang, Z.; Cheng, Y.; Xie, Z.; Kecorius, S.; McMeeking, G. R.; Yu, X.; Pöhlker, C.; Zhang, M.; Wiedensohler, A.; Kuhn, U.; Poeschl, U.; Huffman, J. A.

    2015-12-01

    Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities Zhibin Wang1, Xiawei Yu1,3, Simonas Kecorius2, Zhouqing Xie3, Gavin McMeeking4, Christopher Pöhlker1, Minghui, Zhang1, Alfred Wiedensohler2, Uwe Kuhn1, Yafang Cheng1, Ulrich Pöschl1, Hang Su1,*1Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz 55128, Germany2Leibniz-Institute for Tropospheric Research, Leipzig 04318, Germany3School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China4Droplet Measurement Technologies, Boulder 80301, USA ABSTRACTBioaerosols are the main subset of super-micron particles, and significantly influence the evolution of cloud and precipitation, as well as the public health. Currently, the detection of ambient biological materials in real-time is mainly based on the presence of fluorophores in the particles. In this study, we present the wideband integrated bioaerosol spectrometer (WIBS) measurement results to characterize the fluorescent aerosol particles (FAP) at a polluted regional site (Xianghe, 39.80 °N, 116.96 °E) in the North China Plain. We observed substantially much higher number concentration of FAP as compared with those of previous studies in clean environments. We found the good agreement between the FAP number fraction in coarse mode particles (> 1 mm) and BC mass fraction in fine particles (SOA, PAH and soot) may significantly lead to a positive fluorescence measurement artifacts and an overestimation of actual fluorescent biological aerosol particles. We also suggested to introduce the classification analysis of fluorescence spectral patterns from single FAP into the data analysis, which aims to reduce the potential misattribution and provide extra dimensions in the differentiation and identification of fluorescent aerosol particle.

  16. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  17. Particle removal by coagulation and settling from a waste plume

    International Nuclear Information System (INIS)

    Hunt, J.R.

    1990-01-01

    Oceanic and coastal waters have long been used for disposal of human wastes, such as treated sewage, sewage sludge, dredged sediments from harbors, and more recently, drilling fluids from offshore oil exploration and deep-ocean bottom sediments that are resuspended by mining activities. These wastes contain pollutants mainly in the particulate fraction. Because most organic matter is particulate matter, toxic metals are either present as sulfide precipitates or adsorbed onto other particles, and suspended particles themselves are viewed as pollutants if an increase in turbidity is apparent. Thus, to analyze waste-disposal practices, an accurate prediction is needed for the fate of waste particles. This paper demonstrates how particle coagulation can be incorporated into models for predicting the fate of particulate wastes that are discharged into oceanic waters

  18. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    We report a fabrication method, which uses standard UV-lithography to pattern the catalyst for the chemical vapour deposition(CVD) of suspended double clamped single walled carbon nanotubes. By using an aqueous solution of Fe(NO3)3 the patterning of the catalyst material onto microelectrodes can...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  19. Inclusions in freely suspended smectic films

    Science.gov (United States)

    Stannarius, Ralf; Harth, Kirsten

    Smectic liquid crystal phases have a unique property: Like soap solutions, they can form stable freely suspended films. Their aspect ratios can be larger than one million to one. Such films can serve as models for two-dimensional (2D) uids, with or without in-plane anisotropy. Solid or liquid inclusions trapped in these films by capillary forces can move in the film plane and interact with other inclusions, with film thickness gradients or the film boundaries, and even with the local orientation field. We describe preparation techniques to incorporate particles or droplets in thin smectic films, and optical observation methods. Several aspects make inclusions in freely suspended films interesting research objects: They provide rich information on capillary forces as well as surface and interfacial tensions, they can serve as platforms for hydrodynamic studies in 2D, and they may help to understand coalescence dynamics at the transition from 2D to 3D...

  20. Suspended particulate studies over the Madeira Abyssal Plain

    International Nuclear Information System (INIS)

    Simpson, W.R.

    1987-01-01

    Various aspects relating to suspended matter over the Madeira Abyssal Plain are discussed. Special attention is paid to the nepheloid layer including resuspension and transport processes; time variabilities in particle concentrations and fluxes; particle morphology, microbiology and chemical composition; phase association of metals. Also, tentative predictions of the behaviour of some radionuclides are made based on theory and data on rare earth elements. Instrumentation developed for the project is detailed - the deep water particle sampler. (author)

  1. 40 CFR 1051.335 - How do I ask EPA to reinstate my suspended certificate?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Testing Production-Line Vehicles and Engines § 1051.335 How do I ask EPA to reinstate my suspended certificate? (a...

  2. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime.

    Science.gov (United States)

    Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael

    2016-11-01

    Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ 65 Cu and δ 66 Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ 65 Cu and δ 66 Zn values in snow and rime, extracted by diluted HNO 3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ 65 Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ 65 Cu value of pollution sources (-1.17‰). The variability in δ 65 Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ 66 Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ 66 Zn value of pollution sources (-0.23‰). The variability in δ 66 Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    Science.gov (United States)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    Air quality is a serious and worsening problem in the rapidly growing cities of sub-Saharan Africa (SSA), due to rapid urbanization, growing vehicle fleets, changing life styles, limited road infrastructure and land use planning, and high per-vehicle emissions. However, the absence of ambient monitoring data, and particularly urban roadside concentrations of particulate matter in SSA cities, severely limits our ability to assess the real extent of air quality problems. Emitted fine particles by on-road vehicles may be particularly important in SSA cities because large concentrations of poorly maintained vehicles operate in close proximity to commercial and other activities of low-income urban residents. This scenario provokes major air quality concerns and its investigation should be of priority interest to policy makers, city planners and managers, and the affected population. As part of collaboration between Columbia University and the University of Nairobi, a PM2.5 air monitoring study was carried out over two weeks in July 2009. The objectives of the study were 1) to assess average daytime PM2.5 concentrations on a range of Nairobi streets that represent important hot-spots in terms of the joint distribution of traffic, commercial, and resident pedestrian activities, 2) to relate those concentrations to motor vehicle counts, 3) to compare urban street concentrations to urban and rural background levels, and 4) to assess vertical and horizontal dispersion of PM2.5 near roadways. Portable, battery-operated PM2.5 samplers were carried by field teams at each of the five sites (three urban, one commuter highway, and one rural site), each of which operated from 7 AM to 7 PM during 10 weekdays in July 2009. Urban background monitoring took place on a rooftop at the University of Nairobi. Preliminary findings suggest highly elevated PM2.5 concentrations at the urban sites where the greatest pedestrian traffic was observed. These findings underscore the need for air

  4. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    Science.gov (United States)

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  5. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions.

    Science.gov (United States)

    Eeftens, Marloes; Meier, Reto; Schindler, Christian; Aguilera, Inmaculada; Phuleria, Harish; Ineichen, Alex; Davey, Mark; Ducret-Stich, Regina; Keidel, Dirk; Probst-Hensch, Nicole; Künzli, Nino; Tsai, Ming-Yi

    2016-04-18

    Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models. Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data. Model explained variance (R(2)) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R(2) range 0.52-0.89) outperformed combined-area alpine (R (2)  = 0.53) and non-alpine (R (2)  = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors. LUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study

  6. Megacity pollution by modern Diesel cars: New insights into the nature and formation of volatile nano-particles with high lung intrusion efficiency

    Science.gov (United States)

    Arnold, F.; Reichl, U.; Muschik, Ch.; Roiger, A.; Schlager, H.; Pirjola, L.; Rönkkö, T.; Keskinen, J.; Rothe, D.; Lähde, T.

    2009-04-01

    Aerosol particles generated by Diesel vehicles represent mayor health affecting air pollutants in cities and near motor ways. To mitigate the Diesel particle pollution problem, Diesel vehicles become increasingly fitted or retro-fitted with modern exhaust after treatment systems (ATS), which remove most engine-generated primary particles, particularly soot. Unfortunately however, ATS have undesired side effects including also the formation of low vapour pressure gases, which may undergo nucleation and condensation leading to volatile nucleation particles (NUP). NUP are substantially smaller (diameters: 5-15 nm) than soot particles (diameters: 40-100 nm), and therefore may be termed real nano-particles. NUP can intrude with maximum efficiency the lowest, least protected, and most vulnerable compartment of the human lung. However, the chemical nature and mechanism of formation of NUP are only poorly explored. Using a novel mass spectrometric method, we have made the first on line and off line measurements of low vapour pressure NUP precursor gases in the exhaust of a modern heavy duty Diesel vehicle engine, operated with and without ATS and combusting low and ultra-low sulphur fuels including also bio fuel. In addition, we have made accompanying NUP measurements and NUP model simulations. The on line measurements involved a CIMS (Chemical Ionization Mass Spectrometry) method originally developed by MPIK. They took place directly in the Diesel exhaust and had a large sensitivity and a fast time response (1 s). The off line measurements involved adsorption of exhaust gases on stainless steel, followed by thermo desorption and detection of desorbed exhaust molecules by CIMS. We find that modern Diesel ATS strongly increase the formation of hydroxyl radicals, which induce conversion of fuel sulphur to the important NUP precursor gaseous sulphuric acid. We also find that appreciable amounts of di-carboxylic acids survive the passage of the ATS or are even formed by the

  7. Electrostatically suspended torsion pendulum

    Science.gov (United States)

    Willemenot, E.; Touboul, P.

    2000-01-01

    A torsion pendulum without a torsion wire has been designed and realized, in order to measure very weak forces. The arm of this torsion pendulum (5.40 g, 1.32×10-6 kg m2 of inertia) is electrostatically suspended. Its 6 degrees of freedom are controlled thanks to electrostatic forces, and capacitive position sensing with a noise spectral density between 10-10 and 10-13 m/√Hz . The torque noise spectral density is 1.3×10-14 Nm/√Hz around 0.05 Hz with a 1/√f increase at lower frequency, corresponding to 10-8 rad/s2/√Hz , and 2×10-10 ms-2/√Hz with a lever arm of 2 cm. The residual seismic noise limit the performances above 0.1 Hz. The free oscillating mode has a torsion stiffness of 5.14×10-8 Nm/rad and a Q of 217. This new instrument allows on ground experiments on very weak parasitic forces inside space accelerometers developed in ONERA, with a good representativeness. For example, it is possible to measure electrostatic stiffnesses with high resolution thanks to the low torque noise spectral density; the electrostatic damping phenomenon is also well seen as illustrated by the rather low Q. The instrument design and operation are described, the main performances are given, and the possibilities offered are discussed.

  8. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States); Day, Douglas A. [Univ. of Colorado, Boulder, CO (United States); Martin, Scot T. [Univ. of Colorado, Boulder, CO (United States); Kim, Saewung [Univ. of Colorado, Boulder, CO (United States); Smith, James [Univ. of Colorado, Boulder, CO (United States); Souza, Rodrigo [Univ. of Colorado, Boulder, CO (United States); Barbosa, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-08-04

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution. The first objective of the project was to understand and quantify the interactions of biogenic and anthropogenic emissions with respect to the production of secondary organic material. In clean conditions in the Amazon basin, secondary organic material dominates the diameter distribution of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective followed from the first in that, although the diameter distribution is dominated by secondary organic material, the actual source of new particle production remains uncertain (i.e., the number concentration). The second objective was to test the hypothesis that new particles under natural conditions are produced as a result of evaporation of primary particles emitted by fungal spores as well as to investigate any shifts in this mechanism under pollution conditions, e.g., in consequence to the high concentrations of SO2 in the pollution plume. Combined, the number-diameter distribution is the key connection to upscaling to the effects of aerosol

  9. East Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available A large SO2-rich pollution plume of East Asian origin was detected by aircraft based CIMS (Chemical Ionization Mass Spectrometry measurements at 3–7.5 km altitude over the North Atlantic. The measurements, which took place on 3 May 2006 aboard of the German research aircraft Falcon, were part of the INTEX-B (Intercontinental Chemical Transport Experiment-B campaign. Additional trace gases (NO, NOy, CO, H2O were measured and used for comparison and source identification. The atmospheric SO2 mole fraction was markedly increased inside the plume and reached up to 900 pmol/mol. Accompanying lagrangian FLEXPART particle dispersion model simulations indicate that the probed pollution plume originated at low altitudes from densely populated and industrialized regions of East Asia, primarily China, about 8–12 days prior to the measurements.

  10. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Environmental Protection Agency Search Search Particulate Matter (PM) Pollution Contact Us Share Most PM particles form in ... and cause serious health effects. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  11. STATISTICAL ANALYSIS OF METEOROLOGICAL FACTORS AND AIR POLLUTION AT WINTER MONTHS IN ELAZIG, TURKEY

    Directory of Open Access Journals (Sweden)

    Ebru Kavak Akpinar

    2009-01-01

    Full Text Available In the present study, relationship between monitored air pollutant concentrations such as SO2 and the total suspended particles (TSP data and meteorological factors such as wind speed, temperature, relative humidity and atmospheric pressure was investigated in months of October, November, December, January, February, and March during the period of three years (2003, 2004 and 2005 for Elazg city. According to the results of linear and non-linear regression analysis, it was found that there is a moderate and weak level of relation between the air pollutant concentrations and the meteorological factors in Elazg city.

  12. Performance Evaluation of "Low-cost" Sensors for Measuring Gaseous and Particle Air Pollutants: Results from Two Years of Field and Laboratory Testing

    Science.gov (United States)

    Feenstra, B. J.; Polidori, A.; Tisopulos, L.; Papapostolou, V.; Zhang, H.; Pathmanabhan, J.

    2016-12-01

    In recent years great progress has been made in development of low-cost miniature air quality sensing technologies. Such low-cost sensors offer a prospect of providing a real-time spatially dense information on pollutants, however, the quality of the data produced by these sensors is so far untested. In an effort to inform the general public about the actual performance of commercially available low-cost air quality sensors, in June 2014 the South Coast Air Quality Management District (SCAQMD) has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC). This program performs a thorough characterization of low-cost sensors under ambient (in the field) and controlled (in the laboratory) conditions. During the field testing, air quality sensors are operated side-by-side with Federal Reference Methods and Federal Equivalent Methods (FRM and FEM, respectively), which are routinely used to measure the ambient concentration of gaseous or particle pollutants for regulatory purposes. Field testing is conducted at two of SCAQMD's existing air monitoring stations, one in Rubidoux and one near the I-710 freeway. Sensors that demonstrate an acceptable performance in the field are brought back to the lab where a "characterization chamber" is used to challenge these devices with known concentrations of different particle and gaseous pollutants under different temperature and relative humidity levels. Testing results for each sensor are then summarized in a technical report and, along with other relevant information, posted online on a dedicated website (www.aqmd.gov/aq-spec) to educate the public about the capabilities of commercially available sensors and their potential applications. During this presentation, the results from two years of field and laboratory testing will be presented. The major strengths and weaknesses of some of the most commonly available particle and gaseous sensors will be discussed.

  13. Prenatal exposure to fine particles and polycyclic aromatic hydrocarbons and birth outcomes: a two-pollutant approach.

    Science.gov (United States)

    Jedrychowski, W A; Majewska, Renata; Spengler, J D; Camann, David; Roen, E L; Perera, F P

    2017-04-01

    Previous epidemiologic studies have considered the effects of individual air pollutants on birth outcomes, whereas a multiple-pollutant approach is more relevant to public health policy. The present study compared the observed effect sizes of prenatal fine particulate matter (PM 2.5 ) and polycyclic aromatic hydrocarbons (PAH) (a component of PM 2.5 ) exposures on birth outcome deficits, assessed by the single vs. two-pollutant approaches. The study sample included 455 term infants born in Krakow to non-smoking mothers, among whom personal exposures to PM 2.5 and PAH were monitored in the second trimester of pregnancy. The exposure effect estimates (unstandardized and standardized regression coefficients) on birth outcomes were determined using multivariable linear regression models, accounting for relevant covariates. In the single-pollutant approach, each pollutant was inversely associated with all birth outcomes. The effect size of prenatal PAH exposure on birth weight and length was twice that of PM 2.5, in terms of standardized coefficients. In the two-pollutant approach, the negative effect of PM 2.5 on birth weight and length, adjusted for PAH exposure, lost its significance. The standardized effect of PAH on birth weight was 10-fold stronger (β = -0.20, p = 0.004) than that estimated for PM 2.5 (β = -0.02, p = 0.757). The results provide evidence that PAH had a greater impact on several measures of fetal development, especially birth weight, than PM 2.5 . Though in the single-pollutant models PM 2.5 had a significant impact on birth outcomes, this effect appears to be mediated by PAH.

  14. Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia

    Science.gov (United States)

    Pósfai, Mihály; Axisa, Duncan; Tompa, Éva; Freney, Evelyn; Bruintjes, Roelof; Buseck, Peter R.

    2013-03-01

    Aerosol particles from desert dust interact with clouds and influence climate on regional and global scales. The Riyadh (Saudi Arabia) aerosol campaign was initiated to study the effects of dust particles on cloud droplet nucleation and cloud properties. Here we report the results of individual-particle studies of samples that were collected from an aircraft in April 2007. We used analytical transmission electron microscopy, including energy-dispersive X-ray spectrometry, electron diffraction, and imaging techniques for the morphological, chemical, and structural characterization of the particles. Dust storms and regional background conditions were encountered during four days of sampling. Under dusty conditions, the coarse (supermicrometer) fraction resembles freshly crushed rock. The particles are almost exclusively mineral dust grains and include common rock-forming minerals, among which clay minerals, particularly smectites, are most abundant. Unaltered calcite grains also occur, indicating no significant atmospheric processing. The particles have no visible coatings but some contain traces of sulfur. The fine (submicrometer) fraction is dominated by particles of anthropogenic origin, primarily ammonium sulfate (with variable organic coating and some with soot inclusions) and combustion-derived particles (mostly soot). In addition, submicrometer, iron-bearing clay particles also occur, many of which are internally mixed with ammonium sulfate, soot, or both. We studied the relationships between the properties of the aerosol and the droplet microphysics of cumulus clouds that formed above the aerosol layer. Under dusty conditions, when a large concentration of coarse-fraction mineral particles was in the aerosol, cloud drop concentrations were lower and droplet diameters larger than under regional background conditions, when the aerosol was dominated by submicrometer sulfate particles.

  15. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  16. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p < 0.001) larger proportion of clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended

  17. Some Characteristics of Dust Particles in Atmosphere of Kemerovo City According to Pollution Data of Snow Cover

    Science.gov (United States)

    Golokhvast, K. S.; Manakov, Yu A.; Bykov, A. A.; Chayka, V. V.; Nikiforov, P. A.; Rogulin, R. S.; Romanova, T. Yu; Karabtsov, A. A.; Semenikhin, V. A.

    2017-10-01

    The given paper presents the study results of solid particles contained in snow samples, taken on 10 sites in Kemerovo city in spring 2013. The sites were chosen in such a way as to prevent particles flow into the snow cover in other ways, except with atmospheric precipitation. Kuzbass Botanical Garden was chosen as the check point. In 7 out of 10 sampling sites on the territory of Kemerovo city the presence of particles that are particularly dangerous for human health was found. In one of the areas the particles of 200-400 nm size and with a specific surface area of 14,813.34 cm2/cm3 were detected in ecologically significant quantity (8%).

  18. Ultrafine particles and associated pollutants on roadways and in community air of Los Angeles California, Beijing China, and the Los Angeles International Airport

    Science.gov (United States)

    Westerdahl, Frederick Dane

    Particles smaller than 10 microm in diameter are harmful to health. However, the smallest of these particles, ultrafine particles (UFP), equal to or smaller than 100 nm, may be especially harmful. Most are emitted by combustion sources, with transportation sources being a dominant contributor. While these particles have recently been under intense research, little is known regarding UFP concentrations or its components where people live, work, and commute. This dissertation reports on investigations of UFP and other pollutants in transportation-dominated areas. Included are findings from on-road, near-road and community monitoring studies performed in two megacities: Los Angeles, California and Beijing, China. A common feature of these studies was the application of advanced technologies to gather time-resolved measurements. An important finding made in Los Angeles was that real-time pollutant measurements could be made on busy roadways. UFP size distribution measurements made on a freeway with heavy-duty truck traffic demonstrated that UFP were much higher than on other highways or in community air. Nitric oxide (NO) levels were also much higher in these truck-dominated microenvironments. High correlations were found between UFP, black carbon (BC), particle counts, (NO), and particulate polycyclic aromatic hydrocarbons. Monitoring at Los Angeles International Airport demonstrated that aircraft are important sources of UFP. Elevated UFP counts were found 900 meters from a runway used for take offs, while smaller values were found 500 meters downwind of a runway used for landings. These measurements showed a persistence of UFP at the community boundary in excess of measurements from roadside studies. A peak UFP measurement of 4.8 million particles cm -3 was made approximately 75 meters from a jet aircraft waiting to takeoff. Measurements made in Beijing demonstrated that heavy-duty diesel truck activity severely impacts community air quality. Black carbon was a

  19. Seasonal Variations in Health Hazards from Polycyclic Aromatic Hydrocarbons Bound to Submicrometer Particles at Three Characteristic Sites in the Heavily Polluted Polish Region

    Directory of Open Access Journals (Sweden)

    Barbara Kozielska

    2014-12-01

    Full Text Available Suspended particles with aerodynamic diameters not greater than 1 μm (PM1 were sampled at the urban background; regional background; and urban traffic points in southern Poland. In total, 120 samples were collected between 2 August 2009 and 27 December 2010. Sixteen polycyclic aromatic hydrocarbons (PAHs were determined in each sample. The samples were collected with a high volume sampler (Digitel. Afterwards, they were chemically analyzed with a gas chromatograph equipped with a flame ionization detector (Perkin Elmer Clarus 500. The mean concentration values of the PAH sum (ΣPAH and particular PAHs; the percentages of carcinogenic PAHs in total PAHs (ΣPAHcarc/ΣPAH; carcinogenic equivalent (CEQ; mutagenic equivalent (MEQ; and TCDD-toxic equivalent (TEQ were much higher in the winter (heating season than in the summer (non-heating one. For both periods, the resulting average values obtained were significantly higher (a few; and sometimes a several dozen times higher in the researched Polish region than the values observed in other areas of the world. Such results indicate the importance of health hazards resulting from PM1 and PM1-bound PAHs in this Polish area.

  20. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number

    Science.gov (United States)

    Boogaard, Hanna; Kos, Gerard P. A.; Weijers, Ernie P.; Janssen, Nicole A. H.; Fischer, Paul H.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Hoek, Gerard

    2011-01-01

    Policies to reduce outdoor air pollution concentrations are often assessed on the basis of the regulated pollutants. Whether these are the most appropriate components to assess the potential health benefits is questionable, as other health-relevant pollutants may be more strongly related to traffic. The aim of this study is to compare the contrast in concentration between major roads and (sub)urban background for a large range of pollutants and to analyze the magnitude of the measured difference in the street - background for major streets with different street configurations. Measurements of PM 10, PM 2.5, particle number concentrations (PNC), black carbon (BC), elemental composition of PM 10 and PM 2.5 and NO x were conducted simultaneously in eight major streets and nine (sub)urban background locations in the Netherlands. Measurements were done six times for a week during a six month period in 2008. High contrasts between busy streets and background locations in the same city were found for chromium, copper and iron (factor 2-3). These elements were especially present in the coarse fraction of PM. In addition, high contrasts were found for BC and NO x (factor 1.8), typically indicators of direct combustion emissions. The contrast for PNC was similar to BC. NO 2 contrast was lower (factor 1.5). The largest contrast was found for two street canyons and two streets with buildings at one side of the street only. The contrast between busy streets and urban background in NO 2 was less than the contrast found for BC, PNC and elements indicative of non-exhaust emissions, adding evidence that NO 2 is not representing (current) traffic well. The study supports a substantial role for non-exhaust emissions including brake- and tyre wear and road dust in addition to direct combustion emissions. Significant underestimation of disease burden may occur when relying too much on the regulated components.

  1. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    Science.gov (United States)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the

  2. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    Science.gov (United States)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  3. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2017-10-01

    Full Text Available The Beijing–Tianjin–Hebei (BTH region has been suffering from the most severe fine-particle (PM2. 5 pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM. The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24–36 % to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM

  4. Development of real time detector for fluorescent particles applied to pollutant transfers characterization; Etude d`un dispositif de comptage en continu d`un aerosol fluorescent

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, C. [CEA Saclay, Departement de Prevention et d`Etude des Accidents, 91 - Gif-sur-Yvette (France)]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1996-06-01

    The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the

  5. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions

    Directory of Open Access Journals (Sweden)

    M. Stock

    2011-05-01

    Full Text Available This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH. During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS. Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp: 1.42 (± 0.05 at 30 nm compared to 1.63 (± 0.07 at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea as well as the degree of continental pollution (marine vs. continentally influenced. The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70

  6. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  7. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  8. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2017-08-01

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution.

  9. Why suspended matter is important ?

    Indian Academy of Sciences (India)

    Nutrients and pollutants (agricultural, industrial and domestic waste runoff) – enhance / reduce productivity and/or fish migration / mortality ... Understanding SPM dynamics – monitor water quality, fate of pollution and success of dredging operations.

  10. Dry release of suspended nanostructures

    DEFF Research Database (Denmark)

    Forsén, Esko Sebastian; Davis, Zachary James; Dong, M.

    2004-01-01

    A dry release method for fabrication of suspended nanostructures is presented. The technique has been combined with an anti-stiction treatment for fabrication of nanocantilever based nanoelectromechanical systems (NEMS). The process combines a dry release method, using a supporting layer of photo...

  11. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... and improving hydraulic conditions. Unlike most traditional theses which usually focus only on one particular subject of study, this thesis contains four relatively independent studies which cover the following topics: a newly proposed particle settling enhancement plate, the redesign of the inlet zone......, Vortex Plate, were tested under various flows and settling conditions. Structure of the Vortex Plate consists of multiple long narrow parallel slots which are built on a flat plate. Vortices are generated by cross-flow passing the long narrow parallel slots. The Vortex Plate can be used in the same way...

  12. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study.

    Science.gov (United States)

    Saenen, Nelly D; Plusquin, Michelle; Bijnens, Esmée; Janssen, Bram G; Gyselaers, Wilfried; Cox, Bianca; Fierens, Frans; Molenberghs, Geert; Penders, Joris; Vrijens, Karen; De Boever, Patrick; Nawrot, Tim S

    2015-08-01

    Developmental processes in the placenta and the fetal brain are shaped by the same biological signals. Recent evidence suggests that adaptive responses of the placenta to the maternal environment may influence central nervous system development. We studied the association between in utero exposure to fine particle air pollution with a diameter ≤ 2.5 μm (PM2.5) and placental expression of genes implicated in neural development. Expression of 10 target genes in the brain-derived neurotrophic factor (BDNF) signaling pathway were quantified in placental tissue of 90 mother-infant pairs from the ENVIRONAGE birth cohort using quantitative real-time polymerase chain reaction. Trimester-specific PM2.5 exposure levels were estimated for each mother's home address using a spatiotemporal model. Mixed-effects models were used to evaluate the association between the target genes and PM2.5 exposure measured in different time windows of pregnancy. A 5-μg/m3 increase in residential PM2.5 exposure during the first trimester of pregnancy was associated with a 15.9% decrease [95% confidence interval (CI): -28.7, -3.2%, p = 0.015] in expression of placental BDNF at birth. The corresponding estimate for synapsin 1 (SYN1) was a 24.3% decrease (95% CI: -42.8, -5.8%, p = 0.011). Placental expression of BDNF and SYN1, two genes implicated in normal neurodevelopmental trajectories, decreased with increasing in utero exposure to PM2.5. Future studies are needed to confirm our findings and evaluate the potential relevance of associations between PM2.5 and placental expression of BDNF and SYN1 on neurodevelopment. We provide the first molecular epidemiological evidence concerning associations between in utero fine particle air pollution exposure and the expression of genes that may influence neurodevelopmental processes.

  13. Studying Suspended Sediment Mechanism with Two-Phase PIV

    Science.gov (United States)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  14. Applications of Cu2O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    International Nuclear Information System (INIS)

    Zhai, Wei; Sun, Fengqiang; Chen, Wei; Zhang, Lihe; Min, Zhilin; Li, Weishan

    2013-01-01

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu 2 O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H 2 O 2 . • H 2 O 2 amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu 2 O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO 4 solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could be randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H 2 O 2 under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu 2 O microcrystals. Effects of electrodeposition time and H 2 O 2 amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions

  15. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China

    International Nuclear Information System (INIS)

    Yin Shan; Shen Zhemin; Zhou Pisheng; Zou Xiaodong; Che Shengquan; Wang Wenhua

    2011-01-01

    Parks with various types of vegetations played an important role in ameliorating air quality in urban areas. However, the attenuation effect of urban vegetation on levels of air pollution was rarely been experimentally estimated. This study, using seasonal monitoring data of total suspended particles (TSP), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) from six parks in Pudong District, Shanghai, China, demonstrated vegetations in parks can remove large amount of airborne pollutants. In addition, crown volume coverage (CVC) was introduced to characterize vegetation conditions in parks and a mixed-effects model indicated that CVC and the pollution diffusion distance were key predictors influencing pollutants removal rate. Therefore, it could be estimated by regression analysis that in summer, urban vegetations in Pudong District could contribute to 9.1% of TSP removal, 5.3% of SO 2 and 2.6% of NO 2 . The results could be considered for a better park planning and improving air quality. - Highlights: → We examined markedly air pollution decline in urban vegetation patches by field experiments. → Crown volume coverage (CVC) served to characterize vegetation condition among different species. → CVC and pollutants diffusion distance were key predictors affecting air pollution attenuation within parks. - Crown volume coverage (CVC) and pollutants diffusion distance had been proved as key predictors influencing attenuation effect on levels of air pollutants in urban parks.

  16. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  17. Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations.

    Science.gov (United States)

    Aalto, Pasi; Hämeri, Kaarle; Paatero, Pentti; Kulmala, Markku; Bellander, Tom; Berglind, Niklas; Bouso, Laura; Castaño-Vinyals, Gemma; Sunyer, Jordi; Cattani, Giorgio; Marconi, Achille; Cyrys, Josef; von Klot, Stephanie; Peters, Annette; Zetzsche, Katrin; Lanki, Timo; Pekkanen, Juha; Nyberg, Fredrik; Sjövall, Billy; Forastiere, Francesco

    2005-08-01

    In this study, long-term aerosol particle total number concentration measurements in five metropolitan areas across Europe are presented. The measurements have been carried out in Augsburg, Barcelona, Helsinki, Rome, and Stockholm using the same instrument, a condensation particle counter (TSI model 3022). The results show that in all of the studied cities, the winter concentrations are higher than the summer concentrations. In Helsinki and in Stockholm, winter concentrations are higher by a factor of two and in Augsburg almost by a factor of three compared with summer months. The winter maximum of the monthly average concentrations in these cities is between 10,000 cm(-3) and 20,000 cm(-3), whereas the summer min is approximately 5000-6000 cm(-3). In Rome and in Barcelona, the winters are more polluted compared with summers by as much as a factor of 4-10. The winter maximum in both Rome and Barcelona is close to 100,000 cm(-3), whereas the summer minimum is > 10,000 cm(-3). During the weekdays the maximum of the hourly average concentrations in all of the cities is detected during the morning hours between 7 and 10 a.m. The evening maxima were present in Barcelona, Rome, and Augsburg, but these were not as pronounced as the morning ones. The daily maxima in Helsinki and Stockholm are close or even lower than the daily minima in the more polluted cities. The concentrations between these two groups of cities are different with a factor of about five during the whole day. The study pointed out the influence of the selection of the measurement site and the configuration of the sampling line on the observed concentrations.

  18. The role of acoustic screens in distribution of technogenic magnetic particles and chemical pollution in roadside soil

    Science.gov (United States)

    Wawer, Małgorzata; Magiera, Tadeusz; Szuszkiewicz, Marcin

    2015-04-01

    Roads constructed nowadays should by all means be functional for their motorized users but at the same time their effect on the environment ought to be limited to the minimum. Despite the existence of various methods for preventing from negative influence of roads on the environment, there is still lack of adequate techniques to monitor and reduce the spreading of roadside pollution in the air and soils. The aim of the study was to assess the influence of acoustic screens on spreading and deposition of solid pollutants deriving from car emissions, based on their quantitative and qualitative analysis. During this study, measurements of magnetic susceptibility and analyses of heavy metals as well as Pt and Rh contents in soil and plant samples (Taraxacum officinale, Plantago major, Parthenocissus quinquefolia) collected near different kinds of acoustic screens ("green walls", Plexiglass, sawdust concrete, steel panels and earth embankments) have been done. Previous investigations showed showed that most of traffic emission is deposited in the close vicinity of the roads (up to 10 m) and the level of contamination decreased with increasing distance from the road edge. However, the results of this project indicate that, in the area where the acoustic screens are located, this distribution is disturbed and the additional enrichment of heavy metals in soil about 10 - 15 m behind screens is observed. Spatial distribution of heavy metal contents in soil samples corresponds to its magnetic susceptibility values. High contents of Fe, Zn, Mn and Pb was observed next to acoustic screens made of sawdust concrete and steel panels. Additionally, concentration of Zn in soil samples collected close to these screens exceeded threshold value. Analyses of plants showed that the highest content of examined elements and highest values of magnetic susceptibility were recorded near road edge. What is more, samples of Parthenocissus quinquefolia collected at height 0.2 m were characterized

  19. Inventories of atmospheric pollutants emissions in France under the convention framework on the long range transboundary air pollution; Inventaire des emissions de polluants atmospheriques en France au titre de la convention sur la pollution atmospherique tranfrontaliere a longue distance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France, concerning all the substances covered by the different protocols adopted under the Convention on Long Range Transboundary Air Pollution (LRTAP), on behalf of the United Nations Economic Commission for Europe (UNECE). The substances covered are sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), ammonia (NH{sub 3}), carbon monoxide (CO), total suspended particles (TSP), fine particles (PM{sub 10} and PM{sub 2,5}), heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn) and persistent organic pollutants (POPs). Data are reported according to new specifications adopted in Autumn 2001 regarding substances and source coverage. Parties to the convention have to report annually emissions of these substances. (author)

  20. Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2013-01-01

    The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell...... the acidification by supplying more reactive H+ ions (defined as the H+ ions causing release of heavy metals from soil particles). The molar ratio of reactive H+ ions to total produced H+ ions (RH+/PH+) was higher in every pulse current experiment than in the corresponding constant current experiment. In addition...... the removal efficiencies of heavy metals were also improved. The carbonate buffering system in a soil is the first mechanism reacting with the produced H+ ions and impeding the heavy metal mobilization. It was found that the effect of improvement on both the acidification process and the removal of heavy...

  1. Copper removal from acid mine drainage-polluted water using glutaraldehyde-polyethyleneimine modified diatomaceous earth particles

    Directory of Open Access Journals (Sweden)

    Mikael Larsson

    2018-02-01

    Full Text Available Mine waters and tailings generated from mining and mineral processing activities often have detrimental impact on the local environment. One example is acid mine drainage, in which sulphides in the mining waste react with water and oxygen to produce an acidic environment that subsequently dissolves host rock minerals from the waste containing toxic metals and trace elements. Copper is one such metal of significance, as it is mined at large volumes in sulphide containing ores. It has strong biocidal activity that greatly affects ecosystems. We have previously reported that glutaraldehyde (GA-crosslinked polyethyleneimine (PEI has strong affinity and selectivity for copper and that diatomaceous earth (DE particles can be modified with the material to form a copper-extraction resin. In this study, the copper uptake of GA-PEI-DE particles was investigated from synthetic and real acid mine drainage samples under different pHs and their copper removal performance was compared with that of selected commercial resins. The results revealed that copper could effectively and preferentially bind to the material at pH 4, and that the copper could be completely eluted by lowering of the pH. In addition, effective copper uptake and elution was demonstrated using real legacy acid mine drainage water from Mount Lyell in Tasmania.

  2. Copper removal from acid mine drainage-polluted water using glutaraldehyde-polyethyleneimine modified diatomaceous earth particles.

    Science.gov (United States)

    Larsson, Mikael; Nosrati, Ataollah; Kaur, Simarpreet; Wagner, Jochen; Baus, Ulf; Nydén, Magnus

    2018-02-01

    Mine waters and tailings generated from mining and mineral processing activities often have detrimental impact on the local environment. One example is acid mine drainage, in which sulphides in the mining waste react with water and oxygen to produce an acidic environment that subsequently dissolves host rock minerals from the waste containing toxic metals and trace elements. Copper is one such metal of significance, as it is mined at large volumes in sulphide containing ores. It has strong biocidal activity that greatly affects ecosystems. We have previously reported that glutaraldehyde (GA)-crosslinked polyethyleneimine (PEI) has strong affinity and selectivity for copper and that diatomaceous earth (DE) particles can be modified with the material to form a copper-extraction resin. In this study, the copper uptake of GA-PEI-DE particles was investigated from synthetic and real acid mine drainage samples under different pHs and their copper removal performance was compared with that of selected commercial resins. The results revealed that copper could effectively and preferentially bind to the material at pH 4, and that the copper could be completely eluted by lowering of the pH. In addition, effective copper uptake and elution was demonstrated using real legacy acid mine drainage water from Mount Lyell in Tasmania.

  3. The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2014-04-01

    Full Text Available The implementation and development of managed aquifer recharge (MAR have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp and median grain size of suspended solids (d50 was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp and different level of grain diameter of suspended solids (di, were developed to predict the potential suspended solids types.

  4. Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water

    Science.gov (United States)

    Yang, Kaijie; Chen, Baoliang; Zhu, Lizhong

    2015-01-01

    The substantial aggregation of pristine graphene nanosheets decreases its powerful adsorption capacity and diminishes its practical applications. To overcome this shortcoming, graphene-coated materials (GCMs) were prepared by loading graphene onto silica nanoparticles (SiO2). With the support of SiO2, the stacked interlamination of graphene was held open to expose the powerful adsorption sites in the interlayers. The adsorption of phenanthrene, a model aromatic pollutant, onto the loaded graphene nanosheets increased up to 100 fold compared with pristine graphene at the same level. The adsorption of GCMs increased with the loading amount of the graphene nanosheets and dramatically decreased with the introduction of oxygen-containing groups in the graphene nanosheets. The highly hydrophobic effect and the strong π-π stacking interactions of the exposed graphene nanosheets contributed to their superior adsorption of GCMs. An unusual GCM peak adsorption coefficient (Kd) was observed with the increase in sorbate concentration. The sorbate concentration at peak Kd shifted to lower values for the reduced graphene oxide and graphene relative to the graphene oxide. Therefore, the replacement of water nanodroplets attached to the graphene nanosheets through weak non-hydrogen bonding with phenanthrene molecules via strong π-π stacking interactions is hypothesized to be an additional adsorption mechanism for GCMs. PMID:26119007

  5. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  6. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk; Orlov, Alexander

    2017-07-01

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on its adsorption capacity and reaction mechanisms was also proposed in this work.

  7. Vertical dimensions of suspended horses.

    Science.gov (United States)

    Clutton, R E; Chase-Topping, M; Squires, R; Lawson, H; Minard, H; Rose, S

    2010-11-01

    The dimensions of anaesthetised hobbled horses during suspension and transfer onto the operating table are unknown. These data are required for the cost-effective construction of equine surgical facilities. To measure the distance from the toe to dependent back margin (Bsusp) and poll (Psusp) of anaesthetised suspended horses and correlate them with readily obtained measures from standing animals. Digital photographs of suspended horses were taken in the anaesthesia induction box at a fixed position that allowed trigonometric determination of Bsusp and Psusp. These values were linked with body mass, height at the withers (Wstand), the length of the crest from the poll to the withers (crest) and of the back (back) from the withers to the crop, by deriving an equine morphological index (EMI) using principal component analysis. The EMI and other linear variables were then subjected to single variable regression analysis. EMI was 0.531mass((kg)) + 0.528Wstand((cm)) + 0.469crest((cm)) + 0.468back((cm)) . Bsusp was most accurately estimated using the expression Bsusp= 118.71 + 0.128EMI while Psusp was most strongly associated with Wstand, i.e. Psusp= 46.9 + 1.01Wstand((cm)) . The height of suspended horses at the most ventral margin of the back and the poll can be estimated from measures taken from the standing animal. The data will allow the more informed planning and construction of equine surgical facilities in which mechanical hoists are used. © 2010 EVJ Ltd.

  8. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  9. Why suspended matter is important ?

    Indian Academy of Sciences (India)

    Nutrients and pollutants (agricultural, industrial and domestic waste runoff) – enhance / reduce productivity and/or fish migration / mortality. Dynamic estuarine (physico-chemical/biogeochemical) processes control distribution and transportation of SPM. Understanding SPM dynamics – monitor water quality, fate of pollution ...

  10. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.

    Science.gov (United States)

    Zhao, Jinhui; Zhao, Yaqian; Zhao, Xiaoli; Jiang, Cheng

    2016-05-01

    The performance of a field grassed swales (GSs) coupled with wetland detention ponds (WDPs) system was monitored under four typical rainfall events to assess its effectiveness on agricultural runoff pollution control in Taihu Basin, China. The results indicated that suspended solids (SS) derived from the flush process has significant influence on pollution loads in agricultural runoff. Determination of first flush effect (FFE) indicated that total suspended solids (TSS) and total phosphorus (TP) exhibited moderate FFE, while chemical oxygen demand (COD) and total nitrogen (TN) showed weak FFE. Average removal efficiencies of 83.5 ± 4.5, 65.3 ± 6.8, 91.6 ± 3.8, and 81.3 ± 5.8 % for TSS, COD, TN, and TP were achieved, respectively. The GSs played an important role in removing TSS and TP and acted as a pre-treatment process to prevent clogging of the subsequent WDPs. Particle size distributions (PSDs) analysis indicated that coarse particles larger than 75 μm accounted for 80 % by weight of the total particles in the runoff. GSs can effectively reduce coarse particles (≥75 μm) in runoff, while its removal efficiency for fine particles (agricultural runoff pollution control.

  11. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  12. Activation of Pulmonary Dendritic Cells and Th2-Type Inflammatory Responses on Instillation of Engineered, Environmental Diesel Emission Source or Ambient Air Pollutant Particles in vivo

    Science.gov (United States)

    Bezemer, Gillina F.G.; Bauer, Stephen M.; Oberdörster, Günter; Breysse, Patrick N.; Pieters, Raymond H.H.; Georas, Steve N.; Williams, Marc A.

    2011-01-01

    The biological effects of acute particulate air pollution exposure in host innate immunity remain obscure and have relied largely on in vitro models. We hypothesized that single acute exposure to ambient or engineered particulate matter (PM) in the absence of other secondary stimuli would activate lung dendritic cells (DC) in vivo and provide information on the early immunological events of PM exposure and DC activation in a mouse model naïve to prior PM exposure. Activation of purified lung DC was studied following oropharyngeal instillation of ambient particulate matter (APM). We compared the effects of APM exposure with that of diesel-enriched PM (DEP), carbon black particles (CBP) and silver nanoparticles (AgP). We found that PM species induced variable cellular infiltration in the lungs and only APM exposure induced eosinophilic infiltration. Both APM and DEP activated pulmonary DC and promoted a Th2-type cytokine response from naïve CD4+ T cells ex vivo. Cultures of primary peribronchial lymph node cells from mice exposed to APM and DEP also displayed a Th2-type immune response ex vivo. We conclude that exposure of the lower airway to various PM species induces differential immunological responses and immunomodulation of DC subsets. Environmental APM and DEP activated DC in vivo and provoked a Th2 response ex vivo. By contrast, CBP and AgP induced altered lung tissue barrier integrity but failed to stimulate CD4+ T cells as effectively. Our work suggests that respirable pollutants activate the innate immune response with enhanced DC activation, pulmonary inflammation and Th2-immune responsiveness. PMID:21099199

  13. Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area.

    Science.gov (United States)

    Alberti, Luca; Colombo, Loris; Formentin, Giovanni

    2018-04-15

    The Lombardy Region in Italy is one of the most urbanized and industrialized areas in Europe. The presence of countless sources of groundwater pollution is therefore a matter of environmental concern. The sources of groundwater contamination can be classified into two different categories: 1) Point Sources (PS), which correspond to areas releasing plumes of high concentrations (i.e. hot-spots) and 2) Multiple-Point Sources (MPS) consisting in a series of unidentifiable small sources clustered within large areas, generating an anthropogenic diffuse contamination. The latter category frequently predominates in European Functional Urban Areas (FUA) and cannot be managed through standard remediation techniques, mainly because detecting the many different source areas releasing small contaminant mass in groundwater is unfeasible. A specific legislative action has been recently enacted at Regional level (DGR IX/3510-2012), in order to identify areas prone to anthropogenic diffuse pollution and their level of contamination. With a view to defining a management plan, it is necessary to find where MPS are most likely positioned. This paper describes a methodology devised to identify the areas with the highest likelihood to host potential MPS. A groundwater flow model was implemented for a pilot area located in the Milan FUA and through the PEST code, a Null-Space Monte Carlo method was applied in order to generate a suite of several hundred hydraulic conductivity field realizations, each maintaining the model in a calibrated state and each consistent with the modelers' expert-knowledge. Thereafter, the MODPATH code was applied to generate back-traced advective flowpaths for each of the models built using the conductivity field realizations. Maps were then created displaying the number of backtracked particles that crossed each model cell in each stochastic calibrated model. The result is considered to be representative of the FUAs areas with the highest likelihood to host

  14. Vertical transport of suspended particulate trace elements in the North Atlantic Ocean

    International Nuclear Information System (INIS)

    Kuss, J.; Kremling, K.; Scholten, J.

    1999-01-01

    Suspended marine particles play a key role in the exchange processes between rapidly sinking particles and seawater because of their large surface area and long residence times. They are involved in the transport processes of rapidly sinking particles (∼ 100 m/day) through aggregation and disaggregation. This mechanism results in a net downward transport of suspended particulate trace elements (TE). To provide more information to these processes TE in suspended particulate material (SPM) have been measured on three cruises from 1995 to 1997 along 20 deg. W using a large volume in situ filtration between 25 m and 4150 m depth in addition to particle flux measurements with sediment traps. These studies were performed under the framework of German JGOFS

  15. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  16. Nitric oxide and superoxide mediate diesel particle effects in cytokine-treated mice and murine lung epithelial cells — implications for susceptibility to traffic-related air pollution

    Directory of Open Access Journals (Sweden)

    Manzo Nicholas D

    2012-11-01

    Full Text Available Abstract Background Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and negative health impacts are observed in individuals with respiratory inflammation. We hypothesized that interactions between nitric oxide (NO, increased during lung inflammatory responses, and reactive oxygen species (ROS, increased as a consequence of traffic exposure ─ played a key role in the increased susceptibility of these at-risk populations to traffic emissions. Methods Diesel exhaust particles (DEP were used as surrogates for traffic particles. Murine lung epithelial (LA-4 cells and BALB/c mice were treated with a cytokine mixture (cytomix: TNFα, IL-1β, and IFNγ to induce a generic inflammatory state. Cells were exposed to saline or DEP (25 μg/cm2 and examined for differential effects on redox balance and cytotoxicity. Likewise, mice undergoing nose-only inhalation exposure to air or DEP (2 mg/m3 × 4 h/d × 2 d were assessed for differential effects on lung inflammation, injury, antioxidant levels, and phagocyte ROS production. Results Cytomix treatment significantly increased LA-4 cell NO production though iNOS activation. Cytomix + DEP-exposed cells incurred the greatest intracellular ROS production, with commensurate cytotoxicity, as these cells were unable to maintain redox balance. By contrast, saline + DEP-exposed cells were able to mount effective antioxidant responses. DEP effects were mediated by: (1 increased ROS including superoxide anion (O2˙-, related to increased xanthine dehydrogenase expression and reduced cytosolic superoxide dismutase activity; and (2 increased peroxynitrite generation related to interaction of O2˙- with cytokine-induced NO. Effects were partially reduced by superoxide dismutase (SOD supplementation or by blocking iNOS induction. In mice, cytomix

  17. Determination of the origin of suspended matter and sediments in the Elbe estuary using natural tracers

    International Nuclear Information System (INIS)

    Schoer, J.H.

    1990-01-01

    The clay mineral composition, the concentrations of carbonates, the proportions of carbon and oxygen isotopes in carbonates and organic matter, as well as the concentrations of different nonanthropogenic metals were used to determine the origin of different grain size fractions of sediments and suspended matter in the Elbe estuary. Analysis of the smectite/kaolinite proportion revealed that solid material · 2 μm from the North Sea is transported up the river, about 40 km beyond the most upstream position of the salt wedge. In the 2-20 μm fraction, the 16 O/ 18 O ratio in carbonates and the kaolinite/chlorite proportion demonstrate a transport of North Sea material between 40 and 20 km upstream of the marine water limit. The transport behavior of the 20-63 μm grain size fraction could be determined by the hafnium concentration, representative for the heavy mineral zircon. In this case, the transport distance beyond the salt wedge was up to 20 km. No information was available on the origin of the fine organic matter, whereas the coarser fractions were derived primarily from debris of salt marsh vegetation. The results demonstrate that in the Elbe estuary mixing between marine and fluvial solid material occurs upstream of the salt wedge and is significantly responsible for the observed decrease in the concentration of various pollutants in sediments and suspended matter along the estuary. The cause of the upstream particle transport is probably a scour lag mechanism based on asymmetries of the flood- and ebb-tide current distribution, especially their differing maximum velocities

  18. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    Science.gov (United States)

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  19. 40 CFR 1054.335 - How do I ask EPA to reinstate my suspended certificate?

    Science.gov (United States)

    2010-07-01

    ... problem from happening again. (b) Give us data from production-line testing that shows the remedied engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Production-line Testing § 1054.335 How do I ask EPA to reinstate my suspended certificate? (a...

  20. 40 CFR 1048.335 - How do I ask EPA to reinstate my suspended certificate?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing Production-line Engines § 1048.335 How do I ask EPA to reinstate my suspended certificate? (a... problem from happening again. (b) Give us data from production-line testing that shows the remedied engine...

  1. 40 CFR 1045.335 - How do I ask EPA to reinstate my suspended certificate?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Testing Production-line Engines § 1045.335 How do I ask EPA to reinstate my suspended certificate... problem from happening again. (b) Give us data from production-line testing that shows the remedied engine...

  2. Personal exposure to total suspended particulates of adolescents living in Vanderbijlpark, South Africa

    CSIR Research Space (South Africa)

    Terblanche, APS

    1995-06-01

    Full Text Available Personal monitoring of exposure to air pollution is becoming increasingly important in health studies as a method of characterizing total exposure. We monitored the exposure of 31 teenagers to total suspended particulates (TSP) over a 12-hour period...

  3. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    Science.gov (United States)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia to Himalayas and further inland Tibetan Plateau. The monitoring network will be continuously operated to provide basis for defining the transboundary air pollution and their impact on the environments and ecosystems over the Himalayas and the Tibetan Plateau.

  4. Effects of air pollution on human health and practical measures for prevention in Iran

    Science.gov (United States)

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran. PMID:27904610

  5. Effects of air pollution on human health and practical measures for prevention in Iran.

    Science.gov (United States)

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  6. Coarse(PM(2.5-10)), fine(PM(2.5)), and ultrafine air pollution particles induce/increase immune costimulatory receptors on human blood-derived monocytes but not on alveolar macrophages.

    Science.gov (United States)

    Becker, Susanne; Soukup, Joleen

    2003-05-09

    Diesel particles have been shown to possess adjuvant activity and influence the development of allergic sensitization. Also, more heterogeneous mixtures of pollution particles have been shown to affect host defenses and development of immunity in animal models. In the present study it was determined whether freshly collected particulate matter (PM(10)) in the size ranges 2.5-10 micro m (PM(2.5-10), coarse), 0.1-2.5 micro m (PM(2.5), fine), and micro m (ultrafine) in diameter affected the development of antigen presenting cells by evaluating the expression of surface receptors involved in T-cell interaction on both human alveolar macrophages (AM) and blood-derived monocytes (Mo). A Mo-AM coculture was exposed to 50 micro g/ml of particles and expression of HLA-DR, CD40, CD80, and CD86 on each cell type was assessed by flow cytometry. Mo upregulated the expression of all four receptors in response to each of the particle fractions, while expression was unaffected in AM. The cells were also exposed to two model air pollution particles, diesel dust and volcanic ash, neither of which affected receptor expression. Furthermore, Mo and AM were separately exposed to the three PM size fractions and supernatants assessed for the T-helper (CD4(+)) lymphocyte chemoattractant interleukin-16 (IL-16). AM, but not Mo, produced IL-16, and this chemoattractant was released only in response to PM(2.5-10). These data suggest that a wide size range of pollution particles contain materials that may promote antigen presentation by Mo, while the capability to specifically recruit CD4(+) lymphocytes is contained in AM stimulated with the coarse PM fraction.

  7. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    Science.gov (United States)

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  8. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China.

    Science.gov (United States)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-12-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8-14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10-24%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  10. Particulate air pollution and circulating biomarkers among type 2 diabetic mellitus patients: the roles of particle size and time windows of exposure.

    Science.gov (United States)

    Wang, Cuicui; Chen, Renjie; Zhao, Zhuohui; Cai, Jing; Lu, Jianxiong; Ha, Sandie; Xu, Xiaohui; Chen, Xuan; Kan, Haidong

    2015-07-01

    Short-term associations between size-fractionated particulate matter (PM) air pollution and circulating biomarkers are not well established, especially among diabetes patients. We conducted a longitudinal panel study involving 6 repeated measurements of 12 circulating biomarkers among 35 diabetes patients from April to June, 2013 in Shanghai, China. Real-time number and mass concentrations of PM with multiple size fractions between 0.25 and 10 μm were measured. Linear mixed-effect models were used to explore the associations between size-fractionated PM concentrations and blood biomarkers at different time windows. Short-term exposure to PM was significantly associated with elevated levels of 5 biomarkers of inflammation, 3 biomarkers of coagulation and 1 vasoconstrictor. The effects varied considerably by particle size and time windows. Overall, PM with smaller size had stronger associations, and the most significant size fractions were 0.25-0.40 μm. Even 2 h exposure to PM can lead to a significant increase in biomarkers. The effects on biomarkers of inflammation and vasoconstriction were restricted to the first 12h after exposure, but the effects on coagulation persisted for 24-72 h. For example, an interquartile range increase in 2h average exposure to PM(0.25-0.40) was associated with 6-20% increase in biomarkers of inflammation, 19-38% in coagulation and 17% in vasoconstriction. PM had a stronger effect among male patients than female patients. Our results provided important evidence on the roles of the size and time windows of exposure in the PM-mediated effects on circulating biomarkers of inflammation, coagulation and vasoconstriction in diabetes patients in China. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output

    Directory of Open Access Journals (Sweden)

    D. Hirdman

    2010-01-01

    Full Text Available As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport, this paper studies the sources of equivalent black carbon (EBC, sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To determine where these substances originate, the measurement data were combined with calculations using FLEXPART, a Lagrangian particle dispersion model. The climatology of atmospheric transport from surrounding regions on a twenty-day time scale modelled by FLEXPART shows that the stations Zeppelin, Alert and Barrow are highly sensitive to surface emissions in the Arctic and to emissions in high-latitude Eurasia in winter. Emission sensitivities over southern Asia and southern North America are small throughout the year. The high-altitude station Summit is an order of magnitude less sensitive to surface emissions in the Arctic whereas emissions in the southern parts of the Northern Hemisphere continents are more influential relative to the other stations. Our results show that for EBC and sulphate measured at Zeppelin, Alert and Barrow, northern Eurasia is the dominant source region. For sulphate, Eastern Europe and the metal smelting industry in Norilsk are particularly important. For EBC, boreal forest fires also contribute in summer. No evidence for any substantial contribution to EBC from sources in southern Asia is found. European air masses are associated with low ozone concentrations in winter due to titration by nitric oxides, but are associated with high ozone concentrations in summer due to photochemical ozone formation. There is also a strong influence of ozone depletion events in the Arctic boundary layer on measured ozone concentrations in spring

  12. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  13. Environmental magnetism and magnetic mapping of urban metallic pollution (Paris, France)

    Science.gov (United States)

    Isambert, Aude; Franke, Christine; Macouin, Mélina; Rousse, Sonia; Philip, Aurélio; de Villeneuve, Sybille Henry

    2017-04-01

    Airborne pollution in dense urban areas is nowadays a subject of major concern. Fine particulate pollution events are ever more frequent and represent not only an environmental and health but also a real economic issue. In urban atmosphere, the so-called PM2.5 (particulate matter profile along the river. Variations in that profile may be linked to the atmospheric metallic pollution. In addition to that, the sampling of banks and riverbed sediments of the Seine allow a global estimation on the anthropogenic versus detrital and biologic input in the city of Paris. The first results presented here show a general increase of the concentration in magnetic particles from upstream to downstream Paris probably linked to urban pollutions as previously observed for suspended particulate matter (Franke et al. 2009; Kayvantash, 2016). Sagnotti, L., & Winkler, A. (2012). On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy. Atmospheric environment, 59, 131-140. Franke, C., Kissel, C., Robin, E., Bonté, P., & Lagroix, F. (2009). Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input. Geochemistry, Geophysics, Geosystems, 10(8). Kayvantash, D., 2016. Characterization of ferruginous particles in the Seine River using environmental magnetism, Ph.D. thesis, MINES ParisTech/LSCE, France.

  14. Measuring suspended sediment in small mountain streams

    Science.gov (United States)

    Robert B. Thomas

    1985-01-01

    Measuring suspended sediment concentration in streams provides a way of monitoring the effects of forest management activities on water quality. Collecting data on suspended sediment is an act of sampling. The nature of the delivery process and the circumstances under which data are collected combine to produce highly variable results that are difficult to analyze and...

  15. 78 FR 63007 - Suspended Counterparty Program

    Science.gov (United States)

    2013-10-23

    ... FEDERAL HOUSING FINANCE AGENCY 12 CFR Part 1227 RIN 2590-AA60 Suspended Counterparty Program... that generally codifies the procedures FHFA follows under its existing Suspended Counterparty Program... reports to FHFA when they become aware that an individual or institution and any affiliates thereof with...

  16. Wave transmission by suspended pipe breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Mani, J.S.; Jayakumar, S.

    and suspended between the support piles spaced far apart. Experimental studies conducted to determine the wave transmission characteristics indicate that by suspending a row of closely spaced pipes (with a gap to diameter ratio of 0.22 and draft to water depth...

  17. Atmospheric pollution; Pollution atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Lambrozo, J.; Guillossou, G. [EDF-Gas de France, Service des Etudes Medicales, 75 - Paris (France)

    2008-10-15

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  18. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    elements which constitute an important class of pollutants. Such ... Hence, the transfer of air borne particles to land or water surfaces ... relative importance of these processes depends primarily on the size of the particles. Anthropogenically added particulates and aerosols in atmosphere show a broad size distribution from.

  19. Dust pollution from agriculture

    Science.gov (United States)

    Fine dust particles emitted from agricultural facilities, lands and operations are considered pollutants when they affect public health and welfare. These particles, with a diameter of less than or equal to 2.5 µm (PM2.5) and less than or equal to 10 µm (PM10), are regulated by government agencies. ...

  20. Statistical analysis and estimation of annual suspended sediments of major rivers in Japan.

    Science.gov (United States)

    Luo, Pingping; He, Bin; Chaffe, Pedro Luiz Borges; Nover, Daniel; Takara, Kaoru; Mohd Remy Rozainy, M A Z

    2013-05-01

    We evaluate the spatiotemporal trends of recent suspended sediment conditions in Japanese rivers. Statistical and spatiotemporal trend analysis is conducted on the 92 major rivers in Japan based on water quality monitoring data from 1992 to 2005. The Mann-Kendall non-parametric method was used to investigate the spatial and temporal trends for the suspended sediment indicator. Results show that the mean concentration of suspended sediments in Japanese rivers has generally declined in recent years, although there are still water quality problems at some monitoring sites (Kanto, Chubu, Kinki and Kyushu regions). A positive relationship between observed yearly discharge and suspended sediment load was found. Land use maps with 100 meter spatial resolution were used to apply an empirical model and develop a regression model for estimating annual suspended sediment loads directly from land use and hydrologic data. Rivers were assigned to three groups according to statistical cluster analysis of suspended sediment (SS) concentration. The correlation between the simulation result from the empirical model and the observed data had R(2) values of 0.62 and 0.71 for groups 2 and 3, and the correlation between the simulation result from the regression model and the observed data had R(2) values of 0.48 and 0.34 for groups 2 and 3. Results show that the proposed simulation technique can be used to predict the pollutant loads to river basins in Japan. Results also suggest prioritization methods and strategies that policy-makers can use to address suspended sediment pollution in rivers and water quality management in general.

  1. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen

    2010-01-13

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors observed using experiments performed on time scales of tens of seconds can be projected to obtain maps of their dynamical response on geological time scales. That such extraordinarily slow dynamic processes can be uncovered from real-time measurements by simply stretching a system provides a simple but powerful tool for interrogating extremely slow motions in other jammed physical states. © 2010 American Chemical Society.

  2. Mucous Secretion and Cilia Beating Defend Developing Coral Larvae from Suspended Sediments.

    Directory of Open Access Journals (Sweden)

    Gerard F Ricardo

    Full Text Available Suspended sediments produced from dredging activities, or added to the sediment budget via river runoff, are a concern for marine resource managers. Understanding the impact of suspended sediments on critical life history stages of keystone species like corals is fundamental to effective management of coastlines and reefs. Coral embryos (Acropora tenuis and A. millepora and larvae (A. tenuis, A. millepora and Pocillopora acuta were subjected to a range of suspended sediment concentrations of different sediment types (siliciclastic and carbonate to assess concentration-response relationships on ecologically relevant endpoints, including survivorship and ability to metamorphose. Embryos were subjected to short (12 h suspended sediment exposures from ages of 3-12 hours old or a long (30 h exposure at 6 hours old. Neither the survivorship nor metamorphosis function of embryos were significantly affected by realistic sediment exposures to ~1000 mg L-1. However, some embryos exhibited a previously undescribed response to dynamically suspended sediments, which saw 10% of the embryos form negatively buoyant cocoons at siliciclastic suspended sediment concentrations ≥35 mg L-1. Scanning electron and optical microscopy confirmed the presence of a coating on these embryos, possibly mucus with incorporated sediment particles. Cocoon formation was common in embryos but not in larvae, and occurred more often after exposure to siliciclastic rather than carbonate sediments. Once transferred into sediment-free seawater, functional ~36-h-old embryos began emerging from the cocoons, coinciding with cilia development. Ciliated (> 36-h-old larvae exposed to suspended sediments for 60 h were also observed to secrete mucus and were similarly unaffected by suspended sediment concentrations to ~800 mg L-1. This study provides evidence that mucous secretion and cilia beating effectively protect coral embryos and larvae from suspended sediment and that these mechanisms

  3. Monosaccharide composition of suspended particles from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sankaran, P.D.; Wagh, A.B.

    , fucose, ribose, arabinose and xylose showed large variations and were generally abundant at greater depths ( 100 m). Glucose contribution to the total carbohydrates, especially at higher depths ( 100 m) was relatively less than that reported from other...

  4. Suspended particle transport through constriction channel with Brownian motion

    DEFF Research Database (Denmark)

    Hanasaki, Itsuo; Walther, Jens Honore

    2017-01-01

    It is well known that translocation events of a polymer or rod through pores or narrower parts of micro- and nanochannels have a stochastic nature due to the Brownian motion. However, it is not clear whether the objects of interest need to have a larger size than the entrance to exhibit the devia...

  5. Investigations of fine particles concentrations in the atmospheric air near highways

    Directory of Open Access Journals (Sweden)

    T.S. Ulanova

    2016-12-01

    Full Text Available This paper presents the results of the experimental determination of particulate matter PM 2,5 , PM 10 mass concentration and total suspended particles up to 15 microns (TSP, which are the priority components of air pollutants near the highways. The measurements were made during the year 2016 using a laser analyzer of aerosol DustTrak 8533. The study shows the dependence of the particulate matter concentration from the time of day and the traffic congestion. The sampling (N = 67 was performed due to brief program on the basis of the route monitoring station, which is located on the road junction with heavy traffic – up to1,200 vehicles per hour on the test sites. The single concentrations of the suspended substances reached the levels of the Maximum permissible concentration (MPC of 1.5. During the study period, the exceeding of the established average daily MPC for fine particles PM 2.5 and PM 10 fractions near the highways have not been identified. The significant linear relationship between the number of diesel vehicles on stops and the concentrations of particulate matter PM 2.5 , PM 10 , TSP (correlation coefficient from 0.62 to 0.65; Fisher's criterion of 14.2 to 38.0; p <0.05 has been established and parameterized, what allows to predict the level of air pollution by diesel vehicles when braking and accelerating. It is recommended to fulfill continuous monitoring of the average daily and single MPC of the fine suspended particles near the roads with traffic load of 769 – 1270 or more the diesel vehicles per every 20 minutes. The obtained data may be used in evaluation of the risk to public health induced by the transport emissions as well as in the estimation of the fine particles PM 2.5 , PM 10 concentrations on the sites close to the highways of the large industrial center.

  6. An Analysis of Air Pollution in Makkah - a View Point of Source Identification

    Directory of Open Access Journals (Sweden)

    Turki M. Habeebullah

    2013-07-01

    Full Text Available Makkah is one of the busiest cities in Saudi Arabia and remains busy all year around, especially during the season of Hajj and the month of Ramadan when millions of people visit this city. This emphasizes the importance of clean air and of understanding the sources of various air pollutants, which is vital for the management and advanced modeling of air pollution. This study intends to identify the major sources of air pollutants in Makkah, near the Holy Mosque (Al-Haram using a graphical approach. Air pollutants considered in this study are nitrogen oxides (NOx, nitrogen dioxide (NO2, nitric oxide (NO, carbon monoxide (CO, sulphur dioxide (SO2, ozone (O3 and particulate matter with aero-dynamic diameter of 10 um or less (PM10. Polar plots, time variation plots and correlation analysis are used to analyse the data and identify the major sources of emissions. Most of the pollutants demonstrate high concentrations during the morning traffic peak hours, suggesting road traffic as the main source of emission. The main sources of pollutant emissions identified in Makkahwere road traffic, re-suspended and windblown dust and sand particles. Further investigation on detailedsource apportionment is required, which is part of the ongoing project.

  7. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS.

    Science.gov (United States)

    Weng, Qihao; Yang, Shihong

    2006-06-01

    This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.

  8. Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques

    International Nuclear Information System (INIS)

    Osan, Janos; Toeroek, Szabina; Alfoeldy, Balint; Alsecz, Anita; Falkenberg, Gerald; Baik, Soo Yeun; Van Grieken, Rene

    2007-01-01

    The rivers in the Hungarian Upper Tisza Region are frequently polluted mainly due to mining activities in the catchment area. At the beginning of 2000, two major mining accidents occurred in the Romanian part of the catchment area due to the failure of a tailings dam releasing huge amounts of cyanide and heavy metals to the rivers. Surface sediment as well as water samples were collected at six sites in the years 2000-2003, from the northeast-Hungarian section of the Tisza, Szamos and Tur rivers. The sediment pollution of the rivers was compared based on measurements of bulk material and selected single particles, in order to relate the observed compositions and chemical states of metals to the possible sources and weathering of pollution. Non-destructive X-ray analytical methods were applied in order to obtain different kinds of information from the same samples or particles. In order to identify the pollution sources, their magnitude and fate, complementary analyses were carried out. Heterogeneous particulate samples were analyzed from a large geographical territory and a 4-year time period. Individual particles were analyzed only from the 'hot' samples that showed elevated concentrations of heavy metals. Particles that were classified as anthropogenic were finally analyzed to identify trace concentrations and chemical states of heavy metals. Although the Tisza river was affected by water pollution due to the two major mining accidents at the beginning of 2000, the concentration of heavy metals in sediments decreased to the mineral background level 1 year after the pollution event. In the tributaries Szamos and Tur, however, no significant decrease of the heavy metal concentrations was observed in the recent years, indicating a continuous pollution. Among the water suspended particles collected from river Tur, fibers of unknown origin were observed by electron microscopy; these particles were aluminosilicates enriched in Zn and Mn. Cd was also concentrated in

  9. Particle tracking in the eastern Irish Sea

    Science.gov (United States)

    Wolf, Judith; Amoudry, Karen; Phillips, Hazel; Brown, Jenny

    2017-04-01

    in saltmarshes. A particle tracking experiment has been carried out in order to examine advection and dispersion of particles released at different levels in the water column. The particle tracking has been carried out using the FVCOM offline particle tracking software, using multiple particle releases at select locations. The results are used to identify possible fates of suspended sediment and associated pollutants.

  10. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  11. Humification and Humic Acid Composition of Suspended Soil in Oligotrophous Environments in South Vietnam

    Directory of Open Access Journals (Sweden)

    E. V. Abakumov

    2018-01-01

    Full Text Available Humification is considered to be a global process that is implemented in soils and organic sediments and also in natural water and air. The term “suspended soils” has become increasingly common in recent years. Suspended soils are defined as the part of the organic matter that has not undergone the full decomposition process and has not turned into the humus of terrestrial soils. Suspended soils were shown to contain higher total nitrogen, phosphorus, and potassium contents than the forest soil, but the moisture content in suspended soils was significantly lower. Our study of the structural composition of humic substances in suspended soils was conducted with an aim of evaluating the humification rates and structural composition of humic acids in the suspended soil in tropical forests of South Vietnam. Soil samples from three selected areas were investigated: the soil under phorophytes (mineral soil presented by samples of topsoil of the typical dry savanna landscape and two soils from epiphytous formations. Samples were collected from savanna-type sparse communities, located on oligotrophous plains in Phú Quốc Island (South Vietnam in 2015. General properties of the soil and the elemental composition of suspended soils were determined, and the humic substance chemical composition was evaluated using solid state 13C-NMR. Data obtained showed that the pH of the soils under phorophytes was higher than in the suspended soils; basal respiration did not tend to change indices between soils under phorophytes and suspended soils, but the suspended soil was less enriched by nitrogen than the soil under phorophytes. This can be related to the total amount of organic matter exposed to humification in various soils and to the presence of an essential portion of mineral particles in the soil under phorophytes. Data on elemental composition of the humic acids (HAs indicated that one method of humification is implemented in all three soils that were

  12. [Air pollution and adverse birth outcome in China: a comprehensive review].

    Science.gov (United States)

    Zhu, P F; Zhang, Y; Ban, J; Li, T T; Shi, X M

    2017-03-10

    Objective: To summarize the progress in the research of the association between air pollution and adverse birth outcomes in China. Methods: A literature retrieval was conducted by using the databases of CNKI, Wanfang, Pubmed, Science Direct, and Web of Science to select relevant research papers published before 30(th), June 2016 in China according to inclusion criteria. Finally, 27 papers were included in analysis. Results: Exposure to particulate matter (PM(10)), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)), total suspended particles (TSP) during pregnancy might increase risk for low birth weight; exposure to PM(10), SO(2), NO(2) during pregnancy might increase risk for premature birth; and exposure to SO(2), NO(2), ozone (O(3)), and PM(10) during pregnancy might increase risk for congenital heart diseases and other birth defects. Conclusion: Exposure to air pollutants during pregnancy might increase the risk for adverse birth outcomes, and further studies are needed to prove the association.

  13. PM2.5 pollution episode and its contributors from 2011 to 2013 in urban Shanghai, China

    Science.gov (United States)

    Wang, H. L.; Qiao, L. P.; Lou, S. R.; Zhou, M.; Chen, J. M.; Wang, Q.; Tao, S. K.; Chen, C. H.; Huang, H. Y.; Li, L.; Huang, C.

    2015-12-01

    Shanghai has suffered from severe fine particle (PM2.5) pollution in recent years. The characterization and formation mechanism of PM2.5 pollution episodes were investigated in the present study based on 3-year on-line measurements of PM2.5 chemical compositions with the temporal resolution of 1 h from 2011 to 2013 in Shanghai. Pollution episodes with PM2.5 mass higher than 75 μg/m3 occurred ˜1400 h annually, which inserted the annual extra PM2.5 mass of 14 μg/m3 into the level of 33 μg/m3 without pollution episodes taken into account. Three kinds of typical episodes were identified as biomass burning events, suspended dust events, and fireworks events, which extra contributed ˜1.5 μg/m3 relative to PM2.5 mass of clean periods. Most of pollution episodes were attributed to multiple and complex mechanisms, characterized by high contribution of the secondary inorganic components (e.g. nitrate, sulfate and ammonium) and carbonaceous matters, which dominated the monthly variations of PM2.5 mass. During the complex episodes, the increasing contribution of nitrate mass concentration to PM2.5 burden was observed. The present study highlighted the necessity to pay more attention to the secondary pollution. The reduction of precursor gases emissions was essential to mediate the severe PM2.5 pollution in Shanghai megacity.

  14. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  15. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Hoekstra, P.

    2005-01-01

    The ability of a 1.2-MHz Acoustic Doppler Current Profiler (ADCP) to measure suspended sediment concentration (SSC) and particle size variation in a mud-dominated environment has been investigated. Experiments were conducted in the Bay of Banten, Indonesia, where clays and silts in the range of 3-55

  16. Development of a micromachined electrostatically suspended gyroscope

    OpenAIRE

    Damrongsak, Badin

    2009-01-01

    In this thesis, a new approach based on an electrostatically suspended gyroscope (ESG) was explored in order to improve the performance of micromachined gyroscopes. Typically, a conventional micromachined gyroscope consists of a vibrating mass suspended on elastic beams that are anchored to a substrate. It measures the rotation rate of a body of interest by detecting rotation-induced Coriolis acceleration of a vibrating structure. Such a gyro is sensitive to fabrication imperfections an...

  17. Inherent optical properties of suspended particulate matter in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Joanna Stoń-Egiert

    2011-09-01

    Full Text Available The inherent optical properties (IOPs of suspended particulate matter and their relations with the main biogeochemical characteristics of particles have been examined in the surface waters of the southern Baltic Sea. The empirical data were gathered at over 300 stations in open Baltic Sea waters as well as in the coastal waters of the Gulf of Gdansk. The measurements included IOPs such as the absorption coefficient of particles, absorption coefficient of phytoplankton, scattering and backscattering coefficients of particles, as well as biogeochemical characteristics of suspended matter such as concentrations of suspended particulate matter (SPM, particulate organic matter (POM, particulate organic carbon (POC and chlorophyll a (Chl a. Our data documented the very extensive variability in the study area of particle concentration measures and IOPs (up to two orders of magnitude. Although most of the particle populations encountered were composed primarily of organic matter (av. POM/SPM = ca 0.8, the different particle concentration ratios suggest that the particle composition varied significantly. The relations between the optical properties and biogeochemical parameters of suspended matter were examined. We found significant variability in the constituent-specific IOPs (coefficients of variation (CVs of at least 30% to 40%, usually more than 50%. Simple best-fit relations between any given IOP versus any constituent concentration parameter also highlighted the significant statistical errors involved. As a result, we conclude that for southern Baltic samples an easy yet precise quantification of particle IOPs in terms of the concentration of only one of the following parameters - SPM, POM, POC or Chl a- is not achievable. Nevertheless, we present a set of best statistical formulas for a rough estimate of certain seawater constituent concentrations based on relatively easily measurable values of seawater IOPs. These equations can be implemented in

  18. Correlation Of Meteorological Parameters And Dust Particles Using ...

    African Journals Online (AJOL)

    This study investigated the spatial distribution of repirable and inhalable suspended particulate matters and the influence of meteorological factors on the pollutants captured in a rural community. The respirable and inhalable suspended particulate matters were captured at five different locations using Portable ...

  19. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.

  20. Using artificial fluorescent particles as tracers of livestock wastes within an agricultural catchment

    International Nuclear Information System (INIS)

    Granger, Steve J.; Bol, Roland; Hawkins, Jane M.B.; White, Sue M.; Naden, Pamela S.; Old, Gareth H.; Marsh, Jon K.; Bilotta, Gary S.; Brazier, Richard E.; Macleod, Christopher J.A.; Haygarth, Philip M.

    2011-01-01

    Evidence for the movement of agricultural slurry and associated pollutants into surface waters is often anecdotal, particularly with relation to its 'particulate' components which receive less attention than 'bio-available' soluble phases. To assess the extent of movement of slurry particles artificial fluorescent particles were mixed with slurry and applied to a field sub-catchment within a headwater catchment. Particles were 2-60 μm in diameter and two different densities, 2.7 and 1.2 g cm -3 representing 'inorganic' and 'organic' material. Water samples from the field and catchment outlet were collected during two storm events following slurry application and analysed for particle and suspended sediment concentrations (SSC). SSC from the field and catchment outlet always formed clockwise hysteresis loops indicating sediment exhaustion and particles of the two densities were always found to be positively correlated. Particles from the field formed clockwise hysteresis loops during the first discharge event after slurry application, but anti-clockwise hysteresis loops during the second monitored event which indicated a depletion of readily mobilisable particles. Particles from the catchment outlet always formed anticlockwise hysteresis loops. Particle size became finer spatially, between field and catchment outlet, and temporally, between successive storm events. The results indicate that slurry particles may be readily transported within catchments but that different areas may contribute to pollutant loads long after the main peak in SSC has passed. The density of the particles did not appear to have any effect on particle transport however the size of the particles may play a more important role in the 2-60 μm range. - Research Highlights: → This study traces the movement of agricultural slurry particles from land to waters. → Two densities of artificial fluorescent particles were applied to a nested catchment. → Slurry particles moved from point of

  1. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  2. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  3. Air Pollution

    OpenAIRE

    Appleton, Bonnie Lee, 1948-2012; Koci, Joel; Harris, Roger; Sevebeck, Kathryn P.; Alleman, Dawn; Swanson, Lynette

    2009-01-01

    This publication reviews the major phytotoxic air pollutants, in decreasing order of severity, they include oxidants, sulfur dioxide, and particulates. Topics also include the connection between weather and air pollution and a section on diagnosing air pollution damage to trees.

  4. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  5. Sorption and desorption kinetics of some radionuclides on suspended matter: comparison of different models

    International Nuclear Information System (INIS)

    Ciffroy, P.; Siclet, F.; Garnier, J.M.; Pham Mai, K.

    1996-01-01

    To obtain suitable data for modelling radionuclides migration in freshwater streams, the sorption and desorption kinetics of some radionuclides (54Mn, 58Co, 134Cs) on suspended matter were studied under controlled laboratory conditions. The experimental results show that: -for some radionuclides (58Co, 54Mn), the adsorption process is progressive and slow; after 5 days, an important fraction of the radioactivity is associated to the particles. For 134Cs, very fast sorption is followed by much slower and extended uptake. -the retention of 134Cs, and above all of 54Mn and 58Co, on suspended matter is stronger when the particles have been previously in contact with the radionuclides during a long period. This retention could be due to the slow transfer of 54Mn and 58Co to non-exchangeable sites of the particles. This effect of contact time during preliminary adsorption is less important for 134Cs. The results of uptake and release experiments were used to test models describing the radionuclides interactions with suspended solids. Two kinetic models are compared in this paper. The model taking into account two distinct types of sites on the solid phase and irreversible processes better describes the interactions of radionuclides with suspended matter

  6. A 2D hydro-morphodynamic modelling approach for predicting suspended sediment propagation and related heavy metal contamination in floodplains: a sensitivity analysis

    Science.gov (United States)

    Hostache, Renaud; Hissler, Christophe; Matgen, Patrick; Guignard, Cédric; Bates, Paul

    2014-05-01

    Recent years have seen a growing awareness for the central role that fine sediment loads play in transport and diffusion of pollutants by rivers and streams. Suspended sediment can potentially carry important amounts of nutrients and contaminants, such as trace metals among which some are recognized as Potential Harmful Elements (PHE). These threaten water quality in rivers and wetlands and soil quality in floodplains. Currently, many studies focusing on sediment transport modelling deal with marine and estuarine areas. Some studies evaluate sediment transport at basin scales and often evaluate yearly sediment fluxes using hydrologic and simplified hydraulic models. Some more theoretical studies develop and improve numerical models on the basis of physical model experiments. As a matter of fact, sediment transport modelling in small rivers at reach/floodplain scale is a rather new research field. In this study, we aim at simulating sediment transport at the floodplain scale and the single flood event scale in order to predict sediment spreading on alluvial soils. This simulation will help for the estimation of the potential pollution of soils due to the transport of PHEs by suspended sediments. The model is based upon the Telemac hydro-informatic system (i.e. dynamical coupling of Telemac-2D and Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up for two flood events. The most sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events for calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolved pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment

  7. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    Science.gov (United States)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  8. Suspended Morphology in Serbian: Clitics vs. Affixes

    Directory of Open Access Journals (Sweden)

    Miloje Despić

    2017-02-01

    Full Text Available This article offers a case study of what appears to be an instance of “suspended affixation” in Serbian. The phenomenon in question is particularly interesting and potentially theoretically significant since it occurs in a language in which suspended affixation is generally impossible. The account I am led to suggests, however, that what is being “suspended” is not an affix but a second position clitic disguised as an affix. This is not a surprising outcome, since Serbian second position clitics, unlike ordinary affixes, can be elided quite easily. The phenomena examined in this paper provide further support to certain aspects of the theoretical model developed in Embick (2007; 2010 and offer new insights into the interaction between linearization, ellipsis and Local Dislocation. In particular, I show that the forms which allow ‘suspended affixation’ are formed in a special way, namely, via Local Dislocation, which affixes a second position enclitic to its host at PF under linear adjacency. Forms which are created by regular head movement, on the other hand disallow suspended affixation, on the assumption that elements that form complex heads (i.e., Subwords cannot be elided. This article is part of Special Collection:Suspended Affixation

  9. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya [Indian Institute of Technology, Hyderabad (India). Dept. of Electrical Engineering; De, Swades [Indian Institute of Technology, Delhi (India). Dept. of Electrical Engineering

    2013-07-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 {mu}m that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  10. Estimation of suspended sediment concentration in rivers using acoustic methods.

    Science.gov (United States)

    Elçi, Sebnem; Aydin, Ramazan; Work, Paul A

    2009-12-01

    Acoustic Doppler current meters (ADV, ADCP, and ADP) are widely used in water systems to measure flow velocities and velocity profiles. Although these meters are designed for flow velocity measurements, they can also provide information defining the quantity of particulate matter in the water, after appropriate calibration. When an acoustic instrument is calibrated for a water system, no additional sensor is needed to measure suspended sediment concentration (SSC). This provides the simultaneous measurements of velocity and concentration required for most sediment transport studies. The performance of acoustic Doppler current meters for measuring SSC was investigated in different studies where signal-to-noise ratio (SNR) and suspended sediment concentration were related using different formulations. However, these studies were each limited to a single study site where neither the effect of particle size nor the effect of temperature was investigated. In this study, different parameters that affect the performance of an ADV for the prediction of SSC are investigated. In order to investigate the reliability of an ADV for SSC measurements in different environments, flow and SSC measurements were made in different streams located in the Aegean region of Turkey having different soil types. Soil samples were collected from all measuring stations and particle size analysis was conducted by mechanical means. Multivariate analysis was utilized to investigate the effect of soil type and water temperature on the measurements. Statistical analysis indicates that SNR readings ob tained from the ADV are affected by water temperature and particle size distribution of the soil, as expected, and a prediction model is presented relating SNR readings to SSC mea surements where both water temperature and sediment characteristics type are incorporated into the model. The coefficients of the suggested model were obtained using the multivariate anal ysis. Effect of high turbidity

  11. Assessment of the Risk of Non-Cancerous Diseases under the Exposure of Heavy Element in Urban Areas and Troubleshooting Pollutant Sources (The Case of Zanjan

    Directory of Open Access Journals (Sweden)

    Faramarz Moattar

    2017-06-01

    Full Text Available Background: Heavy metals are the main air pollutants in cities. Therefore, assessment of the risk of exposure to these metals through inhalation, ingestion, and dermal contact on inhabitants of contaminated areas of the world is of great importance. Methods: A weekly sampling of air particles smaller than 10 microns was performed in a residential area of Zanjan for two years. Risk assessment in the face of heavy metals from inhalation, ingestion, and dermal contact for were measured for two children and adults. After fingerprinting high-risk metals, the air pollutants of the region were analyzed according to the PMF5 model. Results: The results showed that children at risk assessment (1.40 × 1000 at the highest concentration of manganese. The PMF5 model results of fingerprinting 15 heavy metals showed that predominant pollutants in the region, included lead and zinc industries with 42.3%, suspended soil with 26.4%, industrial activities with 23.5%, and combustion and fuel with 7.8% of contamination. It was also found that 55.5 percent of manganese emission was associated with lead and zinc industries and 22.4 percent were related to suspended soil. Conclusion: Risk assessment showed that children were exposed to non-cancerous diseases due to inhalation of manganese particles.

  12. Intercontinental Transport of Air Pollution

    Science.gov (United States)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  13. Epidemiology of pollution-induced airway disease in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, T. [Japan Clinical Allergy Inst., Tokyo (Japan)

    1997-12-31

    Air pollution has been implicated as one of the factors responsible for the increased incidence of allergic diseases seen over recent years. Epidemiological studies in Japan demonstrate that atopic subjects living in urban areas are more likely to suffer from the effects of air pollution, with increased coughing, sputum production, wheezing and throat irritation. Furthermore, animal studies show that high concentrations of pollutant gases can promote airway sensitization. The incidence of allergic Rhinitis and asthma have been shown to be greater in areas where there is heavy traffic and hence high levels of automobile exhaust emissions. Intranasal administration of diesel exhaust particles in mice produces a stimulatory effect on immunoglobulin E production, and a similar finding has also been shown with suspended particulate matter in air. Air pollutants, such as ozone and nitrogen dioxide (NO{sub 2}), have been shown to stimulate the production of granulocyte-macrophage colony stimulating factor, which may play a vital role in airway hyperreactivity and asthma. In comparative studies of asthma in urban and rural areas, history of airway infection and a younger age of onset were found to be significantly greater in urban areas. When the asthmatic patients were divided into two groups according to environmental NO{sub 2} levels (group I: NO{sub 2}>30 ppb, group II: NO{sub 2}<30 ppb), no significant difference regarding the various parameters was noted between the two groups, except for a greater severity of asthma in adults in group I, and a greater severity in chrildren in group II. These studies imply that air pollution may be one reason for the increase in allergic diseases in Japan, but a definitive conclusion cannot be drawn, and further, investigation is warranted. (au)

  14. Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: a case study of Žerjav, Slovenia.

    Science.gov (United States)

    Miler, Miloš; Gosar, Mateja

    2013-12-01

    Solid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic-anthropogenic, anthropogenic, and secondary weathering products. Geogenic-anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.

  15. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separation by continuous- flow centrifugation

    Science.gov (United States)

    Moody, J.A.; Meade, R.H.

    1994-01-01

    The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors

  16. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  17. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  18. Air Pollution Quality Index (AQI and Density of PM1, PM2.5 and PM10 in the Air of Qom

    Directory of Open Access Journals (Sweden)

    Safdari M

    2011-06-01

    Full Text Available Background and Objectives: Air pollution has broad social, economical, political and technical aspects. one of the major issues in this regard is taking measures to prevent its increase. Since suspended particles are among the standard pollutants, the present study was carried out with the aim of measuring the amounts of these particles.Methods: In the present study, the suspended particles ( PM1, PM2.5 and PM10 were measured at two sites in Qom city. For each of them, 60 samples were selected with the Enviro Check during five consecutive months during summer (2 months and fall.Results: During sampling, PM10 in the period between October 22'th to November 22nd 2007 had the maximum amount with the mean of 117µg/m3 and in the period between September 22'th to October 22nd 2007 it had the minimum amount with the mean of 83µg/m3. PM2.5 in the period between November 22nd to December 22nd 2007 with the mean of 33µg/m3 had the maximum amount and in the period between July 22nd to October 22nd 2007 it had the minimum amount with the mean of 8µg/m3. Conclusion: Based on the findings of this study, the densities of suspended particles PM1, PM2.5 and PM10 were below the standard levels on most occasions. The amounts of AQI for them were normal and acceptable.

  19. Pollution Probe.

    Science.gov (United States)

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  20. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output

    OpenAIRE

    D. Hirdman; H. Sodemann; S. Eckhardt; J. F. Burkhart; A. Jefferson; T. Mefford; P. K. Quinn; S. Sharma; J. Ström; A. Stohl

    2010-01-01

    As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport), this paper studies the sources of equivalent black carbon (EBC), sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To d...

  1. Static Elongation of a Suspended Slinky™

    Science.gov (United States)

    Sawicki, Mikolaj ``Mik''

    2002-05-01

    Elongation of a vertically suspended Slinky under its own weight and a weight hung from it is discussed using elementary considerations. Displacement of the center of mass of Slinky is also found. The results are verified experimentally using a 1 apparatus.

  2. 7 CFR 1212.28 - Suspend.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS..., PROMOTION, CONSUMER EDUCATION AND INDUSTRY INFORMATION ORDER Honey Packers and Importers Research, Promotion, Consumer Education, and Industry Information Order Definitions § 1212.28 Suspend. “Suspend” means to issue...

  3. Optomechanics for thermal characterization of suspended graphene

    NARCIS (Netherlands)

    Dolleman, R.J.; Houri, S.; Davidovikj, D.; Cartamil Bueno, S.J.; Blanter, Y.M.; van der Zant, H.S.J.; Steeneken, P.G.

    2017-01-01

    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a

  4. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.

    2007-01-01

    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  5. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  6. Suspended sediment assessment by combining sound attenuation and backscatter measurements - analytical method and experimental validation

    Science.gov (United States)

    Guerrero, Massimo; Di Federico, Vittorio

    2018-03-01

    The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.

  7. Air Pollutants Minimalization of Pollutant Absorber with Condensation System

    International Nuclear Information System (INIS)

    Ruhiat, Yayat; Wibowo, Firmanul Catur; Oktarisa, Yuvita

    2017-01-01

    Industrial development has implications for pollution, one of it is air pollution. The amount of air pollutants emitted from industrial depend on several factors which are capacity of its fuel, high chimneys and atmospheric stability. To minimize pollutants emitted from industries is created a tool called Pollutant Absorber (PA) with a condensing system. Research and Development with the approach of Design for Production was used as methodology in making PA. To test the function of PA, the simulation had been done by using the data on industrial emissions Cilegon industrial area. The simulation results in 15 years period showed that the PA was able to minimize the pollutant emissions of SO2 by 38% NOx by 37% and dust by 64%. Differences in the absorption of pollutants shows the weakness of particle separation process in the separator. This condition happen because the condensation process is less optimal during the absorption and separation in the separator. (paper)

  8. Vertical Distribution of Suspended Sediment under Steady Flow: Existing Theories and Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Shiqian Nie

    2017-01-01

    Full Text Available The fractional advection-diffusion equation (fADE model is a new approach to describe the vertical distribution of suspended sediment concentration in steady turbulent flow. However, the advantages and parameter definition of the fADE model in describing the sediment suspension distribution are still unclear. To address this knowledge gap, this study first reviews seven models, including the fADE model, for the vertical distribution of suspended sediment concentration in steady turbulent flow. The fADE model, among others, describes both Fickian and non-Fickian diffusive characteristics of suspended sediment, while the other six models assume that the vertical diffusion of suspended sediment follows Fick’s first law. Second, this study explores the sensitivity of the fractional index of the fADE model to the variation of particle sizes and sediment settling velocities, based on experimental data collected from the literatures. Finally, empirical formulas are developed to relate the fractional derivative order to particle size and sediment settling velocity. These formulas offer river engineers a substitutive way to estimate the fractional derivative order in the fADE model.

  9. Comparison of Submicron Particles at a Rural and an Urban Site in the North China Plain during the December 2016 Heavy Pollution Episodes

    Science.gov (United States)

    Shen, Xiaojing; Sun, Junying; Zhang, Xiaoye; Zhang, Yangmei; Wang, Yaqiang; Tan, Kaiyan; Wang, Peng; Zhang, Lu; Qi, Xuefei; Che, Haochi; Zhang, Zhouxiang; Zhong, Junting; Zhao, Huarong; Ren, Sanxue

    2018-02-01

    An extensive field experiment for measurement of physical and chemical properties of aerosols was conducted at an urban site in the Chinese Academy of Meteorological Sciences (CAMS) in Beijing and at a rural site in Gucheng (GC), Hebei Province in December 2016. This paper compares the number size distribution of submicron particle matter (PM1, diameter PM1 number concentration at GC was twice that at CAMS, and the mass concentration was three times the amount at CAMS. It is found that the accumulation mode (100-850 nm) particles constituted the largest fraction of PM1 at GC, which was significantly correlated with the local coal combustion, as confirmed by a significant relationship between the accumulation mode and the absorption coefficient of soot particles. The high PM1 concentration at GC prevented the occurrence of new particle formation (NPF) events, while eight such events were observed at CAMS. During the NPF events, the mass fraction of sulfate increased significantly, indicating that sulfate played an important role in NPF. The contribution of regional transport to PM1 mass concentration was approximately 50% at both sites, same as that of the local emission. However, during the red-alert period when emission control took place, the contribution of regional transport was notably higher.

  10. A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings.

    Science.gov (United States)

    Marques, Gonçalo; Roque Ferreira, Cristina; Pitarma, Rui

    2018-04-21

    Occupational health can be strongly influenced by the indoor environment as people spend 90% of their time indoors. Although indoor air quality (IAQ) is not typically monitored, IAQ parameters could be in many instances very different from those defined as healthy values. Particulate matter (PM), a complex mixture of solid and liquid particles of organic and inorganic substances suspended in the air, is considered the pollutant that affects more people. The most health-damaging particles are the ≤PM 10 (diameter of 10 microns or less), which can penetrate and lodge deep inside the lungs, contributing to the risk of developing cardiovascular and respiratory diseases, as well as of lung cancer. This paper presents an Internet of Things (IoT) system for real-time PM monitoring named iDust. This system is based on a WEMOS D1 mini microcontroller and a PMS5003 PM sensor that incorporates scattering principle to measure the value of particles suspended in the air (PM 10 , PM 2.5 , and PM 1.0 ). Through a Web dashboard for data visualization and remote notifications, the building manager can plan interventions for enhanced IAQ and ambient assisted living (AAL). Compared to other solutions the iDust is based on open-source technologies, providing a total Wi-Fi system, with several advantages such as its modularity, scalability, low cost, and easy installation. The results obtained are very promising, representing a meaningful tool on the contribution to IAQ and occupational health.

  11. The influence of air-suspended particulate concentration on the incidence of suicide attempts and exacerbation of schizophrenia

    Science.gov (United States)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2014-01-01

    The main objective of this study was to evaluate the role of the concentration of solid air-suspended particles (SSP) in the incidence of mental disorders. The study is based on 1,871 cases, registered in the Beer-Sheva Mental Health Center (BS-MHC) at Ben-Gurion University (Israel) during a 16-month period from 2001 to 2002; 1,445 persons were hospitalized due to exacerbation of schizophrenia (ICD-10: F20-F29) and 426 after committing a suicide attempt using a variety of means as coded in the ICD-10 (ICD-10: X60-X84). Pearson and Spearman test correlations were used; the statistical significance was tested at p suicide attempts, N SU , was found ( ρ > 0.3, p 0.2). A trend towards positive correlation ( ρ > 0.2, p schizophrenia as manifested in psychotic attack ( N PS ) in periods with dominant eastern winds (4-9 am, local time) has been observed, while in the afternoon and evening hours (1-8 pm local time) with dominant western winds, N C and N PS are not correlated (p > 0.1). Obviously, concentration of SSP is not the one and only parameter of air pollution state determining meteorological-biological impact, involving incidence of mental disorders, although its role can scarcely be overstated. However, since it is one of the simplest measured parameters, it could be widely used and helpful in the daily struggle for human life comfort in semi-arid areas as well as urban and industrial surroundings, where air pollution reaches crucial values. This study may permit determination of the limits for different external factors, which do not overcome threshold values (without provoking avalanche situations), to single out the group of people at increased risk (with according degree of statistic probability), whose reactions to the weather violations can involve the outbreak of frustration points and prevent or alleviate detrimental mental effects.

  12. Energy content of suspended detritus from Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Sumitra-Vijayaraghavan; Royan, J.P.

    Energy components of suspended matter included phytoplankton, zooplankton and detritus inclusive of microorganisms adsorbed to detritus. Of these, detritus contributed most of the energy (98%). The average caloric content of suspended detritus...

  13. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China.

    Science.gov (United States)

    Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo

    2017-05-01

    For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.

  14. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  15. Quantifying air pollution attenuation within urban parks: an experimental approach in Shanghai, China.

    Science.gov (United States)

    Yin, Shan; Shen, Zhemin; Zhou, Pisheng; Zou, Xiaodong; Che, Shengquan; Wang, Wenhua

    2011-01-01

    Parks with various types of vegetations played an important role in ameliorating air quality in urban areas. However, the attenuation effect of urban vegetation on levels of air pollution was rarely been experimentally estimated. This study, using seasonal monitoring data of total suspended particles (TSP), sulfur dioxide (SO(2)) and nitrogen dioxide (NO(2)) from six parks in Pudong District, Shanghai, China, demonstrated vegetations in parks can remove large amount of airborne pollutants. In addition, crown volume coverage (CVC) was introduced to characterize vegetation conditions in parks and a mixed-effects model indicated that CVC and the pollution diffusion distance were key predictors influencing pollutants removal rate. Therefore, it could be estimated by regression analysis that in summer, urban vegetations in Pudong District could contribute to 9.1% of TSP removal, 5.3% of SO(2) and 2.6% of NO(2). The results could be considered for a better park planning and improving air quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  17. Multi-elemental analysis of atmospheric pollutants and determination of particle size using the PIXE method, a cascade impactor and a filter unit constructed in Mexico

    International Nuclear Information System (INIS)

    Aldape U, F.

    1989-01-01

    This work presents: 1) The methodology and the experimental conditions of the PIXE technique so that it is used as a better option inside the analytical methods in aerosols studies, 2) The development, tests and applications of a cascade impactor of the Batelle type built to determine particle size to use it jointly with the mentioned technique in the determination of the elements concentration according to its size.By this way is fulfilled with the first goal of this extensive project. (Author)

  18. Self-Assembly of Faceted Colloidal Particles

    NARCIS (Netherlands)

    Gantapara, A.P.

    2015-01-01

    A colloidal dispersion consists of insoluble microscopic particles that are suspended in a solvent. Typically, a colloid is a particle for which at least one of its dimension is within the size range of a nanometer to a micron. Due to collisions with much smaller solvent molecules, colloids perform

  19. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-01-01

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role. PMID:24287918

  20. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Directory of Open Access Journals (Sweden)

    Rodolfo Villarreal-Calderon

    2013-11-01

    Full Text Available Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4 vs. high (n:26 air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005. Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  1. Air Pollution

    Science.gov (United States)

    ... Health Lead Mercury Mold Nanomaterials Ozone Perfluorinated Chemicals Pesticides Radon Soy Infant Formula Styrene Water Pollution Weather ... government and non-government websites covering specific environmental, biological, and chemical agents that cause indoor air pollution. ...

  2. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  3. Noise Pollution

    Science.gov (United States)

    ... Us Share Clean Air Act Title IV - Noise Pollution The 1990 Clean Air Act Amendments added a ... abatement 7642 Authorization of appropriations What is Noise Pollution? The traditional definition of noise is “unwanted or ...

  4. Air pollution and mortality: Determination of a quantitative association

    International Nuclear Information System (INIS)

    Ostro, B.

    1994-01-01

    Over the last few decades, several epidemiologic studies have reported associations between daily concentrations of ambient particulate matter and mortality among the general population. Among these studies, statistically significant relationships have been found using several alternative measures of particulate matter including total suspended particulates (TSP) for particles of all sizes], fine particles (particles less than 25 microns in diameter), British smoke (BS), coefficient of haze (COH), and sulfates. None has involved measurement of the mass of particulate matter less than 10 microns in diameter (PM10), the metric used by the U.S. Environmental Protection Agency (EPA) in the National Ambient Air Quality Standards. The studies have been conducted in several different cities and seasons, thereby incorporating a wide range of climates, chemical compositions of particulate matter, and populations. The epidemiologic. investigations have used two principal study designs: time-series and cross-sectional. Time-series analysis examines changes in daily mortality rates within a specific area as air pollution levels fluctuate. A cross-sectional analysis compares differences in mortality rates across several cities at a selected point or period of time. This paper seeks to examine the air pollution-mortality association in view of these criteria, with particular focus on the consistency of the association. Replication of results in other environments and populations is a powerful test before causality can be inferred. The check for consistency will be accomplished by reviewing and comparing the results of the more recent empirical studies. Ultimately, the results of these calculations are presented in terms of the percent increase in mortality associated with changes in PM 10 . After examining the consistency of the associations, some of the other criteria will be briefly discuss

  5. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  6. Centimeter-scale suspended photonic crystal mirrors.

    Science.gov (United States)

    Moura, João P; Norte, Richard A; Guo, Jingkun; Schäfermeier, Clemens; Gröblacher, Simon

    2018-01-22

    Demand for lightweight, highly reflective and mechanically compliant mirrors for optics experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes are ideal alternatives to conventional mirrors, as they provide high reflectivity with only a single suspended layer of patterned dielectric material. However, due to limitations in nanofabrication, these devices are usually not wider than 300 μm. Here we experimentally demonstrate suspended PhC mirrors spanning areas up to 10 × 10 mm 2 . We overcome limitations imposed by the size of the PhC and measure reflectivities greater than 90 % on 56 nm thick mirrors at a wavelength of 1550 nm-an unrivaled performance compared to PhC mirrors with micro scale diameters. These structures bridge the gap between nano scale technologies and macroscopic optical elements.

  7. Photothermoelectric Effect in Suspended Semiconducting Carbon Nanotubes

    Science.gov (United States)

    Aspitarte, Lee; Deborde, Tristan; Sharf, Tal; Kevek, Josh; Minot, Ethan

    2014-03-01

    We have performed scanning photocurrent microscopy measurements of field-effect transistors (FETs) made from individual suspended carbon nanotubes (CNTs).Photocurrent generation in individual carbon nanotube based devices has been previously attributed the photovoltaic effect, in contrast to graphene based devices which are dominated by the photothermoelectric effect. In this work, we present the first measurements of strong photothermoelectric currents in individual suspended carbon nanotube field-effect transistors. In certain electrostatic doping regimes light induced temperature gradients lead to significant thermoelectric currents which oppose and overwhelm the photovoltaic contribution. Our measurements give new insight into the tunable and spatially inhomogeneous Seebeck coefficient of electrostatically-gated CNTs and demonstrate a new mechanism for optimizing CNT-based photodetectors and energy harvesting devices.

  8. Air Pollution.

    Science.gov (United States)

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  9. Water Pollution

    International Nuclear Information System (INIS)

    Goni, J.

    1984-01-01

    This work is about the water pollution. The air and the water interaction cycles is the main idea of the geochemical pollution conception. In the water surface as well as in the deep aquifers we can found cough metals or minerals from the athmosferic air. The activities of mercury fluor and nitrates are important to the pollution study

  10. A combined use of acoustic and optical devices to investigate suspended sediment in rivers

    Science.gov (United States)

    Guerrero, Massimo; Rüther, Nils; Haun, Stefan; Baranya, Sandor

    2017-04-01

    The use of acoustic and optic devices has become more and more common for estimating suspended sediment loads in rivers. The echo intensity levels (EIL) recorded by means of an Acoustic Doppler Current Profiler (ADCP) have been applied in different methods, which provided relationships between scattering particles features derived from samples (i.e., concentration and grain size) and corresponding backscattering strength and sound attenuation. At the same time, the laser diffraction was applied by an in-stream sampler (LISST-SL) to measure suspended sediment concentration and the corresponding particle size distribution (PSD). These two techniques exhibited different limitations in terms of the measured range of concentration, sensitivity to a certain spectrum of particle sizes, and instruments deploy feasibility especially in large rivers, in a way that the use of sampled PSD by LISST-SL to validate ADCP methods may not be trivial. The aim of this study was to combine the vertical profiling of EIL by an ADCP with results from LISST-SL, eventually demonstrating the possibility of using moving ADCP measurements to detect different suspended matters along a Danube River section characterized by a small tributary junction. At the same time, this work elucidates optical to acoustic method deviations that hinders an actual validation of ADCP methods based on LISST-SL rather than with physical samplings.

  11. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-11-01

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM 10 ), fine particles (PM 2.5 ) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m 3 increase in long-term exposure to PM 2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM 2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. European study protocol: `Effect of short-term changes in urban air pollution on the respiratory health of children with chronic respiratory symptoms. The PEACE project, Pollution Effects on Asthmatic Children in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, W.; Hoek, G.; Brunekreef, B. [Wageningen Univ. (Netherlands). Dept. of Epidemiology and Public Health] [and others

    1995-12-31

    Over the last decades, concentrations of air pollution components such as SO{sub 2} and airborne, coarse particulates have decreased in many areas in Europe. This decrease can be ascribed to emission abatement measures and changes in energy production for industrial processes and space heating. Levels of other pollutants such as NO{sub 2} have increased during the same period, mostly due to higher intensity of motor vehicle traffic. Older epidemiologic studies on health effects of air pollution used indicator pollutants such as SO{sub 2}, Total Suspended Particulate matter (TSP) and Black Smoke at extremely high levels. More recent studies using the same and other indicators such as PM10 (particles with a median aerodynamic diameter of 10 {mu}m) have shown effects of air pollution on mortality and morbidity at lower levels, even sometimes lower than current WHO air quality guidelines for Europe. These findings suggest that due to the changing composition of air pollution, effects of air pollution can be seen below levels of exposure which were thought to be safe. Another reason is that the recent studies are conducted at levels which were hard to find in earlier days. Therefore new, quantitative data are needed to evaluate the current guidelines and standards. In order to achieve this, standardization of methodology as well as the execution of epidemiologic studies using such standardized methodology is needed. In the framework of the ENVIRONMENT Research Programme of the Commission of the European Communities, a collaborative study was funded that sought to develop a standardized methodology for epidemiologic studies of effects short-term changes in air pollution on the respiratory system

  13. Differential bioavailability of polychlorinated biphenyls associated with environmental particles: Microplastic in comparison to wood, coal and biochar.

    Science.gov (United States)

    Beckingham, B; Ghosh, U

    2017-01-01

    Microplastic particles are increasingly being discovered in diverse habitats and a host of species are found to ingest them. Since plastics are known to sorb hydrophobic organic contaminants (HOCs) there is a question of what risk of chemical exposure is posed to aquatic biota from microplastic-associated contaminants. We investigate bioavailability of polychlorinated biphenyls (PCBs) from polypropylene microplastic by measuring solid-water distribution coefficients, gut fluid solubilization, and bioaccumulation using sediment invertebrate worms as a test system. Microplastic-associated PCBs are placed in a differential bioavailability framework by comparing the results to several other natural and anthrogenic particles, including wood, coal, and biochar. PCB distribution coefficients for polypropylene were higher than natural organic materials like wood, but in the range of lipids and sediment organic carbon, and smaller than black carbons like coal and biochars. Gut fluid solubilization potential increased in the order: coal microplastics in sediments had an overall impact of reducing bioavailability and transfer of HOCs to sediment-ingesting organisms. Since the vast majority of sediment and suspended particles in the environment are natural organic and inorganic materials, pollutant transfer through particle ingestion will be dominated by these particles and not microplastics. Therefore, these results support the conclusion that in most cases the transfer of organic pollutants to aquatic organisms from microplastic in the diet is likely a small contribution compared to other natural pathways of exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oil pollution

    International Nuclear Information System (INIS)

    Mankabady, Samir.

    1994-08-01

    Oil enters the marine environment when it is discharged, or has escaped, during transport, drilling, shipping, accidents, dumping and offshore operations. This book serves as a reference both on the various complex international operational and legal matters of oil pollution using examples such as the Exxon Valdez, the Braer and Lord Donaldson's report. The chapters include the development of international rules on the marine environment, the prevention of marine pollution from shipping activities, liability for oil pollution damage, the conflict of the 1990 Oil Pollution Act and the 1992 protocols and finally the cooperation and response to pollution incidents. (UK)

  15. The suspended sentence in German criminal law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2017-01-01

    Full Text Available From the ancient times until today, criminal law in all countries has provided different criminal sanctions as social control measures. These are court-imposed coercive measures that take away or limit certain rights and freedoms of criminal offenders. Sanctions are applied to natural or legal persons who violate the norms of the legal order and cause damage or endanger other legal goods that enjoy legal protection. In order to effectively protect social values jeopardized by the commission of crime, state legislations prescribe several kinds of criminal sanctions: 1 penalties, 2 precautions, 3 safety measures, 4 penalties for juvenile offenders, and 5 sanctions for legal persons. Penalties are the basic, the oldest and the most important type of criminal sanctions. They are prescribed for the largest number of criminal offences. Imposed instead of or alongside with penalties, warning measures have particularly important role in jurisprudence. Since they were introduced in the system of criminal sanctions in the early 20th century, there has been a notable increase in the application of these measures, particularly in cases involving negligent and accidental offences, and minor offences that do not cause serious consequences, whose perpetrators are not persons with criminal characteristics. Warning measures (suspended sentence are envisaged in all contemporary criminal legislations, including the German legislation. Suspended sentence is a conditional stay of execution of the sentence of imprisonment for a specified time, provided that the convicted person fulfills the imposed obligations and does not commit another criminal offense. Two conditions must be fulfilled for the application of these sanctions: a the formal requirement, which is attached to the sentence of imprisonment; and b the substantive requirement, which implies the court assessment that the application of these sanctions is justified and necessary in a particular case. Many

  16. Cleaning air pollutants for newborns in China: a national risk assessment on low birth weight caused by ambient fine particles during 2013-2015

    Science.gov (United States)

    Xue, T.; Zheng, Y.; Zhang, Q.

    2016-12-01

    With the ending of one-child policy since 2015, the number of newborns are expected to increase in China, where people are surviving from pool air quality. Air pollutants, especially PM2.5 have been confirmed as a top risk factor to cause birth defects including low birth weight (LBW). Motivated by the increasing demands of the newborns for cleaner air in China, we conducted the first national risk assessment study on LBW cases caused by PM2.5. We combined county-level PM2.5 concentrations in 2013-2015 and demographic data (including population counts, birth rates and etc.), province-level baseline incidences of LBW and multiple reference safety concentrations (0 μg/m3, WHO air quality guidelines and interim targets) to estimate the number of PM2.5-associated LBW in 31 provinces. The uncertainty was quantified using Monte Carlo simulations. Based on our results, in 2013 among 334,781 (95% CI: 313,024-344,568) cases of LBW, 122,684 (95% CI: 53,153-173,846, account for 37% of the total LBW) were attributed to PM2.5, when assuming the reference safety concentration as 0 μg/m3; while 53,917 (95% CI: 22,851-82,195, account for 16% of the total LBW) cases of LBW could have been protected, if the air quality met WHO WHO interim target-3, 35 μg/m3. Among 31 provinces, PM2.5-associated LBW were mostly distributed in Hebei (12.99%, 95% CI: 12.42%-17.30%), Henan (9.75%, 95% CI: 9.11%-13.50%) and Guangdong (8.60%, 95% CI: 6.98%-9.42%). During 2013 to 2015, air quality in China was reported to be improved by implement of emission-reduction policies. Similarly, we found significantly decreasing trends of infants weighted concentrations of PM2.5 in most heavily polluted areas, which protected 12,201 (95% CI: 4,749-20,503) and 24,637 (95% CI: 9,619-39,821) PM2.5-associated LBW in 2014 and 2015, account for 3.64% (95% CI: 1.46%-6.21%) and 7.36% (95% CI: 2.93%-12.07%) of that in 2013, respectively. The uncertainty of this study was mainly contributed by that in epidemiology

  17. Severe Particulate Pollution in Lanzhou China

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua; Li, Zhenchao; Lu, Yaqiong

    2008-01-01

    Concentrations of total suspended particles (TSP) and PM(sub 10) in Lanzhou China have been kept high for the past two decades During intensive observational period from October 1999 to April 2001, the concentrations of TSP and PM(SUB 10...

  18. Pollution atmospherique par emission de gaz d'echappement des ...

    African Journals Online (AJOL)

    The objective of the present work is to study the air pollution generated by the gases of exhaust in the city of Porto-Novo to Benin. The quantification of the different pollutants or particles given out on the one hand by the vehicles, and the determination of the level of the pollution of every particle on the other hand, allowed us ...

  19. Study and evaluation of atmospheric pollution in Spain: necessary measures arising from the EC Directive on PM10 and PM2.5 particles in the Ceramic industry

    Directory of Open Access Journals (Sweden)

    Rodríguez, S.

    2000-02-01

    Full Text Available The European Commission Directive, 1999/30/EC, approved on the 22nd of April 1999, on atmospheric particles establishes a standard that is more stringent than the current one. This Directive proposes the monitoring of particles lower than 10 μm (PM10, thoracic particles based on health impact criteria. The proposed EC limits are 40 μgPM10.m-3 and 20 μgPM10.m-3 as annual means in 2005 and 2010, respectively. In accordance with the European Commission (EC, the future PM10 limits will be revised in 2003 if the European States can demonstrate that the exceedances of the new limits are attributed to natural inputs. The exceedances due to natural inputs are more frequent in Mediterranean countries due to the re-suspension of natural soil particles and to the higher frequency of Saharan air mass intrusions. This study summarises the preliminary results obtained from two research projects in Spain focused on: 1 establishing the criteria for the discrimination of natural/anthropogenic inputs of PM10; 2 identifying the events when the proposed limits are exceeded by natural inputs and 3 determining the most suitable monitoring parameter, PM10 or PM2.5, in order to avoid natural interference. Given the importance of the ceramic industry in Castelló, special attention will be placed on the preliminary results obtained this area.La Directiva de la comisión Europea, 1999/30/CE, aprobada el 22 de Abril de 1999, referida a partículas atmosféricas en suspensión, establece una normativa más estricta que la vigente. Esta normativa propone el control de las partículas inferiores a 10 μm (PM10, partículas torácicas basándose en criterios de impacto en la salud. Según esta directiva no se podrán superar medias diarias anuales de 40 μgPM10.m-3 en el 2005 y de 20 μgPM10.m-3 en el 2010. La directiva contempla la revisión de los límites normativos y de los parámetros de control en el 2003, pudiendo variar estos en el caso de que los Estados miembros

  20. Reduction of Wastewater Pollutants of Mandalay City Slaughterhouse

    International Nuclear Information System (INIS)

    May Thant Zin; Sint Soe

    2010-12-01

    Slaughterhouse (Meat Production Factor)under Mandaly City Development Committee (MCDC) in Myanmar has been discharging raw wastewater directly into Tat Thay Pont which is located at the back side of the slaughterhouse.It can cause some water pollutants in water source and need to prevent environmental impact. This paper was studied on the treatment of slaughterhouse wastewater using appropriate technique available in local area. Sample collection of slaughterhouse waste, analysing of waste quality on current situation,different ways of pre-treating and anaerobically digestion without recycling were done. Screening, coagulation, sedimentation and charcoal filtration were included as pre-treating steps before major anaerobic digestion. Ferric chloride and aluminum sulphate chemicals of both commercial and analytical grades were used as coagulants. Laboratory-scaled anaerobic reactor constructed with polyvinyl chloride (PVC) material was 15 cm diameter and 90 cm heigh. MCDC slaughterhouse wastewater containing 98.56% of total coarse particles was removed via minimum size of 1500 micron screen. Aluminium sulphate gave the best removal of fine solid particles. It was observed that pre-treating steps can reduce 56.72% of initial biological oxygen demand (BOD), 51.482% of initial chemical oxygen demand (COD) and 45.18% of inital total suspended solid (TSS) and anaerobic digester after 30 days can reduce 77.4% of influent BOD,81.5% of influent COD and 87.3% of influent TSS.

  1. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  2. Desorption of pyrethroids from suspended solids.

    Science.gov (United States)

    Fojut, Tessa L; Young, Thomas M

    2011-08-01

    Pyrethroid insecticides have been widely detected in sediments at concentrations that can cause toxicity to aquatic organisms. Desorption rates play an important role in determining the bioavailability of hydrophobic organic compounds, such as pyrethroids, because these compounds are more likely to be sorbed to solids in the environment, and times to reach sorptive equilibrium can be long. In the present study, sequential Tenax desorption experiments were performed with three sorbents, three aging times, and four pyrethroids. A biphasic rate model was fit to the desorption data with r(2)  > 0.99, and the rapid and slow compartment desorption rate constants and compartment fractions are reported. Suspended solids from irrigation runoff water collected from a field that had been sprayed with permethrin 1 d before were used in the experiments to compare desorption rates for field-applied pyrethroids with those for laboratory-spiked materials. Suspended solids were used in desorption experiments because suspended solids can be a key source of hydrophobic compounds in surface waters. The rapid desorption rate parameters of field-applied permethrin were not statistically different from those of laboratory spiked permethrin, indicating that desorption of the spiked pyrethroids is comparable to desorption of the pyrethroids added and aged in the field. Sorbent characteristics had the greatest effect on desorption rate parameters; as organic carbon content of the solids increased, the rapid desorption fractions and rapid desorption rate constants both decreased. The desorption rate constant of the slow compartment for sediment containing permethrin aged for 28 d was significantly different compared to aging for 1 d and 7 d, whereas desorption in the rapid and slow compartments did not differ between these treatments. Copyright © 2011 SETAC.

  3. Electronic structure of cobalt nanocrystals suspended inliquid

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  4. Mobile Instruments Measure Atmospheric Pollutants

    Science.gov (United States)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  5. Information Pollution

    OpenAIRE

    Noruzi, Alireza

    2000-01-01

    The exponential growth of information resources creates new challenges for end-users. The correct information may be polluted by misinformation, disinformation, propaganda or incorrect information via the Internet and other media. This paper defines 'information pollution' as "the contamination of information by misinformation, disinformation, propaganda and incorrect information." The purpose of this paper is to present the methods of information pollution. It is concluded that it is sometim...

  6. Enviormental Pollution

    OpenAIRE

    Kanika Saini; Dr. Sona Malhotra

    2016-01-01

    Environment Pollution is one of the greatest problems today which is increasing with every passing year and causing crucial and severe damage to the earth. It has become a real problem since the beginning of the industrial revolution. It is the contamination of physical and biological components of the Earth / atmosphere system to such an extent that normal environmental processes are harmed. Pollution of the environment consists of five main types of pollution, namely air, water,...

  7. Environmental pollution

    International Nuclear Information System (INIS)

    Odzuck, W.

    1982-01-01

    The volume of the anthropogenic pollution of the environment (incl. radioactivity) is of great economical importance and has also a meaning to the health and happiness of people. The pocket book introduces into the whole problem by giving exact information and data. After a general survey, the pollutions of urban-industrial, and aquatic ecosystems are dealt with. The book closes with indications as to general principles, specific dangers, and the fature development of the environmental pollution. (orig.) [de

  8. Suspended-sediment inflows to Watts Bar Reservoir. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, L.K.

    1993-09-01

    Suspended-sediment inflows to Watts Bar Reservoir are important data that are required in numerical modeling of transport and deposition of sediment in the reservoir. Acceptable numerical modeling requires sediment inflow rates and locations in order to be able to compute the location and quantity of sediment deposited within the reservoir. Therefore, the representativeness of modeling results is highly dependent on the characteristics of sediment input to the model. The following recommendations, that account for suspended-sediment inflows to be used in the numerical modeling of sediment transport and deposition in Watts Bar Reservoir, were developed through an evaluation of available watershed and sediment deposition data. (1) Use the suspended-sediment rating regression equations of Gaydos et al., for Emory River at Oakdale, TN, and for Poplar Creek near Oak Ridge, TN, to represent the suspended-sediment inflows into Watts Bar Reservoir from its tributaries; (2) Use a suspended-sediment rating regression equation that was derived from suspended-sediment and streamflow data of the Little Tennessee River at McGhee, TN, to represent sediment inflow from the Little Tennessee River for simulation of any historical year before the completion of Tellico Dam; (3) Check the appropriateness of any assumption for suspended-sediment inflows from upstream reservoirs by using its long-term relationship to local suspended-sediment inflows and to the suspended-sediment outflow through Watts Bar Dam; and (4) Focus refinements to suspended-sediment inflow rates on the Clinch arm of Watts Bar Reservoir.

  9. Development of online automatic detector of hydrocarbons and suspended organic matter by simultaneously acquisition of fluorescence and scattering

    Science.gov (United States)

    Mbaye, Moussa; Diaw, Pape Abdoulaye; Gaye-Saye, Diabou; Le Jeune, Bernard; Cavalin, Goulven; Denis, Lydie; Aaron, Jean-Jacques; Delmas, Roger; Giamarchi, Philippe

    2018-03-01

    Permanent online monitoring of water supply pollution by hydrocarbons is needed for various industrial plants, to serve as an alert when thresholds are exceeded. Fluorescence spectroscopy is a suitable technique for this purpose due to its sensitivity and moderate cost. However, fluorescence measurements can be disturbed by the presence of suspended organic matter, which induces beam scattering and absorption, leading to an underestimation of hydrocarbon content. To overcome this problem, we propose an original technique of fluorescence spectra correction, based on a measure of the excitation beam scattering caused by suspended organic matter on the left side of the Rayleigh scattering spectral line. This correction allowed us to obtain a statistically validated estimate of the naphthalene content (used as representative of the polyaromatic hydrocarbon contamination), regardless of the amount of suspended organic matter in the sample. Moreover, it thus becomes possible, based on this correction, to estimate the amount of suspended organic matter. By this approach, the online warning system remains operational even when suspended organic matter is present in the water supply.

  10. Environmental pollution and allergies

    Science.gov (United States)

    Takano, Hirohisa; Inoue, Ken-ichiro

    2017-01-01

    Environmental changes are thought to be the main factor in the rapid increase and worsening of allergic diseases. While there have been significant changes in many environmental factors, including in environments such as residential, health and sanitation, food, and water/soil/atmospheric environments, the root of each of these changes is likely an increase in chemical substances. In fact, various environmental pollutants, such as air pollutants and chemical substances, have been shown to worsen various allergies in experimental studies. For example, diesel exhaust particles (DEPs), which are an agglomeration of particles and a wide array of chemical substances, aggravate asthma, primarily due to the principle organic chemical components of DEPs. In addition, environmental chemicals such as phthalate esters, which are commonly used as plasticizers in plastic products, also aggravate atopic dermatitis. It has also become evident that extremely small nanomaterials and Asian sand dust particles can enhance allergic inflammation. While the underlying mechanisms that cause such aggravation are becoming clearer at the cellular and molecular levels, methods to easily and quickly evaluate (screen) the ever-increasing amount of environmental pollutants for exacerbating effects on allergies are also under development. To eliminate and control allergic diseases, medical measures are necessary, but it is also essential to tackle this issue by ameliorating environmental changes. PMID:28798526

  11. Suspended and Stitched (Mother and Child

    Directory of Open Access Journals (Sweden)

    Sally Barker

    2013-07-01

    Full Text Available Suspended and Stitched (Mother and Child (2013 incorporates large pieces of stone that have been split apart, drilled, stitched back together with rusty wire, and then embedded with latex casts of the artist's nipples. One piece of stone hangs, suspended from a beam; it is connected to a smaller piece using delicate rusty wire, and both pieces balance precariously over a poured piece of rubber, one that appears to be a split pool of milk. Attached to the upper piece of stone are the artist's latex cast nipples, emerging organically, they are thus called 'The Nipple Flowers', and were first made by Barker twenty years ago. Here they are here remade, to engage with the theme of ageing and progression as well as that of fertility and breast-feeding one's child. The overall work at once creates and destroys balance. Fragile, creaturely structures break free and are at the same time connected to the strong, grounded and weighty. Broken, split and cracked, materials are then healed and repaired. Elements are connected, but inevitably they move apart.

  12. Particulate matter from re-suspended mineral dust and emergency cause-specific respiratory hospitalizations in Hong Kong

    Science.gov (United States)

    Pun, Vivian C.; Tian, Linwei; Ho, Kin-fai

    2017-09-01

    While contribution from non-exhaust particulate matter (PM) emissions towards traffic-related emissions is increasing, few epidemiologic evidence of their health impact is available. We examined the association of short-term exposure to PM10 apportioned to re-suspended mineral dust with emergency hospitalizations for three major respiratory causes in Hong Kong between 2001 and 2008. Time-series regression model was constructed to examine association of PM10 from re-suspended mineral dust with emergency hospitalizations for upper respiratory infection (URI), chronic obstructive pulmonary disease (COPD) and asthma at exposure lag 0-5 days, adjusting for time trends, seasonality, temperature and relative humidity. An interquartile range (6.8 μg/m3) increment in re-suspended mineral dust on previous day was associated with 0.66% (95% CI: 0.12, 0.98) increase in total respiratory hospitalizations, and 1.01% (95% CI: 0.14, 1.88) increase in URI hospitalizations. A significant 0.66%-0.80% increases in risk of COPD hospitalizations were found after exposure to re-suspended mineral dust at lag 3 or later. Exposure to mineral dust at lag 4 was linked to 1.71% increase (95% CI: 0.14, 2.22) in asthma hospitalizations. Associations from single-pollutant models remained significant in multi-pollutant models, which additionally adjusted for PM10 contributing from vehicle exhaust, regional combustion, residual oil, fresh sea salt, aged sea salt, secondary nitrate and secondary sulfate, or gaseous pollutants (i.e., nitrogen dioxide, sulfur dioxide, or ozone), respectively. Our findings provide insight into the biological mechanism by which non-exhaust pollution may be associated with risk of adverse respiratory outcomes, and also stress the needs for strategies to reduce emission and re-suspension of mineral dust. More research is warranted to assess the health effects of different non-exhaust PM emissions under various roadway conditions and vehicle fleets.

  13. Polluted rainwater runoff from waste recovery and recycling companies: Determination of emission levels associated with the best available techniques.

    Science.gov (United States)

    Huybrechts, D; Verachtert, E; Vander Aa, S; Polders, C; Van den Abeele, L

    2016-08-01

    Rainwater falling on outdoor storage areas of waste recovery and recycling companies becomes polluted via contact with the stored materials. It contains various pollutants, including heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls, and is characterized by a highly fluctuating composition and flow rate. This polluted rainwater runoff is legally considered as industrial wastewater, and the polluting substances contained in the rainwater runoff at the point of discharge, are considered as emissions into water. The permitting authorities can set emission limit values (discharge limits) at the point of discharge. Best available techniques are an important reference point for setting emission limit values. In this paper, the emission levels associated with the best available techniques for dealing with polluted rainwater runoff from waste recovery and recycling companies were determined. The determination is based on an analysis of emission data measured at different companies in Flanders. The data show that a significant fraction of the pollution in rainwater runoff is associated with particles. A comparison with literature data provides strong indications that not only leaching, but also atmospheric deposition play an important role in the contamination of rainwater at waste recovery and recycling companies. The prevention of pollution and removal of suspended solids from rainwater runoff to levels below 60mg/l are considered as best available techniques. The associated emission levels were determined by considering only emission data from plants applying wastewater treatment, and excluding all samples with suspended solid levels >60mg/l. The resulting BAT-AEL can be used as a reference point for setting emission limit values for polluted rainwater runoff from waste recovery and recycling companies. Since the BAT-AEL (e.g. 150μg/l for Cu) are significantly lower than current emission levels (e.g. 300μg/l as the 90% percentile and 4910

  14. Calibration of Optical Back Scatterance for Suspended Sediment Concentration With San Francisco Bay Sediment

    Science.gov (United States)

    Keller, B.

    2005-12-01

    Optical back scatterance (OBS) is used by USGS to indirectly quantify suspended sediment concentration in the waters of San Francisco Bay. The use of one of the types of OBS instruments that is used in the Bay was evaluated for quantification of discharge water from sand yards, where dredged bay floor sand is brought on land for commercial purposes. The instrument response was calibrated with synthetic samples prepared from settled, previously suspended fine sediment, collected on various dates and derived from the same general area of central San Francisco Bay. The sediment samples were washed with fresh water, oven dried, sieved, and mixed into water in a test chamber. The responses of various sediment samples were compared with that of silica flour, a commercially available industrial material with similar particle size and density, that is white in color. Multiple tests with sediment samples from individual dates yielded extremely repeatable, almost linear instrument responses as a function of varying concentration. Sediment samples from different dates yielded varying responses, ranging from 2.0 to 2.8 times the response of silica flour. This response difference, a factor of approximately 1.4, is interpreted to be due to small differences in the darkness ("color") of the sediment samples. In a comparison with an EPA test method that uses filtration and weighing, performed at commercial laboratories, the "total suspended solids" (TSS, used synonymously with the term "suspended sediment concentration") analyses of the mixed synthetic sample waters yielded very poor results. Saline water samples were often associated with TSS test results that were higher than the known synthetic sample concentrations, indicating that the lab tests were often measuring dissolved salt rather than suspended sediment.

  15. Fluidized sand biofilters used to remove ammonia, biochemical oxygen demand, total coliform bacteria, and suspended solids from an intensive aquaculture effluent

    Science.gov (United States)

    Effluents from aquaculture facilities must be effectively managed to remove dissolved wastes and suspended solids that can pollute receiving bodies of water. High volume, dilute flows leaving settling or filtration units can appear pristine, but still contain dissolved wastes. Effective technologie...

  16. Air pollution

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Air pollution has accompanied and developed with the industrial age, since its beginnings. This very complete review furnishes the toxicological data available for the principal pollutants and assesses the epidemiologic studies thus far conducted. It also describes European regulations and international commitments for the reduction of emissions. (author)

  17. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    DEFF Research Database (Denmark)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte Bruunshøj

    2015-01-01

    corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards...... (EQS) defined in the WFD priority substance daughter directives. Observations showed that suspended mussels were healthy with respect to metal pollution and generally less polluted than benthic mussels due to the smaller contact with the contaminated sediment. The model results showed that the WFD...

  18. Organic pollutant levels in an agricultural watershed: the importance of analyzing multiple matrices for assessing stream water pollution.

    Science.gov (United States)

    Gonzalez, Mariana; Miglioranza, Karina S B; Grondona, Sebastían I; Silva Barni, Maria Florencia; Martinez, Daniel E; Peña, Aránzazu

    2013-04-01

    This study is aimed at analyzing the occurrence and transport of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the Quequén Grande river basin, as representative of a catchment under diffuse pollution sources. Pollutant levels in soils, river bottom sediments (RBS), streamwater (Sw), suspended particle materials (SPMs), macrophytes and muscle of silverside were determined by GC-ECD. Soil K(d) values for the current-used insecticides, endosulfans and cypermethrin, were established. Total levels (ng g(-1) dry weight) in soil ranged between 0.07–0.9 for OCPs, 0.03–0.37 for PCBs and 0.01–0.05 for PBDEs. Endosulfan insecticide (α- + b- + sulfate metabolite) represented up to 72.5% of OCPs. The low soil retention for α-endosulfan (K(d): 77) and endosulfan sulfate (K(d): 100) allows their transport to Sw, SPM and RBS. Levels of endosulfan in Sw in some cases exceeded the value postulated by international guidelines for aquatic biota protection (3 ng L(-1)). PCB and PBDE pollution was related to harbour, dumping sites and pile tire burning. Tri and hexa PCB congeners predominated in all matrices and exceeded the quality guideline value of 0.04 ng L(-1) in Sw. Considering levels in silverside muscle, none of the oral reference doses were exceeded, however, PCBs accounted for 18.6% of the total daily allowed ingest for a 70 kg individual. Although the levels of PCBs and OCPs in soil and RBS were low and did not go beyond quality guidelines, these compounds could still represent a risk to aquatic biota and humanbeings, and thus actions towards preventing this situation should be undertaken.

  19. Two-dimensional Lagrangian simulation of suspended sediment

    Science.gov (United States)

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  20. Mixing Model Analysis of Suspended Sediment and Particulate Organic Carbon Sources in White Clay Creek, Pennsylvania

    Science.gov (United States)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Marquard, J.; Pizzuto, J. E.; Newbold, J. D.

    2013-12-01

    Material exports from watersheds have consequences to upstream catchment elemental budgets, downstream ecosystem processes and water resources management. Despite this importance, quantifying exports of all major and trace elements associated with suspended sediments is challenging due to the highly episodic nature of that export. Constraining sediment sources using various mixing model approaches is further complicated by the diversity of potential sources. In this study, we leveraged the infrastructure of the Christina River Basin Critical Zone Observatory (CRB-CZO) to collect large volume (200 L) samples from 17 storms, including some of the biggest storms of the decade (i.e. Hurricane Irene and Sandy), and 95 potential source soils and sediments within the White Clay Creek watershed, a third-order watershed in southeastern Pennsylvania. On all samples we analyzed major and minor elements, rare earth elements, and radioisotopes in order to determine the erosional source category of stream suspended material, such that differences in the chemical composition of source materials can be used in a multivariate statistical model to predict the chemical composition of suspended sediment. For example, 137Cs is higher in surface and near-surface terrestrial soils and low in streambanks, deeper soils, road cuts, and road dust. Elemental chromium is much higher in road dust than any other source. We integrate sediment fingerprinting analyses common in geomorphological studies of mineral suspended material with biological and ecological characterizations of particulate organic carbon. Through this combination, we determine particle source, a necessary first step to calculating the amount of excess carbon that has complexed with particles during erosion and transit through the watershed. This interdisciplinary project is conducted as one of many studies in the CRB-CZO and directly contributes to the overall research focus of this CZO: to quantify the net carbon sink or

  1. The monitoring of air pollution in France. History, evolution, structures

    International Nuclear Information System (INIS)

    Delandre, J.R.

    1991-01-01

    After a broad description of APPA's (Association for Prevention of Atmospheric Pollution) activities in France since it was created in 1958, the structures of the various types of measuring systems (at July 1, 1991) are presented: urban centers networks, industrial areas networks, including forest acid rain monitoring. A list of the main continuously measured pollutants is given (high acidity, settling dust, sulfur dioxide, black smoke, suspended dust, fluorine, etc.)

  2. Modelling mussel growth in ecosystems with low suspended matter loads

    Science.gov (United States)

    Duarte, P.; Fernández-Reiriz, M. J.; Filgueira, R.; Labarta, U.

    2010-10-01

    Over the last decades a large number of bivalve growth models were described in the literature with most emphasis on cultivated species with important economic value. These models describe the rates of energy absorption and utilization as a function of environmental conditions. Some of the most important issues in bivalve modelling are water pumping, filtration, pre-ingestive rejection/pseudofaeces production and ingestion of living and non-living organic and inorganic matter. According to some authors, bivalve suspension-feeders may selectively ingest and/or digest different food items whilst making adjustments to maximize the utilization of chlorophyll rich particles. In clear water ecosystems such as the Galician Rias (total particulate matter ( TPM) TPM loads. The main objectives of this work were to develop, implement and calibrate an Individual Based Model of mussel growth, configured and parameterized for the environmental conditions of ecosystems with low suspended matter loads such as the Galician Rias. Model runs were made for a large number of individual mussels, each with a random parameter set, selected among possible parameter ranges reported in the literature, allowing a quick model calibration and an evaluation of those parameters explaining most of the variance in predicted mussel growth. Obtained results provide a useful feedback for upcoming experimental work where efforts should be concentrated on accurate estimates of these more influential parameters to improve model results.

  3. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model.

    Science.gov (United States)

    Su, Peng-Hao; Tomy, Gregg T; Hou, Chun-Yan; Yin, Fang; Feng, Dao-Lun; Ding, Yong-Sheng; Li, Yi-Fan

    2018-04-01

    A size-segregated gas/particle partitioning coefficient K Pi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient K P . Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. K Pi was generally greater than bulk K P , indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk K P . In predicting models, K Pi led to a significant shift in regression lines as compared to K P , thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of K Pi and K P were helpful to explain some phenomenon in predicting investigations, such as P L 0 and K OA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Distribution of suspended sediment in the coastal sea off the Ganges Brahmaputra River mouth: observation from TM data

    Science.gov (United States)

    Islam, Mohammad Rezwanul; Begum, Syeda Fahliza; Yamaguchi, Yasushi; Ogawa, Katsuro

    2002-05-01

    Remote sensing technique was applied to estimate suspended sediment concentration (SSC) and to understand transportation, distribution and deposition of suspended sediment in the estuary and throughout the coastal sea, off the Ganges-Brahmaputra River mouth. During low river discharge period, zone of turbidity maximum is inferred in the estuary near the shore. SSC map shows that maximum SSC reaches 1050 mg/l in this period. Magnitude of SSC is mainly owing to resuspension of the bottom surface sediments induced by tidal currents flowing over shallow water depths. The influence of depth on resuspension is farther revealed from the distribution and magnitude of SSC along the head of Swatch of No Ground (SNG) submarine canyon. During high river discharge period, huge river outflow pushed the salt wedge and flashes away the suspended sediments in the coastal sea off the river mouth. Zone of turbidity maximum is inferred in the coastal water approximately within 5-10 m depth of water, where the maximum SSC reaches 1700 mg/l. In this period, huge fluvial input of the suspended sediments including the resuspended bottom sediments and the particles remaining in suspension for longer period of time since their initial entry control mainly the magnitude of SSC. In the estuary near the shore, seasonal variation in the magnitude of SSC is not evident. In the coastal sea (>5 m water depth), seasonal influence in the magnitude of SSC could be concluded from the discrepancy between SSC values of two different seasons. Transportation and deposition of suspended sediments also experiences seasonal variations. At present, suspended sediments are being accumulated on the shallow shelf (between 5 and 10 m water depth) in low discharge period and on the mid-shelf (between 10 and 75 m water depth) during high discharge period. An empirical (exponential) relationship was found between gradual settle down of suspended sediments in the coastal sea and its lateral distance from the

  5. Improved algal harvesting using suspended air flotation.

    Science.gov (United States)

    Wiley, Patrick E; Brenneman, Kristine J; Jacobson, Arne E

    2009-07-01

    Current methods to remove algae from a liquid medium are energy intensive and expensive. This study characterized algae contained within a wastewater oxidation pond and sought to identify a more efficient harvesting technique. Analysis of oxidation pond wastewater revealed that algae, consisting primarily of Chlorella and Scenedesmus, composed approximately 80% of the solids inventory during the study period. Results demonstrated that suspended air flotation (SAF) could harvest algae with a lower air:solids (A/S) ratio, lower energy requirements, and higher loading rates compared to dissolved air flotation (DAF) (P plants by enabling cost effective means to reduce solids content of the final effluent. Furthermore, use of SAF to harvest commercially grown Chlorella and Scenedesmus may reduce manufacturing costs of algal-based products such as fuel, fertilizer, and fish food.

  6. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  7. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    Science.gov (United States)

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  8. Review of air pollution and health impacts in Malaysia

    International Nuclear Information System (INIS)

    Afroz, Rafia; Hassan, M.N.; Ibrahim, N.A.

    2003-01-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO 2 ), Nitrogen Dioxide (NO 2 ), Ozone (O 3 ), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO 2 ) are the predominant pollutants. Other pollutants such as CO, O x , SO 2 , and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts

  9. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy

    Science.gov (United States)

    Legout, Cédric; Poulenard, Jérôme; Nemery, Julien; Navratil, Oldrich; Grangeon, Thomas; Evrard, Olivier; Esteves, Michel

    2013-04-01

    Increasing the understanding of the hydro-sedimentary dynamics at the catchment scale requires data on the origin of suspended sediments in addition to the classical measurements of suspended sediment concentrations and discharge. In mountainous environments the extremely high spatial and temporal variability of suspended sediment fluxes suggests that the proportions of suspended sediment sources transiting at outlets may also exhibit strong variations during flood events. However, conventional fingerprinting techniques based on geochemical and radionuclide measurements are time-consuming and rather expensive. They constitute a major limitation to conduct routine characterisation of the source of suspended sediment transiting at outlets that would require the analysis of a large number of samples. We investigated how visible or infrared diffuse reflectance spectroscopy coupled with partial least squares chemometrics techniques could be used to predict the proportion of source material in suspended sediment samples and how it could help understanding the hydro-sedimentary processes occurring during floods. The studied catchment is located in the southern French Alps, draining an area of 22-km². It is composed of black marls, limestones, molasses, undifferentiated deposits and gypsum. Forty-eight source material samples were collected in badlands areas and 328 suspended sediment samples were collected at the outlet during 23 flood events. Spectroscopic measurements were carried out on dried samples. Given that the erosion processes are particle size selective, five size fractions of source material were measured in order to assess the potential alteration of the signatures. As the biogeochemical processes occurring in the river such as iron oxidation could also affect the signatures, source materials that were immersed in the river for durations ranging from 1 day to 9 weeks were analysed. Finally, partial least-squares regression models were constructed on 81

  10. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Directory of Open Access Journals (Sweden)

    Jen-Yang Lin

    2013-10-01

    Full Text Available Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS, chemical oxygen demand (COD, oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  11. Indicator components of the outdoor pollution in Leipzig; Indikatorstoffe der Aussenluft in Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Schlink, U.; Rehwagen, M.; Herbarth, O. [Sektion Expositionsforschung und Epidemiologie, Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany); Fritz, G.J. [Medizinische Fakultaet, Univ. Leipzig (Germany)

    1998-10-01

    Between January and December 1994, the outdoor air quality of the city of Leipzig, Germany, was examined at 13 kindergardens. SO{sub 2}, CO, NO{sub x}, O{sub 3}, total suspended particles, sedimentation dust and volatile organic compounds were measured. Although each monitoring site appears to have its own individual pollutant profile, two general pollution profiles could be identified as to Leipzig using principal component analysis. The profiles are largely attributable to two dominant emission sources, domestic heating and traffic. Indicator components were identified for both pollution profiles. Benzene was found to be the indicator component for traffic and SO{sub 2} for domestic heating. The predominating types of pollution are reflected in the prevalences of respiratory diseases among 519 children investigated based on parent-completed questionnaires. High traffic pollution was found to be associated with an increased occurrence of asthma and allergies and domestic heating with bronchitis. (orig.) [Deutsch] Von Januar bis Dezember 1994 wurde an 15 Kindergaerten in Leipzig die Belastung mit Luftschadstoffen durch Messungen von SO{sub 2}, CO, NO{sub x}, O{sub 3}, Schwebstaub und VOC untersucht. Es zeigte sich, dass jeder untersuchte Messort sein eigenes Schadstoffprofil besitzt. Mit einer Hauptkomponentenanalyse der Messdaten wurden zwei fuer Leipzig wesentliche Schadstoffprofile identifiziert. Diese entstehen durch ueberwiegende Emissionen des Hausbrandes oder durch ueberwiegende Verkehrsemissionen. Fuer beide Belastungssituationen wurden Indikatorkomponenten gefunden. Dies sind Benzol fuer die Verkehrsbelastung und erwartungsgemaess SO{sub 2} fuer die Hausbrandbelastung. Der Typ der Belastung spiegelt sich in der Praevalenz von Atemwegserkrankungen wider. Bei den 519 mit einem Fragebogen untersuchten Kindern war bei Vorliegen einer hohen Verkehrsbelastung eine erhoehte Praevalenz bei Asthma und Allergien zu verzeichnen. (orig.)

  12. Assessment of air pollution in residential areas of Kinondoni ...

    African Journals Online (AJOL)

    The quality of the ambient air at residential areas has been assessed for Kinondoni Municipality in Dar es Salaam City. Three air pollutants namely Nitrogen dioxide (NO2), suspended particulate matter (SPM), and particulate lead (Pb) were measured in Mikocheni, Kijitonyama, Sinza, and Manzese. Saltzman, filtrations, and ...

  13. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.