WorldWideScience

Sample records for suspended metal beam

  1. Metallic Conductive Nanowires Elaborated by PVD Metal Deposition on Suspended DNA Bundles.

    Science.gov (United States)

    Brun, Christophe; Elchinger, Pierre-Henri; Nonglaton, Guillaume; Tidiane-Diagne, Cheikh; Tiron, Raluca; Thuaire, Aurélie; Gasparutto, Didier; Baillin, Xavier

    2017-09-01

    Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  3. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  4. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  5. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Science.gov (United States)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  6. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  7. Characterization of the Particle Size Fraction associated with Heavy Metals in Suspended Sediments of the Yellow River

    Directory of Open Access Journals (Sweden)

    Qingzhen Yao

    2015-06-01

    Full Text Available Variations in the concentrations of particulate heavy metals and fluxes into the sea in the Yellow River were examined based on observational and measured data from January 2009 to December 2010. A custom-built water elutriation apparatus was used to separate suspended sediments into five size fractions. Clay and very fine silt is the dominant fraction in most of the suspended sediments, accounting for >40% of the samples. Cu, Pb, Zn, Cr, Fe and Mn are slightly affected by anthropogenic activities, while Cd is moderate affected. The concentrations of heavy metals increased with decrease in particle size. For suspended sediments in the Yellow River, on average 78%–82% of the total heavy metal loading accumulated in the <16 μm fraction. About 43% and 53% of heavy metal in 2009 and 2010 respectively, were readily transported to the Bohai Sea with “truly suspended” particles, which have potentially harmful effects on marine organisms.

  8. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds

    Science.gov (United States)

    He, Wei

    2018-03-01

    This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.

  9. Metal investigation of beams durable

    Directory of Open Access Journals (Sweden)

    Ya.A. Balabukh

    2011-12-01

    Full Text Available Results of metal researches of long-term storage beams are considered. It is determined that the steel of beams meets the requirements of Norms. Their acceptability for construction of bridges is established.

  10. Whispering Gallery Mode Resonances from Ge Micro-Disks on Suspended Beams

    Directory of Open Access Journals (Sweden)

    Abdelrahman Zaher Al-Attili

    2015-05-01

    Full Text Available Ge is considered to be one of the most promising materials for realizing full monolithic integration of a light source on a silicon (Si photonic chip. Tensile-strain is required to convert Ge into an optical gain material and to reduce the pumping required for population inversion. Several methods of strain application to Ge are proposed in literature, of which the use of free-standing beams fabricated by micro-electro-mechanical systems (MEMS processes are capable of delivering very high strain values. However, it is challenging to make an optical cavity within free-standing Ge beams, and here, we demonstrate the fabrication of a simple cavity while imposing tensile strain by suspension using Ge-On-Insulator (GOI wafers. Ge micro-disks are made on top of suspended SiO$_{2}$ beams by partially removing the supporting Si substrate. According to Raman spectroscopy, a slight tensile strain was applied to the Ge disks through the bending of the SiO2 beams. Whispering-Gallery-Mode (WGM resonances were observed from a disk with a diameter of 3um, consistent with the finite-domain time-difference simulations. The quality (Q factor was 192, and upon increasing the pumping power, the Q-factor was degraded due to the red-shift of Ge direct-gap absorption edge caused by heating.

  11. Bioaccumulation of metals (Cd, Cu, Ni, Pb and Zn) in suspended cultures of blue mussels exposed to different environmental conditions

    Science.gov (United States)

    Maar, Marie; Larsen, Martin Mørk; Tørring, Ditte; Petersen, Jens Kjerulf

    2018-02-01

    Farming of suspended mussels is important for generating high protein food and animal feed or for removing nutrients in eutrophic systems. However, the harvested mussels must not be severely contaminated by pollutants posing a potential health risk for the consumers. The present study estimated the bioaccumulation of cadmium, copper, nickel, lead and zinc in suspended blue mussels (Mytilus edulis L.) in the Limfjorden, Denmark, based on observations and modelling. Modelling was used to assess the suitability of suspended blue mussels as animal feed and food products at sea water metal concentrations corresponding to Good Ecological Status (GES) in the European Union Water Framework Directive (WFD) and in future climate change scenarios (higher metal concentrations and higher temperatures). For this purpose, GES is interpreted as good chemical status for the metals using the Environmental Quality Standards (EQS) defined in the WFD priority substance daughter directives. Observations showed that suspended mussels were healthy with respect to metal pollution and generally less polluted than benthic mussels due to the smaller contact with the contaminated sediment. The model results showed that the WFD targets for Cd, Ni and Pb are not protective with respect to marine mussel production and probably should be reduced for marine waters. Climate changes may increase the metal contamination of mussels, but not to any critical level at the relatively unpolluted study sites. In conclusion, WFD targets should be revised to assure that the corresponding body burdens of metals in mussels are below the safety limits according to the EU Directives and the Norwegian classification for animal feed and food production.

  12. Hydrogenation of cyclohexene with LaNi5−xAlxHn metal hydrides suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  13. Hydrogenation of cyclohexene with LaNi@#5@#-@#x@#Al@#x@#Hn metal hydrides, suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  14. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  15. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water

    International Nuclear Information System (INIS)

    Nasrabadi, T.; Ruegner, H.; Sirdari, Z.Z.; Schwientek, M.; Grathwohl, P.

    2016-01-01

    The present study was carried out in Haraz basin (Iran) that is located in south of the Caspian Sea. The goal of this study was to establish correlations amongst total suspended solids concentration (TSS) and turbidity with total pollutant concentrations to evaluate the dissolved and particle-bound concentrations of major toxic metals. It also aimed to validate TSS and/or turbidity measurements as proxies to monitor pollutant fluxes. Eight metals, namely nickel, lead, cadmium, copper, zinc, cobalt, arsenic and strontium were analyzed for dissolved and total concentrations in water at ten locations within the catchment. TSS and turbidity were also measured. Sampling campaigns were designed to cover both the rainy (December) and the dry (May) season within the basin. The robust relationship between TSS (202–1212 mg/l) and turbidity (63–501 NTUs) in both seasons warranted their interchangeable potential as proxies within the observed ranges. Total element concentrations were plotted in separate attempts versus TSS and turbidity for all locations and both events. Very good linear correlations were attained where the slopes represent the metals concentration on suspended solids and the intercept the dissolved concentration in water. The results achieved by these linear regressions were in very good agreement with independently measured values for dissolved concentration and concentrations on river bed sediments taken at the same locations. This demonstrates that turbidity and/or TSS measurements may be used for monitoring of metal loads if once calibrated against total concentration of metals. The results also revealed that in the lower Haraz catchment metal concentrations on suspended and river bed sediment were homogeneously distributed along the investigated river stretch. This is assumed to be due to intensive gravel and sand mining activities in the upper and middle part of the catchment. - Highlights: • Turbidity is evaluated as a feasible proxy to predict

  16. Pseudo ribbon metal ion beam source

    International Nuclear Information System (INIS)

    Stepanov, Igor B.; Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-01-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface

  17. Pseudo ribbon metal ion beam source.

    Science.gov (United States)

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  18. Metal impurity injection into DIVA plasmas with a Q-switched laser beam

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nagami, Masayuki; Sengoku, Seio; Kumagai, Katsuaki

    1978-08-01

    Metal impurity injection into DIVA plasmas with a Q-switched ruby laser beam is described. Metal materials used are aluminium and gold. The Q-switched laser beam is incident onto a thin metal film thickness about 0.2 μm coated on pyrex glass plate surface. The metal film is vaporized by the laser beam and injected into DIVA plasma. The laser-beam injection method has advantages of sharp profile of vaporized metal, easy control of vaporized metal quantity and injection rate control of metal vapor. (author)

  19. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  20. Determination of the concentration of total suspends solids (TSS) and heavy metals in basin rio Morote, Nicoya, Guanacaste

    International Nuclear Information System (INIS)

    Sanchez Murillo, Ricardo; Leon, Sandra; Saravia, Ana Yuri; Mena Sanchez, Carlos de

    2009-01-01

    The total concentration of suspends solids and heavy metals were determined of the Basin of rio Morote. The study spanned six sampling campaigns between April 2003 and May 2005. Sampling points were selected to correspond to places from the high basin to the mouth of the rio Morote in the Golfo de Nicoya. Suspends total solids concentration (TSS) on average exceeds 200 mg/L during the rainy season at the mouth. Enrichment of metals as: Cu, Ni, Cd and Fe was found in riverbed sediments; but not in Pb. The concentration of Zn has been near the limit value (200 mg/kg) in the dry season, value which has been established for the Environmental Protection Agency of United States (EPA). (author) [es

  1. Metallic plates lens focalizing a high power microwave beam

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-08-01

    A metallic grating composed of thin parallel plates opportunely spaced, permits to correct the phase of an incident high power microwave beam. In this work we show how it is possible to obtain a beam focalisation (lens), a beam deflection (prisma), or a variation in the polarization (polarizer) using parallel metallic plates. The main design parameters are here presented, in order to obtain the wanted phase modification keeping low the diffraction, the reflected power, the ohmic losses and avoiding breakdowns. Following the given criteria, a metallic plate lens has been realized to focalize the 200 KW, 100 msec 60 GHz beam used in the ECRH experiment on the TFR tokamak. The experimental beam concentration followed satisfactory the design requirements. In fact, the maximum intensity increased about twice the value without lens. In correspondence of this distance a reduction of the beam size of about 50% have been measured for the -3 dB radius. The lens supported high power tests without breakdowns or increase of the reflected power

  2. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)], E-mail: joindoc@kumamoto-u.ac.jp; Kawamura, Y. [Department of Material Science, Kumamoto University, Kumamoto 860-8555 (Japan)

    2007-04-15

    We successfully welded 3 mm thick Zr{sub 41}Be{sub 23}Ti{sub 14}Cu{sub 12}Ni{sub 10} bulk metallic glass plate to Ti metal by electron beam welding with a beam irradiated 0.4 mm on the BMG side of the interface. There was no crystallization or defects in the weld because changes in the chemical composition of the weld metal were prevented. Bending showed that the welded sample had a higher strength than the Ti base metal. The interface had a 10 {mu}m thick interdiffusion layer of Zr and Ti.

  3. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    Science.gov (United States)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  4. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  5. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  6. Innovative electron-beam welding of high-melting metals

    International Nuclear Information System (INIS)

    Behr, W.; Reisgen, U.

    2007-01-01

    Since its establishment as nuclear research plant Juelich in the year 1956, the research centre Juelich (FZJ) is concerned with the material processing of special metals. Among those are, above all, the high-melting refractory metals niobium, molybdenum and tungsten. Electron beam welding has always been considered to be an innovative special welding method; in the FZJ, electron beam welding has, moreover, always been adapted to the increasing demands made by research partners and involved manufacturing and design sectors. From the manual equipment technology right up to highly modern multi-beam technique, the technically feasible for fundamental research has, this way, always been realised. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [de

  7. Delivery of suspended sediment and associated phosphorus and heavy metals to small rural Danish streams

    DEFF Research Database (Denmark)

    Laubel, A. R.

    The aim of this study is to examine delivery pathways for suspended sediment, and particulate phosphorus (P) and heavy metals from open rural areas to small Danish streams. A further aim is to quantify the contribution from different path-ways and source areas. Such studies are useful as a basis...... for considering measures to reduce diffuse pollution of the aquatic environment....

  8. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  9. Sub-10-nm suspended nano-web formation by direct laser writing

    Science.gov (United States)

    Wang, Sihao; Yu, Ye; Liu, Hailong; Lim, Kevin T. P.; Madurai Srinivasan, Bharathi; Zhang, Yong Wei; Yang, Joel K. W.

    2018-06-01

    A diffraction-limited three-dimensional (3D) direct laser writing (DLW) system based on two-photon polymerization can routinely pattern structures at the 100 nm length scale. Several schemes have been developed to improve the patterning resolution of 3D DLW but often require customized resist formulations or multi-wavelength exposures. Here, we introduce a scheme to produce suspended nano-webs with feature sizes below 10 nm in IP-Dip resist using sub-threshold exposure conditions in a commercial DLW system. The narrowest suspended lines (nano-webs) measured 7 nm in width. Larger ∼20 nm nano-webs were patterned with ∼80% yield at increased laser powers. In addition, closely spaced nano-gaps with a center-to-center distance of 33 nm were produced by patterning vertically displaced suspended lines followed by metal deposition and liftoff. We provide hypotheses and present preliminary results for a mechanism involving the initiation of a percolative path and a strain-induced narrowing in the nano-web formation. Our approach allows selective features to be patterned with dimensions comparable to the sub-10 nm patterning capability of electron-beam lithography (EBL).

  10. Reduction of metal artifacts: beam hardening and photon starvation effects

    Science.gov (United States)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  11. Application of Metal-Semiconductor-Metal (MSM) Photodetectors for Transverse and Longitudinal Intra-Bunch Beam Diagnostics

    CERN Document Server

    Steinhagen, R J; Boland, M J; Lucas, T G; Rassool, R P

    2013-01-01

    The performance reach of modern accelerators is often governed by the ability to reliably measure and control the beam stability. In high-brightness lepton and high-energy hadron accelerators, the use of optical diagnostic techniques is becoming more widespread as the required bandwidth, resolution and high RF beam power level involved limit the use of traditional electro-magnetic RF pick-up based methods. This contribution discusses the use of fibre-coupled ultra-fast Metal-Semiconductor-Metal Photodetectors (MSM-PD) as an alternative, dependablemeans to measure signals derived from electro-optical and synchrotron-light based diagnostics systems. It describes the beam studies performed at CERN’s CLIC Test Facility (CTF3) and the Australian Synchrotron to assess the feasibility of this technology as a robust, wide-band and sensitive technique for measuring transverse intra-bunch and bunch-by-bunch beam oscillations, longitudinal beam profiles, un-bunched beam population and beam-halo profiles. The amplifica...

  12. Analysis of heavy metals in the re-suspended road dusts from different functional areas in Xi'an, China.

    Science.gov (United States)

    Wang, Qian; Lu, Xinwei; Pan, Huiyun

    2016-10-01

    A study on heavy metal pollution was undertaken in the re-suspended road dusts from different functional areas in Xi'an City of China to investigate the impacts of human activities and land uses on urban environment. The concentrations of Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined using X-ray fluorescence spectrometry, and their accumulations were analyzed using enrichment factor. Correlation analysis, principal component analysis, and cluster analysis, combined with the concentration property and enrichment factor, were used to identify the possible sources of heavy metals investigated. The investigated re-suspended road dusts had Co, Cr, Cu, Pb, and Zn concentrations higher than background levels. Samples from different functional areas had diverse heavy metal concentration levels. Co, Cr, Cu, Pb, and Zn presented moderate/significant enrichment in the samples. The source analyses indicated that Mn, Ni, V, Pb, and Zn had the mixed sources of nature and traffic, Cr and Cu mainly originated from traffic source, while Co was primarily derived from construction source. Traffic and construction activities had a significant impact on urban environment. This preliminary research provides a valuable basis for urban environment protection and management.

  13. Creep of sandwich beams with metallic foam cores

    International Nuclear Information System (INIS)

    Kesler, O.; Crews, L.K.; Gibson, L.J.

    2003-01-01

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis

  14. Creep of sandwich beams with metallic foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Crews, L.K.; Gibson, L.J

    2003-01-20

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis.

  15. Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling.

    Science.gov (United States)

    Cui, Ajuan; Liu, Zhe; Dong, Huanli; Wang, Yujin; Zhen, Yonggang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Hu, Wenping

    2015-05-20

    Single grain boundary junctions are used for the fabrication of suspended nanogap electrodes with a gapwidth down to 1-2 nm through the break of such junctions by focused ion beam (FIB) milling. With advantages of stability and no debris, such nanogap electrodes are suitable for single molecular electronic device construction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Seasonal variations of total suspended particles (TSP) and heavy metals under tropical conditions in Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Pfeiffer, W.C.; Trindade, H.A.; Costa-Ribeiro, C.; Londres, H.; Oliveira, A.E.

    The total suspended particle (TSP) and heavy metal concentrations are studied in Rio de Janeiro, Brazil from 1974 until 1981. The principal aims are to determine how these things vary in two different areas and how meteorological parameters responsible for the transport and dilution of atmospheric pollutants affect these areas. (M.A.C.) [pt

  17. Elemental compositions of suspended particles released in glass manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Mamuro, T; Mizohata, A; Kubota, T [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1980-03-01

    Suspended particles released in glass manufacture were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. Suspended particles emitted from glass manufacture generally consist of both particles emitted from glass fusion and those produced through fuel combustion (mainly oil combustion). Elemental compositions of suspended particles emitted from glass fusion were found to be strongly dependent on the kind and recipe of raw materials and additives. Of the various metallic elements involved in suspended particles emitted from glass fusion, the elements, As, Se, Cd, Sb, Pb and so on are regarded to produce the most serious air pollution. The amount of emission of these elements to the environment is, howerer, quite varied from manufacturer to manufacturer. The replacement of electric furnace by oil combustion in opal glass manufacture remarkably reduced the emission of metallic elements to the environment.

  18. Applicability of X-ray fluorescence analysis for heavy metal monitoring in sediments and suspended matter of surface bodies of water

    International Nuclear Information System (INIS)

    Kallenberg, U.

    1993-01-01

    Among the modern physical-chemical methods of analysis, X-ray fluorescence analysis is one of the most important owing to its wide spectrum of applications, especially as a precise and reliable method for monitoring heavy metals in air, water, and soil. The authors investigated whether it is also suitable for routine monitoring of heavy metals in sediments and suspended matter in accordance with the specifications of the Sewage Sludge Ordinance. (orig.) [de

  19. Beam manipulating by metallic nano-slits with variant widths.

    Science.gov (United States)

    Shi, Haofei; Wang, Changtao; Du, Chunlei; Luo, Xiangang; Dong, Xiaochun; Gao, Hongtao

    2005-09-05

    A novel method is proposed to manipulate beam by modulating light phase through a metallic film with arrayed nano-slits, which have constant depth but variant widths. The slits transport electro-magnetic energy in the form of surface plasmon polaritons (SPPs) in nanometric waveguides and provide desired phase retardations of beam manipulating with variant phase propagation constant. Numerical simulation of an illustrative lens design example is performed through finite-difference time-domain (FDTD) method and shows agreement with theory analysis result. In addition, extraordinary optical transmission of SPPs through sub-wavelength metallic slits is observed in the simulation and helps to improve elements' energy using factor.

  20. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  1. Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam

    International Nuclear Information System (INIS)

    Eksi, Secil; Kapti, Akin O.; Genel, Kenan

    2013-01-01

    Highlights: ► We developed a new plastic–metal hybrid-composite tubular beam structure. ► This structure offers innovative design solutions with weight reduction. ► It prevents premature buckling without adding significant weight to the structure. ► The composite interaction gives better mechanical properties to the products. ► Buckling and bending loads of the beam increased 3.2 and 7.6 times, respectively. - Abstract: It is known that the buckling is characterized by a sudden failure of a structural member subjected to high compressive load. In this study, the buckling behavior of the aluminum tubular beam (ATB) was analyzed using finite element (FE) method, and the reinforcing arrangements as well as its combinations were decided for the composite beams based on the FE results. Buckling and bending behaviors of thin-walled ATBs with internal cast polyamide (PA6) and external glass and carbon fiber reinforcement polymers (GFRPs and CFRPs) were investigated systematically. Experimental studies showed that the 219% increase in buckling load and 661% in bending load were obtained with reinforcements. The use of plastics and metal together as a reinforced structure yields better mechanical performance properties such as high resistance to buckling and bending loads, dimensional stability and high energy absorption capacity, including weight reduction. While the thin-walled metallic component provides required strength and stiffness, the plastic component provides the support necessary to prevent premature buckling without adding significant weight to the structure. It is thought that the combination of these materials will offer a promising new focus of attention for designers seeking more appropriate composite beams with high buckling loads beside light weight. The developed plastic–metal hybrid-composite structure is promising especially for critical parts serving as a support member of vehicles for which light weight is a critical design

  2. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Oproiu, C.; Popescu, A.; Hategan, D.; Morariu, V.V.

    1998-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation at various low temperatures, as well as the influence of the presence or absence of deuterium ions in the suspending medium of the enzyme, on the global enzymatic activity of lactate dehydrogenase have been studied. Frozen lactate dehydrogenase suspensions at 0 degC, -3 degC and -196 degC temperatures have been irradiated with the 5 MeV electron beam of a linear accelerator in the dose range 0-400 Gy. Liquid lactate dehydrogenase suspensions in D 2 O (99.98 %) and ultrapure water (17 ppm) at 0 degC have been irradiated in the dose range 0 -15 Gy. An exponential decrease was found in the enzymatic activity of irradiated lactate dehydrogenase, at all irradiation temperatures. The drastic decrease in the activity for the enzyme irradiated at 0 degC (total inhibition for a final dose of 100 Gy) indicate that at this temperature the indirect effects of radiation (due to the water radicals induced by radiation in the samples) are predominant. At -3 degC irradiation temperature the indirect effects of radiation are smaller but still present (a total decrease in the enzymatic activity for a dose of 250 Gy), while at -196 degC they are orders of magnitude reduced and the decrease in the enzymatic activity is due almost to the direct interaction of electrons with the macromolecules (70 % for a dose of 400 Gy)

  3. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    Science.gov (United States)

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. FDTD approach to optical forces of tightly focused vector beams on metal particles.

    Science.gov (United States)

    Qin, Jian-Qi; Wang, Xi-Lin; Jia, Ding; Chen, Jing; Fan, Ya-Xian; Ding, Jianping; Wang, Hui-Tian

    2009-05-11

    We propose an improved FDTD method to calculate the optical forces of tightly focused beams on microscopic metal particles. Comparison study on different kinds of tightly focused beams indicates that trapping efficiency can be altered by adjusting the polarization of the incident field. The results also show the size-dependence of trapping forces exerted on metal particles. Transverse tapping forces produced by different illumination wavelengths are also evaluated. The numeric simulation demonstrates the possibility of trapping moderate-sized metal particles whose radii are comparable to wavelength.

  5. Analysis of the Dynamic Response in Blast-Loaded CFRP-Strengthened Metallic Beams

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2013-01-01

    Full Text Available Carbon fiber-reinforced polymer composites (CFRPs are good candidates in enhancing the blast resistant performance of vulnerable public buildings and in reinforcing old buildings. The use of CFRP in retrofitting and strengthening applications is traditionally associated with concrete structures. Nevertheless, more recently, there has been a remarkable aspiration in strengthening metallic structures and components using CFRP. This paper presents a relatively simple analytical solution for the deformation and ultimate strength calculation of hybrid metal-CFRP beams when subjected to pulse loading, with a particular focus on blast loading. The analytical model is based on a full interaction between the metal and the FRP and is capable of producing reasonable results in a dynamic loading scenario. A nonlinear finite element (FE model is also developed to reveal the full dynamic behavior of the CFRP-epoxy-steel hybrid beam, considering the detailed effects, that is, large strains, high strain rates in metal, and different failure modes of the hybrid beam. Experimental results confirm the analytical and the FE results and show a strong correlation.

  6. Ion-beam modification of properties of metals and alloys

    International Nuclear Information System (INIS)

    Khodasevich, V.V.; Uglov, V.V.; Ponaryadov, V.V.; Zhukova, S.I.

    2002-01-01

    Physical fundaments for ion-beam modification and plasma-vacuum synthesis of new types of coatings and compounds in technically important metals and alloys were development as well as corresponding installation and technologies were created. (authors)

  7. Synthesis of biocidal polymers containing metal NPs using an electron beam

    International Nuclear Information System (INIS)

    Choi, Kwonyong; Kim, Seong-Eun; Kim, Hee-Yeon; Yoon, Jeyong; Lee, Jong-Chan

    2012-01-01

    Metal containing antibacterial polymers were prepared by the polymerization of methylmethacrylate and methacrylic acid with copper or zinc. When the thin film of the polymers coated on a glass was irradiated with an electron beam, nanoparticles were obtained. It was found that these polymers exhibited a potent antibacterial activity against the Gram-negative bacteria, Escherichia coli. The metal containing polymers showed a 99.999% (5.0 logs) reduction in E. coli at a contact time of 12 h. In addition, polymers had a good antifouling effect against marine organisms. - Graphical abstract: Biocidal activity of Cu nanoparticle/polymer composite film against Gram-negative bacteria. Highlights: ► Metal containing antibacterial polymers were prepared with copper. ► Using the electron beam, nanoparticles were obtained. ► It was found that these polymers exhibited potent biocidal activity against E. coli. ► The metal containing polymers showed a 99.999% reduction of E. coli.

  8. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  9. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  10. Removing roughness on metal surface by irradiation of intense short-pulsed ion beams

    International Nuclear Information System (INIS)

    Hashimoto, Y.

    1995-01-01

    Surface modification of metals with an intense pulsed ion beam (IPIB) was studied experimentally. When the temperature rise of metal surfaces by IPIB irradiation exceeds their boiling point, it is found that machining roughness on surfaces is removed. The experiments were performed with the pulsed power generator HARIMA-II at Himeji Institute of Technology. The main components of the ion beam were carbon and fluorine ions. The IPIB was irradiated to metal plates (Al, Cu and Ti) which were placed at the focal point. Machining roughness on Ti surface was removed after IPIB irradiation, while roughness on Al and Cu plates was not removed. Using the present experimental parameters (beam power density: 32 W/cm 2 , pulse width: 25 ns), the temperature rise of the Ti surface was estimated to be 8,100 K which exceed its boiling point (3,000 K). However, the estimated temperatures of Al and Cu surfaces was 2,500 and 1,500 K, respectively, that are less than their boiling points. These studies above suggests that temperature rise over the boiling point of metals is necessary for removing machining roughness on metal surfaces

  11. Functional grading of metal foam cores for yield-limited lightweight sandwich beams

    International Nuclear Information System (INIS)

    Conde, Yves; Pollien, Arnaud; Mortensen, Andreas

    2006-01-01

    We show that grading the porosity in a bent metal skin/metal foam core sandwich can generate significant weight savings in yield-limited design when, and only when, there is a gradient in the applied moment along the sandwich beam

  12. Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.

    Science.gov (United States)

    Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H

    2014-01-01

    Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.

  13. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  14. Water soluble and metal-containing electron beam resist poly(sodium 4-styrenesulfonate)

    International Nuclear Information System (INIS)

    Abbas, Arwa Saud; Alqarni, Sondos; Shokouhi, Babak Baradaran; Yavuz, Mustafa; Cui, Bo

    2014-01-01

    Popular electron beam resists such as PMMA, ZEP and HSQ all use solvent or base solutions for processing, which may attack the sub-layers or substrate that are made out of organic semiconducting materials. In this study we show that water soluble poly(sodium 4-styrenesulfonate), or sodium PSS, can be used as a negative electron beam resist developed in water. Moreover, since PSS contains metal sodium, its dry etching resistance is much higher than PMMA. It is notable that sodium PSS’s sensitivity and contrast is still far inferior to organic resists such as PMMA, thus it is not suitable for patterning dense and high-resolution structures. Nevertheless, feature size down to 40 nm was achieved for sparse patterns. Lastly, using very low energy (here 2 keV) electron beam lithography and liftoff process using water only, patterning of metal layer on an organic conductive material P3HT was achieved. The metallization of an organic conducting material may find applications in organic semiconductor devices such as OLED. (paper)

  15. Dose perturbation effect of metallic spinal implants in proton beam therapy.

    Science.gov (United States)

    Jia, Yingcui; Zhao, Li; Cheng, Chee-Wai; McDonald, Mark W; Das, Indra J

    2015-09-08

    The purpose of this study was to investigate the effect of dose perturbations for two metallic spinal screw implants in proton beam therapy in the perpendicular and parallel beam geometry. A 5.5 mm (diameter) by 45 mm (length) stainless steel (SS) screw and a 5.5 mm by 35 mm titanium (Ti) screw commonly used for spinal fixation were CT-scanned in a hybrid phantom of water and solid water. The CT data were processed with an orthopedic metal artifact reduction (O-MAR) algorithm. Treatment plans were generated for each metal screw with a proton beam oriented, first parallel and then perpendicular, to the longitudinal axis of the screw. The calculated dose profiles were compared with measured results from a plane-parallel ion chamber and Gafchromic EBT2 films. For the perpendicular setup, the measured dose immediately downstream from the screw exhibited dose enhancement up to 12% for SS and 8% for Ti, respectively, but such dose perturbation was not observed outside the lateral edges of the screws. The TPS showed 5% and 2% dose reductions immediately at the interface for the SS nd Ti screws, respectively, and up to 9% dose enhancements within 1 cm outside of the lateral edges of the screws. The measured dose enhancement was only observed within 5 mm from the interface along the beam path. At deeper depths, the lateral dose profiles appeared to be similar between the measurement and TPS, with dose reduction in the screw shadow region and dose enhancement within 1-2 cm outside of the lateral edges of the metals. For the parallel setup, no significant dose perturbation was detected at lateral distance beyond 3 mm away from both screws. Significant dose discrepancies exist between TPS calculations and ion chamber and film measurements in close proximity of high-Z inhomogeneities. The observed dose enhancement effect with proton therapy is not correctly modeled by TPS. An extra measure of caution should be taken when evaluating dosimetry with spinal metallic implants.

  16. Suspended HOPG nanosheets for HOPG nanoresonator engineering and new carbon nanostructure synthesis

    International Nuclear Information System (INIS)

    Rose, F; Debray, A; Martin, P; Fujita, H; Kawakatsu, H

    2006-01-01

    Suspended highly oriented pyrolytic graphite (HOPG) nanosheets (10-300 nm thick) were created by direct mechanical cleavage of a bulk HOPG crystal onto silicon micropillars and microtracks. We show that suspended HOPG nanosheets can be used to engineer HOPG nanoresonators such as membranes, bridges, and cantilevers as thin as 28 carbon atom layers. We measured by Doppler laser heterodyne interferometry that the discrete vibration modes of an HOPG nanosheet membrane and the resonance frequency of a FIB-created HOPG microcantilever lie in the MHz frequency regime. Moreover, a new carbon nanostructure, named 'nanolace', was synthesized by focused ion beam (FIB) sputtering of suspended HOPG nanosheets. Graphite nanosheets suspended on micropillars were eroded by a FIB to create self-oriented pseudo-periodical ripples. Additional sputtering and subsequent milling of these ripples led to the formation of honeycomb-like shaped nanolaces suspended and linked by ribbons

  17. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  18. Electroluminescence of a polythiophene molecular wire suspended between a metallic surface and the tip of a scanning tunneling microscope.

    Science.gov (United States)

    Reecht, Gaël; Scheurer, Fabrice; Speisser, Virginie; Dappe, Yannick J; Mathevet, Fabrice; Schull, Guillaume

    2014-01-31

    The electroluminescence of a polythiophene wire suspended between a metallic surface and the tip of a scanning tunneling microscope is reported. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with the fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mechanism and polarity dependence are similar to what occurs in organic light emitting diodes (OLED) but at the level of a single molecular wire.

  19. Positron beam analysis of polymer/metal interfaces under stress

    NARCIS (Netherlands)

    Escobar Galindo, R.; van Veen, A.; Garcia, A.A.; Schut, H.; de Hosson, J.T.M.; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    The polymers Epoxy and Poly(Methyl MethAcrylate) spin coated on Interstitial Free (IF) steel were subjected to external stresses and studied using the Delft Variable Energy Positron (VEP) beam facility. The polymer/metal interface was identified using an S-W map. After tensile experiments vacancy

  20. High intensity metallic ion beams from an ecr ion source at GANIL

    International Nuclear Information System (INIS)

    Leherissier, P.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lemagnen, F.; Leroy, R.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Jaffres, P.A.

    2001-01-01

    In the recent years, progress concerning the production of high intensity of metallic ions beams ( 58 Ni, 48 Ca, 76 Ge) at Ganil have been performed. The MIV0C method has been successfully used to produce a high intensity nickel beam with the ECR4 ion source: 20 eμA of 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. The oven method has been first tested with natural metallic calcium on the ECR4 ion source, then used to produce a high power beam (740 W on target i.e. 0.13 pμA accelerated up to 60 MeV/u) of 48 Ca still keeping a low consumption (0.09 mg/h). A germanium beam is now under development, using the oven method with germanium oxide. The ionization efficiencies have been measured and compared. (authors)

  1. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  2. Effect of dental metal in 10 MV X-ray beam therapy

    International Nuclear Information System (INIS)

    Mimura, Seiichi; Mikami, Yasutaka; Inamura, Keiji; Tahara, Seiji; Nagaya, Isao; Egusa, Tomomi; Nakagiri, Yoshitada; Sugita, Katsuhiko.

    1991-01-01

    We have often encountered patients with dental metal when employing the 10 MV X-ray beam therapy for head and neck tumors, and felt it important to investigate the effect of dental metal in relation to dose distribution. The absorbed dose rose abruptly in the vicinity of the metal reaching an interface value equal to 150% of the dose within the acrylic phantom. These results showed that an overdose occurred about 5 mm from the metal. We also learned that the overdose can be avoided by using a 5-mm thick tissue equivalent material. Six patients with dental metal were treated after first covering their metal with a 5-mm thick mouthpiece. No radiation stomatitis caused by the metal was observed in any of these cases. (author)

  3. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  4. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  5. Ion-beam-mixing in metal-metal systems and metal-silicon systems

    International Nuclear Information System (INIS)

    Hung, L.

    1984-01-01

    The influence of energetic ion bombardment on the composition and structure of thin film materials and utilization of ion-beam-mixing techniques to modify interfacial reactions are reported in this thesis. The phase formation in metals by using ion mixing techniques has been studied. Upon ion irradiation of Al/Pt, Al/Pd and Al/Ni thin films, only the simplest intermetallic compounds of PdAl and NiAl were formed in crystalline structure, while the amorphous phase has been observed over a large range of composition. Ion mixing of Au/Cu bilayers resulted in the formation of substitutional solid solutions with no trace of ordered compounds. The formation of the ordered compound CuAu was achieved either by irradiation of bilayers with Ar ions at elevated substrate temperature or by irradiation of the mixed layers with He ions at relatively low temperature. In the Au/Al system several crystal compounds existed in the as-deposited samples. These phases remained crystalline or transformed into other equilibrium compounds upon ion irradiation. The results suggest that the phase formation by ion mixing is dependent on the high quench rate in the collision cascade region and the atomic mobility at the irradiation temperature. The argument can be applied to silicide forming systems. With near-noble metals, the mixed atoms are mobile and form metallurgically distinct phases. With refractory metals, amorphous phases are formed due to lack of atomic mobility

  6. Metallic beam developments for the SPIRAL 2 project

    Energy Technology Data Exchange (ETDEWEB)

    Barué, C., E-mail: barue@ganil.fr; Canet, C.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CEA/CNRS, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Lamy, T.; Sole, P.; Thuillier, T. [LPSC, Université Joseph Fourier Grenoble 1, Grenoble INP, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Peaucelle, C. [IPNL, Université de Lyon, Université de Lyon 1,CNRS/IN2P3 CERN, 4 rue E. Fermi, 69622 Villeurbanne Cedex (France)

    2014-02-15

    The SPIRAL 2 facility, currently under construction, will provide either stable or radioactive beams at high intensity. In addition to the high intensity of stable beams, high charge states must be produced by the ion source to fulfill the RFQ LINAC injection requirements: Q/A = 1/3 at 60 kV ion source extraction voltage. Excepting deuterons and hydrogen, most of the stable beam requests concern metallic elements. The existing 18 GHz electron cyclotron resonance ion source (ECRIS) Phoenix V2 designed at LPSC Grenoble has been used for the tests and will be the source for the SPIRAL 2 commissioning. The tests performed at LPSC for calcium ({sup 40}Ca{sup 14+} and {sup 40}Ca{sup 16+}), nickel ({sup 58}Ni{sup 19+}), and sulfur ({sup 32}S{sup 11+}) are described and discussed. Due to the very high charge states required, the oven method has been chosen. An intensity of 1 pμA has been reached for those elements. The performance and the beam stability have been studied using different buffer gases, and some ionization efficiency preliminary results are given.

  7. Formation of biaxial texture in metal films by selective ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States); Norton, D.P. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States)]. E-mail: dnort@mse.ufl.edu; Selvamanickam, Venkat [IGC-SuperPower, LLC, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2006-05-15

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature.

  8. Formation of biaxial texture in metal films by selective ion beam etching

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2006-01-01

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature

  9. Cylinder and metal grating polarization beam splitter

    Science.gov (United States)

    Yang, Junbo; Xu, Suzhi

    2017-08-01

    We propose a novel and compact metal grating polarization beam splitter (PBS) based on its different reflected and transmitted orders. The metal grating exhibits a broadband high reflectivity and polarization dependence. The rigorous coupled wave analysis is used to calculate the reflectivity and the transmitting spectra and optimize the structure parameters to realize the broadband PBS. The finite-element method is used to calculate the field distribution. The characteristics of the broadband high reflectivity, transmitting and the polarization dependence are investigated including wavelength, period, refractive index and the radius of circle grating. When grating period d = 400 nm, incident wavelength λ = 441 nm, incident angle θ = 60° and radius of circle d/5, then the zeroth reflection order R0 = 0.35 and the transmission zeroth order T0 = 0.08 for TE polarization, however, T0 = 0.34 and R0 = 0.01 for TM mode. The simple fabrication method involves only single etch step and good compatibility with complementary metal oxide semiconductor technology. PBS designed here is particularly suited for optical communication and optical information processing.

  10. CVD tungsten metallization and electron beam lithography for fabricating submicron interconnects for advanced ULSI

    International Nuclear Information System (INIS)

    Wilson, S.R.; Mattox, R.J.

    1988-01-01

    CVD W (0.45μm thick) and CVD W (0.25μm thick) strapped by Al (0.5μm thick) have been used as metal 1 systems. Electrical and physical data are presented from experiments exploring the effects of processing issues with both e-beam and stepper lithography as well as dry etch chemistry on both metal systems. The special issues encountered with the thick tungsten processing were: (i) Significant e-beam proximity related problems as compared to the sandwich metal layers. The resultant e-beam proximity problem contributed to a high level of metal bridging and poor CD control. (ii) Multiple etch related problems due to mask failure and a lack of etch selectivity. The multilevel masks utilized, consisting of photoresist and plasma enhanced oxide (PEO), failed due to the poor etch selectivity. Poor etch selectivity with respect to the underlying oxide was also observed. These issues were addressed with thicker organic and PEO mask layers as well as changes in etch chemistry. These thick layers were successful in preventing the loss of the mask during etch., but caused problems in the e-beam CD control and did not prevent the degradation of the underlying glass. A higher selectivity etch was developed which greatly reduced the underlying dielectric damage and also allowed the use of the thinner organic and PEO hardmask layers without mask failure

  11. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  12. Investigation of the depth profile of ion beam induced nanopatterns on Si with simultaneous metal incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, Behnam; Arezki, Bahia; Biermanns, Andreas; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen, Siegen (Germany); Cornejo, Marina; Frost, Frank [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Leipzig (Germany)

    2011-07-01

    Ion beam sputtering of semiconductor surfaces can modify the surface and produce a diversity of surface topographies such as periodic ripples or dot structures depended on sputtering parameters. Well ordered nanostructured surfaces have widely technological applications. Recent experiments have shown that the incorporation of metallic impurity atoms during the sputtering process plays a crucial role in pattern formation on the surfaces. These findings offer a new degree of freedom to control pattern formation. In this contribution we report on surface patterning due to Kr ion beam erosion on silicon surfaces with simultaneous Fe and Cr incorporation. We used X-ray reflectivity (XRR) to determine the depth profiles of metal ions as function of ion beam divergence angles and the mean incidence angle of the ions with respect to the surface normal. Depth profiles are correlated with degree of pattern formation determined by AFM. We show that the mean penetration depth and concentration of metal ions depends on the divergence angle of Kr beam provided by Kaufman source which supports the assumption that metal ions are created due to parasitic interaction of the Kr beam with the steel plate lining. The evaluated depth profile by XRR is in good agreement with SIMS and RBS results.

  13. Low-energy electron point projection microscopy of suspended graphene, the ultimate 'microscope slide'

    International Nuclear Information System (INIS)

    Mutus, J Y; Livadaru, L; Urban, R; Salomons, M H; Cloutier, M; Wolkow, R A; Robinson, J T

    2011-01-01

    Point projection microscopy (PPM) is used to image suspended graphene by using low-energy electrons (100-205 eV). Because of the low energies used, the graphene is neither damaged nor contaminated by the electron beam for doses of the order of 10 7 electrons per nm 2 . The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet twice as thick as the covalent radius of sp 2 -bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to diffraction off the edge of a graphene knife edge is observed and is used to calculate a virtual source size of 4.7±0.6 A for the electron emitter. It is demonstrated that graphene can serve as both the anode and the substrate in PPM, thereby avoiding distortions due to strong field gradients around nanoscale objects. Graphene can be used to image objects suspended on the sheet using PPM and, in the future, electron holography.

  14. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  15. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  16. Effects of low-energy ion beam bombardment on metal oxides

    International Nuclear Information System (INIS)

    Sullivan, J.L.; Saied, S.O.; Choudhury, T.

    1993-01-01

    This paper describes a study of Ar ion bombardment damage in metal oxides. In the energy range 1 to 5 keV, preferential oxygen removal and reduction of the oxides was found to depend on ion current density, but to be independent of beam energy. (author)

  17. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  18. Very broad beam metal ion source for large area ion implantation application

    International Nuclear Information System (INIS)

    Brown, I.; Anders, S.; Dickinson, M.R.; MacGill, R.A.; Yao, X.

    1993-01-01

    The authors have made and operated a very broad beam version of vacuum arc ion source and used it to carry out high energy metal ion implantation of a particularly large substrate. A multiple-cathode vacuum arc plasma source was coupled to a 50 cm diameter beam extractor (multiple aperture, accel-decel configuration) operated at a net extraction voltage of up to 50 kV. The metal ion species chosen were Ni and Ta. The mean ion charge state for Ni and Ta vacuum arc plasmas is 1.8 and 2.9, respectively, and so the mean ion energies were up to about 90 and 145 keV, respectively. The ion source was operated in a repetitively pulsed mode with pulse length 250 μs and repetition rate several pulses per second. The extracted beam had a gaussian profile with FWHM about 35 cm, giving a nominal beam area of about 1,000 cm 2 . The current of Ni or Ta metal ions in the beam was up to several amperes. The targets for the ion implantation were a number of 24-inch long, highly polished Cu rails from an electromagnetic rail gun. The rails were located about 80 cm away from the ion source extractor grids, and were moved across a diameter of the vessel in such a way as to maximize the uniformity of the implant along the rail. The saturation retained dose for Ta was limited to about 4 x 10 16 cm -2 because of the rather severe sputtering, in accordance with the theoretical expectations for these implantation conditions. Here they describe the ion source, the implantation procedure, and the kinds of implants that can be produced in this way

  19. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Science.gov (United States)

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2015-08-27

    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  20. Metallized ceramic vacuum pipe for particle beams

    International Nuclear Information System (INIS)

    Butler, B.L.; Featherby, M.

    1990-01-01

    A ceramic vacuum chamber segment in the form of a long pipe of rectangular cross section has been assembled from standard shapes of alumina ceramic using glass bonding techniques. Prior to final glass bonding, the internal walls of the pipe are metallized using an electroplating technology. These advanced processes allow for precision patterning and conductivity control of surface conducting films. The ability to lay down both longitudinal and transverse conductor patterns separated by insulating layers of glass give the accelerator designer considerable freedom in tailoring longitudinal and transverse beam pipe impedances. Assembly techniques of these beam pipes are followed through two iterations of semi-scale pipe sections made using candidate materials and processes. These demonstrate the feasibility of the concepts and provide parts for electrical characterization and for further refinement of the approach. In a parallel effort, a variety of materials, joining processes and assembly procedures have been tried to assure flexibility and reliability in the construction of 10-meter long sections to any required specifications

  1. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  2. Behaviour of suspended particulate matter (SPM and selected trace metals during the 2002 summer flood in the River Elbe (Germany at Magdeburg monitoring station

    Directory of Open Access Journals (Sweden)

    M. Baborowski

    2004-01-01

    Full Text Available In August 2002, in the worst flooding in more than 100 years, the River Elbe destroyed built-up areas and caused widespread erosion and the relocation of soils and river sediments. To assess the pollutants entering the water, surveys of dissolved constituents and suspended particulate matter (SPM were carried out daily during the flood at a monitoring station near Magdeburg. The sampling point is part of the network of the International Commission for the Protection of the Elbe (ICPE. The results were compared with those of previous flood studies which used the same sampling strategy. Unlike past floods, the 2002 flood was characterised by the transport of relatively fine suspended material with a low mass concentration. Owing to different input sources, the maxima of dry weight and of particle number concentration occurred at different times. Hg, Fe, Mn, Zn, Cu, Ni and Cr showed a maximum concentration concurrent with the dry weight of the SPM, whereas the maximum concentrations of As, Pb, and Cd coincided with the particle number concentration peak. The concentration of particulate matter decreased rapidly, unlike the concentrations of dissolved substances such as DOC and trace metals, as well as the values of UV extinction, all of which remained high for a longer period. Comparing the results of the 2002 flood with the winter floods in 1995, 1999 and 2000, revealed increased values of As and Pb as well as higher concentrations of dissolved compounds. Keywords: river, flood, transport, suspended particulate matter, trace metals, dissolved compounds, Elbe

  3. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  4. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  5. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  6. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Jordi; Pérez-Murano, Francesc, E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K., E-mail: francesc.perez@csic.es, E-mail: z.durrani@imperial.ac.uk [Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Arbiol, Jordi [Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra, Catalonia (Spain); CELLS-ALBA Synchrotron Light Facility, 08290 Cerdanyola, Catalonia (Spain)

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  7. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    International Nuclear Information System (INIS)

    Llobet, Jordi; Pérez-Murano, Francesc; Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K.; Arbiol, Jordi

    2015-01-01

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations

  8. Experimental realization of suspended atomic chains composed of different atomic species

    International Nuclear Information System (INIS)

    Bettini, Jefferson; Ugarte, Daniel; Sato, Fernando; Galvao, Douglas Soares; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira

    2006-01-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  9. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  10. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  11. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    Science.gov (United States)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  12. Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science

    CERN Document Server

    Rajendran, K; de Ruiter, N J A; Chernoglazov, A I; Panta, R K; Butler, A P H; Butler, P H; Bell, S T; Anderson, N G; Woodfield, T B F; Tredinnick, S J; Healy, J L; Bateman, C J; Aamir, R; Doesburg, R M N; Renaud, P F; Gieseg, S P; Smithies, D J; Mohr, J L; Mandalika, V B H; Opie, A M T; Cook, N J; Ronaldson, J P; Nik, S J; Atharifard, A; Clyne, M; Bones, P J; Bartneck, C; Grasset, R; Schleich, N; Billinghurst, M

    2014-01-01

    This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use of photon-processing features of the Medipix3RX ASIC in reducing beam hardening and associated artefacts. A fully operational charge summing mode was used during the imaging routine. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D reconstruction software and volume visualisation using a custom volume rendering software. Narrow high energy acquisition using the photon-processing detector revealed substantial reduction in beam hardening effects and metal artefacts.

  13. Contribution to a research on electron beam welding of metals

    International Nuclear Information System (INIS)

    Stohr, J.

    1964-03-01

    The electron beam welding of metals is performed by the travelling of the focusing point along the junction of two pieces to be connected. Welding parameters are the electron gun power W, the value of the electron impact surface S, the welding speed s. From the beginning of our research in 1954, the preponderant part played by specific power W/s on the shape of the welded zone and the penetrating depth, became evident. A more methodical research has been undertaken in the laboratories of C.E.N. under the patronage of Professor CHAUDRON, in order to define in a better way the importance of the different welding parameters and to determine their influence on the metallurgical qualities of welded assemblies. This research induced us to define an electron gun adapted as well as possible to the performance of weldings, not only from the point of view of behaviour, especially during the passage from the atmospheric to a low pressure at 10 -5 Torr, necessary for the carrying out of a welding, but also from the point of view of adjustment conveniences of the different welding parameters, indispensable to the intended research work. The variations of welding parameters show that the shape of the molten zone turns from a circle segment to that of a very high triangle, which implies a continual change of the mode of heat transmission. Tests have been made, in order to confirm this way of looking, especially in order to achieve isotherms in dynamic operating and also the comparison of these isotherms with that recorded while using a method of argon arc welding. The thermal balance of energy supplied to the part, the necessary welding energy, and the energy loss (through conduction, radiation and evaporation) has also been established. These results proved that almost the whole of energy has been used for melting, that the different losses are negligible and that heat transmission can not occur by thermal conduction through the part during 'welding' time, when operating under

  14. Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures

    International Nuclear Information System (INIS)

    Lombard, E; Genet, C; Ebbesen, T W; Drezet, A

    2010-01-01

    We demonstrate experimentally a simple method for preparing non-diffractive vectorial optical beams that can display wave-front helicity. This method is based on space-variant modifications of the polarization of an optical beam transmitted through subwavelength annular rings perforating opaque metal films. We show how the description of the optical properties of such structures must account for the vectorial character of the polarization and how, in turn, these properties can be controlled by straightforward sequences of preparation and analysis of polarization states.

  15. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  16. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  17. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  18. Micro-strip Metal Foil Detectors for the Beam Profile Monitoring

    CERN Document Server

    Pugatch, V M; Fedorovitch, O A; Mikhailenko, A V; Prystupa, S V; Pylypchenko, Y

    2005-01-01

    The Micro-strip Metal Foil Detectors (MMFD) designed and used for the Beam Profile Monitoring (BPM) are discussed. Fast particles hitting a metal strip initiate Secondary Electron Emission (SEE) which occurs at 10 - 50 nm surface layers of a strip. The SEE yield is measured by a sensitive Charge Integrator with built-in current-to-frequency converter (1 Hz per 1 fA). The MMFD (deposited onto the 20 μm thick Si-wafer) with 32 Al strips (10 μm wide, 32 μm pitch) has been used for the BPM of the 32 MeV alpha-particle beam at the MPIfK (Heidelberg) Tandem generator for Single-Event-Upset studies of the BEETLE micro-chip. Similar MMFD (0.5 μm thick Ni-strips) with totally removed Si-wafer (by plasma-chemistry, at the working area of 8 x 10 mm2) has been applied for the on-line X-ray BPM at the HASYLAB (DESY). The number of photons (11.3 GeV, mean X-ray energy 18 keV) producing out of a strip a single SEE was evaluated as (1.5 ±0.5)* 104. MMFD has demonstrated stable...

  19. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  20. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2013-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beamline. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. - Highlights: • We compared measurements and Monte Carlo predictions of dose perturbations caused by the metal objects in proton beams. • Different Monte Carlo codes were used, including MCNPX, GEANT4 and Fast Dose Calculator. • Good agreement was found between measurements and Monte Carlo simulations. • The modification of multiple Coulomb scattering model in MCNPX code yielded improved accuracy. • Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy

  1. Method of beam welding metallic parts together and apparatus for doing same

    Science.gov (United States)

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  2. Characterization of copper thin films prepared by metal self-ion beam sputter deposition

    International Nuclear Information System (INIS)

    Gotoh, Yasuhito; Amioka, Takao; Tsuji, Hiroshi; Ishikawa, Junzo

    1994-01-01

    New deposition technique, 'metal-ion beam self-sputtering' method has been developed. Using metal ions which is the same element with the target material, no contamination with noble gas atoms, which are often used in the conventional sputtering, will occur. In this paper, fundamental measurement of the film purity is reported. As a result of PIXE measurements, it was clarified that only slight amount of iron is incorporated in the films. (author)

  3. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  4. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    Science.gov (United States)

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  5. Metal oxide multilayer hard mask system for 3D nanofabrication

    Science.gov (United States)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  6. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    Science.gov (United States)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  7. Generation of dense, pulsed beams of refractory metal atoms using two-stage laser ablation

    International Nuclear Information System (INIS)

    Kadar-Kallen, M.A.; Bonin, K.D.

    1994-01-01

    We report a technique for generating a dense, pulsed beam of refractory metal atoms using two-stage laser ablation. An atomic beam of uranium was produced with a peak, ground-state number density of 1x10 12 cm -3 at a distance of z=27 cm from the source. This density can be scaled as 1/z 3 to estimate the density at other distances which are also far from the source

  8. Production of intense metallic ion beams in order of isotopic separations

    International Nuclear Information System (INIS)

    Sarrouy, J.L.

    1955-01-01

    We describe an isotope separator with magnetic sector of 60 deg that permits, with a process of neutralization of the space charge, to use efficiently intense ion beams. The sources of realized ions provide ionic debits of 10 mA. This present work deals who to obtain intense ion beams (10 to 15 mA), different processes of ion currents measurement, as well as the study of the phenomenon of space charge neutralization. The second part of this memory will be on the survey and the adaptation on the source of various type of oven permitting to spray and to ionize metals directly. By order of increasing difficulty of vaporization, we reached the chromium. (M.B.) [fr

  9. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  10. Metallization of ion beam synthesized Si/3C-SiC/Si layer systems by high-dose implantation of transition metal ions

    International Nuclear Information System (INIS)

    Lindner, J.K.N.; Wenzel, S.; Stritzker, B.

    2001-01-01

    The formation of metal silicide layers contacting an ion beam synthesized buried 3C-SiC layer in silicon by means of high-dose titanium and molybdenum implantations is reported. Two different strategies to form such contact layers are explored. The titanium implantation aims to convert the Si top layer of an epitaxial Si/SiC/Si layer sequence into TiSi 2 , while Mo implantations were performed directly into the SiC layer after selectively etching off all capping layers. Textured and high-temperature stable C54-TiSi 2 layers with small additions of more metal-rich silicides are obtained in the case of the Ti implantations. Mo implantations result in the formation of the high-temperature phase β-MoSi 2 , which also grows textured on the substrate. The formation of cavities in the silicon substrate at the lower SiC/Si interface due to the Si consumption by the growing silicide phase is observed in both cases. It probably constitutes a problem, occurring whenever thin SiC films on silicon have to be contacted by silicide forming metals independent of the deposition technique used. It is shown that this problem can be solved with ion beam synthesized contact layers by proper adjustment of the metal ion dose

  11. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  12. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  13. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  14. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    International Nuclear Information System (INIS)

    Peng, Hui; Liu, Chang; Guo, Hongbo; Yuan, Yuan; Gong, Shengkai; Xu, Huibin

    2016-01-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  15. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  16. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  17. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  18. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  19. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  20. Suspended particulate studies over the Madeira Abyssal Plain

    International Nuclear Information System (INIS)

    Simpson, W.R.

    1987-01-01

    Various aspects relating to suspended matter over the Madeira Abyssal Plain are discussed. Special attention is paid to the nepheloid layer including resuspension and transport processes; time variabilities in particle concentrations and fluxes; particle morphology, microbiology and chemical composition; phase association of metals. Also, tentative predictions of the behaviour of some radionuclides are made based on theory and data on rare earth elements. Instrumentation developed for the project is detailed - the deep water particle sampler. (author)

  1. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean

    Directory of Open Access Journals (Sweden)

    J. Guillén

    2000-12-01

    Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.

  2. Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

    International Nuclear Information System (INIS)

    Tian, Yaolan; Isotalo, Tero J; Konttinen, Mikko P; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J

    2017-01-01

    We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned. (paper)

  3. Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, Carles; Grosse-Kreul, Simon; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; Keudell, Achim von [RD Plasmas with Complex Interactions, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum (Germany)

    2013-10-15

    A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP)

  4. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  5. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

    Science.gov (United States)

    Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu

    2011-07-18

    Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

  6. Design and analysis of metal-dielectric nonpolarizing beam splitters in a glass cube.

    Science.gov (United States)

    Shi, Jin Hui; Guan, Chun Ying; Wang, Zheng Ping

    2009-06-20

    A novel design of a 25-layer metal-dielectric nonpolarizing beam splitter in a cube is proposed by use of the optimization method and is theoretically investigated. The simulations of the reflectance and differential phases induced by reflection and transmission are presented. The simulation results reveal that both the amplitude and the phase characteristics of the nonpolarizing beam splitter could realize the design targets, the differences between the simulated and the target reflectance of 50% are less than 2%, and the differential phases are less than 3 degrees in the range of 530 nm-570 nm for both p and s components.

  7. Application of monosymmetrical I-beams in light metal frames with variable stiffness

    Directory of Open Access Journals (Sweden)

    I.O. Sklyarov

    2016-05-01

    Full Text Available The article is devoted to effectiveness of using of monosymmetrical I-beams with flexible wall frame structures of variable section, features of their calculation and design. Aim: The aim of research is to confirm the feasibility of I-beams with flexible wall bearing as light metal skeletons for buildings of the universal assignment. Materials and Methods: In order to reduce the metal consumption a frame is conventionally divided into several sections according to bending moment diagrams so that in the more compressed zone section the belt of great area was located, and in the stretched or less intense zone the lesser belt was installed. The resulting sections have smaller area in compare to symmetric profiles. Additional reduce bending moments provided as a result of displacement of elements axes with variable cross section. Results: The calculations and selection of sections of the frame have shown that it can be achieved the reducing of bearing elements weight by 10% compared to the symmetrical profiles of variable stiffness due to using monosymmetrical sections. The effectiveness of the proposed constructive solution is confirmed by compare of the projected weight frame construction with existing analogue. The symmetrical frame profile is 15.3% lighter; the monosymmetrical frame profile is 27% lighter. Conclusions: Analysis of stress-strain state structures shown: first, through asymmetrical profile there is a shifting of the center of gravity section, which leads to a redistribution of internal forces in the frame; secondly, because of the small cross-sectional area of the stretched zones more difficult to ensure the stability of the plane form of bending beams, which leads to the necessity to disconnect areas curtain beams by constraints of smaller steps.

  8. Pollution of the Rhine with toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Breder, R

    1981-07-17

    In the chapter of chemical analytics of traces contamination and element wastes are described. Another chapter is called ''sampling and treatment of samples''. In the chapter of determination methods are described atomic absorption spectrometry and inverse voltammetry. The chapter on the origin of metals in rivers deals with natural sources and anthropogenic pollution. The next chapter is called ''metal distribution and transfer events within the components water suspended matter and sediment''. Some toxicological aspects are treated, too. The chapter of anthropogenic metal pollution of the Rhine deals with some aspects of importance of the Rhine, the selection of the sampling places and metal contents in waters suspended matters and sediments. Another chapter treats the general relevance of data.

  9. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  10. Chemistry, spectroscopy and isotope separation of zirconium and its compounds as revealed by laser diagnostics of laser produced metal beams

    International Nuclear Information System (INIS)

    Hackett, P.A.; Humphries, M.; Rayner, D.M.; Bourne, O.L.; Mitchell, A.

    1986-01-01

    Recent work from the author's laboratory on zirconium beams is reviewed. Zirconium metal beams have been produced by laser vaporization of solid zirconium targets coupled with supersonic expansion of helium gas. The resultant supersonic metal beam is shown to present an ideal environment for various spectroscopic techniques. The state distribution of zirconium atoms in the beam is obtained from low resolution laser induced fluorescence (LIF) studies. High resolution LIF studies give information on the hyperfine splitting in the ground state of the zirconium-91 isotope. Information on the hyperfine splitting in the excited state is obtained from quantum beat spectroscopy. Low resolution 2 color multiphoton ionization spectroscopy using a XeCl laser allows isotope separation of all isotopes of zirconium. These metal beams are highly reactive and can be used to produce novel chemical species. The results of two studies in which a reactant is added to the expansion gas are reported here. Zirconium oxide (ZrO), a molecule observed in the emission spectra of cool stars and in laboratory studies at high temperatures, is produced in a low temperature, collision free environment by adding small quantities of oxygen to the expansion gas. Zirconium fluoride (ZrF), a molecule previously unobserved, is produced by the addition of small quantities of CF/sub 4/

  11. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  12. Metal biosorption-flotation. Application to cadmium removal.

    Science.gov (United States)

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  13. Clean Transfer of Large Graphene Single Crystals for High-Intactness Suspended Membranes and Liquid Cells.

    Science.gov (United States)

    Zhang, Jincan; Lin, Li; Sun, Luzhao; Huang, Yucheng; Koh, Ai Leen; Dang, Wenhui; Yin, Jianbo; Wang, Mingzhan; Tan, Congwei; Li, Tianran; Tan, Zhenjun; Liu, Zhongfan; Peng, Hailin

    2017-07-01

    The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  15. [Research on the Content Characteristics and Pollution Evaluation of Heavy Metals in Filtered Water and Suspended Particles from Gansu, Ningxia and Inner Mongolia Sections of the Yellow River in Wet Season Using HR-ICP-MS].

    Science.gov (United States)

    Ma, Xiao-ling; Liu, Jing-jun; Deng, Feng-yu; Zuo, Hang; Huang, Fang; Zhang, Li-yang; Liu, Ying

    2015-10-01

    The content characteristics, pollution evaluation and source identification of 6 heavy Metals (Cd, Pb, Cr, As, Cu and Zn) in filtered water and 9 heavy Metals (Cd, Pb, Cr, Ni, Cu, V, Co, Zn and Mn) in suspended particles from 10 sampling sites such as Zhaojunfuqiao (S1) and Baotoufuqiao (S2), etc. from Gansu, Ningxia and Inner Mongolia sections of the Yellow River in 2012 Wet Season were studied to understand the condition of the heavy metal pollution in Gansu, Ningxia and Inner Mongolia Sections of the Yellow River by using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Multivariate geochemical approaches and statistical analysis were also exploited for assessing the level of heavy metals in filtered water and suspended particles from studied area. The results showed that in filtering water, only the concentrations of Cr exceeded the standard value of Environmental Quality Standard for Surface Water (GB3838-2002) and were the highest (74.8-94.7 μg x L(-1)) among all elements in 10 sampling sites; Single factor pollution index (I(i)) results suggested that the water quality in all sampling sites were contaminated by both Cr and total nitrogen (TN), with the exception of TN in Baotoufuqiao (S2); Integrated Nemerow pollution index (I) indicated that the I values in all sampling sites were between 1-2 (light pollution), which implied that the water quality in Gansu, Ningxia and Inner Mongolia sections, especially downstream sections (S1-S6) of the Yellow River wasn't an ideal source for drinking and using in aquaculture any more. In suspended particles, concentrations of heavy metals were relatively higher than their soil background values in 10 sampling sites, except Ni in S10 (34.7 μg x L(-1)). Index of geo-accumulation (I(geo)) indicated that the I(geo) values of Pb, Cr, Ni, Cu, V, Co, Zn and Mn in all sampling sites were less than 1 (unpolluted or unpolluted-moderately polluted), respectively, while I(geo)Cd were the highest in 10

  16. Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules

    Science.gov (United States)

    Kim, Jin-Tae

    2014-12-01

    This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.

  17. Reducing beam hardening effects and metal artefacts using Medipix3RX: With applications from biomaterial science

    OpenAIRE

    Rajendran, K.; Walsh, M. F.; de Ruiter, N. J. A.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.; Bell, S. T.; Anderson, N. G.; Woodfield, T. B. F.; Tredinnick, S. J.; Healy, J. L.; Bateman, C. J.; Aamir, R.; Doesburg, R. M. N.

    2013-01-01

    This paper discusses methods for reducing beam hardening effects using spectral data for biomaterial applications. A small-animal spectral scanner operating in the diagnostic energy range was used. We investigate the use of photon-processing features of the Medipix3RX ASIC in reducing beam hardening and associated artefacts. A fully operational charge summing mode was used during the imaging routine. We present spectral data collected for metal alloy samples, its analysis using algebraic 3D r...

  18. Shock loading characteristics of Zr and Ti metals using dual beam velocimeter

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, A. K., E-mail: a-saxena@barc.gov.in; Kaushik, T. C.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-08-21

    The characteristics of titanium and zirconium metal foils under shock loading have been studied up to 16 GPa and 12 GPa pressure, respectively, using portable electric gun setup as projectile launcher. In these experiments, the capabilities of a single Fabry-Perot velocimeter have been enhanced by implementing it in dual beam mode to record the two velocity profiles on a single streak camera. The measured equation of state data for both the metals have been found to be well in agreement with the reported Hugoniot, within experimental accuracies. A phase transition from α to ω phase has been detected near to 11.4 GPa for titanium and 8.2 GPa for zirconium in the rising part of target-glass interface velocity profile.

  19. Capability of focused Ar ion beam sputtering for combinatorial synthesis of metal films

    International Nuclear Information System (INIS)

    Nagata, T.; Haemori, M.; Chikyow, T.

    2009-01-01

    The authors examined the use of focused Ar ion beam sputtering (FAIS) for combinatorial synthesis. A Langmuir probe revealed that the electron temperature and density for FAIS of metal film deposition was lower than that of other major combinatorial thin film growth techniques such as pulsed laser deposition. Combining FAIS with the combinatorial method allowed the compositional fraction of the Pt-Ru binary alloy to be systematically controlled. Pt-Ru alloy metal film grew epitaxially on ZnO substrates, and crystal structures changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram. The alloy film has a smooth surface, with the Ru phase, in particular, showing a clear step-and-terrace structure. The combination of FAIS and the combinatorial method has major potential for the fabrication of high quality composition-spread metal film.

  20. Capability of focused Ar ion beam sputtering for combinatorial synthesis of metal films

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, T.; Haemori, M.; Chikyow, T. [Advanced Electric Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2009-05-15

    The authors examined the use of focused Ar ion beam sputtering (FAIS) for combinatorial synthesis. A Langmuir probe revealed that the electron temperature and density for FAIS of metal film deposition was lower than that of other major combinatorial thin film growth techniques such as pulsed laser deposition. Combining FAIS with the combinatorial method allowed the compositional fraction of the Pt-Ru binary alloy to be systematically controlled. Pt-Ru alloy metal film grew epitaxially on ZnO substrates, and crystal structures changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram. The alloy film has a smooth surface, with the Ru phase, in particular, showing a clear step-and-terrace structure. The combination of FAIS and the combinatorial method has major potential for the fabrication of high quality composition-spread metal film.

  1. Atmospheric trace metal concentrations in Suspended Particulate ...

    African Journals Online (AJOL)

    The air particulate samples were collected from the kitchens, living rooms and outdoor environment of five households in the community. The quantification of the trace metals was done using Atomic Absorption spectrometry method, employing HNO based wet digestion. High baseline concentration of SPMwere obtained ...

  2. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  3. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    International Nuclear Information System (INIS)

    Melson, K.E.; Potter, R.C.; Liska, D.J.; Giles, P.M.; Wilson, M.T.; Cole, T.R.; Caldwell, C.J. Jr.

    1979-01-01

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  4. Molecular Beam Epitaxy Growth of Transition Metal Dichalcogenides

    Science.gov (United States)

    Yue, Ruoyu

    The exponential growth of Si-based technology has finally reached its limit, and a new generation of devices must be developed to continue scaling. A unique class of materials, transition metal dichalcogenides (TMD), have attracted great attention due to their remarkable optical and electronic properties at the atomic thickness scale. Over the past decade, enormous efforts have been put into TMD research for application in low-power devices. Among these studies, a high-quality TMD synthesis method is essential. Molecular beam epitaxy (MBE) can enable high-quality TMD growth by combining high purity elemental sources and an ultra-high vacuum growth environment, together with the back-end-of-line compatible growth temperatures. Although many TMD candidates have been grown by MBE with promising microstructure, the limited grain size (improvement in grain size was achieved through this study. Results from both experiment and simulation showed that reducing the growth rate, enabled by high growth temperature and low metal flux, is vital to nucleation density control. Meanwhile, providing a chalcogen-rich growth environment will promote larger grain lateral growth by suppressing vertical growth. Applying the knowledge learned from the nucleation study, we sucessfully integrated the MBE-grown WSe2 into Si complementary metal-oxide-semiconductor (CMOS) compatible field-effect transistors (FETs). Excellent transport properties, such as field effect hole mobilities (40 cm 2/V·s) with orders of magnitude improvement over the reported values of MBE-grown TMDs, are shown. These studies provide a comprehensive understanding of the MBE synthesis of TMDs and devices, indicating the great potential of integrating TMDs into CMOS process flows for the future electronics.

  5. Linear dose dependence of ion beam mixing of metals on Si

    International Nuclear Information System (INIS)

    Poker, D.B.; Appleton, B.R.

    1985-01-01

    These experiments were conducted to determine the dose dependences of ion beam mixing of various metal-silicon couples. V/Si and Cr/Si were included because these couples were previously suspected of exhibiting a linear dose dependence. Pd/Si was chosen because it had been reported as exhibiting only the square root dependence. Samples were cut from wafers of (100) n-type Si. The samples were cleaned in organic solvents, etched in hydrofluoric acid, and rinsed with methanol before mounting in an oil-free vacuum system for thin-film deposition. Films of Au, V, Cr, or Pd were evaporated onto the Si samples with a nominal deposition rate of 10 A/s. The thicknesses were large compared with those usually used to measure ion beam mixing and were used to ensure that conditions of unlimited supply were met. Samples were mixed with Si ions ranging in energy from 300 to 375 keV, chosen to produce ion ranges that significantly exceeded the metal film depth. Si was used as the mixing ion to prevent impurity doping of the Si substrate and to exclude a background signal from the Rutherford backscattering (RBS) spectra. Samples were mixed at room temperature, with the exception of the Au/Si samples, which were mixed at liquid nitrogen temperature. The samples were alternately mixed and analyzed in situ without exposure to atmosphere between mixing doses. The compositional distributions after mixing were measured using RBS of 2.5-MeV 4 He atoms

  6. Seasonal and tidal cycles of suspended particulates in the Irish Sea

    International Nuclear Information System (INIS)

    Weeks, Alison.

    1989-07-01

    The distribution of suspended particulate material (SPM) in the shelf seas and the processes controlling its variation are little known. This thesis reports an exploratory study of the spatial and time dependent variability of SPM in an area of the northern Irish Sea. SPM was determined both directly by gravimetric methods and via measurements of beam attenuation. Spatial distributions were determined from grid surveys using a profiling transmissometer. In addition a six month record of beam attenuation and current velocity was obtained from a site off the north coast of Anglesey. A strong seasonal cycle of beam attenuation was observed in mixed water, with values decreasing in June, July and August which suggested a reduction in the supply of SPM during summer. In stratified water, high concentrations of SPM remained confined to the dense layer below the thermocline. A regression model was found to explain 35% of the variance in data from a 5 week time series. 70% of the variance was explained for four day time series, near spring tides. The relationship between beam attenuation and tidal flows was more marked at spring tides than at neaps. (author)

  7. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    International Nuclear Information System (INIS)

    Remnev, G.E.; Zakoutaev, A.N.; Grushin, I.I.; Matvenko, V.M.; Potemkin, A.V.; Ryzhkov, V.A.; Chernikov, E.V.

    1996-01-01

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm 2 , pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs

  8. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    Energy Technology Data Exchange (ETDEWEB)

    Remnev, G E; Zakoutaev, A N; Grushin, I I; Matvenko, V M; Potemkin, A V; Ryzhkov, V A [Tomsk Polytechnic Univ. (Russian Federation). Nuclear Physics Inst.; Ivanov, Yu F [Construction Academy, Tomsk (Russian Federation); Chernikov, E V [Siberian Physical Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm{sup 2}, pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs.

  9. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui; Qu Yang; Gao Long; Cong Hai-Fang; Yang Yan-Ling; Gao Jie; Wang Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  11. SU-F-T-197: Investigating Optimal Oblique-Beam Arrangement for Bilateral Metallic Prosthesis Prostate Cancer in Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rana, S; Tesfamicael, B; Park, S [McLaren Proton Therapy Center, Karmanos Cancer Institute at McLaren-Flint, Flint, MI (United States); Zheng, Y; Singh, H; Twyford, T [Procure Proton Therapy Center, Oklahoma City, OK (United States); Cheng, C [Vantage Oncology, West Hills, CA (United States)

    2016-06-15

    Purpose: The main purpose of this study is to investigate the optimum oblique-beam arrangement for bilateral metallic prosthesis prostate cancer treatment in pencil beam scanning (PBS) proton therapy. Methods: A computed tomography dataset of bilateral metallic prosthesis prostate cancer case was selected for this retrospective study. A total of four beams (rightanterior- oblique [RAO], left-anterior-oblique [LAO], left-posterior-oblique [LPO], and right-posterior-oblique [RPO]) were selected for treatment planning. PBS plans were generated using multi-field-optimization technique for a total dose of 79.2 Gy[RBE] to be delivered in 44 fractions. Specifically, five different PBS plans were generated based on 2.5% ± 2 mm range uncertainty using five different beam arrangements (i)LAO+RAO+LPO+RPO, (ii)LAO+RAO, (iii)LPO+RPO, (iv)RAO+LPO, and (v)LAO+RPO. Each PBS plan was optimized by applying identical dose-volume constraints to the PTV, rectum, and bladder. Treatment plans were then compared based on the dose-volume histograms results. Results: The PTV coverage was found to be greater than 99% in all five plans. The homogeneity index (HI) was found to be almost identical (range, 0.03–0.04). The PTV mean dose was found to be comparable (range, 81.0–81.1 Gy[RBE]). For the rectum, the lowest mean dose (8.0 Gy[RBE]) and highest mean dose (31.1 Gy[RBE]) were found in RAO+LAO plan and LPO+RPO plan, respectively. LAO+RAO plan produced the most favorable dosimetric results of the rectum in the medium-dose region (V50) and high-dose region (V70). For the bladder, the lowest (5.0 Gy[RBE]) and highest mean dose (10.3 Gy[RBE]) were found in LPO+RPO plan and RAO+LAO plan, respectively. Other dosimetric results (V50 and V70) of the bladder were slightly better in LPO+RPO plan than in other plans. Conclusion: Dosimetric findings from this study suggest that two anterior-oblique proton beams arrangement (LAO+RAO) is a more favorable option with the possibility of reducing rectal

  12. Ion-beam-induced reactions in metal-thin-film-/BP system

    International Nuclear Information System (INIS)

    Kobayashi, N.; Kumashiro, Y.; Revesz, P.; Mayer, J.W.

    1989-01-01

    Ion-beam-induced reactions in Ni thin films on BP(100) have been investigated and compared with the results of the thermal reaction. The full reaction of Ni layer with BP induced by energetic heavy ion bombardments (600 keV Xe) was observed at 200degC and the formation of the crystalline phase corresponding to a composition of Ni 4 BP was observed. Amorphous layer with the same composition was formed by the bombardments below RT. For thermally annealed samples the reaction of the Ni layer on BP started at temperatures between 350degC and 400degC and full reaction was observed at 450degC. Metal-rich ternary phase or mixed binary phase is thought to be the first crystalline phase formed both in the ion-beam-induced and in the thermally induced reactions. The crystalline phase has the same composition and X-ray diffraction pattern both for ion-beam-induced and thermal reactions. Linear dependence of the reacted thickness on the ion fluence was also observed. The authors would like to express their sincere gratitude to Jian Li and Shi-Qing Wang for X-ray diffraction measurements at Cornell University. One of the authors (N.K.) acknowledge the Agency of Science and Technology of Japan for the financial support of his stay at Cornell. We also acknowledge Dr. H. Tanoue at ETL for his help in ion bombardment experiments. (author)

  13. Mathematical modelling for distribution of heavy metals in estuary area of Red River (Vietnam)

    Science.gov (United States)

    Nguyen, N. T. T.; Volkova, I. V.

    2018-05-01

    In this paper, the authors studied the features of spatial distribution of some heavy metals (Pb, Hg, As) in the system “suspended substance - bottom sediments” in the mouth area of the Red River (Vietnam). A mathematical modelling for diffusion processes of heavy metals in a suspended form, in bottom sediments and the spatial analysis for the results of these models were proposed and implemented. The studies were carried out during main hydrological seasons of 2014 - 2016 (during the flood and inter-natal periods). The propagation of heavy metals was modeled by solving the equation of turbulent diffusion. A spatial analysis of the content of heavy metals in the suspended form and in the bottom sediments was implemented by using the interpolation model in ArcGIS 10.2.2. The distribution of Pb, Hg, As concentration of the suspended form and bottom sediment phases in the estuary area of the Red River was characterized by maximum in the mouths of the branches and general decreasing gradient towards the sea. Maximum concentrations of Pb, Hg in suspended forms were observed in the surface layer of water at the river-sea barrier. The content of Hg and As in the estuary region of the Red River was observed in the following order: SSsurfBS.

  14. SUSPENDED AND DISSOLVED MATTER FLUXES IN THE UPPER SELENGA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Sergey Chalov

    2012-01-01

    Full Text Available We synthesized recent field-based estimates of the dissolved ions (K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3-, biogens (NO3-, NO2-, PO43-(C, mg/l, heavy metal (Fesum, Mn, Pb and dissolved load (DL, kg/day, as far as suspended sediment concentration (SSC, mg/l and suspended load (SL, kg/day along upper Selenga river and its tributaries based on literature review and preliminary results of our 2011 field campaign. The crucial task of this paper is to provide full review of Russian, Mongolian and English-language literature which concern the matter fluxes in the upper part of Selenga river (within Mongolia. The exist estimates are compared with locations of 3 main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of suspended and dissolved matter transport is indicated along Tuul-Orkhon river system (right tributary of the Selenga River where Mongolia capital Ulanbaatar, gold mine Zaamar and few other mines are located. In measurement campaigns conducted in 2005, 2006 and 2008 the increase directly after the Zaamar mining site was between 167 to 383 kg/day for Fe, between 15 and 5260 kg/day for Mn. Our field campaign indicated increase of suspended load along Tuul river from 4280 kg/day at the upstream point to 712000 kg/day below Ulaanbaatar and Zaamar. The results provide evidence on a potential connection between increased dissolved and suspended matter fluxes in transboundary rivers and zones of matter supply at industrial and mining centers, along eroded river banks and pastured lands. The gaps in the understanding of matter load fluxes within this basin are discussed with regards to determining further goals of hydrological and geochemical surveys.

  15. SU-E-T-115: Dose Perturbation Study of Self-Expandable Metal and Polyester Esophageal Stents in Proton Therapy Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Li, Z [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Jalaj, S; McGaw, C; B K, John; J S, Scolapio; J C, Munoz [Division of Gastoenterology, Department of Medicine, University of Florida, Jacksonville, FL (United States)

    2014-06-01

    Purpose: This work investigates dose perturbations due to Self-expandable metal and polyester esophageal stents undergoing proton radiotherapy for esophageal cancer. Methods: Five commercially available esophageal stents made of nitinol (Evolution, Wallflex and Ultraflex), stainless steel (Z-Stent) and polyester (Polyflex) were tested. Radiochromic film (GafChromic EBT3 film, Ashland, Covington, KY) wrapped around a stent and a 12cc syringe was irradiated with 2CGE (Cobalt Gray Equivalent) of proton beam in a custom fabricated acrylic phantom. An air-hollow syringe simulates the esophagus. Results: The Z-stent created the largest dose perturbations ranges from -14.5% to 6.1% due to the steel composition. The WallFlex, Evolution and Ultraflex stents produced the dose perturbation ranges of (−9.2%∼8.6%), (−6.8%∼5.7%) and (−6.2%∼6.2%), respectively. The PolyFlex stent contains the radiopaque tungsten markers located top, middle and bottom portions. When the focal cold spots induced by the markers were excluded in the analysis, the dose perturbation range was changed from (−11.6%∼6.4%) to (−0.6%∼5.0%). Conclusion: The magnitude of dose perturbation is related to material of a metallic stent. The non-metallic stent such as PolyFlex shows relatively lower dose perturbation than metallic stents except a radiopaque marker region. Overall Evolution and Ultraflex stent appear to be less dose perturbations. The largest dose perturbations (cold spots) were located at both edges of stents in distal area for the single proton beam irradiation study. The analysis of more than two proton beam which is more typical clinical beam arrangement would be necessary to minimize the doe perturbation effect in proton ratiotherapy.

  16. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  17. Highly Sensitive Measurement of Liquid Density in Air Using Suspended Microcapillary Resonators

    Directory of Open Access Journals (Sweden)

    Oscar Malvar

    2015-03-01

    Full Text Available We report the use of commercially available glass microcapillaries as micromechanical resonators for real-time monitoring of the mass density of a liquid that flows through the capillary. The vibration of a suspended region of the microcapillary is optically detected by measuring the forward scattering of a laser beam. The resonance frequency of the liquid filled microcapillary is measured for liquid binary mixtures of ethanol in water, glycerol in water and Triton in ethanol. The method achieves a detection limit in an air environment of 50 µg/mL that is only five times higher than that obtained with state-of-the-art suspended microchannel resonators encapsulated in vacuum. The method opens the door to novel advances for miniaturized total analysis systems based on microcapillaries with the add-on of mechanical transduction for sensing the rheological properties of the analyzed fluids without the need for vacuum encapsulation of the resonators.

  18. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  19. Suspended ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, C.

    1991-05-01

    The retrofitting of existing conventional ceiling systems to suspended ceiling type systems represents an interesting energy savings solution since this method, in addition to providing additional protection against space heat loss and thermal bridges, also creates the possibility of housing, in the void, additional mechanical and electrical lines which may be necessary due to other savings interventions. This paper reviews the various suspended ceiling systems (e.g., those making use of mineral fibre, gypsum panels, wood, vermiculite, etc.) currently marketed in Europe, and reports, for each, some key technical, economic and architectural advantages which include thermal efficiency, noise abatement, as well as, resistance to fire and humidity. Information is also given on the relative installation and maintenance requirements.

  20. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  1. Shock loads induced on metal structures by LHC proton beams: modelling of thermo-mechanical effects

    CERN Document Server

    Peroni, L; Dallocchio, A; Bertarelli, A

    2011-01-01

    In this work, the numerical simulations of the LHC high energy particle beam impact against a metal structure are performed using the commercial FEM code LS-DYNA. The evaluation of thermal loads on the hit material is performed using a statistical code, called FLUKA, based on the Monte-Carlo method, which returns an energy map on a particular geometry (taking into account all the particles in the cascade generated by the interaction between the proton beam and the target). The FLUKA results are then used as input for thermo-structural studies. The first step of this work is the validation of the numerical procedure on a simple geometry for two different materials (copper and tungsten) and constitutive material models. In particular, the high energy particle impact is examined on a facially irradiated cylindrical bar: the beam hits the component directly on the centre of the basis. Then the final step is the study of the impact on a real structure with an energy beam of 5 TeV (the next target in the energy val...

  2. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  3. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain

    Science.gov (United States)

    Nelson, C.H.; Lamothe, P.J.

    1993-01-01

    The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (??g g-1): As 3,000 to TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21-0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate. ?? 1993 Estuarine Research Federation.

  4. Advantages of fibre lasers in 3D metal cutting and welding applications supported by a 'beam in motion (BIM)' beam delivery system

    Science.gov (United States)

    Scheller, Torsten; Bastick, André; Griebel, Martin

    2012-03-01

    Modern laser technology is continuously opening up new fields of applications. Driven by the development of increasingly efficient laser sources, the new technology is successfully entering classical applications such as 3D cutting and welding of metals. Especially in light weight applications in the automotive industry laser manufacturing is key. Only by this technology the reduction of welding widths could be realised as well as the efficient machining of aluminium and the abrasion free machining of hardened steel. The paper compares the operation of different laser types in metal machining regarding wavelength, laser power, laser brilliance, process speed and welding depth to give an estimation for best use of single mode or multi mode lasers in this field of application. The experimental results will be presented by samples of applied parts. In addition a correlation between the process and the achieved mechanical properties will be made. For this application JENOPTIK Automatisierungstechnik GmbH is using the BIM beam control system in its machines, which is the first one to realize a fully integrated combination of beam control and robot. The wide performance and wavelength range of the laser radiation which can be transmitted opens up diverse possibilities of application and makes BIM a universal tool.

  5. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  6. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations.

    Directory of Open Access Journals (Sweden)

    Aine Marie Gormley-Gallagher

    Full Text Available Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS. Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05 for Mn (r2 = 0.0063, Cu (r2 = 0.0002, Cr (r2 = 0.021, Ni (r2 = 0.0023, Cd (r2 = 0.00001, Co (r2 = 0.096, Hg (r2 = 0.116 or Pb (r2 = 0.164. The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water.

  7. Studies of toxic metals removal in industrial wastewater after electron-beam treatment

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2002-01-01

    The Advanced Oxidation Process, using electron-beam, have been studied by scientific community due to its capacity to mineralize the toxic organic compound from highly reactive radical's formation. The electron-beam treatment process has been adopted by several countries for organic compounds removal and to effluents and sewers biological degradation. In this work, studies of metals removal in the simulated aqueous solutions and in the actual industrial effluents were carried out, using electron-beam treatment. The effluents samples were collected at ETE/SABESP (Governmental Wastewater Treatment Plant) in Suzano, SP city. The sampling was outlined at three distinctive sites: Industrial Receiver Unit, Medium Bar, and Final Effluent. The effluents samples were irradiated using different irradiation doses (20, 50, 100, 200 and 500 kGy). The removal behavior of metals Ca, CI, S, P, K, Al, Fe, As, Ni, Cr, Zn, Si, Co, Mn, As, Se, Cd, Hg and Pb was verified. The elements determination was accomplished with the x-ray fluorescence (WD-XRFS) technique using Fundamental Parameters method and thin film samples. The elements Fe, Zn, Cr and Co presented a removal > 99% to 200 kGy of irradiation dose in industrial effluent. At the same dose, P, Al and Si presented a removal of 81.8%, 97.6% and 98.7%, respectively. Ca and S were removed more than 80% at 20 kGy and Na, CI and K did not presented any degree of removal. As, Se, Cd, Hg and Pb removal was studied in the simulated aqueous solutions and industrial effluents with scavengers addition (EDTA and HCOONa). The elements As and Hg presented a removal of 92% and 99%, respectively, with HCOONa, at 500 kGy irradiation dose. The Se presented a 96.5% removal at same irradiation dose without scavengers addition. The removal of Cd and Pb did not give a significant removal, once all of the assay were carried out in the oxidant medium. (author)

  8. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated...

  9. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  10. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    Science.gov (United States)

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd heavy metals in surface sediments was in the order of Cd heavy metals in water, suspended solids and sediment. In particular, the effects of salinity and suspended solids matter were most significant. The integrated pollution index assessment showed that the water quality was good except individual stations. The geoaccumulation index assessment showed that As was the major pollution element in surface sediments.

  11. Suspended Matter, Chl-a, CDOM, Grain Sizes, and Optical Properties in the Arctic Fjord-Type Estuary, Kangerlussuaq, West Greenland During Summer

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Andersen, T. J.; Nielsen, Morten Holtegaard

    2010-01-01

    Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66A degrees) in August 2007 along with optical properties. These comprised diffuse...... water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K (d...... from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K (d)(PAR), particle beam attenuation coefficients (c (p)), and reflectance R(-0, PAR) at the melt...

  12. Fluorine and sulfur simultaneously co-doped suspended graphene

    Science.gov (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.

    2017-11-01

    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  13. SU-E-T-274: Radiation Therapy with Very High-Energy Electron (VHEE) Beams in the Presence of Metal Implants

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C; Palma, B; Qu, B; Maxim, P; Loo, B; Bazalova, M [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Hardemark, B; Hynning, E [RaySearch Laboratories, Stockholm (Sweden)

    2014-06-01

    Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned using a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from

  14. SU-E-T-274: Radiation Therapy with Very High-Energy Electron (VHEE) Beams in the Presence of Metal Implants

    International Nuclear Information System (INIS)

    Jensen, C; Palma, B; Qu, B; Maxim, P; Loo, B; Bazalova, M; Hardemark, B; Hynning, E

    2014-01-01

    Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned using a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from

  15. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  16. A New Measure for Transported Suspended Sediment

    Science.gov (United States)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  17. Materials processing with superposed Bessel beams

    Science.gov (United States)

    Yu, Xiaoming; Trallero-Herrero, Carlos A.; Lei, Shuting

    2016-01-01

    We report experimental results of femtosecond laser processing on the surface of glass and metal thin film using superposed Bessel beams. These beams are generated by a combination of a spatial light modulator (SLM) and an axicon with >50% efficiency, and they possess the long depth-of-focus (propagation-invariant) property as found in ordinary Bessel beams. Through micromachining experiments using femtosecond laser pulses, we show that multiple craters can be fabricated on glass with single-shot exposure, and the 1+(⿿1) superposed beam can reduce collateral damage caused by the rings in zero-order Bessel beams in the scribing of metal thin film.

  18. Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing

    International Nuclear Information System (INIS)

    Tai, K. P.; Wang, L. T.; Liu, B. X.

    2007-01-01

    Four Ni-Nb metallic glasses are obtained by ion beam mixing and their compositions are measured to be Ni 77 Nb 23 , Ni 55 Nb 45 , Ni 31 Nb 69 , and Ni 15 Nb 85 , respectively, suggesting that a composition range of 23-85 at. % of Nb is favored for metallic glass formation in the Ni-Nb system. Interestingly, diffraction analyses show that the structure of the Nb-based Ni 31 Nb 69 metallic glass is distinctly different from the structure of the Nb-based Ni 15 Nb 85 metallic glass, as the respective amorphous halos are located at 2θ≅38 and 39 deg. To explore an atomic scale description of the Ni-Nb metallic glasses, an n-body Ni-Nb potential is first constructed with an aid of the ab initio calculations and then applied to perform the molecular dynamics simulation. Simulation results determine not only the intrinsic glass forming range of the Ni-Nb system to be within 20-85 at. % of Nb, but also the exact atomic positions in the Ni-Nb metallic glasses. Through a statistical analysis of the determined atomic positions, a new dominant local packing unit is found in the Ni 15 Nb 85 metallic glass, i.e., an icositetrahedron with a coordination number to be around 14, while in Ni 31 Nb 69 metallic glasses, the dominant local packing unit is an icosahedron with a coordination number to be around 12, which has been reported for the other metallic glasses. In fact, with increasing the irradiation dose, the Ni 31 Nb 69 metallic glasses are formed through an intermediate state of face-centered-cubic-solid solution, whereas the Ni 15 Nb 85 metallic glass is through an intermediate state of body-centered-cubic-solid solution, suggesting that the structures of the constituent metals play an important role in governing the structural characteristics of the resultant metallic glasses

  19. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  20. The external beam facility used to characterize corrosion products in metallic statuettes

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Tabacniks, M.H.; Added, N.; Barbosa, M.D.L.; Curado, J.F.; Santos, W.A.; Lima, S.C.; Melo, H.G.; Neiva, A.C.

    2005-01-01

    To open new possibilities in nuclear applied physics research, mainly for the analysis of art objects in air, an external beam facility was installed at LAMFI (Laboratorio de Analise de Materiais por Feixes Ionicos) of University of Sao Paulo. PIXE measurements were made using an XR-100CR (Si-PIN) X-ray detector pointed to the sample mounted after an approximate 11 mm air path, hence with effective beam energy of 0.9 MeV. This setup was used to characterize the corrosion products of two ethnological metallic statuettes from the African collection of the Museum of Archaeology and Etnology. PIXE analysis of the corrosion free base of one statuette showed that Cu and Zn are the main components of the alloy, while Pb is present in smaller amount. The analysis of some corrosion products showed a Zn:Cu relationship higher than that of the base, evidencing selective corrosion. The main components of the other statuette were Cu and Pb, while S and Zn were found in smaller amounts

  1. Optical absorption and thermal transport of individual suspended carbon nanotube bundles.

    Science.gov (United States)

    Hsu, I-Kai; Pettes, Michael T; Bushmaker, Adam; Aykol, Mehmet; Shi, Li; Cronin, Stephen B

    2009-02-01

    A focused laser beam is used to heat individual single-walled carbon nanotube bundles bridging two suspended microthermometers. By measurement of the temperature rise of the two thermometers, the optical absorption of 7.4-10.3 nm diameter bundles is found to be between 0.03 and 0.44% of the incident photons in the 0.4 microm diameter laser spot. The thermal conductance of the bundle is obtained with the additional measurement of the temperature rise of the nanotubes in the laser spot from shifts in the Raman G band frequency. According to the nanotube bundle diameter determined by transmission electron microscopy, the thermal conductivity is obtained.

  2. Suspended solids in liquid effluents

    International Nuclear Information System (INIS)

    McGrath, J.J.

    1988-06-01

    An international literature review and telephone mail survey was conducted with respect to technical and regulatory aspects of suspended solids in radioactive liquid wastes from nuclear power stations. Results of the survey are summarized and show that suspended solids are an important component of some waste streams. The data available, while limited, show these solids to be associated largely with corrosion products. The solids are highly variable in quantity, size and composition. Filtration is commonly applied for their removal from liquid effluents and is effective. Complex interactions with receiving waters can result in physical/chemical changes of released radionuclides and these phenomena have been seen as reason for not applying regulatory controls based on suspended solids content. 340 refs

  3. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  4. Assessment for ion beam analysis methods about hydrogen isotope in hydrogen storaged metal

    International Nuclear Information System (INIS)

    Ding Wei; Long Xinggui; Shi Liqun

    2006-01-01

    In this paper, experimental arrangements of measuring hydrogen isotope concentration and distribution in metal hydride with ion beam analysis methods were reported, and the advantage and disadvantage of different methods were analyzed too. Experiment results show that it can get abundant information and accurate value by these ways. It can get an accurate value since it's the Rutherford cross-section, and the Mylar film used in the experiment is thin enough for H, D and T distinguishing each other while using ERD analysis method with 6.0 MeV O ion beam to proceed this work, but the disadvantage of this method is that the sample preparing is more difficult, and the analysis depth is lower. It could get the distribution information of H, D and T and the analysis depth is about 3.0 μm while using ERD analysis method with 7.4 MeV 4 He ion beam, but the disadvantage is that the spectra of H, D and T overlap each other, which makes a big error in simulated calculation. If using PBS method with 3.0 MeV proton, the analysis depth is deeper, but it couldn't get the H distribution information. (authors)

  5. CH2 molecular beam source

    International Nuclear Information System (INIS)

    Porter, R.A.R.; Grosser, A.E.

    1980-01-01

    A molecular beam source of CH 2 is described. Coaxial beams of methylene halide and alkali metal react and the mixture is formed into a molecular beam. Passage through a mechanical velocity selector rotating at a suitably high speed purifies the beam, separating light, fast CH 2 from heavier, slower contaminating species

  6. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    International Nuclear Information System (INIS)

    Safdar, Shakeel; Li, Lin; Sheikh, M A

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data

  7. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-01-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga 2 O 3 , In 2 O 3 , and SnO 2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga 2 O, In 2 O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO 2 , somewhat lower for In 2 O 3 , and the lowest for Ga 2 O 3 . Our findings can be generalized to further oxides that possess related sub-oxides

  8. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  9. Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Renk, Timothy J.; Provencio, Paula Polyak; Petersen, Donald W. (University of Alabama, Birmingham, AL); Petersen, Thomas D. (University of California, San Diego, CA); Buchheit, Thomas Edward; McNulty, Donald E. (DePuy Orthopaedic, Inc., Warsaw, IN); Engelko, Vladimir (D. V. Efremov Scientific Research Institute of the Electrophysical Apparatus, St. Petersburg, Russia)

    2005-02-01

    We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

  10. Suspended sediment assessment by combining sound attenuation and backscatter measurements - analytical method and experimental validation

    Science.gov (United States)

    Guerrero, Massimo; Di Federico, Vittorio

    2018-03-01

    The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.

  11. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  12. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    Hou Xinggang; Ma Jun; Liu Andong; Li Dejun; Huang Meidong; Deng Xiangyun

    2010-01-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  13. Multi-wavelength metal-dielectric nonpolarizing beam splitters in the near-infrared range

    Science.gov (United States)

    Hui Shi, Jin; Ping Wang, Zheng; Ying Guan, Chun; Yang, Jun; Shu Fu, Tian

    2011-04-01

    A 21-layer multi-wavelength metal-dielectric nonpolarizing cube beam splitter was designed by use of an optimization method and theoretically investigated in the near-infrared range. The angular dependence of the reflectance and differential phases induced by reflection and transmission were presented. The simulation results revealed that the non-polarizing effect could be achieved for both the amplitude and phase characteristics at 1310 and 1550 nm. The differences between the simulated and the target reflectance of 50% are less than 2% and differential phases are less than 5°in the range 1300-1320 nm and 1540-1550 nm for both p- and s-components.

  14. Design and Development of an Array of Dielectric Suspended Membranes for Microhotplate Applications

    Directory of Open Access Journals (Sweden)

    Mahanth Prasad

    2014-05-01

    Full Text Available The paper presents the design, fabrication and characterization of an array of suspended dielectric suspended membranes for microhotplate applications. A single cell membrane (100 µm ´ 100 µm made of two different dielectric layers: SiO2 and Si3N4 separately, was designed and simulated using ANSYS 10.0. The simulation of stress generated in different dielectric membranes as a function of temperature is reported. The thickness of both layers was taken as 0.3 µm. The membranes of both SiO2 and Si3N4 dielectrics were fabricated on silicon substrate by bulk micromachining technique using TMAH solution. The buckling of the beam and breakage of membranes made of high-stress Si3N4 film are reported. The simulated results were verified by experiments. The membrane made of SiO2 layer was found to be more suitable in comparison to high-stress Si3N4 layer for microhotplate applications. The present approach provides high yield at low cost for fabrication of microhotplates for gas sensing applications.

  15. [Atomic beam studies of the interaction of hydrogen with transition metal surfaces]: Technical progress report for the period August 1, 1985--September 1, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This paper discusses the interactions of helium beams with metal surfaces. Particular topics covered are: improvement in He scattering facilities; spin polarized metastable He beam---a new probe of surface magnetism; and molecular dynamics simulations of the structure and dynamical properties of Cu, Ag and Au surfaces. 6 figs

  16. Heavy metal analysis of suspended particulate matter (SPM) and other samples from some workplaces in Kenya

    International Nuclear Information System (INIS)

    Kinyua, A.M.; Gatebe, C.K.; Mangala, M.J.

    1998-01-01

    Air pollution studies in Nairobi are indicating a rising trend in the particulate matter loading. The trend is mainly attributed to increased volume of motor vehicles, the physical change of the environment, agricultural and industrial activities. In this study, total suspended particulate matter sampling at the Nairobi industrial area and inside one workplace are reported. Included also are the results of analysis of water samples and effluents collected from a sugar factory, a tannery, and mercury (Hg) analysis in some beauty creams sold in Nairobi. The samples were analysed for heavy metal content using Energy Dispersive X-ray Fluorescence (EDXRF) while the suspended particulate matter (SPM) concentrations were determined by gravimetric technique. Total reflection x-ray fluorescence (TRXF), atomic absorption spectrophotometry and PIXE analytical techniques plus the use of Standard and Certified Reference Materials (SRM's and CRM's) were used for quality control, analysis and evaluation of the accrued data. Air sampling in the industrial area was done twice (Wednesday and Saturday) every week for a period of two months (November and December, 1996) and twice monthly for a period of six months (January-June 1997). Each sample covering approximately 24 hours, was collected using the 'Gent' Stacked Filter Unit (SFU), for day and night times. The SPM were found to vary from 16 to 83 mgm -3 during the sampling period. The analysis of dust collected inside a workplace showed that there was poor filtration of the air pumped into the building and that there was a need for improvement of the air conditioning unit plus reduction of emissions from a neighbouring tyre factory. Beauty creams analysed showed that there is some mercury present in significant amounts (0.14 - 3.0%). The results of these mercury levels are presented for various brands of cosmetics sold in some market outlets in Nairobi. The health implications on the presence of mercury in some of these beauty

  17. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  18. Ion implantation in metals

    International Nuclear Information System (INIS)

    Vook, F.L.

    1977-02-01

    The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque

  19. Flood deposits and their heavy metal load - example of the Neckar river

    International Nuclear Information System (INIS)

    Hellmann, H.

    1993-01-01

    Flood deposits may develop from suspended solids under certain conditions, e.g. after the passage of a flood wave. Depending on the origin of the suspended material, the heavy metal load in these deposits varies considerably. Recent sediments deposited in the Neckar waterway after the flood of February/March 1990 are taken as an example to explain that it is necessary to consider the contamination load in relation to the grain size of the material. To this end, the heavy metal contents of the fine grain fraction (grain diameter [de

  20. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.

    Science.gov (United States)

    Kim, Songkil; Russell, Michael; Kulkarni, Dhaval D; Henry, Mathias; Kim, Steve; Naik, Rajesh R; Voevodin, Andrey A; Jang, Seung Soon; Tsukruk, Vladimir V; Fedorov, Andrei G

    2016-01-26

    Interfacial contact of two-dimensional graphene with three-dimensional metal electrodes is crucial to engineering high-performance graphene-based nanodevices with superior performance. Here, we report on the development of a rapid "nanowelding" method for enhancing properties of interface to graphene buried under metal electrodes using a focused electron beam induced deposition (FEBID). High energy electron irradiation activates two-dimensional graphene structure by generation of structural defects at the interface to metal contacts with subsequent strong bonding via FEBID of an atomically thin graphitic interlayer formed by low energy secondary electron-assisted dissociation of entrapped hydrocarbon contaminants. Comprehensive investigation is conducted to demonstrate formation of the FEBID graphitic interlayer and its impact on contact properties of graphene devices achieved via strong electromechanical coupling at graphene-metal interfaces. Reduction of the device electrical resistance by ∼50% at a Dirac point and by ∼30% at the gate voltage far from the Dirac point is obtained with concurrent improvement in thermomechanical reliability of the contact interface. Importantly, the process is rapid and has an excellent insertion potential into a conventional fabrication workflow of graphene-based nanodevices through single-step postprocessing modification of interfacial properties at the buried heterogeneous contact.

  1. Intermodal resonance of vibrating suspended cables

    NARCIS (Netherlands)

    Rienstra, S.W.

    2010-01-01

    The weakly nonlinear free vibrations of a single suspended cable, or a coupled system of suspended cables, may be classified as gravity modes (no tension variations to leading order) and elasto-gravity modes (tension and vertical displacement equally important). It was found earlier [12] that the

  2. A low background pulsed neutron polyenergetic beam

    International Nuclear Information System (INIS)

    Adib, M.; Abdelkawy, A.; Habib, N.; abuelela, M.; Wahba, M.; kilany, M.; Kalebebin, S.M.

    1992-01-01

    A low background pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 degree Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam.3 fig

  3. Beam front accelerators

    International Nuclear Information System (INIS)

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed

  4. Massive production of heavy metals in the Ganga (Hooghly) River estuary, India: Global importance of solute-particle interaction and enhanced metal fluxes to the oceans

    Science.gov (United States)

    Samanta, Saumik; Dalai, Tarun K.

    2018-05-01

    The Ganga River System is a major contributor to the global sediment and water discharge to the oceans. The estuary of Ganga (Hooghly) River in India is under increasing influence of anthropogenic contributions via discharge of the industrial and urban effluents. Here we document, based on the investigation of water and suspended sediment samples collected during six periods over two years, that there is extensive production of heavy metals (Co, Ni and Cu) in the estuary such that the annual dissolved fluxes of metals from the Hooghly River are enhanced by up to 230-1770%. Furthermore, the estuarine dissolved metal fluxes, when normalized with water fluxes, are the highest among estuaries of the major rivers in the world. Our simultaneous data on the dissolved, suspended particulate and exchangeable phases allow us to identify the ion-exchange process (coupled adsorption and desorption) as the dominant contributor to the generation of heavy metals in the middle and lower estuary where the estimated anthropogenic contribution is negligible. The estimated contributions from the groundwater are also insufficient to explain the measured metal concentrations in the estuary. A strong positive correlation that is observed between the dissolved heavy metal fluxes and the suspended particulate matter (SPM) fluxes, after normalizing them with the water fluxes, for estuaries of the major global rivers imply that the solute-particle interaction is a globally significant process in the estuarine production of metals. Based on this correlation that is observed for major estuaries around the world, we demonstrate that the South Asian Rivers which supply only ∼9% of the global river water discharge but carry elevated SPM load, contribute a far more significant proportion (∼40 ± 2% Ni and 15 ± 1% Cu) to the global supply of the dissolved metals from the rivers.

  5. Materials processing with superposed Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaoming [Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506 (United States); Trallero-Herrero, Carlos A. [J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Lei, Shuting, E-mail: lei@ksu.edu [Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2016-01-01

    Graphical abstract: - Highlights: • Superpositions of Bessel beams can be generated with >50% efficiency using an SLM and an axicon. • These beams have orders-of-magnitude increase in depth-of-focus compared to Gaussian beams. • Multiple craters can be fabricated on glass with single-shot exposure. • The 1+(−1) superposition can reduce collateral damage caused by the rings in the zero-order Bessel beams. - Abstract: We report experimental results of femtosecond laser processing on the surface of glass and metal thin film using superposed Bessel beams. These beams are generated by a combination of a spatial light modulator (SLM) and an axicon with >50% efficiency, and they possess the long depth-of-focus (propagation-invariant) property as found in ordinary Bessel beams. Through micromachining experiments using femtosecond laser pulses, we show that multiple craters can be fabricated on glass with single-shot exposure, and the 1+(−1) superposed beam can reduce collateral damage caused by the rings in zero-order Bessel beams in the scribing of metal thin film.

  6. Suspended graphene devices with local gate control on an insulating substrate

    International Nuclear Information System (INIS)

    Ong, Florian R; Cui, Zheng; Vojvodin, Cameron; Papaj, Michał; Deng, Chunqing; Bal, Mustafa; Lupascu, Adrian; Yurtalan, Muhammet A; Orgiazzi, Jean-Luc F X

    2015-01-01

    We present a fabrication process for graphene-based devices where a graphene monolayer is suspended above a local metallic gate placed in a trench. As an example we detail the fabrication steps of a graphene field-effect transistor. The devices are built on a bare high-resistivity silicon substrate. At temperatures of 77 K and below, we observe the field-effect modulation of the graphene resistivity by a voltage applied to the gate. This fabrication approach enables new experiments involving graphene-based superconducting qubits and nano-electromechanical resonators. The method is applicable to other two-dimensional materials. (paper)

  7. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  8. levels of heavy metals in gubi dam water bauchi, nigeria

    African Journals Online (AJOL)

    Ada

    copper and lead were always highest in the suspended materials which indicate the dominant role played by ... essential. However, at high concentrations, these trace metals become toxic (Nurnberg, 1982). Heavy metals in .... mobilization of cobalt minerals into the dam. .... Interaction between sediments and fresh water ...

  9. Fast for sure: new developments in laser beam cutting of thin sheet metal; Mit Sicherheit schnell: neue Entwicklungen zum Laserstrahlschneiden von Fein- und Feinstblechen

    Energy Technology Data Exchange (ETDEWEB)

    Petring, D.; Schneider, F.; Thelen, C.; Poprawe, R.l [Fraunhofer-Institut fuer Lasertechnik (ILT), Aachen (Germany)

    1999-04-01

    Presently laser beam cutting is a rapidly developing technology. New laser sources with higher power and improved beam quality as well as the modern drive and control equipment together with advanced process developments allow a significant increase in cutting speed at excellent quality features. Recent results in laser beam slitting of sheet metal coils and in fast cutting of car body sheets illustrate this trend. It will be continued be even higher powers and new types of lasers. (orig.)

  10. Superconductive silicon nanowires using gallium beam lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  11. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  12. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  13. А mathematical model study of suspended monorail

    OpenAIRE

    Viktor GUTAREVYCH

    2012-01-01

    The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  14. Visible light active TiO{sub 2} films prepared by electron beam deposition of noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinggang, E-mail: hou226@163.co [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma Jun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liu Andong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Dejun; Huang Meidong; Deng Xiangyun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China)

    2010-03-15

    TiO{sub 2} films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO{sub 2} films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO{sub 2} is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO{sub 2} films by this method is affected by the concentration of impregnating solution.

  15. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    Science.gov (United States)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  16. Fundamental studies on electron beam welding on heat resistant superalloys for nuclear plants, 6

    International Nuclear Information System (INIS)

    Susei, Syuzo; Shimizu, Sigeki; Nagai, Hiroyoshi; Aota, Toshikazu; Satoh, Keisuke

    1980-01-01

    In this report, base metal of superalloys for nuclear plants, its electron beam and TIG weld joints were compared with each other in the mechanical properties. Obtained conclusions are summarized as follows: 1) TIG weld joint is superior to electron beam weld joint and base metal in 0.2% proof stress irrespective of the material, and electron beam weld joint is also superior to base metal. There is an appreciable difference in tensile stress between base metal and weld joint regardless of the materials. Meanwhile, electron beam weld joint is superior to TIG weld joint in both elongation and reduction of area. 2) Electron beam weld joint has considerably higher low-cycle fatigue properties at elevated temperatures than TIG weld joint, and it is usually as high as base metal. 3) In the secondary creep rate, base metal of Hastelloy X (HAEM) has higher one than its weld joints. However, electron beam weld joint is nearly comparable to the base metal. 4) There is hardly any appreciable difference between base metal and weld joint in the creep rupture strength without distinction of the material. In the ductility, base metal is much superior and is followed by electron beam weld joint and TIG weld joint in the order of high ductility. However, electron beam weld joint is rather comparable to base metal. 5) In consideration of welded pipe with a circumferential joint, the weld joint should be evaluated in terms of secondary creep rate, elongation and rupture strength. As the weld joint of high creep rupture strength approaches the base metal in the secondary creep rate and the elongation, it seems to be more resistant against the fracture due to creep deformation. In this point of view, electron beam weld joint is far superior to TIG weld joint and nearly comparable to the base metal. (author)

  17. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  18. Elastic properties of suspended multilayer WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)

    2016-01-25

    We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  19. А mathematical model study of suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2012-01-01

    Full Text Available The mathematical model of suspended monorail track with allowance for elastic strain which occurs during movement of the monorail carriage was developed. Standard forms for single span and double span of suspended monorail sections were established.

  20. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  1. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  2. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  3. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams.

    Science.gov (United States)

    Cao, J; Ertekin, E; Srinivasan, V; Fan, W; Huang, S; Zheng, H; Yim, J W L; Khanal, D R; Ogletree, D F; Grossman, J C; Wu, J

    2009-11-01

    Correlated electron materials can undergo a variety of phase transitions, including superconductivity, the metal-insulator transition and colossal magnetoresistance. Moreover, multiple physical phases or domains with dimensions of nanometres to micrometres can coexist in these materials at temperatures where a pure phase is expected. Making use of the properties of correlated electron materials in device applications will require the ability to control domain structures and phase transitions in these materials. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO(2). Here, we show that we can nucleate and manipulate ordered arrays of metallic and insulating domains along single-crystal beams of VO(2) by continuously tuning the strain over a wide range of values. The Mott transition between a low-temperature insulating phase and a high-temperature metallic phase usually occurs at 341 K in VO(2), but the active control of strain allows us to reduce this transition temperature to room temperature. In addition to device applications, the ability to control the phase structure of VO(2) with strain could lead to a deeper understanding of the correlated electron materials in general.

  4. High-energy electron beams for ceramic joining

    Science.gov (United States)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  5. Chemical partitioning of heavy metals in suspended particulates of Tajan River

    International Nuclear Information System (INIS)

    Nikoosepehr, E.

    2002-01-01

    In this investigation samples of river water sediments were collected at Takam bridge in Tajan River. In order to evaluate various chemical bonds ( loosely bonded ions, sulphides and organics), 120 A A S reading on Zn, Mn, Ni was carried out. The results indicates that Zn and Ni have more affinity towards sulphides while Cu and Mn are rather concentrated in loosely bonded ions. We have found out the following trends: Affinity of metals in loosely bonded ions in 63 and 40 μm fraction in Mn>Cu>Ni>Zn. Affinity of metals in organic bonds in 63 and 40 μm fraction is Zn>Ni>Mn>Cu and Zn>Ni>Cu>Mn respectively. It should be pointed out that metals do not show any regular pattern with sulphides: however in 63 μm fraction the trend is Zn>Ni>Cu>Mn

  6. Sub-micrometer-scale patterning on Zr-based metallic glass using focused ion beam irradiation and chemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Kawasegi, Noritaka [Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Morita, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Yamada, Shigeru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Takano, Noboru [Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Oyama, Tatsuo [Department of Mechanical and Intellectual Systems Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Ashida, Kiwamu [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan); Momota, Sadao [Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, 185 Tosayamada, Kochi 782-8502 (Japan); Taniguchi, Jun [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyamoto, Iwao [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Ofune, Hitoshi [YKK Corporation, 200 Yoshida, Kurobe, Toyama 938-8601 (Japan)

    2007-09-19

    This report describes a method of sub-micrometer-scale rapid patterning on a Zr-based metallic glass surface using a combination of focused ion beam irradiation and wet chemical etching. We found that a Zr-based metallic glass surface irradiated with Ga{sup +} ions could be selectively etched; a concave structure with a width and depth of several tens to hundreds of nanometers rapidly formed in the irradiated area. Moreover, we determined that the etching was enhanced by the presence of Ga{sup +} ions rather than a change in the crystal structure, and the structure could be fabricated while the substrate remained amorphous. The shape of the structure was principally a function of the dose and the etch time.

  7. Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam

    DEFF Research Database (Denmark)

    Kretschmer, Silvan; Komsa, Hannu-Pekka; Bøggild, Peter

    2017-01-01

    prismatic H phase to the metallic octahedral T phase in 2D MoS2 have been induced by electron irradiation [Nat. Nanotech. 2014, 9, 391], but the mechanism of the transformations remains elusive. Using density functional theory calculations, we study the energetics of the stable and metastable phases of 2D...... MoS2 when additional charge, mechanical strain, and vacancies are present. We also investigate the role of finite temperatures, which appear to be critical for the transformations. On the basis of the results of our calculations, we propose an explanation for the beam-induced transformations, which...... development and optimization of electron-beam-mediated engineering of the atomic structure and electronic properties of 2D TMDs with subnanometer resolution....

  8. Surface modification of additive manufactured metal products by an intense electron beam

    Science.gov (United States)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  9. The use of macro and micro proton beams to study the variation in PIXE yield from metal targets insulated with PTFE, glass and nylon

    International Nuclear Information System (INIS)

    Pillay, A.E.

    1999-01-01

    Proton beams of diameters of 3 mm and 3 μm, were used to observe the differences in PIXE yield from pure metal targets encapsulated with PTFE, glass (macor) and nylon. The beam energy was kept constant at 700 keV. Beam currents varied from about 200 pA with the microbeam and between 1-10 nA with the macrobeam. Considerable enhancement was observed mainly with the use of PTFE, up to about a factor of 18 with the macrobeam and 306 with the microbeam. (author)

  10. Computational and experimental studies of the flow field near the beam entrance window of a liquid metal target

    International Nuclear Information System (INIS)

    Geža, Vadims; Milenković, Rade Ž.; Kapulla, Ralf; Dementjevs, Sergejs; Jakovičs, Andris; Wohlmuther, Michael

    2014-01-01

    Highlights: • Water model of liquid metal target for validation of CFD models was built. • PIV measurements showed flow features in the region near beam entrance window. • The zones with high turbulence kinetic energy were distinguished. • Reasonable agreement between modeling and PIV data was obtained. - Abstract: After the first world liquid metal target has been successfully operated at the SINQ facility at the Paul Scherrer Institut (PSI) for 6 months. The idea of having a reliable target with a bypass flow for cooling the beam entrance window, but with the bypass flow not driven by a separate pump, was examined within the project called LIMETS (Liquid Metal Target for SINQ). In designing of liquid metal targets, turbulence modelling is of high importance due to lack in methods for measuring the spatial distribution of flow and turbulence characteristics. In this study, validation of different turbulence models were performed in water model with hemispherical geometry using particle image velocimetry (PIV) technique. Two components of water flow velocity in plexiglas container with inner radius of 88 mm were measured in different cross sections, with the velocities varying from 1 to 10 m/s. Numerical calculations using large eddy simulation (LES) approach and Reynolds averaged Navier–Stokes (RANS) models were carried out to validate their applicability and study performance issues. Mean velocity and turbulence kinetic energy data were used for comparison of PIV and calculation results. Reasonable agreement was obtained for mean velocity data, with some discrepancies due to the limited length of the inlet tube. However, several discrepancies in turbulence characteristics were found in numerical results, especially in RANS model calculations

  11. Trace metals behaviour during salt and fresh water mixing in the Venice Lagoon

    International Nuclear Information System (INIS)

    Ghermandi, G.; Campolieti, D.; Cecchi, R.; Costa, F.; Zaggia, L.; Zonta, R.

    1993-01-01

    Preliminary results of an investigation on trace metals behaviour in the estuarine system of the Dese River (Venice Lagoon) are described. Hydrodynamical and water chemical-physical measurements and PIXE concentrations analysis on size-fractionated samples emphasize the complexity of the processes occurring in the area of salt and fresh water mixing. Suspended load variations in the bottom layer of the water column, which may be mostly ascribed to resuspension, regulate the trace metal concentrations and seem to play a fundamental role in the transport of pollutants in shallow water areas of the estuary. The behaviour of dissolved metals is masked by the presence of suspended matter, but some relationships with chemical-physical variables are distinguishable, furnishing information on the processes affecting their concentration in the system. (orig.)

  12. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  13. Metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-06-01

    We have developed a family of metal vapor vacuum are (MEVVA) high current metal ion sources. The sources were initially developed for the production of high current beams of metal ions for heavy ion synchrotron injection for basic nuclear physics research; more recently they have also been used for metal ion implantation. A number of different embodiments of the source have been developed for these specific applications. Presently the sources operate in a pulsed mode, with pulse width of order 1 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, and since the ions produced in the vacuum arc plasma are in general multiply ionized the ion energy is up to several hundred keV. Beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Nearly all of the solid metals of the Periodic Table have been use to produce beam. A number of novel features have been incorporated into the sources, including multiple cathodes and the ability to switch between up to 18 separate cathode materials simply and quickly, and a broad beam source version as well as miniature versions. here we review the source designs and their performance. 45 refs., 7 figs

  14. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  15. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi.

    Science.gov (United States)

    Srivastava, Arun; Jain, V K

    2007-06-01

    A study of the atmospheric particulate size distribution of total suspended particulate matter (TSPM) and associated heavy metal concentrations has been carried out for the city of Delhi. Urban particles were collected using a five-stage impactor at six sites in three different seasons, viz. winter, summer and monsoon in the year 2001. Five samples from each site in each season were collected. Each sample (filter paper) was extracted with a mixture of nitric acid, hydrochloric acid and hydrofluoric acid. The acid solutions of the samples were analysed in five-particle fractions by atomic absorption spectrometry (AAS). The impactor stage fractionation of particles shows that a major portion of TSPM concentration is in the form of PM0.7 (i.e. metal mass viz. Mn, Cr, Cd, Pb, Ni, and Fe are also concentrated in the PM0.7 mode. The only exceptions are size distributions pertaining to Cu and Ca. Though, Cu is more in PM0.7 mode, its presence in size intervals 5.4-1.6microm and 1.6-0.7microm is also significant, whilst in case of Ca there is no definite pattern in its distribution with size of particles. The average PM10.9 (i.e. Source apportionment reveals that there are two sources of TSPM and PM10.9, while three and four sources were observed for PM1.6 (i.e. <1.6microm) and PM0.7, respectively. Results of regression analyses show definite correlations between PM10.9 and other fine size fractions, suggesting PM10.9 may adequately act as a surrogate for both PM1.6 and PM0.7, while PM1.6 may adequately act as a surrogate for PM0.7.

  16. Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2016-01-01

    was suspended in water in the anolyte, which was separated from the catholyte by a cation exchange membrane. Electrolysis at the anode acidified the SSA suspension, and hereby P, Cu, Pb, Cd and Zn were extracted. The heavy metal ions electromigrated into the catholyte and were thus separated from the filtrate......Phosphorus (P) is indispensable for all forms of life on Earth and as P is a finite resource, it is highly important to increase recovery of P from secondary resources. This investigation is focused on P recovery from sewage sludge ash (SSA) by a two-compartment electrodialytic separation (EDS......) technique. Two SSAs are included in the investigation and they contained slightly less P than phosphate rock used in commercial fertilizer production and more heavy metals. The two-compartment electrodialytic technique enabled simultaneous recovery of P and separation of heavy metals. During EDS the SSA...

  17. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    Science.gov (United States)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  18. Suspended and localized single nanostructure growth across a nanogap by an electric field

    International Nuclear Information System (INIS)

    Lee, Chung-Hoon; Schneider, Susan C; Josse, Fabien; Han, Jun Hyun

    2011-01-01

    Direct growth of a suspended single nanostructure (SSN) at a specific location is presented. The SSN is grown across a metallic nanoscale gap by migration in air at room temperature. The nanogap is fabricated by industrial standard optical lithography and anisotropic wet chemical silicon etching. A DC current bias, 1 nA, is applied across the metallic gap to induce nanoscale migration of Zn or ZnO. The history of the voltage drop across the gap as a function of time clearly indicates the moment when migration begins. The shape of SSNs grown across the nanogap by the migration is asymmetric at each electrode due to the asymmetric electric field distribution within the nanogap. An SSN can be used as the platform for two-terminal active or passive nanoscale electronics in optoelectronics, radio frequency (RF) resonators, and chemical/biological sensors.

  19. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  20. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  1. Metal geochemistry of Nerus River, Terengganu

    International Nuclear Information System (INIS)

    Chee, Poh Seng; Suhaimi Suratman; Keat, Chew Choon; Norhayati Mohd Tahir

    2008-01-01

    The Nerus River passes through the Setiu and Kuala Terengganu districts, on the east coast of Peninsular Malaysia. It passes through the populated urban area of northeastern Kuala Terengganu and receives and carries different kinds of agricultural and urban solid and liquid wastes produces by agricultural based industries and domestic sewage. The objective of this study is to investigate trace metal concentration in suspended particulate and water of the Nerus River and relate this to the anthropogenic activities. Water samples were collected from nine sites during dry and pre monsoon seasons (from May to October). Water pH, temperature, electric conductivity and salinity were measured in-situ. The suspended particulate was separated from water by using 0.45 μm pore size acetate cellulose membrane filter. Water (filtered) samples were subjected to APDC-MIBK pre-concentration and particulate samples were totally digested by using strong acids. Cd, Cu, Zn and Pb were analyzed using GFAAS and ICP-OES. Although the overall concentration of the metals obtained were still within Class I limit of the INWQS, however the results indicated that there is an increasing trend of Cu and Zn concentration in Nerus River water compared to previous study done in 2001. High Cu and Zn concentration in suspended matter sampled at downstream station which received effluent from nearby factories. (author)

  2. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  3. The mismatch of bioaccumulated trace metals (Cu, Pb and Zn) in field and transplanted oysters (Saccostrea glomerata) to ambient surficial sediments and suspended particulate matter in a highly urbanised estuary (Sydney estuary, Australia).

    Science.gov (United States)

    Lee, Jung-Ho; Birch, Gavin F

    2016-04-01

    A significant correlation between sedimentary metals, particularly the 'bio-available' fraction, and bioaccumulated metal concentrations in the native Sydney rock oyster (Saccostrea glomerata) tissues has been successfully demonstrated previously for Cu and Zn in a number of estuaries in New South Wales, Australia. However, this relationship has been difficult to establish in a highly modified estuary (Sydney estuary, Australia) where metal contamination is of greatest concern and where a significant relationship would be most useful for environmental monitoring. The use of the Sydney rock oyster as a biomonitoring tool for metal contamination was assessed in the present study by investigating relationships between metals attached to sediments and suspended particulate matter (SPM) to bioaccumulated concentrations in oyster tissues. Surficial sediments (both total and fine-fraction), SPM and wild oysters were collected over 3 years from three embayments (Chowder Bay, Mosman Bay and Iron Cove) with each embayment representing a different physiographic region of Sydney estuary. In addition, a transplant experiment of farmed oysters was conducted in the same embayments for 3 months. No relationship was observed between sediments or SPM metals (Cu, Pb and Zn) to tissue of wild oysters; however, significant relationship was observed against transplanted oysters. The mismatch between wild and farmed, transplanted oysters is perplexing and indicates that wild oysters are unsuitable to be used as a biomonitoring tool due to the involvement of unknown complex factors while transplanted oysters hold strong potential.

  4. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  5. Evidence for declining levels of heavy-metals in the Severn Estuary and Bristol Channel, U.K. and their spatial distribution in sediments

    International Nuclear Information System (INIS)

    Duquesne, Sabine; Newton, Lyn C.; Giusti, Lorenzo; Marriott, Susan B.; Staerk, Hans-Joachim; Bird, David J.

    2006-01-01

    Levels of heavy-metals (Cd, Cu, Cr, Ni, Pb and Zn) in suspended particulate and in surface and subsurface sediments were determined at seven locations in the Severn Estuary and Bristol Channel. Sediment metal concentrations were highest at sites close to industrial centres but levels have decreased significantly over the last 30 years so that they are now close to, or meet, environmental quality guidelines. The greatest metal concentrations in deposited sediments were usually associated with the finest particulates at locations with muddy sediments, but this was not always true at sites with predominantly sandy sediments. The metals bound to suspended particulates at all sites were remarkably consistent, presumably reflecting the mixing capacity of this macro-tidal estuary. The re-exposure of older, more contaminated sediments could explain the observed differences between deposited and suspended material. Sediment redistribution due to strong seasonal currents might also explain the differences between winter and summer samples. - Heavy-metal contamination in Severn Estuary sediments is declining but shows seasonal variation and depends on location and sediment type

  6. Coagulation / flocculation process in the removal of trace metals ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    elements such as Cu, Zn, Ni and Cr, as well as ... solids, (2) separation of suspended solids by chemical ... Total Metal Concentration Of The Wastewater: The .... Copper adsorption by esterifies and unesterified fractions of sphagnum peat ...

  7. Multipurpose sampler device for liquid metal

    International Nuclear Information System (INIS)

    Nelson, P.A.; Kolba, V.M.; Holmes, J.T.

    1975-01-01

    A device for collecting samples or examining a flow of liquid metal is provided for use with such as a liquid-metal-cooled nuclear reactor. The sampler device includes a casing surrounded by an external heater for establishing an upper isothermal zone and a lower zone for heating the entering liquid metal. One of various inserts is suspended into the isothermal zone where it is surrounded by a shroud tube for directing liquid-metal flow from the heating zone into the top of the insert. Discharge flow from the insert gravitates through a helically wound tube in heat exchange contact with entering liquid-metal flow within the heating zone. The inserts comprise an overflow cup with upper and lower freeze seals, a filter for removing particulate matter, and a fixture for maintaining various sample materials in equilibrium with liquid-metal flow. (U.S.)

  8. Conceptual development of the Laser Beam Manifold (LBM)

    Science.gov (United States)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  9. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  10. Suspended sediment apportionment in a South-Korean mountain catchment

    Science.gov (United States)

    Birkholz, Axel; Meusburger, Katrin; Park, Ji-Hyung; Alewell, Christine

    2016-04-01

    Due to the rapid agricultural expansion and intensification during the last decades in South-Korea, large areas of hill slope forests were transformed to paddies and vegetable fields. The intensive agriculture and the easily erodible soils in our catchment are a major reason for the increased erosion causing suspended sediments to infiltrate into the close drinking water reservoir. The drinking water reservoir Lake Soyang provides water supply for over ten million people in Seoul. Landscape managers need to know the exact origin of these sediments before they can create landscape amelioration schemes. We applied a compound-specific stable isotope (CSSI) approach (Alewell et al., 2015) to apportion the sources of the suspended sediments between forest and agricultural soil contribution to the suspended sediments in a different catchment and applied the same approach to identify and quantify the different sources of the suspended sediments in the river(s) contributing to Lake Soyang. We sampled eight soil sites within the catchment considering the different landuse types forest, rice paddies, maize and vegetables. Suspended sediments were sampled at three outlets of the different sub-catchments. Soils and suspended sediments are analysed for bulk carbon and nitrogen isotopes, compound-specific carbon isotopes of plant-wax derived long-chain fatty acids and long-chain n-alkanes. Fatty acid and alkane isotopes are then used in mixing calculations and the mixing model software IsoSource to find out the contribution of the different source soils to the suspended sediments. We present first data of the source soils and the suspended sediments. C. Alewell, A. Birkholz, K. Meusburger, Y. Schindler-Wildhaber, L. Mabit, 2015. Sediment source attribution from multiple land use systems with CSIA. Biogeosciences Discuss. 12: 14245-14269.

  11. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  12. Distribution of Heavy Metals in Organs of Freshwater Fishes from ...

    African Journals Online (AJOL)

    MBI

    2015-12-24

    Dec 24, 2015 ... indicate that the concentrations of the heavy metals in the samples are generally well above the respective recommended ... weathering processes on rocks and soils (Babel and. Opiso ..... Source apportionment of suspended.

  13. Flexible metal bellows

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    A set of flexible metal bellows being fatigue-tested by repeated offset motion. Such bellows assemblies were used in the SPS vacuum system at places where , for instance, beam stoppers and collimators had to be moved frequently in and out of the beam path.

  14. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  15. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  16. Spatial and temporal distribution of metals in suspended particulate matter of the Kali estuary, India

    Science.gov (United States)

    Suja, S.; Kessarkar, Pratima M.; Fernandes, Lina L.; Kurian, Siby; Tomer, Arti

    2017-09-01

    Major (Al, Fe, Mn, Ti, Mg) and trace (Cu, Zn, Pb, Cr, Ni, Co, Zr, Rb, Sr, Ba, Li, Be, Sc, V, Ga, Nb, Mo, Sn, Sb, Cs, Hf, Ta, Bi, Th, U) elements and particulate organic carbon (POC) concentrations in surface suspended particulate matter (SPM) of the Kali estuary, (central west coast of India) were studied during the pre-monsoon, monsoon and post monsoon seasons to infer estuarine processes, source of SPM and Geoaccumulation Index (Igeo) assigned pollutionIgeo levels. Distribution of SPM indicates the presence of the estuarine turbidity maximum (ETM) during all three seasons near the river mouth and a second ETM during the post monsoon time in the upstream associated with salinities gradient. The SPM during the monsoon is finer grained (avg. 53 μm), characterized by uniformly low normalized elemental concentration, whereas the post and pre monsoon are characterized by high normalized elemental concentration with coarser grain size (avg. 202 μm and 173 μm respectively) with highest ratios in the upstream estuary. The elemental composition and principal component analysis for the upstream estuary SPM support more contribution from the upstream catchment area rocks during the monsoon season; there is additional contribution from the downstream catchment area during the pre and post monsoon period due to the tidal effect. The Kali estuarine SPM has higher Al, Fe, Mn, Ti, Mg, Ni, Co, Ba, Li and V with respect to Average World River SPM (WRSPM). Igeo values for the SPM indicate Kali Estuary to be severely enriched with Mn and moderately enriched with Cu, Zn, Ni, Co, U and Mo in the upstream estuary during pre and post monsoon seasons. Seasonal changes in salinity gradient (reduced freshwater flow due to closing of the dam gates), reduced velocity at meandering region of the estuary and POC of 1.6-2.3% resulted in co-precipitation of trace elements that were further fortified by flocculation and coagulation throughout the water column resulting in metal trapping in the

  17. Energy values of suspended detritus in Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Royan, J.P.; Sumitra-Vijayaraghavan

    Energy content of suspended detritus was determined in Andaman Sea waters during April-May 1988. The caloric content of suspended detritus ranged from 987 to 7040 cal. per gram dry wt with an average value of 5530 cal. per gram dry wt. The results...

  18. Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study

    Science.gov (United States)

    Hall, Joshua; Pielić, Borna; Murray, Clifford; Jolie, Wouter; Wekking, Tobias; Busse, Carsten; Kralj, Marko; Michely, Thomas

    2018-04-01

    Based on an ultra-high vacuum compatible two-step molecular beam epitaxy synthesis with elemental sulphur, we grow clean, well-oriented, and almost defect-free monolayer islands and layers of the transition metal disulphides MoS2, TaS2 and WS2. Using scanning tunneling microscopy and low energy electron diffraction we investigate systematically how to optimise the growth process, and provide insight into the growth and annealing mechanisms. A large band gap of 2.55 eV and the ability to move flakes with the scanning tunneling microscope tip both document the weak interaction of MoS2 with its substrate consisting of graphene grown on Ir(1 1 1). As the method works for the synthesis of a variety of transition metal disulphides on different substrates, we speculate that it could be of great use for providing hitherto unattainable high quality monolayers of transition metal disulphides for fundamental spectroscopic investigations.

  19. Influence of Heavy Metals on the Environmental from Tarnita Mining Area

    Directory of Open Access Journals (Sweden)

    Jucan Victor

    2016-07-01

    Full Text Available This paper presents aspects related to water pollution with heavy metals from the Tarnita mining area before and after the cessation of the mining activity. The impact of heavy metals on waters is important because these metals have a negative impact on both human health and aquatic ecosystems. All research data showed that, even the mining activities from this area were suspended, the sterile still pollutes the soil and water

  20. High energy metal ion implantation using 'Magis', a novel, broad-beam, Marx-generator-based ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ''Magis'' with a single power supply (at ground potential) for both plasma production and ion extraction

  1. Evaluation of soft x-ray average recombination coefficient and average charge for metallic impurities in beam-heated plasmas

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Bitter, M.; Hill, K.W.; Hiroe, S.; Hulse, R.; Shimada, M.; Stratton, B.; von Goeler, S.

    1986-05-01

    The soft x-ray continuum radiation in TFTR low density neutral beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities anti γ, even for only slight changes in the average charge, anti Z. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low density, high neutral beam power TFTR operation (energetic ion mode) the reduction in anti γ can be as much as one-half to two-thirds. We calculate the parametric dependence of anti γ and anti Z for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code (MIST) or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of anti γ and anti Z in different TFTR discharges

  2. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  3. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N A [Institut fuer Theoretische Physik, Universitaet Frankfurt, Postfach 11 19 32, 60054 Frankfurt (Germany); Piriz, A R [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation); Varentsov, D [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Udrea, S [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Hoffmann, D H H [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgarten Str. 9, 64289 Darmstadt (Germany); Juranek, H [Fachbereich Physik, Universitaet Rostock, 18051 Rostock (Germany); Redmer, R [Fachbereich Physik, Universitaet Rostock, 18051 Rostock (Germany); Portugues, R F [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Lomonosov, I [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation); Fortov, V E [Institute for Problems in Chemical Physics Research, Chernogolovka, Russia (Russian Federation)

    2003-06-06

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are considered to be the same as expected at the future SIS100 facility. The simulations show that due to multiple shock reflection between the cylinder axis and the lead-hydrogen boundary, one can achieve up to 20 times solid density in hydrogen while keeping the temperature as low as a few thousand K. The corresponding pressure is of the order of 10 Mbar. These values of the physical parameters lie within the range of theoretically predicted values for hydrogen metallization. We have also carried out a parameter study of this problem by varying the target and beam parameters over a wide range. It has been found that the results are very insensitive to such changes in the input parameters.

  4. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    International Nuclear Information System (INIS)

    Tahir, N A; Piriz, A R; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, D H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are considered to be the same as expected at the future SIS100 facility. The simulations show that due to multiple shock reflection between the cylinder axis and the lead-hydrogen boundary, one can achieve up to 20 times solid density in hydrogen while keeping the temperature as low as a few thousand K. The corresponding pressure is of the order of 10 Mbar. These values of the physical parameters lie within the range of theoretically predicted values for hydrogen metallization. We have also carried out a parameter study of this problem by varying the target and beam parameters over a wide range. It has been found that the results are very insensitive to such changes in the input parameters

  5. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    CERN Document Server

    Tahir, N A; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, Dieter H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I V; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are consider...

  6. Heavy metal ions adsorption by suspended particle and sediment of ...

    African Journals Online (AJOL)

    Nowadays, it is important to evaluate the self-purifying capacity of rivers because of the different kinds of pollutants discharged into them. Important kind of pollutants and heavy metals exist in wastewaters industries. When the Sorb Dona mine is placed in Upper Chalus River, in the west of Mazandaran, products of mine ...

  7. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF - 2007

    Science.gov (United States)

    The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...

  8. Methods of and system for swing damping movement of suspended objects

    Science.gov (United States)

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  9. Positioning of Carbon nanostructures on metal surfaces using laser acceleration and the Raman analyses of the patterns

    International Nuclear Information System (INIS)

    Karmenyan, A; Perevedentseva, E; Chiou, A; Cheng, C-L

    2007-01-01

    The laser-induced acceleration of nanoparticles using intense light irradiation was used for positioning and ordering of carbon nanomaterials to form periodical surface structures. Such systems are of interest for different nanotechnology applications. The nanodiamond with averaged size 100 nm, and fullerene (C 60 ) suspended in distilled water were accelerated using high focused laser beam and attached onto metal surface of silver and gold thin films evaporated on Si substrate. The laser was operating both in CW and femtosecond modes with the wavelength of ∼800 nm, pulse duration 150 fs, and average laser power of 300-600 mW. In case of pulse irradiation the repetition rate of 76 MHZ was applied. The nanoparticles were positioned on the metal surface in accordance with a predetermined program to allow patterning of the nanoparticles. The positioning was analyzed for different treatment conditions and compared to the calculated data. To investigate the obtained nanoparticles/metal structures, surface-enhanced Raman scattering (SERS) was used utilizing its high sensitivity on the local properties of the nanostructures. SERS allows the observing of carbon nanostructures with their characteristic peculiarities, such as blinking effect and selective enhancement. Here we try to explain the spectral and spatial peculiarities occurring during the laser acceleration process and the interaction of attached carbon nanostructures with metal surface

  10. The suspended sentence in French Criminal Law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2016-01-01

    Full Text Available From the ancient times until today, criminal law has provided different criminal sanctions as measures of social control. These coercive measures are imposed on the criminal offender by the competent court and aimed at limitting the offender's rights and freedoms or depriving the offender of certain rights and freedoms. These sanctions are applied to the natural or legal persons who violate the norms of the legal order and injure or endanger other legal goods that enjoy legal protection. In order to effectively protect social values, criminal legislations in all countries predict a number of criminal sanctions. These are: 1 imprisonment, 2 precautions, 3 safety measures, 4 penalties for juveniles, and 5 sanctions for legal persons. Apart and instead of punishment, warning measures have a significant role in the jurisprudence. Since they emerged in the early 20th century in the system of criminal sanctions, there has been an increase in their application to criminal offenders, especially when it comes to first-time offenders who committed a negligent or accidental criminal act. Warnings are applied in case of crimes that do not have serious consequences, and whose perpetrators are not hardened and incorrigible criminals. All contemporary criminal legislations (including the French legilation provide a warning measure of suspended sentence. Suspended sentence is a conditional stay of execution of sentence of imprisonment for a specified time, provided that the convicted person does not commit another criminal offense and fulfills other obligations. This sanction applies if the following two conditions are fulfilled: a forma! -which is attached to the sentence of imprisonment; and b material -which is the court assessment that the application of this sanction is justified and necessary in a particular case. In many modern criminal legislations, there are two different types of suspended (conditional sentence: 1 ordinary (classical suspended

  11. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  12. enrichment factor of atmospheric trace metal using zirconium

    African Journals Online (AJOL)

    user

    Twelve (12) elements (Cl, K, Ca, Ti, V, Fe, Ni, Cu, Zn, Ba, Sr, and Zr ) were detected in total suspended particulate matter (TSP) ..... Ni and V didn't show spatial variation (p>0.05). For K, ..... K.A. Wet deposition of trace metals to a remote.

  13. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan

    2014-01-01

    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review of the ...... of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius.......Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...

  14. Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications.

    Science.gov (United States)

    Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven

    2010-08-30

    We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.

  15. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    International Nuclear Information System (INIS)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-01-01

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures

  16. Dynamic model of movement of mine suspended monorail

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVYCH

    2014-03-01

    Full Text Available In the article we have developed the dynamic model of interaction of rolling stock during the movement, on the suspended monorail, taking into account the side-sway. We have received the motion equations, carried out their analysis and determined the own oscillation frequencies of rolling stock of suspended monorail.

  17. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO3 capacitor application

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2008-01-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO 3 (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of ± 2.5 MV/cm and a leakage current density of about 1 x 10 -5 A/cm 2 at an applied field of ± 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO 2 /Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors

  18. Determination of particle size and content of metals in the atmosphere of ZMCM (Metropolitan Zone of Mexico City); Determinacion de tamano de particula y contenido de metales en la atmosfera de la ZMCM (Zona Metropolitana de la Ciudad de Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Aldape U, F; Flores M, J; Diaz, R V; Garcia G, R [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1994-12-31

    Inside the breathable fraction of the atmosphere of Mexico City, the presence of metals in suspended particles, is determined and quantified. The detection was carry out simultaneously in three places of the city, using collectors of the type stacking filter unit (SFU) which allow the separation of particles according to its size. The SFU detectors allow the separation in two size: `Gross` mass from 2.5 to 1.5 {mu}m and `fine` mass for particles smallest than 2.5 {mu}m. The analysis of the samples was fulfilled by means of PIXE method. Samples were irradiated with a proton beam, and based in the X-ray spectra the elements were identified and quantified, which allow to establish the temporal behavior of the concentrations per element for gross mass and fine mass in each one of the places of sampling. (Author).

  19. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  20. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    Science.gov (United States)

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  1. Supersonic bare metal cluster beams

    International Nuclear Information System (INIS)

    Smalley, R.E.

    1991-01-01

    Progress continued this past year on two principal fronts in the study of bare metal clusters: photoelectron spectroscopy of mass selected negative ions, and surface chemisorption of cluster ions levitated in a superconducting magnet as monitored by fourier transform ion cyclotron resonance

  2. Determination of particle size and content of metals in the atmosphere of ZMCM (Metropolitan Zone of Mexico City)

    International Nuclear Information System (INIS)

    Aldape U, F.; Flores M, J.; Diaz, R.V.; Garcia G, R.

    1994-01-01

    Inside the breathable fraction of the atmosphere of Mexico City, the presence of metals in suspended particles, is determined and quantified. The detection was carry out simultaneously in three places of the city, using collectors of the type stacking filter unit (SFU) which allow the separation of particles according to its size. The SFU detectors allow the separation in two size: 'Gross' mass from 2.5 to 1.5 μm and 'fine' mass for particles smallest than 2.5 μm. The analysis of the samples was fulfilled by means of PIXE method. Samples were irradiated with a proton beam, and based in the X-ray spectra the elements were identified and quantified, which allow to establish the temporal behavior of the concentrations per element for gross mass and fine mass in each one of the places of sampling. (Author)

  3. Light-ion beam for microelectronic applications

    International Nuclear Information System (INIS)

    Hirsch, L.; Tardy, P.; Wantz, G.; Huby, N.; Moretto, P.; Serani, L.; Natali, F.; Damilano, B.; Duboz, J.Y.; Reverchon, J.L.

    2005-01-01

    In this paper we describe the structure and the composition of (Al,Ga)N/GaN Bragg reflectors obtained from Rutherford backscattering spectroscopy. Bragg reflectors constitute a part of blue (λ = 450 nm) resonant cavity light emitting diodes. To improve the measurement accuracy, three tilt angles have been used (10 deg. , 25 deg. and 50 deg. ). In a second part of the paper, ion beam induced charges study has been carried out, with a 2 MeV 4 He + micro-beam, on metal-semiconductor-metal UV photodetectors. Results have been taken into account for the design of the photodetector electrodes

  4. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  5. Characterization of the Goubau line for testing beam diagnostic instruments

    Science.gov (United States)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  6. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  7. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  8. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  9. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    Science.gov (United States)

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RIatmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RIatmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RIatmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  11. Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna

    International Nuclear Information System (INIS)

    Pacheco-Peña, V.; Torres, V.; Orazbayev, B.; Beruete, M.; Sorolla, M.; Navarro-Cía, M.; Engheta, N.

    2014-01-01

    An all-metallic steerable beam antenna composed of an ε-near-zero (ENZ) metamaterial lens is experimentally demonstrated at 144 GHz (λ 0  = 2.083 mm). The ENZ lens is realized by an array of narrow hollow rectangular waveguides working just near and above the cut-off of the TE 10 mode. The lens focal arc on the xz-plane is initially estimated analytically as well as numerically and compared with experimental results demonstrating good agreement. Next, a flange-ended WR-6.5 waveguide is placed along the lens focal arc to evaluate the ENZ-lens antenna steerability. A gain scan loss below 3 dB is achieved for angles up to ±15°

  12. Heavy ion beams from the new Hungarian ECR ion source

    International Nuclear Information System (INIS)

    Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.

    1998-01-01

    The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)

  13. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  14. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  15. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas

    2016-01-01

    Graphical abstract: - Highlights: • Pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the low-k film. • For the sample without the SAM sealing process, metal atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. Almost all pore interiors were covered by those metals. • For the sample damaged by a plasma etch treatment before the SAM sealing process, self-assembled molecules diffused into the OSG film, and they were preferentially trapped by larger pores. - Abstract: Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C_4F_8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C_4F_8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  16. Glow-discharge-created electron beams and beam-excited lasers

    International Nuclear Information System (INIS)

    Meyer, J.D.

    1989-01-01

    Efficiently created glow discharge electron beams have been developed and studied in detail. The beam mode of operation occurs in the abnormal glow adjacent to the glow-to-arc transition regime. In contrast to electron beams generated in high vacuum from thermionic electron emitting sources, this type of discharge creates electrons directly in soft vacuum by secondary electron emission from cold cathode surfaces following the bombardment of the cathode surface by fast ions and neutral atoms. Factors influencing the efficient electron emission from cold cathodes are presented with emphasis on cathode materials. Sintered ceramic-metal cathodes and oxide-coated cathodes are presented, both of which can produce high power, efficiently generated, d.c. electron beams with discharge currents up to 1 amp (∼130 mA/cm 2 ) at volt ages of up to 6 kV. Novel cathode designs and discharge geometries are presented with specific emphasis on both self-focussed beams emitted from circular cathodes and line-source electron beams emitted from rectangular cathodes forming a thin sheet of electrons. Electrostatically focussed line-source electron beams are spatially characterized by experimentally measuring the effect of discharge parameters and cathode design upon the focussed beam width, focal point, and uniformity. This is achieved by scanning a current collecting detector in three dimensions in order to profile the distribution of electron beam current. Discharge electron beams are further characterized by their electron energy distribution. Measured electron flux energy distributions of transmitted beam electrons in the negative glow are compared to theoretical models. The relative effects of elastic and inelastic collisions mechanisms upon both the overall form and detailed structure of the energy distribution are discussed

  17. Molybdenum-rhenium superconducting suspended nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio [Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  18. Strength of the Three Layer Beam with Two Binding Layers

    Directory of Open Access Journals (Sweden)

    Smyczyński M. J.

    2016-09-01

    Full Text Available The paper is devoted to the strength analysis of a simply supported three layer beam. The sandwich beam consists of: two metal facings, the metal foam core and two binding layers between the faces and the core. In consequence, the beam is a five layer beam. The main goal of the study is to elaborate a mathematical model of this beam, analytical description and a solution of the three-point bending problem. The beam is subjected to a transverse load. The nonlinear hypothesis of the deformation of the cross section of the beam is formulated. Based on the principle of the stationary potential energy the system of four equations of equilibrium is derived. Then deflections and stresses are determined. The influence of the binding layers is considered. The results of the solutions of the bending problem analysis are shown in the tables and figures. The analytical model is verified numerically using the finite element analysis, as well as experimentally.

  19. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    Science.gov (United States)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  20. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  1. Mid-infrared beam splitter for ultrashort pulses.

    Science.gov (United States)

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  2. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  3. Suspended sediment in a high-Arctic river

    DEFF Research Database (Denmark)

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart

    2017-01-01

    -2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves......-1 and 61,000±16,000ty-1. Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty-1, which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi...... extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m3 y-1. The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty...

  4. Suspended-Bed Reactor preliminary design, 233U--232Th cycle. Final report (revised)

    International Nuclear Information System (INIS)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 μ thick, (2) silicon carbide pressure vessel, 30 μ thick, and (3) ZrC layer, 50 μ thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems

  5. The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2014-04-01

    Full Text Available The implementation and development of managed aquifer recharge (MAR have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp and median grain size of suspended solids (d50 was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp and different level of grain diameter of suspended solids (di, were developed to predict the potential suspended solids types.

  6. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  7. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  8. Characteristic of total suspended particulate (TSP) containing Pb and Zn at solid waste landfill

    Science.gov (United States)

    Budihardjo, M. A.; Noveandra, K.; Samadikun, B. P.

    2018-05-01

    Activities conducted at municipal solid waste landfills (MSWLs) potentially cause air pollution. Heavy vehicles in MSWLs release various pollutants that can have negative impacts for humans. One noticeable pollutant at MSWLs is airborne total suspended particulate (TSP) which may contain heavy metals such as Pb and Zn and can cause disease when inhaled by humans. In this study, TSP from a landfill in Semarang, Indonesia was collected and characterized to quantify the concentration of Pb and Zn. Meteorological factors (i.e. temperature, humidity and wind velocity) and landfill activities were considered as factors affecting pollutant concentrations. TSP was sampled using dust samplers while the concentrations of heavy metals in TSP were analyzed using an Atomic Absorption Spectrophotometer (AAS). Pb concentration ranged from 0.84 to 1.78 µg/m3 while Zn concentration was from 7.87 to 8.76 µg/m3. The levels of Pb were below the threshold specified by the Indonesian Government. Meanwhile, the threshold for Zn has not yet been determined.

  9. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  10. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO{sub 3} capacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-Y. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Wang, S.-C. [Department of Mechanical Engineering, Southern Taiwan University of Technology, No. 1, Nantai St, Yung-Kang City, Tainan, Taiwan (China); Chen, J.-S. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Huang, J.-L. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China)], E-mail: jlh888@mail.ncku.edu.tw

    2008-09-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO{sub 3} (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of {+-} 2.5 MV/cm and a leakage current density of about 1 x 10{sup -5} A/cm{sup 2} at an applied field of {+-} 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO{sub 2}/Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors.

  11. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  12. Ohmic metallization technology for wide band-gap semiconductors

    International Nuclear Information System (INIS)

    Iliadis, A.A.; Vispute, R.D.; Venkatesan, T.; Jones, K.A.

    2002-01-01

    Ohmic contact metallizations on p-type 6H-SiC and n-type ZnO using a novel approach of focused ion beam (FIB) surface-modification and direct-write metal deposition will be reviewed, and the properties of such focused ion beam assisted non-annealed contacts will be reported. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10 -4 Ω cm 2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10 -5 Ω cm 2 range for surface-modified and pulse laser deposited TiN contacts. An optimum Ga surface-modification dosage window is determined, within which the current transport mechanism of these contacts was found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer

  13. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard)

    Science.gov (United States)

    Meslard, Florian; Bourrin, François; Many, Gaël; Kerhervé, Philippe

    2018-05-01

    An experiment was carried out during summer 2015 in the inner part of the Kongsfjorden to study the inputs of meltwater and behaviour of associated suspended particles. We used a wide range of oceanographic instruments to assess the hydrological and hydrodynamic characteristics of coastal waters. The transfer of suspended particles occurs from a large surface plume fed by two main sources: the most important one is the upwelling of fresh and turbid water coming from a tide-water glacier: the Kronebreen, and the second one from a continental glacier: the Kongsvegen. We estimated that these two sources discharged about 2.48 ± 0.37 × 106 t of suspended sediments during the two months of melting. The major part of these sediments is deposited within the first kilometre due to flocculation phenomena. Flocculation is initiated below the surface turbid plume and is mainly caused by the salinity gradient and high suspended particle concentration. Finally, our estimates of suspended particle fluxes by a typical Arctic coastal glacier showed the need to consider suspended sediment fluxes from high-latitude areas into global budgets in the context of climate change.

  14. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  15. Remote sensing of suspended sediment water research: principles, methods, and progress

    Science.gov (United States)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  16. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  17. Ion beam profiling from the interaction with a freestanding 2D layer

    Directory of Open Access Journals (Sweden)

    Ivan Shorubalko

    2017-03-01

    Full Text Available Recent years have seen a great potential of the focused ion beam (FIB technology for the nanometer-scale patterning of a freestanding two-dimensional (2D layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.

  18. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    Science.gov (United States)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  19. Evaluation of the air quality regarding total suspended particles and heavy metals (Pb, Cd, Ni, Cu, Cr) in the Hermosillo city, Sonora, Mexico, during a yearly period

    International Nuclear Information System (INIS)

    Cruz C, M. E.; Quintero N, M.; Gomez A, A.; Varela S, J.

    2013-01-01

    In the present study, the air quality of the city of Hermosillo, Sonora, Mexico was assessed considering total suspended particulates (tsp) and heavy metals (Pb, Cd, Ni, Cu, Cr) from June 2001 through May 2002 in three monitoring sites Centro (Mazon), Nor este (CESUES) and Noroeste (CBTIS). The filter-samples used for that purpose were provided by the Air Quality Evaluation and Improvement Program (PEMCA) of the municipality of Hermosillo. The sampling method was based on high volume sampling frequency set every 6 days with non-simultaneous sampling among the three sampling sites. Filters were dissolved for metal determination by acidic-extraction, and then analyzed by flame atomic absorption spectrophotometry. Results indicate that tsp concentrations at Centro and Noroeste sites were frequently higher than the maximum daily permissible level (260 μg/m 3 ), while in the three sites the annual average was higher than the maximum annual permissible level (75 μg/m 3 ) both established in the standard NOM-024-Ssa-1993 (Ssa 1994a). According to the Air Quality Standard Index (US EPA 1992a), used in Mexico by Air Quality Metropolitan Index (IMECA) the results indicate that the air quality in the city of Hermosillo regarding tsp was placed between no satisfactory and poor. In regard to heavy metals (Pb, Cd, Ni, Cu, Cr), concentrations detected were below the maximum permissible levels and/or criteria taking into account the standard NOM-026-Ssa-1993 (Ssa 1994b), the Who criterion (2000), the European Union criterion (Cec 2003), and the European Environmental Agency criteria (EEA 2004). Such findings would mean that airborne metals are of no concern; however, air quality is still classified as no satisfactory due to high particulate matter concentrations. Keeping air quality parameters monitoring is recommended in order to get extensive data for use in risk studies of air quality and health (morbidity/mortality), as well as topographic conditions, meteorological and

  20. Beam developments for the Harwell microprobe system

    International Nuclear Information System (INIS)

    Read, P.M.; Cookson, J.A.; Alton, G.D.

    1986-01-01

    A consequence of the rapid development of micron and submicron size electronic devices is the diminished applicability of high energy ion microprobes with their present resolution limitations to the study of such components. Although submicron beams have been reported the available beam current is barely sufficiently for PIXE and is not adequate for RBS. This lack of lateral resolution is due to low beam brightness at the microprobe object and aberrations in the focusing elements. As part of a program to address these problems the Harwell microprobe lens has been relocated on a new 5 MV Laddertron accelerator. The increased brightness and improved stability of this facility has so far led to a reduction in beam size from 3 x 3 μm 2 to about 2 x 2 μm 2 . The feasibility of using a liquid metal ion source has been examined with a view to achieving more substantial increases in brightness. While such sources have brightness approximately 10 5 times greater than conventional gaseous sources the highly divergent nature of the beam presents problems for the beam transport system. The use of a liquid metal source on the accelerator has been successfully demonstrated but it indicates the need for a special low aberration injection lens if brightness is to be maintained

  1. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  2. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  3. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  4. Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City

    Science.gov (United States)

    Suryani, Sri; Fahrunnisa

    2018-03-01

    Research on the status of suspended particulate matters pollution in four traditional markets located in Makassar city has been done. The purpose of this research is to know the air quality in the traditional market areas, especially caused by suspended particulate matters. The background of this research is because traders who trade in traditional markets generally peddle their goods along dusty roads and suspended particulate matters in dust can be inhaled when the vehicle passes. These suspended particulate matters pollutant can cause lung diseases. The results showed that the level of suspended particulate matters pollution fluctuates every year depending on the local wind speed, humidity, and temperature. Research results also showed the values were over the standard value according to the governor of South Sulawesi regulation.

  5. GaN-based integrated photonics chip with suspended LED and waveguide

    Science.gov (United States)

    Li, Xin; Wang, Yongjin; Hane, Kazuhiro; Shi, Zheng; Yan, Jiang

    2018-05-01

    We propose a GaN-based integrated photonics chip with suspended LED and straight waveguide with different geometric parameters. The integrated photonics chip is prepared by double-side process. Light transmission performance of the integrated chip verse current is quantitatively analyzed by capturing light transmitted to waveguide tip and BPM (beam propagation method) simulation. Reduction of the waveguide width from 8 μm to 4 μm results in an over linear reduction of the light output power while a doubling of the length from 250 μm to 500 μm only results in under linear decrease of the output power. Free-space data transmission with 80 Mbps random binary sequence of the integrated chip is capable of achieving high speed data transmission via visible light. This study provides a potential approach for GaN-based integrated photonics chip as micro light source and passive optical device in VLC (visible light communication).

  6. The suspended sentence in German criminal law

    Directory of Open Access Journals (Sweden)

    Jovašević Dragan

    2017-01-01

    Full Text Available From the ancient times until today, criminal law in all countries has provided different criminal sanctions as social control measures. These are court-imposed coercive measures that take away or limit certain rights and freedoms of criminal offenders. Sanctions are applied to natural or legal persons who violate the norms of the legal order and cause damage or endanger other legal goods that enjoy legal protection. In order to effectively protect social values jeopardized by the commission of crime, state legislations prescribe several kinds of criminal sanctions: 1 penalties, 2 precautions, 3 safety measures, 4 penalties for juvenile offenders, and 5 sanctions for legal persons. Penalties are the basic, the oldest and the most important type of criminal sanctions. They are prescribed for the largest number of criminal offences. Imposed instead of or alongside with penalties, warning measures have particularly important role in jurisprudence. Since they were introduced in the system of criminal sanctions in the early 20th century, there has been a notable increase in the application of these measures, particularly in cases involving negligent and accidental offences, and minor offences that do not cause serious consequences, whose perpetrators are not persons with criminal characteristics. Warning measures (suspended sentence are envisaged in all contemporary criminal legislations, including the German legislation. Suspended sentence is a conditional stay of execution of the sentence of imprisonment for a specified time, provided that the convicted person fulfills the imposed obligations and does not commit another criminal offense. Two conditions must be fulfilled for the application of these sanctions: a the formal requirement, which is attached to the sentence of imprisonment; and b the substantive requirement, which implies the court assessment that the application of these sanctions is justified and necessary in a particular case. Many

  7. Magnetically suspended experimental vehicle-strength of structure and dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagahiro, T; Terada, K; Kasai, Y; Motonaga, M

    1973-06-01

    To cope with rapid increase in demand for railroad transportation, studies in magnetically suspended high speed trains are being pushed forward at the Japanese National Railways. Recently a special experimental vehiclc was completed which will be used by JNR in experiments concerning magnetic propulsion and suspension of magnetically suspended high speed trains. This test vehicle is provided with reaction plates of linear induction motor under the floor at about the center of the vehicle, with superconducting magnets for suspension on both sides. The vehicle body is made mainly of high tensile strengthened aluminium (duralumin) for weight reduction, but its strength was checked by the vibration analysis and load tests carried out in the suspended condition. Remote-operated from the control tower, this unmanned test vehicle will provide a key to the completion of a super-high speed magnetically suspended train.

  8. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  9. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images

    Energy Technology Data Exchange (ETDEWEB)

    Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim; Alite, Fiori; Block, Alec M.; Choi, Mehee; Emami, Bahman; Harkenrider, Matthew M.; Solanki, Abhishek A.; Roeske, John C., E-mail: jroeske@lumc.edu

    2016-11-15

    Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scale (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.

  10. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 2This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al, Au,...

  11. Partitioning and Dissolution Behavior of Metal-based Engineered Nanoparticles in Sediment and Soil Suspensions

    Directory of Open Access Journals (Sweden)

    Koetsem F. Van

    2013-04-01

    Full Text Available Nowadays engineered nanoparticles are being used in a whole range of commercial applications and are therefore expected to inevitably find their way into the environment where their fate and behavior are still largely unknown. The objective of this study was to investigate the behavior and fate of a number of engineered nanoparticles (CeO2, SnO2, Ag in sediment and soil suspensions. In particular, the association of nanoparticles with solid phases, the kinetics of these interactions, and the solubility of the nanoparticulate matter in sediment and soil suspensions were studied. Four different sediments and three different soils were sampled at various locations in Flanders (Belgium, dried, grinded and characterized. Sediment and soil suspensions were prepared with Milli-Q water (1/10 S/L, spiked with the different metallic nanoparticles or corresponding ions, and continuously shaken for 24 hours. At regular time intervals, samples of the suspensions were collected and centrifuged at 500 or 2000 rpm, or left for gravitational settling. The supernatant was analyzed for total metal contents after aqua regia digestion and for dissolved metal ions after centrifugal ultrafiltration. In a second experiment, the impact of centrifugation speed on the amount of suspended matter in the supernatant was also studied. Relations between soil or sediment properties, suspended matter and metals in the supernatant were investigated. First data already point towards a strong association of nanoparticles with suspended material. The remaining data are still being collected and will be presented at the conference.

  12. Persistence of Metal-rich Particles Downstream Zones of Acid Drainage Mixing in Andean Rivers

    Science.gov (United States)

    Pasten, P.; Montecinos, M.; Guerra, P. A.; Bonilla, C. A.; Escauriaza, C. R.; Dabrin, A.; Coquery, M.

    2016-12-01

    The Andes mountain range provides the setting for watersheds with high natural background of metals and for mining operations that enhance contaminant mobilization, notably in Northern and Central Chile. Dissolved and solid metal species are actively transported by streams to the Pacific Ocean from area and point sources, like acid drainage. We examine the response of metal rich particle suspensions downstream zones of mixing where shifts in the chemical environment occur. We propose a conceptual model which is used to analyze the fate of copper in the upper Mapocho watershed. The main source of copper is the Yerba Loca river, a naturally impacted stream with pH ranging from 3 to 7 and high concentrations of Cu (0.8 - 6.3 mg/L), Al (1.3 - 7.6 mg/L) and Fe (0.4 - 4.2 mg/L). Steep chemical shifts occur after the confluences with the San Francisco and the Molina rivers. We characterized stream chemistry, hydrological variables and suspended particles, including particle size distribution (PSD), turbidity, and total suspended solids. A marked seasonal behavior was observed, with a higher total Cu flux during smelting periods and a shift towards the dissolved phase during summer. When acid drainage is discharged into a receiving stream, incomplete mixing occurs thereby promoting the formation of a range of metal-rich solids with a characteristic PSD. Similarly, areas of chemical heterogeneity control the partition of metals associated to suspended geomaterials coming from bank and slope erosion. A highly dynamic process ensues where metastable phases shift to new equilibria as fully mixed conditions are reached. Depending on the reaction kinetics, some particles persist despite being exposed to thermodynamically unfavorable chemical environments. The persistence of metal-rich particles downstream zones of acid drainage mixing is important because it ultimately controls the flux of metals being delivered to the ocean by watersheds impacted by acid drainage. Funding from

  13. Laser-evaporated pulsed atomic beam and its application

    International Nuclear Information System (INIS)

    Zhang Yanping; Hu Qiquan; Su Haizheng; Lin Fucheng

    1986-01-01

    For the purpose of obtaining an atomic beam, laser-evaporated atomic vapor was studied experimentally. The signals of multiphoton ionization of refractory metal atoms obtained with the pulsed atomic beam were observed, and the problem associated with the detection of these signals was discussed

  14. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  15. Operational Test Report for the 241-AZ-101 Suspended Solids Profiler

    International Nuclear Information System (INIS)

    STENKAMP, D.M.

    2000-01-01

    This document comprises the Operational Test Report for the 241-AZ-101 Suspended Solids Profiler. This document presents the results of Operational Testing of the 241-AZ-101 Suspended Solids Profiler (SSP). Testing of the SSP was performed in accordance with OTP-260-005, ''SUSPENDED SOLIDS PROFILER OPERATIONAL TEST PROCEDURE''. The objective of the testing was to verify that all equipment and components functioned as designed, following construction completion and turnover to operations

  16. Adsorption of copper, cadmium and zinc on suspended sediments in a stream contaminated by acid mine drainage: The effect of seasonal changes in dissolved organic carbon

    International Nuclear Information System (INIS)

    Macalady, D.L.; Ranville, J.F.; Smith, K.S.; Daniel, S.R.

    1991-01-01

    The release of metal-rich, acidic waters from abandoned mining operations is a major problem in Colorado and throughout the Western United States. In Colorado, over 600 km of stream reach are estimated to be affected by such releases (Wentz, 1974). The metals released adversely affect stream biota, including fish. It is therefore important to understand the chemical processes which influence metal transport in these waters. The report details studies of the role of suspended sediments with respect to the transport of several important trace metals in a stream impacted by acid mine drainage. The role of streambed sediments was studied in the same system as part of an earlier project (Acid Mine Drainage: streambed sorption of copper, cadmium and zinc, PB--93-118263)

  17. A low background pulsed neutron polyenergetic beam at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Habib, N.; Abu-El-Ela, M.; Wahba, M.; Kilany, M.

    1991-12-01

    A low background pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a rotor and rotating collimator suspended in magnetic fields. Each of them is mounted on its mobile platform and whose centres are 66 cm apart, rotating synchronously at speeds up to 16000 rpm. It was found that the neutron burst produced by the rotor with almost 100% transmission passes through the collimator, when the rotation phase between them is 28.8 deg. Moreover the background level achieved at the detector position is low, constant and free from peaks due to gamma rays and fast neutrons accompanying the reactor thermal beam. (author). 12 refs, 3 figs

  18. Suspended silica beam splitters on silicon with large core-clad index deference

    Science.gov (United States)

    Zhang, Xiaomin; Armani, Andrea M.

    2012-03-01

    Optical beam splitters form a fundamental component in integrated optical systems, performing as modulators, interferometers and (de)multiplexers. While silica is a desirable material, because of its low non-linear susceptibility, it is extremely challenging to achieve the requisite core-clad refractive index contrast. In this work, silica splitters with an effective refractive index difference of 25% between the core and clad is demonstrated. The splitter can divide power evenly with low crosstalk from 1520 to 1630nm. In addition, the splitting ratio doesn't change and the output power increases linearly with the input power, which indicates a low susceptibility to thermal effects. The splitter's polarization independent behavior is also verified.

  19. Ion beam sputter implantation method

    International Nuclear Information System (INIS)

    King, W.J.

    1978-01-01

    By means of ion beam atomizing or sputtering an integrally composed coating, the composition of which continuously changes from 100% of the substrate to 100% of the coating, can be surfaced on a substrate (e.g. molten quartz on plastic lenses). In order to do this in the facility there is directed a primary beam of accelerated noble gas ions on a target from the group of the following materials: SiO 2 , Al 2 O 3 , Corning Glass 7070, Corning Glass 7740 or borosilicate glass. The particles leaving the target are directed on the substrate by means of an acceleration potential of up to 10 KV. There may, however, be coated also metal layers (Ni, Co) on a mylar film resulting in a semireflecting metal film. (RW) [de

  20. An analysis of bedload and suspended load interactions

    Science.gov (United States)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  1. Fabrication of metallic nanostructures of sub-20 nm with an optimized process of E-beam lithography and lift-off

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Wang, Xianbin; Chen, Longqing; Yang, Yang; Chew, Basil; Syed, Ahad A.; Wong, Ka Chun; Zhang, Xixiang

    2012-01-01

    A process consisting of e-beam lithography and lift-off was optimized to fabricate metallic nanostructures. This optimized process successfully produced gold and aluminum nanostructures with features size less than 20 nm. These structures range from simple parallel lines to complex photonic structures. Optical properties of gold split ring resonators (SRRs) were characterized with Raman spectroscopy. Surface-Enhanced Raman Scattering (SERS) on SRRs was observed with 4-mercaptopyridine (4-MPy) as molecular probe and greatly enhanced Raman scattering was observed. Copyright © 2012 American Scientific Publishers.

  2. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  3. Identifying environmental and geochemical variables governing metal concentrations in a stream draining headwaters in NW Spain

    International Nuclear Information System (INIS)

    Soto-Varela, F.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T.

    2014-01-01

    Highlights: • All metals occur in association with suspended sediment. • DOC and SS appeared to influence the partitioning of metals. • The SS was a good predictor of particulate metal levels. • The most important variable to explain storm-event K D for Al and Fe is DOC. • Enrichment factor values suggest a natural origin for the particulate metals. - Abstract: Headwater stream, draining from a rural catchment in NW Spain, was sampled during baseflow and storm-event conditions to investigate the temporal variability in dissolved and particulate Al, Fe, Mn, Cu and Zn concentrations and the role of discharge (Q), pH, dissolved organic carbon (DOC) and suspended sediment (SS) in the transport of dissolved and particulate metals. Under baseflow and storm-event conditions, concentrations of the five metals were highly variable. The results of this study reveal that all metal concentrations are correlated with SS. DOC and SS appeared to influence both the metal concentrations and the partitioning of metals between dissolved and particulate. The SS was a good predictor of particulate metal levels. Distribution coefficients (K D ) were similar between metals (4.72–6.55) and did not change significantly as a function of discharge regime. Stepwise multiple linear regression analysis reveals that the most important variable to explain storm-event K D for Al and Fe is DOC. The positive relationships found between metals, in each fraction, indicate that these elements mainly come from the same source. Metal concentrations in the stream were relatively low

  4. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  5. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  6. Aerial Photo Utilization in Estimating Suspended Sediment in the Wuryantoro Watershed, Wonogiri

    Directory of Open Access Journals (Sweden)

    Sugiharto Budi Santoso

    2004-01-01

    Full Text Available Suspended sediment load flowing out from a watershed is normally predicated by analysis os suspended sediment of water sample, and the volume of suspended sediment be calculated based on sediment concentration and river discharge. Such field measurements need a lot of field data and they are time consuming. Another method for prediction of suspended sediment by using remote sensing imagery data and recorded rainfall data. The objective of this research is to 1 examine the capability of remote sensing technique to obtain the parameters of the physical data of land in the prediction of suspended sediment; 2 examine the accuracy of the model for prediction suspended sediment. This research is carried out in Wuryantoro watershed, Wonogiri. The main data to obtain the parameters of the physical data of land is infrared aerial photograph on scale 1 : 10.000. the method that used in this research is interpretation of remote sensing imagery data, combined with rainfall data. The result show that the accuracy of landuse is 88.5%, the accuracy of slope is 87.67%. the accuracy of the prediction of suspended sediment by model A3 87.07%, model C1 86.63%, model C2 90.57%, model A8 84.13%, model A9 80.1%, and model C4 78.6%.

  7. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    Science.gov (United States)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  8. Interaction of Macro-particles with LHC proton beam

    CERN Document Server

    Zimmermann, F; Xagkoni, A

    2010-01-01

    We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.

  9. Heavy metals in seafood of Sepetiba Bay, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Pfeiffer, W.C.; Fiszman, M.; Lima, N.R.W.; Lacerda, L.D. de

    Metals Cu, Cr, Cd, Zn, Mn and Pb, were measured in seafood items from Sepetiba Bay, Rio de Janeiro, The results showed that the highest concentrations are presented by filter-feeding molluscs, probably due to their relationship with the bay's suspended particulate matter. (M.A.C.) [pt

  10. Trace Metals in Urban Stormwater Runoff and their Management

    Science.gov (United States)

    Li, T.; Hall, K.; Li, L. Y.; Schreier, H.

    2009-04-01

    were 3, 0.7, 9, and 3.2 times higher than the GVRD urban area limits for Cu, Mn, Fe, and Zn, respectively. The filter showed high and stable capture efficiencies in total metals (Cu 62%, Mn 75%, Fe 83%, Zn 62%), dissolved metals (Cu 39%, Mn 37%, Fe 47%, Zn 32%), turbidity (72%), and suspended solids (74%) removal during the first month of operation. After that, there was gradual degradation. The catch basin filter performance improved significantly for the suspended solids and total metal removal after cleaning. However, the perlite filter medium showed poor performance for dissolved metal removal in the second study period. Based on the findings, a catch basin filter is effective in storm water management to control suspended solids loading from storm water runoff.

  11. Metal-Microbial Interactions in Toronto Sunnyside Beach: Impact on Water Quality and Public Health

    Science.gov (United States)

    Plach, J. M.; Elliott, A.; Warren, L. A.

    2009-05-01

    Assessing recreational water quality requires a fundamental understanding of metal-microbial interactions and the key biogeochemical processes occurring in urban public beaches. Metals play an important role in the distribution and virulence (e.g. resistance) of microorganisms in water systems. In turn, microorganisms have a significant influence on metal cycling, thus affecting metal mobility, bioavailability and toxicity in the aquatic environment. Bacteria adhere to floc, small suspended mineral-bacterial aggregates, in aquatic systems resulting in high-density floc-associated bacterial biofilm communities. These nanoparticulate bacterial microhabitats are important environmental sinks for metals and potential reservoirs for antibiotic resistant and pathogenic bacteria. The objectives of this study are to identify and quantify (1) metal distributions among suspended floc, bed sediment and water-column aqueous compartments (2) important biogeochemical processes influencing metal cycling and (3) linkages between floc metals and the occurrence of floc associated antibiotic resistant bacteria and pathogens across a series of variably contaminated aquatic systems. Results of this project will provide new diagnostic indicators of pathogens in recreational water systems and aid in the development of public health policies to improve water quality and reduce water borne infectious disease. Here, results will be presented assessing the metal and microbial community dynamics in samples collected from Toronto's Sunnyside Beach (May 13 and August 20), an urban public beach on Lake Ontario. Water column, floc and bed sediments near and offshore were analyzed for physico-chemical characteristics and metal concentrations. Floc were imaged using DAPI and FISH to assess microbial community structure. Results to date, characterizing the linkages amongst bacteria, metal contaminant concentrations and sediment partitioning and system physico-chemical conditions will be discussed.

  12. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  13. The features of ballistic electron transport in a suspended quantum point contact

    International Nuclear Information System (INIS)

    Shevyrin, A. A.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.

    2014-01-01

    A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction

  14. Analysis of the Danube river suspended load regime

    International Nuclear Information System (INIS)

    Lukac, M.

    2004-01-01

    In this presentation author deals with the analysis of the Danube river suspended load regime at the Slovak section of Danube. It is concluded and recommended: Suspended load transport at the Slovak section of Danube decreases in the downstream directions - annual averages: Utilize relation of the Water Research Institute in Medvedov, the relation of the Slovak Hydrometeorological Institute is probably slightly underestimated; Distribution of suspended load concentration in the cross-section is influenced mainly with local hydraulic and morphological conditions; Measured flow velocity in the range 0.6 - 2.65 m/sec -1 , influenced with water level slope; Silt particles the most numerous, less numerous sandy and clayey particles; Bratislava 3.54 mil. tonnes, Medvedov 2.22 mil. tonnes, and Komarno 1.96 mil. tonnes; Recommendation to measure actual volume of the Cunovo reservoir, in order to validate sediment transport balance; Recommendation to continue in a complex monitoring programme of sediment transport

  15. Monitor of SC beam profiles

    CERN Document Server

    CERN PhotoLab

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  16. Underwater laser cutting of metal structures

    Energy Technology Data Exchange (ETDEWEB)

    Alfille, J.P.; Prunele, D. de [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Pilot, G. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations; Fredrick, P.; Ramaswami, V.S.; Muys, P. [Radius Engineering, Gent (Belgium)

    1994-12-31

    Cutting tests were carried out on stainless steel (304L) in air and under 7 meters of water (application to reactor pools), using CO{sub 2} and YAG lasers; results concerned cutting speed, quality of cut, cutting thickness. By-products of sectioning operations using a CO{sub 2} laser were studied: dross, aerosols, suspended particles in water, gas analysis, chemical analysis of the aerosols. Same measurements are currently being taken in the case of the YAG laser with beam transported via optical fiber. (from author). 16 figs., 2 tabs., 3 refs.

  17. Underwater laser cutting of metal structures

    International Nuclear Information System (INIS)

    Alfille, J.P.; Prunele, D. de

    1994-01-01

    Cutting tests were carried out on stainless steel (304L) in air and under 7 meters of water (application to reactor pools), using CO 2 and YAG lasers; results concerned cutting speed, quality of cut, cutting thickness. By-products of sectioning operations using a CO 2 laser were studied: dross, aerosols, suspended particles in water, gas analysis, chemical analysis of the aerosols. Same measurements are currently being taken in the case of the YAG laser with beam transported via optical fiber. (from author). 16 figs., 2 tabs., 3 refs

  18. Novel metal ion surface modification technique

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 x 10 16 atoms/cm 2 , and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs

  19. An 'artificial mussel' for monitoring heavy metals in marine environments

    International Nuclear Information System (INIS)

    Wu, Rudolf S.S.; Lau, T.C.; Fung, Wendy K.M.; Ko, P.H.; Leung, Kenneth M.Y.

    2007-01-01

    A new chemical sampling device, artificial mussel (AM), has been developed for monitoring metals in marine environments. This device consists of a polymer ligand suspended in artificial seawater within a Perspex tubing, and enclosed with semi-permeable gel at both ends. Laboratory and field experiments were carried out to examine the uptake of five metals (Cd, Cr, Cu, Pb and Zn) by the AM. Uptake of metals by AM was proportional to the exposure metal concentrations, and the AM was able to accumulate the ASV labile fractions of metals. Uptake and release of the metals of AM are similar to those of the mussel Perna viridis, but less affected by salinity and temperature. Field studies demonstrated that the AM can not only provide a time-integrated estimate of metals concentrations, but also allows comparisons of metal levels in different environments and geographical areas beyond the natural distribution limits of biomonitors. - A new monitoring device to provide a time-integrated estimate for monitoring metals in marine environments

  20. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  1. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    Science.gov (United States)

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  2. Bending of metal-filled carbon nanotube under electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Abha Misra

    2012-03-01

    Full Text Available Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM. In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

  3. Seasonal changes in suspended sediment load in the Gauthami-Godavari Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, B.P.; Rao, K.M.; Rao, V.S.

    Studies carried out on suspended matter characteristics of the the Gautami Godavari Estuary revealed that the concentration of suspended matter (CSM) during southwest monsoon influenced mainly by the increased run off at both Neelarevu and Vrudha...

  4. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Energy Technology Data Exchange (ETDEWEB)

    Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Thopan, P.; Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.

  5. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    International Nuclear Information System (INIS)

    Thongkumkoon, P.; Prakrajang, K.; Thopan, P.; Yaopromsiri, C.; Suwannakachorn, D.; Yu, L.D.

    2013-01-01

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation

  6. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  7. Erosion of the Alberta badlands produces highly variable and elevated heavy metal concentrations in the Red Deer River, Alberta.

    Science.gov (United States)

    Kerr, Jason G; Cooke, Colin A

    2017-10-15

    Erosion is important in the transport of heavy metals from terrestrial to fluvial environments. In this study, we investigated riverine heavy metal (Cd, Cu, Hg and Pb) dynamics in the Red Deer River (RDR) watershed at sites upstream (n=2) and downstream (n=7) of the Alberta badlands, an area of naturally high erosion. At sites draining the badlands, total water column Cd, Cu, Hg and Pb concentrations frequently exceeded guidelines for the protection of freshwater biota. Furthermore, peak concentrations of total Cd (9.8μgL -1 ), Cu (212μgL -1 ), Hg (649ngL -1 ) and Pb (361μgL -1 ) were higher than, or comparable to, values reported for rivers and streams heavily impacted by anthropogenic activities. Total suspended solids (TSS) explained a large proportion (r 2 =0.34-0.83) of the variation in total metal concentrations in the RDR and tributaries and metal fluxes were dominated by the particulate fraction (60-98%). Suspended sediment concentrations (C sed ) and metal to aluminum ratios were generally not indicative of substantial sediment enrichment. Rather, the highly variable and elevated metal concentrations in the RDR watershed were a function of the high and variable suspended sediment fluxes which characterize the river system. While the impact of this on aquatic biota requires further investigation, we suggest erosion in the Alberta badlands may be contributing to Hg-based fish consumption advisories in the RDR. Importantly, this highlights a broader need for information on contaminant dynamics in watersheds subject to elevated rates of erosion. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle

    Science.gov (United States)

    Kim, Jaehyun; Oh, Jinho; Choi, Hanho

    2010-06-01

    Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.

  9. Beam-time for biology

    CERN Multimedia

    Jordan Juras

    2010-01-01

    There's no question that playing with mercury or handling radioactive cadmium with your bare hands is a risky business. But understanding how these and other toxic metals interact with biomolecules within the body is a challenging feat; one for which the ISOLDE IS488 collaboration hopes to provide valuable insight.   General view of the ISOLDE experimental area. Unlike most of the facilities at CERN's accelerator complex, ISOLDE is not targeted mainly at particle physics. Rather, it produces radioactive nuclei during proton bombardment to study, among other things, physical and biological chemistry. At ISOLDE, the 1.4 GeV proton beam of the PS Booster (an early stage in CERN's accelerator complex) produces nuclear reactions in a thick target, creating a large variety of radioactive nuclei, which are mass-separated for use in experiments. In the case of the IS488 collaboration, the ion beam is directed into ice. "We implant radioactive metal ions into ice", explains Monika Stac...

  10. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  11. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  12. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  13. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  14. Metal Artifact Suppression in Dental Cone Beam Computed Tomography Images Using Image Processing Techniques.

    Science.gov (United States)

    Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh

    2018-01-01

    Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.

  15. Suspended graphene variable capacitor

    OpenAIRE

    AbdelGhany, M.; Mahvash, F.; Mukhopadhyay, M.; Favron, A.; Martel, R.; Siaj, M.; Szkopek, T.

    2016-01-01

    The tuning of electrical circuit resonance with a variable capacitor, or varactor, finds wide application with the most important being wireless telecommunication. We demonstrate an electromechanical graphene varactor, a variable capacitor wherein the capacitance is tuned by voltage controlled deflection of a dense array of suspended graphene membranes. The low flexural rigidity of graphene monolayers is exploited to achieve low actuation voltage in an ultra-thin structure. Large arrays compr...

  16. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  17. Optical fiber end-facet polymer suspended-mirror devices

    Science.gov (United States)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  18. Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations

    NARCIS (Netherlands)

    Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.

    2012-01-01

    Although designed for velocity measurements, acoustic Doppler current profilers (ADCPs) are widely being used to monitor suspended particulate matter in rivers and in marine environments. To quantify mass concentrations of suspended matter, ADCP backscatter is generally calibrated with in situ

  19. Suspended microstructures of epoxy based photoresists fabricated with UV photolithography

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Anhøj, Thomas Aarøe; Caviglia, Claudia

    2017-01-01

    In this work we present an easy, fast, reliable and low cost microfabrication technique for fabricating suspended microstructures of epoxy based photoresistswith UV photolithography. Two different fabrication processes with epoxy based resins (SU-8 and mr-DWL) using UV exposures at wavelengths...... of 313 nm and 405 nm were optimized and compared in terms of structural stability, control of suspended layer thickness and resolution limits. A novel fabrication process combining the two photoresists SU-8 and mr-DWL with two UV exposures at 365 nm and 405 nm respectively provided a wider processing...... window for definition of well-defined suspended microstructures with lateral dimensions down to 5 μmwhen compared to 313 nm or 365 nm UV photolithography processes....

  20. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    Science.gov (United States)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-09-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions.

  1. Use of Langmuir probe for analysis of charged particles in metal vapour generated by electron beam heating

    International Nuclear Information System (INIS)

    Dikshit, B; Bhatia, M S

    2008-01-01

    During electron beam evaporation of metal, a certain fraction of the vapor is ionized due to various processes such as Saha ionization and electron impact. These charge particles constitute a plasma which expands along with the vapour. To know about parameters of this plasma viz. electron temperature, electron density, plasma potential, we have used a disc type Langmuir probe inside the plasma. The measured electron temperature was found to be about ∼0.15eV (1740K) and measured plasma potential was ∼1V. The low value of electron temperature as compared to the source temperature, established that plasma cools significantly while traversing the distance between the source and the point of measurement. Again as the electron temperature was approximately same as the ion temperature of the vapor (expected to be same as kinetic temperature of vapor for collisional flow), we concluded that a kind of equilibrium had been established in the plasma. Finally, various processes responsible for ionization of the vapor are discussed and it was found that both Saha ionization and electron impact processes play important role in ionization of the uranium vapor generated by electron beam heating

  2. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  3. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  4. Development of a beam ion velocity detector for the heavy ion beam probe

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  5. Metallic wedge degraders for rapid energy measurement of Bevalac heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Wada, R.; Alonso, J.R.

    1981-03-01

    An ever-present need in an accelerator-based research program is knowing the energy of the beam delivered to the experimenter. Knowledge of accelerator parameters is generally good enough to predict the beam energy to within a few percent as it leaves the machine, but after passage through a complex switchyard, with air gaps, and non-destructive monitors, substantial changes in the energy can occur. Knowledge of the material in the beam path allows for calculations of expected energy loss, but this knowledge is not always complete, and the unforeseen often plays tricks on the unwary experimenter; for example, a section of beam-pipe inadvertently let up to air, or a monitor left in the beam-line from the previous run. Although such occurrences are rare, to say they do not happen would be grossly inaccurate. The only defense of the experimenter, then, is to have an accurate technique for determining the beam energy at his target location, a technique which requires little beam time and which is non-disruptive of his experimental setup. The device described meets all of these criteria, and is now used extensively in the Nuclear Science and Biomedical programs at the Bevalac.

  6. Metallic wedge degraders for rapid energy measurement of Bevalac heavy ion beams

    International Nuclear Information System (INIS)

    Wada, R.; Alonso, J.R.

    1981-03-01

    An ever-present need in an accelerator-based research program is knowing the energy of the beam delivered to the experimenter. Knowledge of accelerator parameters is generally good enough to predict the beam energy to within a few percent as it leaves the machine, but after passage through a complex switchyard, with air gaps, and non-destructive monitors, substantial changes in the energy can occur. Knowledge of the material in the beam path allows for calculations of expected energy loss, but this knowledge is not always complete, and the unforeseen often plays tricks on the unwary experimenter; for example, a section of beam-pipe inadvertently let up to air, or a monitor left in the beam-line from the previous run. Although such occurrences are rare, to say they do not happen would be grossly inaccurate. The only defense of the experimenter, then, is to have an accurate technique for determining the beam energy at his target location, a technique which requires little beam time and which is non-disruptive of his experimental setup. The device described meets all of these criteria, and is now used extensively in the Nuclear Science and Biomedical programs at the Bevalac

  7. Highly anisotropic metasurface: a polarized beam splitter and hologram

    Science.gov (United States)

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D.; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. PMID:25262791

  8. Fundamental studies of electron beam welding of heat-resistant superalloys for nuclear plants, 5

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this paper, the mechanical properties of base metal, its electron beam and TIG weld joint of superalloys for nuclear plants were made clear and compared with each other. As a result, it has been clarified that electron beam weld joint is superior to TIG weld joint and nearly comparable to base metal. (author)

  9. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China

    Science.gov (United States)

    Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu

    2018-06-01

    A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.

  10. MEMS-Based Fuel Reformer with Suspended Membrane Structure

    Science.gov (United States)

    Chang, Kuei-Sung; Tanaka, Shuji; Esashi, Masayoshi

    We report a MEMS-based fuel reformer for supplying hydrogen to micro-fuel cells for portable applications. A combustor and a reforming chamber are fabricated at either side of a suspended membrane structure. This design is used to improve the overall thermal efficiency, which is a critical issue to realize a micro-fuel reformer. The suspended membrane structure design provided good thermal isolation. The micro-heaters consumed 0.97W to maintain the reaction zone of the MEMS-based fuel reformer at 200°C, but further power saving is necessary by improving design and fabrication. The conversion rate of methanol to hydrogen was about 19% at 180°C by using evaporated copper as a reforming catalyst. The catalytic combustion of hydrogen started without any assistance of micro-heaters. By feeding the fuel mixture of an equivalence ratio of 0.35, the temperature of the suspended membrane structure was maintained stable at 100°C with a combustion efficiency of 30%. In future works, we will test a micro-fuel reformer by using a micro-combustor to supply heat.

  11. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed

    2011-06-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  12. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed; Kamel, Aladin Hassan; Niver, Edip

    2011-01-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  13. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  14. 77 FR 44233 - Clothianidin; Emergency Petition To Suspend; Notice of Availability

    Science.gov (United States)

    2012-07-27

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2012-0344; FRL-9355-1] Clothianidin; Emergency.... SUMMARY: PANNA and others submitted a request for the EPA to immediately suspend Clothianidin and take... the EPA suspend registrations for the insecticide clothianidin for the four following reasons: (1) To...

  15. 20 CFR 408.802 - When will we suspend your SVB payments?

    Science.gov (United States)

    2010-04-01

    ....802 Section 408.802 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SPECIAL BENEFITS FOR CERTAIN WORLD WAR II VETERANS Suspensions and Terminations Suspension § 408.802 When will we suspend your SVB... underway for a substitute representative payee.) (b) Effect of suspension. When we correctly suspend your...

  16. H2S induces a suspended animation-like state in mice.

    Science.gov (United States)

    Blackstone, Eric; Morrison, Mike; Roth, Mark B

    2005-04-22

    Mammals normally maintain their core body temperature (CBT) despite changes in environmental temperature. Exceptions to this norm include suspended animation-like states such as hibernation, torpor, and estivation. These states are all characterized by marked decreases in metabolic rate, followed by a loss of homeothermic control in which the animal's CBT approaches that of the environment. We report that hydrogen sulfide can induce a suspended animation-like state in a nonhibernating species, the house mouse (Mus musculus). This state is readily reversible and does not appear to harm the animal. This suggests the possibility of inducing suspended animation-like states for medical applications.

  17. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  18. The effects of Hurricane Hugo on suspended-sediment loads, Lago Loiza Basin, Puerto Rico

    Science.gov (United States)

    Gellis, A.

    1993-01-01

    In the two main tributaries that enter Lago Loiza, Rio Grande de Loiza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58.2??106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Rio Grande de Loiza for Hurricane Hugo was 2290 mgl-1, the second lowest for the 12 storms that have been monitored at this site. In Rio Gurabo the storm-average suspended-sediment concentration was 1420 mg l -1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Rio Grande de Loiza, suspended-sediment concentrations were as low as 33 mg l-1 during peak runoff of 20m3s-1. Normally the suspended-sediment concentrations at this discharge are 300 mg l-1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads. High winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads. -from Author

  19. Effect of III/V ratio on the polarity of AlN and GaN layers grown in the metal rich growth regime on Si(111) by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Agrawal, Manvi; Dharmarasu, Nethaji; Radhakrishnan, K.; Pramana, Stevin Snellius

    2015-01-01

    Wet chemical etching, reflection high energy electron diffraction, scanning electron microscope and convergent beam electron diffraction have been employed to study the polarities of AlN and the subsequently grown GaN as a function of metal flux in the metal rich growth regime. Both AlN and GaN exhibited metal polarity in the intermediate growth conditions. However, in the droplet growth regime, the polarity of AlN and GaN were N polar and Ga polar, respectively. It was observed that Ga polar GaN could be obtained on both Al and N polar AlN. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure exhibiting hall mobility of 900 cm 2 V -1 s -1 and sheet carrier density of 1.2 × 10 13 cm -2 was demonstrated using N polar AlN which confirmed Ga polarity of GaN. Al metal flux was likely to play an important role in controlling the polarity of AlN and determining the polarity of the subsequent GaN grown on Si(111) by plasma assisted molecular beam epitaxy (PA-MBE). (author)

  20. A Generalized Mathematical Model for the Fracture Problem of the Suspended Highway

    Directory of Open Access Journals (Sweden)

    Zhao Ying

    2017-01-01

    Full Text Available In order to answer dangling fracture problems of highway, the suspended pavement equivalent for non - suspended pavement, through the special boundary conditions has been suspended highway stress field of expression, in accordance with the 3D fracture model of crack formation, and establish a vacant, a general mathematics model for fracture problems of highway and analysis in highway suspended segment weight and vehicle load limit of highway capacity of Pu For overturning road inPu is less than the force of carrying more than compared to the work and fruit Bridge Hydropower Station Road engineering examples to verify suspended highway should force field expressions for the correctness and applicability. The results show that: when the hanging ratio R 0. 243177 limits of Pu design axle load 100kN. When the vertical crack in the vacant in the direction of length greater than 0. 1, the ultimate bearing capacity is less than the design axle load 100kN; when the hanging ratio R is less than 0. 5, the road to local fracture, the ultimate bearing capacity of suspended stress field expressions in solution; when the hanging ratio is greater than or equal to 0. 5, the road does not reach the limit bearing capacity of the whole body; torque shear surface of the effect is far less than the bending moments on shear planes.

  1. Nanomechanical mapping of graphene layers and interfaces in suspended graphene nanostructures grown via carbon diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, B.J. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Rabot, C. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Mazzocco, R. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Delamoreanu, A. [Microelectronics Technology Laboratory (LTM), Joseph Fourier University, French National Research Center (CNRS), 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Zenasni, A. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Kolosov, O.V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-01-01

    Graphene's remarkable mechanical, electronic and thermal properties are strongly determined by both the mechanism of its growth and its interaction with the underlying substrate. Evidently, in order to explore the fundamentals of these mechanisms, efficient nanoscale methods that enable observation of features hidden underneath the immediate surface are needed. In this paper we use nanomechanical mapping via ultrasonic force microscopy that employs MHz frequency range ultrasonic vibrations and allows the observation of surface composition and subsurface interfaces with nanoscale resolution, to elucidate the morphology of few layer graphene (FLG) films produced via a recently reported method of carbon diffusion growth (CDG) on platinum-metal based substrate. CDG is known to result in FLG suspended over large areas, which could be of high importance for graphene transfer and applications where a standalone graphene film is required. This study directly reveals the detailed mechanism of CDG three-dimensional growth and FLG film detachment, directly linking the level of graphene decoupling with variations of the substrate temperature during the annealing phase of growth. We also show that graphene initially and preferentially decouples at the substrate grain boundaries, likely due to its negative expansion coefficient at cooling, forming characteristic “nano-domes” at the intersections of the grain boundaries. Furthermore, quantitative nanomechanical mapping of flexural stiffness of suspended FLG “nano-domes” using kHz frequency range force modulation microscopy uncovers the progression of “nano-dome” stiffness from single to bi-modal distribution as CDG growth progresses, suggesting growth instability at advanced CDG stages. - Highlights: • Exploring growth and film-substrate decoupling in carbon diffusion grown graphene • Nanomechanical mapping of few layer graphene and graphene–substrate interfaces • Quantitative stiffness mapping of

  2. Characterization and radionuclides sorption of suspended particulate matters in freshwater according to their settling kinetics

    International Nuclear Information System (INIS)

    Brach-Papa, C.; Boyer, P.; Amielh, M.; Anselmet, F.

    2004-01-01

    In freshwater, the transfers of radionuclides depend both on exchanges between liquid and solid phases and on mass transfers between suspended matter and bottom sediment. Whereas the former ones depend on chemical processes (such as sorption/desorption, complexation, the latter ones are regulated by hydrological and sedimentary considerations (dispersion, erosion, deposit closely related to the interactions between flow, suspended matter and bed sediment. Some of our previous studies highlight the need to consider the matter heterogeneity and its specific sediment dynamics to correctly report the inhomogeneity of fluxes in time and in space. These considerations lead us to develop experimental methods to distinguish the different matter classes, present in natural water, mainly according to their erosion threshold and settling kinetics. In this context, this paper presents the experimental protocol TALISMEN to characterize a natural bulk suspension according the identification of its main settling kinetics groups. In a first step, this identification is achieved by the use of a settling tank, that allows the monitoring of the suspended solid concentration at various depths, combined to a vertical mono-dimensional settling model applying a multi-class approach. In a second step, the particle groups are isolated and their physico-chemical properties are determined ( i.e mineral composition, specific surface area, particulate organic carbon, in order to fully characterized them. In a last one, the sorption property of each group toward radionuclides is determined by the measurements of its distribution coefficients (Kd). The results confirm the interest to consider these heterogeneities for the modelling of the radionuclides transfer in freshwater. From one group to other, these heterogeneities appear at two levels: 1) their sediment dynamics and 2) their radionuclides sorption properties. These conclusions can be equally applying to others xenobiotics as heavy metals

  3. New developments in metal ion implantation by vacuum arc ion sources and metal plasma immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1996-01-01

    Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a metal plasma immersion configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the in charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from pure ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here the authors review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put. 54 refs., 9 figs

  4. Development of focused ion beam systems with various ion species

    International Nuclear Information System (INIS)

    Ji Qing; Leung, K.-N.; King, Tsu-Jae; Jiang Ximan; Appleton, Bill R.

    2005-01-01

    Conventional focused ion beam systems employ a liquid-metal ion source (LMIS) to generate high-brightness beams, such as Ga + beams. Recently there has been an increased need for focused ion beams in areas like biological studies, advanced magnetic-film manufacturing and secondary-ion mass spectroscopy (SIMS). In this article, status of development on focused ion beam systems with ion species such as O 2 + , P + , and B + will be reviewed. Compact columns for forming focused ion beams from low energy (∼3keV), to intermediate energy (∼35keV) are discussed. By using focused ion beams, a SOI MOSFET is fabricated entirely without any masks or resist

  5. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  6. Suspended particle and drug ingredient concentrations in hospital dispensaries and implications for pharmacists' working environments.

    Science.gov (United States)

    Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro

    2016-03-01

    The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.

  7. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    Electron beam curing of paints and allied materials is discussed. Examples of applications are: silicone papers; painting of metal; bonding of flake adhesives; bonding of grinding media (binders); paints for external uses; painting shaped parts; bi-reactive painting systems. An example is given of the calculation of the cost of irradiation. (U.K.)

  8. Deviation of longitudinal and shear waves in austenitic stainless steel weld metal

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Reimann, K.J.

    1980-01-01

    One of the difficulties associated with the ultrasonic inspection of stainless steel weld metal is the deviation of the ultrasonic beams. This can lead to errors in determining both the location and size of reflectors. The present paper compares experimental and theoretical data related to beam steering for longitudinal and shear waves in a sample of 308 SS weld metal. Agreement between predicted and measured beam deviations is generally good. Reasons for discrepancies are discussed

  9. 19 CFR 351.222 - Revocation of orders; termination of suspended investigations.

    Science.gov (United States)

    2010-04-01

    ... orders; termination of suspended investigations. (a) Introduction. “Revocation” is a term of art that... that: (i) Producers accounting for substantially all of the production of the domestic like product to... 19 Customs Duties 3 2010-04-01 2010-04-01 false Revocation of orders; termination of suspended...

  10. Strong mechanically induced effects in DC current-biased suspended Josephson junctions

    Science.gov (United States)

    McDermott, Thomas; Deng, Hai-Yao; Isacsson, Andreas; Mariani, Eros

    2018-01-01

    Superconductivity is a result of quantum coherence at macroscopic scales. Two superconductors separated by a metallic or insulating weak link exhibit the AC Josephson effect: the conversion of a DC voltage bias into an AC supercurrent. This current may be used to activate mechanical oscillations in a suspended weak link. As the DC-voltage bias condition is remarkably difficult to achieve in experiments, here we analyze theoretically how the Josephson effect can be exploited to activate and detect mechanical oscillations in the experimentally relevant condition with purely DC current bias. We unveil how changing the strength of the electromechanical coupling results in two qualitatively different regimes showing dramatic effects of the oscillations on the DC-voltage characteristic of the device. These include the appearance of Shapiro-type plateaus for weak coupling and a sudden mechanically induced retrapping for strong coupling. Our predictions, measurable in state-of-the-art experimental setups, allow the determination of the frequency and quality factor of the resonator using DC only techniques.

  11. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  12. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  13. Effect of metal artifact reduction software on image quality of C-arm cone-beam computed tomography during intracranial aneurysm treatment.

    Science.gov (United States)

    Enomoto, Yukiko; Yamauchi, Keita; Asano, Takahiko; Otani, Katharina; Iwama, Toru

    2018-01-01

    Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p software improved image quality of CBCT images degraded by metal artifacts.

  14. Forty Cases of Insomnia Treated by Suspended Moxibustion at Baihui (GV 20)

    Institute of Scientific and Technical Information of China (English)

    JU Yan-li; CHI Xu; LIU Jian-xin

    2009-01-01

    Objective:To observe the therapeutic effect of suspended moxibustion at Baihui (GV 20) for insomnia.Methods: 75 cases were divided randomly into two groups, with 40 cases in the treatment group treated by suspended moxibustion over Baihui (GV 20) and 35 cases in the control group treated by oral administration of Estazolam. Results: The difference in therapeutic effect between the two groups was not statistically significant (P>0.1). Conclusion: It was concluded that suspended moxibustion at Baihui (GV 20) is as effective as Estazolam for insomnia.

  15. Effect of pulse current on acidification and removal of Cu, Cd, and As during suspended electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2013-01-01

    The effect of pulse current on the acidification process and the removal of heavy metals during suspended electrodialytic soil remediation were investigated in this work. Eight experiments with constant and pulse current in two polluted soils were conducted using a 3-compartment membrane cell......, predominately working under overlimiting current density conditions. Soil 1 was sampled from a pile of excavated soil at a site with mixed industrial pollution (Cu and Cd), and soil 2 was sampled from the top layer of a wood preservation site (Cu and As). Results showed that pulse current improved...... the acidification by supplying more reactive H+ ions (defined as the H+ ions causing release of heavy metals from soil particles). The molar ratio of reactive H+ ions to total produced H+ ions (RH+/PH+) was higher in every pulse current experiment than in the corresponding constant current experiment. In addition...

  16. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  17. Bed-levelling experiments with suspended load

    NARCIS (Netherlands)

    Talmon, A.M.; De Graaff, J.

    1991-01-01

    Bed-levelling experiments are conducted in a straight laboratory channel. The experiments involve a significant fraction of suspended sediment transport. The purpose of the experiments is to provide data for modelling of the direction of sediment transport on a transverse sloping alluvial river bed,

  18. Disintegration of liquid metals by low pressure water blasting

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    The feasibility of disintegrating metals by a low cost system and subsequently incorporating them into grout mixtures has been demonstrated. A low pressure water blasting technique consisting of multiple nozzles and a converging-line jet stream was developed to disintegrate liquid metals and produce coarse metal powder and shot. Molten iron resulted in spherical shot, while copper, aluminum, and tin produced irregular shaped particles. The particle size was between 0.05 and 3 mm (0.002 and 0.1 in.), and about half the particles were smaller than 1 mm (0.04 in.) in all cases. The water consumption was rather low, while the production rate was relatively high. The method proved to be simple and reliable. The coarse metal powders were suspendable in grout fluids, indicating that they are probably disposable by the shale hydrofracture technique

  19. Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr

    2018-01-01

    Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....

  20. How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@rmit.edu.a [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Zalizniak, Liliana [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Dunlop, Jason E. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia); Smart Water Research Facility, Griffith University, Queensland (Australia); Nugegoda, Dayanthi [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Choy, Satish C. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia)

    2010-02-15

    The effects of suspended and deposited sediments on the macroinvertebrates are well documented in upland streams but not in slower flowing lowland rivers. Using species found in lowland lotic environments, we experimentally evaluate mechanisms for sediments to affect macroinvertebrates, and in one experiment whether salinity alters the effect of suspended sediments. Suspended kaolin clay reduced feeding of Ischnura heterosticta (Odonata: Coenagrionidae) at high turbidity (1000-1500 NTU) but had no effects on feeding of Hemianax papuensis (Odonata: Aeshnidae) and Micronecta australiensis (Hemiptera: Corixidae). In freshwater (0.1 mS/cm), survival of Ischnura aurora was poor in clear water, but improved with suspended kaolin. Growth and feeding of I. aurora were unaffected by suspended sediments and salinity. Burial (1-5 mm) of eggs with kaolin or sand reduced hatching in Physa acuta (Gastropoda: Physidae), Gyraulus tasmanica (Gastropoda: Planorbidae) and Chironomus cloacalis (Diptera: Chironomidae). Settling sediments may pose greater risk to lowland lotic invertebrates than suspended sediments. - Sediment deposition may be more directly detrimental to macroinvertebrates of lowland rivers than suspended sediments.

  1. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.; /Fermilab

    2010-05-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  2. An Equivalent Beam Model for the Dynamic Analysis to a Feeding Crane of a Tall Chimney. Application in a Coal Power Plant

    Directory of Open Access Journals (Sweden)

    Viorel-Mihai Nani

    2016-05-01

    Full Text Available The paper presents a dynamic analysis for a special crane, which serves a coal power plant. The steel cables for the lifting mechanisms of crane are long and flexible. For this reason, when is feeding the tall chimney, its can appear dangerous dynamic effects due to the suspended load. This load can perform oscillations or vibration movements. As a result, the suspended load position is sometimes difficult to control. Through experimental researches, using a special fitting with strain gauges and accelerometers assembled along the crane’s arm as a beam, we have obtained relevant information. Using the initial design data, we were able to develop an optimal nonlinear dynamic model. This one was the experimental support for other simulations in extremely dangerous situations, like: the accidental fall of the suspended load from the crane hook or a mechanical strong shock due to the collision between the suspended load and the tall chimney wall or the power plant wall, under the strong wind conditions, for example.

  3. Fabrication of a micro-hole array on metal foil by nanosecond pulsed laser beam machining using a cover plate

    International Nuclear Information System (INIS)

    Ha, Kyoung Ho; Lee, Se Won; Jee, Won Young; Chu, Chong Nam; Kim, Janggil

    2015-01-01

    A novel laser beam machining (LBM) method is proposed to achieve higher precision and better quality beyond the limits of a commercialized nanosecond pulsed laser system. The use of a cover plate is found to be effective for the precision machining of a thin metal foil at micro scale. For verifying the capability of cover plate laser beam machining (c-LBM) technology, a 30 by 30 array of micro-holes was fabricated on 8 µm-thick stainless steel 304 (STS) foil. As a result, thermal deformation and cracks were significantly reduced in comparison with the results using LBM without a cover plate. The standard deviation of the inscribed and circumscribed circle of the holes with a diameter of 12 µm was reduced to 33% and 81%, respectively and the average roundness improved by 77%. Moreover, the smallest diameter obtainable by c-LBM in the given equipment was found to be 6.9 µm, which was 60% less than the minimum size hole by LBM without a cover plate. (technical note)

  4. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Directory of Open Access Journals (Sweden)

    Amit Kumar Nayak

    2010-01-01

    Full Text Available The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae as an innovative suspending agent. Zinc oxide suspensions (20% w/v were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite.

  5. Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Pany, Dipti Ranjan; Mohanty, Biswaranjan

    2010-01-01

    The present study was undertaken to evaluate the mucilage isolated from Spinacia oleracea L. leaves, commonly named spinach (family: Amaranthaceae) as an innovative suspending agent. Zinc oxide suspensions (20% w/v) were prepared using the mucilage of S. oleracea L. leaves as a suspending agent, and it was evaluated for its stability by using parameters like, sedimentation profile, degree of flocculation, and redispersibility. The effect of the tested mucilage on the suspension was compared with various commonly used suspending agents, such as, tragacanth, bentonite, and sodium carboxymethyl cellulose (NaCMC) at concentrations of 0.5, 1.0, and 2.0% w/v. The results obtained indicated that the mucilage of S. oleracea L. leaves could be used as a suspending agent, and the performance was found to be superior to both tragacanth and bentonite. PMID:22247868

  6. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  7. Studying Suspended Sediment Mechanism with Two-Phase PIV

    Science.gov (United States)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  8. Thermal conductivity of graphene with defects induced by electron beam irradiation

    Science.gov (United States)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is

  9. Advanced applications in microphotonics using proton beam writing

    International Nuclear Information System (INIS)

    Bettiol, A.A.; Chiam, S.Y.; Teo, E.J.; Udalagama, C.; Chan, S.F.; Hoi, S.K.; Kan, J.A. van; Breese, M.B.H.; Watt, F.

    2009-01-01

    Proton beam writing (PBW) is a powerful tool for prototyping microphotonic structures in a wide variety of materials including polymers, insulators, semiconductors and metals. Prototyping is achieved either through direct fabrication with the proton beam, or by the fabrication of a master that can be used for replication. In recent times we have explored the use of PBW for various advanced optical applications including fabrication of subwavelength metallic structures and metamaterials, direct write of silicon waveguides for mid IR applications and integrated waveguides for lab-on-a-chip devices. This paper will review the recent progress made in these areas with particular emphasis on the main advantages of using the PBW technique for these novel applications.

  10. Effect of site on sedimentological characteristics and metal pollution in two semi-enclosed embayments of great freshwater reservoir: Lake Nasser, Egypt

    Science.gov (United States)

    Farhat, Hassan I.; Aly, Walid

    2018-05-01

    This study was carried out to assess the effect of site on the spatial variations of sedimentological characteristics and heavy metal pollution of two semi-enclosed embayments of Lake Nasser. Grain Size, texture and mode of transportation as well as some heavy metals and organic matter were assessed in sediment samples from those embayments. The results indicated that the grain size of the lake sediments was affected by site variation. Moreover, heavy metal distribution in the sediments was mainly directed by grain size distribution and organic matter, though, the organic matter was more critical than grain size in controlling heavy metals distribution in each embayment. The main source of heavy metals in studied embayments was concluded to be the metals brought with flood waters rather than being of anthropogenic origin. The results also indicated the association of studied metals with Fe and Mn oxides of suspended matters and dissolved solids which come with flood water and trapped and settled to the bottom sediment in the stagnation period. Measured indices indicated that southern embayment is more polluted than northern one, which could be explained on the basis that the southern embayment reserves larger amounts of suspended matter coming with the flood than northern embayment.

  11. Determination of Focal Laws for Ultrasonic Phased Array Testing of Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jing, Ye; Kim, Hak Joon; Song, Sung Jin; Song, Myung Ho; Kang, Suk Chull; Kang, Sung Sik; Kim, Kyung Cho

    2008-01-01

    Inspection of dissimilar metal welds using phased array ultrasound is not easy at all, because crystalline structure of dissimilar metal welds cause deviation and splitting of the ultrasonic beams. Thus, in order to have focusing and/or steering phased array beams in dissimilar metal welds, proper time delays should be determined by ray tracing. In this paper, we proposed an effective approach to solve this difficult problem. Specifically, we modify the Oglivy's model parameters to describe the crystalline structure of real dissimilar metal welds in a fabricated specimen. And then, we calculate the proper time delay and incident angle of linear phased array transducer in the anisotropic and inhomogeneous material for focusing and/or steering phased array ultrasonic beams on the desired position

  12. Swing damped movement of suspended objects

    International Nuclear Information System (INIS)

    Jones, J.F.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented

  13. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    Science.gov (United States)

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  14. Colorimetry Technique for Scalable Characterization of Suspended Graphene.

    Science.gov (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer

    2016-11-09

    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  15. Catastrophic processes in dielectrics in irradiation by high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Oleshko, V. [Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Lisitsyna, L., E-mail: lisitsyn@tpu.r [Tomsk State University of Architecture and Building, 634003 Tomsk (Russian Federation); Malys, D.; Damamme, G. [Commissariat a l' energie atomique, Paris 75015 (France); Lisitsyn, V. [Tomsk Polytechnic University, 634050 Tomsk (Russian Federation)

    2010-10-01

    The results of the research in explosive decomposition of heavy metal azides initiated by electric ('streamer') charges induced by high-current electron beam have been considered. A physical model for initiation of heavy metal azides explosive decomposition by electron beam has been suggested. The model suggests formation of strong electric field in the sample and its neutralization by ultrasound anode charges. The streamer front generates 'hot spots' which start the formation of explosive decomposition sites in a condensed reactive material.

  16. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  17. Propagation of modulated electron and X-ray beams through matter and interactions with radio-frequency structures

    Science.gov (United States)

    Harris, J. R.; Miller, R. B.

    2018-02-01

    The generation and evolution of modulated particle beams and their interactions with resonant radiofrequency (RF) structures are of fundamental interest for both particle accelerator and vacuum electronic systems. When the constraint of propagation in a vacuum is removed, the evolution of such beams can be greatly affected by interactions with matter including scattering, absorption, generation of atmospheric plasma, and the production of multiple generations of secondary particles. Here, we study the propagation of 21 MeV and 25 MeV electron beams produced in S-band and L-band linear accelerators, and their interaction with resonant RF structures, under a number of combinations of geometry, including transmission through both air and metal. Both resonant and nonresonant interactions were observed, with the resonant interactions indicating that the RF modulation on the electron beam is at least partially preserved as the beam propagates through air and metal. When significant thicknesses of metal are placed upstream of a resonant structure, preventing any primary beam electrons from reaching the structure, RF signals could still be induced in the structures. This indicated that the RF modulation present on the electron beam was also impressed onto the x-rays generated when the primary electrons were stopped in the metal, and that this RF modulation was also present on the secondary electrons generated when the x-rays struck the resonant structures. The nature of these interactions and their sensitivities to changes in system configurations will be discussed.

  18. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  19. A new process of electron beam refining of niobium

    International Nuclear Information System (INIS)

    Pinatti, D.G.

    1981-01-01

    A review of thermodynamic equilibrium, the kinetic theory and experimental results of the metal-gas interaction in refractory metals is presented. N 2 , H 2 and CO absorption and desorption take place by a reversible process while O 2 takes place by a irreversible process with atom absorption and metal oxide desorption. A new technology of electron beam refining of Niobium is proposed based on four points: 1) preparation of the aluminothermic reduced electrode, 2) zone refining in the first melt, 3) kinetic theory of refining in the following melts and 4) design of a compact furnace. Experimental results in a pilot plant of 300 KW have shown complete agreement with the proposed technology yielding a productivity 2.4 times larger than the value predicted by the conventional technology of electron beam refining of Niobium. (Author) [pt

  20. Impact of suspended sediments on the survival of seagrass: Halodule pinifolia (Miki den Hartog

    Directory of Open Access Journals (Sweden)

    Satumanatpan, S.

    2006-07-01

    Full Text Available The research aimed to study the level of suspended sediments on the survival of Halodule pinifolia (Miki den Hartog. Three experiments were conducted. Broad concentration of suspended sediments covering the level found in nature were employed in the first experiment. The impact concentration of suspended sediments on the survival of H. pinifolia was extended in more detail in the second and third experiments. H. pinifolia was planted by washing off the mud and holding it with a grating. An air pump was used to stir the sediment in suspension during the experiments and necessary water parameters were strictly control. The suspended sediment was spread by siphon and conducted in a period of 30 days for the first and second experiments, and 45 days for the third experiment. The result indicated that suspended sediments with a concentration of 1-64 mg/l had no impact on the survival of H. pinifolia within 30 days. Initially, suspended sediments of 66 mg/l lowered H. pinifolia's survival to 95% at day 30. Concentration of suspended sediments higher than 66 mg/l affected the survival of H. pinifolia. The decreasing survival was noticed during days 20 -25 of the experiment and all died during days 40-45. However, the life span of H. pinifolia, would be very important and might also affect the survival of H. pinifolia after 30 days.

  1. Ballistic magnetotransport in a suspended two-dimensional electron gas with periodic antidot lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K. [Siberian Branch of the Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2017-01-15

    The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposure to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.

  2. Strain and thermal conductivity in ultrathin suspended silicon nanowires

    Science.gov (United States)

    Fan, Daniel; Sigg, Hans; Spolenak, Ralph; Ekinci, Yasin

    2017-09-01

    We report on the uniaxial strain and thermal conductivity of well-ordered, suspended silicon nanowire arrays between 10 to 20 nm width and 22 nm half-pitch, fabricated by extreme-ultraviolet (UV) interference lithography. Laser-power-dependent Raman spectroscopy showed that nanowires connected monolithically to the bulk had a consistent strain of ˜0.1 % , whereas nanowires clamped by metal exhibited variability and high strain of up to 2.3%, having implications in strain engineering of nanowires. The thermal conductivity at room temperature was measured to be ˜1 W /m K for smooth nanowires and ˜0.1 W /m K for rougher ones, similar to results by other investigators. We found no modification of the bulk properties in terms of intrinsic scattering, and therefore, the decrease in thermal conductivity is mainly due to boundary scattering. Different types of surface roughness, such as constrictions and line-edge roughness, may play roles in the scattering of phonons of different wavelengths. Such low thermal conductivities would allow for very efficient thermal energy harvesting, approaching and passing values achieved by state-of-the-art thermoelectric materials.

  3. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  4. Focused proton beams propagating in reactor of fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Niu, K [Teikyo Heisei Univ., Uruido, Ichihara, Chiba (Japan)

    1997-12-31

    One of the difficult tasks of light ion beam fusion is to propagate the beam in the reactor cavity and to focus the beam on the target. The light ion beam has a certain local divergence angle because there are several causes for divergence at the diode. The electrostatic force induced at the leading edge causes beam divergence during propagation. To confine the beam within a small radius during propagation, the magnetic field must be employed. Here the electron beam is proposed to be launched simultaneously with the launching of the proton beam. If the electron beam has the excess current, the beam induces a magnetic field in the negative azimuthal direction, which confines the ion beam within a small radius by the electrostatic field as well as the electron beam by the Lorentz force. The metal guide around the beam path helps the beam confinement and reduces the total amount of magnetic field energy induced by the electron current. (author). 2 figs., 15 refs.

  5. The effect of metal-rich growth conditions on the microstructure of Sc{sub x}Ga{sub 1-x}N films grown using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.C.L.; Moram, M.A. [Department of Materials, Imperial College London (United Kingdom); Goff, L.E. [Department of Materials, Imperial College London (United Kingdom); Department of Physics, University of Cambridge (United Kingdom); Barradas, N.P. [CTN - Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Alves, E. [IPFN - Instituto de Plasmas e Fusao Nuclear, Lisboa (Portugal); Laboratorio de Aceleradores e Tecnologias de Radiacao, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Pereira, S. [CICECO and Department of Physics, Universidade de Aveiro (Portugal); Beere, H.E.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A. [Department of Physics, University of Cambridge (United Kingdom)

    2015-12-15

    Epitaxial Sc{sub x}Ga{sub 1-x}N films with 0 ≤ x ≤ 0.50 were grown using molecular beam epitaxy under metal-rich conditions. The Sc{sub x}Ga{sub 1-x}N growth rate increased with increasing Sc flux despite the use of metal-rich growth conditions, which is attributed to the catalytic decomposition of N{sub 2} induced by the presence of Sc. Microstructural analysis showed that phase-pure wurtzite Sc{sub x}Ga{sub 1-x}N was achieved up to x = 0.26, which is significantly higher than that previously reported for nitrogen-rich conditions, indicating that the use of metal-rich conditions can help to stabilise wurtzite phase Sc{sub x}Ga{sub 1-x}N. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  7. Conversion of isotropic fluorescence into a long-range non-diverging beam

    Science.gov (United States)

    Zhang, Douguo; Zhu, Liangfu; Chen, Junxue; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Zhan, Qiwen; Kuang, Cuifang; Liu, Xu; Lakowicz, Joseph R.

    2018-04-01

    Fluorescent samples typically emit isotropically in all directions. Large lenses and other optical components are needed to capture a significant fraction of the emission, and complex confocal microscopes are required for high resolution focal-plane imaging. It is known that Bessel beams have remarkable properties of being able to travel over long distances, over 1000 times the wavelength, without diverging, and hence are called non-diffracting beams. In previous reports the Bessel beams were formed by an incident light source, typically with plane-wave illumination on a circular aperture. It was not known if Bessel beams could form from fluorescent light sources. We demonstrate transformation of the emission from fluorescent polystyrene spheres (FPS) into non-diverging beams which propagate up to 130 mm (13 cm) along the optical axis with a constant diameter. This is accomplished using a planar metal film, with no nanoscale features in the X-Y plane, using surface plasmon-coupled emission. Using samples which contain many FPS in the field-of-view, we demonstrate that an independent Bessel beam can be generated from any location on the metal film. The extremely long non-diffracted propagation distances, and self-healing properties of Bessel beams, offer new opportunities in fluorescence sensing and imaging.

  8. Electron beam facility for divertor target experiments

    International Nuclear Information System (INIS)

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-01-01

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m 3 ), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts

  9. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  10. Total Suspended Load and Sediment Yield of Kayan River, Bulungan District, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Suprapto Dibyosaputro

    2016-12-01

    Full Text Available This research was carried out the the drainage system of Kayan river, Bulungan District, East Kalimantan. The purpose of the research were to study the physical conditions of the Kayan catchment area, calculate the suspended sediment load, and to define the total sediment yield of Kayan River. Observation method were used in this research both of direct field observation as well as laboratory observation. Data acquired in this study were include of climatic data, geology, geomorphology, soil and land cover data. Besides also rain-fall data, temperature, river discharge and suspended sediment load. The total sediment yield were calculated by mean of mathematical and statistical analysis especially of linier regression analysis. The result of the research show that total the sediment yield of Kayan River with drainage area of 6,329.452 km² is about 236,921.25 m³/km²/year. The interesting result of the statistical analysis was that the existing negative correlation between river discharge and suspended sediment load. It is the effect of the location of discharge and suspended measurement. This condition caused by sea tide effect on river discharge at the apex delta. During high tide water river trend rising up on discharge but not on suspended sediment load. Instead, also existing setting down processes takes places of the suspended sediment load into the river bottom upper stream and the apex.

  11. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  12. Oscillations of end loaded cantilever beams

    International Nuclear Information System (INIS)

    Macho-Stadler, E; Elejalde-García, M J; Llanos-Vázquez, R

    2015-01-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam. (paper)

  13. Oscillations of end loaded cantilever beams

    Science.gov (United States)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  14. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis; Kelarakis, Antonios; Sahore, Ritu; DiSalvo, Francis J.; Livi, Sebastien; Giannelis, Emmanuel P.

    2013-01-01

    on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic

  15. Estuarine Suspended Sediment Dynamics: Observations Derived from over a Decade of Satellite Data

    Directory of Open Access Journals (Sweden)

    Anthony Reisinger

    2017-12-01

    Full Text Available Suspended sediment dynamics of Corpus Christi Bay, Texas, USA, a shallow-water wind-driven estuary, were investigated by combining field and satellite measurements of total suspended solids (TSS. An algorithm was developed to transform 500-m Moderate Resolution Imaging Spectroradiometer (MODIS Aqua satellite reflectance data into estimated TSS values. The algorithm was developed using a reflectance ratio regression of MODIS Band 1 (red and Band 3 (green with TSS measurements (n = 54 collected by the Texas Commission on Environmental Quality for Corpus Christi Bay and other Texas estuaries. The algorithm was validated by independently collected TSS measurements during the period of 2011–2014 with an uncertainty estimate of 13%. The algorithm was applied to the period of 2002–2014 to create a synoptic time series of TSS for Corpus Christi Bay. Potential drivers of long-term variability in suspended sediment were investigated. Median and IQR composites of suspended sediments were generated for seasonal wind regimes. From this analysis it was determined that long-term, spatial patterns of suspended sediment in the estuary are related to wind-wave resuspension during the predominant northerly and prevalent southeasterly seasonal wind regimes. The impact of dredging is also apparent in long-term patterns of Corpus Christi Bay as concentrations of suspended sediments over dredge spoil disposal sites are higher and more variable than surrounding areas, which is most likely due to their less consolidated sediments and shallower depths requiring less wave energy for sediment resuspension. This study highlights the advantage of how long-synoptic time series of TSS can be used to elucidate the major drivers of suspended sediments in estuaries.

  16. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  17. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan

    2012-01-01

    Highlights: ► No research has been done to examine effect of electron beam irradiation on leaching behavior of heavy metals in fly ash. ► Electron beam irradiation on fly ash had significant effect on heavy metal leaching. ► Leaching potential of heavy metals in fly ash differed among metal species tested (Pb, Zn, Cu). ► Metal forms in the ash were analyzed to explain the difference. ► The difference could be explained by metal form change. - Abstract: Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3 mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of

  18. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  19. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung, E-mail: kjkim@hallym.or.kr; Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  20. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  1. Prospects and Challenges in Application of Gamma and Electron Beam Processing of Nanomaterials

    International Nuclear Information System (INIS)

    Sampa, M. H.

    2006-01-01

    Application of radiation techniques for nanotechnology has been known for years. X-ray, EB and ion beam lithography are a good example of applications. By using electron beams, ion beams and X-Rays structures as small as 10 nm can be produced. Ion track membranes with track diameters from 10 nm to 100 nm are used as such or as templates for electroplating of nanowires of metal, semiconductor and magnetic materials. In the near future X-Rays, focused ion beams and electron beams will be used for nanolithography and 3D fabrication; heavy ion beams on the other hand can be useful for fabrication of nanopores and nanowires. The use of radiation has proved to be an essential technique in the fabrication of nanostructures with high resolution as the radiation beams can be focused into a few nanomater scales or less. Three groups of products could be considered to be fabricated by radiation techniques: nanoparticles, nanogels and nanocomposites. Nanoparticles has application in electronic devices and bioactive systems. Their radiation synthesis in aqueous dispersions started in the late seventies. Literature describe the radiolytic reduction of many metal ions either single metal or in combination with another metal to generate metallic or bimetallic mixtures as well as core-shell structures. To obtain metallic particles from their parent ions one only needs to ensure reductive conditions during the irradiation. By control over the dose rate delivered to the sample the radiolytic approach can offer the fine control over the rate of generation on the growing species. Nanogels are particles of polymer gels having the dimensions in the order of nanometers. They are applied in pharmaceutical and cosmetic industries, as the bioactive substances delivery systems. Depending on the irradiation parameters (radiation dose, dose rate, polymer concentration, irradiation temperature) molecules with different structures (such as long-chain branches, nanogels, microgel or microgel

  2. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  3. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  4. Investigation of hydrogen micro-kinetics in metals with ion beam implantation and analysis

    International Nuclear Information System (INIS)

    Wang, T.S.; Peng, H.B.; Lv, H.Y.; Han, Y.C.; Grambole, D.; Herrmann, F.

    2007-01-01

    One of the most important subjects in the fusion material research is to study the hydrogen and helium concentration, diffusion and evolution in the structure material of fusion reactor, since the hydrogen and helium can be continuously produced by the large dose fast neutron irradiation on material. Various analysis Methods can be used, but the ion beam analysis method has some advantages for studying the hydrogen behaviors in nano- or micrometer resolution. In this work, the hydrogen motion and three-dimensional distribution after implantation into metal has been studied by resonance NRA, micro-ERDA and XRD etc Methods. The resolution of the H-depth-profile is in nanometer level and the lateral resolution can be reached to 2 micrometers. The evolution of hydrogen depth-profile in a titanium sample has been studied versus the change of normal stress in samples. Evident hydrogen diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. A new phase transformation during the hydrogenation is observed by the in-situ XRD analysis. The further study on the hydrogen behaviors in the structure materials of fusion reactor is in plan. (authors)

  5. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  6. Electrodialytic remediation of suspended soil – Comparison of two different soil fractions

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2012-01-01

    Electrodialytic remediation (EDR) can be used for removal of heavy metals from suspended soil, which allows for the soil remediation to be a continuous process. The present paper focused on the processing parameters for remediation of a soil polluted with Cu and As from wood preservation. Six...... electrodialytic treatments lasting from 5 to 22 days with different liquid to solid ratio (L/S) and current intensity were conducted. Among treatments, the highest removal was obtained from the soil fines with 5mA current at L/S 3.5 after 22 days where 96% of Cu and 64% of As were removed. Comparing the removal...... from the original soil and the soil fines in experiments with identical charge transportation, higher removal efficiency was observed from the soil fines. Constant current with 5mA could be maintained at L/S 3.5 for the soil fines while not for the original soil. Doubling current to 10mA could...

  7. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-01-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  8. Innovative energy efficient low-voltage electron beam emitters

    Science.gov (United States)

    Felis, Kenneth P.; Avnery, Tovi; Berejka, Anthony J.

    2002-03-01

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates.

  9. Effect of anabolic steroids on overloaded and overloaded suspended skeletal muscle

    Science.gov (United States)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass, the subcellular protein content, and the myosin patterns of normal overloaded and suspended overloaded plantaris muscle in female rat was investigated, dividing rats into six groups: normal control (NC), overload (OV), OV steroid (OV-S), normal suspended (N-sus), OV suspended (OV-sus), and OV suspended steroid (OV-sus-S). Relative to control values, overload produced a sparing effect on the muscle weight of the OV-sus group as well as increases of muscle weight of the OV group; increased protein content; and an increased expression of slow myosin in both OV and OV-sus groups. Steroid treatment of OV animals did not after the response of any parameter analyzed for the OV group, but in the OV-sus group steroid treatment induced increases in muscle weight and in protein content of the OV-sus-S group. The treatment did not alter the pattern of isomyosin expression observed in the OV or the OV-sus groups. These result suggest that the steroid acts synergistically with functional overload only under conditions in which the effect of overload is minimized by suspension.

  10. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  11. La contaminación por metales pesados en la Ciénaga Grande de Santa Marta, Caribe colombiano La contaminación por metales pesados en la Ciénaga Grande de Santa Marta, Caribe colombiano

    Directory of Open Access Journals (Sweden)

    Campos C. Néstor Hernando

    1990-09-01

    Full Text Available Se dan los resultados de los estudios sobre la contaminación por metales pesados en la Ciénaga Grande de Santa Marta. Las determinaciones se realizaron en el material en suspensión, en los bivalvos Crassostrea rhizophorae e Isognomon alatus y en los peces Gathorops spixii y Ariopsis bonillai. Los análisis de los metales Cd, Zn y Cu en el material en suspensión permitieron determinar que las mayores descargas de estos metales se suceden principalmente desde el Río Magdalena a través del Canal del Clarín y de los ríos que fluyen del piedemonte de la Sierra Nevada de Santa Marta. La comparación de los contenidos en bivalvas permiten determinar la importancia de estos organismos como bioindicadores. Los análisis en las dos especies de peces mostraron una diferenciación en la capacidad de acumulación entre una y otra.  Al comparar los contenidos de metales entre los diferentes tipos de muestras con los cambios en los contenidos en el material en suspensión y la salinidad, se observó que estos dos parámetros son principalmente los que controlan la biodisponibilidad de los metales y además afectan los procesos fisiológicos de los organismos, aumentando o disminuyendo la capacidad de bioacumulación. Results of the studies of heavy metals pollution in the Ciénaga Grande de Santa Marta are provided. The determinations have been done on the suspended matter, on the bivalves Crassostrea rhizophorae and Isognomon alatus, and in the fishes Gathorops spixii and Ariopsis bonillai. The analysis of Cd, Zn and Cu in the suspended matter led to determine that the discharges come principally from the Río Magdalena through the Canal del Clarín and the rivers coming from the Sierra Nevada de Santa Marta. Comparisons of the concentration in bivalves show the importance of this organisms as bioindicators. The analysis in both fish species show a difference in their capacity of accumulation. Comparison of the metals contents between different types

  12. Metals in the Scheldt estuary: From environmental concentrations to bioaccumulation

    International Nuclear Information System (INIS)

    Van Ael, Evy; Blust, Ronny; Bervoets, Lieven

    2017-01-01

    To investigate the relationship between metal concentrations in abiotic compartments and in aquatic species, sediment, suspended matter and several aquatic species (Polychaeta, Oligochaeta, four crustacean species, three mollusc species and eight fish species) were collected during three seasons at six locations along the Scheldt estuary (the Netherlands-Belgium) and analysed on their metal content (Ag, Cd, Co, Cr, Cu, Ni, Pb, Zn and the metalloid As). Sediment and biota tissue concentrations were significantly influenced by sampling location, but not by season. Measurements of Acid Volatile Sulphides (AVS) concentrations in relation to Simultaneously Extracted Metals (SEM) in the sediment suggested that not all metals in the sediment will be bound to sulphides and some metals might be bioavailable. For all metals but zinc, highest concentrations were measured in invertebrate species; Ag and Ni in periwinkle, Cr, Co and Pb in Oligochaete worms and As, Cd and Cu in crabs and shrimp. Highest concentrations of Zn were measured in the kidney of European smelt. In fish, for most of the metals, the concentrations were highest in liver or kidney and lowest in muscle. For Zn however, highest concentrations were measured in the kidney of European smelt. For less than half of the metals significant correlations between sediment metal concentrations and bioaccumulated concentrations were found (liver/hepatopancreas or whole organism). To calculate the possible human health risk by consumption, average and maximum metal concentrations in the muscle tissues were compared to the minimum risk levels (MRLs). Concentrations of As led to the highest risk potential for all consumable species. Cadmium and Cu posed only a risk when consuming the highest contaminated shrimp and shore crabs. Consuming blue mussel could result in a risk for the metals As, Cd and Cr. - Highlights: • This is the first study investigating metal distribution along the aquatic ecosystem of the Scheldt

  13. Coupling Between Overlying Hydrodynamics, Bioturbation, and Biogeochemical Processes Controls Metal Mobility, Bioavailability, and Toxicity in Sediments

    Science.gov (United States)

    2016-05-01

    Portsmouth Naval Shipyard (PNS) were collected from two sites, MS04 and MS03, and are contaminated with a mixture of metals and PAHs from foundry slag ...either near or below detection limits (Table 5-12) in both resuspension and bedded exposures. Dissolved zinc concentrations in overlying water...period. Solubilization of Zn from suspended particles likely was not from dissolution of zinc sulfide, given that metal sulfides can take more than 8

  14. Transfer-last suspended graphene fabrication on gold, graphite and silicon nanostructures

    OpenAIRE

    Reynolds, J.; Boodhoo, L.; Huang, C.C.; Hewak, D.W.; Saito, S.; Tsuchiya, Y.; Mizuta, H.

    2015-01-01

    While most graphene devices fabricated so far have been by transferring graphene onto flat substrates first, an interesting approach would be to transfer graphene onto patterned substrates to suspend graphene for future graphene nanoelectromechanical device applications. This novel "transfer-last" fabrication is beneficial for reducing possible damage of the suspended graphene caused by subsequent undercutting processes and typical substrate interactions. On the other hand, reduction of conta...

  15. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    Science.gov (United States)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  16. Fatigue Performance Assessment of Composite Arch Bridge Suspenders Based on Actual Vehicle Loads

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2015-01-01

    Full Text Available In the through arch bridges, the suspenders are the key components connecting the arch rib and the bridge deck in the middle, and their safety is an increasing focus in the field of bridge engineering. In this study, various vehicle traffic flow parameters are investigated based on the actual vehicle data acquired from the long-term structural health monitoring system of a composite arch bridge. The representative vehicle types and the probability density functions of several parameters are determined, including the gross vehicle weight, axle weight, time headway, and speed. A finite element model of the bridge structure is constructed to determine the influence line of the cable force for various suspenders. A simulated vehicle flow, generated using the Monte Carlo method, is applied on the influence lines of the target suspender to determine the stress process, and then the stress amplitude spectrum is obtained based on the statistical analysis of the stress process using the rainflow counting method. The fatigue performance levels of various suspenders are analyzed according to the Palmgren-Miner linear cumulative damage theory, which helps to manage the safety of the suspenders.

  17. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  18. High-power laser-metal interactions in pressurized gaseous atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Lugomer, S.; Furic, K.; Ivanda, M. [Ruder Boskovic Institute, Zagreb (Croatia); Stipancic, M. [Electrotechnical faculty, Osijek (Croatia); Stubicar, M. [Faculty of natural sciences and mathematics, Zagreb (Croatia); Gamulin, O. [School of medicine, Univ. of Zagreb, Zagreb (Croatia)

    1996-09-01

    Metal surfaces were irradiated in pressurized gaseous atmospheres by a CO{sub 2} laser beam. The gaseous pressures ranged from 2 atm to 6 atm, the energy density of the light beam was about 20-50 J/cm{sup 2} with a power density {approx} 10{sup 9} W/cm{sup 2} and a pulse duration p 150 ns. In the above conditions some new effects were observed. The laser-material interaction occurred in a highly absorptive plasma regime, meaning that the metal surface was effectively screened from the beam. The interaction ended either with plasma adiabatic expansion, in the case of Mo (in O{sub 2}), Te (in N{sub 2}) and T{sub i} (in N{sub 2}), or with plasma explosion, in the case of T{sub i} (in O{sub 2}). The metal surface properties were studied by means of optical analysis, microhardness tests, X-ray diffraction and Raman backscattering.

  19. Capturing Flow-weighted Water and Suspended Particulates from Agricultural Canals During Drainage Events.

    Science.gov (United States)

    Bhadha, Jehangir H; Sexton, Anne; Lang, Timothy A; Daroub, Samira H

    2017-11-07

    The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.

  20. SEBARAN TOTAL SUSPENDED SOLID (TSS PADA PROFIL VERTIKAL DI PERAIRAN SELAT MADURA KABUPATEN BANGKALAN

    Directory of Open Access Journals (Sweden)

    Aries Dwi Siswanto

    2015-04-01

    Full Text Available Sebaran sedimen tersuspensi (Total Suspended Solid (TSS dapat dipelajari secara horizontal maupun vertikal. Akumulasi sedimen tersuspensi (TSS secara horizontal sangat dipengaruhi oleh arus permukaan maupun gelombang yang dibangkitkan oleh angin. Keterdapatan TSS ini diduga berpengaruh terhadap sebarannya pada profil vertical. Kedua kondisi sebaran sedimen tersuspensi (TSS berpengaruh terhadap optimalisasi penetrasi cahaya matahari di perairan. Sedimen tersuspensi (TSS menjadi salah satu factor fisika yang penting sebagai indicator kondisi perairan. Penelitian ini bertujuan untuk mengetahui sebaran Total Suspended Solid (TSS di perairan Kabupaten Bangkalan. Materi utama yang digunakan dalam penelitian ini adalah contoh air dan data parameter lingkungan (pasang surut dan kecerahan yang diambil pada 7 stasiun pada bulan Agustus-September 2013 di Perairan Selat Madura, Kabupaten Bangkalan. Metode gravimetric (SNI-06-6989.3-2004 digunakan untuk analisa Total Suspended Solid (TSS. Data parameter lingkungan dianalisa secara deskriptif. Analisa TSS menunjukkan nilai yang berbeda pada beberapa stasiun penelitian untuk setiap minggunya. Konsentrasi TSS terendah sebesar 35 mg/L (Stasiun 3, profil permukaan, minggu pertama dan tertinggi sebesar 620 mg/L (Stasiun 4, profil dasar, minggu pertama. Secara umum, konsentrasi TSS secara vertikal (dari permukaan-dasar cenderung semakin besar, diduga dipengaruhi oleh jenis substrat dan parameter arus yang berpeluang untuk menimbulkan pengadukan di profil dasar. Kondisi lingkungan (kecerahan dan arus menunjukkan bahwa daerah dengan konsentrasi TSS yang tinggi cenderung memilki nilai kecerahan yang rendah dengan kecepatan arus yang lebih besar.Kata Kunci: kecerahan, pola arus, Total Suspended Solid (TSS DISTRIBUTION OF TOTAL SUSPENDED SOLID (TSS IN THE VERTICAL PROFILE IN THE MADURA STRAIT WATERS BANGKALAN DISTRICTABSTRACTDistribution of suspended sediment (Total Suspended Solid (TSS can be studied through

  1. A new non intercepting beam size diagnostics using diffraction radiation from a Slit

    International Nuclear Information System (INIS)

    Castellano, M.

    1996-09-01

    A new non interpreting beam size diagnostic for high charge electron beams is presented. This diagnostics is based on the analysis of the angular distribution of the 'diffracted' transition radiation emitted by the beam when crossing a slit cut in metallic foil. It allows a resolution better then the radiation transverse formation zone. Numerical results based on the parameters of the TTF FEL beam are given as example

  2. Practical realization of a microwave Bessel beam launcher

    KAUST Repository

    Manzhura, Oksana

    2011-08-01

    An experimental setup is realized to practically generate Bessel beams in the microwave regime. The setup, which consists of a series of circular loop antennas inserted coaxially inside a circular metallic waveguide, excites the waveguide\\'s transverse-electric modes such that their superposition forms a Bessel beam at the open-end of the waveguide. The excitation currents are calculated from the needed excitation coefficients of each guided mode, which, in turn, are calculated from the modal decomposition of the beam. The efficiency of the setup is evaluated and the obtained experimental results are compared to the theoretical estimates. © 2011 IEEE.

  3. Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals

    International Nuclear Information System (INIS)

    Ermakov, Victor A; Alaferdov, Andrei V; Vaz, Alfredo R; Moshkalev, Stanislav A; Baranov, Alexander V

    2013-01-01

    The accuracy of thermal conductivity measurements by the micro-Raman technique for suspended multi-layer graphene flakes has been shown to depend critically on the quality of the thermal contacts between the flakes and the metal electrodes used as the heat sink. The quality of the contacts can be improved by nonlocal laser annealing at increased power. The improvement of the thermal contacts to initially rough metal electrodes is attributed to local melting of the metal surface under laser heating, and increased area of real metal–graphene contact. Improvement of the thermal contacts between multi-layer graphene and a silicon oxide surface was also observed, with more efficient heat transfer from graphene as compared with the graphene–metal case. (paper)

  4. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Science.gov (United States)

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  5. Amorphization of metals by ion implantation and ion beam mixing

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Heera, V.

    1988-01-01

    Amorphous metallic systems can be formed either by high-fluence ion implantation of glassforming species or by irradiation of layered metal systems with inert gas ions. Both techniques and experimental examples are presented. Empirical rules are discussed which predict whether a given system can be transformed into an amorphous phase. Influence of temperature, implantation dose and pre-existing crystalline metal composition on amorphization is considered. Examples are given of the implantation induced amorphous structure, recrystallization and formation of quasicrystalline structures. (author)

  6. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  7. International Odra project (IOP) 'Interdisciplinary German Polish studies on the behaviour of pollutants in the Oder system'. Sub project 4: the state of suspended particulate matter in the Odra River system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, K.H.; Damke, H.; Kasbohm, J.; Puff, T.; Breitenbach, E.; Theel, O.; Kiessling, A.

    2001-05-20

    The purpose of the present project was to characterise the pollutant freight of suspended matter and suspended-matter-borne sediments in the Oder river system on the basis of large samples drawn at selected sampling sites. One of the major goals was to assess and draw up a balance of the transport regime of suspended matter between the compartments water, suspended matter and sediments. Special attention was given to the composition and structure of suspended matter as well as to the distribution of trace elements in the various components. Furthermore, the study was intended to provide ecology-related information on the basis of selected biogenic components. Statements on the time course of pollution of estuarine waters and the Baltic Sea by way of the Oder can be derived from a characterisation of current fluviatile solids (suspended matter and suspended-matter-borne sediments) and determination of their quantitative proportions. The following research strategy was derived from these goals: for a characterisation of suspended matter in terms of composition, structure and biogenic origin it is necessary to determine the concentration of suspended matter, its granulometric composition, carbon and sulphur content, biogenic opal content, mineral content, phase composition, metal content, structure of suspended flakes and association of diatoms in the suspended flakes and on the periphyton. [German] Das Vorhaben ist darauf ausgerichtet, den Belastungszustand der Schwebstoffe und schwebstoffbuertigen Sedimente im Oderflusssystem anhand von Grossproben ausgewaehlter Probenahmeorte zu charakterisieren. Ein wesentliches Ziel ist die Beurteilung des Transportregimes der Schwebstoffe zwischen den Kompartimenten Wasser, Schwebstoff und Sediment sowie seine Bilanzierung. Dabei gilt die besondere Aufmerksamkeit der Zusammensetzung und der Struktur der Schwebstoffe sowie die Spurenelementspeziation an die unterschiedlichen Bestandteile. Weiterhin werden oekologische Aussagen

  8. Piezoresistance of top-down suspended Si nanowires

    International Nuclear Information System (INIS)

    Koumela, A; Mercier, D; Dupre, C; Jourdan, G; Marcoux, C; Ollier, E; Duraffourg, L; Purcell, S T

    2011-01-01

    Measurements of the gauge factor of suspended, top-down silicon nanowires are presented. The nanowires are fabricated with a CMOS compatible process and with doping concentrations ranging from 2 x 10 20 down to 5 x 10 17 cm -3 . The extracted gauge factors are compared with results on identical non-suspended nanowires and with state-of-the-art results. An increase of the gauge factor after suspension is demonstrated. For the low doped nanowires a value of 235 is measured. Particular attention was paid throughout the experiments to distinguishing real resistance change due to strain modulation from resistance fluctuations due to charge trapping. Furthermore, a numerical model correlating surface charge density with the gauge factor is presented. Comparison of the simulations with experimental measurements shows the validity of this approach. These results contribute to a deeper understanding of the piezoresistive effect in Si nanowires.

  9. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  10. Positron beam studies of solids and surfaces: A summary

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2006-01-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations

  11. Positron beam studies of solids and surfaces: A summary

    Science.gov (United States)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  12. Computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.

    2010-01-01

    Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.

  13. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    OpenAIRE

    Kaikai Lv; Kaiyun Wang; Zhihui Chen; Chengbiao Cai; Lirong Guo

    2017-01-01

    This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abn...

  14. A study of the deflections of metal road guardrail elements

    Directory of Open Access Journals (Sweden)

    O. Prentkovskis

    2009-09-01

    Full Text Available Statistical data on traffic accidents in 2008 in Lithuania is presented. Referring to statistical data, ‘grounding on an obstacle’ makes one-tenth of all registered traffic accidents – 9.4% (an obstacle may be a road guardrail, a lamp post, a tree, a bar, a gate, etc.. Road guardrails of various types are installed on the shoulders and dividing strips of urban and suburban roads. They are as follows: reinforced concrete guardrails, cable guardrails and metal guardrails. Metal guardrails, consisting of Σ-shape metal posts and a protective W-shape horizontal beam, are most popular. The authors of the present paper examine the deformation processes of the elements of the above mentioned guardrail. A mathematical model of metal road guardrail was developed. Metal road guardrail was modelled using one-dimensional first-order finite elements, taking into account only elastic deformations, as well as the effect of soil on the buried post section of the guardrail. Based on the developed mathematical model of metal road guardrail, the deflections of its elements caused by the impact of a vehicle moving at varying speed were determined. The obtained values of deflections of guardrail elements (a protective W-shape horizontal beam and a Σ-shape post presented in paper do not exceed the admissible values (of beam deflections.

  15. SU-E-I-72: First Experimental Study of On-Board CBCT Imaging Using 2.5MV Beam On a Radiotherapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Institute of Image Processing and Pattern Recognition, Xi' an Jiaotong University, Xi' an (China); Li, R; Yang, Y; Xing, L [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)

    2014-06-01

    Purpose: Varian TrueBeam version 2.0 comes with a new inline 2.5MV beam modality for image guided patient setup. In this work we develop an iterative volumetric image reconstruction technique specific to the beam and investigate the possibility of obtaining metal artifact free CBCT images using the new imaging modality. Methods: An iterative reconstruction algorithm with a sparse representation constraint based on dictionary learning is developed, in which both sparse projection and low dose rate (10 MU/min) are considered. Two CBCT experiments were conducted using the newly available 2.5MV beam on a Varian TrueBeam linac. First, a Rando anthropomorphic head phantom with and without a copper bar inserted in the center was scanned using both 2.5MV and kV (100kVp) beams. In a second experiment, an MRI phantom with many coils was scanned using 2.5MV, 6MV, and kV (100kVp) beams. Imaging dose and the resultant image quality is studied. Results: Qualitative assessment suggests that there were no visually detectable metal artifacts in MV CBCT images, compared with significant metal artifacts in kV CBCT images, especially in the MRI phantom. For a region near the metal object in the head phantom, the 2.5MV CBCT gave a more accurate quantification of the electron density compared with kV CBCT, with a ∼50% reduction in mean HU error. As expected, the contrast between bone and soft-tissue in 2.5MV CBCT decreased compared with kV CBCT. Conclusion: On-board CBCT imaging with the new 2.5MV beam can effectively reduce metal artifacts, although with a reduced softtissue contrast. Combination of kV and MV scanning may lead to metal artifact free CBCT images with uncompromised soft-tissue contrast.

  16. Ion-beam mixing of ceramic alloys: preparation and mechanical properties

    International Nuclear Information System (INIS)

    Lewis, M.B.; McHargue, C.J.

    1981-01-01

    Techniques used to produce unique states of pure metals mixed into ceramic materials are presented. The samples were prepared by irradiating a 1-MeV Fe + beam on Al 2 O 3 crystal surfaces over which a thin chromium or zirconium film had been evaporated. The limitations of using noble gas ion beams are noted. Micro Knoop hardness tests performed near the surfaces of the samples indicated a significant increase in the hardness of most samples prepared by ion beam mixing

  17. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen; Qi, Haibo; Archer, Lynden A.

    2010-01-01

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors

  18. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    Science.gov (United States)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. Shutter designed to block high-energy particle beams

    International Nuclear Information System (INIS)

    Donnadille, B.

    1976-01-01

    A description is given of a shutter designed for temporarily closing off an opening formed in the wall of an irradiation room for the passage of a particle beam. A cylindrical metal block can rotate about its axis and occupy two stable positions which are 180 0 from one another. A cylindrical cage closed at its two ends by two circular plates is equipped respectively with eccentric holes for the passage of the particle beam. The block is provided with a longitudinal passage through which there can pass the particle beam and a blind hole or ''pit'' disposed symmetrically to the longitudinal passage and which can block the particle beam according to the positioning of the block by respect with the eccentric holes

  20. Magnetically suspended railway

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C

    1977-07-28

    The invention concerns the emergency support of a magnetically suspended railway. On failure of the magnetic suspension/tracking system, the vehicles touch down on the rail configuration by means of emergency gliding elements like sliding shoes, skids, or the like. In doing this, the touch-down shock of the emergency gliding elements has to be limited to a force maximum as small as possible. According to the invention a spring-attenuator combination is used for this purpose, the spring characteristic being linear while the attenuator has a square-law characteristic for the compressing and a linear characteristic for the yielding motion. The force maximum thus achieved is exactly half the size of the physically smallest possible force maximum for an emergency gliding element springed without damping.