WorldWideScience

Sample records for suspended organic carbon

  1. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  2. Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle

    International Nuclear Information System (INIS)

    Bevan, M.A.J.; Proctor, C.J.; Baker-Rogers, J.; Warren, N.D.

    1991-01-01

    A portable air sampling system has been used to assess exposures to various substances while commuting by bicycle in an urban area. The major source of pollutants in this situation is motor vehicle exhaust emissions. Carbon monoxide, measured by electrochemical detection, was found at peak concentrations in excess of 62 ppm, with mean values over 16 individual 35-mm journeys being 10.5 ppm. Respirable suspended particulates, averaged over each journey period, were found at higher concentrations (mean 130 μg m -3 ) than would be expected in indoor situations. Mean exposure to benzene (at 56 μg m -3 ) and other aromatic volatile organic compounds was also relatively high. The influence of wind conditions on exposure was found to be significant. Commuting exposures to carbon monoxide, respirable suspended particulates, and aromatic VOCs were found to be higher than exposures in a busy high street and on common parkland

  3. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  4. Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure.

    Science.gov (United States)

    Custer, Kevin W; Hammerschmidt, Chad R; Burton, G Allen

    2016-01-01

    Nickel bioavailability is reduced in the presence of dissolved organic carbon (DOC), suspended solids (TSS), and other complexing ligands; however, no studies have examined the relative importance of Ni exposure through different compartments (water, sediment, food). Hyalella azteca and Lymnaea stagnalis were exposed to Ni-amended water, sediment, and food, either separately or in combination. Both organisms experienced survival and growth effects in several Ni compartment tests. The DOC amendments attenuated L. stagnalis Ni effects (survival, growth, and (62)Ni bioaccumulation), and presence of TSS exposures demonstrated both protective and synergistic effects on H. azteca and L. stagnalis. (62)Ni trophic transfer from food to H. azteca and L. stagnalis was negligible; however, bioaccumulating (62)Ni was attributed to (62)Ni-water ((62)Ni flux from food), (62)Ni-TSS, and (62)Ni-food. Overall, H. azteca and L. stagnalis Ni compartment toxicity increased in the following order: Ni-water > Ni-sediment > Ni-all (water, sediment, food) > Ni-food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    Science.gov (United States)

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of

  6. Effects of wind farm construction on concentrations and fluxes of dissolved organic carbon and suspended sediment from peat catchments at Braes of Doune, central Scotland

    Directory of Open Access Journals (Sweden)

    I. Grieve

    2008-07-01

    Full Text Available This paper assesses the impacts of disturbance associated with the construction of a wind farm on fluxes of dissolved organic carbon (DOC and suspended sediment from a blanket peat catchment in central Scotland during the period immediately following completion of construction. Six streams draining the site were sampled on six dates from October 2006, when construction was completed, and an additional three control streams to the west of the site were sampled on the same dates. Turbidity and stage were recorded semi-continuously in the two largest streams (one disturbed and one control, which were also sampled during storm events. Absorbance (400 nm and DOC concentrations were determined on all samples, and suspended sediment was determined on the event samples. Absorbance and DOC were closely correlated in both the disturbed and undisturbed streams, with slightly greater absorbance per unit DOC in the disturbed streams. DOC concentrations in disturbed tributaries were always greater than those in undisturbed streams, with mean differences ranging from 2 to around 5 mg L-1. DOC and stage were positively correlated during events with maximum concentrations in excess of 30 mg L 1 at peak flow. Suspended sediment concentrations were markedly elevated in the disturbed stream with maximum concentrations at peak flow some 4–5 times greater than in the control. The colour of the sediment suggested that it was highly organic in nature at peak flow, and suspended particulate organic carbon represented a further loss of C from the site. Using flow-weighted mean DOC concentrations calculated for the storms monitored in autumn 2007, dissolved carbon losses can be estimated for the catchments of the disturbed and control streams. From these data the additional DOC loss related to disturbance associated with the wind farm is estimated at 5 g m-2.

  7. Super-bridges suspended over carbon nanotube cables

    Science.gov (United States)

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-11-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  8. Super-bridges suspended over carbon nanotube cables

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Pugno, Nicola M

    2008-01-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ∼3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ∼6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ∼3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  9. Suspended HOPG nanosheets for HOPG nanoresonator engineering and new carbon nanostructure synthesis

    International Nuclear Information System (INIS)

    Rose, F; Debray, A; Martin, P; Fujita, H; Kawakatsu, H

    2006-01-01

    Suspended highly oriented pyrolytic graphite (HOPG) nanosheets (10-300 nm thick) were created by direct mechanical cleavage of a bulk HOPG crystal onto silicon micropillars and microtracks. We show that suspended HOPG nanosheets can be used to engineer HOPG nanoresonators such as membranes, bridges, and cantilevers as thin as 28 carbon atom layers. We measured by Doppler laser heterodyne interferometry that the discrete vibration modes of an HOPG nanosheet membrane and the resonance frequency of a FIB-created HOPG microcantilever lie in the MHz frequency regime. Moreover, a new carbon nanostructure, named 'nanolace', was synthesized by focused ion beam (FIB) sputtering of suspended HOPG nanosheets. Graphite nanosheets suspended on micropillars were eroded by a FIB to create self-oriented pseudo-periodical ripples. Additional sputtering and subsequent milling of these ripples led to the formation of honeycomb-like shaped nanolaces suspended and linked by ribbons

  10. Suspended 3D pyrolytic carbon microelectrodes for electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Keller, Stephan Sylvest

    2017-01-01

    with cyclic voltammetry (CV) and impedance spectroscopy (EIS) using potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. Different 3D pyrolytic carbon microelectrodes were compared and the optimal design displayed twice the peak current and half the charge transfer......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. This work presents the fabrication and characterization of suspended pyrolytic carbon microstructures serving as three-dimensional (3D) carbon microelectrodes...... for electrochemical applications. A 3D polymer template in epoxy based photoresist (SU-8) was fabricated with multiple steps of UV photolithography and pyrolysed at 900 °C to obtain 3D carbon microelectrodes. The pyrolytic carbon microstructures were characterized by SEM, Raman spectroscopy and XPS to determine...

  11. Export of fine particulate organic carbon from redwood-dominated catchments

    Science.gov (United States)

    Madej, Mary Ann

    2015-01-01

    Recently, researchers have recognized the significant role of small mountainous river systems in the transport of carbon from terrestrial environments to the ocean, and the scale of such studies have ranged from channel bed units to continents. In temperate zones, these mountain river systems commonly drain catchments that are largely forested. However, the magnitude of carbon export from rivers draining old-growth redwood forests has not been evaluated to date. Old-growth redwood stands support some of the largest quantities of biomass in the world, up to 350 000 Mg of stem biomass km-2 and soil organic carbon can reach 46 800 Mg km-2. In north coastal California, suspended sediment samples were collected at three gaging stations for two to four years on streams draining old-growth redwood forests. Carbon content, determined through loss-on-ignition tests, was strongly correlated with turbidity, and continuous turbidity records from the gaging stations were used to estimate annual carbon exports of 1 · 6 to 4 · 2 Mg km-2 yr-1. These values, representing 13 to 33% of the suspended sediment load, are some of the highest percentages reported in the global literature. The fraction of organic carbon as part of the suspended sediment load decreased with discharge, but reached an asymptote of 5 to 10% at flows 10 to 20 times the mean annual flows. Although larger rivers in this region exhibit high sediment yields (up to 3600 Mg km-2 yr-1), mainly attributed to high rates of uplift, mass movement, and timber harvest, the small pristine streams in this study have sediment yields of only 8 to 100 Mg km-2 yr-1. Because the current extent of old-growth redwood stands is less than 5% of its pre-European-settlement distribution, the present organic carbon signature in suspended sediment loads in this region is likely different from that in the early 20th century. Published 2015. This article is a U.S. Government work and is in the public

  12. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    Science.gov (United States)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  13. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  14. Organic carbon deliveries and their flow related dynamics in the Fitzroy estuary

    International Nuclear Information System (INIS)

    Ford, Phillip; Tillman, Pei; Robson, Barbara; Webster, Ian T.

    2005-01-01

    The Fitzroy estuary (Queensland, Australia) receives large, but highly episodic, river flows from a catchment (144,000 km 2 ) which has undergone major land clearing. Large quantities of suspended sediments, and particulate and dissolved organic carbon are delivered. At peak flows, δ 13 C (-21.7 ± 0.8%o) and C/N (14.8 ± 1.3) of the suspended solids indicate that the particulate organic material entering the estuary is principally soil organic carbon. At the lower beginning flows the particulate organic matter comes from in-stream producers (δ 13 C = -26%o). The DOC load is about 10 times the POC load. Using the inverse method, budgets for POC and DOC were constructed for high and low flows. Under high flows, only a small portion of the POC and DOC load is lost in the estuary. Under dry season (low flow) conditions the estuary is a sink for DOC, but remains a source of POC to the coastal waters

  15. Effectiveness of foam-based and traditional green roofs in reducing nitrogen, phosphorus, organic carbon and suspended solids in urban installations

    Science.gov (United States)

    MacAvoy, S. E.; Mucha, S.; Williamson, G.

    2017-12-01

    While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.

  16. Organic Compounds, Trace Elements, Suspended Sediment, and Field Characteristics at the Heads-of-Tide of the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers, New Jersey, 2000-03

    Science.gov (United States)

    Bonin, Jennifer L.; Wilson, Timothy P.

    2006-01-01

    Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.

  17. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  18. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  19. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  20. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    Science.gov (United States)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  1. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  2. Seasonal distribution of organic matter in mangrove environment of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    Water and sediments were studied for the distribution of suspended matter, organic carbon and nitrogen Suspended matter ranged from 3-373 mg.l-1 while particulate organic carbon (POC) from 0.03-9.94 mg.l-1 POC value showed significant correlation...

  3. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramani, Aparna, E-mail: aparna.27889@gmail.com; Howell, Nathan L., E-mail: nlhowell@central.uh.edu; Rifai, Hanadi S., E-mail: rifai@uh.edu

    2014-03-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K{sub oc} values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K{sub ow}, organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs.

  4. Polychlorinated biphenyls (PCBs) in industrial and municipal effluents: Concentrations, congener profiles, and partitioning onto particulates and organic carbon

    International Nuclear Information System (INIS)

    Balasubramani, Aparna; Howell, Nathan L.; Rifai, Hanadi S.

    2014-01-01

    Wastewater effluent samples were collected in the summer of 2009 from 16 different locations which included municipal and industrial wastewater treatment plants and petrochemical industrial outfalls in the Houston area. The effluent samples were analyzed for all 209 polychlorinated biphenyls (PCBs) congeners using high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) using the USEPA method 1668A. The total PCBs (∑ 209) concentration in the dissolved medium ranged from 1.01 to 8.12 ng/L and ranged from 2.03 to 31.2 ng/L in the suspended medium. Lighter PCB congeners exhibited highest concentrations in the dissolved phase whereas, in the suspended phase, heavier PCBs exhibited the highest concentrations. The PCB homolog concentrations were dominated by monochlorobiphenyls through hexachlorobiphenyls, with dichlorobiphenyls exhibiting the highest concentration amongst them at most of the effluent outfalls, in the suspended phase. Both total suspended solids (TSS) and various organic carbon fractions played an important role in the distribution of the suspended fractions of PCBs in the effluents. The log K oc values determined in the effluents suggest that effluent PCB loads might have more risk and impact than what standard partitioning models predict. - Highlights: • 209 PCB congeners were measured in 16 different municipal and industrial effluents. • PCB congener differences were elucidated for the various effluent types. • In addition to log K ow , organic carbon and TSS affect partitioning of PCBs. • High concentrations of homolog 2 maybe due to biotransformation of PCBs

  5. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    Science.gov (United States)

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; di, Chong-An; Zhu, Daoben

    2015-03-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa-1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.

  6. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment

    Directory of Open Access Journals (Sweden)

    Y. Schindler Wildhaber

    2012-06-01

    Full Text Available Suspended sediment (SS and organic matter in rivers can harm brown trout Salmo trutta by affecting the health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C, and nitrogen (N during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase of pasture and arable land downstream of the river. The mean fraction of SS originating from upper watershed riverbed sediment decreased from up to downstream and increased during high flow at all measuring sites along the course of the river. During base flow conditions, the major sources of SS are pasture, forest and arable land. The latter increased during rainy and warmer winter periods, most likely because both triggered snow melt and thus erosion. The measured increase in DOC and nitrate concentrations during high flow support these modeling results. Enhanced soil erosion processes on pasture and arable land are expected with increasing heavy rain events and less snow during winter seasons due to climate change. Consequently, SS and organic

  7. Capillary Structured Suspensions from in Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media

    NARCIS (Netherlands)

    Dunstan, Timothy S.; Das, Anupam A.K.; Starck, Pierre; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2018-01-01

    We demonstrate that capillary suspensions can be formed from hydrophilic calcium carbonate particles suspended in a polar continuous media and connected by capillary bridges formed of minute amounts of an immiscible secondary liquid phase. This was achieved in two different polar continuous phases,

  8. Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India

    Directory of Open Access Journals (Sweden)

    M. V. Maya

    2011-11-01

    Full Text Available Intra-annual variations of δ13C and δ15N of water-column suspended particulate organic matter (SPOM have been investigated to understand the biogeochemical cycling of C and N in the Western Continental Shelf of India (WCSI. The key issues being addressed are: how the δ15N of SPOM is affected by seasonally varying processes of organic matter production and respiration and how it relates to the δ15N of sedimentary organic matter that appears to show a decreasing trend despite an apparent intensification of seasonal oxygen deficiency over the past few decades? A secondary objective was to evaluate the sources of organic carbon. Elemental carbon and nitrogen concentrations, C/N ratios in SPOM, along with ancillary chemical and biological variables including phytoplankton pigment abundance were also determined on a seasonal basis (from March 2007 to September 2008, with the partial exception of the southwest (SW monsoon period. The results reveal significant shifts in isotopic signatures, especially δ15N, of SPOM before and after the onset of SW monsoon. Very low δ15N values, reaching a minimum of −4.17 ‰, are found during the pre-monsoon period. Our results provide the first direct evidence for the addition of substantial amounts of isotopically light nitrogen by the diazotrophs, especially Trichodesmium, in the region. The δ15N of SPOM is generally lower than the mean value (7.38 ‰ for surficial sediments, presumably because of diagenetic enrichment. The results support the view that sedimentary δ15N may not necessarily reflect denitrification intensity in the overlying waters due to diverse sources of nitrogen and variability of its isotopic composition. The observed intra-annual variability of δ13C of SPOM during the pre-monsoon and post-monsoon periods is generally small. Phytoplankton production and probably species

  9. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Shi, J; Lu, Y F; Wang, H; Yi, K J; Lin, Y S; Zhang, R; Liou, S H

    2006-01-01

    Suspended single-walled carbon nanotubes (SWNTs) have been synthesized on Si inverse-opal structures by laser-assisted chemical vapour deposition (LCVD). A CW CO 2 laser at 10.6 μm was used to directly irradiate the substrates during the LCVD process. At a laser power density of 14.3 MW m -2 , suspended SWNT networks were found predominantly rooted at the sharp edges in the Si inverse-opal structures. Raman spectroscopy indicated that the SWNT networks were composed of high-quality defect-free SWNTs with an average diameter of 1.3 nm. At a lower laser power density (6.4 MW m -2 ), multi-walled carbon nanotubes (MWNTs) were grown on the entire surface of the substrates. The preference for the synthesis of SWNTs or MWNTs was attributed to the difference in the catalyst sizes as well as the growth temperature in the LCVD process

  10. Self-rewetting fluids with suspended carbon nanostructures.

    Science.gov (United States)

    Savino, R; Di Paola, R; Gattia, D Mirabile; Marazzi, R; Antisari, M Vittori

    2011-10-01

    Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary or multi-component heat transfer fluids with peculiar surface tension properties and in particular to "self-rewetting fluids," i.e., liquids with a surface tension increasing with temperature and concentration. Thermophysical properties like surface tension, wettability and thermal conductivity, at different temperatures, have been measured not only for binary mixtures, but also for a number of ternary aqueous solutions with relatively low freezing point and for nanoparticles suspensions (so called nanofluids). Some of them interestingly exhibit the same anomalous positive surface tension gradient with temperature as binary self-rewetting solutions. Since in the course of liquid/vapour phase change, self-rewetting fluids behaviour induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, several interesting applications may be envisaged, e.g., the development of advanced wickless heat pipes for utilization in reduced gravity environments. The present work is dedicated to the study of the thermophysical properties of nanofluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesised by an homemade apparatus with an AC arc discharge in open air. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.

  11. Photo-induced thermoelectric response in suspended single-walled carbon nanotube films

    Science.gov (United States)

    St-Antoine, Benoit; Menard, David; Martel, Richard

    2010-03-01

    A study was carried out on the position dependent photovoltage of suspended single-walled carbon nanotube films in vacuum. The photoresponse of such films was found to be driven by a thermal mechanism, rather than by direct photoexcitation of carriers. [1] A model was developed which establishes a relation between the photoresponse profile and the local Seebeck coefficient of the film, thus opening up new perspectives for material characterization. The technique was demonstrated by monitoring the doping changes in the nanotube films obtained by successive current conditioning steps. Since the Seebeck coefficient of carbon nanotubes spans a considerable range depending on their doping state, the photovoltage amplitude can be tuned and large responses have been measured (up to 0.75mV for 1.2mW). [4pt] [1] B. St-Antoine et al. Nano Lett. 9, 3503 (2009)

  12. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.

    Science.gov (United States)

    Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter

    2015-12-15

    This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.

  13. Aged riverine particulate organic carbon in four UK catchments

    International Nuclear Information System (INIS)

    Adams, Jessica L.; Tipping, Edward; Bryant, Charlotte L.; Helliwell, Rachel C.; Toberman, Hannah; Quinton, John

    2015-01-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO 14 C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO 14 C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 14 C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO 14 C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high- 14 C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO 14 C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO 14 C in rivers draining catchments with low erosion rates. - Highlights:

  14. Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya

    NARCIS (Netherlands)

    Tamooh, F.; Van den Meersche, K.; Meysman, F.; Marwick, T.R.; Borges, A.V.; Merckx, R.; Dehairs, F.; Schmidt, S.; Nyunja, J.; Bouillon, S.

    2012-01-01

    We studied patterns in organic carbon pools and their origin in the Tana River Basin (Kenya), in February 2008 (dry season), September–November 2009 (wet season), and June–July 2010 (end of wet season), covering the full continuum from headwater streams to lowland mainstream sites. A consistent

  15. Parallel measurements of organic and elemental carbon dry (PM1, PM2.5) and wet (rain, snow, mixed) deposition into the Baltic Sea.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita; Falkowska, Lucyna M

    2016-03-15

    Parallel studies on organic and elemental carbon in PM1 and PM2.5 aerosols and in wet deposition in various forms of its occurrence were conducted in the urbanised coastal zone of the Baltic Sea. The carbon load introduced into the sea water was mainly affected by the form of precipitation. Dry deposition load of carbon was on average a few orders of magnitude smaller than wet deposition. The suspended organic carbon was more effectively removed from the air with rain than snow, while an inverse relationship was found for elemental carbon. However the highest flux of water insoluble organic carbon was recorded in precipitation of a mixed nature. The atmospheric cleaning of highly dissolved organic carbon was observed to be the most effective on the first day of precipitation, while the hydrophobic elemental carbon was removed more efficiently when the precipitation lasted longer than a day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Organics and Suspended Solids Removal from Hospital

    Directory of Open Access Journals (Sweden)

    Fakhri Y. Hmood

    2013-05-01

    Full Text Available The Sequencing Batch Reactor (SBR method is used for treating samples of waste water taken from hospitals in Mosul. Many run periods are used (6-24 hours for             6 months. It is found that the organics and suspended solids removal increase with increasing the period of run, it is in the range ( 96-82 % and ( 100-95 % respectively, while the pH values are nearly neutral (7.05 to 7.5.     BOD5 and SS concentrations of the effluent are within the limits of Iraqi standards,  40:30 mg/l respectively. Hence, SBR method could be used for treating hospitals, small factories and some  residential sectors waste waters.  

  17. Ultrasensitive mass sensing with nonlinear optics in a doubly clamped suspended carbon nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Zhu, Ka-Di [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 2 00240 (China)

    2013-12-07

    Nanomechanical resonator makes itself as an ideal system for ultrasensitive mass sensing due to its ultralow mass and high vibrational frequency. The mass sensing principle is due to the linear relationship of the frequency-shift and mass-variation. In this work, we will propose a nonlinear optical mass sensor based on a doubly clamped suspended carbon nanotube resonator in all-optical domain. The masses of external particles (such as nitric oxide molecules) landing onto the surface of carbon nanotube can be determined directly and accurately via using the nonlinear optical spectroscopy. This mass sensing proposed here may provide a nonlinear optical measurement technique in quantum measurements and environmental science.

  18. Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy

    NARCIS (Netherlands)

    Buchs, G.; Barkelid, K.M.; Bagiante, S.; Steele, G.A.; Zwiller, V.

    2011-01-01

    We use scanning photocurrent microscopy (SPCM) to investigate individual suspended semiconducting carbon nanotube devices where the potential profile is engineered by means of local gates. In situ tunable p-n junctions can be generated at any position along the nanotube axis. Combining SPCM with

  19. New views on "old" carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes

    Science.gov (United States)

    Clark, K. E.; Hilton, R. G.; West, A. J.; Malhi, Y.; Gröcke, D. R.; Bryant, C. L.; Ascough, P. L.; Robles Caceres, A.; New, M.

    2013-05-01

    rivers play a key role in the delivery of particulate organic carbon (POC) to large river systems and the ocean. Due to the extent of its drainage area and runoff, the Amazon River is one of Earth's most important biogeochemical systems. However, the source of POC eroded from the humid region of the Eastern Andes and the input of fossil POC from sedimentary rocks (POCfossil) remains poorly constrained. Here we collected suspended sediments from the Kosñipata River during flood events to better characterize Andean POC, measuring the nitrogen to organic carbon ratio (N/C), stable carbon isotopes (δ13Corg) and radiocarbon (Δ14Corg). Δ14Corg values ranged from -711‰ to -15‰, and significant linear trends between Δ14Corg, N/C and δ13Corg suggested that this reflects the mixing of POCfossil with very young organic matter (Δ14Corg 50‰) from the terrestrial biosphere (POCnon-fossil). Using N/C and Δ14Corg in an end-member mixing analysis, we quantify the fraction of POCfossil (to within 0.1) and find that it contributes a constant proportion of the suspended sediment mass (0.37 ± 0.03%) and up to 80% of total POC. In contrast, the relative contribution of POCnon-fossil was variable, being most important during the rising limb and peak discharges of flood events. The new data shed light on published measurements of "old" POC (low Δ14Corg) in Andean-fed tributaries of the Amazon River, with their Δ14Corg and δ13Corg values consistent with variable addition of POCfossil. The findings suggest a greater persistence of Andean POC in the lowland Amazon than previously recognized.

  20. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  1. Optical absorption and thermal transport of individual suspended carbon nanotube bundles.

    Science.gov (United States)

    Hsu, I-Kai; Pettes, Michael T; Bushmaker, Adam; Aykol, Mehmet; Shi, Li; Cronin, Stephen B

    2009-02-01

    A focused laser beam is used to heat individual single-walled carbon nanotube bundles bridging two suspended microthermometers. By measurement of the temperature rise of the two thermometers, the optical absorption of 7.4-10.3 nm diameter bundles is found to be between 0.03 and 0.44% of the incident photons in the 0.4 microm diameter laser spot. The thermal conductance of the bundle is obtained with the additional measurement of the temperature rise of the nanotubes in the laser spot from shifts in the Raman G band frequency. According to the nanotube bundle diameter determined by transmission electron microscopy, the thermal conductivity is obtained.

  2. Organic compounds and suspended matter in the White Sea snow-ice cover

    International Nuclear Information System (INIS)

    Nemirovskaya, I.; Shevchenko, V.

    2008-01-01

    The pollution of the White Sea snow-ice cover was estimated by examining the distribution of organic compounds, including oil and pyrogenic hydrocarbons. Ice and snow cores were taken from Chupa Bay and the Kandalaksha Gulf in the Cape Kartesh area in the spring of 2004 and from the mouth of the Severnaya Dvina River in the spring of 2005, 2006, and 2007. This paper presented data on the lipid content, aliphatic hydrocarbons (AHC), polycyclic aromatic hydrocarbons (PAH) and suspended particulate matter in snow, ice and under-ice water. This paper focused on organic compounds and suspended matter (SM) concentrations in the sea snow-ice cover and described the ice forming conditions and interactions of the substances with ice, snow and sub-ice water. The amount of particulate matter and organic compounds in the snow increased sharply near industrial centres. The concentration of compounds decreased further away from these centres, suggesting that most pollutants are deposited locally. The study revealed that organic compounds concentrate in barrier zones, such as snow-ice and water-ice, depending on the source of pollution. There was no obvious evidence of petrogenic sources of PAHs in particulate matter from the White Sea snow-ice cover. The SM and organic compounds accumulated in layers characterized by local depositional processes. The zones remained biogeochemically active even under low temperature conditions, but the accumulation of both SM and organic compounds was at its highest during the initial stage of ice formation. 16 refs., 2 tabs., 4 figs

  3. Influence of colloidal dissolved organic carbon (DOC) on the sorption of plutonium on natural sediments

    International Nuclear Information System (INIS)

    Nelson, D.M.; Karttunen, J.O.; Mehlhoff, P.

    1982-01-01

    It now appears possible to formulate a practical model to describe the absorption of Pu(IV) by suspended solids. In such a model the constants describing the association of plutonium with both soluble organics and solid adsorbers must be known, as well as any variation in these constants due to solution properties such as pH and ionic strength. If the complexing ability of dissolved organic carbon is sufficiently constant, such a model could describe plutonium behavior in a wide variety of surface and ground waters. Observations to date indicate that the variation in K/sub D/ (K/sub D/ = concentration of Pu(IV) in suspended solids divided by the concentration of Pu(IV) in the water) among water bodies is due primarily to differences in water chemistry and that differences in the character of the absorbing solid are less important. The mathematical relationship and parameter values presented in this report adequately describe the adsorption of Pu(IV) on one-specific sediment

  4. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  5. Aged riverine particulate organic carbon in four UK catchments

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jessica L., E-mail: jesams@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Tipping, Edward, E-mail: et@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); Bryant, Charlotte L., E-mail: charlotte.bryant@glasgow.ac.uk [NERC Radiocarbon Facility, East Kilbride G75 0QF, Scotland (United Kingdom); Helliwell, Rachel C., E-mail: rachel.helliwell@hutton.ac.uk [The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH Scotland (United Kingdom); Toberman, Hannah, E-mail: hannahtoberman@hotmail.com [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP (United Kingdom); School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Quinton, John, E-mail: j.quinton@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-12-01

    The riverine transport of particulate organic matter (POM) is a significant flux in the carbon cycle, and affects macronutrients and contaminants. We used radiocarbon to characterise POM at 9 riverine sites of four UK catchments (Avon, Conwy, Dee, Ribble) over a one-year period. High-discharge samples were collected on three or four occasions at each site. Suspended particulate matter (SPM) was obtained by centrifugation, and the samples were analysed for carbon isotopes. Concentrations of SPM and SPM organic carbon (OC) contents were also determined, and were found to have a significant negative correlation. For the 7 rivers draining predominantly rural catchments, PO{sup 14}C values, expressed as percent modern carbon absolute (pMC), varied little among samplings at each site, and there was no significant difference in the average values among the sites. The overall average PO{sup 14}C value for the 7 sites of 91.2 pMC corresponded to an average age of 680 {sup 14}C years, but this value arises from the mixing of differently-aged components, and therefore significant amounts of organic matter older than the average value are present in the samples. Although topsoil erosion is probably the major source of the riverine POM, the average PO{sup 14}C value is appreciably lower than topsoil values (which are typically 100 pMC). This is most likely explained by inputs of older subsoil OC from bank erosion, or the preferential loss of high-{sup 14}C topsoil organic matter by mineralisation during riverine transport. The significantly lower average PO{sup 14}C of samples from the River Calder (76.6 pMC), can be ascribed to components containing little or no radiocarbon, derived either from industrial sources or historical coal mining, and this effect is also seen in the River Ribble, downstream of its confluence with the Calder. At the global scale, the results significantly expand available information for PO{sup 14}C in rivers draining catchments with low erosion rates

  6. Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary

    International Nuclear Information System (INIS)

    Mariotti, A.; Lancelot, C.; Billen, G.

    1984-01-01

    The natural isotopic composition of suspended particulate organic nitrogen was determined in the Southern Bight of the North Sea and in the Scheldt estuary. These data show that delta 15 N constitutes a convenient tracer of the origin of the suspended matter. In the winter, in the absence of intensive primary production, the suspended organic matter of the Scheldt estuary is a mixture of two components: a continental detrital component characterized by a low delta value of 1.5per mille and a marine component with a mean delta value of 8per mille. During the phytoplankton flowering period, lasting from early May to October, intensive primary production occurs throughout the estuary giving rise to a third source of organic matter. This material is characterized by high delta values reflecting the isotopic composition of ammonia, the nitrogenous nutrient assimilated by phytoplankton in the estuary. The nitrification process occuring in the mixing area of the Scheldt estuary leads to higher downstream delta values of ammonia (> 20per mille) which permits the distinction between estuarine from fresh-water phytoplankton. Simple isotopic budget calculations show that, both in the upstream part and in the downstream part, autochthonous phytoplanktonic material contributes a major part of the total suspended matter in the Scheldt estuary during summer. (author)

  7. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  8. Nanomechanical mapping of graphene layers and interfaces in suspended graphene nanostructures grown via carbon diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.J. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Rabot, C. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Mazzocco, R. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Delamoreanu, A. [Microelectronics Technology Laboratory (LTM), Joseph Fourier University, French National Research Center (CNRS), 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Zenasni, A. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Kolosov, O.V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-01-01

    Graphene's remarkable mechanical, electronic and thermal properties are strongly determined by both the mechanism of its growth and its interaction with the underlying substrate. Evidently, in order to explore the fundamentals of these mechanisms, efficient nanoscale methods that enable observation of features hidden underneath the immediate surface are needed. In this paper we use nanomechanical mapping via ultrasonic force microscopy that employs MHz frequency range ultrasonic vibrations and allows the observation of surface composition and subsurface interfaces with nanoscale resolution, to elucidate the morphology of few layer graphene (FLG) films produced via a recently reported method of carbon diffusion growth (CDG) on platinum-metal based substrate. CDG is known to result in FLG suspended over large areas, which could be of high importance for graphene transfer and applications where a standalone graphene film is required. This study directly reveals the detailed mechanism of CDG three-dimensional growth and FLG film detachment, directly linking the level of graphene decoupling with variations of the substrate temperature during the annealing phase of growth. We also show that graphene initially and preferentially decouples at the substrate grain boundaries, likely due to its negative expansion coefficient at cooling, forming characteristic “nano-domes” at the intersections of the grain boundaries. Furthermore, quantitative nanomechanical mapping of flexural stiffness of suspended FLG “nano-domes” using kHz frequency range force modulation microscopy uncovers the progression of “nano-dome” stiffness from single to bi-modal distribution as CDG growth progresses, suggesting growth instability at advanced CDG stages. - Highlights: • Exploring growth and film-substrate decoupling in carbon diffusion grown graphene • Nanomechanical mapping of few layer graphene and graphene–substrate interfaces • Quantitative stiffness mapping of

  9. Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes

    Science.gov (United States)

    Wang, Bo; Shen, Lang; Yang, Sisi; Chen, Jihan; Echternach, Juliana; Dhall, Rohan; Kang, DaeJin; Cronin, Stephen

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The utilization of defects in carbon nanotubes to improve their photoluminescence efficiency has become a widespread study of the realization of efficient light-emitting devices. Here, we report a detailed comparison of the defects in nanotubes (quantified by Raman spectroscopy) and photoluminescence (PL) intensity of individual suspended carbon nanotubes (CNTs). We also evaluate the impact of these defects on the electron or hole transport in the nanotubes, which is crucial for the ultimate realization of optoelectronic devices. We find that brightly luminescent nanotubes exhibit a pronounced D-band in their Raman spectra, and vice versa, dimly luminescent nanotubes exhibit almost no D-band. Here, defects are advantageous for light emission by trapping excitons, which extend their lifetimes. We quantify this behavior by plotting the PL intensity as a function of the ID /IG -band Raman intensity ratio, which exhibits a Lorentzian distribution peaked at ID /IG=0.17 . For CNTs with a ID /IG ratio >0.25 , the PL intensity decreases, indicating that above some critical density, nonradiative recombination at defect sites dominates over the advantages of exciton trapping. In an attempt to fabricate optoelectronic devices based on these brightly luminescent CNTs, we transfer these suspended CNTs to platinum electrodes and find that the brightly photoluminescent nanotubes exhibit nearly infinite resistance due to these defects, while those without bright photoluminescence exhibit finite resistance. These findings indicate a potential limitation in the use of brightly luminescent CNTs for optoelectronic applications.

  10. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    Menawat, A.S.

    1992-01-01

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO 2 . It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO 2 . In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  11. Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    International Nuclear Information System (INIS)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai; Zheng, Lei

    2017-01-01

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr 2+ , Cs + , and Co 2+ in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr 2+ , Cs + , and Co 2+ with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater

  12. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Science.gov (United States)

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  13. 77 FR 70142 - Initialed Draft Revision to the Agreement Suspending the Antidumping Investigation on Certain Hot...

    Science.gov (United States)

    2012-11-23

    ... the Agreement Suspending the Antidumping Investigation on Certain Hot-Rolled Flat-Rolled Carbon... revision to the Agreement Suspending the Antidumping Investigation on Certain Hot-Rolled Flat-Rolled Carbon...'') investigation on hot-rolled flat-rolled carbon-quality steel products (``hot-rolled steel'') from the Russian...

  14. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  15. Organic carbon in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Pantoja, Silvio; Gutiérrez, Marcelo; Tapia, Fabián; Abarzúa, Leslie; Daneri, Giovanni; Reid, Brian; Díez, Beatriz

    2016-04-01

    The Southern Ice Field in Chilean Patagonia is the largest (13,000 km2) temperate ice mass in the Southern hemisphere, yearly transporting ca. 40 km3 of freshwater to fjords. This volume of fresh and cold water likely affects adjacent marine ecosystems by changing circulation, productivity, food web dynamics, and the abundance and distribution of planktonic and benthic organisms. We hypothesize that freshwater-driven availability of inorganic nutrient and transport of organic and inorganic suspended matter, as well as microbes, become a controlling factor for productivity in the fjord associated with the Baker river and Jorge Montt glacier. Both appear to be sources of silicic acid, but not of nitrate and particulate organic carbon, especially during summer, when surface PAR and glacier thawing are maximal. In contrast to Baker River, the Jorge Montt glacier is also a source of dissolved organic carbon towards a proglacial fjord and the Baker Channel, indicating that a thorough chemical description of sources (tidewater glacier and glacial river) is needed. Nitrate in fiord waters reaches ca. 15 μM at 25 m depth with no evidence of mixing up during summer. Stable isotope composition of particulate organic nitrogen reaches values as low as 3 per mil in low-salinity waters near both glacier and river. Nitrogen fixation could be depleting δ15N in organic matter, as suggested by the detection at surface waters of nif H genes belonging to diazotrophs near the Montt glacier. As diazotrophs have also been detected in other cold marine waters (e.g. Baltic Sea, Arctic Ocean) as well as glaciers and polar terrestrial waters, there is certainly a potential for both marine and freshwater microbes to contribute and have a significant impact on the Patagonian N and C budgets. Assessing the impact of freshwater on C and N fluxes and the microbial community structure in Patagonian waters will allow understanding future scenarios of rapid glacier melting. This research was funded

  16. Origin, composition and quality of suspended particulate organic matter in relation to freshwater inflow in a South Texas estuary

    Science.gov (United States)

    Lebreton, Benoit; Beseres Pollack, Jennifer; Blomberg, Brittany; Palmer, Terence A.; Adams, Leslie; Guillou, Gaël; Montagna, Paul A.

    2016-03-01

    South Texas has a semi-arid climate with a large interannual variability of freshwater inflows. This study sought to define how changes in freshwater inflow affect the composition, quantity and quality of suspended particulate organic matter (SPOM) in a South Texas estuary: the Mission-Aransas estuary. The study was implemented 1.5 months after a large rain event in September 2010 and continued for 10 months of drought conditions. The composition of SPOM originating from rivers, the Gulf of Mexico and the estuary were determined using stable isotopes (δ13C, δ15N and δ34S). The quantity and quality of SPOM were assessed using organic carbon content, chlorophyll a concentrations and C/chl a ratios. Our results demonstrated that autochthonous phytoplankton was the dominant component of SPOM in the Mission-Aransas estuary during droughts. Benthic organic matter from local primary producers (i.e., seagrass, salt marsh plants, benthic microalgae) did not influence SPOM composition, either as fresh material or as detritus. A comparison with a positive estuary (i.e., Sabine-Neches estuary, TX) indicates that decreases in freshwater inflow may lead to decreases of terrestrial organic matter inputs and to increase the ratio of autochtonous phytoplanktonic material in SPOM.

  17. Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China

    Science.gov (United States)

    Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei

    2018-04-01

    The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.

  18. Efficiency of chitosan (Poly-[D] Glucosamine as natural organic coagulant in pre-treatment of active carbon effluent in Panacan, Davao City

    Directory of Open Access Journals (Sweden)

    Rezel A. Cinco

    2016-12-01

    Full Text Available The utilization of environmental friendly coagulant is widened which can be proposed as an imperative option for water treatment. In this study, the efficiency of Chitosan, a natural organic coagulant in pre-treating Active Carbon Effluent (ACE as alternative to conventional metal based coagulants in terms of Turbidity (T, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS was evaluated. Collection of effluent for testing was conducted at the Philippine – Japan Active Carbon Corporation, Panacan, Davao City, Philippines. Chitosan (Deacetylated chitin; Poly- [1- 4] – β- glucosamine was obtained from Qingdao Develop Chemistry Co., Ltd., China. Suspensions added with experimental coagulant dosages (0.1, 0.5, 1.0, 5.0 and 10.0 mgL-1 were made by sediment mixer maintained at pH 5 and analyzed with the following parameters: Total Suspended Solid (TSS, Chemical Oxygen Demand (COD and Turbidity (T. The efficiency of the chitosan coagulation was found to be high in terms of turbidity (99.2%, Chemical Oxygen Demand (97.2% in 5 mg/L dose of chitosan and Total Suspended Solid (99.15% in 10 mg/L dose of chitosan. It can be concluded that Chitosan is an effective coagulant which can significantly reduce the level of turbidity, COD and TSS. A further study with different types of effluent and higher Chitosan doses are needed for recommending it for practical application as a natural organic coagulant.

  19. Organic carbon budget for the eastern boundary of the North Atlantic subtropical gyre: major role of DOC in mesopelagic respiration.

    Science.gov (United States)

    Santana-Falcón, Yeray; Álvarez-Salgado, Xosé Antón; Pérez-Hernández, María Dolores; Hernández-Guerra, Alonso; Mason, Evan; Arístegui, Javier

    2017-08-31

    Transports of suspended particulate (POC susp ) and dissolved (DOC) organic carbon are inferred from a box-model covering the eastern boundary of the North Atlantic subtropical gyre. Corresponding net respiration rates (R) are obtained from a net organic carbon budget that is based on the transport estimates, and includes both vertical and lateral fluxes. The overall R in the mesopelagic layer (100-1500 m) is 1.6 ± 0.4 mmol C m -2 d -1 . DOC accounts for up to 53% of R as a result of drawdown of organic carbon within Eastern North Atlantic Central Water (ENACW) that is entrained into sinking Mediterranean Overflow Water (MOW) that leads to formation of Mediterranean water (MW) at intermediate depths (~900 m). DOC represents 90% of the respired non-sinking organic carbon. When converted into oxygen units, the computed net respiration rate represents less than half the oxygen utilization rates (OUR) reported for the mesopelagic waters of the subtropical North Atlantic. Mesoscale processes in the area, not quantified with our approach, could account in part for the OUR differences observed between our carbon budget and other published studies from the North Atlantic, although seasonal or interannual variability could also be responsible for the difference in the estimates.

  20. Adsorption of organic stormwater pollutants onto activated carbon from sewage sludge.

    Science.gov (United States)

    Björklund, Karin; Li, Loretta Y

    2017-07-15

    Adsorption filters have the potential to retain suspended pollutants physically, as well as attracting and chemically attaching dissolved compounds onto the adsorbent. This study investigated the adsorption of eight hydrophobic organic compounds (HOCs) frequently detected in stormwater - including four polycyclic aromatic hydrocarbons (PAHs), two phthalates and two alkylphenols - onto activated carbon produced from domestic sewage sludge. Adsorption was studied using batch tests. Kinetic studies indicated that bulk adsorption of HOCs occurred within 10 min. Sludge-based activated carbon (SBAC) was as efficient as tested commercial carbons for adsorbing HOCs; adsorption capacities ranged from 70 to 2800 μg/g (C initial  = 10-300 μg/L; 15 mg SBAC in 150 mL solution; 24 h contact time) for each HOC. In the batch tests, the adsorption capacity was generally negatively correlated to the compounds' hydrophobicity (log K ow ) and positively associated with decreasing molecule size, suggesting that molecular sieving limited adsorption. However, in repeated adsorption tests, where competition between HOCs was more likely to occur, adsorbed pollutant loads exhibited strong positive correlation with log K ow . Sewage sludge as a carbon source for activated carbon has great potential as a sustainable alternative for sludge waste management practices and production of a high-capacity adsorption material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamics of Dissolved Organic Matter and Microbes in Seawater through Sub-Micron Particle Size Analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Balch, W.M.; Vaughn, J.M.; Gomes, H.R.

    -78. Hansell, D.A. and Carlson, C.A., (1998) Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395, 263-266. J. E. (1977) Characterization of suspended matter in the Gulf of Mexico ? II. Particles size analysis of suspended matter.... and Morris, I. (1980) Extracellular release of carbon by marine phytoplankton: a physiological approach. Limnol. Oceanogr., 25, 262-279. Maurer, L. G. (1976) Organic polymers in seawater: changes with depth in the Gulf of Mexico. Deep-Sea Res., 23, 1059...

  2. Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident.

    Science.gov (United States)

    Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka

    2017-01-01

    Radiocesium ( 137 Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of 137 Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the 137 Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The 137 Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The 137 Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The 137 Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of 137 Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual 137 Cs discharge from the catchment was 0.02-0.3% of the deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  4. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  5. [Distribution and origin of polycyclic aromatic hydrocarbons in suspended particulate matters from the Yangtze estuarine and nearby coastal areas].

    Science.gov (United States)

    Ou, Dong-ni; Liu, Min; Xu, Shi-yuan; Cheng, Shu-bo; Hou, Li-jun; Gao, Lei

    2008-09-01

    Parent PAHs have been quantified in suspended particulate matters from the Yangtze Estuarine and Coastal Areas. The results show that the concentrations of total PAHs ranged from 2278.79-14293.98 ng/g, and were characterized by greatest content near sewage discharge point with trend to decrease by increasing distance. As for PAHs composition, 4-6 rings PAHs were dominant while 2-3 rings PAHs were relative low. Cluster analysis found that except urban sewage discharge, the hydrodynamic force was influencing PAHs distribution patterns. Moreover, the content of suspended particulate matters, organic carbon and soot carbon of suspended particulate matters also play the important roles in PAHs distribution from the Yangtze estuarine and nearby coastal areas. Principal component analysis and PAH ratios demonstrated that uncompleted combustion of fossil fuels was the main source of PAHs in coastal areas, as well as a few anthropogenic releases of oil and oil products. Ecological risk assessment indicated that most of PAH compounds exceeded the effects range ER-L values and ISQV-L values, which might certain potential damage to the Yangtze Estuary ecosystem.

  6. Removal of Cs{sup +}, Sr{sup 2+}, and Co{sup 2+} ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Zheng, Lei [Southwest University of Science and Technology, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang (China)

    2017-04-15

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater.

  7. Determination of the origin of suspended matter and sediments in the Elbe estuary using natural tracers

    International Nuclear Information System (INIS)

    Schoer, J.H.

    1990-01-01

    The clay mineral composition, the concentrations of carbonates, the proportions of carbon and oxygen isotopes in carbonates and organic matter, as well as the concentrations of different nonanthropogenic metals were used to determine the origin of different grain size fractions of sediments and suspended matter in the Elbe estuary. Analysis of the smectite/kaolinite proportion revealed that solid material · 2 μm from the North Sea is transported up the river, about 40 km beyond the most upstream position of the salt wedge. In the 2-20 μm fraction, the 16 O/ 18 O ratio in carbonates and the kaolinite/chlorite proportion demonstrate a transport of North Sea material between 40 and 20 km upstream of the marine water limit. The transport behavior of the 20-63 μm grain size fraction could be determined by the hafnium concentration, representative for the heavy mineral zircon. In this case, the transport distance beyond the salt wedge was up to 20 km. No information was available on the origin of the fine organic matter, whereas the coarser fractions were derived primarily from debris of salt marsh vegetation. The results demonstrate that in the Elbe estuary mixing between marine and fluvial solid material occurs upstream of the salt wedge and is significantly responsible for the observed decrease in the concentration of various pollutants in sediments and suspended matter along the estuary. The cause of the upstream particle transport is probably a scour lag mechanism based on asymmetries of the flood- and ebb-tide current distribution, especially their differing maximum velocities

  8. Biological hydrogen production in continuous stirred tank reactor systems with suspended and attached microbial growth

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Tang, Jing; Liu, Bing-Feng; Guo, Wan-Qian [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.202 Haihe Road, Harbin 150090 (China)

    2010-04-15

    Fermentative H{sub 2} production in continuous stirred tank reactor (CSTR) system with bacteria attached onto granular activated carbon (GAC) was designed to produce H{sub 2} continuously. The H{sub 2} production performances of CSTR with suspended and attached-sludge from molasses were examined and compared at various organic loading rates (8-40 g COD/L/d) at hydraulic retention time of 6 h under mesophilic conditions (35 C). Both reactor systems achieved ethanol-type fermentation in the pH ranges 4.5-4.8 and 3.8-4.4, respectively, while ORP ranges from -450 to -470 mV and from -330 to -350 mV, respectively. The hydrogen production rate in the attached system was higher compared to that of the suspended system (9.72 and 6.65 L/d/L, respectively) while specific hydrogen production rate of 5.13 L/g VSS/d was higher in the suspended system. The attached-sludge CSTR is more stable than the suspended-sludge CSTR with regard to hydrogen production, pH, substrate utilization efficiency and metabolic products (e.g., volatile fatty acids and ethanol) during the whole test. (author)

  9. Organic carbon content of tropical zooplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    In the Zuari and Mandovi estuaries variations in organic carbon of zooplankton are 26.4-38.8 and 24-39.9% of dry weight respectively. Maximum carbon content of estuarine zooplankton is observed in November. Organic carbon in nearshore and oceanic...

  10. Carbon isotopic ratio of suspended organic matter of the Gironde estuary. Application to particulate Zn and Pb distribution

    International Nuclear Information System (INIS)

    Fontugne, Michel; Jouanneau, J.M.

    1981-01-01

    In the Gironde estuary, the isotopic ratio of particulate organic carbon (P.O.C.), and the ratio metal/P.O.C. indicate the occurrence of two zones. Up-river, the concentration decreases due to the consumption of the organo-metallic phase and by mixing in the ''mud plug'' with terrestrial particles impoverished in metal and P.O.C. Down-stream, the mixing of metal rich terrestrial P.O.C. with poorer marine particles determines the metal concentrations [fr

  11. Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Maya, M.V.; Soares, M.A.; Agnihotri, R.; Pratihary, A.K.; Karapurkar, S.; Naik, H.; Naqvi, S.W.A.

    ) of suspended organic matter produced/transported during the monsoon and post-monsoon seasons of year 2007 provides a baseline dataset for future isotopic studies in such type of tropical estuaries...

  12. Dissolved organic carbon and its potential predictors in eutrophic lakes.

    Science.gov (United States)

    Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina

    2016-10-01

    Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Science.gov (United States)

    Schobben, Martin; van de Velde, Sebastiaan; Gliwa, Jana; Leda, Lucyna; Korn, Dieter; Struck, Ulrich; Vinzenz Ullmann, Clemens; Hairapetian, Vachik; Ghaderi, Abbas; Korte, Christoph; Newton, Robert J.; Poulton, Simon W.; Wignall, Paul B.

    2017-11-01

    Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian-Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-)sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the observed signal of carbon

  14. Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation

    Directory of Open Access Journals (Sweden)

    M. Schobben

    2017-11-01

    Full Text Available Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption that bulk micritic carbonate rock is a faithful geochemical recorder of the isotopic composition of seawater dissolved inorganic carbon. However, bulk-carbonate rock is also prone to incorporate diagenetic signals. The aim of the present study is to disentangle primary trends from diagenetic signals in carbon isotope records which traverse the Permian–Triassic boundary in the marine carbonate-bearing sequences of Iran and South China. By pooling newly produced and published carbon isotope data, we confirm that a global first-order trend towards depleted values exists. However, a large amount of scatter is superimposed on this geochemical record. In addition, we observe a temporal trend in the amplitude of this residual δ13C variability, which is reproducible for the two studied regions. We suggest that (sub-sea-floor microbial communities and their control on calcite nucleation and ambient porewater dissolved inorganic carbon δ13C pose a viable mechanism to induce bulk-rock δ13C variability. Numerical model calculations highlight that early diagenetic carbonate rock stabilization and linked carbon isotope alteration can be controlled by organic matter supply and subsequent microbial remineralization. A major biotic decline among Late Permian bottom-dwelling organisms facilitated a spatial increase in heterogeneous organic carbon accumulation. Combined with low marine sulfate, this resulted in varying degrees of carbon isotope overprinting. A simulated time series suggests that a 50 % increase in the spatial scatter of organic carbon relative to the average, in addition to an imposed increase in the likelihood of sampling cements formed by microbial calcite nucleation to 1 out of 10 samples, is sufficient to induce the

  15. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    Science.gov (United States)

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  16. Effect of coexisting organic substances on radiation resistance of Bacillus pumilus spores suspended in water

    International Nuclear Information System (INIS)

    Kigawa, Akiko; Tateishi, Tsuneo; Iso, Katsuaki; Kimura, Toshio; Mamuro, Tetsuo

    1987-01-01

    D values of B. pumilus spores suspended in water have been shown to increase in the presence of some coexisting organic substances. For elucidation of a mechanism or mechanisms involved in such a phenomenon, D-values of B.p. spores were examined by suspending them in aqueous solutions containing various concentrations of ethanol, glycerin, inulin and PVA. All these substances showed abrupt changes in D value at a narrow concentration range of 1 - 10 weight ppm. Solutions containing these substances at their lower limit concentrations and upper limit were prepared, sealed in incubator bottles leaving no air layer and irradiated at 0.7 Mrad with γ-rays. Winkler's method was used for the determination of oxygen concentrations in these solutions. The initial concentration of dissolved oxygen was 8.2 ppm. After irradiation, 3 - 5 ppm of oxygen remained in those solutions containing the lower limit (1 ppm), whereas only less than 0.5 ppm in those containing the upper limits, 2.5 ppm of ethanol, 5 ppm of PVA and 10 ppm each of glycerin and inulin. Therefore, the observed effect of coexisting organic substances on radiation resistance of B. pumilus can be explained by the so-called ''oxygen effect''. (author)

  17. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  18. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  19. Organic carbon organic matter and bulk density relationships in arid ...

    African Journals Online (AJOL)

    Soil organic matter (SOM) and soil organic carbon (SOC) constitute usually a small portion of soil, but they are one of the most important components of ecosystems. Bulk density (dB or BD) value is necessary to convert organic carbon (OC) content per unit area. Relationships between SOM, SOC and BD were established ...

  20. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals activated carbon (PAC) to deep-bed filtration as a direct

  1. Relationship between Organic Carbon Runoff to River and Land Cover

    Science.gov (United States)

    Kim, G. S.; Lee, S. G.; Lim, C. H.; Lee, W.; Yoo, S.; Kim, S. J.; Heo, S.; Lee, W. K.

    2017-12-01

    Carbon is an important unit in understanding the ecosystem and energy circulation. Each ecosystem, land, water, and atmosphere, is interconnected through the exchange of energy and organic carbon. In the rivers, primary producers utilize the organic carbon from the land. Understanding the organic carbon uptake into the river is important for understanding the mechanism of river ecosystems. The main organic carbon source of the river is land. However, it is difficult to observe the amount of organic carbon runoff to the river. Therefore, an indirect method should be used to estimate the amount of organic carbon runoff to the river. The organic carbon inflow is caused by the runoff of organic carbon dissolved in water or the inflow of organic carbon particles by soil loss. Therefore, the hydrological model was used to estimate organic carbon runoff through the flow of water. The land cover correlates with soil respiration, soil loss, and so on, and the organic carbon runoff coefficient will be estimated to the river by land cover. Using the organic carbon concentration from water quality data observed at each point in the river, we estimate the amount of organic carbon released from the land. The reason is that the runoff from the watershed converges into the rivers in the watershed, the watershed simulation is conducted based on the water quality data observation point. This defines a watershed that affects organic carbon observation sites. The flow rate of each watershed is calculated by the SWAT (Soil and Water Assessment Tool), and the total organic carbon runoff is calculated by using flow rate and organic carbon concentration. This is compared with the factors related to the amount of organic carbon such as land cover, soil loss, and soil organic carbon, and spatial analysis is carried out to estimate the organic carbon runoff coefficient per land cover.

  2. Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering

    Science.gov (United States)

    Roy, S.; Gaillardet, J.; Allègre, C. J.

    1999-05-01

    This study focuses on the chemistry of the Seine river system, one of the major rivers in Europe, and constitutes the first geochemical investigation of both suspended and dissolved loads of this river. The Seine river drains a typical Mesozoic-Cenozoic sedimentary basin: the Paris basin, constituted of limestones mixed or interbedded with terrigenous sediments derived from the paleoreliefs bordering the Mesozoic and Cenozoic seas. In the context of quantifying the global influence of carbonate and silicate weathering on atmospheric CO 2 consumption, the Seine river offers the possibility of examining weathering rates in a flat sedimentary environment, under temperate climatic conditions. One of the major problems associated with the Seine river, as with many temperate rivers, is pollution. We propose, in this paper, 2 approaches in order to correct the dissolved load of the Seine river for anthropogenic inputs and to calculate weathering rates of carbonates and silicates. The first uses the dissolved load of rivers and tries to allocate the different solutes to different sources. A mixing model, based on elemental ratios, is established and solved by an inversion technique. The second approach consists in using the suspended load geochemistry. Under steady state conditions, we show that the geochemistry of suspended sediments makes it possible to estimate the amount of solutes released during the chemical weathering of silicates, and thus to calculate weathering rates of silicates. The total dissolved load of the Seine river at Paris can be decomposed into 2% of solutes derived from natural atmospheric sources, 7% derived from anthropogenic atmospheric sources, 6% derived from agriculture, 3% derived from communal inputs, and 82% of solutes derived from rock weathering. During high floods, the contribution of atmospheric and agriculture inputs predominates. The weathering rate of carbonates is estimated to be 48 t/km 2/yr (25 mm/1000 yr). Only 10% of carbonates

  3. Acidity controls on dissolved organic carbon mobility in organic soils

    Czech Academy of Sciences Publication Activity Database

    Evans, Ch. D.; Jones, T.; Burden, A.; Ostle, N.; Zielinski, P.; Cooper, M.; Peacock, M.; Clark, J.; Oulehle, Filip; Cooper, D.; Freeman, Ch.

    2012-01-01

    Roč. 18, č. 11 (2012), s. 3317-3331 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : acidity * dissolved organic carbon * organic soil * peat * podzol * soil carbon * sulphur Subject RIV: EH - Ecology, Behaviour Impact factor: 6.910, year: 2012

  4. Biogas production from organic wastes in suspended cell cultures and in biofilms

    International Nuclear Information System (INIS)

    Simenonov, I.; Chorukova, E.; Mamatarkova, V.; Nikolov, L.

    2010-01-01

    The results of a comparative study of two biogas production bioprocess systems are presented. The systems submitted to comparison are based on the suspended cells cultures and the biofilm formed on solid inert support. A comprehensive research concept is formulated and discussed. It includes the main considerations regarding the choice of substrate, bioagent as mixed microbial society, type of bioreactors, regimes of functioning, analytical determinations and method of comparison. The main requirements for efficient experimental activity in comparative investigations are formulated. Their satisfaction can grant correctness of the experimental design and data acquisition. On this basis the key parameter of comparison of the two systems is defined as the specific productivity of the bioprocess systems. Under these conditions series of preliminary experiments are carried out for testing the readiness of experimental set ups for long time stable functioning and monitoring devices capabilities to maintain the bioprocess parameters at the determined intervals. These tests grant continuous incessant experimentation with the investigated bioprocess systems. The results obtained show that biofilm bioprocess systems possess up to two and half time higher specific productivity in comparison with the bioprocess systems with the suspended cells. Some visions about the future developments of comparative research on the influence of additional parameters like the mixer rotation steed, organic loads, and higher values of dilution rates are outlined.

  5. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  6. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  7. Carbon isotope ratios of organic matter in Bering Sea settling particles. Extremely high remineralization of organic carbon derived from diatoms

    International Nuclear Information System (INIS)

    Yasuda, Saki; Akagi, Tasuku; Naraoka, Hiroshi; Kitajima, Fumio; Takahashi, Kozo

    2016-01-01

    The carbon isotope ratios of organic carbon in settling particles collected in the highly-diatom-productive Bering Sea were determined. Wet decomposition was employed to oxidize relatively fresh organic matter. The amount of unoxidised organic carbon in the residue following wet decomposition was negligible. The δ 13 C of organic carbon in the settling particles showed a clear relationship against SiO 2 /CaCO 3 ratio of settling particles: approximately -26‰ and -19‰ at lower and higher SiO 2 /CaCO 3 ratios, respectively. The δ 13 C values were largely interpreted in terms of mixing of two major plankton sources. Both δ 13 C and compositional data can be explained consistently only by assuming that more than 98% of diatomaceous organic matter decays and that organic matter derived from carbonate-shelled plankton may remain much less remineralized. A greater amount of diatom-derived organic matter is discovered to be trapped with the increase of SiO 2 /CaCO 3 ratio of the settling particles. The ratio of organic carbon to inorganic carbon, known as the rain ratio, therefore, tends to increase proportionally with the SiO 2 /CaCO 3 ratio under an extremely diatom-productive condition. (author)

  8. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  9. State-Space Estimation of Soil Organic Carbon Stock

    Science.gov (United States)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  10. Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B.A.S.; Buesseler, K.; Bishop, J.K.B.; Lamborg, C.H.; Elskens, M.; Baeyens, W.; Boyd, P.W.; Casciotti, K.L.; Monnin, C.

    2008-04-10

    This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22 degrees 45 minutes N 158 degrees W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47 degrees N, 161 degrees W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba{sub xs}) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Ba{sub xs} contents were significantly larger at K2 than at ALOHA. At ALOHA the Ba{sub xs} profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba{sub xs} concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Ba{sub xs}. Larger mesopelagic Ba{sub xs} contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Ba{sub xs} data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba{sub xs} as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps

  11. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    Science.gov (United States)

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  12. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  13. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  14. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed

    Science.gov (United States)

    Hernes, P.J.; Spencer, R.G.M.; Dyda, R.Y.; Pellerin, B.A.; Bachand, P.A.M.; Bergamaschi, B.A.

    2008-01-01

    Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L-1) to summer irrigation (5.14 mg L-1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC-1 increasing to 0.31 mg 100 mg OC-1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments (r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration (r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm (r2 = 0.57) and spectral slope (r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary. ?? 2008 Elsevier Ltd.

  15. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed

    Science.gov (United States)

    Hernes, Peter J.; Spencer, Robert G. M.; Dyda, Rachael Y.; Pellerin, Brian A.; Bachand, Philip A. M.; Bergamaschi, Brian A.

    2008-11-01

    Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L -1) to summer irrigation (5.14 mg L -1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC -1 increasing to 0.31 mg 100 mg OC -1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments ( r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration ( r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm ( r2 = 0.57) and spectral slope ( r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary.

  16. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  17. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  18. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  19. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  20. Nature and sources of suspended particulate organic matter in a tropical estuary during the monsoon and pre-monsoon: Insights from stable isotopes (delta 13C POC, delta 15 N TPN) and carbohydrate signature compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.

    zooplankton, and then known aliquots (0.25 to 1.5 L) were filtered through pre-combusted (450 °C, 4h) 47 mm GF/F filter papers (0.7 µm, Whatman) for the measurements of suspended particulate matter (SPM), particulate organic carbon (POC), δ13CPOC, δ15NTPN... analysis. 2.3. Determination of bulk parameters and stable isotopes GF/F (0.7 µm, 47 mm) filter containing particulate matter was washed with UV-Milli-Q- water to remove salt and the filter was dried at 40 °C for 24 h. Filter was cooled and weighed...

  1. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea.

    Science.gov (United States)

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-09-15

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Accumulation of organic carbon in northwestern Arabian sea sediments

    International Nuclear Information System (INIS)

    Khan, A.A.

    1999-01-01

    In this study accumulation of organic carbon in marine sediments of northwestern Arabian sea has been discussed. This paper presents the geochemical analysis of Organic carbon content and accumulation, delta 13 stable carbon isotope and Ba/Al. The primary objective was to investigate the high resolution information about the variations in paleoproductivity and source of organic matter in sediments below an upwelling area. Undisturbed sediments (Piston core NIOP-486) of late Pleistocene time were collected during Netherlands Indian Ocean Program (NIOP-1992-93). The core NIOP-486 was raised from a depth of 2077 meters near the Owen Ridge. This core records deposition history of last 200,000 years and includes 4 warm and 3 cold periods. The distribution of organic carbon content in studied core shows a pronounced cyclicity during glacial and interglacial stages. Organic carbon accumulation trends show that high sedimentation rates in glacial stages results in rapid burial and hence increase organic carbon accumulation. Paleoproductivity indicator Ba/Al has been used to compare with the organic carbon content and is correlated with the warm and cold periods variations in monsoons upwelling intensity. Generally, low paleoproductivity is found in glacial stages. The organic carbon content and accumulation, in sediments however seems to differ from the paleoproductivity trends shown by Ba/Al in glacial sediments of stage 6. Delta 13 C.org isotope results of the core NIOP-486 confirm that organic matter in sediments is predominantly marine (-20 to -23% ). (author)

  3. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  4. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  5. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  6. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  7. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  8. Sources and export of particle-borne organic matter during a monsoon flood in a catchment of northern Laos

    Science.gov (United States)

    Gourdin, E.; Huon, S.; Evrard, O.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.

    2015-02-01

    The yields of the tropical rivers of Southeast Asia supply large quantities of carbon to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. This cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was conducted at the 1 m2 plot scale during a storm. The composition of particulate organic matter (total organic carbon and total nitrogen concentrations, δ13C and δ15N) was determined for suspended sediment, soil surface (top 2 cm) and soil subsurface (gullies and riverbanks) samples collected in the catchment (n = 57, 65 and 11, respectively). Hydrograph separation of event water was achieved using water electric conductivity and δ18O measurements for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations). In contrast, channel banks characterized by C4 vegetation (Napier grass) supplied significant quantities of sediment to the river during the flood rising stage at the upstream station as well as in downstream river sections. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha-1), total organic carbon specific yield (8.3 kg C ha-1) and overland flow contribution (78-100%) were found downstream of reforested areas planted with teaks. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended organic matter. Total organic carbon

  9. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  10. [Effects of Chinese prickly ash orchard on soil organic carbon mineralization and labile organic carbon in karst rocky desertification region of Guizhou province].

    Science.gov (United States)

    Zhang, Wen-Juan; Liao, Hong-Kai; Long, Jian; Li, Juan; Liu, Ling-Fei

    2015-03-01

    Taking 5-year-old Chinese prickly ash orchard (PO-5), 17-year-old Chinese prickly ash orchard (PO- 17), 30-year-old Chinese prickly ash orchard (PO-30) and the forest land (FL, about 60 years) in typical demonstration area of desertification control test in southwestern Guizhou as our research objects, the aim of this study using a batch incubation experiment was to research the mineralization characteristics of soil organic carbon and changes of the labile soil organic carbon contents at different depths (0-15 cm, 15-30 cm, and 30-50 cm). The results showed that: the cumulative mineralization amounts of soil organic carbon were in the order of 30-year-old Chinese prickly ash orchard, the forest land, 5-year-old Chinese prickly ash orchard and 17-year-old Chinese prickly ash orchard at corresponding depth. Distribution ratios of CO2-C cumulative mineralization amount to SOC contents were higher in Chinese prickly ash orchards than in forest land at each depth. Cultivation of Chinese prickly ash in long-term enhanced the mineralization of soil organic carbon, and decreased the stability of soil organic carbon. Readily oxidized carbon and particulate organic carbon in forest land soils were significantly more than those in Chinese prickly ash orchards at each depth (P < 0.05). With the increasing times of cultivation of Chinese prickly ash, the contents of readily oxidized carbon and particulate organic carbon first increased and then declined at 0-15 cm and 15-30 cm depth, respectively, but an opposite trend was found at 30-50 cm depth. At 0-15 cm and 15-30 cm, cultivation of Chinese prickly ash could be good for improving the contents of labile soil organic carbon in short term, but it was not conducive in long-term. In this study, we found that cultivation of Chinese prickly ash was beneficial for the accumulation of labile organic carbon at the 30-50 cm depth.

  11. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  12. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    Science.gov (United States)

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  13. Springtime carbon emission episodes at the Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    Directory of Open Access Journals (Sweden)

    J. Jung

    2011-11-01

    Full Text Available In order to investigate the emission of carbonaceous aerosols at the Gosan background super-site (33.17° N, 126.10° E in East Asia, total suspended particles (TSP were collected during spring of 2007 and 2008 and analyzed for particulate organic carbon, elemental carbon, total carbon (TC, total nitrogen (TN, and stable carbon isotopic composition (δ13C of TC. The stable carbon isotopic composition of TC (δ13CTC was found to be lowest during pollen emission episodes (range: −26.2‰ to −23.5‰, avg. −25.2 ± 0.9‰, approaching those of the airborne pollen (−28.0‰ collected at the Gosan site. Based on a carbon isotope mass balance equation, we found that ~42% of TC in the TSP samples during the pollen episodes was attributed to airborne pollen from Japanese cedar trees planted around tangerine farms in Jeju Island. A negative correlation between the citric acid-carbon/TC ratios and δ13CTC was obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollen and then transported to the Gosan site. Thermal evolution patterns of organic carbon during the pollen episodes were characterized by high OC evolution in the OC2 temperature step (450 °C. Since thermal evolution patterns of organic aerosols are highly influenced by their molecular weight, they can be used as additional information on the formation of secondary organic aerosols and the effect of aging of organic aerosols during the long-range atmospheric transport and sources of organic aerosols.

  14. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  15. Carbon sources in suspended particles and surface sediments from the Beaufort Sea revealed by molecular lipid biomarkers and compound-specific isotope analysis

    Directory of Open Access Journals (Sweden)

    I. Tolosa

    2013-03-01

    Full Text Available Molecular lipid biomarkers (hydrocarbons, alcohols, sterols and fatty acids and compound-specific isotope analysis of suspended particulate organic matter (SPM and surface sediments of the Mackenzie Shelf and slope (southeast Beaufort Sea, Arctic Ocean were studied in summer 2009. The concentrations of the molecular lipid markers, characteristic of known organic matter sources, were grouped and used as proxies to evaluate the relative importance of fresh algal, detrital algal, fossil, C3 terrestrial plants, bacterial and zooplankton material in the organic matter (OM of this area. Fossil and detrital algal contributions were the major fractions of the freshwater SPM from the Mackenzie River with ~34% each of the total molecular biomarkers. Fresh algal, C3 terrestrial, bacterial and zooplanktonic components represented much lower percentages, 17, 10, 4 and 80%, with a minor contribution of fossil and C3 terrestrial biomarkers. Characterization of the sediments revealed a major sink of refractory algal material mixed with some fresh algal material, fossil hydrocarbons and a small input of C3 terrestrial sources. In particular, the sediments from the shelf and at the mouth of the Amundsen Gulf presented the highest contribution of detrital algal material (60–75%, whereas those from the slope contained the highest proportion of fossil (40% and C3 terrestrial plant material (10%. Overall, considering that the detrital algal material is marine derived, autochthonous sources contributed more than allochthonous sources to the OM lipid pool. Using the ratio of an allochthonous biomarker (normalized to total organic carbon, TOC found in the sediments to those measured at the river mouth water, we estimated that the fraction of terrestrial material preserved in the sediments accounted for 30–40% of the total carbon in the inner shelf sediments, 17% in the outer shelf and Amundsen Gulf and up to 25% in the slope sediments. These estimates are low

  16. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Science.gov (United States)

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  17. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended

  18. The contribution of fossil sources to the organic aerosol in the Netherlands

    NARCIS (Netherlands)

    Dusek, U.; ten Brink, H. M.; Meijer, H. A. J.; Kos, G.; Mrozek, D.; Rockmann, T.; Holzinger, R.; Weijers, E. P.; Röckmann, T.

    We measured the radiocarbon (C-14) content of organic carbon (OC) samples from two locations in the Netherlands, the urban location of Amsterdam and the coastal location of Petten. PM10 samples were collected in Amsterdam and total suspended particles were collected in Petten using high volume

  19. Badlands and the Carbon cycle: a significant source of petrogenic organic carbon in rivers and marine environments?

    Science.gov (United States)

    Copard, Yoann; Eyrolle-Boyer, Frederique; Radakovitch, Olivier; Poirel, Alain; Raimbault, Patrick; Lebouteiller, Caroline; Gairoard, Stéphanie; Di-Giovanni, Christian

    2016-04-01

    A key issue in the study of carbon biogeochemical cycle is to well constrain each carbon origin in term of fluxes between all C-reservoirs. From continental surfaces to oceans, rivers convey particulate organic carbon originate from the biomass (biospheric OC) and /or from the sedimentary rocks (petrogenic OC). Existence and importance of this petrogenic OC export to oceans was debated for several decades (see Copard et al., 2007 and ref.), but it is now assumed that 20% of the global carbon export to ocean has a geological origin (Galy et al., 2015). The main current challenge is to constrain the major contributors to this petrogenic OC flux. Amongst the expected sedimentary sources of petrogenic OC in rivers, sedimentary rocks forming badlands can be rightly considered as some viable candidates. Indeed these rocks show a strong erosion rate, may exceed 50 kt km-2 y-1 and in addition, shales, marls and argillaceous rocks, frequently forming badlands (see Nadal-Romero et al., 2011 for the Mediterranean area), contain a significant amount of petrogenic OC (frequently over 0.50 wt. %, Ronov and Yaroshevsky 1976). Our work illustrates the contribution of badlands, mainly distributed within the Durance catchment (a main tributary of the Rhône river), in the petrogenic OC export to the Mediterranean Sea. The approach is based on (i) the use of previous and new data on radiogenic carbon, (ii) bulk organic geochemistry (Rock-Eval pyrolysis), (iii) optical quantification of particulate OM (palynofacies), performed on suspended sediments from the Durance, the Rhône rivers and from small rivers draining the badlands. A mean erosion rate of badlands, previously calculated for instrumented catchments (SOERE Draix-Bléone, Graz et al., 2012) was also applied to the badlands disseminated within the Durance catchment. These different methodologies converge to a petrogenic contribution of the OC export to the Mediterranean Sea close to 30 %. Badlands from the Durance catchment

  20. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  1. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  2. Fertilization increases paddy soil organic carbon density*

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  3. Fertilization increases paddy soil organic carbon density.

    Science.gov (United States)

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  4. Statistics provide guidance for indigenous organic carbon detection on Mars missions.

    Science.gov (United States)

    Sephton, Mark A; Carter, Jonathan N

    2014-08-01

    Data from the Viking and Mars Science Laboratory missions indicate the presence of organic compounds that are not definitively martian in origin. Both contamination and confounding mineralogies have been suggested as alternatives to indigenous organic carbon. Intuitive thought suggests that we are repeatedly obtaining data that confirms the same level of uncertainty. Bayesian statistics may suggest otherwise. If an organic detection method has a true positive to false positive ratio greater than one, then repeated organic matter detection progressively increases the probability of indigeneity. Bayesian statistics also reveal that methods with higher ratios of true positives to false positives give higher overall probabilities and that detection of organic matter in a sample with a higher prior probability of indigenous organic carbon produces greater confidence. Bayesian statistics, therefore, provide guidance for the planning and operation of organic carbon detection activities on Mars. Suggestions for future organic carbon detection missions and instruments are as follows: (i) On Earth, instruments should be tested with analog samples of known organic content to determine their true positive to false positive ratios. (ii) On the mission, for an instrument with a true positive to false positive ratio above one, it should be recognized that each positive detection of organic carbon will result in a progressive increase in the probability of indigenous organic carbon being present; repeated measurements, therefore, can overcome some of the deficiencies of a less-than-definitive test. (iii) For a fixed number of analyses, the highest true positive to false positive ratio method or instrument will provide the greatest probability that indigenous organic carbon is present. (iv) On Mars, analyses should concentrate on samples with highest prior probability of indigenous organic carbon; intuitive desires to contrast samples of high prior probability and low prior

  5. Process based modelling of soil organic carbon redistribution on landscape scale

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Amorim, Amorim S. S.; Maeso, Daniel L.; Jürgen, Schmidt

    2014-05-01

    Recent studies have pointed out the great importance of erosion processes in global carbon cycling. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon accumulated over long time in the soil humus fraction. Lal (2003) estimates that 20% of the organic carbon eroded with top soils is emitted into atmosphere, due to aggregate breakdown and carbon mineralization during transport by surface runoff. Furthermore soil erosion causes a progressive decrease of natural soil fertility, since cation exchange capacity is associated with organic colloids. As a consequence the ability of soils to accumulate organic carbon is reduced proportionately to the drop in soil productivity. The colluvial organic carbon might be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Some colluvial sites can act as long-term sinks for organic carbon. The erosional transport of organic carbon may have an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. These sediments might be deposited in the riparian zones of river networks. Erosional losses of organic carbon will not pass over into atmosphere for the most part. But soil erosion limits substantially the potential of soils to sequester atmospheric CO2 by generating humus. The present study refers to lateral carbon flux modelling on landscape scale using the process based EROSION 3D soil loss simulation model, using existing parameter values. The selective nature of soil erosion results in a preferentially transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. For this reason it is essential that EROSION 3D provides the

  6. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  7. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    Science.gov (United States)

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  8. Selection criteria for oxidation method in total organic carbon measurement.

    Science.gov (United States)

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Flexibility of Enzymes Suspended in Organic Solvents Probed by Time-Resolved Fluorescence Anisotropy. Evidence That Enzyme Activity and Enantioselectivity Are Directly Related to Enzyme Flexibility

    NARCIS (Netherlands)

    Broos, Jaap; Visser, Antonie J.W.G.; Engbersen, Johan F.J.; Verboom, Willem; Hoek, Arie van; Reinhoudt, David N.

    1995-01-01

    A time-resolved fluorescence anisotropy study on the molecular flexibility of active-site labeled anthraniloyl-α-chymotrypsin, dansylsubtilisin Carlsberg, and native subtilisin Carlsberg, suspended in organic solvents, is described. The internal rotational mobility of the fluorophore in the

  10. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  11. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  12. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  13. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  14. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  15. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  16. Driving forces of organic carbon spatial distribution in the tropical seascape

    Science.gov (United States)

    Gillis, L. G.; Belshe, F. E.; Ziegler, A. D.; Bouma, T. J.

    2017-02-01

    An important ecosystem service of tropical coastal vegetation including seagrass beds and mangrove forests is their ability to accumulate carbon. Here we attempt to establish the driving forces for the accumulation of surface organic carbon in southern Thailand coastal systems. Across 12 sites we found that in line with expectations, seagrass beds (0.6 ± 0.09%) and mangrove forests (0.9 ± 0.3%) had higher organic carbon in the surface (top 5 cm) sediment than un-vegetated mudflats (0.4 ± 0.04%). Unexpectedly, however, mangrove forests in this region retained organic carbon, rather than outwell it, under normal tidal conditions. No relationship was found between organic carbon and substrate grain size. The most interesting finding of our study was that climax and pioneer seagrass species retained more carbon than mixed-species meadows, suggesting that plant morphology and meadow characteristics can be important factors in organic carbon accumulation. Insights such as these are important in developing carbon management strategies involving coastal ecosystems such as offsetting of carbon emissions. The ability of tropical coastal vegetation to sequester carbon is an important aspect for valuing the ecosystems. Our results provide some initial insight into the factors affecting carbon sequestration in these ecosystems, but also highlight the need for further research on a global scale.

  17. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  18. Preliminary results with a torsion microbalance indicate that carbon dioxide and exposed carbonic anhydrase in the organic matrix are the basis of calcification on the skeleton surface of living corals

    Directory of Open Access Journals (Sweden)

    Ian M Sandeman

    2012-03-01

    Full Text Available Ocean acidification is altering the calcification of corals, but the mechanism is still unclear. To explore what controls calcification, small pieces from the edges of thin plates of Agaricia agaricites were suspended from a torsion microbalance into gently stirred, temperaturecontrolled, seawater. Net calcification rates were monitored while light, temperature and pH were manipulated singly. The living coral pieces were sensitive to changes in conditions, especially light, and calcification was often suspended for one or two hours or overnight. The mean calcification rate increased from 0.06 in the dark to 0.10 mg.h-1.cm-2 (T test, n=8, p<0.01 in low light (15 μmol.s-1.m-2 and showed a positive linear relationship with temperature. With a reduction of mean pH from 8.2 to 7.6 the mean calcification rate in the light (65 μmol.s-1.m-2 increased from 0.19 to 0.28 mg.h-1.cm-2 (T test, n=8, p<0.05 indicating a dependency on carbon dioxide. After waterpiking and exposure of the skeletal surface/organic matrix to seawater, calcification showed an astonishing initial increase of more than an order of magnitude then decreased following a non-linear generalised Michaelis-Menten growth curve and reached a steady rate. Calcification rate of the freshly waterpiked coral was not influenced by light and was positively correlated with temperature. For a mean pH reduction from 8.1 to 7.6 the mean calcification rate increased from 0.18 to 0.32 mg.h-1.cm-2 (T test, n=11, p<0.02 again indicating a dependency on carbon dioxide. Calcification ceased in the presence of the carbonic anhydrase inhibitor azolamide. Staining confirmed the presence of carbonic anhydrase, particularly on the ridges of septae. After immersion of waterpiked corals in seawater for 48 hours weight gain and loss became linear and positively correlated to temperature. When the mean pH was reduced from 8.2 to 7.5 the mean rate of weight gain decreased from 0.25 to 0.13 mg.h-1.cm-2 (T test, n=6

  19. Characterization and radionuclides sorption of suspended particulate matters in freshwater according to their settling kinetics

    International Nuclear Information System (INIS)

    Brach-Papa, C.; Boyer, P.; Amielh, M.; Anselmet, F.

    2004-01-01

    In freshwater, the transfers of radionuclides depend both on exchanges between liquid and solid phases and on mass transfers between suspended matter and bottom sediment. Whereas the former ones depend on chemical processes (such as sorption/desorption, complexation, the latter ones are regulated by hydrological and sedimentary considerations (dispersion, erosion, deposit closely related to the interactions between flow, suspended matter and bed sediment. Some of our previous studies highlight the need to consider the matter heterogeneity and its specific sediment dynamics to correctly report the inhomogeneity of fluxes in time and in space. These considerations lead us to develop experimental methods to distinguish the different matter classes, present in natural water, mainly according to their erosion threshold and settling kinetics. In this context, this paper presents the experimental protocol TALISMEN to characterize a natural bulk suspension according the identification of its main settling kinetics groups. In a first step, this identification is achieved by the use of a settling tank, that allows the monitoring of the suspended solid concentration at various depths, combined to a vertical mono-dimensional settling model applying a multi-class approach. In a second step, the particle groups are isolated and their physico-chemical properties are determined ( i.e mineral composition, specific surface area, particulate organic carbon, in order to fully characterized them. In a last one, the sorption property of each group toward radionuclides is determined by the measurements of its distribution coefficients (Kd). The results confirm the interest to consider these heterogeneities for the modelling of the radionuclides transfer in freshwater. From one group to other, these heterogeneities appear at two levels: 1) their sediment dynamics and 2) their radionuclides sorption properties. These conclusions can be equally applying to others xenobiotics as heavy metals

  20. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  1. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  2. Directly transport of suspended matter from the Yangtze River to the Okinawa trough post-major flood '98: evidence from stable isotopes and C/N ratios

    International Nuclear Information System (INIS)

    Cai Deling; Shi Xuefa; Song Xiaohong

    2007-01-01

    Water column concentrations of total suspended matter (TSM), particulate organic carbon (POC), particulate nitrogen (PN) and their stable isotopic compositions (δ 13 C and δ 15 N) are measured at two to five different depths in the Yellow Sea and East China Seas and Yangtze Estuary to clarify the effect of '98 Yangtze great flood on the transport of suspended matter in the Yellow Sea and East China Sea. Suspended matters are collected to analyze the distributions of TSM, POC, PN and salinity throughout the Yellow Sea and East China Sea in the autumn of 1998. There are marked positive correlations (r=0.89-0.98) among TSM, POC and PN, but negative relationships (r=-0.29 - -0.59) between TSM and salinity. These results conclude that the POC and PN were controlled primarily by the concentrations of TSM. The C/N ratios of particulate organic matter have a negative linear correlation with PN% (r=-0.44 - -0.71), but no correlation with POC%, which suggests C/N ratios are mainly controlled by PN%. There are distinct positive correlations between δ 15 N and POC% or PN% in surface water (r=0.36 and 0.24, p<0.01, respectively), however, the correlation do not exist in more deeper depths. In indicates that δ 15 N PN could be changed by a lot of factors, such as nutrient availability, nitrification, denitrification, different material sources and so on, except decomposition of organic matter. The distributions of C/N ratios and δ 13 C values of the particulate organic matter suggest that suspended matters from Yangtze River could be transported directly into the Okinawa Trough under the condition of '98 Yangtze major flood, which break through the foregone knowledge obtained under the normal hydrological condition. (authors)

  3. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    Science.gov (United States)

    Rella, S. F.; Uchida, M.

    2012-12-01

    Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC), CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean. TOC shows orbital-scale increases and decreases during the past ~155 kyr that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold periods. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka BP indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 contents tend to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods and increased organic carbon advection from the Siberian Arctic during cold periods when the Beaufort Gyre contracted. We propose that this pattern may be related to orbital- and millennial-scale variations of dominant atmospheric surface pressure systems expressed in mode shifts of the Arctic Oscillation.

  4. Radiocarbon in marine dissolved organic carbon (DOC)

    NARCIS (Netherlands)

    Clercq, M. le; Plicht, J. van der; Meijer, H.A.J.; Baar, H.J.W. de

    Dissolved Organic Carbon (DOC) plays an important role in the ecology and carbon cycle in the ocean. Analytical problems with concentration and isotope ratio measurements have hindered its study. We have constructed a new analytical method based on supercritical oxidation for the determination of

  5. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions

    International Nuclear Information System (INIS)

    Schwyzer, Irene; Kaegi, Ralf; Sigg, Laura; Magrez, Arnaud; Nowack, Bernd

    2011-01-01

    The colloidal stability of dry and suspended carbon nanotubes (CNTs) in the presence of amphiphilic compounds (i.e. natural organic matter or surfactants) at environmentally realistic concentrations was investigated over several days. The suspensions were analyzed for CNT concentration (UV-vis spectroscopy), particle size (nanoparticle tracking analysis), and CNT length and dispersion quality (TEM). When added in dry form, around 1% of the added CNTs remained suspended. Pre-dispersion in organic solvent or anionic detergent stabilized up to 65% of the added CNTs after 20 days of mild shaking and 5 days of settling. The initial state of the CNTs (dry vs. suspended) and the medium composition hence are critical determinants for the partitioning of CNTs between sediment and the water column. TEM analysis revealed that single suspended CNTs were present in all suspensions and that shaking and settling resulted in a fractionation of the CNTs with shorter CNTs remaining predominantly in suspension. - Highlights: → Individually suspended CNTs are present under environment relevant conditions. → The number of suspended CNTs varies depending on the medium composition. → Surfactants at environmental concentrations have no suspending effect on dry CNTs. → Pre-dispersed CNTs are more stable in suspension than dry CNTs. - The colloidal stability of CNTs varies a lot depending on the initial state of the CNTs (dry vs. pre-dispersed), the applied dispersant for pre-suspension, and the composition of the medium.

  6. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2014-07-18

    The intake system can play a significant role in improving the feed water quality and ultimately influence the performance of downstream components of the seawater reverse osmosis desalination processes. In most cases, open-ocean intakes produce poor feed water quality in terms of the abundance of naturally occurring organic matter, which increases the risk of membrane fouling. An alternative intake is the subsurface system, which is based on the riverbank filtration concept that provides natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved organic carbon concentrations. Therefore, the risk of biofouling caused by these substances can be reduced by implementing the appropriate type of intake system. The use of well intake systems was investigated along the Red Sea shoreline of Saudi Arabia in the Jeddah region. Data were collected from a seawater reverse osmosis (SWRO) plant with a capacity of 10,000 m3/d. The well system produces feed water from an artificial-fill peninsula that was constructed atop of the seabed. Ten wells have been constructed on the peninsula for extracting raw seawater. Water samples were collected from nearby surface seawater as a reference and from selected individual wells. The percentage of algae and bacterial removal by induced filtration process was evaluated by comparison of the seawater concentrations with the well discharges. Transparent exopolymer particles and organic carbon fractions reduction was also measured. The quality of raw water extracted from the well systems was highly improved compared with the raw seawater source. It was observed that algae were virtually 100% removed and the bacterial concentration was significantly removed by the aquifer matrix. The detailed analysis of organic carbon fraction using liquid

  7. Study of seasonal dynamics of sedimentation evacuation of suspended matter, nutrients and pollutants from the surface water layer of the Black Sea during 1992-1994

    International Nuclear Information System (INIS)

    Gulin, S.B.; Polikarpov, G.G.; Egorov, V.N.; Krivenko, O.V.; Stokozov, N.A.; Zherko, N.V.

    1995-01-01

    A series of regular measurements of sedimentation evacuation of suspended matter, nutrients (carbon, nitrogen) and pollutants (mercury, polychlorided biphenyls) from the surface water layer was carried out with 1-2 month interval between the measurements using 234 Th in the region of western cyclonic circulation of the Black Sea. It allowed to estimate the seasonal dynamics and to obtain average annual values of dientrophication and sedimentational self-purification of the euphotic zone of the Western part of the Black Sea. The parallel measurements of the rates of sedimentation evacuation of suspended organic nitrogen from the euphotic zone, which were performed using 234 Th and determining the so called products of phitoplankton by the absorption of 15 N traced nitrates and ammonium, give practically identical results. 19 refs.; 5 figs

  8. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  9. Method for obtaining more precise measures of excreted organic carbon

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A new method for concentrating and measuring excreted organic carbon by lyophilization and scintillation counting is efficient, improves measurable radioactivity, and increases precision for estimates of organic carbon excreted by phytoplankton and macrophytes

  10. Redox-controlled carbon and phosphorus burial: A mechanism for enhanced organic carbon sequestration during the PETM

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard E.

    2017-12-01

    Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination

  11. Examining organic carbon transport by the Orinoco River using SeaWiFS imagery

    Science.gov (United States)

    López, Ramón; Del Castillo, Carlos E.; Miller, Richard L.; Salisbury, Joseph; Wisser, Dominik

    2012-09-01

    The Orinoco River is the fourth largest in the world in terms of water discharge and organic carbon export to the ocean. River export of organic carbon is a key component of the carbon cycle and the global carbon budget. Here, we examined the seasonal transport of organic carbon by the Orinoco River into the eastern Caribbean using the conservative relationship of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in low salinity coastal waters influenced by river plumes. In situ measurements of CDOM absorption, DOC, and salinity were used to develop an empirical model for DOC concentration at the Orinoco River Plume. Satellite remote sensing reflectances were used with empirical models to determine DOC and Particulate organic carbon (POC) river transport. Our estimates of CDOM and DOC significantly correlated with in situ measurements and were within the expected ranges for the river. Total organic carbon transport by the Orinoco River during the period of 1998 to 2010 was 7.10 ×1012 g C y-1, from 5.29 × 1012 g C y-1 of DOC and 1.81 × 1012 g C y-1 of POC, representing ˜6% increase to previous published estimates. The variability in organic carbon transport responded to the seasonality in river flow more than to changes in organic carbon concentration in the river. Our results corroborate that is possible to estimate organic carbon transport using ocean color data at global scales. This is needed to reduce the uncertainties of land-ocean carbon fluxes.

  12. Measurement of stable isotope ratio of organic carbon in water samples

    International Nuclear Information System (INIS)

    Fujii, Toshihiro; Otsuki, Akira

    1977-01-01

    A new method for the measurement of stable isotope ratios was investigated and applied to organic carbon's isotope ratio measurements in water samples. A few river water samples from Tsuchiura city were tested. After the wet oxidation of organic carbons to carbon dioxide in a sealed ampoule, the isotope ratios were determined with the gas chromatograph-quadrupole mass spectrometer combined with a total organic carbon analyser, under the dynamic conditions. The GC-MS had been equipped with the multiple ion detector-digital integrator system. The ion intensities at m/e 44 and 45 were simultaneously measured at a switching rate of 1 ms. The measurements with carbon dioxide acquired from sodium carbonate (53 μg) gave the isotope ratios with the variation coefficient of 0.62%. However, the variation coefficients obtained from organic carbons in natural water samples were 2 to 3 times as high as that from sodium carbonate. This method is simple and rapid and may be applied to various fields especially in biology and medicine. (auth.)

  13. Distribution of organic carbon in sediments from the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    Many earlier studies on the distribution of organic carbon in the Arabian Sea, sediments have projected contradictory opinions on the factors favouring accumulation and preservation of organic carbon in the Arabian Sea. An attempt is made...

  14. Retardation of volatile organic compounds in ground water in low organic carbon sediments

    International Nuclear Information System (INIS)

    Hoffman, F.

    1995-04-01

    It is postulated that adsorption onto aquifer matrix surfaces is only one of the processes that retard contaminants in ground water in unconsolidated sediments; others include hydrodynamic dispersion, abiotic/biotic degradation, matrix diffusion, partitioning to organic carbon, diffusion into and retention in dead-end pores, etc. This work aims at these processes in defining the K d of VOCs in sediments with low organic carbon content. Experiments performed include an initial column experiment for VOC (TCE and perchloroethylene(PCE)) retardation tests on geological materials, PCE and TCE data from LLNL sediments, and a preliminary multilayer sampler experiment. The VOC K d s in low organic carbon permeable aquifer materials are dependent on the VOC composition and independent of aquifer grain size, indicating that sorption was not operative and that the primary retarding factors are diffusion controlled. The program of future experiments is described

  15. Assimilation of aged organic carbon in a glacial river food web

    Science.gov (United States)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  16. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom)], E-mail: pworsfold@plymouth.ac.uk; Monbet, Philippe [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia); Tappin, Alan D.; Fitzsimons, Mark F.; Stiles, David A. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia)

    2008-08-22

    This review provides a critical assessment of knowledge regarding the determination of organic phosphorus (OP) and organic nitrogen (ON) in aquatic systems, with an emphasis on biogeochemical considerations and analytical challenges. A general background on organic phosphorus and organic nitrogen precedes a discussion of sample collection, extraction, treatment/conditioning and preconcentration of organic phosphorus/nitrogen from sediments, including suspended particulate matter, and waters, including sediment porewaters. This is followed by sections on the determination of organic phosphorus/nitrogen components. Key techniques covered for organic phosphorus components are molecular spectrometry, atomic spectrometry and enzymatic methods. For nitrogen the focus is on the measurement of total organic nitrogen concentrations by carbon hydrogen nitrogen analysis and high temperature combustion, and organic nitrogen components by gas chromatography, high-performance liquid chromatography, gel electrophoresis, mass spectrometry, nuclear magnetic resonance spectrometry, X-ray techniques and enzymatic methods. Finally future trends and needs are discussed and recommendations made.

  17. Analysis of Seasonal Soil Organic Carbon Content at Bukit Jeriau Forest, Fraser Hill, Pahang

    International Nuclear Information System (INIS)

    Ahmad Adnan Mohamed; Ahmad Adnan Mohamed; Sahibin Abd Rahim; David Allan Aitman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin

    2016-01-01

    Soil carbon is the carbon held within the soil, primarily in association with its organic content. The total soil organic carbon study was determined in a plot at Bukit Jeriau forest in Bukit Fraser, Pahang, Malaysia. The aim of this study is to determine the changing of soil organic carbon between wet season and dry season. Soil organic carbon was fined out using titrimetric determination. The soil organic carbon content in wet season is 223.24 t/ ha while dry season is 217.90 t/ ha. The soil pH range in wet season is between 4.32 to 4.45 and in dry season in 3.95 to 4.08 which is considered acidic. Correlation analysis showed that soil organic carbon value is influenced by pH value and climate. Correlation analysis between clay and soil organic carbon with depth showed positively significant differences and clay are very much influenced soil organic carbon content. Correlation analysis between electrical conductivity and soil organic carbon content showed negative significantly difference on wet season and positively significant different in dry season. (author)

  18. METHOD 415.3 - MEASUREMENT OF TOTAL ORGANIC ...

    Science.gov (United States)

    2.0 SUMMARY OF METHOD2.1 In both TOC and DOC determinations, organic carbon in the water sample is oxidized to form carbon dioxide (CO2), which is then measured by a detection system. There are two different approaches for the oxidation of organic carbon in water samples to carbon dioxide gas: (a) combustion in an oxidizing gas and (b) UV promoted or heat catalized chemical oxidation with a persulfate solution. Carbon dioxide, which is released from the oxidized sample, is detected by a conductivity detector or by a nondispersive infrared (NDIR) detector. Instruments using any combination of the above technologies may be used in this method.2.2. Setteable solids and floating matter may cause plugging of valves, tubing, and the injection needle port. The TOC procedure allows the removal of settleable solids and floating matter. The suspended matter is considered part of the sample. The resulting water sample is then considered a close approximation of the original whole water sample for the purpose of TOC measurement.2.3. The DOC procedure requires that the sample be passed through a 0.45 um filter prior to analysis.2.4. The TOC and DOC procedures require that all inorganic carbon be removed from the sample before the sample is analyzed for organic carbon content. If the inorganic carbon (IC) is not completely removed, significant error will occur. The inorganic carbon interference is removed by converting the mineralized IC to CO2 by acidification and

  19. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  20. Carbon transfer from dissolved organic carbon to the cladoceran Bosmina: a mesocosm study

    Directory of Open Access Journals (Sweden)

    Tang Yali

    2017-01-01

    Full Text Available A mesocosm study illuminated possible transfer pathways for dissolved organic carbon from the water column to zooplankton. Organic carbon was added as 13C enriched glucose to 15 mesocosms filled with natural lake water. Stable isotope analysis and phospholipid fatty acids-based stable isotope probing were used to trace the incorporation of 13C into the cladoceran Bosmina and its potential food items. Glucose-C was shown to be assimilated into phytoplankton (including fungi and heterotrophic protists, bacteria and Bosmina, all of which became enriched with 13C during the experiment. The study suggests that bacteria play an important role in the transfer of glucose-C to Bosmina. Furthermore, osmotic algae, fungi and heterotrophic protists might also contribute to the isotopic signature changes observed in Bosmina. These findings help to clarify the contribution of dissolved organic carbon to zooplankton and its potential pathways.

  1. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  2. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Ma, Xiaoliang; Liu, Guimin; Wu, Xiaodong; Smoak, Joseph M; Ye, Linlin; Xu, Haiyan; Zhao, Lin; Ding, Yongjian

    2018-07-15

    The Qinghai-Tibetan plateau (QTP) stores a large amount of soil organic carbon and is the headwater region for several large rivers in Asia. Therefore, it is important to understand the influence of environmental factors on river water quality and the dissolved organic carbon (DOC) export in this region. We examined the water physico-chemical characteristics, DOC concentrations and export rates of 7 rivers under typical land cover types in the Three Rivers Headwater Region during August 2016. The results showed that the highest DOC concentrations were recorded in the rivers within the catchment of alpine wet meadow and meadow. These same rivers had the lowest total suspended solids (TSS) concentrations. The rivers within steppe and desert had the lowest DOC concentrations and highest TSS concentrations. The discharge rates and catchment areas were negatively correlated with DOC concentrations. The SUVA 254 values were significantly negatively correlated with DOC concentrations. The results suggest that the vegetation degradation, which may represent permafrost degradation, can lead to a decrease in DOC concentration, but increasing DOC export and soil erosion. In addition, some of the exported DOC will rapidly decompose in the river, and therefore affect the regional carbon cycle, as well as the water quality in the source water of many large Asian rivers. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Experimental Study of Soil Organic Matter Loss From Cultivated Field Plots In The Venezuelan Andes.

    Science.gov (United States)

    Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin A, C.; Mariotti, A. B.

    The question of discriminating sources of organic matter in suspended particles of stream flows can be addressed by using total organic carbon (TOC) concentration and stable isotope (13C, 15N) measurements when constant fluxes of organic matter supply can be assumed. However, little is known on the dynamics of organic matter release during soil erosion and on the temporal stability of its isotopic signature. In this study, we have monitored soil organic carbon loss and water runoff using natural rainfall events on three experimental field plots with different vegetation cover (bare soil, maize and coffee fields), set up on natural slopes of a tropical mountainous watershed in NW Venezuela (09°13'32'' ­ 09°10'00''N, 70°13'49'' ­ 70°18'34''W). Runoff and soil loss are markedly superior for the bare field plot than for the coffee field plot: by a factor 15 ­ 36, respectively, for the five-month experiment, and by a factor 30 ­ 120, respectively, during a single rainfall event experiment. Since runoff and soil organic matter loss are closely linked during most of the flow (at the time scales of this study), TOC concentration in suspended matter is constant. Furthermore, stable isotope compositions reflect those of top-soil organic matter from which they originate.

  4. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  5. Riverine Carbon and the Sedimentary Record on the Continental Shelves

    Science.gov (United States)

    2005-09-30

    focused on the Gulf of Lions: collecting sediment samples and carrying out elemental and stable carbon isotopic analysis . The field work was carried...organisms. For example, the predominance of nitrogen-free biomacromolecules (e.g. tannin , lignin, cellulose, cutin and suberin) over proteins (C:N ≈ 3-4...are cooperating with J. Fabres and A. Calafat (CRG Marine Geosciences) in carrying out elemental and isotopic analysis on suspended material

  6. Validity of estimating the organic carbon content of basin sediment using color measurements

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Sugai, Toshihiko; Ogami, Takashi; Yanagida, Makoto; Yasue, Ken-ichi

    2010-01-01

    Psychometric lightness (L* value) measured by a colorimeter offers a rapid means of obtaining the organic carbon content of sediment. We measured peat and lacustrine sediments covering the past 300 ka - 106 samples for L* value and 197 samples for organic carbon content. L* values are highly correlated with organic carbon contents. Therefore, L* values are a convenient alternative to measuring organic carbon contents. (author)

  7. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  8. Whole Watershed Quantification of Net Carbon Fluxes by Erosion and Deposition within the Christina River Basin Critical Zone Observatory

    Science.gov (United States)

    Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.

    2013-12-01

    We have proposed that the rate at which fresh, carbon-free minerals are delivered to and mix with fresh organic matter determines the rate of carbon preservation at a watershed scale (Aufdenkampe et al. 2011). Although many studies have examined the role of erosion in carbon balances, none consider that fresh carbon and fresh minerals interact. We believe that this mechanism may be a dominant sequestration process in watersheds with strong anthropogenic impacts. Our hypothesis - that the rate of mixing fresh carbon with fresh, carbon-free minerals is a primary control on watershed-scale carbon sequestration - is central to our Christina River Basin Critical Zone Observatory project (CRB-CZO, http://www.udel.edu/czo/). The Christina River Basin spans 1440 km2 from piedmont to Atlantic coastal plain physiographic provinces in the states of Pennsylvania and Delaware, and experienced intensive deforestation and land use beginning in the colonial period of the USA. Here we present a synthesis of multi-disciplinary data from the CRB-CZO on materials as they are transported from sapprolite to topsoils to colluvium to suspended solids to floodplains, wetlands and eventually to the Delaware Bay estuary. At the heart of our analysis is a spatially-integrated, flux-weighted comparison of the organic carbon to mineral surface area ratio (OC/SA) of erosion source materials versus transported and deposited materials. Because source end-members - such as forest topsoils, farmed topsoils, gullied subsoils and stream banks - represent a wide distribution of initial, pre-erosion OC/SA, we quantify source contributions using geochemical sediment fingerprinting approaches (Walling 2005). Analytes used for sediment fingerprinting include: total mineral elemental composition (including rare earth elements), fallout radioisotope activity for common erosion tracers (beryllium-7, beryllium-10, lead-210, cesium-137), particle size distribution and mineral specific surface area, in addition

  9. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  10. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  11. Observation of Van Hove Singularities and Temperature Dependence of Electrical Characteristics in Suspended Carbon Nanotube Schottky Barrier Transistors

    Science.gov (United States)

    Zhang, Jian; Liu, Siyu; Nshimiyimana, Jean Pierre; Deng, Ya; Hu, Xiao; Chi, Xiannian; Wu, Pei; Liu, Jia; Chu, Weiguo; Sun, Lianfeng

    2018-06-01

    A Van Hove singularity (VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.

  12. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    Science.gov (United States)

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Raman Study of Carbonates and Organic Contents in Five CM Chondrites

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Farley, C.; Cheung, J. C. H.

    2016-01-01

    Carbonates comprise the second most abundant class of carbon-bearing phases in carbonaceous chondrites after organic matter (approximately 2 wt.%), followed by other C-bearing phases such as diamond, silicon carbide, and graphite. Therefore, understanding the abundances of carbonates and the associated organic matter provide critical insight into the genesis of major carbonaceous components in chondritic materials. Carbonates in CM chondrites mostly occur as calcite (of varying composition) and dolomite. Properly performed, Raman spectroscopy provides a non-destructive technique for characterizing meteorite mineralogy and organic chemistry. It is sensitive to many carbonaceous phases, allows the differentiation of organic from inorganic materials, and the interpretation of their spatial distribution. Here, with the use of Raman spectroscopy, we determine the structure of the insoluble organic matter (IOM) in the matrix and carbonate phases in five CM chondrites: Jbilet Winselwan, Murchison, Nogoya, Santa Cruz, and Wisconsin Range (WIS) 91600, and interpret the relative timing of carbonate precipitation and the extent of the associated alteration events.

  14. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  15. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  16. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea

    International Nuclear Information System (INIS)

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-01-01

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ 13 C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. - Highlights: • Response of sources and composition of SOC to nutrient enrichment was observed. • Similar SOC sources and composition were observed in the two seagrass communities. • Nutrient enrichment enhanced seagrass and macroalgae and epiphytes contribution to SOC. • High nutrient concentration stimulated the MBC and the MBC/SOC ratio.

  17. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  18. Fossil organic carbon in wastewater and its fate in treatment plants.

    Science.gov (United States)

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    Science.gov (United States)

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  20. Geochemical loading of suspended sediment carried by large monsoonal rivers in Burma

    Science.gov (United States)

    Robinson, R. A.; Tipper, E.; Bird, M. I.; Oo, N.

    2013-12-01

    The Irrawaddy and Salween rivers of Burma drain the most rapidly exhuming region in the Himalayas, the eastern syntaxis zone. These monsoonal rivers have catchment areas of 0.413 x 106 km2 and 0.272 x 106 km2, respectively, and approximately 95% of the Irrawaddy catchment lies within Burma, while the catchment of the Salween flows through China, Thailand and Burma. They are long rivers (~2000 and ~2800 km) which have steep and narrow bedrock gorges along much of their length, and different amounts of floodplain in their lower reaches. These rivers have been less studied than other large Asian systems because of political instability in Burma and restricted access. Based on available historical data, and field work in 2005-2008, Robinson et al. (2007) estimated that the Irrawaddy is likely to be the 3rd largest river globally in terms of sediment load and when the Irrawaddy and Salween estimated fluxes are combined, they together contribute 4.6 Mt/yr of particulate organic carbon (POC) and an additional 1.1Mt/yr of dissolved organic carbon (DOC) to the ocean. When estimated yields of total organic carbon are calculated, the Irrawaddy-Salween system ranks alongside the Amazon as one of the largest yields of organic carbon, and is higher than the yield for the Ganges-Brahmaptura (Bird et al., 2008). Here we present preliminary geochemical data for water and sediment from the Irrawaddy and Salween rivers, and demonstrate the variability in elemental concentrations of water between the rivers and the summer and winter monsoon seasons, and differences in suspended sediment geochemistry as a function of water depth. The variability and magnitude of weathering products carried by such significant systems need to be quantified in order to understand their contribution to global element cycling (Tipper et al., 2006) and sedimentary depocentres. Our data highlight that further study of the geochemistry of such large rivers will significantly improve our understanding of the

  1. Organic carbon input in shallow groundwater at Aspo, southeastern Sweden

    International Nuclear Information System (INIS)

    Wallin, B.

    1993-01-01

    The variation in carbon and oxygen isotopes in calcite fissure fillings and dissolved carbonate from shallow groundwaters has been examined at Aspo, southeastern Sweden. The shallow water lens is refilled by meteoric water and is considered as an open system. The σ 13 C-signatures of the dissolved carbonate fall within a narrow range of -15.8 to -17.4 per-thousand, indicative of organic an organic carbon source. The low σ 13 C-values suggest that input of soil-CO 2 is the dominating carbon source for the system. σ 13 C and σ 18 O-values in the calcite fissure fillings show a wide range in values with a possible two end-member mixing of early post glacial atmospheric CO 2 dominated system to a present day soil-CO 2 dominating carbon source

  2. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  3. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  4. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  5. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK

    Directory of Open Access Journals (Sweden)

    R. R. Pawson

    2008-03-01

    Full Text Available This study investigates for the first time the relative importance of dissolved organic carbon (DOC and particulate organic carbon (POC in the fluvial carbon flux from an actively eroding peatland catchment in the southern Pennines, UK. Event scale variability in DOC and POC was examined and the annual flux of fluvial organic carbon was estimated for the catchment. At the event scale, both DOC and POC were found to increase with discharge, with event based POC export accounting for 95% of flux in only 8% of the time. On an annual cycle, exports of 35.14 t organic carbon (OC are estimated from the catchment, which represents an areal value of 92.47 g C m−2 a−1. POC was the most significant form of organic carbon export, accounting for 80% of the estimated flux. This suggests that more research is required on both the fate of POC and the rates of POC export in eroding peatland catchments.

  6. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    Science.gov (United States)

    Liu, Qianqian; Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Chen, Chen-Tung Arthur

    2018-04-01

    Continental shelves and marginal seas are key sites of particulate organic matter (POM) production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM) collected around deep chlorophyll maximum (DCM) layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN) contents and their isotopic compositions (δ13CPOC and δ15NPN) to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity) indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (-25.8 to -18.2 ‰) and δ15NPN (3.8 to 8.0 ‰), but a narrow molar C / N ratio (4.1-6.3) and low POC / Chl a ratio ( < 200 g g-1) in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained ˜ 70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3- in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north-eastward transport of riverine particles to the northern East China

  7. Carbon isotope components of aerosol in Fukuoka, Nagoya, Suwa and Kamikochi

    International Nuclear Information System (INIS)

    Ikemori, Fumikazu; Higo, Hayato; Miyabara, Yuichi; Nakajima, Daisuke; Nakamura, Toshio

    2013-01-01

    To estimate the contributions of fossil carbon and biomass carbon in some regions in Japan, 14 C concentration of total carbon in Total suspended particles (TSP) was measured at four places (Nagoya, Fukuoka, Suwa and Kamikochi) in Japan. pMC (% Modern Carbon) showed lowest average value of pMC (50.5±5.6: n =43) in Nagoya. The average value of pMC in Fukuoka (56.7±7.7 : n=26) and Suwa (pMC=66.9±8.8 : n=12) were larger than the average value of pMC in Nagoya. In Kamikochi, the average value of pMC measured two samples only was largest pMC (102, 97.9) in four places. The correlations among organic carbon (OC), elemental carbon (EC), fossil carbon, biomass carbon and OC/EC showed different values in Nagoya, Fukuoka and Suwa. These results suggest that the carbon sources were different at three regions. (author)

  8. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  9. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  10. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  11. [Characteristics of organic carbon forms in the sediment of Wuliangsuhai and Daihai Lakes].

    Science.gov (United States)

    Mao, Hai-Fang; He, Jiang; Lü, Chang-Wei; Liang, Ying; Liu, Hua-Lin; Wang, Feng-Jiao

    2011-03-01

    The characteristics and differences of organic carbon forms in the sediments of the Wuliangsuhai and the Daihai Lakes with different eutrophication types were discussed in the present study. The results showed that the range of total organic carbon content (TOC) in Wuliangsuhai Lake was 4.50-22.83 g x kg(-1) with the average of 11.80 g x kg(-1). The range of heavy-fraction organic carbon content was 3.38-21.67 g x kg(-1) with the average of 10.76 g x kg(-1). The range of light-fraction organic carbon content was 0.46-1.80 g x kg(-1) with the average of 1.04 g x kg(-1); The range of ROC content was 0.62-3.64 g x kg(-1) with the average of 2.11 g x kg(-1), while the range of total organic carbon content in Daihai lake was 6.84-23.46 g x kg(-1) with the average of 14.94 g x kg(-1). The range of heavy-fraction organic carbon content was 5.27-22.23 g x kg(-1) with the average of 13.89 g x kg(-1). The range of light-fraction organic carbon content was 0.76-1.57 g x kg(-1). The range of ROC content was 1.54-7.08 g x kg(-1) with the average of 3.62 g x kg(-1). The results indicated that the heavy-fraction organic carbon was the major component of the organic carbon and plays an important role in the accumulation of organic carbon in the sediments of two Lakes. The content of light-fraction organic carbon was similar in the sediments of two lakes, whereas, the contents of total organic carbon and heavy-fraction organic carbon in the sediment of Wuliangsuhai Lake were less than those in the sediment of Daihai Lake, and the value of LFOC/TOC in the Wuliangsuhai Lake was larger than that in the Daihai Lake. The humin was the dominant component of the sediment humus, followed by fulvic acid in the two lakes. The values of HM/HS in the sediments of Wuliangsuhai lake range from 43.06% to 77.25% with the average of 62.15% and values of HM/HS in the sediments of Dahai lake range from 49.23% to 73.85% with the average of 65.30%. The tightly combined humus was the dominant form in

  12. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  13. Physical Conditions Regulate the Fungal to Bacterial Ratios of a Tropical Suspended Soil

    Directory of Open Access Journals (Sweden)

    Julian Donald

    2017-12-01

    Full Text Available As a source of ‘suspended soils’, epiphytes contribute large amounts of organic matter to the canopy of tropical rain forests. Microbes associated with epiphytes are responsible for much of the nutrient cycling taking place in rain forest canopies. However, soils suspended far above the ground in living organisms differ from soil on the forest floor, and traditional predictors of soil microbial community composition and functioning (nutrient availability and the activity of soil organisms are likely to be less important. We conducted an experiment in the rain forest biome at the Eden Project in the U.K. to explore how biotic and abiotic conditions determine microbial community composition and functioning in a suspended soil. To simulate their natural epiphytic lifestyle, bird’s nest ferns (Asplenium nidus were placed on a custom-built canopy platform suspended 8 m above the ground. Ammonium nitrate and earthworm treatments were applied to ferns in a factorial design. Extracellular enzyme activity and Phospholipid Fatty Acid (PLFA profiles were determined at zero, three and six months. We observed no significant differences in either enzyme activity or PLFA profiles between any of the treatments. Instead, we observed decreases in β-glucosidase and N-acetyl-glucosaminidase activity, and an increase in phenol oxidase activity across all treatments and controls over time. An increase in the relative abundance of fungi during the experiment meant that the microbial communities in the Eden Project ferns after six months were comparable with ferns sampled from primary tropical rain forest in Borneo.

  14. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  15. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    Science.gov (United States)

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pathways of organic carbon oxidation in three continental margin sediments

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Jørgensen, Bo Barker; Fossing, Henrik

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude...... that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated...... organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most...

  17. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  18. Organic carbonates: experiment and ab initio calculations for prediction of thermochemical properties.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Kozlova, Svetlana A

    2008-10-23

    This work has been undertaken in order to obtain data on thermodynamic properties of organic carbonates and to revise the group-additivity values necessary for predicting their standard enthalpies of formation and enthalpies of vaporization. The standard molar enthalpies of formation of dibenzyl carbonate, tert-butyl phenyl carbonate, and diphenyl carbonate were measured using combustion calorimetry. Molar enthalpies of vaporization of these compounds were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Molar enthalpy of sublimation of diphenyl carbonate was measured in the same way. Ab initio calculations of molar enthalpies of formation of organic carbonates have been performed using the G3MP2 method, and results are in excellent agreement with the available experiment. Then the group-contribution method has been developed to predict values of the enthalpies of formation and enthalpies of vaporization of organic carbonates.

  19. Graphitization in Carbon MEMS and Carbon NEMS

    Science.gov (United States)

    Sharma, Swati

    Carbon MEMS (CMEMS) and Carbon NEMS (CNEMS) are an emerging class of miniaturized devices. Due to the numerous advantages such as scalable manufacturing processes, inexpensive and readily available precursor polymer materials, tunable surface properties and biocompatibility, carbon has become a preferred material for a wide variety of future sensing applications. Single suspended carbon nanowires (CNWs) integrated on CMEMS structures fabricated by electrospinning of SU8 photoresist on photolithographially patterned SU8 followed by pyrolysis are utilized for understanding the graphitization process in micro and nano carbon materials. These monolithic CNW-CMEMS structures enable the fabrication of very high aspect ratio CNWs of predefined length. The CNWs thus fabricated display core---shell structures having a graphitic shell with a glassy carbon core. The electrical conductivity of these CNWs is increased by about 100% compared to glassy carbon as a result of enhanced graphitization. We explore various tunable fabrication and pyrolysis parameters to improve graphitization in the resulting CNWs. We also suggest gas-sensing application of the thus fabricated single suspended CNW-CMEMS devices by using the CNW as a nano-hotplate for local chemical vapor deposition. In this thesis we also report on results from an optimization study of SU8 photoresist derived carbon electrodes. These electrodes were applied to the simultaneous detection of traces of Cd(II) and Pb(II) through anodic stripping voltammetry and detection limits as low as 0.7 and 0.8 microgL-1 were achieved. To further improve upon the electrochemical behavior of the carbon electrodes we elucidate a modified pyrolysis technique featuring an ultra-fast temperature ramp for obtaining bubbled porous carbon from lithographically patterned SU8. We conclude this dissertation by suggesting the possible future works on enhancing graphitization as well as on electrochemical applications

  20. Particulate carbon and nitrogen determinations in tracer studies: The neglected variables

    International Nuclear Information System (INIS)

    Collos, Yves; Jauzein, Cécile; Hatey, Elise

    2014-01-01

    We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate the first and filtering different volumes of water in order to evaluate the second. - Highlights: • Adsorption of dissolved organic matter on GF/F filters saturates below 1 ml. • Such adsorption can overestimate (up to 5 fold at low volumes) particulate matter. • Plankton breakage during filtration underestimates (up to 3 fold) particulate matter. • Different volumes should be filtered to detect biases in PC and PN concentrations. • Adsorbed organic carbon is higher in surface ocean than in mid-waters

  1. Speleothem records of acid sulphate deposition and organic carbon mobilisation

    Science.gov (United States)

    Wynn, Peter; Fairchild, Ian; Bourdin, Clement; Baldini, James; Muller, Wolfgang; Hartland, Adam; Bartlett, Rebecca

    2017-04-01

    Dramatic increases in measured surface water DOC in recent decades have been variously attributed to either temperature rise, or destabilisation of long-term soil carbon pools following sulphur peak emissions status. However, whilst both drivers of DOC dynamics are plausible, they remain difficult to test due to the restricted nature of the available records of riverine DOC flux (1978 to present), and the limited availability of SO2 emissions inventory data at the regional scale. Speleothems offer long term records of both sulphur and carbon. New techniques to extract sulphur concentrations and isotopes from speleothem calcite have enabled archives of pollution history and environmental acidification to be reconstructed. Due to the large dynamic range in sulphur isotopic values from end member sources (marine aerosol +21 ‰ to continental biogenic emissions -30 ‰) and limited environmental fractionation under oxidising conditions, sulphur isotopes form an ideal tracer of industrial pollution and environmental acidification in the palaeo-record. We couple this acidification history to the carbon record, using organic matter fluorescence and trace metals. Trace metal ratios and abundance can be used to infer the type and size of organic ligand and are therefore sensitive to changes in temperature as a driver of organic carbon processing and biodegradation. This allows fluorescent properties and ratios of trace metals in speleothem carbonate to be used to represent both the flux of organic carbon into the cave as well as the degradation pathway. Here we present some of the first results of this work, exploring sulphur acidification as a mechanistic control on carbon solubility and export throughout the twentieth century.

  2. Distribution of Organic Carbon in the Sediments of Xinxue River and the Xinxue River Constructed Wetland, China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Renqing; Zhang, Haijie; Ge, Xiuli; Liu, Jian

    2015-01-01

    Wetland ecosystems are represented as a significant reservoir of organic carbon and play an important role in mitigating the greenhouse effect. In order to compare the compositions and distribution of organic carbon in constructed and natural river wetlands, sediments from the Xinxue River Constructed Wetland and the Xinxue River, China, were sampled at two depths (0-15 cm and 15-25 cm) in both upstream and downstream locations. Three types of organic carbon were determined: light fraction organic carbon, heavy fraction organic carbon, and dissolved organic carbon. The results show that variations in light fraction organic carbon are significantly larger between upstream and downstream locations than they are between the two wetland types; however, the opposite trend is observed for the dissolved organic carbon. There are no significant differences in the distribution of heavy fraction organic carbon between the discrete variables (e.g., between the two depths, the two locations, or the two wetland types). However, there are significant cross-variable differences; for example, the distribution patterns of heavy fraction organic carbon between wetland types and depths, and between wetland types and locations. Correlation analysis reveals that light fraction organic carbon is positively associated with light fraction nitrogen in both wetlands, while heavy fraction organic carbon is associated with both heavy fraction nitrogen and the moisture content in the constructed wetland. The results of this study demonstrate that the constructed wetland, which has a relatively low background value of heavy fraction organic carbon, is gradually accumulating organic carbon of different types, with the level of accumulation dependent on the balance between carbon accumulation and carbon decomposition. In contrast, the river wetland has relatively stable levels of organic carbon.

  3. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard ...

  4. Mini Total Organic Carbon Analyzer (miniTOCA)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this development is to create a prototype hand-held, 1 to 2 liter size battery-powered Total Organic Carbon Analyzer (TOCA). The majority of...

  5. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  6. The use of activated carbons for removing organic matter from groundwater

    Directory of Open Access Journals (Sweden)

    Kaleta Jadwiga

    2017-09-01

    Full Text Available The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

  7. Organic carbon production, mineralisation and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Liebetrau, V.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2015-03-01

    Carbon cycling in Peruvian margin sediments (11 and 12° S) was examined at 16 stations, from 74 m water depth on the middle shelf down to 1024 m, using a combination of in situ flux measurements, sedimentary geochemistry and modelling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates decreased sharply seaward of the middle shelf and subsequently increased at the deep stations. The organic carbon burial efficiency (CBE) was unusually low on the middle shelf (60%) at the deep oxygenated sites. In line with other studies, CBE was elevated under oxygen-deficient waters in the mid-water oxygen minimum zone. Organic carbon rain rates calculated from the benthic fluxes alluded to efficient mineralisation of organic matter in the water column compared to other oxygen-deficient environments. The observations at the Peruvian margin suggest that a lack of oxygen does not greatly affect the degradation of organic matter in the water column but promotes the preservation of organic matter in sediments.

  8. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  9. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    Science.gov (United States)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  10. Sedimentary organic matter and carbonate variations in the Chukchi Borderland in association with ice sheet and ocean-atmosphere dynamics over the last 155 kyr

    Directory of Open Access Journals (Sweden)

    S. F. Rella

    2011-12-01

    Full Text Available Knowledge on past variability of sedimentary organic carbon in the Arctic Ocean is important to assess natural carbon cycling and transport processes related to global climate changes. However, the late Pleistocene oceanographic history of the Arctic is still poorly understood. In the present study we show sedimentary records of total organic carbon (TOC, CaCO3, benthic foraminiferal δ18O and the coarse grain size fraction from a piston core recovered from the northern Northwind Ridge in the far western Arctic Ocean, a region potentially sensitively responding to past variability in surface current regimes and sedimentary processes such as coastal erosion. An age model based on oxygen stratigraphy, radiocarbon dating and lithological constraints suggests that the piston core records paleoenvironmental changes of the last 155 kyr. TOC shows orbital-scale increases and decreases that can be respectively correlated to the waxing and waning of large ice sheets dominating the Eurasian Arctic, suggesting advection of fine suspended matter derived from glacial erosion to the Northwind Ridge by eastward flowing intermediate water and/or surface water and sea ice during cold episodes of the last two glacial-interglacial cycles. At millennial scales, increases in TOC might correlate to a suite of Dansgaard-Oeschger Stadials between 120 and 45 ka before present (BP indicating a possible response to abrupt northern hemispheric temperature changes. Between 70 and 45 ka BP, closures and openings of the Bering Strait could have additionally influenced TOC variability. CaCO3 content tends to anti-correlate with TOC on both orbital and millennial time scales, which we interpret in terms of enhanced sediment advection from the carbonate-rich Canadian Arctic via an extended Beaufort Gyre during warm periods of the last two glacial-interglacial cycles and increased organic carbon advection from the Siberian Arctic during cold

  11. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    Science.gov (United States)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  12. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  13. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  14. Improved automation of dissolved organic carbon sampling for organic-rich surface waters.

    Science.gov (United States)

    Grayson, Richard P; Holden, Joseph

    2016-02-01

    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  16. Organic Carbon Storage in China's Urban Areas

    Science.gov (United States)

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  17. Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning

    Science.gov (United States)

    Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2017-12-01

    Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.

  18. Long-term Trends in Particulate Organic Carbon from a Low-Gradient Autotrophic Watershed

    Science.gov (United States)

    Fox, J.; Ford, W. I., III

    2014-12-01

    Recent insights from low-gradient streams dominated by fine surficial sediments have shown fluvial organic matter dynamics are governed by coupled hydrologic and biotic controls at event to seasonal timescales. Notwithstanding the importance of shorter timescales, quantity and quality of carbon in stream ecosystems at annual and decadal scales is of increased interest in order to understand if stream ecosystems are net stores or sinks of carbon and how stream carbon behaves under dynamic climate conditions. As part of an ongoing study in a low-gradient, agricultural watershed in the Bluegrass Region of Central Kentucky, an eight year dataset of transported particulate organic carbon (POC) was analyzed for the present study. The objective was to investigate if POC dynamics at multi-year timescales are governed by biotic or hydrologic processes. A statistical analysis using Empirical Mode Decomposition was performed on an 8 year dataset of transported sediment carbon, temperature, and log-transformed flowrates at the watershed outlet. Simulations from a previously validated, process-based, organic carbon model were utilized as further verification of drivers. Results from the analysis suggest that a 4 degree Celsius mean annual temperature shift corresponds to a 63% increase in organic carbon content at the main-stem, third order outlet and a 33% increase in organic carbon content at the main-stem inlet. Model and stable isotope results for the 8 year study support that long-term increases in organic carbon concentration are governed by biotic growth and humification of algal biomass in which increasing annual temperatures promote increased organic carbon production, relative to ecosystem respiration. This result contradicts conventional wisdom, suggesting projected warming trends will shift autotrophic freshwater systems to net heterotrophic, which has significant implications for the role of benthic stream ecosystems under changing climate conditions. Future work

  19. Organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210PB chronology

    International Nuclear Information System (INIS)

    Tateda, Y.; Wattayakorn, G.; Nhan, D.D.; Kasuya, Y.

    2004-01-01

    Organic carbon balance estimation of mangrove coastal ecosystem is important for understanding of Asian coastal carbon budget/flux calculation in global carbon cycle modelling which is powerful tool for the prediction of future greenhouse gas effect and evaluation of countermeasure preference. Especially, the organic carbon accumulation rate in mangrove ecosystem was reported to be important sink of carbon as well as that in boreal peat accumulation. For the estimation of 10 3 years scale organic carbon accumulation rates in mangrove coastal ecosystems, 14 C was used as long term chronological tracer, being useful in pristine mangrove forest reserve area. While in case of mangrove plantation of in coastal area, the 210 Pb is suitable for the estimation of decades scale estimation by its half-life. Though it has possibility of bio-/physical- turbation effect in applying 210 Pb chronology that is offset in case of 10 3 years scale estimation, especially in Asian mangrove ecosystem where the anthropogenic physical turbation by coastal fishery is vigorous.In this paper, we studied the organic carbon and 210 Pb accumulation rates in subtropical mangrove coastal ecosystems in Japan, Vietnam and Thailand with 7 Be analyses to make sure the negligible effect of above turbation effects on organic carbon accumulation. We finally concluded that 210 Pb was applicable to estimate organic carbon accumulation rates in these ecosystems even though the physical-/bio-turbation is expected. The measured organic carbon accumulation rates using 210 Pb in mangrove coastal ecosystems of Japan, Vietnam and Thailand were 0.067 4.0 t-C ha -1 y -1 . (author)

  20. Suspended ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, C.

    1991-05-01

    The retrofitting of existing conventional ceiling systems to suspended ceiling type systems represents an interesting energy savings solution since this method, in addition to providing additional protection against space heat loss and thermal bridges, also creates the possibility of housing, in the void, additional mechanical and electrical lines which may be necessary due to other savings interventions. This paper reviews the various suspended ceiling systems (e.g., those making use of mineral fibre, gypsum panels, wood, vermiculite, etc.) currently marketed in Europe, and reports, for each, some key technical, economic and architectural advantages which include thermal efficiency, noise abatement, as well as, resistance to fire and humidity. Information is also given on the relative installation and maintenance requirements.

  1. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  2. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  3. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  4. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  5. Estimation of organic carbon loss potential in north of Iran

    Science.gov (United States)

    Shahriari, A.; Khormali, F.; Kehl, M.; Welp, G.; Scholz, Ch.

    2009-04-01

    The development of sustainable agricultural systems requires techniques that accurately monitor changes in the amount, nature and breakdown rate of soil organic matter and can compare the rate of breakdown of different plant or animal residues under different management systems. In this research, the study area includes the southern alluvial and piedmont plains of Gorgan River extended from east to west direction in Golestan province, Iran. Samples from 10 soil series and were collected from cultivation depth (0-30 cm). Permanganate-oxidizable carbon (POC) an index of soil labile carbon, was used to show soil potential loss of organic carbon. In this index shows the maximum loss of OC in a given soil. Maximum loss of OC for each soil series was estimated through POC and bulk density (BD). The potential loss of OC were estimated between 1253263 and 2410813 g/ha Carbon. Stable organic constituents in the soil include humic substances and other organic macromolecules that are intrinsically resistant against microbial attack, or that are physically protected by adsorption on mineral surfaces or entrapment within clay and mineral aggregates. However, the (Clay + Silt)/OC ratio had a negative significant (p < 0.001) correlation with POC content, confirming the preserving effect of fine particle.

  6. Role of organic soils in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V. (ed.)

    1979-01-01

    Findings and recommendations of the workshop on organic soils are summarized. The major finding of the workshop is that organic soils are important in the overall carbon budget. Histosols and gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/. Current annual release of carbon from organic soils is estimated to fall within the range of 0.03 to 0.37 x 10/sup 9/ t, a release equivalent to 1.3% to 16% of the annual increase of carbon in the atmosphere. If half of the released carbon remains airborne, organic soils contribute 0.6% to 8.0% of the annual rise in CO/sub 2/. Uncertainties in data suggest the actual release could lie outside the range. Present annual releases of carbon from the Everglades Agricultural Area in Florida and the Sacramento-San Joaquin Valley in California are estimated at 0.017 x 10/sup 9/ tons. When combined with additional carbon release from other known drainage programs and the possibility of major drainage activity in the tropics, this figure suggests that the lower limit of the world estimate of carbon release from organic soils is too low. Annual sequestering of carbon by undrained organic soils has been estimated at about 0.045 x 10/sup 9/ tons. This estimate is based on only a few studies, however, and precision is probably no better than an order of magnitude. Several strategies for peatland management are available, including creation, preservation, functional designation, and use of wetlands for agriculture and energy supply.

  7. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  8. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Methodology guideline. Organization of conference neutral in carbon

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  10. Spatial distribution of soil organic carbon stocks in France

    Directory of Open Access Journals (Sweden)

    M. P. Martin

    2011-05-01

    Full Text Available Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory.

    We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils.

    The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the

  11. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  12. Sources and fate of organic matter in suspended and bottom sediments of the Mandovi and Zuari estuaries, Western India

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R; Rao, V.P.; Sarma, V.V.S.S.; Kessarkar, P.M.; ManiMurali, R

    in western India during wet and dry seasons, to characterize the sources of organic matter (OM) in these systems. Unlike major rivers, SPM concentrations increase seaward with a general trend of decreasing particulate organic carbon (POC) in these rivers...

  13. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  14. [Distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta].

    Science.gov (United States)

    Dong, Hong-Fang; Yu, Jun-Bao; Guan, Bo

    2013-01-01

    Applying the method of physical fractionation, distribution characteristics of soil organic carbon and its composition in Suaeda salsa wetland in the Yellow River delta were studied. The results showed that the heavy fraction organic carbon was the dominant component of soil organic carbon in the studied region. There was a significantly positive relationship between the content of heavy fraction organic carbon, particulate organic carbon and total soil organic carbon. The ranges of soil light fraction organic carbon ratio and content were 0.008% - 0.15% and 0.10-0.40 g x kg(-1), respectively, and the range of particulate organic carbon ratio was 8.83% - 30.58%, indicating that the non-protection component of soil organic carbon was low and the carbon pool was relatively stable in Suaeda salsa wetland of the Yellow River delta.

  15. Organic loss in drained wetland: managing the carbon footprint

    NARCIS (Netherlands)

    Durham, B.; van de Noort, R.; Martens, V.V.; Vorenhout, M.

    2012-01-01

    The recent installation of land drains at Star Carr, Yorkshire, UK, has been linked with loss of preservation quality in this important Mesolithic buried landscape, challenging the PARIS principle. Historically captured organic carbon, including organic artefacts, is being converted to soluble

  16. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  17. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  18. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    Science.gov (United States)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of

  19. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available Continental shelves and marginal seas are key sites of particulate organic matter (POM production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM collected around deep chlorophyll maximum (DCM layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN contents and their isotopic compositions (δ13CPOC and δ15NPN to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (−25.8 to −18.2 ‰ and δ15NPN (3.8 to 8.0 ‰, but a narrow molar C ∕ N ratio (4.1–6.3 and low POC ∕ Chl a ratio ( <  200 g g−1 in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained  ∼  70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3− in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north

  20. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  1. Evaluation of Soil Quality Using Labile Organic Carbon and Carbon Management Indices in Agricultural Lands of Neyriz, Fars Province

    Directory of Open Access Journals (Sweden)

    Anahid Salmanpour

    2017-02-01

    Full Text Available Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality. The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran. Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil

  2. Development of a Soil Organic Carbon Baseline for Otjozondjupa, Namibia

    OpenAIRE

    Nijbroek, R.; Kempen, B.; Mutua, J.; Soderstrom, M.; Piikki, K.; Hengari, S.; Andreas, A.

    2017-01-01

    Land Degradation Neutrality (LDN) has been piloted in 14 countries and will be scaled up to over 120 countries. As a LDN pilot country, Namibia developed sub-national LDN baselines in Otjozondjupa Region. In addition to the three LDN indicators (soil organic carbon, land productivity and land cover change), Namibia also regards bush encroachment as an important form of land degradation. We collected 219 soil profiles and used Random Forest modelling to develop the soil organic carbon stock ba...

  3. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  4. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  6. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  7. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  8. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  9. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    Science.gov (United States)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  10. Erosion of common structural materials and the degradation of suspended particles in flowing suspension of graphite powder in carbon dioxide gas

    International Nuclear Information System (INIS)

    Garton, D.A.; Hawes, R.I.; Rose, P.W.

    1968-06-01

    Experiments have been performed to examine the erosion of common materials of construction by a flowing suspension of graphite powder in carbon dioxide gas and the degradation of the graphite powder in the suspension. The suspension was circulated through a stainless steel loop at a pressure of 200 p.s.i.g. and bulk fluid temperature of 100-150 deg. C. No change in the weight of pins of mild steel, stainless steel and zircaloy, which were placed across the flow stream in a region where the velocity approached 100 ft./sec, could be detected after 350 hours of circulation. Examination of micro-photographs of the cross sections of the specimens showed no change in the structure of the metals. Considerable erosion of graphite pins producing a 6% decrease in the weight was observed under similar conditions. Detailed spectrographic analysis of the suspended powder taken at various times during the experiment showed no noticeable increase in the impurity content which could be attributed to erosion of the test specimens. A considerable increase in the tungsten, tin and cobalt concentration was observed and this is attributed to wear of the pump seal surfaces. The mean particle size of the suspended graphite powder was observed to decrease rapidly from 5 microns to 3 microns after only a few hours of circulation in the loop. After this initial period there was little further change in the particle size, the mean diameter being 2.85 microns after 167 hours of circulation. (author)

  11. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  12. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  13. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  14. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  15. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  16. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  17. Influencing factors on δ(13C) of organic matter and carbonate in labke sediments on songnen plain

    International Nuclear Information System (INIS)

    Ou Wenjia; Zhang Chengjun

    2009-01-01

    Carbon isotopic compositions of organic matter and carbonate in surface sediments from lakes in Songnen Plain, northeast of China, were carried out.n-alkanes carbon distribution characteristics of the organic matter in lake sediments were also analyzed to identify the source of organic matter and sedimentary environment in these lakes. With the limnological characteristics of water and sediment, the influencing factors on isotopic composition in sedimentary organic matter and carbonate were discussed. The results showed that types of organic matter affected the carbon isotopic composition. 13 C of carbonate depleted by input of biologic organic matter and enriched by input of oil pollution. (authors)

  18. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela [Faculty of Chemical Technology, Poznan University of Technology, ul. Piotrowo 3, PL-60 965 Poznan (Poland)

    2010-09-01

    Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H{sub 2}SO{sub 4} electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids. (author)

  19. Organic Carbon Sources and their Transfer in a Gulf of Mexico Coral Reef Ecosystem under River Influence

    Science.gov (United States)

    Parrish, C.; Carreón-Palau, L.; del Ángel-Rodríguez, J.; Perez-Espana, H.; Aguiniga-Garcıa, S.

    2016-02-01

    To assess the degree to which coral reefs in a marine protected area have been influenced by terrestrial and anthropogenic organic carbon inputs we used C and N stable isotopes and lipid biomarkers in the Coral Reef System of Veracruz in the southwest Gulf of Mexico. A C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor revealed the primary producer sources that fuel the coral reef food web. Then lipid classes, FA and sterol biomarkers determined production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, coprostanol determined pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential FA for fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while sea grass non-essential FA are transferred to the entire food web. Sea urchins may be the main consumers of brown macroalgae, while surgeon fish prefer red algae. C and N isotopic values and the C:N ratio suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and sea grass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly. The nearest river to the Reef System was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. We would suggest monitoring δ15N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the Reef System.

  20. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  1. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  2. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  3. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    Science.gov (United States)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  4. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    Science.gov (United States)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  5. Efficient electrochemical degradation of multiwall carbon nanotubes.

    Science.gov (United States)

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  6. Organic Matter Quality and its Influence on Carbon Turnover and Stabilization in Northern Peatlands

    Science.gov (United States)

    Turetsky, M. R.; Wieder, R. K.

    2002-12-01

    Peatlands cover 3-5 % of the world's ice-free land area, but store about 33 % of global terrestrial soil carbon. Peat accumulation in northern regions generally is controlled by slow decomposition, which may be limited by cold temperatures and water-logging. Poor organic matter quality also may limit decay, and microbial activity in peatlands likely is regulated by the availability of labile carbon and/or nutrients. Conversely, carbon in recalcitrant soil structures may be chemically protected from microbial decay, particularly in peatlands where carbon can be buried in anaerobic soils. Soil organic matter quality is controlled by plant litter chemical composition and the susceptibility of organic compounds to decomposition through time. There are a number of techniques available for characterizing organic quality, ranging from chemical proximate or elemental analysis to more qualitative methods such as nuclear magenetic resonance, pyrolysis/mass spectroscopy, and Fourier transform infrared spectroscopy. We generally have relied on proximate analysis for quantitative determination of several organic fractions (i.e., water-soluble carbohydrates, soluble nonpolars, water-soluble phenolics, holocellulose, and acid insoluble material). Our approaches to studying organic matter quality in relation to C turnover in peatlands include 1) 14C labelling of peatland vegetation along a latitudinal gradient in North America, allowing us to follow the fate of 14C tracer in belowground organic fractions under varying climates, 2) litter bag studies focusing on the role of individual moss species in litter quality and organic matter decomposition, and 3) laboratory incubations of peat to explore relationships between organic matter quality and decay. These studies suggest that proximate organic fractions vary in lability, but that turnover of organic matter is influenced both by plant species and climate. Across boreal peatlands, measures of soil recalcitrance such as acid

  7. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  8. Sampling in freshwater environments: Suspended particle traps and variability in the final data

    International Nuclear Information System (INIS)

    Barbizzi, Sabrina; Pati, Alessandra

    2008-01-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of 137 Cs activity concentration (Bq kg -1 ) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for 137 Cs and 4.5% for total carbon. For 137 Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed

  9. Sampling in freshwater environments: suspended particle traps and variability in the final data.

    Science.gov (United States)

    Barbizzi, Sabrina; Pati, Alessandra

    2008-11-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of (137)Cs activity concentration (Bq kg(-1)) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for (137)Cs and 4.5% for total carbon. For (137)Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed.

  10. A New Measure for Transported Suspended Sediment

    Science.gov (United States)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  11. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  12. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  13. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  14. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    Science.gov (United States)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  15. Land to ocean transfer of erosion-related organic carbon, Waipaoa sedimentary system, East Coast, New Zealand

    International Nuclear Information System (INIS)

    Brackley, H.L.

    2006-01-01

    Mountainous islands of the Pacific Rim (such as New Zealand) purportedly deliver up to 40% of the suspended sediment load and up to 35% of the riverine particulate organic carbon (POC) load to the world's oceans. On the east coast of New Zealand's North Island, the Waipaoa River drains a steep, 2205 km 2 catchment located on the active collisional East Coast Continental Margin. It has an annual suspended sediment load of 15 Tg (15 x 10 1 2 g), making up ∼ 7% of New Zealand's total yield to the Pacific Ocean, and a mean annual POC discharge to the Pacific Ocean of 86.7 Gg (86.7 x 10 9 g). The annual loss of OC to the floodplain is ∼ 9% of this annual POC discharge (∼ 7.8 Gg). A range of analyses (including organic carbon content (%OC), stable carbon isotopes (δ 1 3C), radiocarbon ( 1 4C), carbon to nitrogen ratios (C/N)a and carbon loadings (OC:SA)) were performed on correlative sediments from a transect of 7 cores from depositional sites located on the Waipaoa River floodplain and adjacent continental shelf and slope. Results were used to determine biogeochemical characteristics of organic carbon (OC) at a range of depositional sites during its transfer from terrestrial source to marine sink, and how large floods impact OC transfer to the marine environment. The high temporal variability in OC content (0.2 to 3.5%) and different source signatures (δ 1 3C of -26.7 to -20.6 permille) of Waipaoa River floodplain deposits prevented the establishment of a clear benchmark signature for flood deposits that may be recognisable in the marine sedimentary record. The high spatial and temporal variability of floodplain sediment OC, combined with the areal extent of floodplains within the catchment, indicates the appreciable modulating effect the floodplain has on OC transfers to the ocean. Since extensive stopbanks were constructed on the main floodplain since the 1940's, sequestration of OC in floodplain sediments has reduced by about half, increasing the overall

  16. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, Paul Martin; Huser, Raphaë l

    2017-01-01

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications

  17. Latitudinal gradients in degradation of marine dissolved organic carbon

    DEFF Research Database (Denmark)

    Arnosti, Carol; Steen, Andrew; Ziervogel, Kai

    2011-01-01

    unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information......Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely...... about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76 ºS to 79 ºN to hydrolyze a range of high...

  18. A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva Estuary (Baltic Sea).

    Science.gov (United States)

    Golubkov, Sergey M; Berezina, Nadezhda A; Gubelit, Yulia I; Demchuk, Anna S; Golubkov, Mikhail S; Tiunov, Alexei V

    2018-01-01

    We analyzed stable isotope composition of carbon and nitrogen of suspended organic matter (seston) and tissues of macroalgae, macroinvertebrates and fish from the coastal area of the highly eutrophic Neva Estuary to test a hypothesis that organic carbon of macroalgae Cladophora glomerata and Ulva intestinalis produced during green tides may be among primary sources supporting coastal food webs. The Stable Isotope Bayesian mixing model (SIAR) showed that consumers poorly use organic carbon produced by macroalgae. According to the results of SIAR modeling, benthic macroinvertebrates and fish mostly rely on pelagic derived carbon as a basal resource for their production. Only some species of macroinvertebrates consumed macroalgae. Fish used this resource directly consuming zooplankton or indirectly via benthic macroinvertebrates. This was consistent with the results of the gut content analysis, which revealed a high proportion of zooplankton in the guts of non-predatory fish. Copyright © 2017. Published by Elsevier Ltd.

  19. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    Science.gov (United States)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  20. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  1. Soluble carbon in oxisol under the effect of organic residue rates

    Directory of Open Access Journals (Sweden)

    Gabriela Lúcia Pinheiro

    2014-06-01

    Full Text Available The application of organic residues to the soil can increase soluble organic carbon (SOC and affect the pH and electrolytic conductivity (EC of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC, water-extractable organic carbon (WEOC, and water-extractable inorganic carbon (WEIC in soil treated with manure (chicken, swine, and quail, sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4, organic carbon (OC- KH2PO4, and inorganic C (IC- KH2PO4 extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

  2. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  3. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  4. Combining fluidized activated carbon with weak alternating electric fields for disinfection

    NARCIS (Netherlands)

    Racyte, J.; Sharabati, J.; Paulitsch-Fuchs, A.H.; Yntema, D.R.; Mayer, M.J.J.; Bruning, H.; Rijnaarts, H.H.M.

    2011-01-01

    This study presents fluidized bed electrodes as a new device for disinfection. In the fluidized bed electrodes system, granular activated carbon particles were suspended, and an alternating radio frequency electric field was applied over the suspended bed. Proof-of-principle studies with the

  5. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  6. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    Haas, H. de

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (C02 ) is one of the major contributors to the natural greenhouse

  7. Transport, preservation and accumulation of organic carbon in the North Sea

    NARCIS (Netherlands)

    de Haas, H.

    1997-01-01

    This thesis contains the results of the research on the burial of organic carbon in the North Sea as it was carried out at the Netherlands Institute for Sea Research in the period 1993-1997. Carbon in the form of carbon dioxide (CO2 ) is one of the major contributors to the natural greenhouse

  8. Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds

    Science.gov (United States)

    R. K. Kolka; D. F. Grigal; E. S. Verry; E. A. Nater

    1999-01-01

    We determined the fluxes of total mecury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when all watersheds...

  9. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  10. Evaluation of Anaerobic Biodegradation of Organic Carbon Extracted from Aquifer Sediment

    OpenAIRE

    Kelly, Catherine Aileen

    2006-01-01

    In conjunction with ongoing studies to develop a method for quantifying potentially biodegradable organic carbon (Rectanus et al 2005), this research was conducted to evaluate the extent to which organic carbon extracted using this method will biodegrade in anaerobic environments. The ultimate goal is to use this method for the evaluation of chloroethene contaminated sites in order to estimate the long-term sustainability of monitored natural attenuation (MNA) as a remediation strategy. Alt...

  11. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    Directory of Open Access Journals (Sweden)

    Jorien E Vonk

    2016-08-01

    Full Text Available Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C and molecular organic geochemistry (lignin, leaf waxes. High-resolution age models (137Cs, 210Pb of downcore lake sediment records (n=11 along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels. Comparison with earlier published Mackenzie River depth profiles shows that (i lake sediments reflect the riverine surface suspended load, and (ii hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  12. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    Science.gov (United States)

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  13. Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia

    Science.gov (United States)

    Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho

    2017-04-01

    Tropical peatlands are valuable stores of carbon. However, tropical peat swamp forests (TPSFs) in Southeast Asia have increasingly been converted to other land-uses. For example, more than 25% of TPSFs are now under oil palm plantations. This conversion - requiring felling and burning of trees and drainage of the peat - can enhance carbon mineralization, dissolved organic carbon (DOC) losses and can contribute significantly to global anthropogenic greenhouse gas emissions, changing these natural carbon sinks into carbon sources. At present, relatively few scientifically sound studies provide dependable estimates of gaseous and fluvial carbon losses from oil palm plantations or from drained tropical peat in general. Here we present an annual (54 week) estimate of the export of dissolved and particulate organic carbon in water draining two oil palm estates and nearby stands of TPSF in Sarawak, Malaysia, subjected to varying degrees of past anthropogenic disturbance. Spectrophotometric techniques including SUVA254 (Specific Ultra-Violet Absorption) were used to gain insight into the aromaticity and subsequent bioavailability of the exported DOC. Water draining plantation and deforested land had a higher proportion of labile carbon compared to water draining forested areas. Preliminary data suggest a total fluvial DOC flux from plantations of ca. 190 g C m-2 year-1; nearly three times estimates from intact TPSFs (63 g C m-2 year-1). DOC accounted for between 86 % - 94 % of the total organic carbon lost (most of which was bioavailable). Wit et al. (2015) estimates that an average of 53 % of peat-derived DOC is decomposed and emitted as CO2, on a monthly basis. Based on these estimates our data suggests an additional 101 g CO2 m-2 may be emitted indirectly from fluvial organic carbon in degraded TPSFs per year. Overall, these findings emphasize the importance of including fluvial organic carbon fluxes when quantifying the impact of anthropogenic disturbance on the

  14. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  15. Particulate and dissolved organic carbon and chlorophyll A in the Zaire river, estuary and plume

    Science.gov (United States)

    Cadée, G. C.

    Data were collected on POC, DOC and phytoplankton in the Zaire river, estuary and plume. Mean river value for POC was 1.1 mg·l -1, 4.7% of the suspended matter. Average DOC content of the river water was 8.5 mg·l -1. These values are in accordance with the calculations of TOC input from rivers to the world's ocean. Within the estuary POC and chlorophyll decreased regularly up to a salinity of 20. Between salinities of 20 and 32 small phytoplankton bloom occurred resulting also in higher POC values. DOC mixed conservatively up to a salinity of 25; at salinities above 25, values indicate DOC production. This DOC production occurred partly in the bottom water of the canyon where low oxygen values indicated mineralization and conversion of the accumulated POC into DOC. Another area of DOC production observed inside and outside the surface waters of the plume, was partly related to autolysis and degradation of the phytoplankton bloom. This study shows that the influence of rivers on the organic carbon in the ocean will not be confined to the amount introduced directly, but that we have to add the amounts of POC and DOC resulting from enhanced phytoplankton primary production by nutrient input from rivers and by river induced upwelling.

  16. The soil organic carbon content of anthropogenically altered organic soils effects the dissolved organic matter quality, but not the dissolved organic carbon concentrations

    Science.gov (United States)

    Frank, Stefan; Tiemeyer, Bärbel; Bechtold, Michel; Lücke, Andreas; Bol, Roland

    2016-04-01

    Dissolved organic carbon (DOC) is an important link between terrestrial and aquatic ecosystems. This is especially true for peatlands which usually show high concentrations of DOC due to the high stocks of soil organic carbon (SOC). Most previous studies found that DOC concentrations in the soil solution depend on the SOC content. Thus, one would expect low DOC concentrations in peatlands which have anthropogenically been altered by mixing with sand. Here, we want to show the effect of SOC and groundwater level on the quantity and quality of the dissolved organic matter (DOM). Three sampling sites were installed in a strongly disturbed bog. Two sites differ in SOC (Site A: 48%, Site B: 9%) but show the same mean annual groundwater level of 15 and 18 cm below ground, respectively. The SOC content of site C (11%) is similar to Site B, but the groundwater level is much lower (-31 cm) than at the other two sites. All sites have a similar depth of the organic horizon (30 cm) and the same land-use (low-intensity sheep grazing). Over two years, the soil solution was sampled bi-weekly in three depths (15, 30 and 60 cm) and three replicates. All samples were analyzed for DOC and selected samples for dissolved organic nitrogen (DON) and delta-13C and delta-15N. Despite differences in SOC and groundwater level, DOC concentrations did not differ significantly (A: 192 ± 62 mg/L, B: 163 ± 55 mg/L and C: 191 ± 97 mg/L). At all sites, DOC concentrations exceed typical values for peatlands by far and emphasize the relevance even of strongly disturbed organic soils for DOC losses. Individual DOC concentrations were controlled by the temperature and the groundwater level over the preceding weeks. Differences in DOM quality were clearer. At site B with a low SOC content, the DOC:DON ratio of the soil solution equals the soil's C:N ratio, but the DOC:DON ratio is much higher than the C:N ratio at site A. In all cases, the DOC:DON ratio strongly correlates with delta-13C. There is no

  17. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (Pis explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of

  18. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    Science.gov (United States)

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  19. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  20. Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas

    NARCIS (Netherlands)

    Alling, Vanja; Sanchez-Garcia, Laura; Porcelli, Don; Pugach, Sveta; Vonk, Jorien E.; Van Dongen, Bart; Mörth, Carl Magnus; Anderson, Leif G.; Sokolov, Alexander; Andersson, Per; Humborg, Christoph; Semiletov, Igor P.; Gustafsson, Örjan

    2010-01-01

    Climate change is expected to have a strong effect on the Eastern Siberian Arctic Shelf (ESAS) region, which includes 40% of the Arctic shelves and comprises the Laptev and East Siberian seas. The largest organic carbon pool, the dissolved organic carbon (DOC), may change significantly due to

  1. Modeling Coupled Landscape Evolution and Soil Organic Carbon Dynamics in Intensively Management Landscapes

    Science.gov (United States)

    Yan, Q.; Kumar, P.

    2017-12-01

    Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and

  2. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Science.gov (United States)

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    International Nuclear Information System (INIS)

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  4. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  5. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  6. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    Science.gov (United States)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  7. Pesticide sorption by low organic carbon sediments: A sceening for seven herbicides

    DEFF Research Database (Denmark)

    Madsen, Lene; Lindhardt, Bo; Rosenberg, Per

    2000-01-01

    The sorption of seven pesticides in 10 Danish aquifer sediments has been studied. These sediments all have a total organic carbon (TOC) content below 1 g kg(-1), and include carbonate-bearing and carbonate-free Quatenary sand deposits and a Cretaceous chalk aquifer. Batch experiments were carried...

  8. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  9. Impact of shade and cocoa plant densities on soil organic carbon ...

    African Journals Online (AJOL)

    user

    There were no soil organic carbon sequestration in the highest cocoa plant ... It is concluded that cocoa farming could be an effective means to mitigate carbon dioxide ... growth and yield of cocoa at the CRIG substation Bunso (060 13' N,.

  10. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  11. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  12. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    Science.gov (United States)

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  14. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters

    Directory of Open Access Journals (Sweden)

    Krista Williams

    2015-06-01

    Full Text Available Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs. Here, the relationships between influent organic carbon (0–15,000 µg ozonated fulvic acid /L and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs. The SGWHs were operated at 32–37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89. Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points and over a limited TOC range (0–1000 µg/L, no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  15. Relationship between Organic Carbon and Opportunistic Pathogens in Simulated Glass Water Heaters.

    Science.gov (United States)

    Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc; Williams, Krista; Pruden, Amy; Falkinham, Joseph O; Edwards, Marc

    2015-06-09

    Controlling organic carbon levels in municipal water has been hypothesized to limit downstream growth of bacteria and opportunistic pathogens in premise plumbing (OPPPs). Here, the relationships between influent organic carbon (0-15,000 µg ozonated fulvic acid /L) and the number of total bacteria [16S rRNA genes and heterotrophic plate counts (HPCs)] and a wide range of OPPPs (gene copy numbers of Acanthamoeba polyphaga, Vermamoeba vermiformis, Legionella pneumophila, and Mycobacterium avium) were examined in the bulk water of 120-mL simulated glass water heaters (SGWHs). The SGWHs were operated at 32-37 °C, which is representative of conditions encountered at the bottom of electric water heaters, with water changes of 80% three times per week to simulate low use. This design presented advantages of controlled and replicated (triplicate) conditions and avoided other potential limitations to OPPP growth in order to isolate the variable of organic carbon. Over seventeen months, strong correlations were observed between total organic carbon (TOC) and both 16S rRNA gene copy numbers and HPC counts (avg. R2 > 0.89). Although M. avium gene copies were occasionally correlated with TOC (avg. R2 = 0.82 to 0.97, for 2 out of 4 time points) and over a limited TOC range (0-1000 µg/L), no other correlations were identified between other OPPPs and added TOC. These results suggest that reducing organic carbon in distributed water is not adequate as a sole strategy for controlling OPPPs, although it may have promise in conjunction with other approaches.

  16. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  17. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China.

    Science.gov (United States)

    Lu, Yan; Xu, Hongwen

    2014-01-01

    Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0-20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils.

  18. Processing method and device for radioactive liquid waste

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi; Matsuda, Masami; Yukita, Atsushi.

    1997-01-01

    When only suspended particulate ingredients are contained as COD components in radioactive washing liquid wastes, the liquid wastes are heated by a first process, for example, an adsorption step to adsorb the suspended particulate ingredients to an activated carbon, and then separating and removing the suspended particulate ingredients by filtration. When both of the floating particle ingredients and soluble organic ingredients are contained, the suspended particulate ingredients are separated and removed by the first process, and then soluble organic ingredients are removed by other process, or both of the suspended particulate ingredients and the soluble organic ingredients are removed by the first process. In an existent method of adding an activated carbon and then filtering them at a normal temperature, the floating particle ingredients cover the layer of activated carbon formed on a filter paper or fabric to sometimes cause clogging. However, according to the method of the present invention, since disturbance by the floating particle ingredients does not occur, the COD components can be separated and removed sufficiently without lowering liquid waste processing speed. (T.M.)

  19. Testing the ``Wildfire Hypothesis:'' Terrestrial Organic Carbon Burning as the Cause of the Paleocene-Eocene Boundary Carbon Isotope Excursion

    Science.gov (United States)

    Moore, E. A.; Kurtz, A. C.

    2005-12-01

    The 3‰ negative carbon isotope excursion (CIE) at the Paleocene-Eocene boundary has generally been attributed to dissociation of seafloor methane hydrates. We are testing the alternative hypothesis that the carbon cycle perturbation resulted from wildfires affecting the extensive peatlands and coal swamps formed in the Paleocene. Accounting for the CIE with terrestrial organic carbon rather than methane requires a significantly larger net release of fossil carbon to the ocean-atmosphere, which may be more consistent with the extreme global warming and ocean acidification characteristic of the Paleocene-Eocene Thermal Maximum (PETM). While other researchers have noted evidence of fires at the Paleocene-Eocene boundary in individual locations, the research presented here is designed to test the "wildfire hypothesis" for the Paleocene-Eocene boundary by examining marine sediments for evidence of a global increase in wildfire activity. Such fires would produce massive amounts of soot, widely distributed by wind and well preserved in marine sediments as refractory black carbon. We expect that global wildfires occurring at the Paleocene-Eocene boundary would produce a peak in black carbon abundance at the PETM horizon. We are using the method of Gelinas et al. (2001) to produce high-resolution concentration profiles of black carbon across the Paleocene-Eocene boundary using seafloor sediments from ODP cores, beginning with the Bass River core from ODP leg 174AX and site 1209 from ODP leg 198. This method involves the chemical and thermal extraction of non-refractory carbon followed by combustion of the residual black carbon and measurement as CO2. Measurement of the δ 13C of the black carbon will put additional constraints on the source of the organic material combusted, and will allow us to determine if this organic material was formed prior to or during the CIE.

  20. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  1. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  2. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  3. Threshold amounts of organic carbon needed to initiate reductive dechlorination in groundwater systems

    Science.gov (United States)

    Chapelle, Francis H.; Thomas, Lashun K.; Bradley, Paul M.; Rectanus, Heather V.; Widdowson, Mark A.

    2012-01-01

    Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH-extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems.

  4. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    Science.gov (United States)

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  5. Mangroves, a major source of dissolved organic carbon to the oceans

    Science.gov (United States)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  6. DEVELOP NEW TOTAL ORGANIC CARBON/SPECIFIC UV ...

    Science.gov (United States)

    The purpose of this project is to provide a total organic carbon (TOC)/specific ultraviolet absorbance (SUVA) method that will be used by the Office of Ground Water and Drinking Water (OGWDW) to support monitoring requirements of the Stage 2 Disinfectant/Disinfection By-products (D/DBP) Rule. The Stage 2 Rule requires that enhanced water treatment be used if the source water is high in aquatic organic matter prior to the application of a disinfectant. Disinfectants (chlorine, ozone, etc.) are used in the production of drinking water in order to reduce the risk of microbial disease. These disinfectants react with the organic material that is naturally present in the source water to form disinfection by-products (DBPs). Exposure to some of these by-products may pose a long term health risk. The number and nature of DBPs make it impossible to fully characterize all of the by-products formed during the treatment of drinking water and it is more cost effective to reduce formation of DBPs than to remove them from the water after they are formed. Two measurements (TOC and SUVA) are believed to be predictive of the amount of by-products that can be formed during the disinfection of drinking water and are considered to be surrogates for DBP precursors. SUVA is calculated as the ultraviolet absorption at 254nm (UV254) in cm-1 divided by the mg/L dissolved organic carbon (DOC) concentration (measured after filtration of the water through a 0.45um pore-diameter filte

  7. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    Science.gov (United States)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  8. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  9. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  10. Intermodal resonance of vibrating suspended cables

    NARCIS (Netherlands)

    Rienstra, S.W.

    2010-01-01

    The weakly nonlinear free vibrations of a single suspended cable, or a coupled system of suspended cables, may be classified as gravity modes (no tension variations to leading order) and elasto-gravity modes (tension and vertical displacement equally important). It was found earlier [12] that the

  11. RECIPROCAL RELATIONSHIPS BETWEEN AGGREGATE STABILITY AND ORGANIC CARBON CHARACTERISTICS IN A FORESTED ECOSYSTEM OF NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2012-10-01

    Full Text Available Soil organic matter associated with different size aggregates differ in structure and function; therefore, play different roles in soil organic carbon (SOC turnover. This study assessed the relationship between aggregate stability and soil organic carbon fractions in a forested soil. Aggregate stability characterized by mean weight diameter (MWD was correlated with the various pools of SOC in a regression model. Mean weight diameter presented a 46% influence on total organic carbon (TOC while, TOC accounts for 21.8% 0f aggregate stability. The unprotected and physically protected soil organic carbon did not significantly dictate stability of these soils. However, chemically protected and biochemically protected SOC influenced significantly aggregate stability of these forested soils.

  12. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  13. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  14. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior

    Science.gov (United States)

    Zigah, Prosper K.; Minor, Elizabeth C.; Werne, Josef P.

    2012-03-01

    We present a lake-wide investigation of Lake Superior carbon and organic matter biogeochemistry using radiocarbon, stable isotope, and carbon concentrations. Dissolved inorganic carbon (DIC) abundance in the lake was 121-122 Tg C, with offshore concentration andδ13C values being laterally homogenous and tightly coupled to the physical and thermal regime and biochemical processes. Offshore Δ14C of DIC (50-65‰) exhibited lateral homogeneity and was more 14C enriched than co-occurring atmospheric CO2 (˜38‰); nearshore Δ14C of DIC (36-38‰) was similar to atmospheric CO2. Dissolved organic carbon (DOC) abundance was 14.2-16.4 Tg C. DOC's concentration and δ13C were homogenous in June (mixed lake), but varied laterally during August (stratification) possibly due to spatial differences in lake productivity. Throughout sampling, DOC had modern radiocarbon values (14-58‰) indicating a semilabile nature with a turnover time of ≤60 years. Lake particulate organic carbon (POC, 0.9-1.3 Tg C) was consistently 13C depleted relative to DOC. The δ15N of epilimnetic particulate organic nitrogen shifted to more negative values during stratification possibly indicating greater use of nitrate (rather than ammonium) by phytoplankton in August. POC's radiocarbon was spatially heterogeneous (Δ14C range: 58‰ to -303‰), and generally 14C depleted relative to DOC and DIC. POC 14C depletion could not be accounted for by black carbon in the lake but, because of its spatial and temporal distribution, is attributed to sediment resuspension. The presence of old POC within the epilimnion of the open lake indicates possible benthic-pelagic coupling in the lake's organic carbon cycle; the ultimate fate of this old POC bears further investigation.

  15. Aboveground stock of biomass and organic carbon in stands of Pinus taeda L.

    Directory of Open Access Journals (Sweden)

    Luciano Farinha Watzlawick

    2013-09-01

    Full Text Available This study aimed to estimate biomass and organic carbon in stands of Pinus taeda L. at different ages (14, 16, 19, 21, 22, 23 and 32 years and located in the municipality of General Carneiro (PR. In order to estimate biomass and organic carbon in different tree components (needles, live branches, dead branches, bark and stem wood, the destructive quantification method was used in which seven trees from each age category were randomly sampled across the stand. Stocks of biomass and organic carbon were found to vary between the different age categories, mainly as a result of existing dissimilarities between ages in association with forest management practices such as thinning, pruning and tree density per hectare.

  16. Fate of Subducting Organic Carbon: Evidence from HP/UHP Metasedimentary Suites

    Science.gov (United States)

    Kraft, K.; Bebout, G. E.

    2017-12-01

    Community interest in deep-Earth C cycling has focused attention on extents of C release from subducting oceanic lithosphere and sediment and the fate of this released C. Many have suggested that, based on isotopic and other arguments, 20% of the C subducted into the deeper mantle is in reduced form (organic); however, individual margins show large variation in carbonate to organic C ratios. Despite the size of the potentially deeply subducted organic C reservoir, its fate in subducting sections remains largely unexplored, with most attention paid to release of carbonate C. To characterize the forearc behavior of organic C, metamorphosed to P-T as high as that beneath volcanic fronts, we evaluated records of reduced C (RC) contents and isotope compositions in HP/UHP metasediments: 1) Schistes Lustres/Cignana (SLC) suite (Alps; Cook-Kollars et al., 2014, Chem Geol) with abundant carbonate and resembling sediment entering the East Sunda trench; and (2) Franciscan Complex (FC), W. Baja Terrain (WBT), Catalina Schist (CS) metasediments (Sadofsky and Bebout, 2003, G3), largely sandstone-shale sequences containing very little carbonate. In general, more Al-rich samples (shaley) in the terrigenous metasedimentary suites have higher concentrations of RC, which in low-grade units preserves δ13C of its organic protoliths. Carbonate-poor rocks in the SLC suite, and at ODP Site 765, show correlated major element (Al, Mg, Mn, Ti, P) and RC contents (up to 1.2 wt.%) reflecting sandstone-shale mixture. In the FC, WBT, and CS, the more Al-rich samples contain up to 2 wt. % RC. In high-grade Catalina Schist, RC has elevated δ13C due to C loss in CH4 and high-grade Alps rocks show reduced RC wt. % normalized to Al content. We consider processes that could alter contents and isotopic compositions of RC in sediment, e.g., devolatilization, closed-system exchange with carbonate, redox reactions, isotopic exchange with C in externally-derived fluids. It appears that, on modern Earth

  17. Composite fingerprinting of suspended-sediments in Sorsogon , Philippines

    International Nuclear Information System (INIS)

    Ramirez, J.D.; Sta Maria, E.J.; Madrid, J.F.; Asa, A.D.D.; Aniago, R.J.; Bulos, A.D.; Zombrito, E.Z.

    2015-01-01

    Sediment-related environmental problems pose a threat not only in land management sustainability but also in management of aquatic ecosystem. Sediments often serve as sinks of nutrients and contaminants that regularly recharge overlying waters and could trigger harmful algal blooms (HAB) together with unfavorable environment conditions. One HAB affected area in the southernmost tip of Luzon, Philippines is Sorsogon Bay. In Sorsogon Bay, the harvest and consumption ban was declared for several years due to the level of toxins in shellfish which exceeded the regulatory limit. Identification of sediment sources is useful tool in planning effective sediment management strategies. A method to determine possible sources of sediment-associated nutrients is sediment fingerprinting. It characterizes land-based sediment sources to derive estimates of the portions of suspended sediment originating from discrete upstream source areas. There are wide ranges of diagnostic properties which can be possible fingerprints such as mineralogic, mineral-magnetic, geochemical, organic, isotopic, physical and radiometric parameters. This study investigates on potential source of sediments from Sampaloc River using different chemical, radiometric and isotopic parameters, Range test and Kruskal-Wallis H-test were employed and indicated that the calcium, titanium, δ”1”3C signal, and to tal carbon content are possible fingerprint parameters that will identify the sources of sediments. Results of a mathematical mixing model showed that channel banks (81.0%) are the largest sediment load contributors in Sampaloc River, followed by cultivated areas (15.5%) and woodlands (3.5%). (author)

  18. Tracking Organic Carbon Transport From the Stordalen Mire to Glacial Lake Tornetrask, Abisko, Sweden

    Science.gov (United States)

    Beck, M. A.; Hamilton, B. T.; Spry, E.; Johnson, J. E.; Palace, M. W.; McCalley, C. K.; Varner, R. K.; Bothner, W. A.

    2016-12-01

    In subarctic regions, labile organic carbon from thawing permafrost and productivity of terrestrial and aquatic vegetation are sources of carbon to lake sediments. Methane is produced in lake sediments from the decomposition of organic carbon at rates affected by vegetation presence and type as well as sediment temperature. Recent research in the Stordalen Mire in northern Sweden has suggested that labile organic carbon sources in young, shallow lake sediments yield the highest in situ sediment methane concentrations. Ebullition (or bubbling) of this methane is predominantly controlled by seasonal warming. In this project we sampled stream, glacial and post-glacial lake sediments along a drainage transect through the Stordalen Mire into the large glacial Lake Torneträsk. Our results indicate that the highest methane and total organic carbon (TOC) concentrations were observed in lake and stream sediments in the upper 25 centimeters, consistent with previous studies. C/N ratios range from 8 to 32, and suggest that a mix of aquatic and terrestrial vegetation sources dominate the sedimentary record. Although water transport occurs throughout the mire, major depositional centers for sediments and organic carbon occur within the lakes and prohibit young, labile TOC from entering the larger glacial Lake Torneträsk. The lack of an observed sediment fan at the outlet of the Mire to the lake is consistent with this observation. Our results suggest that carbon produced in the mire stays in the mire, allowing methane production to be greater in the mire bound lakes and streams than in the larger adjacent glacial lake.

  19. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  20. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    Science.gov (United States)

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  1. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China.

    Science.gov (United States)

    Cao, Qingqing; Wang, Hui; Zhang, Yiran; Lal, Rattan; Wang, Renqing; Ge, Xiuli; Liu, Jian

    2017-07-14

    Wetlands are an important carbon reservoir pool in terrestrial ecosystems. Light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and dissolved organic carbon (DOC) were fractionated in sediment samples from the four wetlands (ZR: Zhaoniu River; ZRCW: Zhaoniu River Constructed Wetland; XR: Xinxue River; XRCW: Xinxue River Constructed Wetland). Organic carbon (OC) from rivers and coasts of China were retrieved and statistically analyzed. At regional scale, HFOC stably dominates the deposition of OC (95.4%), whereas DOC and LFOC in ZR is significantly higher than in ZRCW. Concentration of DOC is significantly higher in XRCW (30.37 mg/l) than that in XR (13.59 mg/l). DOC and HFOC notably distinguish between two sampling campaigns, and the deposition of carbon fractions are limited by low nitrogen input. At the national scale, OC attains the maximum of 2.29% at precipitation of 800 mm. OC has no significant difference among the three climate zones but significantly higher in river sediments than in coasts. Coastal OC increases from Bohai Sea (0.52%) to South Sea (0.70%) with a decrease in latitude. This study summarizes the factors affecting organic carbon storage in regional and national scale, and have constructive implications for carbon assessment, modelling, and management.

  2. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality.

  3. The Role of Reactive Iron in Organic Carbon Burial of the Wax Lake Delta, Louisiana

    Science.gov (United States)

    Bianchi, T. S.; Shields, M. R.; Gelinas, Y.; Allison, M. A.; Twilley, R.

    2016-02-01

    Deltaic systems are responsible for 41% of the total organic carbon buried on continental shelves (Smith et al., 2015). Furthermore, 21.5 ± 8.6% of the organic carbon in marine sediments is reported to be associated to reactive iron phases (Lalonde et al., 2012). Here, we examine the role of reactive iron in preserving organic carbon across a chronosequence in deltaic soils/sediments of the Wax Lake Delta, Louisiana. This prograding delta is part of the youngest subdelta of the Mississippi River Delta and serves as a model for deltas in an active progradational stage. We report the proportion, δ13C, lignin phenol content, and fatty acid content of organic carbon associated to iron in three unique environments along the delta topset. We found that over 15 % of the organic carbon in the top 0.5 meters was associated to reactive iron phases at our sampling locations. However, this amount varied between the mudflat, meadow, and canopy dominated sites. Moreover, the type of binding shifts from 1:1 sorption in the sediment dominated (mudflat) region to chelation/co-precipitation in the more soil-dominated regions. Acidic lignin phenols are preferentially sorbed in the mudflat region, which likely occurs pre-depositionally. These results add to our knowledge of the carbon burial processes in young deltas and present new questions about the selective preservation of organic compounds in deltaic sediments.

  4. Complete Evaluation of Suspended Air Particles and Their Composition in the Central Area of Yazd City

    Directory of Open Access Journals (Sweden)

    M Younesian

    2009-01-01

    Full Text Available Introduction: Air pollution is one of the problems of the recent century caused by vehicles, industries and other urban activities. The City of Yazd faces air pollution due to its high population, vehicular traffic and industrial places around the city. One of the important parameters of air pollution is suspended air particles that have harmful effects on the health of people, plants and objects. Methods: This research has been carried out by first determining a station in the central area of the city (Shahid Beheshti Square of Yazd. The suspended particles were measured during a five-month period from March to July, 2006. A high volume sampler was used for measuring Total Suspended Particles (TSP. The amount of lead content of TSP was measured in samples by using atomic absorption method. In the next stage, the percentage of organic and inorganic particles in the TSP of all samples was measured by using gravimetric methods and by burning in the oven. Results: The results of this study showed that amount of suspended particles in the city of Yazd is higher than national standard and the general mean average of the suspended particles of air in five months was 233 micrograms per cubic meter. The average concentration of suspended air particles from end of March to August during the five month period was 118, 193, 231, 267and 333, respectively. The average concentration of lead was 0.04 microgram per cubic meter and amount of organic and inorganic particles in TSP was 25.31% and 74.68%, respectively. Conclusion: With respect to the results, the minimum amount of TSP concentration was in March. This could be due to reduction in trading and industrial activities and New Year vacations. In addition, the average monthly TSP increased from March to July; the cause of which could be relative decrease in humidity and increase in temperature. The amount of lead in samples was much less than standard, which could be due to omission of lead from petrol

  5. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    Directory of Open Access Journals (Sweden)

    Yuguo Liu

    Full Text Available Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG, thorn shrubbery (TS, forest - shrub transition (FS and secondary forest (F. The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  6. Insights into particle cycling in the Sargasso Sea from lipid biomarkers in suspended particles: Seasonality and physical forcing

    Science.gov (United States)

    Pedrosa Pàmies, R.; Conte, M. H.; Weber, J.

    2017-12-01

    Lipid biomarkers elucidate organic material (OM) sources and cycling within the water column. Biomarker composition and bulk properties (organic carbon (OC), nitrogen (N), OC/N ratio, CaCO3 and stable isotopes) were determined in suspended particles (30-4400 m, 100 mab) collected at Oceanic Flux Program site offshore Bermuda in April/November 2015 and October 2016, three periods of contrasting oceanographic conditions. Key lipid biomarkers were used to evaluate the relative importance of phytoplankton-, bacterial- and zooplankton-OM sources, diagenetic reprocessing, and the impact of upper ocean environmental forcing on the carbon pump. Additionally, we assessed benthic remineralization by comparing particles above and within the nepheloid layer (4400 m). N-fatty acids, n-alcohols and sterols comprise up to 85%, 12% and 7%, respectively, of total extractable lipids. Higher lipid concentrations in April vs November 2015 mirror seasonality in primary production, while change in sterol composition reflect shifts in phytoplankton community structure. In the mesopelagic zone, increased cholesterol/phytosterol ratios and percentages of C16 and C18 n-alcohols, odd-chain and branched n-fatty acids document a transition from algal to animal OM sources as well as bacterial reprocessing of labile OM. The impact of Hurricane Nicole (October 2016) on the mixed layer and subsequent increases in production/flux was evident in higher concentrations as well as greater depth penetration of particulate N and fresh/labile algal biomarkers (e.g. 18:5 ω3 and 22:6 ω3 polyunsaturated fatty acids) in the upper 1000 m. Suspended particles in the nepheloid layer had higher concentrations of OC and N and were more depleted in d13C than particles at 4200 m for all dates. While nepheloid lipid composition was similar for all dates, lipid concentrations in April 2015 (seasonal production peak) and October 2016 (hurricane physical forcing) were higher than in November 2015, consistent with the

  7. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were

  8. Methodology guideline. Organization of conference neutral in carbon; Guide methodologique. Organisation de conference neutre en carbone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In the framework of the Climate Plan elaborated by the french government, the neutral carbon principle must be applied to conference organization and the international travels. This guide has two main functions: heighten to allow everybody to understand the climate change impacts and problems, and bring some recommendations and tools to implement a neutral carbon conference (transport, welcome, accommodation and meal). (A.L.B.)

  9. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Potential Effects of Organic Carbon Production on Ecosystems and Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands in the Sacramento-San Joaquin Delta (Delta is an important component of the Ecosystem Restoration Program of the CALFED Bay-Delta Program (CALFED. CALFED is a collaborative effort among state and federal agencies to restore the ecological health and improve water management of the Delta and San Francisco Bay (Bay. Tidal wetland restoration is intended to provide valuable habitat for organisms and to improve ecosystem productivity through export of various forms of organic carbon, including both algae and plant detritus. However, the Delta also provides all or part of the drinking water for over 22 million Californians. In this context, increasing sources of organic carbon may be a problem because of the potential increase in the production of trihalomethanes and other disinfection by-products created during the process of water disinfection. This paper reviews the existing information about the roles of organic carbon in ecosystem function and drinking water quality in the Bay-Delta system, evaluates the potential for interaction, and considers major uncertainties and potential actions to reduce uncertainty. In the last 10 years, substantial progress has been made on the role of various forms of organic carbon in both ecosystem function and drinking water quality; however, interactions between the two have not been directly addressed. Several ongoing studies are beginning to address these interactions, and the results from these studies should reduce uncertainty and provide focus for further research.

  11. Pyrogenic Carbon redistribution from hillslopes to stream corridors following a large montane wildfire

    Science.gov (United States)

    Cotrufo, M. Francesca; Boot, Claudia; Kampf, Stephanie; MacDonald, Lee; Nelson, Peter; Hall, Ed

    2017-04-01

    Pyrogenic Carbon (PyC) is a ubiquitous, important and often neglected form of organic carbon, which forms from incomplete combustion of biomass during fire. Following the large High Park wildfire in the Cache la Poudre watershed of the Rocky Mountains (CO, USA), we tracked PyC from the litter layer and soil, through eroded, suspended, and dissolved sediments to alluvial deposits along river sides. Additionally, we separated deposited sediment in a high- and a low-density fraction to identify preferential forms of PyC later transport, and used 14C dating to estimate the age of alluvial deposits. A few months after the fire, PyC had yet to move vertically into the mineral soil and remained in the organic layer or had been transported off site by rainfall driven overland flow. During major storm events PyC was associated with suspended sediments in the water column, and later identified in low-density riverbank deposits. Flows from an unusually long-duration and high magnitude rain storm either removed or buried the riverbank sediments approximately one year after their deposition. Buried alluvial deposits contained significant amounts of PyC, dating back over a thousand years. We conclude that PyC redistributes after wildfire in patterns that are consistent with erosion and deposition of low-density sediments. A more complete understanding of PyC dynamics requires attention to the interaction of post-fire precipitation patterns and geomorphological features that control surface erosion and deposition throughout the watershed.

  12. Sequestration of carbon in soil organic matter in Senegal: an overview

    Science.gov (United States)

    Tieszen, Larry L.; Tappan, G. Gray; Toure, A.

    2004-01-01

    Sequestration of Carbon in Soil Organic Matter (SOCSOM) in Senegal is a multi-disciplinary development project planned and refined through two international workshops. The project was implemented by integrating a core of international experts in remote sensing, biogeochemical modeling, community socio-economic assessments, and carbon measurements in a fully collaborative manner with Senegal organizations, national scientists, and local knowledge and expertise. The study addresses the potential role developing countries in semi-arid areas can play in climate mitigation activities. Multiple benefits to smallholders could accrue as a result of management practices to re-establish soil carbon content lost because of land use changes or management practices that are not sustainable. The specific importance for the Sahel is because of the high vulnerability to climate change in already impoverished rural societies.

  13. Growth and persistence of pathogens on granular activated carbon filters.

    Science.gov (United States)

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1985-01-01

    Three enteric pathogens Yersinia enterocolitica O:8, Salmonella typhimurium, and enterotoxigenic Escherichia coli, were examined for their ability to colonize granular activated carbon (GAC) in pure cultures and in the presence of autochthonous river water organisms. All three organisms readily colonized sterile GAC and maintained populations of ca. 10(5) to 10(7) CFU g-1 for 14 days when suspended in sterile river water. Exposure of pathogen biofilms on GAC to unsterile river water resulted in a gradual decline in pathogens on the carbon (0.08 to 0.14 log day-1). When pathogens were introduced to sterile GAC in the presence of heterotrophic plate count organisms, they attached at levels similar to those in the pure cultures and then decreased (0.10 to 0.22 log day-1). When added with heterotrophic plate count bacteria to GAC supporting a mature biofilm of native river water bacteria, they attached at a lower level (1.0 X 10(4) to 4.6 X 10(4) CFU g-1) and decreased at a more rapid rate (0.11 to 0.70 log day-1). PMID:3911903

  14. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jae Jak [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); National Institute of Agricultural Science and Technology, RDA, 249 Sedun, Suwon 702-701 (Korea, Republic of); Gustafsson, Orjan [Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm (Sweden); Kurt-Karakus, Perihan [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Breivik, Knut [Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, P.O. Box 1033, NO-0315 Oslo (Norway); Steinnes, Eiliv [Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Jones, Kevin C. [Centre for Chemicals Management and Environmental Science Department, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)], E-mail: k.c.jones@lancaster.ac.uk

    2008-12-15

    Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds. - Total organic carbon and black carbon fractions can play an important role in the storage and cycling of persistent organic pollutants in background soils.

  15. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate

    International Nuclear Information System (INIS)

    Nam, Jae Jak; Gustafsson, Orjan; Kurt-Karakus, Perihan; Breivik, Knut; Steinnes, Eiliv; Jones, Kevin C.

    2008-01-01

    Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds. - Total organic carbon and black carbon fractions can play an important role in the storage and cycling of persistent organic pollutants in background soils

  16. A passive collection system for whole size fractions in river suspended solids

    International Nuclear Information System (INIS)

    Takeshi Matsunaga; Takahiro Nakanishi; Mariko Atarashi-Andoh; Erina Takeuchi; Katsunori Tsuduki; Syusaku Nishimura; Jun Koarashi; Shigeyoshi Otosaka; Tsutomu Sato; Seiya Nagao

    2015-01-01

    In order to solve difficulties in collection of river suspended solids (SS) such as frequent observations during stochastic rainfall events, a simple passive collection system of SS has been developed. It is composed of sequentially connected two large-scale filter vessels. A portion of river water flows down into the filter vessels utilizing a natural drop of streambed. The system enable us to carry out long-term, unmanned SS collection. It is also compatible with dissolved component collection. Its performance was validated in a forested catchment by applying to radiocesium and stable carbon transport. (author)

  17. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  18. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  19. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  20. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  1. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  2. Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Peltre, Clément; Bruun, Sander; Du, Changwen

    2014-01-01

    ) degradability. The objective of this study was to assess the potential of FTIR-PAS for the characterisation of the labile fraction of SOC and more classical soil parameters, such as carbon and clay content, for a range of 36 soils collected from various field experiments in Denmark. Partial least squares (PLS...... signal. This also means that it should be advantageous for soil analysis because of its highly opaque nature. However, only a limited number of studies have so far applied FTIR-PAS to soil characterization and investigation is still required into its potential to determine soil organic carbon (SOC......) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralised after 238 days of incubation at 15°C and pF 2 (C238d) taken as an indicator of the labile fraction of SOC. Results showed that it is possible to predict total organic carbon content, total...

  3. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  4. А mathematical model study of suspended monorail

    OpenAIRE

    Viktor GUTAREVYCH

    2012-01-01

    The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  5. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    Science.gov (United States)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance

  6. Prediction and forecast of Suspended Sediment Concentration (SSC) on the Upper Yangtze basin

    Science.gov (United States)

    Matos, José Pedro; Hassan, Marwan; Lu, Xixi; Franca, Mário J.

    2017-04-01

    Sediment transport in suspension may represent 90% or more of the global annual flux of sediment. For instance, more than 99% of the sediment supplied to the sea by the Yangtze River is suspended load. Suspended load is an important component for understanding channel dynamics and landscape evolution. Sediments transported in suspension are a major source of nutrients for aquatic organisms in riparian and floodplain habitats, and play a beneficial role acting as a sink in the carbon cycle. Excess of fine sediments may also have adverse effects. It can impair fish spawning by riverbed clogging, disturb foraging efficiency of hunting of river fauna, cause algae and benthos scouring, reduce or inhibit exchanges through the hyporheic region. Accumulation of fine sediments in reservoirs reduces storage capacity. Although fine sediment dynamics has been the focus of many studies, the current knowledge of sediment sources, transfer, and storage is inadequate to address fine sediment dynamics in the landscape. The theoretical derivation of a complete model for suspended sediment transport at the basin scale, incorporating small scale processes of production and transport, is hindered because the underlying mechanisms are produced at different non-similar scales. Availability of long-term reliable data on suspended sediment dynamics is essential to improve our knowledge on transport processes and to develop reliable sediment prediction models. Over the last 60 years, the Yangtze River Commission has been measuring the daily Suspended Sediment Concentration (SSC) at the Pingshan station. This dataset provides a unique opportunity to examine temporal variability and controls of fine sediment dynamics in the Upper Yangtze basin. The objective of this study is to describe temporal variation of fine sediment dynamics at the Pingshan station making use of the extensive sediment monitoring program undertaken at that location. We test several strategies of prediction and forecast

  7. Soil, environmental, and watershed measurements in support of carbon cycling studies in northwestern Mississippi

    Science.gov (United States)

    Huntington, T.G.; Harden, J.W.; Dabney, S.M.; Marion, D.A.; Alonso, C.; Sharpe, J.M.; Fries, T.L.

    1998-01-01

    Measurements including soil respiration, soil moisture, soil temperature, and carbon export in suspended sediments from small watersheds were recorded at several field sites in northwestern Mississippi in support of hillslope process studies associated with the U.S. Geological Survey's Mississippi Basin Carbon Project (MBCP). These measurements were made to provide information about carbon cycling in agricultural and forest ecosystems to understand the potential role of erosion and deposition in the sequestration of soil organic carbon in upland soils. The question of whether soil erosion and burial constitutes an important net sink of atmospheric carbon dioxide is one hypothesis that the MBCP is evaluating to better understand carbon cycling and climate change. This report contains discussion of methods used and presents data for the period December 1996 through March 1998. Included in the report are ancillary data provided by the U.S. Department of Agriculture (USDA) ARS National Sedimentation Laboratory and U.S. Forest Service (USFS) Center for Bottomland Hardwoods Research on rainfall, runoff, sediment yield, forest biomass and grain yield. Together with the data collected by the USGS these data permit the construction of carbon budgets and the calibration of models of soil organic matter dynamics and sediment transport and deposition. The U.S. Geological Survey (USGS) has established cooperative agreements with the USDA and USFS to facilitate collaborative research at research sites in northwestern Mississippi.

  8. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.

    Science.gov (United States)

    X.M. Zoua; H.H. Ruanc; Y. Fua; X.D. Yanga; L.Q. Sha

    2005-01-01

    Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s...

  9. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino

    2016-06-01

    Full Text Available Abstract Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40 °C. Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days. After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic. However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity and carbon release.

  10. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  11. Organic carbon stocks in the soils of Brazil

    NARCIS (Netherlands)

    Batjes, N.H.

    2005-01-01

    Soil organic carbon stocks to 1 m for Brazil, calculated using an updated Soil and Terrain (SOTER) database and simulation of phenoforms, are 65.9-67.5 Pg C, of which 65% is in the Amazonian region of Brazil. Other researchers have obtained similar gross results, despite very different spatial

  12. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    International Nuclear Information System (INIS)

    Rathod, T.D.; Sahu, S.K.; Tiwari, M.; Pandit, G.G.

    2016-01-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g"−"1 and 17.84±6.45 W g"−"1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67–90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV–visible spectrum. - Highlights: • Biomass fuels (wood and dung cake) were studied for brown carbon direct radiative effects. • Model calculations predicted positive contribution of Brown carbon aerosols to organic carbon direct radiative effect. • Average direct radiative values for brown carbon from dung cake were higher compare to wood. • The visible light absorption played major role in brown carbon contribution (67–90 %) to total direct radiative effect.

  13. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  14. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  15. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Science.gov (United States)

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  16. Nutritional composition of suspended particulate matter in a tropical mangrove creek during a tidal cycle (Can Gio, Vietnam)

    Science.gov (United States)

    David, Frank; Marchand, Cyril; Taillardat, Pierre; Thành-Nho, Nguyễn; Meziane, Tarik

    2018-01-01

    Mangrove forests are highly productive ecosystems and mangrove-derived organic matter has generally been assumed to play a basal role in sustaining coastal food webs. However, the mechanisms of mangrove-derived organic matter utilisation by consumers are not fully understood. In this study, we were interested in hourly changes in the nutritional quality of suspended particulate matter (SPM) entering and departing a mangrove creek during a tidal cycle. We determined the fatty acid composition and δ13C stable isotope signature of SPM during a 26 h tidal cycle in a creek of the Can Gio Mangrove Biosphere Reserve (Southern Vietnam). Regarding fatty acids, the nutritional quality of SPM was low during most of the tidal cycle. However, it greatly increased during the first part of the strongest flood tide, occurring during daytime. The pulse of highly nutritive organic matter brought to the ecosystem was mostly composed of algal cells growing in specific shallow zones of the mangrove, that use nutrients and CO2 exported during the preceding ebb tide and originating from the mineralisation of mangrove-derived organic matter, as evidenced by their δ13C signatures. This study confirms that mangrove-derived carbon plays a basal role in sustaining trophic webs of mangrove tidal creeks, but that its nutritive value is greatly enhanced when a first step of mineralisation is achieved and CO2 is photosynthesised by algal cells.

  17. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  18. The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit

    International Nuclear Information System (INIS)

    Miyakawa, Kazuya; Ishii, Eiichi; Hirota, Akinari; Komatsu, Daisuke D.; Ikeya, Kosuke; Tsunogai, Urumu

    2017-01-01

    Carbonate minerals in veins can record paleo-hydrogeological information that enables the reconstruction of groundwater history. This paper investigates the cause of differences in the occurrence of carbonate veins in the Koetoi and Wakkanai formations, both Neogene mudstone units in northwestern Hokkaido, from the perspective of controls on CO_2 supply from the alteration of organic matter. Carbonate veins are rare in the Koetoi Formation, but are widespread in the Wakkanai Formation. This area is a region of oil and gas accumulation where deep groundwater is saturated mainly with CH_4 and CO_2. The results show high δ"1"3C values in co-existing CH_4 (∼–32.6‰) and CO_2 (∼+31.0‰) gases. An investigation of δ"1"3C – δD systematics among these gases indicates that isotopic fractionation was caused by microbial CO_2 reduction. Although total organic carbon content in the Koetoi Formation decreases with increasing depth, total organic content in the Wakkanai Formation remains roughly constant with depth. Furthermore, although δ"1"3C values also show depth dependence, values from the Wakkanai Formation are higher than those from the Koetoi Formation. This "1"3C-enrichment could be explained by Rayleigh fractionation in a closed system. Based on these results, the processes behind the formation of the carbonate veins can be summarized as follows. Carbon dioxide behavior is thought to play an important role with respect to carbonate formation because CO_2 abundance is closely linked to pH and pressure. In shallow sedimentary rocks such as the Koetoi Formation that have started to experience diagenetic alteration of organic matter, CO_2 in groundwater is supplied by microbial decomposition of organic matter and is reduced to CH_4 by methanogens. In deep sedimentary rocks such as the Wakkanai Formation that have undergone diagenesis but have only experienced moderate temperatures so that thermal decomposition of organic matter has not yet begun, microbial

  19. А mathematical model study of suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2012-01-01

    Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  20. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Xiong Yongqiang; Wang Yanmei; Wang Yongquan; Xu Shiping

    2007-01-01

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition

  1. Compound-specific C- and H-isotope compositions of enclosed organic matter in carbonate rocks: Implications for source identification of sedimentary organic matter and paleoenvironmental reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)], E-mail: xiongyq@gig.ac.cn; Wang Yanmei; Wang Yongquan; Xu Shiping [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2007-11-15

    The Bohai Bay Basin is one of the most important oil-producing provinces in China. Molecular organic geochemical characteristics of Lower Paleozoic source rocks in this area have been investigated by analyzing chemical and isotopic compositions of solvent extracts and acid-released organic matter from the Lower Paleozoic carbonate rocks in the Jiyang Sub-basin of the Bohai Bay Basin. The results indicate that enclosed organic matter in carbonate rocks has not been recognizably altered by post-depositional processes. Two end-member compositions are suggested for early organic matter trapped in the Lower Paleozoic carbonate rocks: (1) a source dominated by aquatic organisms and deposited in a relatively deep marine environment and (2) a relatively high saline, evaporative marine depositional environment. In contrast, chemical and isotopic compositions of solvent extracts from these Lower Paleozoic carbonate rocks are relatively complicated, not only inheriting original characteristics of their precursors, but also overprinted by various post-depositional alterations, such as thermal maturation, biodegradation and mixing. Therefore, the integration of both organic matter characteristics can provide more useful information on the origin of organic matter present in carbonate rocks and the environments of their deposition.

  2. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    Science.gov (United States)

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass.

  3. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  4. Organic carbon storage change in China's urban landfills from 1978-2014

    Science.gov (United States)

    Ge, Shidong; Zhao, Shuqing

    2017-10-01

    China has produced increasingly large quantities of waste associated with its accelerated urbanization and economic development and deposited these wastes into landfills, potentially sequestering carbon. However, the magnitude of the carbon storage in China’s urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China’s urban landfills increased nearly 68-fold from the 1970s to the 2010s, and reached 225.2-264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4-157.5 Tg C) in 2014, followed by household waste (67.7-83.8 Tg C), and sewage sludge was the least (19.7-34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country’s carbon stocks in urban ecosystems. The annual increase (i.e. sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean ± 2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also have a respectable contribution to national carbon sequestration.

  5. Biochemical and stable carbon isotope records of mangrove derived organic matter in the sediment cores

    Digital Repository Service at National Institute of Oceanography (India)

    Manju, M.N.; Resmi, P.; RatheeshKumar, C.S.; Gireeshkumar, T.R.; Chandramohanakumar, N.; Joseph, M.M.

    in mangrove sediments. This also confirms the involvement of heterotrophic microorganisms in the organic carbon dynamics of the study area. The bulk elemental ratio (total organic carbon/total nitrogen) varied between 11.39 and 24.14 in the study region...

  6. The Role of Refractory Dissolved Organic Matter in Ocean Carbon Sequestration

    DEFF Research Database (Denmark)

    Jørgensen, Linda

    The ocean assimilates a large amount of atmospheric CO2 and is potentially a buffer for climate change. A fraction of the assimilated CO2 is incorporated into algal biomass and further converted into refractory dissolved organic matter (DOM). Carbon bound in refractory DOM has the potential...... studies the prokaryotic production and degradation of oceanic refractory DOM and discusses the reasons for the persistent nature of this large DOM fraction. The first two papers investigate the microbial carbon pump, i.e. prokaryotic transfor-mation of organic carbon into refractory DOM. The results show...... DOM compounds in the ocean are rare—possibly too rare to sustain viable uptake and assimilation. Hence, the dilute concentration of individual compounds is a possible explanation for the apparent refractory nature of most DOM in the ocean. Understanding the mechanisms that control the quality...

  7. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    KAUST Repository

    Serrano, Oscar; Lavery, P. S.; Duarte, Carlos M.; Kendrick, Gary A.; Calafat, Antoni; York, P.; Steven, Andy; Macreadie, Peter I.

    2016-01-01

    The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (C-org) content in terrestrial soils and marine sediments has

  8. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    Science.gov (United States)

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  10. Net ecosystem production and organic carbon balance of U.S. East Coast estuaries: A synthesis approach

    Science.gov (United States)

    Herrmann, Maria; Najjar, Raymond G.; Kemp, W. Michael; Alexander, Richard B.; Boyer, Elizabeth W.; Cai, Wei-Jun; Griffith, Peter C.; Kroeger, Kevin D.; McCallister, S. Leigh; Smith, Richard A.

    2015-01-01

    Net ecosystem production (NEP) and the overall organic carbon budget for the estuaries along the East Coast of the United States are estimated. We focus on the open estuarine waters, excluding the fringing wetlands. We developed empirical models relating NEP to loading ratios of dissolved inorganic nitrogen to total organic carbon, and carbon burial in the sediment to estuarine water residence time and total nitrogen input across the landward boundary. Output from a data-constrained water quality model was used to estimate inputs of total nitrogen and organic carbon to the estuaries across the landward boundary, including fluvial and tidal-wetland sources. Organic carbon export from the estuaries to the continental shelf was computed by difference, assuming steady state. Uncertainties in the budget were estimated by allowing uncertainties in the supporting model relations. Collectively, U.S. East Coast estuaries are net heterotrophic, with the area-integrated NEP of −1.5 (−2.8, −1.0) Tg C yr−1 (best estimate and 95% confidence interval) and area-normalized NEP of −3.2 (−6.1, −2.3) mol C m−2 yr−1. East Coast estuaries serve as a source of organic carbon to the shelf, exporting 3.4 (2.0, 4.3) Tg C yr−1 or 7.6 (4.4, 9.5) mol C m−2 yr−1. Organic carbon inputs from fluvial and tidal-wetland sources for the region are estimated at 5.4 (4.6, 6.5) Tg C yr−1 or 12 (10, 14) mol C m−2 yr−1 and carbon burial in the open estuarine waters at 0.50 (0.33, 0.78) Tg C yr−1 or 1.1 (0.73, 1.7) mol C m−2 yr−1. Our results highlight the importance of estuarine systems in the overall coastal budget of organic carbon, suggesting that in the aggregate, U.S. East Coast estuaries assimilate (via respiration and burial) ~40% of organic carbon inputs from fluvial and tidal-wetland sources and allow ~60% to be exported to the shelf.

  11. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  12. Satellite observation of particulate organic carbon dynamics on the Louisiana continental shelf

    Science.gov (United States)

    Particulate organic carbon (POC) plays an important role in coastal carbon cycling and the formation of hypoxia. Yet, coastal POC dynamics are often poorly understood due to a lack of long-term POC observations and the complexity of coastal hydrodynamic and biogeochemical process...

  13. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    Science.gov (United States)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be

  14. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sequestration of organochlorine pesticides in soils of distinct organic carbon content

    International Nuclear Information System (INIS)

    Zhang Na; Yang Yu; Tao Shu; Liu Yan; Shi Kelu

    2011-01-01

    In the present study, five soil samples with organic carbon contents ranging from 0.23% to 7.1% and aged with technical dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) for 15 months were incubated in a sealed chamber to investigate the dynamic changes of the OCP residues. The residues in the soils decreased over the incubation period and finally reached a plateau. Regression analysis showed that degradable fractions of OCPs were negatively correlated with soil organic carbon (SOC) except for α-HCH, while no correlation was found between degradation rate and SOC, which demonstrated that SOC content determines the OCP sequestration fraction in soil. Analysis of the ratio of DDT and its primary metabolites showed that, since it depends on differential sequestration among them, magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. - Research highlights: → Soil organic carbon content determines the OCP sequestration fraction in soil. → Magnitude of (p,p'-DDE + p,p'-DDD)/p,p'-DDT is not a reliable criterion for the identification of new DDT sources. → The more hydrophobic compounds have relatively higher sequestration fractions in soils with SOC contents >2%. → DDD may have higher sorption by soil organic matter than DDE. - The effect of soil organic matter on the sequestration of organochlorine pesticides (HCHs and DDTs) in soils was investigated in an innovative microcosm chamber.

  16. Self-organized global control of carbon emissions

    Science.gov (United States)

    Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

    2010-09-01

    There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

  17. The Rise of Oxygen in the Earth's Atmosphere Controlled by the Efficient Subduction of Organic Carbon

    Science.gov (United States)

    Duncan, M. S.; Dasgupta, R.

    2017-12-01

    Carbon cycling between the Earth's surface environment, i.e., the ocean-atmosphere system, and the Earth's interior is critical for differentiation, redox evolution, and long-term habitability of the planet. This carbon cycle is influenced heavily by the extent of carbon subduction. While the fate of carbonates during subduction has been discussed in numerous studies [e.g., 1], little is known how organic carbon is quantitatively transferred from the Earth's surface to the interior. Efficient subduction of organic carbon would remove reduced carbon from the surface environment over the long-term (≥100s Myrs) while release at subduction zone arc volcanoes would result in degassing of CO2. Here we conducted high pressure-temperature experiments to determine the carbon carrying capacity of slab derived, rhyolitic melts under graphite-saturated conditions over a range of P (1.5-3.0 GPa) and T (1100-1400 °C) at a fixed melt H2O content (2 wt.%) [2]. Based on our experimental data, we developed a thermodynamic model of CO2 dissolution in C-saturated slab melts, that allows us to quantify the extent of organic carbon mobility as a function of slab P, T, and fO2 during subduction through time. Our experimental data and thermodynamic model suggest that the subduction of graphitized organic C, and graphite/diamond formed by reduction of carbonates with depth [e.g., 3], remained efficient even in ancient, hotter subduction zones - conditions at which subduction of carbonates likely remained limited [1]. Considering the efficiency the subduction of organic C and potential conditions for ancient subduction, we suggest that the lack of remobilization in subduction zones and deep sequestration of organic C in the mantle facilitated the rise and maintenance atmospheric oxygen in the Paleoproterozoic and is causally linked to the Great Oxidation Event (GOE). Our modeling shows that episodic subduction and organic C sequestration pre-GOE may also explain occasional whiffs of

  18. Cellulase activity and dissolved organic carbon release from lignocellulose macrophyte-derived in four trophic conditions.

    Science.gov (United States)

    Bottino, Flávia; Cunha-Santino, Marcela Bianchessi; Bianchini, Irineu

    2016-01-01

    Considering the importance of lignocellulose macrophyte-derived for the energy flux in aquatic ecosystems and the nutrient concentrations as a function of force which influences the decomposition process, this study aims to relate the enzymatic activity and lignocellulose hydrolysis in different trophic statuses. Water samples and two macrophyte species were collected from the littoral zone of a subtropical Brazilian Reservoir. A lignocellulosic matrix was obtained using aqueous extraction of dried plant material (≈40°C). Incubations for decomposition of the lignocellulosic matrix were prepared using lignocelluloses, inoculums and filtered water simulating different trophic statuses with the same N:P ratio. The particulate organic carbon and dissolved organic carbon (POC and DOC, respectively) were quantified, the cellulase enzymatic activity was measured by releasing reducing sugars and immobilized carbon was analyzed by filtration. During the cellulose degradation indicated by the cellulase activity, the dissolved organic carbon daily rate and enzyme activity increased. It was related to a fast hydrolysable fraction of cellulose that contributed to short-term carbon immobilization (ca. 10 days). After approximately 20 days, the dissolved organic carbon and enzyme activity were inversely correlated suggesting that the respiration of microorganisms was responsible for carbon mineralization. Cellulose was an important resource in low nutrient conditions (oligotrophic). However, the detritus quality played a major role in the lignocelluloses degradation (i.e., enzyme activity) and carbon release. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Geochemistry of bed and suspended sediment in the Mississippi river system: provenance versus weathering and winnowing.

    Science.gov (United States)

    Piper, D Z; Ludington, Steve; Duval, J S; Taylor, H E

    2006-06-01

    Stream-bed sediment for the size fraction less than 150 microm, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.

  20. Exploration on relationship between uranium and organic materials in carbonate-siliceous pelite type uranium ore deposits

    International Nuclear Information System (INIS)

    Dong Yongjie

    1996-01-01

    The author determines the content of uranium and organic carbon of part specimen of surrounding rocks and ores, which sampled from carbonate and black shale type uranium deposits in Xiushui, Jiangxi Province, and Tongcheng, Hubei Province. According to the analytical operation regulations of organic materials, extraction and separation of chloroform pitch is carried out. Internal relationships between uranium and organic derivative is discussed. The conclusion shows that: (1) certain co-relationship between U and organic carbon and chloroform extract is detected; (2) evolutionary processes of organic materials in the exogenetic uranium deposits are not all the same; (3) non-hydrocarbon is closely related to uranium, so it can be regarded as indicator of uranium gathering in exogenetic uranium deposits

  1. Changes of Organic Carbon Quantity and Quality in Temperate Forest Soils

    Science.gov (United States)

    Kühnel, Anna; Satwika Lestari, Annisa; Schubert, Alfred; Wiesmeier, Martin; Spörlein, Peter; Schilling, Bernd; Kögel-Knabner, Ingrid

    2017-04-01

    Climate change will have profound impacts on organic matter stocks and thus on the functionality of soils. Soil organic carbon (SOC) content in soil is mainly regulated by the fluxes of organic matter which are highly associated with the aboveground and root litter production and their decompositions into CO2 by soil microorganism. The predicted rising temperatures in Bavaria might lead to an increased decomposition and release of soil carbon into the atmosphere, which would deteriorate a number of important soil functions. Here, we present an assessment of SOC stocks in three temperate forest sites over the last 30 years. Soil to a depth of 30 cm was analysed with density fractionation to evaluate SOC stocks and distribution in different pools. Additionally, tree-aboveground organic carbon (OC) stocks were measured to assess their influence on SOC. SOC stocks decreased between 1988 and 2004 and increased between 2004 and 2016. OC changes of litter + O layer and mineral soil differed. Highest changes of SOC occurred in the light fractions, followed by the mineral fractions. Tree-aboveground biomass, stand composition, and changing climate had an influence on SOC stocks. Precipitation change was correlated with the litter + O layer OC stocks. Further studies on the changes of each SOC fraction and the influence of other edaphic factors are needed to better understand the changes in SOC stocks and quality.

  2. Biochemical indicators for the bioavailability of organic carbon in ground water

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Goode, D.J.; Tiedeman, C.; Lacombe, P.J.; Kaiser, K.; Benner, R.

    2009-01-01

    The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 ??M; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (???0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 ??M; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (???1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.

  3. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    International Nuclear Information System (INIS)

    Wang, Tun; Liu, Bin; Jiang, Shusen; Rong, Hao; Lu, Miao

    2014-01-01

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration. (paper)

  4. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    Science.gov (United States)

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  5. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  6. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  7. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  8. Application of calcium carbonate slows down organic amendments mineralization in reclaimed soils

    Science.gov (United States)

    Zornoza, Raúl; Faz, Ángel; Acosta, José A.; Martínez-Martínez, Silvia; Ángeles Muñoz, M.

    2014-05-01

    A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 days. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralised C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3 days these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds. Keywords: organic wastes, mine soils stabilization, carbon mineralization, microbial activity.

  9. Do soil organic carbon levels affect potential yields and nitrogen use efficiency?

    DEFF Research Database (Denmark)

    Oelofse, Myles; Markussen, Bo; Knudsen, Leif

    2015-01-01

    Soil organic carbon (SOC) is broadly recognised as an important parameter affecting soil quality, and can therefore contribute to improving a number of soil properties that influence crop yield. Previous research generally indicates that soil organic carbon has positive effects on crop yields......, the yield with no fertiliser N application and the N use efficiency would be positively affected by SOC level. A statistical model was developed to explore relationships between SOC and potential yield, yields at zero N application and N use efficiency (NUE). The model included a variety of variables...

  10. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    Science.gov (United States)

    Canuel, Elizabeth A.; Cammer, Sarah S.; McIntosh, Hadley A.; Pondell, Christina R.

    2012-05-01

    Estuaries are among the most altered and vulnerable marine ecosystems. These ecosystems will likely continue to deteriorate owing to increased population growth in coastal regions, expected temperature and precipitation changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer, transformation, and burial of carbon and other biogenic elements exchanged between the land and ocean systems. Climate change has the potential to influence the carbon cycle through anticipated changes to organic matter production in estuaries and through the alteration of carbon transformation and export processes. This review discusses the effects of climate change on processes influencing the cycling of organic carbon in estuaries, including examples from three temperate estuaries in North America. Our goal is to evaluate the impact of climate change on the connectivity of terrestrial, estuarine, and coastal ocean carbon cycles.

  11. Evaluation of robustness in the validation of total organic carbon (TOC) methodology

    International Nuclear Information System (INIS)

    Benedetti, Stella; Monteiro, Elisiane G.; Almeida, Erika V.; Oliveira, Ideli M.; Cerqueira Filho, Ademar C.; Mengatti, Jair; Fukumori, Neuza T.O.; Matsuda, Margareth M.N.

    2009-01-01

    Water is used in many steps of production and quality control as raw material for reagent preparation or dilution of solutions and for cleaning apparatus and room areas in the pharmaceutical industry, including radiopharmaceutical plants. Regulatory requirements establish specifications of purified water for different purposes. The quality of water is essential to guarantee the safe utilization of radiopharmaceuticals. A variety of methods and systems can be used to produce purified water and water for injection and all of them must fulfill the requirements for their specific use, which include TOC (total organic carbon) analysis, an indirect measurement of organic molecules present in water. The principle of TOC method is the oxidation of organic molecules to carbon dioxide, related to the carbon concentration. The aim of this study was to evaluate the parameters of robustness in TOC method in water used in the production and quality control procedures in the Radiopharmacy Directory (DIRF), according to Resolution 899 from ANVISA (National Sanitary Agency). Purified water were obtained from Milli-RX45 system. TOC standard solutions in the range of 100-1000 ppb were prepared with potassium hydrogen phthalate anhydride, transferred to vials and sequentially analyzed by a catalytic photo-oxidation reaction with a TOC model Vwp equipment from Shimadzu Corporation (Japan). The evaluated parameters were: oxidizing volume from 0.5 to 2.5 mL, acidifying volume from 1 to 5%, integration time for TC (total carbon) and IC (inorganic carbon) curves from 2 to 10 minutes. (author)

  12. Comparisons of Organic Carbon Analyzers and Related Importance to Water Quality Assessments

    Directory of Open Access Journals (Sweden)

    Murage Ngatia

    2007-05-01

    Full Text Available This study tested whether analyzers using different methods were equally capable of measuring organic carbon in diverse environmental water samples from California’s Sacramento/San Joaquin Delta and its watersheds. The study also evaluated whether the different instruments might provide differing organic carbon concentration measurements, which could in turn trigger (or not a regulatory requirement for enhanced coagulation at a water treatment plant. In Phase 1, samples were collected in eight monthly events at five stations associated with California’s State Water Project and analyzed using three high temperature combustion and three chemical oxidation instruments. Significant differences between instruments occurred in only 20% of the analyses. However, 80% of the observed differences were attributed to one combustion instrument that reported higher values compared to the other instruments. In Phase 2, four certified standards were analyzed with nine instruments. Results suggested that the main contributor of the observed differences was some instruments’ inability to remove inorganic carbon, an important step in the analytical process. There were no significant differences in the frequencies at which different instruments would have prescribed enhanced coagulation at a water treatment plant. We concluded that properly operating instruments using any of the standard methods were equally capable of analyzing the diverse concentration levels of organic carbon in the Delta.

  13. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    Science.gov (United States)

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  14. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  15. Soil organic carbon stocks under native vegetation - revised estimates for use with the simple assessment option of the Carbon Benefits Project system

    NARCIS (Netherlands)

    Batjes, N.H.

    2011-01-01

    The Carbon Benefits Project (CBP) is developing a standardized system for sustainable land management projects to measure, model and report changes in carbon stocks and greenhouse gas (GHG) emissions for use at varying scales. A global framework of soil organic carbon (SOC) stocks under native

  16. Long-term dynamics of dissolved organic carbon: implications for drinking water supply.

    Science.gov (United States)

    Ledesma, José L J; Köhler, Stephan J; Futter, Martyn N

    2012-08-15

    Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply. Copyright © 2012 Elsevier B

  17. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water

  18. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  19. Organic carbon storage change in China's urban landfills from 1978 to 2014

    Science.gov (United States)

    Ge, S.; Zhao, S.

    2017-12-01

    China has produced increasingly large quantities of waste associated with her accelerated urbanization and economic development and deposited these wastes into landfills potentially sequestering carbon. However, the magnitude of the carbon storage in China's urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China's urban landfills increased nearly 68 folds from the 1970s to the 2010s, and reached 225.2 - 264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4 - 157.5 Tg C) in 2014, followed by household waste (67.7 - 83.8 Tg C), and sewage sludge was the least (19.7 - 34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country's carbon stocks in urban ecosystems. The annual increase (i.e., sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean±2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also contribute respectably to national carbon sequestration.

  20. Combined Stable Carbon Isotope and C/N Ratios as Indicators of Source and Fate of Organic Matter in the Bang Pa kong River Estuary, Thailand

    International Nuclear Information System (INIS)

    Boonphakdee, Thanomsak; Kasai, Akihide; Fujiwara, Tateki; Sawangwong, Pichan; Cheevaporn, Voravit

    2007-08-01

    Full text: Stable carbon isotopes and C/N ratios of particulate organic matter (POM) in suspended solids and surficial sediment were used to define the spatial and temporal variability in an anthropogenic tropical river estuary, the Bang Pa kong River Estuary. Samples were taken along salinity gradients during the four different river discharges in the beginning, high river discharge and at the end of the wet season, and low river discharge during the dry season. The values of [C/N]a ratio and d13C in the river estuary revealed significant differences from those of the offshore station. Conservative behaviors of [C/N]a and d13C in the estuary during the wet season indicated major contribution of terrigenous C3 plants derived OM. By contrast, during the dry season, marine input mainly dominated OM contribution with an evidence of anthropogenic input to the estuary. These compositions of the bulk sedimentary OM were dominated by paddy rice soils and marine derived OM during the wet and dry seasons, respectively. These results show that the combined stable carbon isotopes and C/N ratios can be used to identify the source and fate of OM even in a river estuary. This tool will be useful to achieve sustainable management in coastal zone

  1. Cropland versus Gariga schrubland on soil organic carbon storage under Mediterranen climatic condition of Sicily

    Science.gov (United States)

    Novara, A.; Gristina, L.; Santoro, A.; Poma, I.

    2009-04-01

    Soil organic carbon (SOC) pool is the largest among the terrestrial pool and it plays a key role to mitigate climate change. The restoration of SOC pool represents a potential sink for atmospheric CO2. Land use is one of the most important factors controlling organic carbon content. The main land uses throughout the Mediterranean are croplands (olive, wheat and vineyards) and scrublands. The land abandonment or the reclamation of land is changing the cover of scrubland and cropland. This will change the carbon cycle. The aim of this work is determining the direction and magnitude of soil organic change associated with land use change under Mediterranean Climatic Conditions. Using both historic record and land cover crop maps we estimated the effect of land cover change on the stock carbon from 1972 to 2008 in Sicily. A system of paired plots was established on Mollic Gypsiric cambisol and Gypsiric cambisol on agriculture and rangeland land uses. The study sites were selected at the natural reserve "Grotta di S. Ninfa", in the West of Sicily. Soil samples (24) were taken at 20 and 40 cm depth, air dried and sieved at 2 mm. Dry aggregate size fractions selected were >1000 µm, 1000-500 µm, 500-250 µm, 250-63 µm, 63-25 µm and <25 µm. The results show that gariga increase the organic matter in soil, mainly on the organic horizon. Key worlds: Land use change, Soil organic Carbon , Mediterranean, aggregates, gariga, cropland.

  2. PBDE and PCB accumulation in benthos near marine wastewater outfalls: The role of sediment organic carbon

    International Nuclear Information System (INIS)

    Dinn, Pamela M.; Johannessen, Sophia C.; Ross, Peter S.; Macdonald, Robie W.; Whiticar, Michael J.; Lowe, Christopher J.; Roodselaar, Albert van

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation. - Highlights: ► Physical receiving environment affects PBDE bioaccumulation by benthic invertebrates. ► PBDE uptake is correlated with organic-carbon normalized sediment concentrations. ► PBDE and PCB congener uptake are governed by different properties. ► PBDE sediment quality guidelines may benefit by using organic carbon-normalized data. ► Enhanced wastewater treatment may mean increased benthic invertebrate PBDE bioaccumulation. - The physical receiving environment affects the accumulation of PBDEs by benthic invertebrates near submarine municipal outfalls, and uptake of PBDE congeners is governed by different properties than for PCB congeners.

  3. Organic carbon in the sediments of Mandovi estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.

    Total organic carbon (TOC) in surficial sediments in Mandovi Estuary, Goa, India varies widely from 0.1 to 3% (av. 1.05%). Highest values of TOC (2.4-3%) lie close to the mouth region and indicate no definite trend in its variation in the estuarine...

  4. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  5. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  6. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  7. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  8. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  9. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  11. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    International Nuclear Information System (INIS)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya.

    1982-01-01

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C 2 and C 3 fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO 2 appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown. (author)

  12. Carbon isotope effects in carbohydrates and amino acids of photosynthesizing organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, A.A.; Kaloshin, A.G.; Koroleva, M.Ya. (Ministerstvo Geologii SSR, Moscow)

    1982-02-10

    The analysis of the carbon isotope distribution in carbohydrates and amino acids of some photosynthesizing organisms revealed the close relationship between distribution and the pathways of biosynthesis of the molecules. This relationship is explained on the basis of the previously proposed mechanism of carbon isotope fractionation in a cell, in which the chief part is played by kinetic isotope effects in the pyruvate decarboxylation reaction progressively increased in the conjugated processes of gluconeogenesis. Isotope differences of C/sub 2/ and C/sub 3/ fragments arising in decarboxylation of pyruvate, as well as isotope differences of biogenic acceptor and environmental CO/sub 2/ appearing in assimilation are the main reasons of the observed intramolecular isotopic heterogeneity of biomolecules. The heterogeneity is preserved in metabolites owing to an incomplete mixing of carbon atoms in biochemical reactions. The probable existence of two pools of carbohydrates in photosynthesizing organisms different in isotopic composition is predicted. Two types of intramolecular isotope distribution in amino acids are shown.

  13. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  14. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  15. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  16. SOIL ORGANIC CARBON FRACTIONS AS INFLUENCED BY SOYBEAN CROPPING IN THE HUMID PAMPA OF ARGENTINA

    Directory of Open Access Journals (Sweden)

    Marta E. Conti

    2014-07-01

    Full Text Available The sustainability of continuous cropping systems depends heavily on the years of intensive agricultural production and the choice of crop sequence that alters the fractions of soil organic matter. The aim of this study was to evaluate the impact of continuous soybean cultivation on fractions of organic carbon in the vertic Argiudolls of the Argentinean Pampas. Total organic carbon (TOC, particulate organic carbon (POC , fulvic acids (FA, humic acids (HA, humin (H and carbon produced by microbial respiration (Cresp were assessed in plots with continuous production of soybean for over 15 years (SP and grassland plots that were considered the change control (GP. A significant reduction of TOC and POC variables in cultured soybean SP plots, relative to grassland GP, was observed. The POC / TOC and Cresp / TOC ratios were significantly lower in soybean plots than in grasslands used as controls. These ratios were interpreted as a preferential tendency to maintain high rates of mineralization of labile carbon forms and increased biological stability of humified forms in cultured soybean plots. The shapes of the humic fractions of less complexity, FA and HA, were significantly reduced in the latter plots compared with grasslands, while no significant changes occurred in the more stable and recalcitrant forms of carbon, such as humin, in either plot type.

  17. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The large variation in organic carbon consumption in spring in the East China Sea

    Directory of Open Access Journals (Sweden)

    C.-C. Chen

    2013-05-01

    Full Text Available A tremendous amount of organic carbon respired by plankton communities has been found in summer in the East China Sea (ECS, and this rate has been significantly correlated with fluvial discharge from the Changjiang River. However, respiration data has rarely been collected in other seasons. To evaluate and reveal the potential controlling mechanism of organic carbon consumption in spring in the ECS, two cruises covering almost the entire ECS shelf were conducted in the spring of 2009 and 2010. These results showed that although the fluvial discharge rates were comparable to the high riverine flow in summer, the plankton community respiration (CR varied widely between the two springs. In 2009, the level of CR was double that of 2010, with mean (± SD values of 111.7 (±76.3 and 50.7 (±62.9 mg C m−3 d−1, respectively. The CR was positively correlated with concentrations of particulate organic carbon and/or chlorophyll a (Chl a in 2009 (all p 2 (fCO2 in the surface waters, even with a significant amount of inorganic carbon regenerated via CR. In 2010, even more riverine runoff nutrients were measured in the ECS than in 2009. Surprisingly, the growth of phytoplankton in 2010 was not stimulated by enriched nutrients, and its growth was likely limited by low water temperature and/or low light intensity. Low temperature might also suppress planktonic metabolism, which could explain why the CR was lower in 2010. During this period, lower surface water fCO2 may have been driven mainly by physical process(es. To conclude, these results indicate that high organic carbon consumption (i.e. CR in the spring of 2009 could be attributed to high planktonic biomasses, and the lower CR rate during the cold spring of 2010 might be likely limited by low temperature in the ECS. This further suggests that the high inter-annual variability of organic carbon consumption needs to be kept in mind when budgeting the annual carbon balance.

  19. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.

    2005-01-01

    1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams with or w......1. Temperature, organic carbon and oxygen consumption were measured over a year at 13 sites in four lowlands streams within the same region in North Zealand, Denmark with the objectives of determining: (i) spatial and seasonal differences between open streams, forest streams and streams...... the exponential increase of oxygen consumption rate between 4 and 20 °C averaged 0.121 °C-1 (Q10 of 3.35) in 70 measurements and showed no significant variations between seasons and stream sites or correlations with ambient temperature and organic content. 5. Oxygen consumption rate was enhanced downstream...... at ambient temperature by 30-40% and 80-130%, respectively. Faster consumption of organic matter and dissolved oxygen downstream of point sources should increase the likelihood of oxygen stress of the stream biota and lead to the export of less organic matter but more mineralised nutrients to the coastal...

  20. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    Science.gov (United States)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  1. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada

    Science.gov (United States)

    Littlefair, Cara A.; Tank, Suzanne E.; Kokelj, Steven V.

    2017-12-01

    In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC) to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTSs) on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NWT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the Laurentide Ice Sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high and total disturbed areas often exceeding 20 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios) is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to fluxes of total suspended solids suggest that the substantial fine-grained sediments released by RTS features may sequester DOC. Runoff obtained directly from slump rill water, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, release low-concentration DOC when compared to paired upstream, undisturbed locations, while shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS site indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but it also shows that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect clear variation in thermokarst

  2. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada

    Directory of Open Access Journals (Sweden)

    C. A. Littlefair

    2017-12-01

    Full Text Available In Siberia and Alaska, permafrost thaw has been associated with significant increases in the delivery of dissolved organic carbon (DOC to recipient stream ecosystems. Here, we examine the effect of retrogressive thaw slumps (RTSs on DOC concentration and transport, using data from eight RTS features on the Peel Plateau, NWT, Canada. Like extensive regions of northwestern Canada, the Peel Plateau is comprised of thick, ice-rich tills that were deposited at the margins of the Laurentide Ice Sheet. RTS features are now widespread in this region, with headwall exposures up to 30 m high and total disturbed areas often exceeding 20 ha. We find that intensive slumping on the Peel Plateau is universally associated with decreasing DOC concentrations downstream of slumps, even though the composition of slump-derived dissolved organic matter (DOM; assessed using specific UV absorbance and slope ratios is similar to permafrost-derived DOM from other regions. Comparisons of upstream and downstream DOC flux relative to fluxes of total suspended solids suggest that the substantial fine-grained sediments released by RTS features may sequester DOC. Runoff obtained directly from slump rill water, above entry into recipient streams, indicates that the deepest RTS features, which thaw the greatest extent of buried, Pleistocene-aged glacial tills, release low-concentration DOC when compared to paired upstream, undisturbed locations, while shallower features, with exposures that are more limited to a relict Holocene active layer, have within-slump DOC concentrations more similar to upstream sites. Finally, fine-scale work at a single RTS site indicates that temperature and precipitation serve as primary environmental controls on above-slump and below-slump DOC flux, but it also shows that the relationship between climatic parameters and DOC flux is complex for these dynamic thermokarst features. These results demonstrate that we should expect clear variation in

  3. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    NARCIS (Netherlands)

    Holding, Johnna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agustí, Susana; Wassmann, Paul; Middelburg, Jack J.

    2017-01-01

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon

  4. Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords

    NARCIS (Netherlands)

    Holding, Johna M.; Duarte, Carlos M.; Delgado-Huertas, Antonio; Soetaert, Karline; Vonk, Jorien E.; Agusti, Susana; Wassmann, Paul; Middelburg, Jack J.

    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon

  5. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay

    International Nuclear Information System (INIS)

    Kubo, Atsushi; Kanda, Jota

    2017-01-01

    Total organic carbon (TOC), total nitrogen (TN) contents, their stable C and N isotope ratio (δ 13 C and δ 15 N), and chlorophyll a ([Chl a] sed ) of surface sediments were investigated monthly to identify the seasonal variations and sources of organic matter in Tokyo Bay. The sedimentary TOC (TOC sed ) and TN (TN sed ) contents, and the sedimentary δ 13 C and δ 15 N (δ 13 C sed and δ 15 N sed ) values were higher in summer than other seasons. The seasonal variations were controlled by high primary production in the water column and hypoxic water in the bottom water during summer. The fraction of terrestrial and marine derived organic matter was estimated by Bayesian mixing model using stable isotope data and TOC/TN ratio. Surface sediments in Tokyo Bay are dominated by marine derived organic matter, which accounts for about 69 ± 5% of TOC sed . - Highlights: • High values of sedimentary organic carbon and nitrogen were observed in summer. • Surface sediments in Tokyo Bay were dominated by marine derived organic matter which was estimated by Bayesian mixing model. • The most amount of terrestrial POC was deposited and degraded in Tokyo Bay before being discharged to the open ocean.

  6. Tiny is mighty: seagrass beds have a large role in the export of organic material in the tropical coastal zone.

    Science.gov (United States)

    Gillis, Lucy G; Ziegler, Alan D; van Oevelen, Dick; Cathalot, Cecile; Herman, Peter M J; Wolters, Jan W; Bouma, Tjeerd J

    2014-01-01

    Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be

  7. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  8. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  9. Investigating organic matter in Fanno Creek, Oregon, Part 2 of 3: sources, sinks, and transport of organic matter with fine sediment

    Science.gov (United States)

    Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.

    2014-01-01

    Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River—about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek’s mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29–67 t of carbon, or about 49–116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.

  10. Mapping soil organic carbon content and composition across Australia to assess vulnerability to climate change

    Science.gov (United States)

    Viscarra Rossel, R. A.

    2015-12-01

    We can effectively monitor soil condition—and develop sound policies to offset the emissions of greenhouse gases—only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C content and composition in the soil of Australia. The composition of soil organic C may be characterized by chemical separation or physical fractionation based on either particle size or particle density (Skjemstad et al., 2004; Gregorich et al., 2006; Kelleher&Simpson, 2006; Zimmermann et al., 2007). In Australia, for example, Skjemstad et al. (2004) used physical separation of soil samples into 50-2000 and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, giving the three OC pools, particulate organic carbon (POC), humic organic carbon (HOC) and resistant organic carbon (ROC; charcoal or char-carbon). We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C, POC, HOC and ROC at the continental scale. In this presentation I will describe how we made the maps and how we use them to assess the vulnerability of soil organic C to for instance climate change.

  11. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  12. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change.

    Science.gov (United States)

    Viscarra Rossel, Raphael A; Webster, Richard; Bui, Elisabeth N; Baldock, Jeff A

    2014-09-01

    We can effectively monitor soil condition-and develop sound policies to offset the emissions of greenhouse gases-only with accurate data from which to define baselines. Currently, estimates of soil organic C for countries or continents are either unavailable or largely uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of organic C in the soil of Australia. We assembled and harmonized data from several sources to produce the most comprehensive set of data on the current stock of organic C in soil of the continent. Using them, we have produced a fine spatial resolution baseline map of organic C at the continental scale. We describe how we made it by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of stock were predicted at the nodes of a 3-arc-sec (approximately 90 m) grid and mapped together with their uncertainties. We then calculated baselines of soil organic C storage over the whole of Australia, its states and territories, and regions that define bioclimatic zones, vegetation classes and land use. The average amount of organic C in Australian topsoil is estimated to be 29.7 t ha(-1) with 95% confidence limits of 22.6 and 37.9 t ha(-1) . The total stock of organic C in the 0-30 cm layer of soil for the continent is 24.97 Gt with 95% confidence limits of 19.04 and 31.83 Gt. This represents approximately 3.5% of the total stock in the upper 30 cm of soil worldwide. Australia occupies 5.2% of the global land area, so the total organic C stock of Australian soil makes an important contribution to the global carbon cycle, and it provides a significant potential for sequestration. As the most reliable approximation of the stock of organic C in Australian soil in 2010, our estimates have important applications. They could support

  13. [Soil organic carbon sequestration rate and its influencing factors in farmland of Guanzhong Plain: a case study in Wugong County, Shannxi Province].

    Science.gov (United States)

    Zhang, Xiao-Wei; Xu, Ming-Xiang

    2013-07-01

    Take Wugong County as an example, soil carbon storage and soil carbon sequestration rate were calculated, the change law of farmland soil organic carbon was explored, and the relationship of farmland soil organic carbon and natural factors, human factors was further revealed. The results of the study showed that: (1) The soil organic carbon contents in 80% of the sampling sites were in the range of 8.0-12.0 g x kg(-1), and the organic carbon contents in 0-20 cm soils showed a normal distribution. (2) In 2011, the organic carbon density of the 0-20 cm farmland soil was 26.3 t x hm(-2), below the national average soil organic carbon density (33.45 t x hm(-2)) of the arable layer. In the last 30 years, the soil carbon sequestration rate in the 0-20 cm layer was 71.3 kg x (hm2 x a)(-1), and in the past five years, the carbon sequestration rate was 480 kg x (hm x a)(-1). The recent carbon sequestration rate was higher than the national average soil carbon sequestration rate of the arable layer [380.78 kg x (hm2 x a)(-1)]. (3) In the semi-humid plain region, soil organic carbon was mainly affected by soil types, landform types, organic fertilizer. Soil types accounted for 30.2% of the organic carbon variability; the landform types and the organic fertilizer could explain 37.7% and 32.1%, respectively. The results of the comprehensive analysis showed that the farmland soil organic carbon density of Wugong County in the past 30 years is increasing, and this probably relies on the utilization of chemical fertilizer and the returning straw. Further study should be conducted on the impact of the chemical fertilizer and returning straw.

  14. Respiratory diseases in preschool children in the city of Niš exposed to suspended particulates and carbon monoxide from ambient air

    Directory of Open Access Journals (Sweden)

    Đorđević Amelija

    2016-01-01

    Full Text Available Background/Aim. Analysis of air quality in Serbia indicates that the city of Niš belongs to a group of cities characterized by the third category of air quality (excessive air pollution. The aim of the study was to analyze the degree of causality between ambient air quality affected by particulate matter of 10 μm (PM10 and carbon monoxide (CO and the incidence of respiratory diseases in preschool children in the city of Niš. Methods. We quantified the influence of higher PM10 concentrations and carbon monoxide comprising motor vehicle exhausts in the city of Niš on the occurrence of unwanted health effects in preschool children by means of the hazard quotient (HQ, individual health risk (Ri, and the probability of cancer (ICR. The methodology used was according to the US Environmental Protection Agency (EPA, and it included basic scientific statistical methods, compilation methods, and the relevant mathematical methods for assessing air pollution health risk, based on the use of attribute equations. Results. Measurement of ambient air pollutant concentrations in the analyzed territory for the entire monitoring duration revealed that PM10 concentrations were significantly above the allowed limits during 80% of the days. The maximum measured PM10 concentration was 191.6 μg/m3, and carbon monoxide 5.415 mg/m3. The incidence of respiratory diseases in the experimental group, with a prominent impact of polluted air was 57.17%, whereas the incidence in the control group was considerably lower, 41.10 %. There were also significant differences in the distribution of certain respiratory diseases. Conclusion. In order to perform good causal analysis of air quality and health risk, it is very important to establish and develop a system for long-term monitoring, control, assessment, and prediction of air pollution. We identified the suspended PM10 and CO as ambient air pollutants causing negative health effects in the exposed preschool children

  15. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  16. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  17. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  18. Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments

    Science.gov (United States)

    Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl

    2012-01-01

    This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.

  19. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    International Nuclear Information System (INIS)

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  20. Accounting for Organic Carbon Change in Deep Soil Altered Carbon Sequestration Efficiency

    Science.gov (United States)

    Li, J.; Liang, F.; Xu, M.; Huang, S.

    2017-12-01

    Study on soil organic carbon (SOC) sequestration under fertilization practices in croplands lacks information of soil C change at depth lower than plow layer (i.e. 20 30-cm). By synthesizing long-term datasets of fertilization experiments in four typical Chinese croplands representing black soil at Gongzhuling(GZL), aquatic Chao soil at Zhengzhou(ZZ), red soil at Qiyang(QY) and purple soil at Chongqing(CQ) city, we calculated changes in SOC storage relative to initial condition (ΔSOC) in 0-20cm and 0-60cm, organic C inputs (OC) from the stubble, roots and manure amendment, and C sequestration efficiency (CSE: the ratio of ΔSOC over OC) in 0-20cm and 0-60cm. The fertilization treatments include cropping with no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed SOC storage generally decreased with soil depth (i.e. 0-20 > 20-40, 40-60 cm) and increased with fertilizations (i.e. initial fertilizations, soil at depth (>20cm) can act as important soil carbon sinks in intrinsically high fertility soils (i.e. black soil) but less likely at poor fertility soil (i.e. aquatic Chao soil). It thus informs the need to account for C change in deep soils for estimating soil C sequestration capacity particularly with indigenously fertile cropland soils.

  1. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  2. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    International Nuclear Information System (INIS)

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC IMPROVE-A (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC NIOSH ratio and the EC IMPROVE-A to EC EUSAAR ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  3. Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China

    International Nuclear Information System (INIS)

    Shi, Z.; Tao, S.; Pan, B.; Liu, W.X.; Shen, W.R.

    2007-01-01

    Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K OC for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM. - Distribution of PAHs among water, suspended solids and sediment was under strong influence of naturally occurring organic carbon

  4. Organic Carbon/Water and Dissolved Organic Carbon/Water Partitioning of Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships.

    Science.gov (United States)

    Panagopoulos, Dimitri; Jahnke, Annika; Kierkegaard, Amelie; MacLeod, Matthew

    2015-10-20

    The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (KOC) and between Aldrich humic acid dissolved organic carbon and water (KDOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model. The measured log KOC of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were 5.06, 6.12, and 7.07, and log KDOC were 5.05, 6.13, and 6.79. To our knowledge, our measurements for KOC of D6 and KDOC of D4 and D6 are the first reported. Polyparameter linear free energy relationships (PP-LFERs) derived from training sets of empirical data that did not include cVMS generally did not predict our measured partition ratios of cVMS accurately (root-mean-squared-error (RMSE) for logKOC 0.76 and for logKDOC 0.73). We constructed new PP-LFERs that accurately describe partition ratios for the cVMS as well as for other chemicals by including our new measurements in the existing training sets (logKOC RMSEcVMS: 0.09, logKDOC RMSEcVMS: 0.12). The PP-LFERs we have developed here should be further evaluated and perhaps recalibrated when experimental data for other siloxanes become available.

  5. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  6. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  7. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  8. Evaluation of a two-step thermal method for separating organic and elemental carbon for radiocarbon analysis

    NARCIS (Netherlands)

    Dusek, U.; Monaco, M.; Prokopiou, M.; Gongriep, F.; Hitzenberger, R.; Meijer, H. A. J.; Rockmann, T.

    2014-01-01

    We thoroughly characterized a system for thermal separation of organic carbon (OC) and elemental carbon (EC) for subsequent radiocarbon analysis. Different organic compounds as well as ambient aerosol filter samples were introduced into an oven system and combusted to CO2 in pure O-2. The main

  9. Minerilization of carbon and nitrogen of organic residues from ...

    African Journals Online (AJOL)

    Minerilization of carbon and nitrogen of organic residues from selected plants in a tropical cropping system. O M Onuh, HA Okorie. Abstract. No Abstract. Journal of Agriculture and Food Sciences Vol. 3 (1) 2005 pp. 11-24. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  10. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    Science.gov (United States)

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Occurrence of Organic Compounds and Trace Elements in the Upper Passaic and Elizabeth Rivers and Their Tributaries in New Jersey, July 2003 to February 2004: Phase II of the New Jersey Toxics Reduction Workplan for New York-New Jersey Harbor

    Science.gov (United States)

    Wilson, Timothy P.; Bonin, Jennifer L.

    2008-01-01

    Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating

  12. Statistical modeling of road contribution as emission sources to total suspended particles (TSP) under MCF model downtown Medellin - Antioquia - Colombia, 2004

    International Nuclear Information System (INIS)

    Gomez, Miryam; Saldarriaga, Julio; Correa, Mauricio; Posada, Enrique; Castrillon M, Francisco Javier

    2007-01-01

    Sand fields, constructions, carbon boilers, roads, and biologic sources are air-contaminant-constituent factors in down town Valle de Aburra, among others. the distribution of road contribution data to total suspended particles according to the source receptor model MCF, source correlation modeling, is nearly a gamma distribution. Chi-square goodness of fit is used to model statistically. This test for goodness of fit also allows estimating the parameters of the distribution utilizing maximum likelihood method. As convergence criteria, the estimation maximization algorithm is used. The mean of road contribution data to total suspended particles according to the source receptor model MCF, is straightforward and validates the road contribution factor to the atmospheric pollution of the zone under study

  13. Carbon transport in Monterey Submarine Canyon

    Science.gov (United States)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  14. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    Science.gov (United States)

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Removal of dissolved organic carbon in pilot wetlands of subsuperficial and superficial flows

    Directory of Open Access Journals (Sweden)

    Ruth M. Agudelo C

    2010-04-01

    Full Text Available Objective: to compare removal of dissolved organic carbon (d o c obtained with pilot wetlands of subsuperficial flow (p h s s and superficial flow (p h s, with Phragmites australis as treatment alternatives for domestic residual waters of small communities and rural areas. Methodology: an exploratory and experimental study was carried out adding 100,12 mg/L of dissolved organic carbon to synthetic water contaminated with Chlorpyrifos in order to feed the wetlands. A total amount of 20 samples were done, 16 of them in four experiments and the other ones in the intervals with no use of pesticides. Samples were taken on days 1, 4, 8, and 11 in the six wetlands, three of them subsuperficial, and three of them superficial. The main variable answer was dissolved organic carbon, measured in the organic carbon analyzer. Results: a high efficiency in the removal of d o c was obtained with the two types of wetlands: 92,3% with subsuperficial flow and 95,6% with superficial flow. Such a high removal was due to the interaction between plants, gravel and microorganisms. Conclusion: although in both types of wetlands the removal was high and similar, it is recommended to use those of subsuperficial flow because in the superficial ones algae and gelatinous bio-films are developed, which becomes favorable to the development of important epidemiologic vectors in terms of public health.

  16. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  17. Towards a paradigm shift in the modeling of soil organic carbon decomposition for earth system models

    Science.gov (United States)

    He, Yujie

    Soils are the largest terrestrial carbon pools and contain approximately 2200 Pg of carbon. Thus, the dynamics of soil carbon plays an important role in the global carbon cycle and climate system. Earth System Models are used to project future interactions between terrestrial ecosystem carbon dynamics and climate. However, these models often predict a wide range of soil carbon responses and their formulations have lagged behind recent soil science advances, omitting key biogeochemical mechanisms. In contrast, recent mechanistically-based biogeochemical models that explicitly account for microbial biomass pools and enzyme kinetics that catalyze soil carbon decomposition produce notably different results and provide a closer match to recent observations. However, a systematic evaluation of the advantages and disadvantages of the microbial models and how they differ from empirical, first-order formulations in soil decomposition models for soil organic carbon is still needed. This dissertation consists of a series of model sensitivity and uncertainty analyses and identifies dominant decomposition processes in determining soil organic carbon dynamics. Poorly constrained processes or parameters that require more experimental data integration are also identified. This dissertation also demonstrates the critical role of microbial life-history traits (e.g. microbial dormancy) in the modeling of microbial activity in soil organic matter decomposition models. Finally, this study surveys and synthesizes a number of recently published microbial models and provides suggestions for future microbial model developments.

  18. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  19. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  20. Values in Organic Farming

    DEFF Research Database (Denmark)

    Kjærgård, Bente; Pedersen, Kirsten Bransholm; Land, Birgit

    The study focuses on the recent debate about what is, or what constitutes, organic farming and what is the right path for organic farming in the future. The study is based on a critical discourse analysis of the controversy about suspending the private standard for organic farming adopted by the ...

  1. Scavenging of priority organic pollutants from aqueous waste using granular activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Yenkie, M.K.N. [Central Fuel Research Institute, Nagpur (India)

    2006-04-15

    Many organic compounds present in industrial and domestic wastewaters are carcinogenic in nature. Removal of these organic compounds from wastewater has become a great challenge to wastewater treatment technologies, as many of them are non-biodegradable in nature. Adsorption on granular activated carbon (GAC) has emerged an efficient and economically viable technology for removal of final traces of a broad spectrum of toxic organic compounds from domestic and industrial wastewater. In the present investigation adsorption of some priority organic pollutants, namely phenol, o-cresol, p-nitrophenol, m-methoxyphenol, benzoic acid and salicylic acid on granular activated carbon, was studied in a batch system at laboratory scale. Experiments were carried out to determine adsorption isotherms and kinetics for adsorbate when present in aqueous solutions as single, bi- and tri-solute systems. The commercially available bituminous coal based granular activated carbon Filtrasorb 300 (F-300) was used as adsorbent. The results indicate that p-nitrophenol is most strongly adsorbed as compared to other phenols studied. Aqueous phase solubility of the adsorbate plays a deciding role in multi-component systems as more hydrophobic p-nitrophenol adsorbs to a greater extent than less hydrophobic phenol, o-cresol and m-methoxyphenol. The preferential adsorption of strongly adsorbable solute over a weakly adsorbable one has been observed, as the solutes are competing for the available surface area of the adsorbent for adsorption.

  2. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

  3. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford

  4. Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.

    Science.gov (United States)

    Li, Peng; Zhang, Dongzhi; Jiang, Chuanxing; Zong, Xiaoqi; Cao, Yuhua

    2017-12-15

    The extraordinary properties of black phosphorus (BP) make it a promising candidate for next-generation transistor chemical sensors. However, BP films reported so far are supported on substrate, and substrate scattering drastically deteriorates its electrical properties. Consequentially, the potential sensing capability of intrinsic BP is highly underestimated and its sensing mechanism is masked. Additionally, the optimum sensing regime of BP remains unexplored. This article is the first demonstration of suspended BP sensor operated in subthreshold regime. BP exhibited significant enhancement of sensitivity for ultra-low-concentration mercury detection in the absence of substrate, and the sensitivity reached maximum in subthreshold regime. Without substrate scattering, the suspended BP device demonstrated 10 times lower 1/f noise which contributed to better signal-to-noise ratio. Therefore, rapid label-free trace detection of Hg 2+ was achieved with detection limit of 0.01 ppb, lower than the world health organization (WHO) tolerance level (1 ppb). The time constant for ion detection extracted was 3s. Additionally, experimental results revealed that good stability, repeatability, and selectivity were achieved. BP sensors also demonstrated the ability of detecting mercury ions in environment water samples. The underling sensing mechanism of intrinsic BP was ascribed to the carrier density variation resulted from surface charge gating effect, so suspended BP in subthreshold regime with optimum gating effect demonstrated the best sensitivity. Our results show the prominent advantages of intrinsic BP as a sensing material. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  6. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    Science.gov (United States)

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.

  7. Massive carbon addition to an organic-rich Andosol increased the subsoil but not the topsoil carbon stock

    Science.gov (United States)

    Zieger, Antonia; Kaiser, Klaus; Ríos Guayasamín, Pedro; Kaupenjohann, Martin

    2018-05-01

    Andosols are among the most carbon-rich soils, with an average of 254 Mg ha-1 organic carbon (OC) in the upper 100 cm. A current theory proposes an upper limit for OC stocks independent of increasing carbon input, because of finite binding capacities of the soil mineral phase. We tested the possible limits in OC stocks for Andosols with already large OC concentrations and stocks (212 g kg-1 in the first horizon, 301 Mg ha-1 in the upper 100 cm). The soils received large inputs of 1800 Mg OC ha-1 as sawdust within a time period of 20 years. Adjacent soils without sawdust application served as controls. We determined total OC stocks as well as the storage forms of organic matter (OM) of five horizons down to 100 cm depth. Storage forms considered were pyrogenic carbon, OM of 2.0 g cm-3. The two fractions > 1.6 g cm-3 were also analysed for aluminium-organic matter complexes (Al-OM complexes) and imogolite-type phases using ammonium-oxalate-oxalic-acid extraction and X-ray diffraction (XRD). Pyrogenic organic carbon represented only up to 5 wt % of OC, and thus contributed little to soil OM. In the two topsoil horizons, the fraction between 1.6 and 2.0 g cm-3 had 65-86 wt % of bulk soil OC and was dominated by Al-OM complexes. In deeper horizons, the fraction > 2.0 g cm-3 contained 80-97 wt % of the bulk soil's total OC and was characterized by a mixture of Al-OM complexes and imogolite-type phases, with proportions of imogolite-type phases increasing with depth. In response to the sawdust application, only the OC stock at 25-50 cm depth increased significantly (α = 0.05, 1 - β = 0.8). The increase was entirely due to increased OC in the two fractions > 1.6 g cm-3. However, there was no significant increase in the total OC stocks within the upper 100 cm. The results suggest that long-term large OC inputs cannot be taken up by the obviously OC-saturated topsoil but induce downward migration and gradually increasing storage of OC in subsurface soil layers. The small

  8. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    Science.gov (United States)

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  9. Soil Organic Matter to Soil Organic Carbon ratios in recovered mountain peatlands using Vis-Nir spectroscopy approach.

    Science.gov (United States)

    Fernandez, Susana del Carmen; Valderrabano, Jesus; Peon, Juan Jose; Bueno, Alvaro

    2015-04-01

    The present research is part of a Life Project title "Inland Wetlands North of the Iberian Peninsula: Management and restoration of wetlands and hygrophilous environments" TREMEDAL (LIFE 11/ENV/ES/707) in which 25 wetland sites distributed by Galicia, Asturias, Castilla and León, País Vasco and Navarra were selected to be protected, restore or improve their conservation status and store seeds of bog plant species in the gene bank of Atlantic Botanic Garden of Gijon City, Spain. In Cantabrian Mountain Range two Poldjes (Glacio-Karstic depressions) site in Picos de Europa National Park were selected to develop an experimental action in the framework of the Life project. The selected sites harboring the most biodiverse peatland plant communities in the Cantabrian Mountain Range thus are in danger of extinction due to overgrazing. The action proposes the exclusion of livestock and wild herbivores in 5 parcels in order to contrast the differences in evolution of plant communities, hydrology and soil organic matter between grazed and non-grazed areas; and to determine future management measures that can reconcile traditional livestock raising with a better conservation of peatlands. The peatland are Vega of Liordes (Castilla-Leon) at an average altitude of 1868 m and filled mainly by clayed ferruginous sediments and Vega of Comella (Principality of Asturias) at an average altitude of 850 m and filled by at least 49 m of glacial and lacustrine sediments and 8 m of necromass from peatland vegetation. The soils developed are histosols under seasonal hydric regime in which the phreatic level suffers fluctuations over 30 cm along the year. At the time 0 (time fences were) 45 samples of the upper 15 cm of the histosols inside and outside the fences were taken. At the time 1 ( one year later) were re-sampled. Total organic carbon (TOC), Oxidizable Organic Carbon (OC), Carbonates presence and pH were analysis by chemical procedures. Also the Vis-Nir spectral analysis of the

  10. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  11. Methods of and system for swing damping movement of suspended objects

    Science.gov (United States)

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  12. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC).

    Science.gov (United States)

    Mueller, Benjamin; de Goeij, Jasper M; Vermeij, Mark J A; Mulders, Yannick; van der Ent, Esther; Ribes, Marta; van Duyl, Fleur C

    2014-01-01

    Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC) as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC) in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean ± SD; 13 ± 17 μmol L(-1)) and 76% (C. delitrix; 10 ± 12 μmol L(-1)) of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton) despite high bacteria retention efficiency (72 ± 15% and 87 ± 10%). Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461 ± 773 and 354 ± 562 μmol C h(-1) respectively. Bacteria removal was 1.8 ± 0.9 × 10(10) and 1.7 ± 0.6 × 10(10) cells h(-1), which equals a carbon uptake of 46.0 ± 21.2 and 42.5 ± 14.0 μmol C h(-1) respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC) on reefs as a result of the ongoing coral-algal phase shift.

  13. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC.

    Directory of Open Access Journals (Sweden)

    Benjamin Mueller

    Full Text Available Coral-excavating sponges are the most important bioeroders on Caribbean reefs and increase in abundance throughout the region. This increase is commonly attributed to a concomitant increase in food availability due to eutrophication and pollution. We therefore investigated the uptake of organic matter by the two coral-excavating sponges Siphonodictyon sp. and Cliona delitrix and tested whether they are capable of consuming dissolved organic carbon (DOC as part of their diet. A device for simultaneous sampling of water inhaled and exhaled by the sponges was used to directly measure the removal of DOC and bacteria in situ. During a single passage through their filtration system 14% and 13% respectively of the total organic carbon (TOC in the inhaled water was removed by the sponges. 82% (Siphonodictyon sp.; mean ± SD; 13 ± 17 μmol L(-1 and 76% (C. delitrix; 10 ± 12 μmol L(-1 of the carbon removed was taken up in form of DOC, whereas the remainder was taken up in the form of particulate organic carbon (POC; bacteria and phytoplankton despite high bacteria retention efficiency (72 ± 15% and 87 ± 10%. Siphonodictyon sp. and C. delitrix removed DOC at a rate of 461 ± 773 and 354 ± 562 μmol C h(-1 respectively. Bacteria removal was 1.8 ± 0.9 × 10(10 and 1.7 ± 0.6 × 10(10 cells h(-1, which equals a carbon uptake of 46.0 ± 21.2 and 42.5 ± 14.0 μmol C h(-1 respectively. Therefore, DOC represents 83 and 81% of the TOC taken up by Siphonodictyon sp. and C. delitrix per hour. These findings suggest that similar to various reef sponges coral-excavating sponges also mainly rely on DOC to meet their carbon demand. We hypothesize that excavating sponges may also benefit from an increasing production of more labile algal-derived DOC (as compared to coral-derived DOC on reefs as a result of the ongoing coral-algal phase shift.

  14. Melanised endophytic fungi may increase stores of organic carbon in soil

    Science.gov (United States)

    McGee, Peter; Mukasa Mugerwa, Tendo

    2013-04-01

    The processes underlying the carbon cycle in soil, especially sequestration of organic carbon (OC), are poorly understood. Hydrolysis and oxidation reduce organic matter. Hydrolysis degrades linear organic molecules in aerobic and anaerobic conditions, though it is slower in anaerobic conditions. Aromatic compounds are only degraded by oxidation. Oxygen is by far the most common electron acceptor in soil. Anaerobic conditions preclude oxidation in soil and will result in the preservation of aromatic compounds so long as the conditions remain anaerobic. We experimentally tested this model using melanised endophytic fungi. Melanin is a polyaromatic compound that can be readily visualised, though is difficult to quantify. An endophytic association provides the fungus with an ongoing source of energy. Fungal hyphae elongate considerable distances in soil where they may colonise aggregates, the core of which may be anaerobic. The hypothesis we tested is that melanised endophytic fungi increase OC in soil. Seedlings of subterranean clover inoculated with single isolates were grown in split pots where the impact of the fungus could be quantified in the hyphal chamber, separated from the roots by a steel mesh. We found that melanised endophytic fungi significantly increased OC and aromatic carbon in a well-aggregated carbon-rich soil. OC increased by up to 17% within 14 weeks. Twenty out of 24 isolates statistically significantly increased and none decreased OC. Increases differed between fungal isolates. Increases in the hyphal chamber were independent of any change in OC associated with the roots of the host plant. The storage of OC in field soils is being explored. Inoculation of plant roots with melanised endophytic fungi offers one means whereby OC may be increased in field soils.

  15. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  16. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    Science.gov (United States)

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  17. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  18. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    Science.gov (United States)

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  19. Distribution of soil organic carbon in the conterminous United States

    Science.gov (United States)

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  20. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring.

    Science.gov (United States)

    Meyer-Jacob, Carsten; Tolu, Julie; Bigler, Christian; Yang, Handong; Bindler, Richard

    2015-05-26

    Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.