WorldWideScience

Sample records for suspended nanobelt bimorph

  1. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  2. Multiform structures of SnO2 nanobelts

    International Nuclear Information System (INIS)

    Duan Junhong; Gong Jiangfeng; Huang Hongbo; Zhao Xiaoning; Cheng Guangxu; Yu Zhongzhen; Yang Shaoguang

    2007-01-01

    Multiform SnO 2 microstructures were synthesized by a facile thermal evaporation of tin grains. The product was characterized with a variety of techniques to obtain the structural and optical information. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed a large percentage of acute angle zigzag nanobelts with perfectly periodic morphology. High resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) patterns revealed that the zigzag nanobelts were single crystalline and their zone axis was along the [010] crystal direction. The growth mechanism of zigzag nanobelts was proposed based on TEM characterization and thermodynamic analysis. The zigzag nanobelts were deduced to be formed by changing the growth direction from [101-bar] to [101] or vice versa. The photoluminescence (PL) spectroscopy of the nanobelts showed a broad and strong luminescence emission centred at 550 nm

  3. Mg-doping experiment and electrical transport measurement of boron nanobelts

    International Nuclear Information System (INIS)

    Kirihara, K.; Hyodo, H.; Fujihisa, H.; Wang, Z.; Kawaguchi, K.; Shimizu, Y.; Sasaki, T.; Koshizaki, N.; Soga, K.; Kimura, K.

    2006-01-01

    We measured electrical conductance of single crystalline boron nanobelts having α-tetragonal crystalline structure. The doping experiment of Mg was carried out by vapor diffusion method. The pure boron nanobelt is a p-type semiconductor and its electrical conductivity was estimated to be on the order of 10 -3 (Ω cm) -1 at room temperature. The carrier mobility of pure boron nanobelt was measured to be on the order of 10 -3 (cm 2 Vs -1 ) at room temperature and has an activation energy of ∼0.19 eV. The Mg-doped boron nanobelts have the same α-tetragonal crystalline structure as the pristine nanobelts. After Mg vapor diffusion, the nanobelts were still semiconductor, while the electrical conductance increased by a factor of 100-500. Transition to metal or superconductor by doping was not observed. - Graphical abstract: SEM micrographs of boron nanobelt after Ni/Au electrode fabrication by electron beam lithography. Display Omitted

  4. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    Science.gov (United States)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  5. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  6. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    International Nuclear Information System (INIS)

    Luo Haiyan; Wei Mingdeng; Wei Kemei

    2011-01-01

    Research highlights: → Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. → These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  7. High-frequency performance for a spiral-shaped piezoelectric bimorph

    Science.gov (United States)

    Huang, Fang Sheng; Feng, Zhi Hua; Ma, Yu Ting; Pan, Qiao Sheng; Zhang, Lian Sheng; Liu, Yong Bin; He, Liang Guo

    2018-04-01

    Piezoelectric cantilever is suitable as an actuator for micro-flapping-wing aircraft. Higher resonant frequency brings about stronger flight energy, and the flight amplitude can be compensated by displacement-amplification mechanism, such as lever. To obtain a higher resonant frequency, straight piezoelectric bimorph was rolled into spiral-shaped piezoelectric bimorph with identical effective length in this study, which is verified in COMSOL simulations. Simulation results show that compared with the straight piezoelectric bimorph, the spiral-shaped piezoelectric bimorph with two turns has higher inherent frequencies (from 204.79 Hz to 504.84 Hz in terms of axial oscillation mode, and from 319.77 Hz to 704.48 Hz in terms of tangential torsional mode). The spiral-shaped piezoelectric bimorph is fabricated by a precise laser cutting process and consists of two turns with effective length of 60 mm, width of 2.5 mm, and thickness of 1.6 mm, respectively. With the excitation voltage of 100 Vpp applying an electric field across the thickness of the bimorph, the tip displacement of the actuator in the axial oscillation and tangential torsional modes are 85 μm and 15 μm, respectively.

  8. Bimorph mirrors: The Good, the Bad, and the Ugly

    Science.gov (United States)

    Alcock, Simon G.; Sutter, John P.; Sawhney, Kawal J. S.; Hall, David R.; McAuley, Katherine; Sorensen, Thomas

    2013-05-01

    Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray "pencil-beam" scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called "junction effect" has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the "Ultimate" mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect.

  9. Bimorph mirrors: The Good, the Bad, and the Ugly

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Sutter, John P.; Sawhney, Kawal J.S.; Hall, David R.; McAuley, Katherine; Sorensen, Thomas

    2013-01-01

    Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray “pencil-beam” scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called “junction effect” has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the “Ultimate” mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect

  10. Porous-ZnO-Nanobelt Film as Recyclable Photocatalysts with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Wang Min

    2010-01-01

    Full Text Available Abstract In this article, the porous-ZnO-nanobelt film was synthesized by oxidizing the ZnSe-nanobelt film in air. The experiment results show that the porous-ZnO-nanobelt film possesses enhanced photocatalytic activity compared with the ZnO-nanobelt film, and can be used as recyclable photocatalysts. The enhanced photocatalytic activity of the porous-ZnO-nanobelt film is attributed to the increased surface area. Therefore, turning the 1D-nanostructure film into porous one may be a feasible approach to meet the demand of photocatalyst application.

  11. Optical sensor based on a single CdS nanobelt.

    Science.gov (United States)

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  12. Optical Sensor Based on a Single CdS Nanobelt

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-04-01

    Full Text Available In this paper, an optical sensor based on a cadmium sulfide (CdS nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT method. X-Ray Diffraction (XRD and Transmission Electron Microscopy (TEM results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 104, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  13. pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs

    Science.gov (United States)

    Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.

    2008-03-01

    We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.

  14. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  15. Synthesis of GeSe2 Nanobelts Using Thermal Evaporation and Their Photoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2014-01-01

    Full Text Available GeSe2 nanobelts were synthesized via a simple thermal-evaporation process by using gold particles as catalyst and GeSe2 flakes as starting materials. The morphology, crystal structure, and composition were characterized with scanning electron microscopy (SEM, high-resolution transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. SEM micrographs show that most of GeSe2 nanobelts have distinct segmented structures (wide belt, zigzag belt, and narrow belt. A possible mechanism was proposed for the growth of segmented nanobelts. It is possible that the growth of the segmented nanobelts is dominated by both vapor-liquid-solid and vapor-solid mechanisms. Devices made of single GeSe2 nanobelt have been fabricated and their photoelectrical property has been investigated. Results indicate that these nanobelt devices are potential building blocks for optoelectronic applications.

  16. Controllable synthesis of SnO2 nanowires and nanobelts by Ga catalysts

    International Nuclear Information System (INIS)

    Xie Xing; Shao Zhibin; Yang Qianhui; Shen Xiaoshuang; Zhu Wei; Hong Xun; Wang Guanzhong

    2012-01-01

    We report the morphology control of one-dimensional (1D) SnO 2 nanostructures by Ga catalysts using thermal evaporation method. Gallium (Ga), either from decomposition of GaN powder or from Ga metal, is adopted as a catalyst for the growth of long SnO 2 nanowires and nanobelts. At similar experimental conditions, quantities of nanobelts are formed instead of nanowires when the temperature and reaction time are increased. Such approach enables us to synthesize various morphologies of SnO 2 nanobelts with different side facets. Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time, which is attributed to the large amount of oxygen vacancies introduced in the nanobelts by the Ga catalysts. - Graphical abstract: Morphology control of one-dimensional SnO 2 nanostructures are realized via a thermal evaporation method. Novel nanobelts along [0 0 1] direction having high energy side facets were fabricated for the first time. Highlights: ► Morphology control of one-dimensional SnO 2 nanostructures are realized by Ga catalysts using thermal evaporation method. ► Oxygen vacancies influenced the growth directions in order to neutralize thermodynamic instability. ► Novel nanobelts with [0 0 1] growth direction with high energy side facets are obtained for the first time.

  17. Synthesis, structure and electrochemical properties of polyaniline/MoO3 nanobelt composite for lithium battery

    International Nuclear Information System (INIS)

    Mohan, Varishetty Madhu; Chen, Wen; Murakami, Kenji

    2013-01-01

    Graphical abstract: Hydrothermal method was introduced for the synthesis of MoO 3 nanobelts and polyaniline (PANI)/MoO 3 nanobelt composites. The structure and morphology of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared radiation (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. We can see the presence of polyaniline on the MoO 3 nanobelts surface in the TEM pictures as shown in Fig. (a). The pure MoO 3 nanobelts exhibit the initial specific capacity 276 mAhg −1 , whereas PANI/MoO 3 nanobelt composite shows little low initially 228 mAhg −1 after that it has more stabilized specific capacity with increasing cycle numbers as shown in Fig. (b). The cyclic voltammograms of the PANI/MoO 3 nanobelt composite show better cyclic performance compared to pure MoO 3 nanobelts. The electrochemical impedance spectres were studied for both the pure and PANI/MoO 3 samples at 2.0 and 3.5 potentials. The role of the PANI polymeric component of the composite material seems to be the stabilization of the specific capacity due to probable homogeneous distribution of the induced stress during cycling. Display Omitted Highlights: ► Hydrothermal synthesis of MoO 3 , PANI/MoO 3 nanobelts. ► Samples were characterised by XRD, FTIR, DSC, SEM, TEM, CV and impedance. ► MoO 3 nanobelts cathode battery shows initial specific capacity 276 mAhg −1 . ► PANI/MoO 3 nanobelts show initial specific capacity 228 mAhg −1 but high stability. ► PANI/MoO 3 sample studies by impedance at the potentials of 2.0 and 3.5 V. -- Abstract: The MoO 3 nanobelts and polyaniline (PANI)/MoO 3 nanobelt composite were synthesized using hydrothermal method. The crystal structure and morphology of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared radiation (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Differential scanning calorimetric (DSC) and thermo

  18. Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters

    KAUST Repository

    Ahmad, Mahmoud Al; Alshareef, Husam N.; Elshurafa, Amro M.; Salama, Khaled N.

    2012-01-01

    the bimorph based on the electromechanical, single degree of freedom, analogy. Further, by taking into account the intrinsic capacitance of the piezoelectric harvester, a more descriptive expression of the resonant frequency in piezoelectric bimorphs

  19. Synthesis and photoluminescence properties of comb-like CdS nanobelt/ZnO nanorod heterostructures

    International Nuclear Information System (INIS)

    Lan Changyong; Gong Jiangfeng; Liu Chunming

    2012-01-01

    Highlights: ► Comb-like CdS nanobelt/ZnO nanorod heterostructures were synthesized. ► ZnO nanorods epitaxially grew on the (1 0 0) surface of the CdS nanobelts along [1 0 0]. ► A preliminary growth mechanism was proposed. - Abstract: Comb-like CdS nanobelt/ZnO nanorod heterostructures were synthesized by a two-stage method. X-ray diffractometer, scanning electron microscopy, transmission electron microscopy were used to characterize and analyze the as-synthesized products. The results demonstrate that the CdS nanobelt backbones grow along [2 1 0] and the ZnO nanorod branches epitaxially grow on the (0 0 1) surface of the CdS nanobelt with a growth direction of [0 0 1]. The as-prepared heterostructures exhibit an important feature of single-crystallinity. At room temperature, the comb-like CdS nanobelt/ZnO nanorod heterostructures show strong green emission.

  20. The influence of VO2(B nanobelts on thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Zhang Yifu

    2015-09-01

    Full Text Available The influence of vanadium dioxide VO2(B on thermal decomposition of ammonium perchlorate (AP has not been reported before. In this contribution, the effect of VO2(B nanobelts on the thermal decomposition of AP was investigated by the Thermo- Gravimetric Analysis and Differential Thermal Analysis (TG/DTA. VO2(B nanobelts were hydrothermally prepared using peroxovanadium (V complexes, ethanol and water as starting materials. The thermal decomposition temperatures of AP in the presence of I wt.%, 3 wt.% and 6 wt.% of as-obtained VO2nanobelts were reduced by 39 °C. 62 °C and 74 °C, respectively. The results indicated that VO2(B nanobelts had a great influence on the thermal decomposition temperature of AP Furthermore, the influence of the corresponding V2Os, which was obtained by thermal treatment of VO2(B nanobelts, on the thermal decomposition of AP was also investigated. The resufs showed that VO2(B nanobelts had a greater influence on the thermal decomposition temperature of AP than that of V2Os.

  1. A novel synthesis of α-MoO3 nanobelts and the characterization

    International Nuclear Information System (INIS)

    Chiang, Tzu Hsuan; Yeh, Hung Che

    2014-01-01

    Highlights: • This work provided a novel method for the fabrication of α-MoO 3 nanobelts. • A growth mechanism associated with the formation of α-MoO 3 nanobelts. • The thickness of the α-MoO 3 belts decreased as the sintering time increased. • The crystallite size of sintered α-MoO 3 belts increased with increases of sintering time. -- Abstract: This study investigated the reaction of ethylene glycol with ammonium molybdate tetrahydrate that the reaction product had the structural characteristics of α-MoO 3 (molybdenum trioxide) nanobelts. This work provided a novel and effective method for the fabrication of high-quality α-MoO 3 nanobelts. The initial reaction was very simple, only requiring reaction at reaction time of 40 min at 120 °C to form MoO 3 ·H 2 O, which was then converted to α-MoO 3 by sintering at 300 °C for 1 h. The α-MoO 3 nanobelts were formed at a sintering temperature of 700 °C for 3 h. The structure and morphology of the α-MoO 3 nanobelts were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The α-MoO 3 nanobelts that were obtained after sintering at 700 °C for 3 h were 99 nm thick, 500 μm length and had an average width of 10 μm. The (0 2 0), (0 4 0), (0 6 0), and (0 1 0 0) planes were observed in XRD, implying that the α-MoO 3 nanobelts grew with a strongly-preferred orientation

  2. Ab initio study on mechanical-bending-induced ferroelectric phase transition in ultrathin perovskite nanobelts

    International Nuclear Information System (INIS)

    Li, H.F.; Zhang, G.H.; Zheng, Yue; Wang, Biao; Chen, W.J.

    2014-01-01

    Based on first-principles calculations, we systematically investigated the structural, ferroelectric (FE), energetic and electronic properties of bended ultrathin PbTiO 3 and BaTiO 3 nanobelts in between flat sheet and nanotube configurations. It is found that both PbTiO 3 and BaTiO 3 ultrathin nanobelts can possess axial antiferrodistortive structural distortion (AFD distortion), and the magnitude of the AFD rotation angle is obviously determined by the bending curvature of the nanobelts. Meanwhile, spontaneous polarization can be retained in these single-unit-cell-thick nanobelts with contributions from the axial improper ferroelectricity and the radial flexoelectricity, which indicates that ultrathin perovskite nanobelts do not have a critical thickness. On the other hand, we found that the AFD distortion is stable and significant in PbTiO 3 nanobelts while it is metastable in BaTiO 3 nanobelts in comparison with the stable non-AFD structure without AFD distortion. This is due to the competition between AFD distortion and circumferential lattice extension in releasing the elastic energy in BaTiO 3 material. Moreover, we found that the electronic structure and bandgap of the nanobelts can be tuned by the bending curvature, indicating potential control of transport properties by mechanical bending. Our results gave more insight into the inherence of improper ferroelectricity in low-dimensional perovskite ferroelectrics

  3. Effects of surface passivation on α-Si_3N_4 nanobelts: A first-principles study

    International Nuclear Information System (INIS)

    Xiong, Li; Dai, Jianhong; Song, Yan; Wen, Guangwu; Qin, Chunlin

    2016-01-01

    Highlights: • The stability and electronic properties of α-Si_3N_4 nanobelts are theoretically studied. • The surface of α-Si_3N_4 nanobelts are passivated with H, OH, F and Cl atoms. • The structural stability of nanobelts decreases in the order of OH, F, Cl, and H passivations. • The surface passivation greatly changes the electronic structures of α-Si_3N_4 nanobelts. - Abstract: The energetic stability and electronic structures of H, OH, F, or Cl passivated α-Si_3N_4 nanobelts orientating along various directions are systematically investigated via first-principles calculations. The results show that the stability of nanobelts is more sensitive to the surface passivation than growth direction. It decreases in the order of (100% OH), (50% H, 50% OH), (50% H, 50% F), (100% F), (50% H, 50% Cl), (100% Cl), (100% H), and unpassivation. H atoms prefer to bond with surface N atoms of nanobelts, while OH, F and Cl prefer to bond with Si atoms of nanobelts. In addition, the surface passivation greatly changes the electronic structures of nanobelts. The OH and F passivations result in the larger band gaps than the Cl passivation. While the coverage of OH, F or Cl increases to 100%, their band gaps decrease significantly, indicating an improvement of electrical properties, which is good agreement with the experimental findings. The 100% Cl-passivated nanobelt orientating along the [011] direction possesses the smallest band gap of 1.038 eV. The band gaps are found to be affected by a competition between quantum confinement effect and the role of the surface passivated groups or atoms at the band-gap edges.

  4. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2015-01-01

    Full Text Available Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectric bimorph cantilever beam are given in detail. Finally, an experiment is also conducted. The results show that wind-induced piezoelectric bimorph cantilever beam has low resonant frequency and stable output under the first modal mode and can achieve the maximum output voltage under the resonant condition. The output voltage increases with the increase of the length and width of wind-induced piezoelectric bimorph cantilever beam, but the latter increasing amplitude is relatively smaller. In addition, the output voltage decreases with the increase of the thickness and the ratio of metal substrate to piezoelectric patches thickness. The experiment showed that the voltage amplitude generated by the piezoelectric bimorph cantilever beam can reach the value simulated in ANSYS, which is suitable for actual working conditions.

  5. Graphene-based bimorphs for micron-sized, autonomous origami machines.

    Science.gov (United States)

    Miskin, Marc Z; Dorsey, Kyle J; Bircan, Baris; Han, Yimo; Muller, David A; McEuen, Paul L; Cohen, Itai

    2018-01-16

    Origami-inspired fabrication presents an attractive platform for miniaturizing machines: thinner layers of folding material lead to smaller devices, provided that key functional aspects, such as conductivity, stiffness, and flexibility, are persevered. Here, we show origami fabrication at its ultimate limit by using 2D atomic membranes as a folding material. As a prototype, we bond graphene sheets to nanometer-thick layers of glass to make ultrathin bimorph actuators that bend to micrometer radii of curvature in response to small strain differentials. These strains are two orders of magnitude lower than the fracture threshold for the device, thus maintaining conductivity across the structure. By patterning 2-[Formula: see text]m-thick rigid panels on top of bimorphs, we localize bending to the unpatterned regions to produce folds. Although the graphene bimorphs are only nanometers thick, they can lift these panels, the weight equivalent of a 500-nm-thick silicon chip. Using panels and bimorphs, we can scale down existing origami patterns to produce a wide range of machines. These machines change shape in fractions of a second when crossing a tunable pH threshold, showing that they sense their environments, respond, and perform useful functions on time and length scales comparable with microscale biological organisms. With the incorporation of electronic, photonic, and chemical payloads, these basic elements will become a powerful platform for robotics at the micrometer scale.

  6. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca [Thales-SESO, 305 rue Louis Armand, Pôle d’Activités d’Aix les Milles, Aix-en-Provence (France)

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  7. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts

  8. Novel radial vanadium pentoxide nanobelt clusters for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanping; Zhong, Wenwu [Department of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Du, Yinxiao, E-mail: duyinxiao@zzia.edu.cn [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Yuan, Q.X. [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Wang, Xu [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China); Jia, Renxu, E-mail: rxjia@mail.xidian.edu.cn [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China)

    2015-06-05

    Highlights: • Radial V{sub 2}O{sub 5} nanobelt clusters were synthesized by a novel hydrothermal process. • The V{sub 2}O{sub 5} clusters are single crystallites with [0 1 0] growth direction. • Specific discharge capacity of V{sub 2}O{sub 5} is 134 mA h/g coupled with good cycle stability. - Abstract: This paper reports the synthesis, characterization and Li-ion intercalation properties of moundlily-like radial vanadium pentoxide (V{sub 2}O{sub 5}) nanobelt clusters. The V{sub 2}O{sub 5} nanobelt clusters was successfully synthesized by a novel soft template assisted hydrothermal process followed by thermal annealing. The as-prepared products were characterized by X-ray diffraction, thermogravimetric analysis, FT-IR spectrometry, scanning electron microscopy and high resolution transmission electron microscopy. The obtained V{sub 2}O{sub 5} possesses a single-crystalline structure with a preferred orientation along the [0 1 0] crystal plane. Electrochemical analysis shows that the specific discharge capacity of the V{sub 2}O{sub 5} nanobelt clusters reaches 134 mA h/g at a current density of 2 A/g coupled with good cycle stability.

  9. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2015-01-01

    Highlights: • First time we report the synthesis of CuCo 2 O 4 nanobelts using hydrothermal method. • The spinel CuCo 2 O 4 nanobelts exhibit maximum areal capacitance of 2.42 F cm −2 . • After 1800 cycles, 127% of the initial specific capacitance was retained. - Abstract: One dimensional hierarchical CuCo 2 O 4 nanobelt like architecture was synthesized via hydrothermal method. The synthesized nanomaterial was characterized using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The TEM image clearly shows the nanobelt like architecture of CuCo 2 O 4 . The supercapacitor properties of CuCo 2 O 4 nanobelts electrode were tested using cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. The spinel CuCo 2 O 4 nanobelts exhibit maximum areal and specific capacitance of 2.42 F cm −2 (809 F g −1 ). After 1800 continuous charge-discharge cycles, 127% of the initial capacitance was retained. This superior electrochemical supercapacitor property is mainly due to increased surface area and ion transport of nanobelt like architecture. The charge transfer resistance (R ct ) value of CuCo 2 O 4 nanobelt electrode is 3.85 Ω. This high capacitance and cyclic stability demonstrate that the prepared CuCo 2 O 4 nanobelts are a promising candidate for supercapacitors.

  10. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    International Nuclear Information System (INIS)

    Babu, I; Hendrix, M M R M; De With, G

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an applied force of 150 N is 18150 pC (PZT/PA) and 2310 pC (PZT/PDMS), respectively. Electric force microscopy (EFM) is used to study the structural characterization and piezoelectric properties of the materials realized. A clear inverse piezoelectric effect was observed when the bimorphs were subjected to an electric field stepped up through 2, 6 and 10 V, indicating the net polarization direction of the different ferroelectric domains. The as-developed bimorphs have the basic structure of a sensor and actuator, and, since they do not use any bonding agent for bonding, they can provide a valuable alternative to the present bimorphs where bonding processes are required for their realization that can limit their application at high temperature. (paper)

  11. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  12. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts.

    Science.gov (United States)

    He, Jie; Liu, Huiling; Xu, Biao; Wang, Xun

    2015-03-01

    Ultrathin tungsten oxide nanobelts are successfully synthesized via a facile solvothermal method. Sub-1 nm thickness and hydrophobic surface property endow the nanobelts with flexibility, viscosity, gelation, and good catalytic performance in oxidative desulfurization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts

    International Nuclear Information System (INIS)

    Li Lili; Chu Ying; Liu Yang; Wang Dan

    2009-01-01

    Single-crystalline Fe 3 O 4 nanobelt was first synthesized on a large scale by a facile and efficient hydrothermal process. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The SAED pattern obtained from a typical individual nanobelt has a highly symmetrical dotted lattice, which reveals the single-crystalline nature of belt-like Fe 3 O 4 . The saturation magnetization of the Fe 3 O 4 nanobelt is higher than the wire, hollow sphere and octahedral structure. Such methods are easy and mild, and could synthesize other metal oxide in such experiment situation

  14. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application.

    Science.gov (United States)

    Hu, Ying; Lan, Tian; Wu, Guan; Zhu, Zicai; Chen, Wei

    2014-11-07

    Bimorph actuators, consisting of two layers with asymmetric expansion and generating bending displacement, have been widely researched. Their actuation performances greatly rely on the difference of coefficients of thermal expansion (CTE) between the two material layers. Here, by introducing a spongy graphene (sG) paper with a large negative CTE as well as high electrical-to-thermal properties, an electromechanical sG/PDMS bimorph actuator is designed and fabricated, showing an ultra-large bending displacement output under low voltage stimulation (curvature of about 1.2 cm(-1) at 10 V for 3 s), a high displacement-to-length ratio (∼0.79), and vibration motion at AC voltage (up to 10 Hz), which is much larger and faster than that of the other electromechanical bimorph actuators. Based on the sG/PDMS bimorph serving as the "finger", a mechanical gripper is constructed to realize the fast manipulation of the objects under 0.1 Hz square wave voltage stimulation (0-8 V). The designed bimorph actuator coupled with ultra-large bending displacement, low driven voltage, and the ease of fabrication may open up substantial possibilities for the utilization of electromechanical actuators in practical biomimetic device applications.

  15. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge...... nanobelts under a residual compressive strain of 2% were achieved, and the strain should be higher before partly releasing through bulge islands and breakage of the curled Ge nanobelts during the secondary oxidation process. The primary factor leading to compressive strain is thermal shrinkage of Ge...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  16. Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters

    KAUST Repository

    Ahmad, Mahmoud Al

    2012-07-23

    In this paper, a method to find the maximum power transfer conditions in bimorph piezoelectric-based harvesters is proposed. Explicitly, we derive a closed form expression that relates the load resistance to the mechanical parameters describing the bimorph based on the electromechanical, single degree of freedom, analogy. Further, by taking into account the intrinsic capacitance of the piezoelectric harvester, a more descriptive expression of the resonant frequency in piezoelectric bimorphs was derived. In interest of impartiality, we apply the proposed philosophy on previously published experimental results and compare it with other reported hypotheses. It was found that the proposed method was able to predict the actual optimum load resistance more accurately than other methods reported in the literature. © 2012 American Institute of Physics.

  17. SODIUM TITANATE NANOBELT AS A MICROPARTICLE TO INDUCE CLAY FLOCCULATION WITH CPAM

    Directory of Open Access Journals (Sweden)

    Wenxia Liu

    2010-07-01

    Full Text Available Sodium titanate nanobelt was synthesized by treating titanium dioxide hydrothermally in concentrated sodium hydroxide solution. The product was characterized by SEM analysis and zeta potential measurement. It served as a microparticle to constitute a microparticle retention system with cationic polyacrylamide (CPAM, while the microparticle system was employed to induce the flocculation of kaolin clay. The flocculation behavior of kaolin clay in such a system was investigated by using a photometric dispersion analyzer connected with a dynamic drainage jar. It was found that the sodium titanate nanobelt carried negative charges and had a lower zeta potential at higher pH. It gave a large synergistic flocculation effect with CPAM at a very low dosage, and showed higher flocculation effect with CPAM under neutral and weak alkaline conditions. A suitably high shear level was helpful for the re-flocculation of clay by sodium titanate nanobelt. The clay flocculation induced by CPAM/titanate nanobelt system demonstrated high shear resistance and also generated dense flocs.

  18. Energy scavenging based on a single-crystal PMN-PT nanobelt

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  19. Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics

    International Nuclear Information System (INIS)

    Lu Wei-Fang; Li Cheng; Huang Shi-Hao; Lin Guang-Yang; Wang Chen; Yan Guang-Ming; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2013-01-01

    Ge nano-belts with large tensile strain are considered as one of the promising materials for high carrier mobility metal—oxide—semiconductor transistors and efficient photonic devices. In this paper, we design the Ge nano-belts on an insulator surrounded by Si 3 N 4 or SiO 2 for improving their tensile strain and simulate the strain profiles by using the finite difference time domain (FDTD) method. The width and thickness parameters of Ge nano-belts on an insulator, which have great effects on the strain profile, are optimized. A large uniaxial tensile strain of 1.16% in 50-nm width and 12-nm thickness Ge nano-belts with the sidewalls protected by Si 3 N 4 is achieved after thermal treatments, which would significantly tailor the band gap structures of Ge-nanobelts to realize the high performance devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  1. Nanowires and nanobelts, v.2 nanowires and nanobelts of functional materials

    CERN Document Server

    Wang, Zhong Lin

    2010-01-01

    Nanowires, nanobelts, nanoribbons, nanorods ..., are a new class of quasi-one-dimensional materials that have been attracting a great research interest in the last few years. These non-carbon based materials have been demonstrated to exhibit superior electrical, optical, mechanical and thermal properties, and can be used as fundamental building blocks for nano-scale science and technology, ranging from chemical and biological sensors, field effect transistors to logic circuits. Nanocircuits built using semiconductor nanowires demonstrated were declared a ""breakthrough in science"" by Science

  2. Hydrolysis and ion exchange of titania nanoparticles towards large-scale titania and titanate nanobelts for gas sensing applications

    International Nuclear Information System (INIS)

    Bela, Somaiah; Ho, Ghim Wei; Wong, Andrew See Weng

    2010-01-01

    One-dimensional titanate and titania nanostructures are prepared by hydrothermal method from titania nanoparticles precursor via hydrolysis and ion exchange processes. The formation mechanism and the reaction process of the nanobelts are elucidated. The effects of the NaOH concentration, HCl leaching duration and the calcination temperature on the morphology and chemical composition of the produced nanobelts are investigated. Na + ions of the titanate nanobelts can be effectively removed by longer acid leaching and neutralization process and transformed into metastable hydrogen titanate compound. A hybrid hydrogen titanate and anatase titania nanobelts can be obtained under dehydration process of 500 0 C. The nanobelts are produced in gram quantities and easily made into nanostructure paper for the bulk study on their electrical and sensing properties. The sensing properties of the nanobelts sheet are tested and exhibited response to H 2 gas.

  3. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  4. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph

    Science.gov (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  5. The use of piezoelectric bimorph transducers to measure forces in colloidal systems

    International Nuclear Information System (INIS)

    Stewart, A.M.

    1996-01-01

    The Surface Force Apparatus developed in this Department has proved useful for the measurement of colloidal forces between transparent surfaces in liquids and gases at surface separations of 1 nm up to 500 nm. The distance between the surfaces is measured by the interferometry of white light, and the force is measured from the movement of one of the surfaces that is attached to a cantilever spring which deflects under the influence of the force. In the present work an analysis is made of the effect of the errors introduced at a longer time scale by bimorph drift and decay upon accuracy of measurement. For direct measurements the errors will be small provided that the time constant of the bimorph, given by the product of its capacitance and amplifier input impedance, is much larger than the total time of measurement. With the force-feedback technique the errors will be negligible provided that, in addition the integrator time constant is much smaller than the bimorph time constant, a condition easily satisfied. In is important to use an amplifier with a very high input impedance to buffer bimorphs used for this type of measurement

  6. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    NARCIS (Netherlands)

    Babu, I.; Hendrix, M.M.R.M.; With, de G.

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an

  7. Sb{sub 2}Te{sub 3} nanobelts and nanosheets: Hydrothermal synthesis, morphology evolution and thermoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guo-Hui [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Cheng, Guo-Feng; Ruan, Yin-Jie [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-02-15

    Graphical abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method, and the morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesis of Sb{sub 2}Te{sub 3} nanobelts and nanosheets is demonstrated. Black-Right-Pointing-Pointer The morphology of Sb{sub 2}Te{sub 3} can be adjusted by varying hydrothermal time. Black-Right-Pointing-Pointer The morphology evolution of Sb{sub 2}Te{sub 3} from nanobelts to nanosheets is observed. Black-Right-Pointing-Pointer High Seebeck coefficients (S) of Sb{sub 2}Te{sub 3} nanobelts and nanosheets are attained. - Abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method using SbCl{sub 3} and TeO{sub 2} as the antimony and tellurium source, hydrazine hydrate as a reducing reagent, polyvinyl alcohol as a surfactant and water as the solvent. The effects of experimental parameters on the product were investigated. The experiments indicated that the elemental Te formed during the reaction, acting as a reactive and self-sacrificial template for the formation of Sb{sub 2}Te{sub 3} nanobelts. The morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The thermoelectric properties of the tablet samples of Sb{sub 2}Te{sub 3} nanostructured powders with different morphologies prepared by a room-temperature pressurized method were investigated.

  8. Electromechanical properties of nanotube-PVA composite actuator bimorphs

    International Nuclear Information System (INIS)

    Bartholome, Christele; Derre, Alain; Roubeau, Olivier; Zakri, Cecile; Poulin, Philippe

    2008-01-01

    Oxidized multiwalled carbon nanotube (oxidized-MWNT)/polyvinyl alcohol (PVA) composite sheets have been prepared for electromechanical actuator applications. MWNT have been oxidized by nitric acid treatments. They were then dispersed in water and mixed with various amounts of PVA of high molecular weight (198 000 g mol -1 ). The composite sheets were then obtained through a membrane filtration process. The composition of the systems has been optimized to combine suitable mechanical and electrical properties. Thermogravimetric analysis, mechanical tensile tests and conductivity measurements show that the best compromise of mechanical and electrical properties was obtained for a PVA weight fraction of about 30 wt%. In addition, one face of the sheets was coated with gold to increase the conductivity of the sheets and promote uniform actuation. Pseudo-bimorph devices have been realized by subsequently coating the composite sheets with an inert layer of PVA. The devices have been tested electromechanically in a liquid electrolyte (tetrabutylammonium/tetrafluoroborate (TBA/TFB) in acetonitrile) at constant frequency and different applied voltages, from 2 to 10 V. Measurements of the bimorph deflections were used to determine the stress generated by the nanotube-PVA sheets. The results show that the stress generated increases with increasing amplitude of the applied voltage and can reach 1.8 MPa. This value compares well with and even exceeds the stress generated by recently obtained bimorphs made of gold nanoparticles

  9. Vanadium dioxide nanobelts: Hydrothermal synthesis and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zakharova, G.S., E-mail: volkov@ihim.uran.ru [Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, Pervomaiskaya ul. 91, Yekaterinburg 620041 (Russian Federation); Hellmann, I. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Volkov, V.L. [Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, Pervomaiskaya ul. 91, Yekaterinburg 620041 (Russian Federation); Taeschner, Ch.; Bachmatiuk, A.; Leonhardt, A.; Klingeler, R.; Buechner, B. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2010-09-15

    VO{sub 2} (B) nanobelts were prepared by a hydrothermal method at 180 {sup o}C using V{sub 2}O{sub 5}.nH{sub 2}O sol and H{sub 2}C{sub 2}O{sub 4}.2H{sub 2}O as starting agents. The obtained nanobelts have diameters ranging from 50 to 100 nm in width, 20-30 nm in thickness with lengths up to 1.5 {mu}m. Measurements of the static magnetic susceptibility provide evidence for two phase transitions at T{sub 1} = 225 K and T{sub 2} = 290 K, respectively. Below T{sub 1}, the data suggest the presence quasi-free as well as of strongly antiferromagnetic correlated spins associated to V{sup 4+}-ions.

  10. Defect-mediated photoluminescence up-conversion in cadmium sulfide nanobelts (Conference Presentation)

    Science.gov (United States)

    Morozov, Yurii; Kuno, Masaru K.

    2017-02-01

    The concept of optical cooling of solids has existed for nearly 90 years ever since Pringsheim proposed a way to cool solids through the annihilation of phonons via phonon-assisted photoluminescence (PL) up-conversion. In this process, energy is removed from the solid by the emission of photons with energies larger than those of incident photons. However, actually realizing optical cooling requires exacting parameters from the condensed phase medium such as near unity external quantum efficiencies as well as existence of a low background absorption. Until recently, laser cooling has only been successfully realized in rare earth doped solids. In semiconductors, optical cooling has very recently been demonstrated in cadmium sulfide (CdS) nanobelts as well as in hybrid lead halide perovskites. For the former, large internal quantum efficiencies, sub-wavelength thicknesses, which decrease light trapping, and low background absorption, all make near unity external quantum yields possible. Net cooling by as much as 40 K has therefore been possible with CdS nanobelts. In this study, we describe a detailed investigation of the nature of efficient anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature-dependent PL up-conversion and optical absorption studies on individual NBs together with frequency-dependent up-converted PL intensity spectroscopies suggest that ASPL in CdS nanobelts is defect-mediated through involvement of defect levels below the band gap.

  11. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO_2 nanobelt

    International Nuclear Information System (INIS)

    Li, Shuanghui; Liu, Yingkai; Wu, Yuemei; Chen, Weiwu; Qin, Zhaojun; Gong, Nailiang; Yu, Dapeng

    2016-01-01

    SnO_2 nanobelts (SnO_2 NBs) and Er"3"+-doped SnO_2 nanobelts (Er–SnO_2 NBs) were synthesized by thermal evaporation. The obtained samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), and X-ray photoelectron spectrometer (XPS). It is found that Er–SnO_2 NBs have a good morphology with smooth surface and their thickness are about 30 nm, widths between 200 nm and 600 nm, and lengths 30–80 mm. The nanobelts with good morphology were taken to develop sensors based on a single Er–SnO_2 NB/SnO_2 NB for studying sensitive properties. The results reveal that the response of a single Er–SnO_2 nanobelt device is 9 to the formaldehyde gas with a shorter response (recovery time) of 17 (25) s.

  12. Improvement of the specific capacitance of V{sub 2}O{sub 5} nanobelts as supercapacitor electrode by tungsten doping

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiqi [School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Zhang, Yifu, E-mail: yfzhang@dlut.edu.cn [School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Jing, Xuyang [College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Wang, Qiushi; Hu, Tao [School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Xing, Na [College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Meng, Changgong [School of Chemistry, Dalian University of Technology, Dalian 116024 (China)

    2017-01-15

    Tungsten doped vanadium pentoxide (W-doped V{sub 2}O{sub 5}) nanobelts were successfully synthesized by a facile hydrothermal route and combination of calcination. The results revealed that W atoms were successfully doped into the crystal lattice of V{sub 2}O{sub 5} matrix, indicating that the homogeneous solid-solutions of W-doped V{sub 2}O{sub 5} nanobelts were obtained. The electrochemical properties of W-doped V{sub 2}O{sub 5} nanobelts as supercapacitor electrode were investigated by cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) methods. W-doped V{sub 2}O{sub 5} nanobelts exhibit the excellent capacity and good rate capability. Their specific capacitance are 407, 381, 350, 328, 295 and 273 F g{sup −1} at the current density of 0.5, 1, 2, 5, 10 and 20 A g{sup −1}, respectively. W-doped V{sub 2}O{sub 5} nanobelts also show excellent energy densities of 246, 217, 212, 199, 178 and 165 W h kg{sup −1} at a power densities of 0.99, 1.98, 3.96, 9.90, 19.80 and 39.60 kW kg{sup −1}. The specific capacitance of W-doped V{sub 2}O{sub 5} nanobelts is much higher than the previous values of V{sub 2}O{sub 5} materials, achieving the aim of improving the specific capacitance of V{sub 2}O{sub 5} nanobelts. - Graphical abstract: The specific capacitance of V{sub 2}O{sub 5} nanobelts can be greatly improved by W doping. - Highlights: • Homogeneous solid-solutions of W-doped V{sub 2}O{sub 5} were prepared. • W-doped V{sub 2}O{sub 5} nanobelts exhibit excellent electrochemical property. • High specific capacitance of 407 F g{sup −1} at 0.5 A g{sup −1} was achieved. • Specific capacitance of V{sub 2}O{sub 5} nanobelts was improved by doping method.

  13. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol

    Science.gov (United States)

    Yang, Shuang; Liu, Yueli; Chen, Tao; Jin, Wei; Yang, Tingqiang; Cao, Minchi; Liu, Shunshun; Zhou, Jing; Zakharova, Galina S.; Chen, Wen

    2017-01-01

    Zn doped MoO3 nanobelts with the thickness of 120-275 nm, width of 0.3-1.4 μm and length of more than 100 μm are prepared by hydrothermal reaction. The operating temperature of sensors based on Zn doped MoO3 nanobelts is 100-380 °C with a better response to low concentration of ethanol. The highest response value of sensors based on Zn doped MoO3 to 1000 ppm ethanol at 240 °C is 321, which is about 15 times higher than that of pure MoO3 nanobelts. The gas sensors based on Zn doped MoO3 nanobelts possess good selectivity to ethanol compared with methanol, ammonia, acetone and toluene, which implies that it would be a good candidate in the potential application. The improvement of gas sensing properties may be attributed to the increasing absorbed ethanol, the decreasing probability of ethoxy recombination, the promoted dehydrogenation progress at lower temperature, and the narrowed band gap by Zn doping.

  14. Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method

    Directory of Open Access Journals (Sweden)

    Xingjian Dong

    2014-02-01

    Full Text Available An efficient spectral element (SE with electric potential degrees of freedom (DOF is proposed to investigate the static electromechanical responses of a piezoelectric bimorph for its actuator and sensor functions. A sublayer model based on the piecewise linear approximation for the electric potential is used to describe the nonlinear distribution of electric potential through the thickness of the piezoelectric layers. An equivalent single layer (ESL model based on first-order shear deformation theory (FSDT is used to describe the displacement field. The Legendre orthogonal polynomials of order 5 are used in the element interpolation functions. The validity and the capability of the present SE model for investigation of global and local responses of the piezoelectric bimorph are confirmed by comparing the present solutions with those obtained from coupled 3-D finite element (FE analysis. It is shown that, without introducing any higher-order electric potential assumptions, the current method can accurately describe the distribution of the electric potential across the thickness even for a rather thick bimorph. It is revealed that the effect of electric potential is significant when the bimorph is used as sensor while the effect is insignificant when the bimorph is used as actuator, and therefore, the present study may provide a better understanding of the nonlinear induced electric potential for bimorph sensor and actuator.

  15. Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications

    KAUST Repository

    Conchouso Gonzalez, David

    2015-04-01

    This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used, the bimorph actuators can be designed to move in both: Counter Clockwise (CCW) and Clockwise (CW) directions with a resolution of up to 110 μm/V, with smallest step in the range of nanometers. Thermal and electrical characterization of the thermal bimorph actuators showed low influence in the platforms temperature and low power consumption (< 35μW) mainly due to the natural isolation of the structure. Tip displacements larger than 500μm were achieved. The precise angle adjustment achieved through these mechanisms makes them optimal for a range of different MEMS applications, like optical benches and low frequency sweeping sensors and antennas. © 2015 IEEE.

  16. HxMoO3 nanobelts with better performance as anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Ju, Xiaokang; Ning, Peigong; Tong, Xiaobing; Lin, Xiaoping; Pan, Xi; Li, Qiuhong; Duan, Xiaochuan; Wang, Taihong

    2016-01-01

    We first report the pure H x MoO 3 nanobelts as anode for lithium-ion batteries by a facile hydrothermal with ammonium heptamolybdate tetrahydrate ((NH 4 )6Mo 7 O 24 ∙4H 2 O) and hydrochloric acid (HCl). Owing to hydrogen-doping, Mo 5+ exists in the H x MoO 3 nanobelt, which may release extra electrons. Therefore, the electric conductance of H x MoO 3 nanobelt is enhanced greatly. Moreover, the content of hydrogen can’t be high, since the ordered structure deteriorates when amount of hydrogen increasing. The H 0.28 MoO 3 nanobelts we designed exhibit outstanding specific capacity and rate performance. The stable capacity of 920 mAh g −1 is obtained after 25 charge/discharge cycles at 100 mA g −1 . At high current densities such as 1, 2, 5 and 10 A g −1 , the H 0.28 MoO 3 electrode delivers specific capacities of about 600, 500, 420, 300 mAh g −1 , respectively. Even after 450 charge discharge cycles at 1 A g −1 , the performance of our materials can maintain the capacity of about 550 mAh g −1 . Furthermore, we provide more discussion about the lithium storage mechanism of H x MoO 3 nanobelts through ex situ XRD and FESEM. By comparing H x MoO 3 with different X, we find that low content of hydrogen can greatly improve the performance of α-MoO 3 electrodes in Li-ion batteries.

  17. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  18. NbSe{sub 3} nanobelts wrapped by reduced graphene oxide for lithium ion battery with enhanced electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Sun, Qi; Wang, Zhijie; Xiang, Junxiang; Zhao, Benliang [Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qu, Yan [The Sixth Element Materials Technology Co. Ltd, Changzhou, Jiangsu, 213145 (China); Xiang, Bin, E-mail: binxiang@ustc.edu.cn [Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-08-01

    Highlights: • A core-shell structure of NbSe{sub 3} nanobelts wrapped by rGO is synthesized by a PDDA assisted method. • Cushion effect of the rGO coating enhances the structure integrity. • Performance of the composites during cycling are improved remarkably compared to the pure nanobelts. - Abstract: Recently, layered transition metal chalcogenides (LTMCs) have attracted great attention as anode materials for lithium ion batteries (LIBs). However, the volume expansion and structure instability of LTMCs during the lithiation and delithiation process still remains challenging. Herein, we report NbSe{sub 3} nanobelts wrapped by reduced-graphene oxide (NbSe{sub 3}@rGO) utilized as buffer layers with enhanced electrochemical performance. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy were used to probe features of the NbSe{sub 3}@rGO. The NbSe{sub 3}@rGO nanobelts as anode exhibit a discharge capacity of 300 mAh/g at the current density of 100 mAh/g after 250 cycles, several times higher than pure NbSe{sub 3} nanobelts. The improved electrochemical performance of NbSe{sub 3}@rGO is attributed to a buffer effect from the rGO, cushioning the volume-change-induced strain effect on the structure of NbSe{sub 3} nanobelts during cycling.

  19. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  20. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhang

    2015-12-01

    Full Text Available This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded heater. The silicon underneath the entire actuator is completely removed using a unique backside deep-reactive-ion-etching DRIE release process, leading to improved thermal response speed and front-side mirror surface protection. This MEMS mirror can perform both piston and tip-tilt motion. The mirror generates large pure vertical displacement up to 320 μm at only 3 V with a power consumption of 56 mW for each actuator. The maximum optical scan angle achieved is ±18° at 3 V. The measured thermal response time is 15.4 ms and the mechanical resonances of piston and tip-tilt modes are 550 Hz and 832 Hz, respectively.

  1. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  2. Facile fabrication of p-n heterojunctions for Cu2O submicroparticles deposited on anatase TiO2 nanobelts

    International Nuclear Information System (INIS)

    Li, Li; Lei, Jingguo; Ji, Tianhao

    2011-01-01

    Graphical abstract: Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via two-step preparation process, and their visible-light photodegradation activities of Rhodamine B were investigated in detail. Highlights: → Cu 2 O particle-deposited TiO 2 nanobelts mainly with diameters in a range of 200-400 nm were successfully prepared. → The amount of Cu 2 O particles deposited on TiO 2 nanobelts can be tuned. → The composite structure with Cu 2 O particles and TiO 2 nanobelts exhibits p-n semiconductor heterojunction performance. → Photocatalytic properties of such composites. -- Abstract: In this paper, Cu 2 O particle-deposited TiO 2 nanobelts with p-n semiconductor heterojunction structure were successfully prepared via a two-step preparation process to investigate electron-transfer performance between p-type Cu 2 O and n-type TiO 2 . Various measurement results confirm that the amount of pure Cu 2 O submicroparticles, with diameters within the range of 200-400 nm and deposited on the surface of TiO 2 nanobelts, can be controlled, and that the purity of Cu 2 O is heavily affected by reaction time. Visible-light photodegradation activities of Rhodamine B show that photocatalysts have little or no photocatalytic activities mainly due to their p-n heterojunction structure, indicating that there hardly appears any electron-transfer from Cu 2 O to TiO 2 .

  3. Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures

    Science.gov (United States)

    Liu, Ruoyu; Hu, Peiguang; Chen, Shaowei

    2012-10-01

    Heterostructures based on Ag3PO4 nanoparticles and TiO2 nanobelts were prepared by a coprecipitation method. The crystalline structures were characterized by X-ray diffraction measurements. Electron microscopic studies showed that the Ag3PO4 nanoparticles and TiO2 nanobelts were in intimate contact which might be exploited to facilitate charge transfer between the two semiconductor materials. In fact, the heterostructures exhibited markedly enhanced photocatalytic activity as compared with unmodified TiO2 nanobelts or commercial TiO2 colloids in the photodegradation of methyl orange under UV irradiation. This was accounted for by the improved efficiency of interfacial charge separation thanks to the unique alignments of their band structures. Remarkably, whereas the photocatalytic activity of the heterostructure was comparable to that of Ag3PO4 nanoparticles alone, the heterostructures exhibited significantly better stability and reusability in repeated tests than the Ag3PO4 nanoparticles.

  4. Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7.H2O single-crystal nanobelts

    International Nuclear Information System (INIS)

    Zhang Yifu; Liu Xinghai; Xie Guangyong; Yu Lei; Yi Shengping; Hu Mingjie; Huang Chi

    2010-01-01

    Single-crystal V 3 O 7 .H 2 O nanobelts have been successfully synthesized in a large-scale by ethanol reducing of the commercial V 2 O 5 powder via a facile hydrothermal approach, without any templates and surfactants. The as-prepared V 3 O 7 .H 2 O nanobelts are up to several tens of micrometers in length, about 100 nm in width and about 20 nm in thickness in average, respectively. The 'Hydrating-Reducing-Exfoliating-Splitting' (HRES) mechanism was proposed to describe the formation of the V 3 O 7 .H 2 O nanobelts. In our research progress, it was found that the ratio of EtOH/H 2 O, the reaction time and categories of the reducing agents had significant effects on the morphology and composition of as-obtained products. Furthermore, the electrochemical properties of V 3 O 7 .H 2 O nanobelts were preformed and the results revealed that a lithium battery using those nanobelts as the positive electrode exhibited a high initial discharge capacity of 373 mAh/g.

  5. Directed batch assembly of three-dimensional helical nanobelts through angular winding and electroplating

    International Nuclear Information System (INIS)

    Bell, D J; Bauert, T E; Zhang, L; Dong, L X; Sun, Y; Gruetzmacher, D; Nelson, B J

    2007-01-01

    This paper presents a new technique for the directed batch assembly of rolled-up three-dimensional helical nanobelts. The wet etch time is controlled in order for the loose end of the self-formed SiGe/Si/Cr nanobelts to be located over an electrode by taking advantage of the additional angular winding motion in the lateral direction. In a subsequent Au electroplating step, contacts are electroformed and the batch assembly is completed, while at the same time the conductance of the structures is increased

  6. Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.

    Science.gov (United States)

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Huang, Yi; Chang, Huicong; Yang, Yang; Zhou, Ying; Chen, Yongsheng

    2016-06-01

    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale.

  7. Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials

    Science.gov (United States)

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Chang, Huicong; Yang, Yang; Zhou, Ying

    2016-01-01

    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish‐like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene‐PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene‐based materials at a macro scale. PMID:27818900

  8. Topotactic conversion route to mesoporous quasi-single-crystalline Co{sub 3}O{sub 4} nanobelts with optimizable electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Li [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry State Key Laboratory of Optoelectronic Materials and Technology School of Chemistry and Chemical Engineering School of Physics and Engineering Sun Yat-Sen University Guangzhou, 510275 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan, 411201 (China); Zou, Hongli; Fu, Junxiang; Yang, Xianfeng; Wang, Yi; Fu, Xionghui; Liang, Chaolun; Wu, Mingmei; Shen, Pei Kang [MOE Key Laboratory of Bioinorganic and Synthetic Chemistry State Key Laboratory of Optoelectronic Materials and Technology School of Chemistry and Chemical Engineering School of Physics and Engineering Sun Yat-Sen University Guangzhou, 510275 (China); Guo, Hongliang; Gao, Qiuming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics, Graduate School, Chinese Academy of Sciences 1295 Dingxi Rd., Shanghai 200050 (China)

    2010-02-22

    The growth of mesoporous quasi-single-crystalline Co{sub 3}O{sub 4} nanobelts by topotactic chemical transformation from {alpha}-Co(OH){sub 2} nanobelts is realized. During the topotactic transformation process, the primary {alpha}-Co(OH){sub 2} nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X-ray diffraction (XRD), electron microscopy - scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co{sub 3}O{sub 4} nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co{sub 3}O{sub 4} nanowalls (nanoparticles) inside the nanobelts. Co{sub 3}O{sub 4} nanocrystals prefer [0001] epitaxial growth direction of hexagonal {alpha}-Co(OH){sub 2} nanobelts due to the structural matching of [0001] {alpha}-Co(OH){sub 2}//[111] Co{sub 3}O{sub 4}. The surface-areas and pore sizes of the spinel Co{sub 3}O{sub 4} products can be tuned through heat treatment of {alpha}-Co(OH){sub 2} precursors at different temperatures. The galvanostatic cycling measurement of the Co{sub 3}O{sub 4} products indicates that their charge-discharge performance can be optimized. In the voltage range of 0.0-3.0 V versus Li{sup +}/Li at 40 mA g{sup -1}, reversible capacities of a sample consisting of mesoporous quasi-single-crystalline Co{sub 3}O{sub 4} nanobelts can reach up to 1400 mA h g{sup -1}, much larger than the theoretical capacity of bulk Co{sub 3}O{sub 4} (892 mA h g{sup -1}). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Analysis of an x-ray mirror made from piezoelectric bimorph

    Science.gov (United States)

    Zhang, Yao; Li, Ming; Tang, Shanzhi; Gao, Junxiang; Zhang, Weiwei; Zhu, Peiping

    2017-07-01

    Theoretical analysis of the mechanical behavior of an x-ray mirror made from piezoelectric bimorph is presented. A complete two-dimensional relationship between the radius of curvature of the mirror and the applied voltage is derived. The accuracy of this relationship is studied by comparing the figures calculated by the relationship and Finite Element Analysis. The influences of several critical parameters in the relationship on the radius of curvature are analyzed. It is found that piezoelectric coefficient d31 is the main material property parameter that dominates the radius of curvature, and that the optimal thickness of PZT plate corresponding to largest bending range is 2.5 times of that of faceplate. It is demonstrated that the relationship is helpful for us to complete the primary design of the x-ray mirror made from piezoelectric bimorph.

  10. Orthorhombic MoO{sub 3} nanobelts based NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mane, A.A. [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India); General Science and Humanities Department, Sant Gajanan Maharaj College of Engineering, Mahagaon, 416 503 (India); Moholkar, A.V., E-mail: avmoholkar@gmail.com [Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2017-05-31

    Highlights: • The effect of thickness on physicochemical and NO{sub 2} gas sensing properties of sprayed MoO{sub 3} nanobelts has been reported. • The sprayed MoO{sub 3} nanobelts show the NO{sub 2} gas response of 68% for 100 ppm concentration at an operating temperature of 200 °C. • The lower detection limit of MoO{sub 3} nanobelts based NO{sub 2} sensor is found to be half of the IDLH value (20 ppm). - Abstract: Molybdenum trioxide (MoO{sub 3}) nanobelts have been deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD patterns reveal that films are polycrystalline having an orthorhombic crystal structure. Raman spectra confirm that the films are orthorhombic in phase. The XPS study shows the presence of two well resolved spectral lines of Mo-3d core levels appearing at the binding energy values of 232.82 eV and 235.95 eV corresponding to Mo-3d{sub 5/2} and Mo-3d{sub 3/2}, respectively. These binding energy values are assigned to Mo{sup 6+} oxidation state of fully oxidized MoO{sub 3}. The FE-SEM micrographs show the formation of nanobelts-like morphology. The AFM micrographs reveal that the RMS surface roughness increases from 16.5 nm to 17.5 nm with increase in film thickness from 470 nm to 612 nm and then decreases to 16 nm for 633 nm film thickness. The band gap energy is found to be decreased from 3.40 eV to 3.38 eV. To understand the electronic transport phenomenon in MoO{sub 3} thin films, dielectric properties are studied. For 612 nm film thickness, the highest NO{sub 2} gas response of 68% is obtained at an operating temperature of 200 °C for 100 ppm concentration with response and recovery times of 15 s and 150 s, respectively. The lower detection limit is found to be 10 ppm which is half of the immediately dangerous to life or health (IDLH) value of 20 ppm. Finally, NO{sub 2} gas sensing mechanism in an orthorhombic MoO{sub 3} crystal structure is discussed in detail.

  11. One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage.

    Science.gov (United States)

    Lee, Minoh; Balasingam, Suresh Kannan; Jeong, Hu Young; Hong, Won G; Lee, Han-Bo-Ram; Kim, Byung Hoon; Jun, Yongseok

    2015-01-30

    Graphene-decorated V2O5 nanobelts (GVNBs) were synthesized via a low-temperature hydrothermal method in a single step. V2O5 nanobelts (VNBs) were formed in the presence of graphene oxide, a mild oxidant, which also enhanced the conductivity of GVNBs. From the electron energy loss spectroscopy analysis, the reduced graphene oxide (rGO) are inserted into the layered crystal structure of V2O5 nanobelts, which further confirmed the enhanced conductivity of the nanobelts. The electrochemical energy-storage capacity of GVNBs was investigated for supercapacitor applications. The specific capacitance of GVNBs was evaluated using cyclic voltammetry (CV) and charge/discharge (CD) studies. The GVNBs having V2O5-rich composite, namely, V3G1 (VO/GO = 3:1), showed superior specific capacitance in comparison to the other composites (V1G1 and V1G3) and the pure materials. Moreover, the V3G1 composite showed excellent cyclic stability and the capacitance retention of about 82% was observed even after 5000 cycles.

  12. A simple route to synthesize multiform structures of tin oxide nanobelts and optical properties investigation

    International Nuclear Information System (INIS)

    Cheng Chuanwei; Xu Guoyue; Zhang Haiqian; Li Yingying; Luo Yan; Zhang Peigen

    2008-01-01

    Multiform structures of SnO 2 nanobelts including of zigzag, branching and straight structures have been synthesized by a simple molten-salt assisted route. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM). The growth mechanism of zigzag nanobelts was proposed. A strong blue emission band centered in 425 nm was observed in the photoluminescence spectrum

  13. Large electrical manipulation of permittivity in BaTiO3 and Pb(Zr,Ti)O3 bimorph heterostructure

    International Nuclear Information System (INIS)

    Ci, Penghong; Liu, Guoxi; Dong, Shuxiang; Zhang, Li

    2014-01-01

    We report a strain-mediated electric field manipulation of permittivity in BaTiO 3 (barium titanate, BT) ceramic by a Pb(Zr,Ti)O 3 (PZT) bimorph. This BT/PZT heterostructure exhibited a relatively large permittivity tunability of BT up to ±10% in a wide frequency range under an electric field of ±4 kV/cm applied to the PZT bimorph. The permittivity tunability is attributed to the strain in BT produced by the PZT bimorph. Calculations of the relationship between permittivity and applied electric field were developed, and corresponded well with measurements. The BT/PZT heterostructure has potential for applications in broadband field tunable smart electronic devices.

  14. Hydrogenated TiO{sub 2} nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jian [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Leng, Yanhua [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Cui, Hongzhi, E-mail: cuihongzhi1965@163.com [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Liu, Hong, E-mail: hongliu@sdu.edu.cn [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-12-15

    Highlights: • A facile synthesis of hydrogenated TiO{sub 2} nanobelts is reported. • Utilizing UV and visible light in photocatalytic degradation and H{sub 2} production. • The improved photocatalytic property is owe to Ti{sup 3+} ions and oxygen vacancies. - Abstract: TiO{sub 2} nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO{sub 2} (H-TiO{sub 2}) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti{sup 3+} ions and oxygen vacancies in TiO{sub 2} nanobelts created by hydrogenation. Ti{sup 3+} ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron–hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source.

  15. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    Science.gov (United States)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  16. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Song, E-mail: tiansong22@126.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Hejun, E-mail: lihejun@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-04-30

    Highlights: • HfC naobelts accompanied by HfC nanowires were synthesized by a catalytic CVD method. • HfC nanobelts as a novel structure of HfC ceramic are reported for the first time. • HfC nanobelts have 100–200 μm in lengths and reach up to 10 μm in widths. • The synthesized product is promising field nanoemitters. - Abstract: As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor–liquid–solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO{sub 2} shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm{sup −1} and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  17. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    Directory of Open Access Journals (Sweden)

    Guangming Cheng

    2012-12-01

    Full Text Available A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  18. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2009-01-01

    Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance

  19. Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages

    Science.gov (United States)

    Luo, J. K.; He, J. H.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-08-01

    Normally closed microcages based on highly compressively stressed diamond-like carbon (DLC) and electroplated Ni bimorph structures have been simulated, fabricated and characterized. Finite-element and analytical models were used to simulate the device performance. It was found that the radius of curvature of the bimorph layer can be adjusted by varying the DLC film stress, the total layer thickness and the thickness ratio of the DLC to Ni layers. The angular deflection of the bimorph structures can also be adjusted by varying the finger length. The radius of curvature of the microcage was in the range of 18-50 µm, suitable for capturing and confining micro-objects with sizes of 20-100 µm. The operation of this type of device is very efficient due to the large difference in thermal expansion coefficients of the DLC and the Ni layers. Electrical tests have shown that these microcages can be opened by ~90° utilizing a power smaller than 20 mW. The operating temperatures of the devices under various pulsed currents were extracted through the change in electrical resistance of the devices. The results showed that an average temperature in the range of 400-450 °C is needed to open this type of microcage by ~90°, consistent with the results from analytical simulation and finite-element modelling.

  20. Uncertainty quantification for PZT bimorph actuators

    Science.gov (United States)

    Bravo, Nikolas; Smith, Ralph C.; Crews, John

    2018-03-01

    In this paper, we discuss the development of a high fidelity model for a PZT bimorph actuator used for micro-air vehicles, which includes the Robobee. We developed a high-fidelity model for the actuator using the homogenized energy model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent behavior inherent to PZT in dynamic operating regimes. We then discussed an inverse problem on the model. We included local and global sensitivity analysis of the parameters in the high-fidelity model. Finally, we will discuss the results of Bayesian inference and uncertainty quantification on the HEM.

  1. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  2. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  3. A self-seeded, surfactant-directed hydrothermal growth of single crystalline lithium manganese oxide nanobelts from the commercial bulky particles.

    Science.gov (United States)

    Zhang, Lizhi; Yu, Jimmy C; Xu, An-Wu; Li, Quan; Kwong, Kwan Wai; Wu, Ling

    2003-12-07

    Single crystalline lithium manganese oxide nanobelts were obtained through a self-seeded, surfactant-directed growth process from the commercial bulky particles under hydrothermal treatment. A possible mechanism was proposed to explain the growth of the nanobelts. This new process could be extended to prepare other one-dimensional nanomaterials such as Se nanorods, Te nanotubes, and MnO2 nanowires.

  4. Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties

    International Nuclear Information System (INIS)

    Qiao Yun; Hu Xianluo; Huang Yunhui

    2012-01-01

    A fast and economical route based on an efficient microwave-induced solid-state process has been developed to synthesize metastable TiO 2 (B) nanobelts with widths of 30–100 nm and lengths up to a few micrometers on a large scale. This new method reduces the synthesis time for the preparation of TiO 2 (B) nanobelts to less than half an hour, allowing the screening of a wide range of reaction conditions for optimizing and scaling up the production and facilitating the formation of metastable phase TiO 2 (B). The as-formed TiO 2 (B) nanobelts exhibit enhanced lithium-storage performances, compared with the TiO 2 (B) product obtained by the conventional heating. This study provides a new way for large-scale industrial production of high-quality metastable TiO 2 (B) nanostructures. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.

  5. Design of a bimorph piezoelectric energy harvester for railway monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong [Univ. of Connecticut, Connecticut (United States)

    2012-12-15

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s{sup 2} base excitation compared to stand alone piezoelectric energy harvester without tip mass.

  6. Design of a bimorph piezoelectric energy harvester for railway monitoring

    International Nuclear Information System (INIS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2012-01-01

    Wireless sensor network is one of prospective methods for railway monitoring due to the long term operation and low maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree of freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from 2.06 m/s 2 base excitation compared to stand alone piezoelectric energy harvester without tip mass

  7. MODELLING AND OPTIMISATION OF A BIMORPH PIEZOELECTRIC CANTILEVER BEAM IN AN ENERGY HARVESTING APPLICATION

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available Piezoelectric materials are excellent transducers in converting vibrational energy into electrical energy, and vibration-based piezoelectric generators are seen as an enabling technology for wireless sensor networks, especially in selfpowered devices. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite element method for both static and dynamic frequency analyses. Experiments are performed to validate the model and the simulation results. In addition, a novel approach is presented for optimising the structure of the bimorph cantilever beam, by which the power output is maximised and the structural volume is minimised simultaneously. Finally, the results of the optimised design are presented and compared with other designs.

  8. Energy Harvesting Characteristics from Water Flow by Piezoelectric Energy Harvester Device Using Cr/Nb Doped Pb(Zr,Ti)O3 Bimorph Cantilever

    Science.gov (United States)

    Kim, Kyoung-Bum; Kim, Chang Il; Jeong, Young Hun; Cho, Jeong-Ho; Paik, Jong-Hoo; Nahm, Sahn; Lim, Jong Bong; Seong, Tae-Hyeon

    2013-10-01

    A water flow energy harvester, which can convert water flow energy to electric energy, was fabricated for its application to rivers. This harvester can generate power from the bending and releasing motion of piezoelectric bimorph cantilevers. A Pb(Zr0.54Ti0.46)O3 + 0.2 wt % Cr2O3 + 1.0 wt % Nb2O5 (PZT-CN) thick film and a 250-µm-thick stainless steel were used as a bimorph cantilever. The electrical impedance matching was achieved across a resistive load of 1 kΩ. Four bimorph cantilevers can generate power from 5 to 105 rpm. The output powers were steadily increased by increasing the rpm. The maximum output power was 68 mW by 105 rpm. It was found that the water flow energy harvester can generate 58 mW by a flow velocity of (2 m/s) from the stream with the four bimorph cantilevers.

  9. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites

    Directory of Open Access Journals (Sweden)

    Gollapudi Sreenivasulu

    2016-02-01

    Full Text Available Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i a bimorph of oppositely-poled lead zirconate titanate (PZT platelets and (ii a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  10. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites.

    Science.gov (United States)

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-02-20

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  11. Hydrothermal synthesis and electrochemical properties of α-MoO3 nanobelts used as cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Phuruangrat, Anukorn; Chen, Jun Song; Lou, Xiong Wen; Yayapao, Oranuch; Thongtem, Somchai; Thongtem, Titipun

    2012-01-01

    Uniform α-MoO 3 nanobelts were successfully synthesized by the hydrothermal process at 180 C for 20 h of the acidic solutions with different pH values of 0-0.75, adjusted using HCl (conc.). XRD and SEM results revealed that the pH of the precursor solutions played an important role in the phase, impurities, and morphology of the products. At the pH=0, the perfect α-MoO 3 nanobelts with a few tens of microns long were synthesized. By the TEM characterization, orthorhombic MoO 3 has a distinctive layered structure along the [010] direction, consisting of distorted MoO 6 octahedrons connected by common corners along the [100] direction and common edges along the [001] direction. The electrochemical measurement showed that the α-MoO 3 nanobelts have high specific charge capacity. (orig.)

  12. Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications

    KAUST Repository

    Conchouso Gonzalez, David; Carreno, Armando Arpys Arevalo; Castro, D.; Foulds, Ian G.

    2015-01-01

    This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used

  13. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  14. Non-linear electromechanical behaviour of piezoelectric bimorph actuators: influence on performance and lifetime

    NARCIS (Netherlands)

    Ende, D.A. van den; Bos, B.; Groen, W.A.

    2009-01-01

    Piezoelectric bimorph bender actuators find application number of areas, ranging from automotive to health care. High voltage operation in harsh environments poses ever more stringent demands on functionality and lifetime. In these high performance benders, the trade-off between functionality and

  15. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    Science.gov (United States)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  16. Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure

    Science.gov (United States)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2004-12-01

    A normally closed microgripper with a radius of curvature of 18-50 μm using a diamond-like carbon (DLC) and stress free electroplated Ni bimorph structure has been demonstrated. The large curvature in the fingers of the microgrippers is due to the high compressive stress of the DLC layer. The radius of curvature of the figures can be adjusted by the thickness ratio, and the closure of the devices can also be adjusted by varying the finger length. This device works much more efficiently than other bimorph structures due to the large difference in thermal expansion coefficients between the DLC and the Ni layers. Preliminary electrical tests have shown these microgrippers can be opened by 60°-90° at an applied power of <20mW.

  17. Segmented bimorph mirrors for adaptive optics: morphing strategy.

    Science.gov (United States)

    Bastaits, Renaud; Alaluf, David; Belloni, Edoardo; Rodrigues, Gonçalo; Preumont, André

    2014-08-01

    This paper discusses the concept of a light weight segmented bimorph mirror for adaptive optics. It focuses on the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments, which are partly outside the optical pupil. Two options are discussed, one based on truncating the singular values and one called damped least squares, which minimizes a combined measure of the sensor error and the voltage vector. A comparison of various configurations of segmented mirrors was conducted; it is shown that segmentation sharply increases the natural frequency of the system with limited deterioration of the image quality.

  18. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties

    International Nuclear Information System (INIS)

    Sinaim, Hathai; Ham, Dong Jin; Lee, Jae Sung; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun

    2012-01-01

    Highlights: ► MoO 3 nanobelts as an n-type semiconducting material. ► It was successfully synthesized by a facile hydrothermal reaction. ► A promising material with 3.75 eV band gap for hydrogen evolution reaction (HER). - Abstract: Orthorhombic molybdenum oxide (α-MoO 3 ) nanobelts were successfully synthesized by the 100–180 °C and 2–20 h hydrothermal reactions of (NH 4 ) 6 Mo 7 O 24 ·4H 2 O solutions containing 15 ml 2 M acid (HNO 3 , H 2 SO 4 or HCl) with no surfactant and template adding. These products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy, and electron microscopy (EM). In the present research, the product synthesized by the 180 °C and 20 h hydrothermal reaction of the solution containing HNO 3 was α-MoO 3 nanobelts with >10 μm long and 3 nanobelts were characterized by linear sweep voltammetry (LSV) and Tafel plot, including UV–vis and photoluminescence (PL) spectroscopy. These imply that α-MoO 3 nanobelts show satisfied performance for HER, with the 3.75 eV direct allowed band gap (E g ) due to the charged transition of O 2p → Mo 4d , including the emission of 437 nm wavelength at room temperature.

  19. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-09-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

  20. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics.

    Science.gov (United States)

    Kim, Janghyuk; Oh, Sooyeoun; Mastro, Michael A; Kim, Jihyun

    2016-06-21

    This study demonstrated the exfoliation of a two-dimensional (2D) β-Ga2O3 nano-belt and subsequent processing into a thin film transistor structure. This mechanical exfoliation and transfer method produces β-Ga2O3 nano-belts with a pristine surface as well as a continuous defect-free interface with the SiO2/Si substrate. This β-Ga2O3 nano-belt based transistor displayed an on/off ratio that increased from approximately 10(4) to 10(7) over the operating temperature range of 20 °C to 250 °C. No electrical breakdown was observed in our measurements up to VDS = +40 V and VGS = -60 V between 25 °C and 250 °C. Additionally, the electrical characteristics were not degraded after a month-long storage in ambient air. The demonstration of high-temperature/high-voltage operation of quasi-2D β-Ga2O3 nano-belts contrasts with traditional 2D materials such as transition metal dichalcogenides that intrinsically have limited temperature and power operational envelopes owing to their narrow bandgap. This work motivates the application of 2D β-Ga2O3 to high power nano-electronic devices for harsh environments such as high temperature chemical sensors and photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

  1. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    International Nuclear Information System (INIS)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-01-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO 2 , have potential for wastewater treatment. In this study, TiO 2 anatase phase nanobelts (30–100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO 2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h + ), and hydrogen peroxide (H 2 O 2 )—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO 2 nanobelt membranes, including those harnessing sunlight for water treatment

  2. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    Science.gov (United States)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-10-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO2, have potential for wastewater treatment. In this study, TiO2 anatase phase nanobelts (30-100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h+), and hydrogen peroxide (H2O2)—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment.

  3. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Science.gov (United States)

    Liu, Peng; Wang, Yunjiao; Wang, Xue; Yang, Chao; Yi, Yanfeng

    2012-11-01

    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm2O3 nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm2O3) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm2O3 composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm2O3 composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm2O3 composite at a current density of 20 mA cm-2 in a 1.0 M NaNO3 electrolyte solution, a maximum discharge capacity of 771 F g-1 was achieved in a half-cell setup configuration for the PPy/Sm2O3 composites electrode with the potential application to electrode materials for electrochemical capacitors.

  4. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU; Yuantai; HU; Hongping; YANG; Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  5. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material...

  6. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO{sub 2} nanobelt photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Robert; Hu, Anming, E-mail: a2hu@uwaterloo.ca; Li, Wenjuan; Zhou, Y. Norman [University of Waterloo, Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-10-15

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO{sub 2}, have potential for wastewater treatment. In this study, TiO{sub 2} anatase phase nanobelts (30-100 nm in width and 10 {mu}m in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products-naproxen, carbamazepine, and theophylline-that are difficult to oxidize without AOP processes. TiO{sub 2} nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species-hydroxyl radial (OH{center_dot}), positive holes (h{sup +}), and hydrogen peroxide (H{sub 2}O{sub 2})-involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO{sub 2} nanobelt membranes, including those harnessing sunlight for water treatment.

  7. Influence of High-Energy Proton Irradiation on β-Ga2O3 Nanobelt Field-Effect Transistors.

    Science.gov (United States)

    Yang, Gwangseok; Jang, Soohwan; Ren, Fan; Pearton, Stephen J; Kim, Jihyun

    2017-11-22

    The robust radiation resistance of wide-band gap materials is advantageous for space applications, where the high-energy particle irradiation deteriorates the performance of electronic devices. We report on the effects of proton irradiation of β-Ga 2 O 3 nanobelts, whose energy band gap is ∼4.85 eV at room temperature. Back-gated field-effect transistor (FET) based on exfoliated quasi-two-dimensional β-Ga 2 O 3 nanobelts were exposed to a 10 MeV proton beam. The proton-dose- and time-dependent characteristics of the radiation-damaged FETs were systematically analyzed. A 73% decrease in the field-effect mobility and a positive shift of the threshold voltage were observed after proton irradiation at a fluence of 2 × 10 15 cm -2 . Greater radiation-induced degradation occurs in the conductive channel of the β-Ga 2 O 3 nanobelt than at the contact between the metal and β-Ga 2 O 3 . The on/off ratio of the exfoliated β-Ga 2 O 3 FETs was maintained even after proton doses up to 2 × 10 15 cm -2 . The radiation-induced damage in the β-Ga 2 O 3 -based FETs was significantly recovered after rapid thermal annealing at 500 °C. The outstanding radiation durability of β-Ga 2 O 3 renders it a promising building block for space applications.

  8. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    International Nuclear Information System (INIS)

    Milazzo, A; Orlando, C; Alaimo, A

    2009-01-01

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution

  9. Polypyrrole-coated samarium oxide nanobelts: fabrication, characterization, and application in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu Peng, E-mail: pliu@lzu.edu.cn; Wang Yunjiao; Wang Xue; Yang Chao; Yi Yanfeng [College of Chemistry and Chemical Engineering, Lanzhou University, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry (China)

    2012-11-15

    Polypyrrole-coated samarium oxide nanobelts were synthesized by the in situ chemical oxidative surface polymerization technique based on the self-assembly of pyrrole on the surface of the amine-functionalized Sm{sub 2}O{sub 3} nanobelts. The morphologies of the polypyrrole/samarium oxide (PPy/Sm{sub 2}O{sub 3}) nanocomposites were characterized using transmission electron microscope. The UV-vis absorbance of these samples was also investigated, and the remarkable enhancement was clearly observed. The electrochemical behaviors of the PPy/Sm{sub 2}O{sub 3} composites were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge. The results indicated that the PPy/Sm{sub 2}O{sub 3} composite electrode was fully reversible and achieved a very fast Faradaic reaction. After being corrected into the weight percentage of the PPy/Sm{sub 2}O{sub 3} composite at a current density of 20 mA cm{sup -2} in a 1.0 M NaNO{sub 3} electrolyte solution, a maximum discharge capacity of 771 F g{sup -1} was achieved in a half-cell setup configuration for the PPy/Sm{sub 2}O{sub 3} composites electrode with the potential application to electrode materials for electrochemical capacitors.

  10. Active control of flow noise sources in turbulent boundary layer on a flat-plate using piezoelectric bimorph film

    International Nuclear Information System (INIS)

    Song, Woo Seog; Lee, Seung Bae; Shin, Dong Shin; Na, Yang

    2006-01-01

    The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency f b + =0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall-pressure energy spectrum when the 700ν/u τ -long bimorph film is periodically actuated at the non-dimensional frequency f b + =0.008 and 0.028. The bimorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event

  11. Static susceptibility and heat capacity studies on V{sub 3}O{sub 7}.H{sub 2}O{sub 7} nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, I., E-mail: i.hellmann@ifw-dresden.d [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Zakharova, G.S.; Volkov, V.L. [Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, Pervomaiskaya ul. 91, Yekaterinburg 620219 (Russian Federation); Taeschner, C.; Leonhardt, A.; Buechner, B.; Klingeler, R. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2010-04-15

    V{sub 3}O{sub 7}.H{sub 2}O nanobelts were prepared by a hydrothermal method at 190 deg. C using V{sub 2}O{sub 5}.nH{sub 2}O gel and H{sub 2}C{sub 2}O{sub 4}.2H{sub 2}O as starting agents. The obtained nanobelts have diameters ranging from 40 to 70 nm with lengths up to several micrometers. Measurements of the static magnetic susceptibility and the specific heat show a discontinuous phase transition at around T=145 K, which separates two regions of paramagnetic behavior.

  12. Thermal effects on current-related skyrmion formation in a nanobelt

    Science.gov (United States)

    Zhao, Xuebing; Wang, Shasha; Wang, Chao; Che, Renchao

    2018-05-01

    We report an in-situ Lorentz transmission electron microscopy (LTEM) investigation to study the thermal effects on the generation of magnetic skyrmions within a nanobelt. Under an action of a moderate current pulse, magnetic skyrmions appear even in the temperature range far below the critical temperature and even at zero field. Finite element simulation reveals that the Joule heating plays an essential role in this behavior. Our results also uncover the importance of the cooling conditions in the current-related in situ LTEM research.

  13. Phase controlled synthesis and cathodoluminescence properties of ZnS nanobelts synthesized by PVD

    Science.gov (United States)

    Jin, Changqing; Zhu, Kexin; Peterson, George; Zhang, Zhihong; Jian, Zengyun; Wei, Yongxing; Zheng, Deshan

    2018-01-01

    Zinc sulfide (ZnS) nanobelts were synthesized via physical vapor deposition to explore the electronic properties of optoelectronic nano-devices. It was determined that the mass ratio of wurtzite (WZ) phase to zincblende (ZB) phase and the preferential orientation (100) are related to the carrier-gas flow rate. The high concentration of planar defects within the phase boundary enhances phase transition. Cathodoluminescence measurements show a red shift of the 337 nm band-gap emission due to stacking and twin faults. We find a direct correlation between the magnitude of the red shift and the mass ratio of ZB phase. With an increase in the ZB phase, there is an increase in the concentration of stacking and twin faults introduced by the phase transformation, as indicated by an increasing red shift in the data. The absorption peaks at 666 and 719 nm were found by UV-vis absorption spectrum, which is attributed to surface defects. This work would help to better understand the important roles of planar defects in the phase transition and also provide us with a feasible route to control phase ratio and cathodoluminescence properties of ZnS nanobelts and other II-VI semiconductor nanostructures.

  14. Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type

    Directory of Open Access Journals (Sweden)

    Cheng-Hua Tsai

    2015-06-01

    Full Text Available Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA. A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  15. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng

    2015-01-01

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH) 4 nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18. • Ag 2 O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH) 4 nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag 2 O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH) 4 NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO 2 NBAs, which is much less active

  16. Fabrication of BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts for enhanced visible-light activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Huang, Xiang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Science, Tibet University, Lhasa 850000 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000 (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Li, Xiangli [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Yang, Libin [College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457 (China); Wang, Shucong [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-03-01

    Graphical abstract: - Highlights: • BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts have been synthesized. • The p–n junction photocatalysts improved water splitting and dye degradation activity. • BiOBr amount in the BiOBr@TiO{sub 2} photocatalysts was investigated. - Abstract: The construction of p–n junction structure is a smart strategy for improving the photocatalytic activity, since p–n junctions can inhibit the recombination of photo-induced charges. Herein, BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts were prepared by assembling BiOBr nanosheets on the surface of TiO{sub 2} nanobelts via a hydrothermal route followed by a co-precipitation process. BiOBr@TiO{sub 2} p–n junction photocatalysts exhibited enhanced photocatalytic activity in photocatalytic H{sub 2} production over water splitting and photodegradation of Rhodamine B (RhB) under visible light irradiation. Mott–Schottky plots confirmed the formation of p–n junctions in the interface of BiOBr and TiO{sub 2}. The enhanced photocatalytic performance can be ascribed to the 1D nanostructure and the formation of p–n junctions. This work shows a potential application of low cost BiOBr as a substitute for noble metals in photocatalytic H{sub 2} production under visible light irradiation.

  17. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    International Nuclear Information System (INIS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol; Xie, Xin

    2016-01-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead–zirconate–titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µ m and 29 µ m respectively, in good agreement with analytical predictions of 17.3 µ m and 34.2 µ m and FEA predictions of 17.1 µ m and 25.8 µ m. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments. (paper)

  18. Comment on 'Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation'

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2008-01-01

    In a recent paper, Ajitsaria et al (2007 Smart Mater. Struct. 16 447–54) presented a mathematical formulation for the modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Their motivation was the recent increasing trend in using the piezoelectric effect to harvest electrical energy from ambient vibrations. This comment addresses the modeling errors and numerous undefined and missing terms in the mentioned work. (comment)

  19. MnV2O6.V2O5 cross-like nanobelt arrays: synthesis, characterization and photocatalytic properties

    International Nuclear Information System (INIS)

    Abbood, Hayder A.; Ahmed, Khalid Abdelazez Mohamed; Ren, Yong; Huang, Kaixun

    2013-01-01

    Single-crystalline MnV 2 O 6 .V 2 O 5 cross-like nanobelt arrays were successfully synthesized by hydrothermal reaction. The products were characterized by X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy. The effects of the reaction conditions such as pH, V 5+ /Mn 2+ ratio, carboxymethyl cellulose concentration and reaction time on the morphology of the products were studied. The band gap of the as-prepared products was calculated via diffuse reflectance spectral analysis and their activity of photocatalytic oxidation was evaluated by photodegradation of methylene blue under visible-light irradiation. The results showed that the degradation efficiency of methylene blue catalyzed by the calcinated products is remarkably enhanced due to Mn doping, suggesting that MnV 2 O 6 .V 2 O 5 cross-like nanobelt arrays are a good candidate for visible-light-driven photocatalysts. (orig.)

  20. Structural transformation of MoO3 nanobelts into MoS2 nanotubes

    International Nuclear Information System (INIS)

    Deepak, Francis Leonard; Mayoral, Alvaro; Yacaman, Miguel Jose

    2009-01-01

    The structural transformation of MoO 3 nanobelts into MoS 2 nanotubes using a simple sulfur source has been reported. This transformation has been extensively investigated using electron microscopic and spectroscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and energy-dispersive X-ray analysis (SEM-EDAX and TEM-EDX). The method described in this report will serve as a generic route for the transformation of other oxide nanostructures into the chalcogenide nanostructures. (orig.)

  1. Controllable synthesis and electrochemical hydrogen storage properties of Sb₂Se₃ ultralong nanobelts with urchin-like structures.

    Science.gov (United States)

    Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang

    2011-09-01

    The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.

  2. Electrospinning synthesis of InVO{sub 4}/BiVO{sub 4} heterostructured nanobelts and their enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhendong; Lu, Qifang, E-mail: luqf0110@126.com; Guo, Enyan; Liu, Suwen [Qilu University of Technology, Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and Engineering (China)

    2016-08-15

    In the present work, one-dimensional InVO{sub 4}/BiVO{sub 4} heterostructured nanobelts with the width of about 800 nm have been successfully prepared by a simple electrospinning technique followed by the subsequent calcination process. The prepared products were characterized by thermogravimetry, fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis absorbance spectroscopy, high-performance liquid chromatography, and photoluminescence spectroscopy. The obtained InVO{sub 4}/BiVO{sub 4} heterostructured nanobelts presented an admirable morphology and excellent photocatalytic properties for the degradation of methylene blue solution under visible-light irradiation.Graphical AbstractThe electrospun precursor samples (a and b) displayed a well-defined one-dimensional (1D) belt structure. After calcined at 550 °C for 2 h (c and d), the samples can retain well the 1D morphology. And an obvious porous structure can be found from the TEM images of the calcined samples (e and f).

  3. Gas dependent sensing mechanism in ZnO nanobelt sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manmeet, E-mail: manmeet@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kailasaganapathi, S.; Ramgir, Niranjan; Datta, Niyanta [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Sushil [Heavy Water Plant (Manuguru), Gautaminagar, Dist. Khammam, Telangana (India); Debnath, A.K.; Aswal, D.K.; Gupta, S.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2017-02-01

    Highlights: • ZnO nanobelts exhibit an appreciable response towards H{sub 2}S and NO. • At room temperature, sensor recovers completely after exposure to NO (1 to 60 ppm). • At room temperature, incomplete recovery observed on exposure to higher concentrations of H{sub 2}S (> 5 ppm). • Complete recovery on exposure to concentrations higher than 5 ppm H{sub 2}S is achieved by heating the sensor films at 250 °C. • Incomplete recovery after exposure to higher concentrations of H{sub 2}S is due to formation of ZnS. - Abstract: Gas sensing properties of ZnO nanobelts synthesized using carbothermal reduction method has been investigated. At room temperature (28 °C), the sensor films exhibit an appreciable response towards H{sub 2}S and NO and response of these two gases were studied as a function of concentration. For NO the sensor films exhibit a complete reversible curve for the concentration range between 1 and 60 ppm. However, for H{sub 2}S a complete recovery was obtained for concentration <5 ppm and for higher concentration a partial recovery of the baseline resistance was observed. The reason for the incomplete recovery was investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) studies of the sample before and after the H{sub 2}S exposure. After exposure, appearance of an additional peak at 26.6° corresponding to the formation of ZnS was observed in XRD. Formation of additional phase was further corroborated using the results of XPS. H{sub 2}S exposure causes decrease in the intensity of O 1s peak and appearance of sulphide peaks at binding energies of 162.8 and 161.8 eV corresponding to S-2p peaks – 2p{sub 3/2} and 2p{sub 1/2}, confirms the formation of ZnS upon exposure.

  4. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid

    International Nuclear Information System (INIS)

    Zhao, Liwei; Li, Hongji; Gao, Sumei; Li, Mingji; Xu, Sheng; Li, Cuiping; Guo, Wenlong; Qu, Changqing; Yang, Baohe

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Graphene and MgO nanobelts are deposited on tantalum wires to form biosensors. •Ascorbic acid, dopamine and uric acid are determined with the biosensors. •The biosensors show high electrocatalytic activity for oxidation of these species. •The biosensors show high selectivity and good sensitivity. -- ABSTRACT: A promising electrochemical biosensor for simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) was fabricated by electrochemical deposition of MgO nanobelts on a graphene-modified tantalum wire (denoted as MgO/Gr/Ta) electrode. The MgO nanobelts and graphene were verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performances of the electrodes were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The CV results show that AA, DA and UA could be detected simultaneously using MgO/Gr/Ta electrode with peak-to-peak separation of 300 mV, 147 mV and 447 mV for AA-DA, DA-UA and AA-UA, respectively. In the threefold co-existence system, the linear calibration plots for AA, DA and UA were obtained over the concentration range of 5.0–350 μM, 0.1–7 μM and 1–70 μM with detection limits of 0.03 μM, 0.15 μM and 0.12 μM, respectively. The modified electrode shows excellent selectivity, good sensitivity and good stability, making it attractive as a sensor for simultaneous detection of AA, DA and UA in biological fluids

  5. Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads

    DEFF Research Database (Denmark)

    Donoso, Alberto; Sigmund, Ole

    2009-01-01

    The paper considers optimal design problems in the context of active damping. More specifically, we are interested in controlling the tip-deflection of a cantilever beam subjected to static and time-harmonic loading on its free extreme. First, the thickness profile of a piezoelectric bimorph...... actuator is optimized and second, the width profile. In the thickness study, formulation and results depend on whether the electric field or the applied voltage is kept constant. For the latter case we propose a differentiable model that connects electric field and piezo-actuator thickness to include...

  6. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    Science.gov (United States)

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  7. A distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory

    Science.gov (United States)

    Chen, Chung-De

    2018-04-01

    In this paper, a distributed parameter electromechanical model for bimorph piezoelectric energy harvesters based on the refined zigzag theory (RZT) is developed. In this model, the zigzag function is incorporated into the axial displacement, and the zigzag distribution of the displacement between the adjacent layers of the bimorph structure can be considered. The governing equations, including three equations of motions and one equation of circuit, are derived using Hamilton’s principle. The natural frequency, its corresponding modal function and the steady state response of the base excitation motion are given in exact forms. The presented results are benchmarked with the finite element method and two beam theories, the first-order shear deformation theory and the classical beam theory. Comparing examples shows that the RZT provides predictions of output voltage and generated power at high accuracy, especially for the case of a soft middle layer. Variation of the parameters, such as the beam thickness, excitation frequencies and the external electrical loads, is investigated and its effects on the performance of the energy harvesters are studied by using the RZT developed in this paper. Based on this refined theory, analysts and engineers can capture more details on the electromechanical behavior of piezoelectric harvesters.

  8. Three-dimensional graphene sheets with NiO nanobelt outgrowths for enhanced capacity and long term high rate cycling Li-ion battery anode material

    Science.gov (United States)

    Shi, Waipeng; Zhang, Yingmeng; Key, Julian; Shen, Pei Kang

    2018-03-01

    An efficient synthesis method to grow well attached NiO nanobelts from 3D graphene sheets (3DGS) is reported herein. Ni-ion exchanged resin provides the initial Ni reactant portion, which serves both as a catalyst to form 3DGS and then as a seeding agent to grow the NiO nanobelts. The macroporous structure of 3DGS provides NiO containment to achieve a high cycling stability of up to 445 mAh g-1 after 360 cycles (and >112% capacity retention after 515 cycles) at a high current density of 2 A g-1. With a 26.8 wt.% content of NiO on 3DGS, increases in specific and volumetric capacity were 41.6 and 75.7% respectively over that of 3DGS at matching current densities. Therefore, the seeded growth of NiO nanobelts from 3DGS significantly boosts volumetric capacity, while 3DGS enables high rate long term cycling of the NiO. The high rate cycling stability of NiO on 3DGS can be attributed to (i) good attachment and contact to the large surface of 3DGS, (ii) high electron conductivity and rapid Li-ion transfer (via the interconnected, highly conductive graphitized walls of 3DGS) and (iii) buffering void space in 3DGS to contain volume expansion of NiO during charge/discharge.

  9. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongjian [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Song, Dandan; Li, Xiaodan; Yu, Yue [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  10. Quantitative electromechanical impedance method for nondestructive testing based on a piezoelectric bimorph cantilever

    International Nuclear Information System (INIS)

    Fu, Ji; Tan, Chi; Li, Faxin

    2015-01-01

    The electromechanical impedance (EMI) method, which holds great promise in structural health monitoring (SHM), is usually treated as a qualitative method. In this work, we proposed a quantitative EMI method based on a piezoelectric bimorph cantilever using the sample’s local contact stiffness (LCS) as the identification parameter for nondestructive testing (NDT). Firstly, the equivalent circuit of the contact vibration system was established and the analytical relationship between the cantilever’s contact resonance frequency and the LCS was obtained. As the LCS is sensitive to typical defects such as voids and delamination, the proposed EMI method can then be used for NDT. To verify the equivalent circuit model, two piezoelectric bimorph cantilevers were fabricated and their free resonance frequencies were measured and compared with theoretical predictions. It was found that the stiff cantilever’s EMI can be well predicted by the equivalent circuit model while the soft cantilever’s cannot. Then, both cantilevers were assembled into a homemade NDT system using a three-axis motorized stage for LCS scanning. Testing results on a specimen with a prefabricated defect showed that the defect could be clearly reproduced in the LCS image, indicating the validity of the quantitative EMI method for NDT. It was found that the single-frequency mode of the EMI method can also be used for NDT, which is faster but not quantitative. Finally, several issues relating to the practical application of the NDT method were discussed. The proposed EMI-based NDT method offers a simple and rapid solution for damage evaluation in engineering structures and may also shed some light on EMI-based SHM. (paper)

  11. Synthesis of {alpha}-Fe{sub 2}O{sub 3} nanobelts and nanoflakes by thermal oxidation and study to their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Su Xinghua [School of Materials Science and Engineering, Chang' an University, Xi' an 710061 (China); Yu Chengshou [Department of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Qiang Chengwen, E-mail: qiangchw04@gmail.com [Department of Materials Science and Engineering, Lanzhou University, Lanzhou 730000 (China); Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2011-08-15

    {alpha}-Fe{sub 2}O{sub 3} nanobelts and nanoflakes have been successfully synthesized by oxidation of iron-coated ITO glass in air. The X-ray diffraction, Raman spectrum and scanning electron microscopy are carried out to characterize the nanobelts and nanoflakes. The formation mechanism has been presented. Significantly, the magnetic investigations show that the magnetic properties are strongly shape-dependent. The magnetization measurements of belt-like and flake-like {alpha}-Fe{sub 2}O{sub 3} in perpendicular exhibit ferromagnetic feature with the coercivity (H{sub c}) and saturation magnetization (M{sub s}) of 334.5 Oe and 1.35 emu/g, 239.5 Oe and 0.12 emu/g, respectively. For the parallel, belt-like and flake-like {alpha}-Fe{sub 2}O{sub 3} also exhibit ferromagnetic feature with the H{sub c} and M{sub s} of 205.5 Oe and 1.44 emu/g, 159.6 Oe and 0.15 emu/g, respectively.

  12. Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity

    Science.gov (United States)

    Cao, Yuhui; Zong, Lanlan; Li, Qiuye; Li, Chen; Li, Junli; Yang, Jianjun

    2017-01-01

    Anatase TiO2 nanocrystals exposed with {001} facets were fabricated by solvothermal strategy in HF-C4H9OH mixed solution, using titanic acid nanobelts (TAN) as a precursor. The shape of TAN is a long flat plane with a high aspect ratio, and F- is easily adsorbed on the surface of the nanobelts, inducing a higher exposure of {001} facet of TiO2 nanoparticles during the structure reorganization. The exposed percentage of {001} facets could vary from 40 to 77% by adjusting the amount of HF. The as-prepared samples were characterized by transmission electron microscopy, N2 adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscope. The photocatalytic measurement showed that TiO2 nanocrystals with 77% {001} facets exhibited much superior photocatalytic activity for photodegradation of methyl orange, methylene blue, and rhodamine B. And what's more, the mineralization rate of methyl orange was as high as 96% within 60 min. The photocatalytic enhancement is due to a large amount of the high energetic {001} facets exposing, the special truncated octahedral morphology and a stronger ability for dyes adsorption.

  13. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...... elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  14. Study of growth of gadolinium-doped ceria nanobelts by a hydrothermal microwave system; Estudo do crescimento de nanofitas de ceria dopada com gadolinio por sistema de aquecimento por micro-ondas

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, R.F.; Castro, D.A.; Santos, M.R.C.; Figueiredo, A.T.; Godinho Junior, M. [Universidade Federal de Goias (UFG), Catalao, GO (Brazil). Dept. de Quimica; Barrado, C.M. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Leite, E.R. [Universidade Federal de Sao Carlos (INCTMN/UFSCar), SP (Brazil). Dept. de Qumica

    2013-07-15

    Cerium oxide (ceria) has attracted attention because of its important applications such as solid oxide fuel cells, catalysts for automobile exhaust gas, catalysts to obtain hydrogen, UV blockers, biomaterials, etc.. Control methods for synthesis of ceria are of great importance to explain or predict these properties. Thus, the objective of this work was to study the growth of cerium oxide nanobelts in a microwave-assisted hydrothermal system, where in 8 min 330 nm nanobelts were obtained at 130 deg C and 3 atm. The results collaborate to the research on reformers for ethanol and/or solid oxide fuel cells anode. (author)

  15. Self-assembly of palladium nanoparticles: Synthesis of nanobelts, nanoplates and nanotrees using vitamin B1 and their application in carbon-carbon coupling reactions

    Science.gov (United States)

    An environmentally friendly one-step method to synthesize palladium (Pd) nanobelts, nanoplates and nanotrees using vitamin B1 without using any special capping agents at room temperature is described. This greener method, which uses water as benign solvent and vitamin B1 as a red...

  16. Nanotubes, nanobelts, nanowires, and nanorods of silicon carbide from the wheat husks

    Energy Technology Data Exchange (ETDEWEB)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Feng, J.; Qadri, S. N.; Caldwell, J. D. [Materials Science and Component Technology Directorate, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-09-14

    Nanotubes, nanowires, nanobelts, and nanorods of SiC were synthesized from the thermal treatment of wheat husks at temperatures in excess of 1450 °C. From the analysis based on x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, it has been found that the processed samples of wheat husk consisted of 2H and 3C polytypes of SiC exhibiting the nanostructure shapes. These nanostructures of silicon carbide formed from wheat husks are of technological importance for designing advance composites, applications in biotechnology, and electro-optics. The thermodynamics of the formation of SiC is discussed in terms of the rapid solid state reaction between hydrocarbons and silica on the molecular scale, which is inherently present in the wheat husks.

  17. Magnetic-field and temperature dependence of the energy gap in InN nanobelt

    Directory of Open Access Journals (Sweden)

    K. Aravind

    2012-03-01

    Full Text Available We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity. Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

  18. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also...... characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit....

  19. Modeling and simulations of new electrostatically driven, bimorph actuator for high beam steering micromirror deflection angles

    Science.gov (United States)

    Walton, John P.; Coutu, Ronald A.; Starman, LaVern

    2015-02-01

    There are numerous applications for micromirror arrays seen in our everyday lives. From flat screen televisions and computer monitors, found in nearly every home and office, to advanced military weapon systems and space vehicles, each application bringing with it a unique set of requirements. The microelectromechanical systems (MEMS) industry has researched many ways micromirror actuation can be accomplished and the different constraints on performance each design brings with it. This paper investigates a new "zipper" approach to electrostatically driven micromirrors with the intent of improving duel plane beam steering by coupling large deflection angles, over 30°, and a fast switching speed. To accomplish this, an extreme initial deflection is needed which can be reached using high stress bimorph beams. Currently this requires long beams and high voltage for the electrostatic pull in or slower electrothermal switching. The idea for this "zipper" approach is to stack multiple beams of a much shorter length and allow for the deflection of each beam to be added together in order to reach the required initial deflection height. This design requires much less pull-in voltage because the pull-in of one short beam will in turn reduce the height of the all subsequent beams, making it much easier to actuate. Using modeling and simulation software to characterize operations characteristics, different bimorph cantilever beam configurations are explored in order to optimize the design. These simulations show that this new "zipper" approach increases initial deflection as additional beams are added to the assembly without increasing the actuation voltage.

  20. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  1. Antimony doped cadmium selenium nanobelts with enhanced electrical and optoelectrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lijie [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou 325027 (China); Yu, Hongfei; Cao, Wei; Dong, Youqing; Zou, Chao; Yang, Yun [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou 325027 (China); Huang, Shaoming, E-mail: smhuang@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou 325027 (China); Dai, Ning [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Zhu, Da-Ming, E-mail: ZhuD@umkc.edu [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2014-07-01

    Intrinsic and Sb-doped CdSe nanobelts (NBs) were synthesized via a thermal evaporation technique. The electrical transport properties of field effect transistors (FETs) fabricated using the NBs were investigated. The results indicate that the Sb-doped NBs behave as n-type semiconductors with improved electrical conductivity (10⁻¹ to 100 S/cm) compared with the intrinsic CdSe. Photodetectors made of single NB were also fabricated and investigated. The results show that Sb-doped NB photodetectors exhibit much higher responsivity (1.5 × 10⁴ A/W) and external quantum efficiency (1.2 × 10⁵) but lower on/off current ratio (~253) and longer response time (≤40 ms). Furthermore, both electrical transport and optoelectrical properties of the as-synthesized CdSe NBs can be tuned by changing the doping concentration. The results indicate that the as-synthesized NBs are excellent building blocks for constructing electronic and optoelectronic devices.

  2. Schottky junction photovoltaic devices based on CdS single nanobelts.

    Science.gov (United States)

    Ye, Y; Dai, L; Wu, P C; Liu, C; Sun, T; Ma, R M; Qin, G G

    2009-09-16

    Schottky junction photovoltaic (PV) devices were fabricated on single CdS nanobelts (NBs). Au was used as the Schottky contact, and In/Au was used as the ohmic contact to CdS NB. Typically, the Schottky junction exhibits a well-defined rectifying behavior in the dark with a rectification ratio greater than 10(3) at +/- 0.3 V; and the PV device exhibits a clear PV behavior with an open circuit photovoltage of about 0.16 V, a short circuit current of about 23.8 pA, a maximum output power of about 1.6 pW, and a fill factor of 42%. Moreover, the output power can be multiplied by connecting two or more of the Schottky junction PV devices, made on a single CdS NB, in parallel or in series. This study demonstrates that the 1D Schottky junction PV devices, which have the merits of low cost, easy fabrication and material universality, can be an important candidate for power sources in nano-optoelectronic systems.

  3. Out-of-plane buckled cantilever microstructures with adjustable angular positions using thermal bimorph actuation for transducer applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-10-27

    The integration of thermal bimorph actuators and buckled cantilever structures to form an out-of-plane plate with adjustable angular positions is reported. This structure could be used as a platform to build other transducers such as optical micromirrors, scanning antennas, switches or low-frequency oscillators. The electromechanical characterisation has shown that these structures can adjust their angular position by 6° when they are operated using a DC source. The thermal characterisation performed by an infrared camera showed that the heat-affected zone reaches a maximum temperature of 125°C while the rest of the structure remains unaffected by the generated heat.

  4. Solvothermal synthesis of TiO{sub 2} nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yuhui; Zong, Lanlan [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Li, Qiuye, E-mail: qiuyeli@henu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 (China); Li, Chen; Li, Junli [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Yang, Jianjun, E-mail: yangjianjun@henu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 (China)

    2017-01-01

    Highlights: • TiO{sub 2} exposed with {001} facets were firstly prepared using TAN as Ti source. • The mineralization rate of MO on sample with 77% {001} facets was as high as 96%. • The superior photocatalytic activity was greatly due to {001} facets exposing. - Abstract: Anatase TiO{sub 2} nanocrystals exposed with {001} facets were fabricated by solvothermal strategy in HF-C{sub 4}H{sub 9}OH mixed solution, using titanic acid nanobelts (TAN) as a precursor. The shape of TAN is a long flat plane with a high aspect ratio, and F{sup −} is easily adsorbed on the surface of the nanobelts, inducing a higher exposure of {001} facet of TiO{sub 2} nanoparticles during the structure reorganization. The exposed percentage of {001} facets could vary from 40 to 77% by adjusting the amount of HF. The as-prepared samples were characterized by transmission electron microscopy, N{sub 2} adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscope. The photocatalytic measurement showed that TiO{sub 2} nanocrystals with 77% {001} facets exhibited much superior photocatalytic activity for photodegradation of methyl orange, methylene blue, and rhodamine B. And what’s more, the mineralization rate of methyl orange was as high as 96% within 60 min. The photocatalytic enhancement is due to a large amount of the high energetic {001} facets exposing, the special truncated octahedral morphology and a stronger ability for dyes adsorption.

  5. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.

    Science.gov (United States)

    Wang, Huanwen; Guan, Cao; Wang, Xuefeng; Fan, Hong Jin

    2015-03-25

    A novel hybrid Li-ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li-ion battery type anode (TiO(2) nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free-standing TiO(2) nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li-ion capacitor allows rapid electron and ion transport in the non-aqueous electrolyte. Within a voltage range of 0.0-3.8 V, a high energy of 82 Wh kg(-1) is achieved at a power density of 570 W kg(-1). Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg(-1) can be retained. These results demonstrate that the TiO(2) NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li-ion batteries, which makes it a promising electrochemical power source. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    International Nuclear Information System (INIS)

    Wilson, S A; Jourdain, R P; Owens, S

    2010-01-01

    The projected force–displacement capability of piezoelectric ceramic films in the 20–50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ∼ 1 V µm −1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'

  7. Newly designed double surface bimorph mirror for BL-15A of the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Noriyuki, E-mail: noriyuki.igarashi@kek.jp; Nitani, Hiroaki; Takeichi, Yasuo; Niwa, Yasuhiro; Abe, Hitoshi; Kimura, Masao; Mori, Takeharu; Nagatani, Yasuko; Kosuge, Takashi; Kamijo, Ai; Koyama, Atsushi; Shimizu, Nobutaka [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Ohta, Hiromasa [Mitsubishi Electric System & Service Co., Ltd. 20F Carrot Tower 4-1-1 Taishido, Setagaya-ku, Tokyo 154-8520 (Japan)

    2016-07-27

    BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance is promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.

  8. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    International Nuclear Information System (INIS)

    Yu, Guangbin; Tang, Chaolong; Song, Jinhui; Lu, Wenqiang

    2014-01-01

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial

  9. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    Science.gov (United States)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  10. A vacuum pressure sensor based on ZnO nanobelt film

    International Nuclear Information System (INIS)

    Zheng, X J; Cao, X C; Sun, J; Yuan, B; Zhu, Z; Zhang, Y; Li, Q H

    2011-01-01

    A vacuum pressure sensor was fabricated by assembling ZnO nanobelt film on the interdigital electrodes, and the current-voltage characteristics were measured with an Agilent semiconductor parameter tester. Under different pressures of 1.0 x 10 3 , 6.7 x 10 -3 , 8.2 x 10 -4 and 9.5 x 10 -5 mbar, the currents are 8.71, 28.1, 46.1 and 89.6 nA, and the pressure sensitive resistances are 1150, 356, 217 and 112 MΩ, respectively. In the range of 10 -5 -10 3 mbar the smaller the pressure is, the higher the current is. The pressure sensitive resistance of the vacuum pressure sensor increases linearly with the logarithmic pressure, and the measurement range is at least one order of magnitude wider than that of the previous sensors. Under the final pressure, the vacuum pressure sensor has maximum sensitivity (9.29) and power consumption of 0.9 μW. The sensitivity is larger than that of the previous sensor based on a ZnO single nanowire at that pressure, and the power consumption is much lower than that for the sensor based on a ZnO nanowire array. The pressure sensitive mechanism is reasonably explained by using oxygen chemisorption and energy band theory.

  11. Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation

    Science.gov (United States)

    Ma, Jian; Zhou, Wei; Tan, Xin; Yu, Tao

    2018-05-01

    Solar-to-chemical energy conversion is a challenging photochemical reaction for renewable energy storage. In recent decades, photocatalytic H2 evolution has been studied extensively. TiO2 is a well-established semiconductor in the field of photocatalytic H2 production; however, its low efficiency for solar energy utilization, and high photocarrier recombination rate, restrict its photocatalytic efficiency. Here, a series of K-intercalated g-C3N4-modified TiO2 nanobelts (TCN–Kx) with different dosages of K atoms were fabricated using a hydrothermal method followed by a calcination process. XRD, TEM and XPS tests indicate that a tight interfacial connection is formed between K–g-C3N4 and the TiO2 nanobelts. DFT calculations indicated that K dopants prefer to be at the interlayer sites of g-C3N4, suggesting increased charge transfer efficiency. The H2 production efficiency of the TCN–Kx composite materials from water splitting under visible-light irradiation was clearly improved. Steady fluorescence spectroscopy and photocurrent measurements confirmed that the improvement in photocatalytic H2 production activity was due to the superior charge separation and electron transfer efficiency of TCN–Kx composite materials.

  12. Surface tiny grain-dependent enhanced rate performance of MoO3 nanobelts with pseudocapacitance contribution for lithium-ion battery anode

    Science.gov (United States)

    Cao, Liyun; He, Juju; Li, Jiayin; Yan, Jingwen; Huang, Jianfeng; Qi, Ying; Feng, Liangliang

    2018-07-01

    In order to improve the rate performance of MoO3, a novel MoO3 nanobelt with tiny grains on surface (named as d-MoO3) is fabricated via one-step facile hydrothermal method with citric acid adding, in which citric acid (CA) serves as a weak reductant as well as surface modification agent. When tested as an anode in LIBs, d-MoO3 displays an improved discharge capacity of 787 mAh·g-1 at 0.1 A g-1 over 100 cycles with capacity retention of ∼91% while MoO3 decays to 50 mAh·g-1 in the 100th cycle. Notably, d-MoO3 delivers enhanced rate capability (536 and 370 mAh·g-1 at high rates of 5 and 10 A g-1 respectively). We consider these excellent electrochemical properties of d-MoO3 electrode are associated with the tiny grains on MoO3 surface, which effectively maintains the electrode's structural integrity. Even though d-MoO3 nanobelt suffers from a degree of in-situ pulverization after several cycles, these pulverized active particles can still maintain stable electrochemical contact and are highly exposed to electrolyte, realizing ultrahigh e-/Li+ diffusion kinetics. In addition, part extrinsic pseudocapacitance contribution to the Li+ storage also explains the high-rate performance. Combining all these merits, d-MoO3 is potentially a high-energy, high-power and well-stable anode material for Li ion batteries (LIBs).

  13. 金属纳米带的制备及其在电化学传感器中的应用研究进展%Development of Preparation of Metal Nanobelts and Its Application in Electrochemical Sensors

    Institute of Scientific and Technical Information of China (English)

    杨光明; 李丽; 徐国良; 徐凤; 杨云慧

    2011-01-01

    综述了金、银等金属纳米带的制备方法(真空冷凝法和模板法)及其在电化学传感器中的应用,展望了其发展前景.着重介绍了真空冷凝法的制备原理、装置、过程等;讨论了模板法中不同类型的有机分子模板(模板作用、兼顾模板和还原剂作用)、制备过程中的反应体系(水热、超声等)、模板分子与金属离子的物质的量比和反应时间等对纳米带微观形貌的影响.%The development of preparation of metal nanobelts(Evaporation-condensation method and the soft template method) and its application in electrochemical sensors are reviewed. The prospects and development trend of metal nanobelts are discussed. The principle, process and installation of evaporation-condensation method are discussed. Effects of the morphological characterizations of the metal nanobelts are reviewed such as different template (Only template action, template and reducing agent action), synthetic conditions (hydro-thermal synthesis and ultrasonic irradiation etc. ) and reaction time.

  14. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  15. The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever

    Science.gov (United States)

    Palosaari, Jaakko; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli

    2018-06-01

    In this research four piezoelectric bimorph type cantilevers for energy harvesting were manufactured, measured and analyzed to study the effects of substrate layer thickness on energy harvesting efficiency and durability under different accelerations. The cantilevers had the same dimensions of the piezoelectric ceramic components, but had different thicknesses of the steel substrate (no steel, 30 μm, 50 μm and 75 μm). The cantilevers were tuned to the same resonance frequency with different sizes of tip mass (2.13 g, 3.84 g, 4.17 g and 5.08 g). The energy harvester voltage outputs were then measured across an electrical load near to the resonance frequency (∼40 Hz) with sinusoidal vibrations under different accelerations. The stress exhibited by the four cantilevers was compared and analyzed and their durability was tested with accelerations up to 2.5 g-forces.

  16. Development of Preparation of Metal Nanobelts and Its Application in Electrochemical Sensors%金属纳米带的制备及其在电化学传感器中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    杨光明; 李丽; 徐国良; 徐凤; 杨云慧

    2012-01-01

    综述了金、银等金属纳米带的制备方法(真空冷凝法和模板法)及其在电化学传感器中的应用,展望了其发展前景.着重介绍了真空冷凝法的制备原理、装置、过程等;讨论了模板法中不同类型的有机分子模板(模板作用、兼顾模板和还原剂作用)、制备过程中的反应体系(水热、超声等)、模板分子与金属离子的物质的量比和反应时间等对纳米带微观形貌的影响.%The development of preparation of metal nanobelts (Evaporation-condensation method and the soft template method) and its application in electrochemical sensors are reviewed. The prospects and development trend of metal nanobelts are discussed. The principle, process and installation of evaporation-condensation method are discussed. Effects of the morphological characterizations of the metal nanobelts are reviewed such as different template (Only template action, template and reducing agent action), synthetic conditions (hydro-thermal synthesis and ultrasonic irradiation etc. ) and reaction time.

  17. Suspended ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, C.

    1991-05-01

    The retrofitting of existing conventional ceiling systems to suspended ceiling type systems represents an interesting energy savings solution since this method, in addition to providing additional protection against space heat loss and thermal bridges, also creates the possibility of housing, in the void, additional mechanical and electrical lines which may be necessary due to other savings interventions. This paper reviews the various suspended ceiling systems (e.g., those making use of mineral fibre, gypsum panels, wood, vermiculite, etc.) currently marketed in Europe, and reports, for each, some key technical, economic and architectural advantages which include thermal efficiency, noise abatement, as well as, resistance to fire and humidity. Information is also given on the relative installation and maintenance requirements.

  18. Fabrication of novel Ag−TiO_2 nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Wang, Yang; Li, Zhen; Cao, Ya; Li, Fei; Zhao, Wen; Liu, Xueqin; Yang, Jianbo

    2016-01-01

    TiO_2 nanobelts (TiO_2NBs) were successfully prepared using a solvothermal route via Ti foil as substrate in large scales. The morphology evolution process and formation mechanism of the as-obtained products were investigated in detail. On the basis of this novel structure, chemical sensitive Ag modified TiO_2NBs nanocomposites (Ag−TiO_2NBs) were fabricated. It was found that Ag−TiO_2NBs exhibit strong light absorption and efficient electron transport. According to Mott-Schottky analysis, Ag−TiO_2NBs show less surface trapping sites compared with TiO_2NBs. The Ag−TiO_2NBs photoanode fabricated in 0.01 M AgNO_3 demonstrates the best performance with a short-circuit current of 11.9 mA cm"−"2 corresponding to a photoelectric conversion efficiency of 4.89%, which is higher than that of pure TiO_2NBs based solar cell by 60%. - Graphical abstract: J-V curves of DSSCs based on TiO_2NPs, TiO_2NBs and Ag−TiO_2NBs—X under AM 1.5 conditions (100 mW cm"−"2). Ag−TiO_2NBs nanocomposites were prepared via a simple and effective method. Owing to strong light absorption and efficient electron transport, Ag−TiO_2NBs—0.01 M shows a PCE of 4.89% when prepared as a photoanode in DSSCs. - Highlights: • A facile route was adopted to construct well-dispersed Ag nanoparticles on TiO_2 nanobelts (Ag—TiO_2NBs). • Structure and photoelectrochemical properties of Ag—TiO_2NBs were studied. • Ag nanoparticles were found to modify the defects of TiO_2NBs. • Enhanced photovoltaic property of Ag—TiO_2NBs, compared to TiO_2NBs.

  19. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  20. Self-Reconstructed Formation of a One-Dimensional Hierarchical Porous Nanostructure Assembled by Ultrathin TiO2 Nanobelts for Fast and Stable Lithium Storage.

    Science.gov (United States)

    Liu, Yuan; Yan, Xiaodong; Xu, Bingqing; Lan, Jinle; Yu, Yunhua; Yang, Xiaoping; Lin, Yuanhua; Nan, Cewen

    2018-06-06

    Owing to their unique structural advantages, TiO 2 hierarchical nanostructures assembled by low-dimensional (LD) building blocks have been extensively used in the energy-storage/-conversion field. However, it is still a big challenge to produce such advanced structures by current synthetic techniques because of the harsh conditions needed to generate primary LD subunits. Herein, a novel one-dimensional (1D) TiO 2 hierarchical porous fibrous nanostructure constructed by TiO 2 nanobelts is synthesized by combining a room-temperature aqueous solution growth mechanism with the electrospinning technology. The nanobelt-constructed 1D hierarchical nanoarchitecture is evolves directly from the amorphous TiO 2 /SiO 2 composite fibers in alkaline solutions at ambient conditions without any catalyst and other reactant. Benefiting from the unique structural features such as 1D nanoscale building blocks, large surface area, and numerous interconnected pores, as well as mixed phase anatase-TiO 2 (B), the optimum 1D TiO 2 hierarchical porous nanostructure shows a remarkable high-rate performance when tested as an anode material for lithium-ion batteries (107 mA h g -1 at ∼10 A g -1 ) and can be used in a hybrid lithium-ion supercapacitor with very stable lithium-storage performance (a capacity retention of ∼80% after 3000 cycles at 2 A g -1 ). The current work presents a scalable and cost-effective method for the synthesis of advanced TiO 2 hierarchical materials for high-power and stable energy-storage/-conversion devices.

  1. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  2. A New Measure for Transported Suspended Sediment

    Science.gov (United States)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  3. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    International Nuclear Information System (INIS)

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-01

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  4. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  5. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  6. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Alqahtani, Mohammed S. [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia); Hadia, N.M.A.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2017-04-15

    CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor-solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices. (orig.)

  7. Finite Element Study on Performance of Piezoelectric Bimorph Cantilevers Using Porous/Ceramic 0-3 Polymer Composites

    Science.gov (United States)

    Kiran, Raj; Kumar, Anuruddh; Chauhan, Vishal S.; Kumar, Rajeev; Vaish, Rahul

    2018-01-01

    Finite element analysis of 0-3 composites made of piezoceramic particles and pores embedded in polyvinylidene difluoride (PVDF) has been carried out. The representative volume element (RVE) approach was used to calculate the effective elastic and piezoelectric properties of the periodic isotropic 0-3 piezoelectric composites. It was observed that the elastic and piezoelectric properties increased with the volume fraction of {K}_{0.475} {Na}_{0.475} {Li}_{0.05} ( {{Nb}_{0.92} {Ta}_{0.05} {Sb}_{0.03} } ){O}3 (KNLNTS) particles but decreased for the porous composites. These effective properties were further used to analyze the potential use of such bimorph cantilever beams in sensing and energy harvesting applications. Sensing voltage continuously increased for KNLNTS filled composites while for porous materials it increased up to 15% volume fraction porosity and then decreased. The same trend was also observed for the power produced by the harvester. However, the sensing voltage and power produced by harvesters made of porous composites were lower than for harvesters made of pure PVDF.

  8. Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications

    Science.gov (United States)

    Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael

    2016-04-01

    Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.

  9. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    International Nuclear Information System (INIS)

    Cui, Jingjie; Xu, Ping; Li, Hong; Chen, Jing; Chen, Shaowei; Gao, Li

    2016-01-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO 2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs  and molecular biology research. (paper)

  10. Intermodal resonance of vibrating suspended cables

    NARCIS (Netherlands)

    Rienstra, S.W.

    2010-01-01

    The weakly nonlinear free vibrations of a single suspended cable, or a coupled system of suspended cables, may be classified as gravity modes (no tension variations to leading order) and elasto-gravity modes (tension and vertical displacement equally important). It was found earlier [12] that the

  11. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  12. Fabrication of novel Ag−TiO{sub 2} nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Li, Zhen, E-mail: zhenli@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Cao, Ya; Li, Fei; Zhao, Wen; Liu, Xueqin; Yang, Jianbo [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2016-08-25

    TiO{sub 2} nanobelts (TiO{sub 2}NBs) were successfully prepared using a solvothermal route via Ti foil as substrate in large scales. The morphology evolution process and formation mechanism of the as-obtained products were investigated in detail. On the basis of this novel structure, chemical sensitive Ag modified TiO{sub 2}NBs nanocomposites (Ag−TiO{sub 2}NBs) were fabricated. It was found that Ag−TiO{sub 2}NBs exhibit strong light absorption and efficient electron transport. According to Mott-Schottky analysis, Ag−TiO{sub 2}NBs show less surface trapping sites compared with TiO{sub 2}NBs. The Ag−TiO{sub 2}NBs photoanode fabricated in 0.01 M AgNO{sub 3} demonstrates the best performance with a short-circuit current of 11.9 mA cm{sup −2} corresponding to a photoelectric conversion efficiency of 4.89%, which is higher than that of pure TiO{sub 2}NBs based solar cell by 60%. - Graphical abstract: J-V curves of DSSCs based on TiO{sub 2}NPs, TiO{sub 2}NBs and Ag−TiO{sub 2}NBs—X under AM 1.5 conditions (100 mW cm{sup −2}). Ag−TiO{sub 2}NBs nanocomposites were prepared via a simple and effective method. Owing to strong light absorption and efficient electron transport, Ag−TiO{sub 2}NBs—0.01 M shows a PCE of 4.89% when prepared as a photoanode in DSSCs. - Highlights: • A facile route was adopted to construct well-dispersed Ag nanoparticles on TiO{sub 2} nanobelts (Ag—TiO{sub 2}NBs). • Structure and photoelectrochemical properties of Ag—TiO{sub 2}NBs were studied. • Ag nanoparticles were found to modify the defects of TiO{sub 2}NBs. • Enhanced photovoltaic property of Ag—TiO{sub 2}NBs, compared to TiO{sub 2}NBs.

  13. А mathematical model study of suspended monorail

    OpenAIRE

    Viktor GUTAREVYCH

    2012-01-01

    The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  14. А mathematical model study of suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2012-01-01

    Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  15. Development and Validation of an Enhanced Coupled-Field Model for PZT Cantilever Bimorph Energy Harvester

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2013-01-01

    Full Text Available The power source with the limited life span has motivated the development of the energy harvesters that can scavenge the ambient environment energy and convert it into the electrical energy. With the coupled field characteristics of structure to electricity, piezoelectric energy harvesters are under consideration as a means of converting the mechanical energy to the electrical energy, with the goal of realizing completely self-powered sensor systems. In this paper, two previous models in the literatures for predicting the open-circuit and close-circuit voltages of a piezoelectric cantilever bimorph (PCB energy harvester are first described, that is, the mechanical equivalent spring mass-damper model and the electrical equivalent circuit model. Then, the development of an enhanced coupled field model for the PCB energy harvester based on another previous model in the literature using a conservation of energy method is presented. Further, the laboratory experiments are carried out to evaluate the enhanced coupled field model and the other two previous models in the literatures. The comparison results show that the enhanced coupled field model can better predict the open-circuit and close-circuit voltages of the PCB energy harvester with a proof mass bonded at the free end of the structure in order to increase the energy-harvesting level of the system.

  16. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance

    Science.gov (United States)

    Aghazadeh, Mustafa; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    Cathodic electrodeposition of MnO2 from a nitrate solution, via pulsed base (OH-) electrogeneration was performed for the first time. The deposition experiments were performed in a pulse current mode in typical on-times and off-times (i.e. ton = 1 s and toff = 1 s) with a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterizations conducted by XRD and FTIR techniques revealed that the prepared MnO2 is composed of both α and γ phases. Morphological observation by SEM and TEM showed that the prepared MnO2 is made up of nanobelts with uniform shapes (an average diameter and length of 50 nm and 1 μm, respectively). Further electrochemical measurements by cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures have excellent capacitive behaviors, like a specific capacitance of 235.5 F g-1 and capacity retention of 91.3% after 1000 cycling at the scan rate of 25 mV s-1.

  17. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    Science.gov (United States)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  18. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  19. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  20. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  1. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  2. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  3. Methods of and system for swing damping movement of suspended objects

    Science.gov (United States)

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  4. Real-time deflection and friction force imaging by bimorph-based resonance-type high-speed scanning force microscopy in the contact mode.

    Science.gov (United States)

    Cai, Wei; Fan, Haiyun; Zhao, Jianyong; Shang, Guangyi

    2014-01-01

    We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. 07.79.Lh; 07.79.Sp; 68.37.Ps.

  5. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  6. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  7. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  8. Dynamic model of movement of mine suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2014-03-01

    Full Text Available In the article we have developed the dynamic model of interaction of rolling stock during the movement, on the suspended monorail, taking into account the side-sway. We have received the motion equations, carried out their analysis and determined the own oscillation frequencies of rolling stock of suspended monorail.

  9. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  10. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  11. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  12. Elemental compositions of suspended particles released in glass manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Mamuro, T; Mizohata, A; Kubota, T [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1980-03-01

    Suspended particles released in glass manufacture were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. Suspended particles emitted from glass manufacture generally consist of both particles emitted from glass fusion and those produced through fuel combustion (mainly oil combustion). Elemental compositions of suspended particles emitted from glass fusion were found to be strongly dependent on the kind and recipe of raw materials and additives. Of the various metallic elements involved in suspended particles emitted from glass fusion, the elements, As, Se, Cd, Sb, Pb and so on are regarded to produce the most serious air pollution. The amount of emission of these elements to the environment is, howerer, quite varied from manufacturer to manufacturer. The replacement of electric furnace by oil combustion in opal glass manufacture remarkably reduced the emission of metallic elements to the environment.

  13. Molybdenum-rhenium superconducting suspended nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio [Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  14. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  15. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    -2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi...... extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3 y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty...

  16. The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2014-04-01

    Full Text Available The implementation and development of managed aquifer recharge (MAR have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp and median grain size of suspended solids (d50 was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp and different level of grain diameter of suspended solids (di, were developed to predict the potential suspended solids types.

  17. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  18. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard)

    Science.gov (United States)

    Meslard, Florian; Bourrin, François; Many, Gaël; Kerhervé, Philippe

    2018-05-01

    An experiment was carried out during summer 2015 in the inner part of the Kongsfjorden to study the inputs of meltwater and behaviour of associated suspended particles. We used a wide range of oceanographic instruments to assess the hydrological and hydrodynamic characteristics of coastal waters. The transfer of suspended particles occurs from a large surface plume fed by two main sources: the most important one is the upwelling of fresh and turbid water coming from a tide-water glacier: the Kronebreen, and the second one from a continental glacier: the Kongsvegen. We estimated that these two sources discharged about 2.48 ± 0.37 × 106 t of suspended sediments during the two months of melting. The major part of these sediments is deposited within the first kilometre due to flocculation phenomena. Flocculation is initiated below the surface turbid plume and is mainly caused by the salinity gradient and high suspended particle concentration. Finally, our estimates of suspended particle fluxes by a typical Arctic coastal glacier showed the need to consider suspended sediment fluxes from high-latitude areas into global budgets in the context of climate change.

  19. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  20. Remote sensing of suspended sediment water research: principles, methods, and progress

    Science.gov (United States)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  1. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    Science.gov (United States)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  2. Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City

    Science.gov (United States)

    Suryani, Sri; Fahrunnisa

    2018-03-01

    Research on the status of suspended particulate matters pollution in four traditional markets located in Makassar city has been done. The purpose of this research is to know the air quality in the traditional market areas, especially caused by suspended particulate matters. The background of this research is because traders who trade in traditional markets generally peddle their goods along dusty roads and suspended particulate matters in dust can be inhaled when the vehicle passes. These suspended particulate matters pollutant can cause lung diseases. The results showed that the level of suspended particulate matters pollution fluctuates every year depending on the local wind speed, humidity, and temperature. Research results also showed the values were over the standard value according to the governor of South Sulawesi regulation.

  3. The suspended sentence in German criminal law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2017-01-01

    Full Text Available From the ancient times until today, criminal law in all countries has provided different criminal sanctions as social control measures. These are court-imposed coercive measures that take away or limit certain rights and freedoms of criminal offenders. Sanctions are applied to natural or legal persons who violate the norms of the legal order and cause damage or endanger other legal goods that enjoy legal protection. In order to effectively protect social values jeopardized by the commission of crime, state legislations prescribe several kinds of criminal sanctions: 1 penalties, 2 precautions, 3 safety measures, 4 penalties for juvenile offenders, and 5 sanctions for legal persons. Penalties are the basic, the oldest and the most important type of criminal sanctions. They are prescribed for the largest number of criminal offences. Imposed instead of or alongside with penalties, warning measures have particularly important role in jurisprudence. Since they were introduced in the system of criminal sanctions in the early 20th century, there has been a notable increase in the application of these measures, particularly in cases involving negligent and accidental offences, and minor offences that do not cause serious consequences, whose perpetrators are not persons with criminal characteristics. Warning measures (suspended sentence are envisaged in all contemporary criminal legislations, including the German legislation. Suspended sentence is a conditional stay of execution of the sentence of imprisonment for a specified time, provided that the convicted person fulfills the imposed obligations and does not commit another criminal offense. Two conditions must be fulfilled for the application of these sanctions: a the formal requirement, which is attached to the sentence of imprisonment; and b the substantive requirement, which implies the court assessment that the application of these sanctions is justified and necessary in a particular case. Many

  4. Magnetically suspended experimental vehicle-strength of structure and dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagahiro, T; Terada, K; Kasai, Y; Motonaga, M

    1973-06-01

    To cope with rapid increase in demand for railroad transportation, studies in magnetically suspended high speed trains are being pushed forward at the Japanese National Railways. Recently a special experimental vehiclc was completed which will be used by JNR in experiments concerning magnetic propulsion and suspension of magnetically suspended high speed trains. This test vehicle is provided with reaction plates of linear induction motor under the floor at about the center of the vehicle, with superconducting magnets for suspension on both sides. The vehicle body is made mainly of high tensile strengthened aluminium (duralumin) for weight reduction, but its strength was checked by the vibration analysis and load tests carried out in the suspended condition. Remote-operated from the control tower, this unmanned test vehicle will provide a key to the completion of a super-high speed magnetically suspended train.

  5. Electrochemical horseradish peroxidase biosensor based on dextran-ionic liquid-V2O5 nanobelt composite material modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Zhu Zhihong; Sun Xiaoying; Wang Yan; Zeng Yan; Sun Wei; Huang Xintang

    2010-01-01

    Direct electrochemistry of horseradish peroxidase (HRP) was realized in a dextran (De), 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO 3 ) and V 2 O 5 nanobelt composite material modified carbon ionic liquid electrode (CILE). Spectroscopic results indicated that HRP retained its native structure in the composite. A pair of well-defined redox peaks of HRP appeared in pH 3.0 phosphate buffer solution with the formal potential of -0.213 V (vs. SCE), which was the characteristic of HRP heme Fe(III)/Fe(II) redox couple. The result was attributed to the specific characteristics of De-IL-V 2 O 5 nanocomposite and CILE, which promoted the direct electron transfer rate of HRP with electrode. The electrochemical parameters of HRP on the composite modified electrode were calculated and the electrocatalysis of HRP to the reduction of trichloroacetic acid (TCA) was examined. Under the optimal conditions the reduction peak current increased with TCA concentration in the range from 0.4 to 16.0 mmol L -1 . The proposed electrode is valuable for the third-generation electrochemical biosensor.

  6. Operational Test Report for the 241-AZ-101 Suspended Solids Profiler

    International Nuclear Information System (INIS)

    STENKAMP, D.M.

    2000-01-01

    This document comprises the Operational Test Report for the 241-AZ-101 Suspended Solids Profiler. This document presents the results of Operational Testing of the 241-AZ-101 Suspended Solids Profiler (SSP). Testing of the SSP was performed in accordance with OTP-260-005, ''SUSPENDED SOLIDS PROFILER OPERATIONAL TEST PROCEDURE''. The objective of the testing was to verify that all equipment and components functioned as designed, following construction completion and turnover to operations

  7. 金属纳米带的制备及其在电化学传感器中的应用研究进展%Development of Preparation of Metal Nanobelts and Its Application in Electrochemical Sensors

    Institute of Scientific and Technical Information of China (English)

    杨光明; 李丽; 徐国良; 徐凤; 杨云慧

    2011-01-01

    The development of preparation of metal nanobells( Evaporation-condensation method and the soft template method) and its application in electrochemical sensors are reviewed. The prospects and development trend of metal nanobelts are discussed. The principle, process and installation of evaporation-condensation method are discussed. Effects of the morphological characterizations of the metal nanobelts are reviewed such as different template (Only template action, template and reducing agent action), synthetic conditions (hydro-thermal synthesis and ultrasonic irradiation etc. ) and reaction time.%综述了金、银等金属纳米带的制备方法(真空冷凝法和模板法)及其在电化学传感器中的应用,展望了其发展前景.着重介绍了真空冷凝法的制备原理、装置、过程等;讨论了模板法中不同类型的有机分子模板(模板作用、兼顾模板和还原剂作用)、制备过程中的反应体系(水热、超声等)、模板分子与金属离子的物质的量比和反应时间等对纳米带微观形貌的影响.

  8. An analysis of bedload and suspended load interactions

    Science.gov (United States)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  9. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  10. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  11. Aerial Photo Utilization in Estimating Suspended Sediment in the Wuryantoro Watershed, Wonogiri

    Directory of Open Access Journals (Sweden)

    Sugiharto Budi Santoso

    2004-01-01

    Full Text Available Suspended sediment load flowing out from a watershed is normally predicated by analysis os suspended sediment of water sample, and the volume of suspended sediment be calculated based on sediment concentration and river discharge. Such field measurements need a lot of field data and they are time consuming. Another method for prediction of suspended sediment by using remote sensing imagery data and recorded rainfall data. The objective of this research is to 1 examine the capability of remote sensing technique to obtain the parameters of the physical data of land in the prediction of suspended sediment; 2 examine the accuracy of the model for prediction suspended sediment. This research is carried out in Wuryantoro watershed, Wonogiri. The main data to obtain the parameters of the physical data of land is infrared aerial photograph on scale 1 : 10.000. the method that used in this research is interpretation of remote sensing imagery data, combined with rainfall data. The result show that the accuracy of landuse is 88.5%, the accuracy of slope is 87.67%. the accuracy of the prediction of suspended sediment by model A3 87.07%, model C1 86.63%, model C2 90.57%, model A8 84.13%, model A9 80.1%, and model C4 78.6%.

  12. Suspended HOPG nanosheets for HOPG nanoresonator engineering and new carbon nanostructure synthesis

    International Nuclear Information System (INIS)

    Rose, F; Debray, A; Martin, P; Fujita, H; Kawakatsu, H

    2006-01-01

    Suspended highly oriented pyrolytic graphite (HOPG) nanosheets (10-300 nm thick) were created by direct mechanical cleavage of a bulk HOPG crystal onto silicon micropillars and microtracks. We show that suspended HOPG nanosheets can be used to engineer HOPG nanoresonators such as membranes, bridges, and cantilevers as thin as 28 carbon atom layers. We measured by Doppler laser heterodyne interferometry that the discrete vibration modes of an HOPG nanosheet membrane and the resonance frequency of a FIB-created HOPG microcantilever lie in the MHz frequency regime. Moreover, a new carbon nanostructure, named 'nanolace', was synthesized by focused ion beam (FIB) sputtering of suspended HOPG nanosheets. Graphite nanosheets suspended on micropillars were eroded by a FIB to create self-oriented pseudo-periodical ripples. Additional sputtering and subsequent milling of these ripples led to the formation of honeycomb-like shaped nanolaces suspended and linked by ribbons

  13. The features of ballistic electron transport in a suspended quantum point contact

    International Nuclear Information System (INIS)

    Shevyrin, A. A.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.

    2014-01-01

    A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction

  14. Analysis of the Danube river suspended load regime

    International Nuclear Information System (INIS)

    Lukac, M.

    2004-01-01

    In this presentation author deals with the analysis of the Danube river suspended load regime at the Slovak section of Danube. It is concluded and recommended: Suspended load transport at the Slovak section of Danube decreases in the downstream directions - annual averages: Utilize relation of the Water Research Institute in Medvedov, the relation of the Slovak Hydrometeorological Institute is probably slightly underestimated; Distribution of suspended load concentration in the cross-section is influenced mainly with local hydraulic and morphological conditions; Measured flow velocity in the range 0.6 - 2.65 m/sec -1 , influenced with water level slope; Silt particles the most numerous, less numerous sandy and clayey particles; Bratislava 3.54 mil. tonnes, Medvedov 2.22 mil. tonnes, and Komarno 1.96 mil. tonnes; Recommendation to measure actual volume of the Cunovo reservoir, in order to validate sediment transport balance; Recommendation to continue in a complex monitoring programme of sediment transport

  15. Seasonal changes in suspended sediment load in the Gauthami-Godavari Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, B.P.; Rao, K.M.; Rao, V.S.

    Studies carried out on suspended matter characteristics of the the Gautami Godavari Estuary revealed that the concentration of suspended matter (CSM) during southwest monsoon influenced mainly by the increased run off at both Neelarevu and Vrudha...

  16. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  17. Suspended graphene variable capacitor

    OpenAIRE

    AbdelGhany, M.; Mahvash, F.; Mukhopadhyay, M.; Favron, A.; Martel, R.; Siaj, M.; Szkopek, T.

    2016-01-01

    The tuning of electrical circuit resonance with a variable capacitor, or varactor, finds wide application with the most important being wireless telecommunication. We demonstrate an electromechanical graphene varactor, a variable capacitor wherein the capacitance is tuned by voltage controlled deflection of a dense array of suspended graphene membranes. The low flexural rigidity of graphene monolayers is exploited to achieve low actuation voltage in an ultra-thin structure. Large arrays compr...

  18. Optical fiber end-facet polymer suspended-mirror devices

    Science.gov (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  19. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.

    2012-01-01

    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  20. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...... of 313 nm and 405 nm were optimized and compared in terms of structural stability, control of suspended layer thickness and resolution limits. A novel fabrication process combining the two photoresists SU-8 and mr-DWL with two UV exposures at 365 nm and 405 nm respectively provided a wider processing...... window for definition of well-defined suspended microstructures with lateral dimensions down to 5 μmwhen compared to 313 nm or 365 nm UV photolithography processes....

  1. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China

    Science.gov (United States)

    Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu

    2018-06-01

    A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.

  2. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  3. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  4. 77 FR 44233 - Clothianidin; Emergency Petition To Suspend; Notice of Availability

    Science.gov (United States)

    2012-07-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2012-0344; FRL-9355-1] Clothianidin; Emergency.... SUMMARY: PANNA and others submitted a request for the EPA to immediately suspend Clothianidin and take... the EPA suspend registrations for the insecticide clothianidin for the four following reasons: (1) To...

  5. 20 CFR 408.802 - When will we suspend your SVB payments?

    Science.gov (United States)

    2010-04-01

    ....802 Section 408.802 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SPECIAL BENEFITS FOR CERTAIN WORLD WAR II VETERANS Suspensions and Terminations Suspension § 408.802 When will we suspend your SVB... underway for a substitute representative payee.) (b) Effect of suspension. When we correctly suspend your...

  6. H2S induces a suspended animation-like state in mice.

    Science.gov (United States)

    Blackstone, Eric; Morrison, Mike; Roth, Mark B

    2005-04-22

    Mammals normally maintain their core body temperature (CBT) despite changes in environmental temperature. Exceptions to this norm include suspended animation-like states such as hibernation, torpor, and estivation. These states are all characterized by marked decreases in metabolic rate, followed by a loss of homeothermic control in which the animal's CBT approaches that of the environment. We report that hydrogen sulfide can induce a suspended animation-like state in a nonhibernating species, the house mouse (Mus musculus). This state is readily reversible and does not appear to harm the animal. This suggests the possibility of inducing suspended animation-like states for medical applications.

  7. The effects of Hurricane Hugo on suspended-sediment loads, Lago Loiza Basin, Puerto Rico

    Science.gov (United States)

    Gellis, A.

    1993-01-01

    In the two main tributaries that enter Lago Loiza, Rio Grande de Loiza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58.2??106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Rio Grande de Loiza for Hurricane Hugo was 2290 mgl-1, the second lowest for the 12 storms that have been monitored at this site. In Rio Gurabo the storm-average suspended-sediment concentration was 1420 mg l -1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Rio Grande de Loiza, suspended-sediment concentrations were as low as 33 mg l-1 during peak runoff of 20m3s-1. Normally the suspended-sediment concentrations at this discharge are 300 mg l-1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads. High winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads. -from Author

  8. Facile Synthesis of Nitrogen and Oxygen Co-Doped Clews of Carbon Nanobelts for Supercapacitors with Excellent Rate Performance

    Directory of Open Access Journals (Sweden)

    Liang Yu

    2018-04-01

    Full Text Available Facile synthesis of carbon materials with high heteroatom content, large specific surface area (SSA and hierarchical porous structure is critical for energy storage applications. In this study, nitrogen and oxygen co-doped clews of carbon nanobelts (NCNBs with hierarchical porous structures are successfully prepared by a carbonization and subsequent activation by using ladder polymer of hydroquinone and formaldehyde (LPHF as the precursor and ammonia as the activating agent. The hierarchical porous structures and ultra-high SSA (up to 2994 m2 g−1 can effectively facilitate the exchange and transportation of electrons and ions. Moreover, suitable heteroatom content is believed to modify the wettability of the carbon material. The as-prepared activated NCNBs-60 (the NCNBs activated by ammonia at 950 °C for 60 min possess a high capacitance of 282 F g−1 at the current density of 0.25 A g−1, NCNBs-45 (the NCNBs are activated by ammonia at 950 °C for 45 min and show an excellent capacity retention of 50.2% when the current density increase from 0.25 to 150 A g−1. Moreover, the NCNBs-45 electrode exhibits superior electrochemical stability with 96.2% capacity retention after 10,000 cycles at 5.0 A g−1. The newly prepared NCNBs thus show great potential in the field of energy storage.

  9. A Generalized Mathematical Model for the Fracture Problem of the Suspended Highway

    Directory of Open Access Journals (Sweden)

    Zhao Ying

    2017-01-01

    Full Text Available In order to answer dangling fracture problems of highway, the suspended pavement equivalent for non - suspended pavement, through the special boundary conditions has been suspended highway stress field of expression, in accordance with the 3D fracture model of crack formation, and establish a vacant, a general mathematics model for fracture problems of highway and analysis in highway suspended segment weight and vehicle load limit of highway capacity of Pu For overturning road inPu is less than the force of carrying more than compared to the work and fruit Bridge Hydropower Station Road engineering examples to verify suspended highway should force field expressions for the correctness and applicability. The results show that: when the hanging ratio R 0. 243177 limits of Pu design axle load 100kN. When the vertical crack in the vacant in the direction of length greater than 0. 1, the ultimate bearing capacity is less than the design axle load 100kN; when the hanging ratio R is less than 0. 5, the road to local fracture, the ultimate bearing capacity of suspended stress field expressions in solution; when the hanging ratio is greater than or equal to 0. 5, the road does not reach the limit bearing capacity of the whole body; torque shear surface of the effect is far less than the bending moments on shear planes.

  10. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  11. Suspended particle and drug ingredient concentrations in hospital dispensaries and implications for pharmacists' working environments.

    Science.gov (United States)

    Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro

    2016-03-01

    The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.

  12. 19 CFR 351.222 - Revocation of orders; termination of suspended investigations.

    Science.gov (United States)

    2010-04-01

    ... orders; termination of suspended investigations. (a) Introduction. “Revocation” is a term of art that... that: (i) Producers accounting for substantially all of the production of the domestic like product to... 19 Customs Duties 3 2010-04-01 2010-04-01 false Revocation of orders; termination of suspended...

  13. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  14. Forty Cases of Insomnia Treated by Suspended Moxibustion at Baihui (GV 20)

    Institute of Scientific and Technical Information of China (English)

    JU Yan-li; CHI Xu; LIU Jian-xin

    2009-01-01

    Objective:To observe the therapeutic effect of suspended moxibustion at Baihui (GV 20) for insomnia.Methods: 75 cases were divided randomly into two groups, with 40 cases in the treatment group treated by suspended moxibustion over Baihui (GV 20) and 35 cases in the control group treated by oral administration of Estazolam. Results: The difference in therapeutic effect between the two groups was not statistically significant (P>0.1). Conclusion: It was concluded that suspended moxibustion at Baihui (GV 20) is as effective as Estazolam for insomnia.

  15. Bed-levelling experiments with suspended load

    NARCIS (Netherlands)

    Talmon, A.M.; De Graaff, J.

    1991-01-01

    Bed-levelling experiments are conducted in a straight laboratory channel. The experiments involve a significant fraction of suspended sediment transport. The purpose of the experiments is to provide data for modelling of the direction of sediment transport on a transverse sloping alluvial river bed,

  16. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  17. How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@rmit.edu.a [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Zalizniak, Liliana [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Dunlop, Jason E. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia); Smart Water Research Facility, Griffith University, Queensland (Australia); Nugegoda, Dayanthi [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Choy, Satish C. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia)

    2010-02-15

    The effects of suspended and deposited sediments on the macroinvertebrates are well documented in upland streams but not in slower flowing lowland rivers. Using species found in lowland lotic environments, we experimentally evaluate mechanisms for sediments to affect macroinvertebrates, and in one experiment whether salinity alters the effect of suspended sediments. Suspended kaolin clay reduced feeding of Ischnura heterosticta (Odonata: Coenagrionidae) at high turbidity (1000-1500 NTU) but had no effects on feeding of Hemianax papuensis (Odonata: Aeshnidae) and Micronecta australiensis (Hemiptera: Corixidae). In freshwater (0.1 mS/cm), survival of Ischnura aurora was poor in clear water, but improved with suspended kaolin. Growth and feeding of I. aurora were unaffected by suspended sediments and salinity. Burial (1-5 mm) of eggs with kaolin or sand reduced hatching in Physa acuta (Gastropoda: Physidae), Gyraulus tasmanica (Gastropoda: Planorbidae) and Chironomus cloacalis (Diptera: Chironomidae). Settling sediments may pose greater risk to lowland lotic invertebrates than suspended sediments. - Sediment deposition may be more directly detrimental to macroinvertebrates of lowland rivers than suspended sediments.

  18. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Directory of Open Access Journals (Sweden)

    Amit Kumar Nayak

    2010-01-01

    Full Text Available The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae as an innovative suspending agent. Zinc oxide suspensions (20% w/v were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite.

  19. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Pany, Dipti Ranjan; Mohanty, Biswaranjan

    2010-01-01

    The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae) as an innovative suspending agent. Zinc oxide suspensions (20% w/v) were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC) at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite. PMID:22247868

  20. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  1. Studying Suspended Sediment Mechanism with Two-Phase PIV

    Science.gov (United States)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  2. High Bandwidth, Fine Resolution Deformable Mirror Design.

    Science.gov (United States)

    1980-03-01

    Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device

  3. Swing damped movement of suspended objects

    International Nuclear Information System (INIS)

    Jones, J.F.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented

  4. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    Science.gov (United States)

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  5. Colorimetry Technique for Scalable Characterization of Suspended Graphene.

    Science.gov (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer

    2016-11-09

    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  6. Impact of suspended sediments on the survival of seagrass: Halodule pinifolia (Miki den Hartog

    Directory of Open Access Journals (Sweden)

    Satumanatpan, S.

    2006-07-01

    Full Text Available The research aimed to study the level of suspended sediments on the survival of Halodule pinifolia (Miki den Hartog. Three experiments were conducted. Broad concentration of suspended sediments covering the level found in nature were employed in the first experiment. The impact concentration of suspended sediments on the survival of H. pinifolia was extended in more detail in the second and third experiments. H. pinifolia was planted by washing off the mud and holding it with a grating. An air pump was used to stir the sediment in suspension during the experiments and necessary water parameters were strictly control. The suspended sediment was spread by siphon and conducted in a period of 30 days for the first and second experiments, and 45 days for the third experiment. The result indicated that suspended sediments with a concentration of 1-64 mg/l had no impact on the survival of H. pinifolia within 30 days. Initially, suspended sediments of 66 mg/l lowered H. pinifolia's survival to 95% at day 30. Concentration of suspended sediments higher than 66 mg/l affected the survival of H. pinifolia. The decreasing survival was noticed during days 20 -25 of the experiment and all died during days 40-45. However, the life span of H. pinifolia, would be very important and might also affect the survival of H. pinifolia after 30 days.

  7. Ballistic magnetotransport in a suspended two-dimensional electron gas with periodic antidot lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K. [Siberian Branch of the Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2017-01-15

    The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposure to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.

  8. Auxetic piezoelectric energy harvesters for increased electric power output

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2017-01-01

    Full Text Available This letter presents a piezoelectric bimorph with auxetic (negative Poisson’s ratio behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  9. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  10. A Coulomb explosion strategy to tailor the nano-architecture of α-MoO3 nanobelts and an insight into its intrinsic mechanism.

    Science.gov (United States)

    Zhang, Junli; Zhu, Liu; Yang, Yu; Yong, Huadong; Zhang, Junwei; Peng, Yong; Fu, Jiecai

    2018-05-03

    Tailoring the nanoarchitecture of materials is significant for the development of nanoscience and nanotechnology. To date, one of the most powerful strategies is convergent electron beam irradiation (EBI). However, only two main functions of knock-on or atomic displacement have been achieved to date. In this study, a Coulomb explosion phenomenon was found to occur in α-MoO3 nanobelts (NBs) under electron beam irradiation, which was controllable and could be used to efficiently create nanostructures such as holes, gaps, and other atomic/nanometer patterns on a single α-MoO3 NB. Theoretical simulations starting from the charging state, charging rate to the threshold time of Coulomb explosion reveal that the Coulomb explosion phenomenon should result from positive charging. The results also show that the multiple charged regions are quickly fragmented, and the monolayered α-MoO3 pieces can then be peeled off once the Coulombic repulsion is sufficient to break the Mo-O bonds in the crystalline structure. It is believed that this efficient and versatile strategy may open up a new avenue to tailor α-MoO3 NBs or other kind of transition metal dichalcogenides via the Coulomb explosion effect.

  11. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  12. VO2(B conversion to VO2(A and VO2(M and their oxidation resistance and optical switching properties

    Directory of Open Access Journals (Sweden)

    Zhang Yifu

    2016-03-01

    Full Text Available Vanadium dioxide VO2 has been paid in recent years increasing attention because of its various applications, however, its oxidation resistance properties in air atmosphere have rarely been reported. Herein, VO2(B nanobelts were transformed into VO2(A and VO2(M nanobelts by hydrothermal route and calcination treatment, respectively. Then, we comparatively studied the oxidation resistance properties of VO2(B, VO2(A and VO2(M nanobelts in air atmosphere by thermo-gravimetric analysis and differential thermal analysis (TGA/DTA. It was found that the nanobelts had good thermal stability and oxidation resistance below 341 °C, 408 °C and 465 °C in air, respectively, indicating that they were stable in air at room temperature. The fierce oxidation of the nanobelts occurred at 426, 507 and 645 °C, respectively. The results showed that the VO2(M nanobelts had the best thermal stability and oxidation resistance among the others. Furthermore, the phase transition temperatures and optical switching properties of VO2(A and VO2(M were studied by differential scanning calorimetry (DSC and variable temperature infrared spectra. It was found that the VO2(A and VO2(M nanobelts had outstanding thermochromic character and optical switching properties.

  13. Total Suspended Load and Sediment Yield of Kayan River, Bulungan District, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Suprapto Dibyosaputro

    2016-12-01

    Full Text Available This research was carried out the the drainage system of Kayan river, Bulungan District, East Kalimantan. The purpose of the research were to study the physical conditions of the Kayan catchment area, calculate the suspended sediment load, and to define the total sediment yield of Kayan River. Observation method were used in this research both of direct field observation as well as laboratory observation. Data acquired in this study were include of climatic data, geology, geomorphology, soil and land cover data. Besides also rain-fall data, temperature, river discharge and suspended sediment load. The total sediment yield were calculated by mean of mathematical and statistical analysis especially of linier regression analysis. The result of the research show that total the sediment yield of Kayan River with drainage area of 6,329.452 km² is about 236,921.25 m³/km²/year. The interesting result of the statistical analysis was that the existing negative correlation between river discharge and suspended sediment load. It is the effect of the location of discharge and suspended measurement. This condition caused by sea tide effect on river discharge at the apex delta. During high tide water river trend rising up on discharge but not on suspended sediment load. Instead, also existing setting down processes takes places of the suspended sediment load into the river bottom upper stream and the apex.

  14. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis; Kelarakis, Antonios; Sahore, Ritu; DiSalvo, Francis J.; Livi, Sebastien; Giannelis, Emmanuel P.

    2013-01-01

    on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic

  15. Estuarine Suspended Sediment Dynamics: Observations Derived from over a Decade of Satellite Data

    Directory of Open Access Journals (Sweden)

    Anthony Reisinger

    2017-12-01

    Full Text Available Suspended sediment dynamics of Corpus Christi Bay, Texas, USA, a shallow-water wind-driven estuary, were investigated by combining field and satellite measurements of total suspended solids (TSS. An algorithm was developed to transform 500-m Moderate Resolution Imaging Spectroradiometer (MODIS Aqua satellite reflectance data into estimated TSS values. The algorithm was developed using a reflectance ratio regression of MODIS Band 1 (red and Band 3 (green with TSS measurements (n = 54 collected by the Texas Commission on Environmental Quality for Corpus Christi Bay and other Texas estuaries. The algorithm was validated by independently collected TSS measurements during the period of 2011–2014 with an uncertainty estimate of 13%. The algorithm was applied to the period of 2002–2014 to create a synoptic time series of TSS for Corpus Christi Bay. Potential drivers of long-term variability in suspended sediment were investigated. Median and IQR composites of suspended sediments were generated for seasonal wind regimes. From this analysis it was determined that long-term, spatial patterns of suspended sediment in the estuary are related to wind-wave resuspension during the predominant northerly and prevalent southeasterly seasonal wind regimes. The impact of dredging is also apparent in long-term patterns of Corpus Christi Bay as concentrations of suspended sediments over dredge spoil disposal sites are higher and more variable than surrounding areas, which is most likely due to their less consolidated sediments and shallower depths requiring less wave energy for sediment resuspension. This study highlights the advantage of how long-synoptic time series of TSS can be used to elucidate the major drivers of suspended sediments in estuaries.

  16. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  17. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  18. Effect of anabolic steroids on overloaded and overloaded suspended skeletal muscle

    Science.gov (United States)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass, the subcellular protein content, and the myosin patterns of normal overloaded and suspended overloaded plantaris muscle in female rat was investigated, dividing rats into six groups: normal control (NC), overload (OV), OV steroid (OV-S), normal suspended (N-sus), OV suspended (OV-sus), and OV suspended steroid (OV-sus-S). Relative to control values, overload produced a sparing effect on the muscle weight of the OV-sus group as well as increases of muscle weight of the OV group; increased protein content; and an increased expression of slow myosin in both OV and OV-sus groups. Steroid treatment of OV animals did not after the response of any parameter analyzed for the OV group, but in the OV-sus group steroid treatment induced increases in muscle weight and in protein content of the OV-sus-S group. The treatment did not alter the pattern of isomyosin expression observed in the OV or the OV-sus groups. These result suggest that the steroid acts synergistically with functional overload only under conditions in which the effect of overload is minimized by suspension.

  19. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  20. Transfer-last suspended graphene fabrication on gold, graphite and silicon nanostructures

    OpenAIRE

    Reynolds, J.; Boodhoo, L.; Huang, C.C.; Hewak, D.W.; Saito, S.; Tsuchiya, Y.; Mizuta, H.

    2015-01-01

    While most graphene devices fabricated so far have been by transferring graphene onto flat substrates first, an interesting approach would be to transfer graphene onto patterned substrates to suspend graphene for future graphene nanoelectromechanical device applications. This novel "transfer-last" fabrication is beneficial for reducing possible damage of the suspended graphene caused by subsequent undercutting processes and typical substrate interactions. On the other hand, reduction of conta...

  1. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    Science.gov (United States)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  2. Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-01-01

    Full Text Available In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.

  3. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  4. Capturing Flow-weighted Water and Suspended Particulates from Agricultural Canals During Drainage Events.

    Science.gov (United States)

    Bhadha, Jehangir H; Sexton, Anne; Lang, Timothy A; Daroub, Samira H

    2017-11-07

    The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.

  5. SEBARAN TOTAL SUSPENDED SOLID (TSS PADA PROFIL VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN

    Directory of Open Access Journals (Sweden)

    Aries Dwi Siswanto

    2015-04-01

    Full Text Available Sebaran sedimen tersuspensi (Total Suspended Solid (TSS dapat dipelajari secara horizontal maupun vertikal. Akumulasi sedimen tersuspensi (TSS secara horizontal sangat dipengaruhi oleh arus permukaan maupun gelombang yang dibangkitkan oleh angin. Keterdapatan TSS ini diduga berpengaruh terhadap sebarannya pada profil vertical. Kedua kondisi sebaran sedimen tersuspensi (TSS berpengaruh terhadap optimalisasi penetrasi cahaya matahari di perairan. Sedimen tersuspensi (TSS menjadi salah satu factor fisika yang penting sebagai indicator kondisi perairan. Penelitian ini bertujuan untuk mengetahui sebaran Total Suspended Solid (TSS di perairan Kabupaten Bangkalan. Materi utama yang digunakan dalam penelitian ini adalah contoh air dan data parameter lingkungan (pasang surut dan kecerahan yang diambil pada 7 stasiun pada bulan Agustus-September 2013 di Perairan Selat Madura, Kabupaten Bangkalan. Metode gravimetric (SNI-06-6989.3-2004 digunakan untuk analisa Total Suspended Solid (TSS. Data parameter lingkungan dianalisa secara deskriptif. Analisa TSS menunjukkan nilai yang berbeda pada beberapa stasiun penelitian untuk setiap minggunya. Konsentrasi TSS terendah sebesar 35 mg/L (Stasiun 3, profil permukaan, minggu pertama dan tertinggi sebesar 620 mg/L (Stasiun 4, profil dasar, minggu pertama. Secara umum, konsentrasi TSS secara vertikal (dari permukaan-dasar cenderung semakin besar, diduga dipengaruhi oleh jenis substrat dan parameter arus yang berpeluang untuk menimbulkan pengadukan di profil dasar. Kondisi lingkungan (kecerahan dan arus menunjukkan bahwa daerah dengan konsentrasi TSS yang tinggi cenderung memilki nilai kecerahan yang rendah dengan kecepatan arus yang lebih besar.Kata Kunci: kecerahan, pola arus, Total Suspended Solid (TSS DISTRIBUTION OF TOTAL SUSPENDED SOLID (TSS IN THE VERTICAL PROFILE IN THE MADURA STRAIT WATERS BANGKALAN DISTRICTABSTRACTDistribution of suspended sediment (Total Suspended Solid (TSS can be studied through

  6. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Science.gov (United States)

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  7. Piezoresistance of top-down suspended Si nanowires

    International Nuclear Information System (INIS)

    Koumela, A; Mercier, D; Dupre, C; Jourdan, G; Marcoux, C; Ollier, E; Duraffourg, L; Purcell, S T

    2011-01-01

    Measurements of the gauge factor of suspended, top-down silicon nanowires are presented. The nanowires are fabricated with a CMOS compatible process and with doping concentrations ranging from 2 x 10 20 down to 5 x 10 17 cm -3 . The extracted gauge factors are compared with results on identical non-suspended nanowires and with state-of-the-art results. An increase of the gauge factor after suspension is demonstrated. For the low doped nanowires a value of 235 is measured. Particular attention was paid throughout the experiments to distinguishing real resistance change due to strain modulation from resistance fluctuations due to charge trapping. Furthermore, a numerical model correlating surface charge density with the gauge factor is presented. Comparison of the simulations with experimental measurements shows the validity of this approach. These results contribute to a deeper understanding of the piezoresistive effect in Si nanowires.

  8. Computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.

    2010-01-01

    Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.

  9. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    OpenAIRE

    Kaikai Lv; Kaiyun Wang; Zhihui Chen; Chengbiao Cai; Lirong Guo

    2017-01-01

    This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abn...

  10. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen; Qi, Haibo; Archer, Lynden A.

    2010-01-01

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors

  11. Magnetically suspended railway

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C

    1977-07-28

    The invention concerns the emergency support of a magnetically suspended railway. On failure of the magnetic suspension/tracking system, the vehicles touch down on the rail configuration by means of emergency gliding elements like sliding shoes, skids, or the like. In doing this, the touch-down shock of the emergency gliding elements has to be limited to a force maximum as small as possible. According to the invention a spring-attenuator combination is used for this purpose, the spring characteristic being linear while the attenuator has a square-law characteristic for the compressing and a linear characteristic for the yielding motion. The force maximum thus achieved is exactly half the size of the physically smallest possible force maximum for an emergency gliding element springed without damping.

  12. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  13. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Jordi; Pérez-Murano, Francesc, E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K., E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Arbiol, Jordi [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, Catalonia (Spain); CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola, Catalonia (Spain)

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  14. Noise Performance of a 72 m Suspended FABRY-PÉROT Cavity

    Science.gov (United States)

    Dumas, Jean-Charles; Ju, Li; Barriga, Pablo; Zhao, Chunnong; Woolley, Andrew A.; Blair, David G.

    We report on a seismic isolator with a relatively compact 3 m stack, combining new passive isolation techniques. It consists of three cascaded passive 3D isolator stages suspended from an Ultra Low Frequency (ULF) horizontal Robert linkage stage which itself is suspended from a ULF 3D pre-isolator. The 3D isolators use self-damping pendulums and Euler springs for the horizontal and vertical stages respectively, while the 3D pre-isolator is the combination of an inverse pendulum which provides low frequency horizontal pre-isolation, and a LaCoste linkage for low frequency vertical pre-isolation. Two isolators suspending mirror test masses have been built to form a 72 m optical cavity in order to test their performance. We report results which demonstrate residual motion at nanometer level at frequencies above 1 Hz.

  15. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    International Nuclear Information System (INIS)

    Llobet, Jordi; Pérez-Murano, Francesc; Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K.; Arbiol, Jordi

    2015-01-01

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations

  16. 40 CFR 1042.330 - Selling engines from an engine family with a suspended certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... with a suspended certificate of conformity. 1042.330 Section 1042.330 Protection of Environment... engines from an engine family with a suspended certificate of conformity. You may sell engines that you produce after we suspend the engine family's certificate of conformity under § 1042.315 only if one of the...

  17. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  18. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention

    Energy Technology Data Exchange (ETDEWEB)

    Madder, Ryan D., E-mail: ryan.madder@spectrumhealth.org; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    2017-04-15

    Background: Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Methods: Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Results: Among 336 cases (86.6% manual, 13.4% robotic) performed over 30 weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p < 0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p < 0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p < 0.001) or suspended lead (p = 0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p < 0.001) and 80.0% less than manual PCI performed with suspended lead (p < 0.001). Conclusions: Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. - Highlights: • Use of suspended lead during manual PCI reduced cranial radiation among operators by 97%. • Robotic PCI reduced cranial radiation among operators by 99%. • Suspended lead and robotics together achieved the lowest levels of radiation exposure.

  19. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention

    International Nuclear Information System (INIS)

    Madder, Ryan D.; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    2017-01-01

    Background: Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Methods: Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Results: Among 336 cases (86.6% manual, 13.4% robotic) performed over 30 weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p < 0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p < 0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p < 0.001) or suspended lead (p = 0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p < 0.001) and 80.0% less than manual PCI performed with suspended lead (p < 0.001). Conclusions: Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. - Highlights: • Use of suspended lead during manual PCI reduced cranial radiation among operators by 97%. • Robotic PCI reduced cranial radiation among operators by 99%. • Suspended lead and robotics together achieved the lowest levels of radiation exposure.

  20. Evidence of oxygen vacancy and possible intermediate gap state in layered α-MoO{sub 3} single-crystal nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Z., E-mail: tcccz@shu.edu.cn; Li, Y.; Tang, X.D.

    2016-01-15

    Multilayered meso-structured MoO{sub 3} nanobelts have been synthesized by thermally oxidizing a molybdenum chip in a reduced oxygen atmosphere, with a view to disclosing the existence of oxygen vacancy and understanding the mechanism behind the influence of oxygen vacancy on the electronic structure of molybdenum oxides. Based on the measurements from X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM), it is found that the as-grown sample is single-crystal α-MoO{sub 3} with a (001) preferred orientation, which shows an irregular belt-like morphology being composed of some ~20 nm single-crystal thin layers. The present sample includes a lot of oxygen vacancies in the lattice, as evidenced by the considerably reduced coordination number of the central Mo atoms from X-ray absorption spectra (XAS) as well as the red shift of the main Raman peaks. The existence of the oxygen vacancies are further tested by the photoluminescence (PL) results as the main emission peak shows an obvious red shift with the corresponding optical band gap reduced to 2.3 eV. Very importantly, an extra emission positioned at 738 nm (1.68 eV) is believed to originate from the recombination of the electrons from the intermediate band (IB) to the valence band (VB), and the formation of the IB in the gap is also caused by oxygen-ion vacancies.

  1. Large theoretical thermoelectric power factor of suspended single-layer MoS2

    International Nuclear Information System (INIS)

    Babaei, Hasan; Khodadadi, J. M.; Sinha, Sanjiv

    2014-01-01

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS 2 utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS 2 on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS 2 to peak at ∼2.8 × 10 4 μW/m K 2 at 300 K, at an electron concentration of 10 12 cm −2 . This figure is higher than that in bulk Bi 2 Te 3 , for example. Given its relatively high thermal conductivity, suspended SL-MoS 2 may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized

  2. [Effect of suspended silt from dredging at Yangtze estuary on Brachionus plicatilis].

    Science.gov (United States)

    Wang, Jinqui; Xu, Zhaoli; Shi, Chun; Chen, Yaqu

    2002-07-01

    The effect of suspended silt from dredging at Yangtze estuary on Brachionus plicatilis was investigated by clonal culture (to construct life table) and population accumulative culture. The intrinsic increasing rate of the rotifer population was greatly reduced under different concentrations (1, 3, 5, 7 and 9 mg.ml-1) of silt, from 29.6% to 64.1%, and to a maximum of 130.0%. The suspended silt affected population survival rate, rather than its reproduction rate. In accumulative culture, the densities of female, males, parthenogenetic eggs, and resting eggs in the population were not affected by silt. It was concluded that the presence of suspended silt should have a certain negative influence on the rotifer population in dredging Yangtze estuary.

  3. Vertical transport of suspended particulate trace elements in the North Atlantic Ocean

    International Nuclear Information System (INIS)

    Kuss, J.; Kremling, K.; Scholten, J.

    1999-01-01

    Suspended marine particles play a key role in the exchange processes between rapidly sinking particles and seawater because of their large surface area and long residence times. They are involved in the transport processes of rapidly sinking particles (∼ 100 m/day) through aggregation and disaggregation. This mechanism results in a net downward transport of suspended particulate trace elements (TE). To provide more information to these processes TE in suspended particulate material (SPM) have been measured on three cruises from 1995 to 1997 along 20 deg. W using a large volume in situ filtration between 25 m and 4150 m depth in addition to particle flux measurements with sediment traps. These studies were performed under the framework of German JGOFS

  4. 78 FR 22501 - Designation of Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate

    Science.gov (United States)

    2013-04-16

    ... Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate AGENCY... designations for total suspended particulate within the State of Nevada because the designations are no longer necessary. These designations relate to the attainment or unclassifiable areas for total suspended...

  5. Super-bridges suspended over carbon nanotube cables

    Science.gov (United States)

    Carpinteri, Alberto; Pugno, Nicola M.

    2008-11-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ~3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ~6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ~3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  6. Super-bridges suspended over carbon nanotube cables

    International Nuclear Information System (INIS)

    Carpinteri, Alberto; Pugno, Nicola M

    2008-01-01

    In this paper the new concept of 'super-bridges', i.e. kilometre-long bridges suspended over carbon nanotube cables, is introduced. The analysis shows that the use of realistic (thus defective) carbon nanotube bundles as suspension cables can enlarge the current limit main span by a factor of ∼3. Too large compliance and dynamic self-excited resonances could be avoided by additional strands, rendering the super-bridge anchored as a spider's cobweb. As an example, we have computed the limit main spans of the current existing 19 suspended-deck bridges longer than 1 km assuming them to have substituted their cables with carbon nanotube bundles (thus maintaining the same geometry, with the exception of the length) finding spans of up to ∼6.3 km. We thus suggest that the design of the Messina bridge in Italy, which would require a main span of ∼3.3 km, could benefit from the use of carbon nanotube bundles. We believe that their use represents a feasible and economically convenient solution. The plausibility of these affirmations is confirmed by a statistical analysis of the existing 100 longest suspended bridges, which follow a Zipf's law with an exponent of 1.1615: we have found a Moore-like (i.e. exponential) law, in which the doubling of the capacity (here the main span) per year is substituted by the factor 1.0138. Such a law predicts that the realization of the Messina bridge using conventional materials will only occur around the middle of the present century, whereas it could be expected in the near future if carbon nanotube bundles were used. A simple cost analysis concludes the paper.

  7. Simplified Entropic Model for the Evaluation of Suspended Load Concentration

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-03-01

    Full Text Available Suspended sediment concentration is a key aspect in the forecasting of river evolution dynamics, as well as in water quality assessment, evaluation of reservoir impacts, and management of water resources. The estimation of suspended load often relies on empirical models, of which efficiency is limited by their analytic structure or by the need for calibration parameters. The present work deals with a simplified fully-analytical formulation of the so-called entropic model in order to reproduce the vertical distribution of sediment concentration. The simplification consists in the leading order expansion of the generalized spatial coordinate of the entropic velocity profile that, strictly speaking, applies to the near-bed region, but that provides acceptable results also near the free surface. The proposed closed-form solution, which highlights the interplay among channel morphology, stream power, secondary flows, and suspended transport features, allows reducing the needed number of field measurements and, therefore, the time of field activities. Its accuracy and robustness were successfully tested based on the comparison with laboratory data reported in literature.

  8. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  9. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  10. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  11. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  12. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  13. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    Science.gov (United States)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  14. On developing an optimal design procedure for a bimorph piezoelectric cantilever energy harvester under a predefined volume

    Science.gov (United States)

    Aboulfotoh, Noha; Twiefel, Jens

    2018-06-01

    A typical vibration harvester is tuned to operate at resonance in order to maximize the power output. There are many design parameter sets for tuning the harvester to a specific frequency, even for simple geometries. This work studies the impact of the geometrical parameters on the harvested power while keeping the resonance frequency constant in order to find the combination of the parameters that optimizes the power under a predefined volume. A bimorph piezoelectric cantilever is considered for the study. It consists of two piezoelectric layers and a middle non-piezoelectric layer and holds a tip mass. A theoretical model was derived to obtain the system parameters and the power as functions of the design parameters. Formulas for the optimal load resistance that provide maximum power capability at resonance and anti-resonance frequency were derived. The influence of the width on the power is studied, considering a constant mass ratio (between the tip mass and the mass of the beam). This keeps the resonance frequency constant while changing the width. The influence of the ratio between the thickness of the middle layer and that of the piezoelectric layer is also studied. It is assumed that the total thickness of the cantilever is constant and the middle layer has the same mechanical properties (elasticity and density) as the piezoelectric layer. This keeps the resonance frequency constant while changing the ratio between the thicknesses. Finally, the influence of increasing the free length as well as of increasing the mass ratio on the power is investigated. This is done by first, increasing each of them individually and secondly, by increasing each of them simultaneously while increasing the total thickness under the condition of maintaining a constant resonance frequency. Based on the analysis of these influences, recommendations as to how to maximize the geometrical parameters within the available volume and mass are presented.

  15. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  16. 78 FR 39710 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Science.gov (United States)

    2013-07-02

    ... exporters.\\2\\ If the interested party intends for the Secretary to review sales of merchandise by an..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review AGENCY: Import... review of that antidumping or countervailing duty order, finding, or suspended investigation. All...

  17. 78 FR 54235 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Science.gov (United States)

    2013-09-03

    ... exporters.\\2\\ If the interested party intends for the Secretary to review sales of merchandise by an..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review AGENCY: Import... review of that antidumping or countervailing duty order, finding, or suspended investigation. All...

  18. 78 FR 33061 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Science.gov (United States)

    2013-06-03

    ... exporters.\\2\\ If the interested party intends for the Secretary to review sales of merchandise by an..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review AGENCY: Import... review of that antidumping or countervailing duty order, finding, or suspended investigation. All...

  19. 76 FR 16770 - Petition To Suspend and Cancel All Registrations for the Soil Fumigant Iodomethane (Methyl Iodide...

    Science.gov (United States)

    2011-03-25

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0541; FRL-8841-7] Petition To Suspend and Cancel... Earthjustice requesting that all uses of iodomethane (methyl iodide) be suspended and cancelled. The Agency is... uses of iodomethane (methyl iodide) be suspended and cancelled. The Agency is posting this petition for...

  20. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    Science.gov (United States)

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  1. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.

    2007-01-01

    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  2. 78 FR 25423 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Science.gov (United States)

    2013-05-01

    ... for the Secretary to review sales of merchandise by an exporter (or a producer if that producer also..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review AGENCY: Import... review of that antidumping or countervailing duty order, finding, or suspended investigation. All...

  3. 78 FR 13858 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Science.gov (United States)

    2013-03-01

    ... for the Secretary to review sales of merchandise by an exporter (or a producer if that producer also..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review AGENCY: Import... review of that antidumping or countervailing duty order, finding, or suspended investigation. All...

  4. 77 FR 59894 - Antidumping or Countervailing Duty Order, Finding, or Suspended Investigation; Opportunity To...

    Science.gov (United States)

    2012-10-01

    ... for the Secretary to review sales of merchandise by an exporter (or a producer if that producer also..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review AGENCY: Import... review of that antidumping or countervailing duty order, finding, or suspended investigation. All...

  5. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  6. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    Science.gov (United States)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  7. Concentration of elements in suspended matter discharges to Lerma River, Mexico

    International Nuclear Information System (INIS)

    Avila-Perez, P.; Tejeda, S.; Carapia, L.; Barcelo-Quintal, I.; Martinez, T.

    2011-01-01

    The S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn and Pb concentration and the elemental composition of particles in suspended matter from principal discharges to Lerma River, have been evaluated. The elemental concentration in suspended matter has been obtained by Energy Dispersive X-Ray Fluorescence Spectrometry. The elemental composition of particles has been obtained by means of Energy Dispersive X-Ray Spectrometry (EDS). The results show that K, Ca, Ti, Mn and Fe are mainly from natural origin in the Upper Course of the Lerma River (UCLR), where the principal contributions probably come from dragging of soils and sediments in the rainy season and Cr, Cu, Zn and Pb are mainly from anthropogenic origin where the principal contributions come from urban and industrial untreated discharge. The application of Energy Dispersive X-Ray Spectrometry plus Scanning Electron Microscopy is useful in the characterization of suspended matter in natural, anthropogenic and mixed water discharges. (author)

  8. Air pollution in Aleppo city, gases,suspended particulates

    International Nuclear Information System (INIS)

    Othman, I.; Sabra, Sh.; Al-Kharfan, K.

    1994-06-01

    Total suspended particulates measured by using High Volume Air Sampler. The Co and O 3 were measured during weekday and weekend. The concentration of all pollutants at city center are higher than other measured areas. (author). 10 figs., 10 tabs

  9. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  10. Trends in suspended-sediment loads and concentrations in the Mississippi River Basin, 1950–2009

    Science.gov (United States)

    Heimann, David C.; Sprague, Lori A.; Blevins, Dale W.

    2011-01-01

    Trends in loads and concentrations of suspended sediment and suspended sand generally were downward for stations within the Mississippi River Basin during the 60-, 34-, and 12-year periods analyzed. Sediment transport in the lower Mississippi River has historically been, and continues to be, most closely correlative to sediment contributions from the Missouri River, which generally carried the largest annual suspended-sediment load of the major Mississippi River subbasins. The closure of Fort Randall Dam in the upper Missouri River in 1952 was the single largest event in the recorded historical decline of suspended-sediment loads in the Mississippi River Basin. Impoundments on tributaries and sediment reductions as a result of implementation of agricultural conservation practices throughout the basin likely account for much of the remaining Mississippi River sediment transport decline. Scour of the main-stem channel downstream from the upper Missouri River impoundments is likely the largest source of suspended sand in the lower Missouri River. The Ohio River was second to the Missouri River in terms of sediment contributions, followed by the upper Mississippi and Arkansas Rivers. Declines in sediment loads and concentrations continued through the most recent analysis period (1998–2009) at available Mississippi River Basin stations. Analyses of flow-adjusted concentrations of suspended sediment indicate the recent downward temporal changes generally can be explained by corresponding decreases in streamflows.

  11. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    Directory of Open Access Journals (Sweden)

    Xiaopeng Jia

    2014-01-01

    Full Text Available The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  12. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  13. Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions

    Science.gov (United States)

    Variation in fluvial suspended sediment–discharge behavior is generally thought to be the product of changes in processes governing the delivery of sediment and water to the channel. The objective of this study was to infer sediment supply dynamics from the response of suspended ...

  14. On the influence of suspended sediment transport on the generation of offshore sand waves

    NARCIS (Netherlands)

    Sterlini-Van der Meer, Fenneke; Hulscher, Suzanne J.M.H.; van den Berg, J.; Geurts, Bernardus J.; Clercx, H.J.H.; Uijttewaal, Wim

    2007-01-01

    Sand waves are bed-forms occurring in shallow seas. Although their characteristics are mainly affected by bed load transport, during rough weather suspended sediment transport can influence their characteristics. As a first step to model these influences, we added suspended sediment transport to a

  15. Experimental study of perforated suspended ceilings as diffuse ventilation air inlets

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2013-01-01

    An experimental study is reported in this paper for a diffuse ceiling ventilation concept. The analyses were carried out with two different porous surfaces mounted in a suspended ceiling: perforated tiles of aluminium and of gypsum. Ventilation air was supplied above the suspended ceiling effecti...... surface which increases the potential and applicability of the concept. Risk of thermal discomfort was not disclosed but the study did show evidence of large fluctuating air movements which could stem from transient behaviour creating sensations of draught to the occupants....

  16. Initial Quantification of Suspended Sediment Loads for Three Alaska North Slope Rivers

    Directory of Open Access Journals (Sweden)

    Erica Lamb

    2016-09-01

    Full Text Available This study provides an initial assessment of suspended sediment transport in three rivers on the Alaska North Slope. From 2011 to 2013, the Anaktuvuk (69°27′51.00′′ N, 151°10′07.00′′ W, Chandler (69°17′0.30′′ N, 151°24′16.14′′ W, and Itkillik (68°51′59.46′′ N, 150°2′24.00′′ W Rivers were monitored for a variety of hydrologic, meteorologic, and sedimentologic characteristics. Watershed response to summer precipitation events was examined for each river. Bed sediment grain-size distribution was calculated using a photographic grid technique. Mean sediment diameters were 27.1 and 41.5 mm (Samples A and B for the Chandler, 35.8 mm for the Anaktuvuk, and 65.0 mm for the Itkillik. Suspended sediment rating curves were developed for each river. Suspended sediment discharge was analyzed. In 2011 and 2013, most of the total annual suspended sediment transport occurred during spring melt and widespread rainfall events, respectively. The results show that each river reacts differently to environmental inputs such as rain and basin characteristics.

  17. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik

    2011-01-01

    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  18. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  19. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  20. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  1. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  2. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  3. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    Science.gov (United States)

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  4. 2 CFR 901.1010 - Suspending official (Department of Energy supplement to government-wide definition at 2 CFR 180...

    Science.gov (United States)

    2010-01-01

    ... DEBARMENT AND SUSPENSION Definitions § 901.1010 Suspending official (Department of Energy supplement to government-wide definition at 2 CFR 180.1010). The suspending official for the Department of Energy... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Suspending official (Department of Energy...

  5. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby

  6. Deployable large aperture optics system for remote sensing applications

    International Nuclear Information System (INIS)

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A.; Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-01-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown

  7. Suspended sediments from upstream tributaries as the source of downstream river sites

    Science.gov (United States)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  8. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  9. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  10. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... efficiency from 1% to 80% compared to experiments with no stirring but with the same operational conditions. This showed the crucial importance of having the solids in suspension and not settled during the remediation....

  11. Turbidity-controlled sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  12. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15

    Science.gov (United States)

    Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.

    2017-08-03

    Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.

  13. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  14. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  15. Holding characteristics of planar objects suspended by near-field acoustic levitation

    Science.gov (United States)

    Matsuo; Koike; Nakamura; Ueha; Hashimoto

    2000-03-01

    The authors have found the acoustic levitation phenomenon where planar objects of 10 kg weight can be levitated near a vibration surface. This phenomenon has been studied for non-contact transportation. A circular planar object can be suspended without contacting a circular vibration plate. We have studied the holding force which acts horizontally on the levitated objects. The horizontal position of the object is stabilized by this force. In this paper, we discuss the effect of the radius of a levitated object, levitation distance, displacement amplitude of the vibration plate and the vibration mode on the suspending force.

  16. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    Science.gov (United States)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  17. Radium isotopes in suspended matter in an estuarine system in the southwest of Spain

    International Nuclear Information System (INIS)

    Perianez, R.; Garcia-Leon, M.; Abril, J.M.

    1994-01-01

    The presence of 226 Ra and 224 Ra in suspended matter from an estuarine system which surrounds a phosphate fertilizer complex has been investigated. The results have confirmed an important radioactive impact from the industrial complex, since up to 2.5 Bq 226 Ra/g suspended matter (dry) has been measured. The influence of tides and seasonal conditions, through changes in salinity, has been found to be relevant. The distribution coefficients for 226 Ra between the suspended matter and the river water have been calculated. The values are in agreement by order of magnitude with those found in the literature, but they clearly depend on tidal state and seasonal conditions. (author) 14 refs.; 6 figs.; 2 tabs

  18. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    Science.gov (United States)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  19. Flow modelling to estimate suspended sediment travel times for two Canadian Deltas

    Directory of Open Access Journals (Sweden)

    S. R. Fassnacht

    2000-01-01

    Full Text Available The approximate travel times for suspended sediment transport through two multi-channel networks are estimated using flow modelling. The focus is on the movement of high sediment concentrations that travel rapidly downstream. Since suspended sediment transport through river confluences and bifurcation movement is poorly understood, it is assumed that the sediment moves at approximately the average channel velocity during periods of high sediment load movement. Calibration of the flow model is discussed, with an emphasis on the incorporation of cross-section data, that are not referenced to a datum, using a continuous water surface profile. Various flow regimes are examined for the Mackenzie and the Slave River Deltas in the Northwest Territories, Canada, and a significant variation in travel times is illustrated. One set of continuous daily sediment measurements throughout the Mackenzie Delta is used to demonstrate that the travel time estimates are reasonable. Keywords: suspended sediment; multi-channel river systems; flow modelling; sediment transport

  20. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  1. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  2. Assessments of lake profiling on temperature, Total Suspended ...

    African Journals Online (AJOL)

    Interpolation were performed on temperature, total suspended solid (TSS) and turbidity (TUR) based on in-situ and ex-situ analyses according to the correlation matrix and linear regression at 14 different depths for the Chomor River and Mahadir Island. The result showed outlet significantly decreased over depth caused the ...

  3. Investigation of suspended sediment transport using ultrasonic techniques

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1994-01-01

    The results of the initial experimental studies involving the scattering of ultrasonic signals from canonical and non-canonical shaped suspended particles with known elastical qualities are reported. These results have formed the basis for the development of a numerical model for ultrasound...... propagation through low-concentration suspensions of sand particles...

  4. Muscular contribution to low-back loading and stiffness during standard and suspended push-ups.

    Science.gov (United States)

    Beach, Tyson A C; Howarth, Samuel J; Callaghan, Jack P

    2008-06-01

    Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (ppush-ups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (ppush-ups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.

  5. Temporal variability in the suspended sediment load and streamflow of the Doce River

    Science.gov (United States)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  6. DYNAMIC SUFFICIENCY OF THE MAGNETICALLY SUSPENDED TRAIN

    Directory of Open Access Journals (Sweden)

    V. A. Polyakov

    2013-11-01

    Full Text Available Purpose. The basic criterion of the magnetically suspended train's consumer estimation is a quality of its mechanical motion. This motion is realized in unpredictable conditions and, for purposefulness preservation, should adapt to them. Such adaptation is possible only within the limits of system’s dynamic sufficiency. Sufficiency is understood as presence at system of resources, which allow one to realize its demanded motions without violating actual restrictions. Therefore presence of such resources is a necessary condition of preservation of required purposefulness of train's dynamics, and verification of the mentioned sufficiency is the major component of this dynamic research. Methodology. Methods of the set theory are used in work. Desirable and actual approachability spaces of the train are found. The train is considered dynamically sufficient in zones of the specified spaces overlapping. Findings. Within the limits of the accepted treatment of train's dynamic sufficiency, verification of its presence, as well as a stock (or deficiency of preservations can be executed by the search and the subsequent estimation of such overlapping zones. Operatively (directly during motion it can be realized on the train's ODC with use, for example, of computer mathematics system Mathematica. It possesses extensive opportunities of highly efficient and, at the same time, demanding an expense concerning small resources information manipulation. The efficiency of using of created technique is illustrated on an example of vehicle's acceleration research. Calculation is executed with use of the constructed computer model of interaction of an independent traction electromagnetic subsystem of an artifact with its mechanical subsystem. Originality. The technique of verification of the high-speed magnetically suspended train's dynamic sufficiency is developed. The technique is highly efficient, it provides sufficient presentation and demands an expense of the

  7. Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Hasan, E-mail: babaei@illinois.edu, E-mail: babaei@auburn.edu [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States); Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Khodadadi, J. M. [Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Sinha, Sanjiv [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States)

    2014-11-10

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized.

  8. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  9. Improved Methods for Correlating Turbidity and Suspended Solids for Monitoring

    National Research Council Canada - National Science Library

    2000-01-01

    This technical note describes techniques normally used to measure turbidity and suspended solids in waters, how the two parameters relate to each other and to various environmental impacts, and why...

  10. Turbidity threshold sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  11. Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Aboul-Enein, S.; Ramadan, M.R.I.; El-Bialy, E. [Tanta University (Egypt). Faculty of Science

    2000-01-01

    In a previous study, a single-basin solar still with suspended absorber (SBSSBA) made from aluminium was constructed and investigated experimentally and theoretically. It was found that the daily productivity of the still was about 20% higher than that of the conventional single-basin solar still (SBSS). In this paper, the effect of thermal conductivity of the suspended absorber on the daily productivity of the still is investigated experimentally using aluminium, copper, stainless steel and mica plates as suspended absorbers. The results obtained are compared with those obtained for the SBSS tested under the same climatic conditions of Tanta (lat. 30{sup o} 47' N). The results indicate that it is advisable to use suspended plates made from insulating materials, such as mica, plastic, glass, etc. The daily productivity of the modified still with mica is found to be 42% higher than that of SBSS. Further, the effect of thickness of the suspended absorber on the productivity as well as the year-round performances of both SBSSBA and SBSS for the year 1996 are studied by computer simulation. There is good evidence that the productivity of SBSSBA is less dependent on the thickness of the suspended plate. The annual average productivities of the modified still with mica are found to be 23 and 15.8% higher than those of the conventional still when the basin water masses are 80 and 40 kg, respectively. This indicates that the suspended plate becomes more effective at higher masses of basin water. (author)

  12. The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone

    Science.gov (United States)

    Jaffe, Bruce E.

    2015-01-01

    Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.

  13. Modeling long-term suspended-sediment export from an undisturbed forest catchment

    Science.gov (United States)

    Zimmermann, Alexander; Francke, Till; Elsenbeer, Helmut

    2013-04-01

    Most estimates of suspended sediment yields from humid, undisturbed, and geologically stable forest environments fall within a range of 5 - 30 t km-2 a-1. These low natural erosion rates in small headwater catchments (≤ 1 km2) support the common impression that a well-developed forest cover prevents surface erosion. Interestingly, those estimates originate exclusively from areas with prevailing vertical hydrological flow paths. Forest environments dominated by (near-) surface flow paths (overland flow, pipe flow, and return flow) and a fast response to rainfall, however, are not an exceptional phenomenon, yet only very few sediment yields have been estimated for these areas. Not surprisingly, even fewer long-term (≥ 10 years) records exist. In this contribution we present our latest research which aims at quantifying long-term suspended-sediment export from an undisturbed rainforest catchment prone to frequent overland flow. A key aspect of our approach is the application of machine-learning techniques (Random Forest, Quantile Regression Forest) which allows not only the handling of non-Gaussian data, non-linear relations between predictors and response, and correlations between predictors, but also the assessment of prediction uncertainty. For the current study we provided the machine-learning algorithms exclusively with information from a high-resolution rainfall time series to reconstruct discharge and suspended sediment dynamics for a 21-year period. The significance of our results is threefold. First, our estimates clearly show that forest cover does not necessarily prevent erosion if wet antecedent conditions and large rainfalls coincide. During these situations, overland flow is widespread and sediment fluxes increase in a non-linear fashion due to the mobilization of new sediment sources. Second, our estimates indicate that annual suspended sediment yields of the undisturbed forest catchment show large fluctuations. Depending on the frequency of large

  14. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  15. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    Science.gov (United States)

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  16. Sub-10-nm suspended nano-web formation by direct laser writing

    Science.gov (United States)

    Wang, Sihao; Yu, Ye; Liu, Hailong; Lim, Kevin T. P.; Madurai Srinivasan, Bharathi; Zhang, Yong Wei; Yang, Joel K. W.

    2018-06-01

    A diffraction-limited three-dimensional (3D) direct laser writing (DLW) system based on two-photon polymerization can routinely pattern structures at the 100 nm length scale. Several schemes have been developed to improve the patterning resolution of 3D DLW but often require customized resist formulations or multi-wavelength exposures. Here, we introduce a scheme to produce suspended nano-webs with feature sizes below 10 nm in IP-Dip resist using sub-threshold exposure conditions in a commercial DLW system. The narrowest suspended lines (nano-webs) measured 7 nm in width. Larger ∼20 nm nano-webs were patterned with ∼80% yield at increased laser powers. In addition, closely spaced nano-gaps with a center-to-center distance of 33 nm were produced by patterning vertically displaced suspended lines followed by metal deposition and liftoff. We provide hypotheses and present preliminary results for a mechanism involving the initiation of a percolative path and a strain-induced narrowing in the nano-web formation. Our approach allows selective features to be patterned with dimensions comparable to the sub-10 nm patterning capability of electron-beam lithography (EBL).

  17. Protection against suspended sand: the function of the branchial membrane in the blue mussel Mytilus edulis

    Science.gov (United States)

    de Vooys, C. G. N.

    2006-09-01

    Blue mussels ( Mytilus edulis) living in estuaries have to cope with varying concentrations of suspended sand. Sand flowing through the inhalant siphons comes into the infrabranchial chamber. The inhalant siphon can be partially closed by the branchial membrane. As a result the inward flow decreases, and suspended sand sinks and can be eliminated. Experiments with mussels from three ecologically different locations showed about the same response of the branchial membrane on contact with suspended sand. The presence and function of the branchial membrane appears to be an adaptation of mussels to their estuarine environment.

  18. Novel Resuscitation from Lethal Hemorrhage - Suspended Animation for Delayed Resuscitation

    National Research Council Canada - National Science Library

    Safar, Peter

    2002-01-01

    .... We have conceived and documented "suspended animation for delayed resuscitation" with the use of hypothermic saline flush into the aorta within the first 5 minute of no blood flow, using novel...

  19. Evaluation of the suspending properties of Abizia zygia gum on ...

    African Journals Online (AJOL)

    Purpose: Some excipients are currently available for the formulation of pharmaceutical suspensions. ... Method: The suspending properties of Albizia zygia gum (family ... Characterization tests were carried out on purified Albizia zygia gum.

  20. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    Science.gov (United States)

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    The ability to accurately monitor suspended-sediment flux in rivers is needed to support many types of studies, because the sediment that typically travels in suspension affects geomorphology and aquatic habitat in a variety of ways (e.g. bank and floodplain deposition, bar morphology, light penetration and primary productivity, tidal wetland deposition in the context of sea-level rise, sediment-associated contaminants, reservoir sedimentation and potential erosion during dam removal, among others). In addition, human-induced changes to the landscape have resulted in substantially altered suspended-sediment loads (Syvitski et al., 2005). Thus, accurate monitoring of suspended-sediment flux is necessary for informed resource management of rivers. Because of this need, a variety of techniques have been developed and applied for suspendedsediment monitoring. The traditional approach in the United States, which was developed and has been used extensively by the U.S. Geological Survey (USGS), is to collect an isokinetic, velocity-weighted sample from a river cross-section, analyze the sample in the laboratory, and use water-discharge records to compute a record of suspended-sediment flux (Guy, 1969, Guy, 1970, Edwards and Glysson, 1999, Porterfield, 1972). The labor and expense associated with this traditional approach is substantial such that the number of USGS gages reporting daily records of suspended-sediment flux decreased from 364 in 1981 to 120 in 2003 (Osterkamp et al., 2004). Also, the traditional sampling approach is limited with respect to the temporal resolution that can be achieved, thus requiring the use of approximate relations between suspended-sediment concentration and water discharge to fill gaps between samples. To address these limitations, several indirect or "surrogate" measures have been investigated (see e.g. Gray and Gartner, 2009) most notably optical backscatter (i.e. turbidity), laser-diffraction, and acoustic backscatter. These indirect

  1. Measuring the height-to-height correlation function of corrugation in suspended graphene

    International Nuclear Information System (INIS)

    Kirilenko, D.A.; Brunkov, P.N.

    2016-01-01

    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm"−"1. At the upper limit of this range H(q) does follow the T/κq"4 law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q"−"3"."1"5 but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  2. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  3. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  4. Particles of bottom and suspended sediments: height of rise

    Directory of Open Access Journals (Sweden)

    Khodzinskaya Anna Gennadievna

    2014-12-01

    Full Text Available In the article, characteristic values of dynamic sizes of bottom and suspended sediments, including their probabilistic assessment, are considered. The article presents the processing results in respect of the experimental data for bottom and suspended sediments, obtained in the laboratory environment using samples and filming methods. The experiments have proven that the dynamic hydraulic size determines the height of rise for the particles of the saltation load, rather than suspended ones. In the laboratory environment, the maximal height of rise is mainly driven by the relative flow depth. According to the assessment made by the co-authors, depths of flows employed in the experiments designated for the identification of heights of rises, were comparable to saltation heights of particles. Besides, the saltation height of particles, having relative density well below 2.65, nearly always exceeded half of the depth of the laboratory flow. Hydrodynamic conditions favourable for the separation and motion of artificial particles in coarse surface tanks are far different from the motion of sand particles on the bottom of lowland rivers. Values of hydraulic resistance ratios typical for laboratory experiments by far exceed their values typical for lowland rivers, and it means that the conditions of the experiments performed in the laboratory were similar to those typical for mountain rivers. The research findings have proven that the particle separation and motion pattern, if artificial particles are made of the materials demonstrating variable density and elasticity values and if loose particles travel over fixed ones, is different from the pattern typical for natural particles having variable coarseness.

  5. Application of Acoustic and Optic Methods for Estimating Suspended-Solids Concentrations in the St. Lucie River Estuary, Florida

    Science.gov (United States)

    Patino, Eduardo; Byrne, Michael J.

    2004-01-01

    Acoustic and optic methods were applied to estimate suspended-solids concentrations in the St. Lucie River Estuary, southeastern Florida. Acoustic Doppler velocity meters were installed at the North Fork, Speedy Point, and Steele Point sites within the estuary. These sites provide varying flow, salinity, water-quality, and channel cross-sectional characteristics. The monitoring site at Steele Point was not used in the analyses because repeated instrument relocations (due to bridge construction) prevented a sufficient number of samples from being collected at the various locations. Acoustic and optic instruments were installed to collect water velocity, acoustic backscatter strength (ABS), and turbidity data that were used to assess the feasibility of estimating suspended-solids concentrations in the estuary. Other data collected at the monitoring sites include tidal stage, salinity, temperature, and periodic discharge measurements. Regression analyses were used to determine the relations of suspended-solids concentration to ABS and suspended-solids concentration to turbidity at the North Fork and Speedy Point sites. For samples used in regression analyses, measured suspended-solids concentrations at the North Fork and Speedy Point sites ranged from 3 to 37 milligrams per liter, and organic content ranged from 50 to 83 percent. Corresponding salinity for these samples ranged from 0.12 to 22.7 parts per thousand, and corresponding temperature ranged from 19.4 to 31.8 ?C. Relations determined using this technique are site specific and only describe suspended-solids concentrations at locations where data were collected. The suspended-solids concentration to ABS relation resulted in correlation coefficients of 0.78 and 0.63 at the North Fork and Speedy Point sites, respectively. The suspended-solids concentration to turbidity relation resulted in correlation coefficients of 0.73 and 0.89 at the North Fork and Speedy Point sites, respectively. The adequacy of the

  6. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    Science.gov (United States)

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  7. Evaluation of the Suspending Properties of the Coprecipitate of ...

    African Journals Online (AJOL)

    The suspending ability of the different ratios was evaluated in magnesium trisilicate suspension, and compared with a suspension prepared with Compound Tragacanth Powder BP (CTP) as well as a commercially available magnesium trisilicate suspension (MTS). The parameters tested were sedimentation rate, flow rate, ...

  8. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  9. 77 FR 70142 - Initialed Draft Revision to the Agreement Suspending the Antidumping Investigation on Certain Hot...

    Science.gov (United States)

    2012-11-23

    ... the Agreement Suspending the Antidumping Investigation on Certain Hot-Rolled Flat-Rolled Carbon... revision to the Agreement Suspending the Antidumping Investigation on Certain Hot-Rolled Flat-Rolled Carbon...'') investigation on hot-rolled flat-rolled carbon-quality steel products (``hot-rolled steel'') from the Russian...

  10. VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing

    CSIR Research Space (South Africa)

    Simo, A

    2014-05-01

    Full Text Available Mott-type VO(sub2) oxide nanobelts are demonstrated to be effective hydrogen gas sensors at room temperature. These nanobelts, synthesized by hydrothermal process and exhibiting the VO(sub2) (A) crystallographic phase, display room temperature H...

  11. Suspended sediment transport in the Gulf of Lions (NW Mediterranean): Impact of extreme storms and floods

    NARCIS (Netherlands)

    Ulses, C.; Estournel, C.; Durrieu de Madron, X.; Palanques, A.

    2008-01-01

    In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment

  12. Sampled control of vibration in suspended cask by using vibration manipulation functions

    International Nuclear Information System (INIS)

    Kotake, Shigeo

    2014-01-01

    Safe and reliable operation is most important for decommissioning the Fukushima 1 nuclear power plant. Especially it requires for transferring spent nuclear fuels from fuel pool to storage cask. Since the heavy cask will be suspended during the transferring operation, there is a risk of dropping it in case of the strike of large earthquakes. In this study, we introduce analytical functions to suppress residual vibration of a suspended cask by using vibration manipulation function. Hence the oscillation of the cask can be feedforward or sampled-data controlled by moving a trolley with analog actuator, the possible risk could be reduced. (author)

  13. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  14. Dynamics of suspended sediment load in the upper part of the Rasina River Basin in 2010

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2013-01-01

    Full Text Available The paper treats the issue of the suspended sediment load transport in the upper part of the Rasina River Basin, upstream from the "Ćelije" reservoir during the year of 2010. Measurements of the suspended sediment concentrations were being done at two hydrological profiles Brus and Ravni. Total quantity of the suspended sediment load that was transported at the profile of Brus in 2010 amounted to 3,437.3 t, which gave the specific transport of 16.4 t/km2/year. At the downstream profile of Ravni, 43,165 t of the suspended sediment load was transported, that is, 95.7 t/km2/year. The basin on the whole is characterized by the existence of two seasons, which by their characteristics in the load transport represent the extreme variants. During the winter-spring season, 74-85.8 % of the total annual load was transported, аnd during the summer-autumn season between 14.2 and 26 %.

  15. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System.

    Science.gov (United States)

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-11-10

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  16. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System

    Directory of Open Access Journals (Sweden)

    Yulong Bao

    2016-11-01

    Full Text Available A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  17. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    Science.gov (United States)

    Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko

    1997-03-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from

  18. Low-stress photosensitive polyimide suspended membrane for improved thermal isolation performance

    Science.gov (United States)

    Fan, J.; Xing, R. Y.; Wu, W. J.; Liu, H. F.; Liu, J. Q.; Tu, L. C.

    2017-11-01

    In this paper, we introduce a method of isolating thermal conduction from silicon substrate for accommodating thermal-sensitive micro-devices. This method lies in fabrication of a low-stress photosensitive polyimide (PSPI) suspension structure which has lower thermal conductivity than silicon. First, a PSPI layer was patterned on a silicon wafer and hard baked. Then, a cavity was etched from the backside of the silicon substrate to form a membrane or a bridge-shape PSPI structure. After releasing, a slight deformation of about 20 nm was observed in the suspended structures, suggesting ultralow residual stress which is essential for accommodating micro-devices. In order to investigate the thermal isolation performance of the suspended PSPI structures, micro Pirani vacuum gauges, which are thermal-sensitive, had been fabricated on the PSPI structures. The measurement results illustrated that the Pirani gauges worked as expected in the range from 1- 470 Pa. Moreover, the results of the Pirani gauges based on the membrane and bridge structures were comparable, indicating that the commonly used bridge-shape structure for further reducing thermal conduction was unnecessary. Due to the excellent thermal isolation performance of PSPI, the suspended PSPI membrane is promising to be an outstanding candidate for thermal isolation applications.

  19. Novel Resuscitation from Lethal Hemorrhage-Suspended Animation for Delayed Resuscitation

    National Research Council Canada - National Science Library

    Safar, Peter

    2003-01-01

    ...). We have conceived and documented the concept of "suspended animation (SA) for delayed resuscitation" using a hypothermic saline flush into the aorta within the first 5 min of CA, using novel clinically relevant outcome models in dogs...

  20. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  1. Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA

    International Nuclear Information System (INIS)

    Franca, E.J.; Fernandes, E.A.N.; Cavalca, I.P.O; Fonseca, F.Y.; Camilli, L.; Rodrigues, V.S.; Bardini Junior, C.; Ferreira, J.R.; Bacchi, M.A.

    2010-01-01

    The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k 0 method (k 0 -INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k 0 -INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.

  2. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  3. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  4. Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables

    Directory of Open Access Journals (Sweden)

    Yaobing Zhao

    2014-01-01

    Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.

  5. 24 CFR 1000.44 - What prohibitions on the use of debarred, suspended, or ineligible contractors apply?

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false What prohibitions on the use of debarred, suspended, or ineligible contractors apply? 1000.44 Section 1000.44 Housing and Urban Development... § 1000.44 What prohibitions on the use of debarred, suspended, or ineligible contractors apply? In...

  6. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.

    Science.gov (United States)

    Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, probotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (probotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (probotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  9. Biological hydrogen production in continuous stirred tank reactor systems with suspended and attached microbial growth

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Tang, Jing; Liu, Bing-Feng; Guo, Wan-Qian [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.202 Haihe Road, Harbin 150090 (China)

    2010-04-15

    Fermentative H{sub 2} production in continuous stirred tank reactor (CSTR) system with bacteria attached onto granular activated carbon (GAC) was designed to produce H{sub 2} continuously. The H{sub 2} production performances of CSTR with suspended and attached-sludge from molasses were examined and compared at various organic loading rates (8-40 g COD/L/d) at hydraulic retention time of 6 h under mesophilic conditions (35 C). Both reactor systems achieved ethanol-type fermentation in the pH ranges 4.5-4.8 and 3.8-4.4, respectively, while ORP ranges from -450 to -470 mV and from -330 to -350 mV, respectively. The hydrogen production rate in the attached system was higher compared to that of the suspended system (9.72 and 6.65 L/d/L, respectively) while specific hydrogen production rate of 5.13 L/g VSS/d was higher in the suspended system. The attached-sludge CSTR is more stable than the suspended-sludge CSTR with regard to hydrogen production, pH, substrate utilization efficiency and metabolic products (e.g., volatile fatty acids and ethanol) during the whole test. (author)

  10. Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells.

    Science.gov (United States)

    Zhang, Jincan; Lin, Li; Sun, Luzhao; Huang, Yucheng; Koh, Ai Leen; Dang, Wenhui; Yin, Jianbo; Wang, Mingzhan; Tan, Congwei; Li, Tianran; Tan, Zhenjun; Liu, Zhongfan; Peng, Hailin

    2017-07-01

    The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Geochemistry of suspended and settling solids in two freshwater lakes.

    NARCIS (Netherlands)

    Koelmans, A.A.

    1998-01-01

    This study describes the 1987–1992 time variationof the bulk chemical composition, levels of heavymetals, arsenic, nitrogen and phosporous insuspended and settling solids in Lake Volkerak andLake Zoom (The Netherlands). Suspended and setlingsolids were collected with continuous flowcentrifuges and

  12. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.

    2013-01-01

    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  13. Quantifying ratios of suspended sediment sources in forested headwater streams following timber-harvesting operations

    Science.gov (United States)

    Rachels, A. A.; Bladon, K. D.; Bywater-Reyes, S.

    2017-12-01

    Historically, timber-harvesting has increased fine sediment inputs to streams due to increased hillslope and streambank erosion and mass wasting along roads. However, under modern best management practices, the relative importance and variability of these sources is poorly understood. We present preliminary results from an ongoing study investigating the primary sources of suspended sediment in Oregon Coast Range streams influenced by timber harvesting. We instrumented two catchments, Enos Creek (harvested 2016) and Scheele Creek (reference) in fall 2016. Phillips samplers (5-6 per catchment) have been deployed longitudinally down the streams to enable robust characterization of suspended sediments—the collected samples integrate the chemical signatures of upstream sediment exports. We will collect samples monthly over 2 wet seasons and return to the laboratory to analyze the sediment using source fingerprinting approaches. The fingerprinting technique compares the chemical properties of stream sediment samples with the chemical properties of potential source areas, including 1) roads, 2) stream banks, and 3) hillslopes. To design a robust model for sediment-source identification, different types of chemical data are required—we will analyze sediment samples using a combination of: a) stable isotopes and C/N ratios (i.e., δ15N, δ13C, and C/N), b) geochemistry (Fe, K, and Ca), and c) radiogenic isotopes (137Cs and 210Pb). At the harvested site, the C/N ratios of the streambanks (17.9 ± 3.8) and the hillslopes (26.4 ± 4.8) are significantly different from one another (p = .016). C/N ratios of the suspended sediment (20.5 ± 2.0) are intermediate values between potential endmembers and behave conservatively with transport. The C/N ratios of the suspended sediment appear unaffected by roads (18.9 ± 8.7) along specific sections of the stream, suggesting that roads are not a primary sediment contributor. Under this assumption, the suspended sediment is, on

  14. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.

    Science.gov (United States)

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che; Hsieh, Feng-Ming

    2007-09-30

    The degradability of phenol and trichloroethene (TCE) by Pseudomonas putida BCRC 14349 in both suspended culture and immobilized culture systems are investigated. Chitosan beads at a size of about 1-2mm were employed to encapsulate the P. putida cells, becoming an immobilized culture system. The phenol concentration was controlled at 100 mg/L, and that of TCE was studied from 0.2 to 20 mg/L. The pH, between 6.7 and 10, did not affect the degradation of either phenol or TCE in the suspended culture system. However, it was found to be an important factor in the immobilized culture system in which the only significant degradation was observed at pH >8. This may be linked to the surface properties of the chitosan beads and its influence on the activity of the bacteria. The transfer yield of TCE on a phenol basis was almost the same for the suspended and immobilized cultures (0.032 mg TCE/mg phenol), except that these yields occurred at different TCE concentrations. The transfer yield at a higher TCE concentration for the immobilized system suggested that the cells immobilized in carriers can be protected from harsh environmental conditions. For kinetic rate interpretation, the Monod equation was employed to describe the degradation rates of phenol, while the Haldane's equation was used for TCE degradation. Based on the kinetic parameters obtained from the two equations, the rate for the immobilized culture systems was only about 1/6 to that of the suspended culture system for phenol degradation, and was about 1/2 for TCE degradation. The slower kinetics observed for the immobilized culture systems was probably due to the slow diffusion of substrate molecules into the beads. However, compared with the suspended cultures, the immobilized cultures may tolerate a higher TCE concentration as much less inhibition was observed and the transfer yield occurred at a higher TCE concentration.

  15. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    Science.gov (United States)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg

  16. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    J. Guillén

    2000-12-01

    Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.

  17. Finite Element Analysis of the Rotor System of a Magnetically Suspended Compound Molecule Pump

    International Nuclear Information System (INIS)

    Liu Pingfan; Zhao Lei; Shi Zhengang; Yang Guojun

    2014-01-01

    A novel magnetically suspended compound molecule pump has been designed, which has been supported by the active magnetic bearings (AMBs) system with 5 degrees of freedom. According to the characteristics of the high speed and AMBs, the rotor system of the magnetically suspended compound molecule pump has been analyzed by the finite element method. Modal analysis has been performed for the rotor, thus modal frequencies and corresponding modal shapes have been obtained. For the high rotating speed the blades usually have tended to be destroyed as the results of the centrifugal deformation and vibration. So several static parameters have been analyzed, such as stress distributions and deformations. Simulation results provide a theoretical foundation for the design of the magnetically suspended compound molecule pump’s controllers. The reliability and safety of the structure have been verified completely. Furthermore, this paper is of great significance for the pumps’ future developments. (author)

  18. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  19. 76 FR 38694 - Uranium From Russia; Institution of a Five-Year Review Concerning the Suspended Investigation on...

    Science.gov (United States)

    2011-07-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-539-C (Third Review)] Uranium From Russia; Institution of a Five-Year Review Concerning the Suspended Investigation on Uranium From Russia AGENCY: United...)) (the Act) to determine whether termination of the suspended investigation on uranium from Russia would...

  20. Experimental investigations of heat transfer in thermo active building systems in combination with suspended ceilings

    DEFF Research Database (Denmark)

    Alvarez, Maria Alonso; Hviid, Christian Anker; Weitzmann, Peter

    2014-01-01

    buildings to cover acoustic requirements hinders the use of TABS. To measure the reduction of the heat capacity, several experiments are performed in a room equipped with TABS in the upper deck and mixing ventilation. The heat transfer is measured for different suspended ceiling covering percentages...... that the ventilation rate has a high influence on the convective heat capacity. When the ventilation rate is increased from 1.7 h-1 to 2.9 h-1, the heat transfer coefficient increases up to 16% for the same occupancy and suspended ceiling layout.......Thermo Active Building Systems (TABS), described as radiant heating or cooling systems with pipes embedded in the building structure, represent a sustainable alternative to replace conventional systems by using source temperatures close to room temperatures. The use of suspended ceiling in office...

  1. Evaluation of the suspending properties of Cola acuminata gum on ...

    African Journals Online (AJOL)

    Calamine suspensions were formulated with CAG between the concentration range of 1 – 4 % w/v and compared with suspensions formulated with two standard suspending agents (tragacanth and acacia gums). Sedimentation volume, flow rate, rheology and redispersibility were used as evaluating parameters.

  2. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  3. Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System

    Science.gov (United States)

    Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong

    2017-07-01

    A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).

  4. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  5. An experimental study on suspended sodium droplet combustion (3)

    International Nuclear Information System (INIS)

    Sato, Kenji

    2005-03-01

    As part of studies for phenomenological investigation of sodium droplet burning behavior, in our previous experimental studies for suspended single sodium droplet, behavior of ignition process and succeeding combustion, ignition delay time, and droplet temperature history had been investigated. In this study, combustion experiments of suspended sodium droplet were performed in upward dry air flow by expanding the range of free-stream velocity U of air flow into 400 cm/s with initial droplet temperature Ti=300, 350, and 400degC and initial droplet diameter 4 mm at first. Then, the combustion experiments were also performed by changing the initial droplet diameter from 2.3 to 4.4 mm with Ti=350 and 400degC and U=100 cm/s. From the experimental results, the effects of free-stream velocity, initial droplet temperature, and initial droplet diameter on the ignition/burning behavior and ignition delay time were examined. The obtained results are as follows: (1) Ignition phenomena of suspended droplet were observed for all examined experimental conditions up to 400 cm/s. The orange emission observed at the moment of ignition occurs simultaneously over whole droplet surface except the top region of it. (2) The feature of the dependence of ignition delay time on the free-stream velocity is independent of the initial droplet temperature. With the increase of the free-stream velocity, up to 300 cm/s the ignition delay time decreases with decreasing dependency, and then the dependency increases more. (3) The ignition delay time increases with the increase of initial droplet diameter. The dependency increases as the initial droplet diameter increases. The ignition delay time extrapolated toward zero diameters from the obtained results becomes to be essentially zero. (author)

  6. Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors.

    Science.gov (United States)

    Li, Peng; Zhang, Dongzhi; Jiang, Chuanxing; Zong, Xiaoqi; Cao, Yuhua

    2017-12-15

    The extraordinary properties of black phosphorus (BP) make it a promising candidate for next-generation transistor chemical sensors. However, BP films reported so far are supported on substrate, and substrate scattering drastically deteriorates its electrical properties. Consequentially, the potential sensing capability of intrinsic BP is highly underestimated and its sensing mechanism is masked. Additionally, the optimum sensing regime of BP remains unexplored. This article is the first demonstration of suspended BP sensor operated in subthreshold regime. BP exhibited significant enhancement of sensitivity for ultra-low-concentration mercury detection in the absence of substrate, and the sensitivity reached maximum in subthreshold regime. Without substrate scattering, the suspended BP device demonstrated 10 times lower 1/f noise which contributed to better signal-to-noise ratio. Therefore, rapid label-free trace detection of Hg 2+ was achieved with detection limit of 0.01 ppb, lower than the world health organization (WHO) tolerance level (1 ppb). The time constant for ion detection extracted was 3s. Additionally, experimental results revealed that good stability, repeatability, and selectivity were achieved. BP sensors also demonstrated the ability of detecting mercury ions in environment water samples. The underling sensing mechanism of intrinsic BP was ascribed to the carrier density variation resulted from surface charge gating effect, so suspended BP in subthreshold regime with optimum gating effect demonstrated the best sensitivity. Our results show the prominent advantages of intrinsic BP as a sensing material. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Frequency Selection for Multi-frequency Acoustic Measurement of Suspended Sediment

    Science.gov (United States)

    Chen, X.; HO, H.; Fu, X.

    2017-12-01

    Multi-frequency acoustic measurement of suspended sediment has found successful applications in marine and fluvial environments. Difficult challenges remain in regard to improving its effectiveness and efficiency when applied to high concentrations and wide size distributions in rivers. We performed a multi-frequency acoustic scattering experiment in a cylindrical tank with a suspension of natural sands. The sands range from 50 to 600 μm in diameter with a lognormal size distribution. The bulk concentration of suspended sediment varied from 1.0 to 12.0 g/L. We found that the commonly used linear relationship between the intensity of acoustic backscatter and suspended sediment concentration holds only at sufficiently low concentrations, for instance below 3.0 g/L. It fails at a critical value of concentration that depends on measurement frequency and the distance between the transducer and the target point. Instead, an exponential relationship was found to work satisfactorily throughout the entire range of concentration. The coefficient and exponent of the exponential function changed, however, with the measuring frequency and distance. Considering the increased complexity of inverting the concentration values when an exponential relationship prevails, we further analyzed the relationship between measurement error and measuring frequency. It was also found that the inversion error may be effectively controlled within 5% if the frequency is properly set. Compared with concentration, grain size was found to heavily affect the selection of optimum frequency. A regression relationship for optimum frequency versus grain size was developed based on the experimental results.

  8. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  9. A Passively-Suspended Tesla Pump Left Ventricular Assist Device

    Science.gov (United States)

    Izraelev, Valentin; Weiss, William J.; Fritz, Bryan; Newswanger, Raymond K.; Paterson, Eric G.; Snyder, Alan; Medvitz, Richard B.; Cysyk, Joshua; Pae, Walter E.; Hicks, Dennis; Lukic, Branka; Rosenberg, Gerson

    2009-01-01

    The design and initial test results of a new passively suspended Tesla type LAVD blood pump are described. CFD analysis was used in the design of the pump. Overall size of the prototype device is 50 mm in diameter and 75 mm in length. The pump rotor has a density lower than that of blood and when spinning inside the stator in blood it creates a buoyant centering force that suspends the rotor in the radial direction. The axial magnetic force between the rotor and stator restrain the rotor in the axial direction. The pump is capable of pumping up to 10 liters/min at a 70 mmHg head rise at 8000 RPM. The pump has demonstrated a normalized index of hemolysis level below .02 mg/dL for flows between 2 and 9.7 L/min. An inlet pressure sensor has also been incorporated into the inlet cannula wall and will be used for control purposes. One initial in vivo study showed an encouraging result. Further CFD modeling refinements are planned as well as endurance testing of the device. PMID:19770799

  10. Near-Bed Monitoring of Suspended Sediment during a Major Flood Event Highlights Deficiencies in Existing Event-Loading Estimates

    Directory of Open Access Journals (Sweden)

    Alistair Grinham

    2018-01-01

    Full Text Available Rates of fluvial sediment discharge are notoriously difficult to quantify, particularly during major flood events. Measurements are typically undertaken using event stations requiring large capital investment, and the high cost tends to reduce the spatial coverage of monitoring sites. This study aimed to characterise the near-bed suspended sediment dynamics during a major flood event using a low-cost approach. Monitoring nodes consisted of a total suspended sediment (TSS logger, a single stage sampler, and a time-lapse camera for a total cost of less than US$420. Seven nodes were deployed across an elevation gradient on the stream bank of Laidley Creek, Queensland, Australia, and two of these nodes successfully characterised the near-bed suspended sediment dynamics across a major flood event. Near-bed TSS concentrations were closely related to stream flow, with the contribution of suspended bed material dominating the total suspended load during peak flows. Observed TSS concentrations were orders of magnitude higher than historical monitoring data for this site collected using the State government event station. This difference was attributed to the event station pump inlet screening the suspended bed material prior to sample collection. The ‘first flush’ phenomenon was detected and attributed to a local resuspension of muddy crusts immediately upstream of the study site. This low-cost approach will provide an important addition to the existing monitoring of fluvial sediment discharge during flood events.

  11. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    International Nuclear Information System (INIS)

    Wang, Yongjin; Zhu, Guixia; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo; Cai, Wei

    2016-01-01

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  12. Physical Conditions Regulate the Fungal to Bacterial Ratios of a Tropical Suspended Soil

    Directory of Open Access Journals (Sweden)

    Julian Donald

    2017-12-01

    Full Text Available As a source of ‘suspended soils’, epiphytes contribute large amounts of organic matter to the canopy of tropical rain forests. Microbes associated with epiphytes are responsible for much of the nutrient cycling taking place in rain forest canopies. However, soils suspended far above the ground in living organisms differ from soil on the forest floor, and traditional predictors of soil microbial community composition and functioning (nutrient availability and the activity of soil organisms are likely to be less important. We conducted an experiment in the rain forest biome at the Eden Project in the U.K. to explore how biotic and abiotic conditions determine microbial community composition and functioning in a suspended soil. To simulate their natural epiphytic lifestyle, bird’s nest ferns (Asplenium nidus were placed on a custom-built canopy platform suspended 8 m above the ground. Ammonium nitrate and earthworm treatments were applied to ferns in a factorial design. Extracellular enzyme activity and Phospholipid Fatty Acid (PLFA profiles were determined at zero, three and six months. We observed no significant differences in either enzyme activity or PLFA profiles between any of the treatments. Instead, we observed decreases in β-glucosidase and N-acetyl-glucosaminidase activity, and an increase in phenol oxidase activity across all treatments and controls over time. An increase in the relative abundance of fungi during the experiment meant that the microbial communities in the Eden Project ferns after six months were comparable with ferns sampled from primary tropical rain forest in Borneo.

  13. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  14. Experimental realization of suspended atomic chains composed of different atomic species

    International Nuclear Information System (INIS)

    Bettini, Jefferson; Ugarte, Daniel; Sato, Fernando; Galvao, Douglas Soares; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira

    2006-01-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  15. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  16. A direct simulation method for flows with suspended paramagnetic particles

    NARCIS (Netherlands)

    Kang, T.G.; Hulsen, M.A.; Toonder, den J.M.J.; Anderson, P.D.; Meijer, H.E.H.

    2008-01-01

    A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a

  17. 2 CFR 801.1010 - Suspending official (Department of Veterans Affairs supplement to government-wide definition at 2...

    Science.gov (United States)

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Suspending official (Department of Veterans Affairs supplement to government-wide definition at 2 CFR 180.1010). 801.1010 Section 801.1010 Grants and... DEBARMENT AND SUSPENSION Definitions § 801.1010 Suspending official (Department of Veterans Affairs...

  18. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater.

    Science.gov (United States)

    Jamal Khan, S; Ilyas, Shazia; Javid, Sadaf; Visvanathan, C; Jegatheesan, V

    2011-05-01

    The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Determining Time Variation of Cable Tension Forces in Suspended Bridges Using Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Gannon Stromquist-LeVoir

    2018-01-01

    Full Text Available A feasibility study was conducted to develop a novel method to determine the temporal changes of tensile forces in bridge suspender cables using time-frequency analysis of ambient vibration measurements. An analytical model of the suspender cables was developed to evaluate the power spectral density (PSD function of a cable with consideration of cable flexural stiffness. Discrete-time, short-time Fourier transform (STFT was utilized to analyze the recorded acceleration histories in both time and frequency domains. A mathematical convolution of the analytical PSD function and time-frequency data was completed to evaluate changes in cable tension force over time. The method was implemented using acceleration measurements collected from an in-service steel arch bridge with a suspended deck to calculate the temporal variation in cable forces from the vibration measurements. The observations served as proof of concept that the proposed method may be used for cable fatigue life calculations and bridge weigh-in-motion studies.

  20. Some properties of suspended sediment absorbed cations in turbid freshwaters of South Africa

    International Nuclear Information System (INIS)

    Grobbelaar, J.U.; Stegmann, P.; Keulder, P.C.

    1980-01-01

    Large quantities of suspended sediments are common in many of South Africa's freshwaters. Temporal and spatial variations in the amounts of cations adsorbed were recorded. The adsorption appears to be dependent on valency, because greater quantities of the higher valencies are adsorbed. Ca++ dominated the adsorbed cations and Mg++ the dissolved fraction. Water originating from the Beaufort Series contained high sodium concentrations. Fe++ dominated the adsorbed minor cations. Large quantities of sediments transported by rivers enter impoundments. The adsorbed ions transported in this way are influenced by the type of suspended sediment and form a significant part of the total input of ions

  1. LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.

    Science.gov (United States)

    Schoellhamer, David H.

    1987-01-01

    The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.

  2. Suspended sediment fluxes in a tropical estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; DineshKumar, P.K.; Srinivas, K.

    Annual transport processes of suspended sediments in Beypore estuary - a tropical estuary along the south west coast of India - were investigated based on time series measurements within the system. It's observed that the sediment transport...

  3. Suspended sediment transport and shoaling in the Munambam fishery harbour, Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Abraham, P.; Josanto, V.; Sankaranarayanan, V.N.

    Results of the monthly synoptic field observations of vertical profiles of suspended sediment concentration, current velocity and salinity carried out in the Azhicode Estuary are presented with a view to understand the shoaling and siltation...

  4. Experimental study on Kd of 137Cs at varying suspended load conditions

    International Nuclear Information System (INIS)

    Jaison, T.J.; Jain, Abhishek; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.

    2018-01-01

    137 Cs is one of the radionuclide likely to be released through liquid effluents from a nuclear facility. It is soluble in water, but its mobility in aquatic environments is highly retarded by its strong interaction with suspended sediment. The 137 Cs + sorption by suspended load, especially in the subtropics and tropics are not fully understood. Besides, according to IAEA document in emergency situation 137 Cs and 131 I being marker radionuclides, are easier to identify and representative of all the other radionuclides present. Hence a laboratory study is carried out on sorption of 137 Cs with varying silt load, using the upstream lake water and sediments to estimate site specific distribution coefficient (K d )

  5. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  6. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  7. Comparison of Suspended Solid Separation in Advanced Storm Overflow Structures

    DEFF Research Database (Denmark)

    Larsen, Torben; Sørensen, Morten Steen

    1990-01-01

    This paper describes a laboratory investigation of the separation of suspended solids in a circular weir overflow and a vortex separator. The basic idea is to evaluate the efficiency of a vortical flow in the overflow chamber, and to compare these results with other overflow structures....

  8. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Perianez, R.

    2005-01-01

    A model to simulate the transport of suspended particulate matter by the Rhone River plume has been developed. The model solves the 3D hydrodynamic equations, including baroclinic terms and a 1-equation turbulence model, and the suspended matter equations including advection/diffusion of particles, settling and deposition. Four particle classes are considered simultaneously according to observations in the Rhone. Computed currents, salinity and particle distributions are, in general, in good agreement with observations or previous calculations. The model also provides sedimentation rates and the distribution of different particle classes over the sea bed. It has been found that high sedimentation rates close to the river mouth are due to coarse particles that sink rapidly. Computed sedimentation rates are also similar to those derived from observations. The model has been applied to simulate the transport of radionuclides by the plume, since suspended matter is the main vector for them. The radionuclide transport model, previously described and validated, includes exchanges of radionuclides between water, suspended matter and bottom sediment described in terms of kinetic rates. A new feature is the explicit inclusion of the dependence of kinetic rates upon salinity. The model has been applied to 137 Cs and 239,240 Pu. Results are, in general, in good agreement with observations. - A model has been developed to simulate transport of suspended particulate matter in the Rhone River plume

  9. Compilation, quality control, analysis, and summary of discrete suspended-sediment and ancillary data in the United States, 1901-2010

    Science.gov (United States)

    Lee, Casey J.; Glysson, G. Douglas

    2013-01-01

    Human-induced and natural changes to the transport of sediment and sediment-associated constituents can degrade aquatic ecosystems and limit human uses of streams and rivers. The lack of a dedicated, easily accessible, quality-controlled database of sediment and ancillary data has made it difficult to identify sediment-related water-quality impairments and has limited understanding of how human actions affect suspended-sediment concentrations and transport. The purpose of this report is to describe the creation of a quality-controlled U.S. Geological Survey suspended-sediment database, provide guidance for its use, and summarize characteristics of suspended-sediment data through 2010. The database is provided as an online application at http://cida.usgs.gov/sediment to allow users to view, filter, and retrieve available suspended-sediment and ancillary data. A data recovery, filtration, and quality-control process was performed to expand the availability, representativeness, and utility of existing suspended-sediment data collected by the U.S. Geological Survey in the United States before January 1, 2011. Information on streamflow condition, sediment grain size, and upstream landscape condition were matched to sediment data and sediment-sampling sites to place data in context with factors that may influence sediment transport. Suspended-sediment and selected ancillary data are presented from across the United States with respect to time, streamflow, and landscape condition. Examples of potential uses of this database for identifying sediment-related impairments, assessing trends, and designing new data collection activities are provided. This report and database can support local and national-level decision making, project planning, and data mining activities related to the transport of suspended-sediment and sediment-associated constituents.

  10. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  11. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    Science.gov (United States)

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  12. Novel Resuscitation From Lethal Hemorrhage Suspended Animation for Delayed Resuscitation, Year 7

    National Research Council Canada - National Science Library

    Kochanek, Patrick

    2004-01-01

    ...). We have conceived and documented the concept of "suspended animation (SA) for delayed resuscitation" using a hypothermic saline flush into the aorta after rapid (over 5 min) exsanguination (Ex...

  13. Cahn-Hilliard modeling of particles suspended in two-phase flows

    NARCIS (Netherlands)

    Choi, Y.J.; Anderson, P.D.

    2012-01-01

    In this paper, we present a model for the dynamics of particles suspended in two-phase flows by coupling the CahnHilliard theory with the extended finite element method (XFEM). In the CahnHilliard model the interface is considered to have a small but finite thickness, which circumvents explicit

  14. 20 CFR 901.30 - Authority to suspend or terminate enrollment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Authority to suspend or terminate enrollment. 901.30 Section 901.30 Employees' Benefits JOINT BOARD FOR THE ENROLLMENT OF ACTUARIES REGULATIONS... the enrollment of an enrolled actuary if the Joint Board finds that such enrolled actuary (a) Has...

  15. Complete Evaluation of Suspended Air Particles and Their Composition in the Central Area of Yazd City

    Directory of Open Access Journals (Sweden)

    M Younesian

    2009-01-01

    Full Text Available Introduction: Air pollution is one of the problems of the recent century caused by vehicles, industries and other urban activities. The City of Yazd faces air pollution due to its high population, vehicular traffic and industrial places around the city. One of the important parameters of air pollution is suspended air particles that have harmful effects on the health of people, plants and objects. Methods: This research has been carried out by first determining a station in the central area of the city (Shahid Beheshti Square of Yazd. The suspended particles were measured during a five-month period from March to July, 2006. A high volume sampler was used for measuring Total Suspended Particles (TSP. The amount of lead content of TSP was measured in samples by using atomic absorption method. In the next stage, the percentage of organic and inorganic particles in the TSP of all samples was measured by using gravimetric methods and by burning in the oven. Results: The results of this study showed that amount of suspended particles in the city of Yazd is higher than national standard and the general mean average of the suspended particles of air in five months was 233 micrograms per cubic meter. The average concentration of suspended air particles from end of March to August during the five month period was 118, 193, 231, 267and 333, respectively. The average concentration of lead was 0.04 microgram per cubic meter and amount of organic and inorganic particles in TSP was 25.31% and 74.68%, respectively. Conclusion: With respect to the results, the minimum amount of TSP concentration was in March. This could be due to reduction in trading and industrial activities and New Year vacations. In addition, the average monthly TSP increased from March to July; the cause of which could be relative decrease in humidity and increase in temperature. The amount of lead in samples was much less than standard, which could be due to omission of lead from petrol

  16. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    International Nuclear Information System (INIS)

    Sun, J.; Environment Canada, Ottawa, ON; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C.; Zheng, X.; Wong, S.; So, L.C.

    2009-01-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs

  17. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Zheng, X. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Wong, S. [Ottawa Univ., ON (Canada). Dept. of Chemistry; So, L.C. [Waterloo Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs.

  18. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  19. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  20. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  1. Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater

    Science.gov (United States)

    Brown, Giles H.; Tranter, M.; Sharp, M. J.

    1996-04-01

    The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.

  2. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK

    Science.gov (United States)

    Walling; Owens; Waterfall; Leeks; Wass

    2000-05-05

    This paper presents information on the absolute (chemically-dispersed) particle size characteristics of the suspended sediment transported by rivers in the Humber and Tweed basins during the period 1994-1998. For most of the rivers, > 95% of the suspended sediment load at the time of sampling was 63 microm (i.e. sand-sized material). The sediment transported in the two basins were similar. There were, however, noticeable spatial variations in the particle size composition of suspended sediment within the study basins, which reflected the particle size of the sediment sources and their spatial variation, and the selectivity of the sediment mobilization and delivery processes. When particle size parameters were plotted against discharge, there were no significant relationships, although there was some evidence of trends varying between sites. The lack of significant relationships with discharge reflects the fact that sediment particle size is largely supply-controlled, rather than a function of flow and hydraulics. When particle size variations were examined during individual storm events, there was evidence of a pulse of coarse sediment on the rising limb of the hydrograph. This may reflect the remobilization of coarse channel bed sediment as flow velocity and shear stress increase. Finer sediment was transported subsequently during the hydrograph peak and on the falling limb. The findings reported have important implications for understanding and modelling suspended sediment, and associated contaminant, dynamics in river basins.

  3. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    Science.gov (United States)

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  4. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  5. Suspended particulate studies over the Madeira Abyssal Plain

    International Nuclear Information System (INIS)

    Simpson, W.R.

    1987-01-01

    Various aspects relating to suspended matter over the Madeira Abyssal Plain are discussed. Special attention is paid to the nepheloid layer including resuspension and transport processes; time variabilities in particle concentrations and fluxes; particle morphology, microbiology and chemical composition; phase association of metals. Also, tentative predictions of the behaviour of some radionuclides are made based on theory and data on rare earth elements. Instrumentation developed for the project is detailed - the deep water particle sampler. (author)

  6. Concentration of aqueous extracts of defatted soy flour by ultrafiltration; Effect of suspended particles on the filtration flux

    NARCIS (Netherlands)

    Noordman, T.R.; Kooiker, K.; Bel, W.; Dekker, M.; Wesselingh, J.A.

    2003-01-01

    Suspended particles can have a positive effect on the flux and concentration curve of soy flour extracts during ultrafiltration. This is described by a simple empirical model. The suspended particles in this study were insoluble milled bean material (mean particle size 25 m). It is shown that it is

  7. 2 CFR 601.1010 - Suspending Official (Department of Energy supplement to government-wide definition at 2 CFR 180...

    Science.gov (United States)

    2010-01-01

    ... SUSPENSION Definitions § 601.1010 Suspending Official (Department of Energy supplement to government-wide... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Suspending Official (Department of Energy supplement to government-wide definition at 2 CFR 180.1010). 601.1010 Section 601.1010 Grants and Agreements...

  8. Contemporary suspended sediment yield of a partly glaciated catchment, Riffler Bach (Tyrol, Austria)

    Science.gov (United States)

    Weber, Martin; Baewert, Henning; Morche, David

    2015-04-01

    Due to glacier retreat since the LIA (Little Ice Age) proglacial areas in high mountain landscapes are growing. These systems are characterized by a high geomorphological activity, especially in the fluvial subsystem. Despite the long tradition of geomorphological research in the European Alps there is a still a lack of understanding in the interactions between hydrology, sediment sources, sediments sinks and suspended sediment transport. As emphasized by ORWIN ET AL. (2010) those problems can be solved by gathering data in a higher frequency and/or in a higher spatial resolution or density - both leading to a big amount of data. In 2012 a gauging station was installed at the outlet of the partly glaciated catchment of the Riffler Bach (Kaunertal valley, Tyrol). During the ablation seasons in 2012 and 2013 water stage was logged automatically every 15 minutes. In both seasons discharge was measured at different water levels to calculate a stage-discharge relation. Additionally, water samples were taken by an automatic water sampler. Within 16 sampling cycles with sampling frequencies ranging from 1 to 24 hours 389 water samples have been collected. The samples were filtered to calculate the suspended sediment concentration (SSC) of each sample. Furthermore, the climate station Weißsee provided meteorological data at a 15 minute interval. Due to the high variability in suspended sediment transport in proglacial rivers it is impossible to compute a robust annual Q-SSC-relation. Hence, two other approaches were used to calculate the suspended sediment load (SSL) and the suspended sediment yield (SSY): A) Q-SSC-relations for every single sampling cycle (e.g. GEILHAUSEN ET AL. 2013) B) Q-SSC-relations based on classification of dominant runoff-generating processes (e.g. ORWIN AND SMART 2004). The first approach uses commonly operated analysis methods that are well understood. While the hydro-climatic approach is more feasible to explain discharge generation and to

  9. Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides

    Science.gov (United States)

    Favreau, Julien; Durantin, Cédric; Fédéli, Jean-Marc; Boutami, Salim; Duan, Guang-Hua

    2016-03-01

    Silicon photonics has taken great importance owing to the applications in optical communications, ranging from short reach to long haul. Originally dedicated to telecom wavelengths, silicon photonics is heading toward circuits handling with a broader spectrum, especially in the short and mid-infrared (MIR) range. This trend is due to potential applications in chemical sensing, spectroscopy and defense in the 2-10 μm range. We previously reported the development of a MIR photonic platform based on buried SiGe/Si waveguide with propagation losses between 1 and 2 dB/cm. However the low index contrast of the platform makes the design of efficient grating couplers very challenging. In order to achieve a high fiber-to-chip efficiency, we propose a novel grating coupler structure, in which the grating is locally suspended in air. The grating has been designed with a FDTD software. To achieve high efficiency, suspended structure thicknesses have been jointly optimized with the grating parameters, namely the fill factor, the period and the grating etch depth. Using the Efficient Global Optimization (EGO) method we obtained a configuration where the fiber-to-waveguide efficiency is above 57 %. Moreover the optical transition between the suspended and the buried SiGe waveguide has been carefully designed by using an Eigenmode Expansion software. Transition efficiency as high as 86 % is achieved.

  10. Suspended sediment measurements and calculation of the particle load at HPP Fieschertal

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    In the scope of a research project on hydro-abrasive erosion of Pelton turbines, a field study was conducted at the high-head HPP Fieschertal in Valais, Switzerland. The suspended sediment mass concentration (SSC) and particle size distribution (PSD) in the penstock have been continuously measured since 2012 using a combination of six measuring techniques. The SSC was on average 0.52 g/l and rose to 50 g/l in a major flood event in July 2012. The median particle size d 50 was usually 15 pm, rising up to 100 μm when particles previously having settled in the headwater storage tunnel were re-suspended at low water levels. The annual suspended sediment loads (SSL) varied considerably depending on flood events. Moreover, so-called particle loads (PLs) according to the relevant guideline of the International Electrotechnical Commission (IEC 62364) were calculated using four relations between particle size and the relative abrasion potential. For the investigated HPP, the time series of the SSL and the PLs had generally similar shapes over the three years. The largest differences among the PLs were observed during re-suspension events when the particles were considerably coarser than usual. Further investigations on the effects of particle sizes on hydroabrasive erosion of splitters and cut-outs of coated Pelton turbines are recommended.

  11. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    Science.gov (United States)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  12. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Science.gov (United States)

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  13. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  14. Viscous bursting of suspended films

    Science.gov (United States)

    Debrégeas, G.; Martin, P.; Brochard-Wyart, F.

    1995-11-01

    Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.

  15. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  16. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  17. 21 CFR 515.25 - Revocation of order refusing to approve a medicated feed mill license application or suspending...

    Science.gov (United States)

    2010-04-01

    ... medicated feed mill license application or suspending or revoking a license. 515.25 Section 515.25 Food and..., FEEDS, AND RELATED PRODUCTS MEDICATED FEED MILL LICENSE Administrative Actions on Licenses § 515.25 Revocation of order refusing to approve a medicated feed mill license application or suspending or revoking a...

  18. Magnetic measurements of suspended functionalised ferromagnetic beads under DC applied fields

    International Nuclear Information System (INIS)

    De Los Santos V, Luis; Llandro, Justin; Lee, Dongwook; Mitrelias, Thanos; Palfreyman, Justin J.; Hayward, Thomas J.; Cooper, Jos; Bland, J.A.C.; Barnes, Crispin H.W.; Arroyo C, Juan L.; Lees, Martin

    2009-01-01

    In this work, a simple technique to obtain the hysteresis loops of magnetic beads (Spherotech Inc.) in liquid suspension is presented. The magnetic measurements were taken in a DC Magnetic Property Measurement System (MPMS-SQUID sensor). Samples were based on ferromagnetic beads (surface-functionalized NH 2 , mean diameter 4.32 μm) prepared in three conditions: dry, suspended in sucrose solution and in suspension after functionalization with fluorophore. Special small containers (1.3 cm long) made of non magnetic plastic were designed to hold the beads in liquid. The results indicate that the bead's remnant magnetization is half of the value at maximum applied field in all cases. However, due to the additional degrees of rotational freedom, beads suspended in a liquid do not present coercivity. The use of ferromagnetic beads and magnetic elements of different architectures for applications in bioassays is also discussed.

  19. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Science.gov (United States)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  20. Iran to sign additional protocol and suspend uranium enrichment and reprocessing

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: Iran's representative to the IAEA, Ambassador Ali Akbar Salehi, today delivered a letter to IAEA Director General, Mohamed ElBaradei conveying his Government's acceptance of the Additional Protocol. Mr. Salehi also informed the Director General that Iran had decided, as of today, to suspend all uranium enrichment-related and reprocessing activities in Iran - specifically, to suspend all activities on the site of Natanz, not to produce feed material for enrichment processes and not to import enrichment-related items. 'This is a welcome and positive development,' IAEA Director General Mohamed ElBaradei said. The IAEA intends to verify, in the context of the Safeguards Agreement and the Additional Protocol, the implementation by Iran of these decisions. At its meeting on 12 September, the IAEA Board of Governors adopted a resolution calling on Iran to sign, ratify and fully implement the Additional Protocol promptly and unconditionally, and as a confidence building measure to act henceforth in accordance with the Additional Protocol. The Board also called on Iran to suspend all further uranium enrichment and reprocessing activities, pending provision by the Director General of the assurances required by Member States and pending satisfactory application of the provisions of the Additional Protocol. Also today, Mr. ElBaradei has released his report to IAEA Member States on the 'Implementation of the NPT Safeguards Agreement in the Islamic Republic of Iran' for consideration at the 20 November Board of Governors' meeting. Unless the IAEA Board decides otherwise, the document's circulation is restricted and it cannot be released to the press. (IAEA)

  1. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  2. A suspended sediment yield predictive equation for river basins in ...

    African Journals Online (AJOL)

    The fit was found to be better than those relating mean annual specific suspended sediment yield to basin area or runoff only. Since many stream gauging stations in the country have no records on fluvial sediment, the empirical equation can be used to obtain preliminary estimates of expected sediment load of streams for ...

  3. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    Science.gov (United States)

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  4. Piezoelectric characterization of Pb(Zr,Ti)O3 thin films deposited on metal foil substrates by dip coating

    Science.gov (United States)

    Hida, Hirotaka; Hamamura, Tomohiro; Nishi, Takahito; Tan, Goon; Umegaki, Toshihito; Kanno, Isaku

    2017-10-01

    We fabricated the piezoelectric bimorphs composed of Pb(Zr,Ti)O3 (PZT) thin films on metal foil substrates. To efficiently inexpensively manufacture piezoelectric bimorphs with high flexibility, 1.2-µm-thick PZT thin films were directly deposited on both surfaces of 10- and 20-µm-thick bare stainless-steel (SS) foil substrates by dip coating with a sol-gel solution. We confirmed that the PZT thin films deposited on the SS foil substrates at 500 °C or above have polycrystalline perovskite structures and the measured relative dielectric constant and dielectric loss were 323-420 and 0.12-0.17, respectively. The PZT bimorphs were demonstrated by comparing the displacements of the cantilever specimens driven by single- and double-side PZT thin films on the SS foil substrates under the same applied voltage. We characterized the piezoelectric properties of the PZT bimorphs and the calculated their piezoelectric coefficient |e 31,f| to be 0.3-0.7 C/m2.

  5. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  6. A suspended boron foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  7. Fine structure of the lowest Landau level in suspended trilayer graphene

    NARCIS (Netherlands)

    van Elferen, H. J.; Veligura, A.; Tombros, N.; Kurganova, E. V.; van Wees, B. J.; Maan, J. C.; Zeitler, U.

    2013-01-01

    Magnetotransport experiments on ABC-stacked suspended trilayer graphene reveal a complete splitting of the 12-fold degenerated lowest Landau level, and, in particular, the opening of an exchange-driven gap at the charge neutrality point. A quantitative analysis of distinctness of the quantum Hall

  8. Topsy-turvy locomotion: biomechanical specializations of the elbow in suspended quadrupeds reflect inverted gravitational constraints

    Science.gov (United States)

    Fujiwara, Shin-ichi; Endo, Hideki; Hutchinson, John R

    2011-01-01

    Some tetrapods hang upside down from tree branches when moving horizontally. The ability to walk in quadrupedal suspension has been acquired independently in at least 14 mammalian lineages. During the stance (supportive) phase of quadrupedal suspension, the elbow joint flexor muscles (not the extensors as in upright vertebrates moving overground) are expected to contract to maintain the flexed limb posture. Therefore muscular control in inverted, suspended quadrupeds may require changes of muscle control, and even morphologies, to conditions opposite to those in upright animals. However, the relationships between musculoskeletal morphologies and elbow joint postures during the stance phase in suspended quadrupeds have not been investigated. Our analysis comparing postures and skeletal morphologies in Choloepus (Pilosa), Pteropus (Chiroptera), Nycticebus (Primates) and Cynocephalus (Dermoptera) revealed that the elbow joints of these animals were kept at flexed angles of 70–100 ° during the stance phase of quadrupedal suspension. At these joint angles the moment arms of the elbow joint flexors were roughly maximized, optimizing that component of antigravity support. Our additional measurements from various mammalian species show that suspended quadrupeds have relatively small extensor/flexor ratios in both muscle masses and maximum moment arms. Thus, in contrast to the pattern in normal terrestrial quadrupeds, suspended quadrupeds emphasize flexor over extensor muscles for body support. This condition has evolved independently multiple times, attendant with a loss or reduction of the ability to move in normal upright postures. PMID:21477151

  9. Small scale patches of suspended matter and phytoplankton in the Elbe river estuary, German Bight and tidal flats

    Energy Technology Data Exchange (ETDEWEB)

    Doerffer, R; Fischer, J; Stoessel, M; Brockmann, C [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.); Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.)

    1989-01-01

    Thematic mapper and ship data has been used to study small scale features in coastal waters of the North Sea. Three independent pieces of informations from all 7 TM channels were found with factor analysis: suspended matter concentration, atmospheric scattering and sea surface temperature. Near surface suspended matter concentrations may be detected within a factor of 2. For the required atmospheric correction the signal-to-noise ratio of the channels 5 and 7 has to be improved by averaging over 25 x 25 pixels. Thus TM allows to monitor aerosol optical depth and aerosol type over cloudfree water surfaces. Sea surface temperature is retrievable with an absolute accuracy of 1.0 K as long as radiosonde data are available for the correction of atmospheric effects, while relative temperature variations of 0.5 K are detectable. The patchiness of suspended matter and its relation to underwater topography was analysed with auto- and crosscorrelation: horizontal lengths, where the suspended matter concentration of single pixels are significantly correlated either with each another or with water depth, are < 800 m. (orig.).

  10. Opportunities Suspended: The Disparate Impact of Disciplinary Exclusion from School

    Science.gov (United States)

    Losen, Daniel J.; Gillespie, Jonathan

    2012-01-01

    Well over three million children, K-12, are estimated to have lost instructional "seat time" in 2009-2010 because they were suspended from school, often with no guarantee of adult supervision outside the school. That's about the number of children it would take to fill every seat in every major league baseball park and every NFL stadium…

  11. Suspended Education Department Official Had Approved Waiver for Former Employer

    Science.gov (United States)

    Basken, Paul

    2007-01-01

    Matteo Fontana, the student-aid official in the U.S. Department of Education who was suspended last month in an ethics case, issued a controversial high-stakes legal ruling in 2004 that benefited his former employer, Sallie Mae, on the day before the nation's top student lender completed its transition from a government-founded lender into a…

  12. Hydrogenation of cyclohexene with LaNi5−xAlxHn metal hydrides suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  13. Hydrogenation of cyclohexene with LaNi@#5@#-@#x@#Al@#x@#Hn metal hydrides, suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  14. Spatial distributions and temporal trends in polybrominated diphenyl ethers in Detroit River suspended sediments.

    Science.gov (United States)

    Marvin, Chris; Waltho, Jasmine; Jia, Julia; Burniston, Debbie

    2013-05-01

    Suspended sediments from the Detroit River were collected using sediment traps at sites ranging from western Lake Erie to southern Lake St. Clair to assess spatial distributions and temporal trends of polybrominated diphenyl ethers (PBDEs). The distribution of PBDEs in suspended sediments in the Detroit River appeared influenced by shoreline-based contemporary urban and industrial activities, which stood in contrast to PCBs that were associated with areas of historic industrial activity. Temporal trend data indicate that total PBDE concentrations decreased in the period after 2000 in response to cessation of production of the penta- and octa BDE formulations. Concentrations of total PBDEs ranged from roughly 7 ng g(-1) (4 ng g(-1) BDE 209) in southern Lake St. Clair to several hundred ng g(-1) (60-180 ng g(-1) BDE 209) in the lower reaches of the Detroit River. The widespread occurrence of PBDEs in Detroit River suspended sediments suggests that large urban areas can act as diffuse sources of these chemicals that are used in modern industrial applications and consumer products. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Numerical modelling of suspended radioactive sediment transport in a stream using matlab

    International Nuclear Information System (INIS)

    Sarpong, Linda

    2017-07-01

    The use of materials that contain radioactive substances has gained grounds in Ghana due to numerous benefits derived from them. These radioactive materials can be found in the areas of medicine, agriculture and industries such as mining. Though there are strict measures to ensure such material do not find its way into the environment, improper management of the waste poses a threat to the environment. To be able to understand the impact the radioactive material has on the environment, mathematical models play a very relevant role in tracking the level of pollution in any medium. This thesis was concerned with the numerical modelling for the transport of the radioactive solute material that suspends in a stream using Matlab at different velocities as a result of flooding or an accident for research purposes. The modelling was done by using partial differential equations describing relevant physical processes evolution which includes water level, dissolved and suspended substances concentration and velocities. The equation system basis are the mass conservation and momentum laws, state equation and state transport equations. The implicit finite difference scheme was used to evaluate the transport equation, Advection-Dispersion Equation (ADE) with respect to time and space. Solution algorithms for Matlab programming were developed and implemented for generating results for analysis. The results obtained showed that the model was able to simulate accurately the various levels of suspended radioactive sediment concentration changes in the flowing stream longitudinally. (au)

  16. Rare earth elements in suspended and bottom sediments of the Mandovi estuary,central west coast of India: Influence of mining

    Digital Repository Service at National Institute of Oceanography (India)

    Shynu, R.; Rao, V.P.; Kessarkar, P.M.; Rao, T.G.

    Rare earth elements (REEs) in the suspended particulate matter (SPM) of the Mandovi estuary indicated that the mean total-REEs and light REE to heavy REE ratios are lower than that of the average suspended sediment in World Rivers and Post...

  17. All solid-state V2O5-based flexible hybrid fiber supercapacitors

    Science.gov (United States)

    Li, Huan; He, Jin; Cao, Xin; Kang, Liping; He, Xuexia; Xu, Hua; Shi, Feng; Jiang, Ruibin; Lei, Zhibin; Liu, Zong-Huai

    2017-12-01

    Vanadium pentoxide/single-walled carbon nanotube (V2O5-SWCNT) hybrid fibers with good electrochemical performance and flexibility are firstly prepared by using wet-spinning method. V2O5 nanobelt suspension is obtained by mixing V2O5 bulk, 30% H2O2, H2O and followed by hydrothermally treating at 190 °C for 15 h. SWCNT suspension is suspended into V2O5 nanobelt suspension under vigorous stirring, the V2O5-SWCNT homogenous suspension is obtained. It is injected into a coagulation bath composed of 5 wt % CaCl2 ethanol-water solution using syringe pump, V2O5-SWCNT hybrid fibers are prepared by washing with deionized water and drying at room temperature. Reduced graphene oxide (RGO)-SWCNT hybrid fibers are also prepared by the similar wet-spinning approach and followed by reducing GO-SWCNT hybrid fibers in an aqueous solution of hydriodic acid. All solid-state asymmetric V2O5/SWCNT//RGO/SWCNT fiber supercapacitors are assembled with V2O5-SWCNT fiber as positive electrode and RGO-SWCNT fiber as negative electrode by using PVA-H3PO4 as gel electrolyte. The assembled device not only shows maximum volumetric energy density of 1.95 mW h cm-3 at a volumetric power density of 7.5 mW cm-3, superior rate performance and cycling stability, but also exhibits remarkable flexibility to tolerate long-term and repeated bending. This work will open a new application filed of V2O5-based fibers in wearable energy storage devices.

  18. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  19. Contact doping, Klein tunneling, and asymmetry of shot noise in suspended graphene

    Science.gov (United States)

    Laitinen, Antti; Paraoanu, G. S.; Oksanen, Mika; Craciun, Monica F.; Russo, Saverio; Sonin, Edouard; Hakonen, Pertti

    2016-01-01

    The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by p n interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments, we determine the main characteristics of the tunneling barrier (height and slope) in a high-quality suspended sample with Au/Cr/Au contacts. We observe an asymmetric resistance Rodd=100 -70 Ω across the Dirac point of the suspended graphene at carrier density | nG|=(0.3 -4 ) × 1011cm-2 , while the Fano factor displays a nonmonotonic asymmetry in the range Fodd˜0.03 -0.1. Our findings agree with analytical calculations based on the Dirac equation with a trapezoidal barrier. Comparison between the model and the data yields the barrier height for tunneling, an estimate of the thickness of the p n interface d graphene.

  20. 77 FR 10520 - Notice of Intent To Suspend Certain Pesticide Registrations

    Science.gov (United States)

    2012-02-22

    ... printing this Notice of Intent to Suspend Drexel Basic Copper Sulfate Technical. This notice is issued by... Chemical Company....... Copper Compounds. 19713-72 Drexel Basic February 8, 2012. Copper Sulfate Technical...), estimation by liquid chromatography. 19713-72......... 830.7840 Water solubility: 12/14/2007 12/24/2007 8/20...

  1. 49 CFR 592.7 - Suspension, revocation, and reinstatement of suspended registrations.

    Science.gov (United States)

    2010-10-01

    ... vehicle during the time that its registration has been suspended. (d) Effect of suspension or revocation... date of the suspension or revocation all vehicles that it imported to which it has not affixed a... 49 Transportation 7 2010-10-01 2010-10-01 false Suspension, revocation, and reinstatement of...

  2. Element distribution of the barley plant grown in an agar slice suspended culture

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi

    1991-01-01

    An agar slice suspended culture was devised for the further study of the barley root. The roots were placed into an agar covered with a nylon cloth and suspended in a water culture vessel. Barley roots grown in the agar developed hardly any root hair. The element contents of the root grown in the agar culture and that in the water culture were measured by neutron activation analysis. The concentrations of K, Mg and Cl in the root grown in the agar were about half of these grown in the water. Na and Mn concentrations were the same and Ca concentration was slightly higher when grown in the agar. The agar system is expected to provide more information to study the root hair. (author)

  3. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  4. Elastic properties of suspended multilayer WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)

    2016-01-25

    We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  5. Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene

    Science.gov (United States)

    O, Ryong-Sok; Takamura, Makoto; Furukawa, Kazuaki; Nagase, Masao; Hibino, Hiroki

    2015-03-01

    We report on the effects of UV light intensity on the photo assisted electrochemical wet etching of SiC(0001) underneath an epitaxially grown graphene for the fabrication of suspended structures. The maximum etching rate of SiC(0001) was 2.5 µm/h under UV light irradiation in 1 wt % KOH at a constant current of 0.5 mA/cm2. The successful formation of suspended structures depended on the etching rate of SiC. In the Raman spectra of the suspended structures, we did not observe a significant increase in the intensity of the D peak, which originates from defects in graphene sheets. This is most likely explained by the high quality of the single-crystalline graphene epitaxially grown on SiC.

  6. Electrical isolation of dislocations in Ge layers on Si(001 substrates through CMOS-compatible suspended structures

    Directory of Open Access Journals (Sweden)

    Vishal Ajit Shah, Maksym Myronov, Chalermwat Wongwanitwatana, Lewis Bawden, Martin J Prest, James S Richardson-Bullock, Stephen Rhead, Evan H C Parker, Terrance E Whall and David R Leadley

    2012-01-01

    Full Text Available Suspended crystalline Ge semiconductor structures are created on a Si(001 substrate by a combination of epitaxial growth and simple patterning from the front surface using anisotropic underetching. Geometric definition of the surface Ge layer gives access to a range of crystalline planes that have different etch resistance. The structures are aligned to avoid etch-resistive planes in making the suspended regions and to take advantage of these planes to retain the underlying Si to support the structures. The technique is demonstrated by forming suspended microwires, spiderwebs and van der Pauw cross structures. We finally report on the low-temperature electrical isolation of the undoped Ge layers. This novel isolation method increases the Ge resistivity to 280 Ω cm at 10 K, over two orders of magnitude above that of a bulk Ge on Si(001 layer, by removing material containing the underlying misfit dislocation network that otherwise provides the main source of electrical conduction.

  7. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  8. Does SW Monsoon Influence Total Suspended Matter Flux into the Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    Raghavan, B.R.; Chauhan, O.S.

    Seasonal enhancement in the flux of total suspended matter (TSM) has been attributed to climatology of the SW monsoon (SWM) in time-series trap experiments conducted in the Arabian Sea. To determine the influence of climate on TSM flux, synoptic...

  9. The magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NARCIS (Netherlands)

    Seong, Y.; Kang, T.G.; Hulsen, M.A.; den Toonder, J.M.J.; Anderson, P.D.

    2016-01-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and non-magnetic sides. A direct numerical scheme is

  10. Structure-controlled synthesis and electrochemical properties of NH_4V_3O_8 as cathode material for Lithium ion batteries

    International Nuclear Information System (INIS)

    Cheng, Yayi; Huang, Jianfeng; Li, Jiayin; Cao, Liyun; Xu, Zhanwei; Wu, Jianpeng; Cao, Shanshan; Hu, Hailing

    2016-01-01

    NH_4V_3O_8 flower, nanobelt, lath and sheet were synthesized using a facile microwave hydrothermal method. The formation mechanism of NH_4V_3O_8 with various structures was proposed. As an cathode in Li-ion battery, the NH_4V_3O_8 nanobelt with one-dimensional structure as well as nanosized morphology, presents excellent cycling stability and enhanced rate capability when comparing with other NH_4V_3O_8 structures. Further study finds that the NH_4V_3O_8 nanobelt could provide high Li ion diffusion, excellent structural stability and good reversibility during the charge/discharge process, indicating a strong connection between the morphology and the electrochemical performance of NH_4V_3O_8 cathode.

  11. 45 CFR 310.30 - Under what circumstances would FFP be suspended or disallowed in the costs of Computerized Tribal...

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Under what circumstances would FFP be suspended or... SYSTEMS AND OFFICE AUTOMATION Funding for Computerized Tribal IV-D Systems and Office Automation § 310.30 Under what circumstances would FFP be suspended or disallowed in the costs of Computerized Tribal IV-D...

  12. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended

  13. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system

    Science.gov (United States)

    Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong

    2017-02-01

    The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.

  14. Serum-Free Cryopreservation of Five Mammalian Cell Lines in Either a Pelleted or Suspended State

    Directory of Open Access Journals (Sweden)

    Corsini Joe

    2004-01-01

    Full Text Available Herein we have explored two practical aspects of cryopreserving cultured mammalian cells during routine laboratory maintenance. First, we have examined the possibility of using a serum-free, hence more affordable, cryopreservative. Using five mammalian lines (Crandell Feline Kidney, MCF7, A72, WI 38 and NB324K, we found that the serum-free alternative preserves nearly as efficiently as the serum-containing preservatives. Second, we compared cryostorage of those cells in suspended versus a pellet form using both aforementioned cryopreservatives. Under our conditions, cells were in general recovered equally well in a suspended versus a pellet form.

  15. The influence of nonideal factors on the capacitance permittivity in a liquid-suspended rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available The nonideal factors of a liquid-suspended rotor micro-gyroscope include the gas-liquid two-phase flow voids, medium temperature and its dielectric relaxation, in which the role of the nonideal factors on the capacitor dielectric constant is altered, thereby affecting the capacitance detection precision of the micro-gyroscope. By comparing four different liquid media, the experimental results reveal the nonideal character of the capacitor dielectric constant. The 7# white oil is suitable for use as the liquid-suspended gyro cavity liquid medium.

  16. Strain distribution in single, suspended germanium nanowires studied using nanofocused x-rays

    DEFF Research Database (Denmark)

    Keplinger, Mario; Grifone, Raphael; Greil, Johannes

    2016-01-01

    Within the quest for direct band-gap group IV materials, strain engineering in germanium is one promising route. We present a study of the strain distribution in single, suspended germanium nanowires using nanofocused synchrotron radiation. Evaluating the probed Bragg reflection for different ill...

  17. 20 CFR 408.945 - When will we suspend tax refund offset?

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false When will we suspend tax refund offset? 408.945 Section 408.945 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SPECIAL BENEFITS FOR CERTAIN..., you notify us that you are exercising a right described in § 408.942(a) of this subpart and submit...

  18. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    Science.gov (United States)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  19. Combined Discrete Space Voltage Vector with Direct Torque Control for Bearingless Brushless DC Motor and Closed-Loop Suspended Force Control

    Directory of Open Access Journals (Sweden)

    Weiran Wang

    2013-06-01

    Full Text Available In order to improve the performance of bearingless brushless DC motor, a closed-loop suspended force controller combining the discrete space voltage vector modulation is applied and the direct torque control is presented in this paper. Firstly, we increase the number of the control vector to reduce the torque ripple. Then, the suspending equation is constructed which is spired by the direct torque control algorithm. As a result, the closed-loop suspended force controller is built. The simulated and experimental results evaluate the performance of the proposed method. The more advantage is that the proposed algorithm can achieve the fast torque response, reduce the torque ripple, and follow ideal stator flux track. Furthermore, the motor which implants the closed-loop suspended force controller cannot onlyobtain the dynamic response rapidly and displacement control accurately, but also has the characteristics of bearingless brushless DC motor (such as simple structure, high energy efficiency, small volume and low failure rate.

  20. Numerical simulation of the motion of charged suspended particle in multi-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    A method for computing numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.