WorldWideScience

Sample records for suspended clay particles

  1. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  2. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of

  3. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  4. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  5. Concerning a mechanism for removing clay particles of washing liquids from pores

    Energy Technology Data Exchange (ETDEWEB)

    Badzhurak, R F

    1982-01-01

    Examined is a mechanism for removing the clay particles of washing liquids from a pore space. All the experiments are conducted in 1-% clay, water and polymer solutions (with a viscosity of 120 in accordance with SPV-5), made of clay powder of the Makharadz'ye deposit with a particle size of 40-60 mkm, sorted by a screen method. The polymer solutions were made on the basis of hypane, metas, polyacrylamide, KMTs-500, KhS-1 biopolymer, modified and clusterized by an alkaline (NaOH) of cornstarch. Studied is the process of removal of the solid phase from an ''ideal pore'', that is, a quartz capillary. It is demonstrated that the break away of the basic mass of the bentonite particles sedimented from the washing liquids on the quartz surface from the capillary and the formation by them of ''suspended flocules'' occurs at a water current speed in the pore equal to 2.5-4.0 times 10/sup -3/m/s. The carry away of the particles sedimented from the polymer solutions of metase, hypane, clusterized and modified starch, KMTs-500 and water occurs at a stream speed above 5.4 times 10/sup -3/m/s. The greatest speeds are required for the removal of clay particles more than 15 mkm in size from the pore space. The complete removal of these particles from the capillary is observed at a current speed above 40 times 10/sup -3/m/s.

  6. Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle

    Science.gov (United States)

    Sheng, Nuo; Boyce, Mary C.; Parks, David M.; Manovitch, Oleg; Rutledge, Gregory C.; Lee, Hojun; McKinley, Gareth H.

    2003-03-01

    Polymer/clay nanocomposites have been observed to exhibit enhanced mechanical properties at low weight fractions (Wp) of clay. Continuum-based composite modeling reveals that the enhanced properties are strongly dependent on particular features of the second-phase ¡°particles¡+/-; in particular, the particle volume fraction (fp), the particle aspect ratio (L/t), and the ratio of particle mechanical properties to those of the matrix. However, these important aspects of as-processed nanoclay composites have yet to be consistently and accurately defined. A multiscale modeling strategy was developed to account for the hierarchical morphology of the nanocomposite: at a lengthscale of thousands of microns, the structure is one of high aspect ratio particles within a matrix; at the lengthscale of microns, the clay particle structure is either (a) exfoliated clay sheets of nanometer level thickness or (b) stacks of parallel clay sheets separated from one another by interlayer galleries of nanometer level height. Here, quantitative structural parameters extracted from XRD patterns and TEM micrographs are used to determine geometric features of the as-processed clay ¡°particles¡+/-, including L/t and the ratio of fp to Wp. These geometric features, together with estimates of silicate lamina stiffness obtained from molecular dynamics simulations, provide a basis for modeling effective mechanical properties of the clay particle. The structure-based predictions of the macroscopic elastic modulus of the nanocomposite as a function of clay weight fraction are in excellent agreement with experimental data. The adopted methodology offers promise for study of related properties in polymer/clay nanocomposites.

  7. Deciphering the science behind electrocoagulation to remove suspended clay particles from water.

    Science.gov (United States)

    Holt, P K; Barton, G W; Mitchell, C A

    2004-01-01

    Electrocoagulation removes pollutant material from water by a combination of coagulant delivered from a sacrificial aluminium anode and hydrogen bubbles evolved at an inert cathode. Rates of clay particle flotation and settling were experimentally determined in a 7 L batch reactor over a range of currents (0.25-2.0 A) and pollutant loadings (0.1-1.7 g/L). Sedimentation and flotation are the dominant removal mechanism at low and high currents, respectively. This shift in separation mode can be explained by analysing the reactor in terms of a published dissolved air flotation model.

  8. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  9. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  10. Relationship between particle size and radiocesium in fluvial suspended sediment related to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kazuya Tanaka

    2014-01-01

    We collected fluvial suspended sediments in Fukushima after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident and analyzed the 137 Cs concentration in bulk and size-fractioned samples to investigate the particle-size-dependent distribution of radiocesium. The 137 Cs concentration in bulk suspended sediments decreased from August to December 2011, possibly reflecting a decrease of radiocesium concentration in its source materials. Smaller particles had higher radiocesium concentrations, reflecting larger specific surface areas. Silt- and sand-size fractions occupied more than 95 % of the total 137 Cs in the suspended sediments. The contribution of clay-size fractions, which had the highest 137 Cs concentration, was quite small because of their low frequency. A line of the data showed that the particle size distribution of radiocesium was essential to evaluate the migration and distribution of radiocesium in river systems where radiocesium is mainly present as particulate form after the FDNPP accident. (author)

  11. Characterization of the Particle Size Fraction associated with Heavy Metals in Suspended Sediments of the Yellow River

    Directory of Open Access Journals (Sweden)

    Qingzhen Yao

    2015-06-01

    Full Text Available Variations in the concentrations of particulate heavy metals and fluxes into the sea in the Yellow River were examined based on observational and measured data from January 2009 to December 2010. A custom-built water elutriation apparatus was used to separate suspended sediments into five size fractions. Clay and very fine silt is the dominant fraction in most of the suspended sediments, accounting for >40% of the samples. Cu, Pb, Zn, Cr, Fe and Mn are slightly affected by anthropogenic activities, while Cd is moderate affected. The concentrations of heavy metals increased with decrease in particle size. For suspended sediments in the Yellow River, on average 78%–82% of the total heavy metal loading accumulated in the <16 μm fraction. About 43% and 53% of heavy metal in 2009 and 2010 respectively, were readily transported to the Bohai Sea with “truly suspended” particles, which have potentially harmful effects on marine organisms.

  12. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers

    Science.gov (United States)

    Wright, Scott A.; Topping, David J.; Williams, Cory A.

    2010-01-01

    techniques rely on measurements of ancillary properties that correlate with suspended-sediment concentration and particle size and thus require the collection of traditional samples for calibration. Through in situ deployments, these methods can provide the high temporal resolution that cannot be achieved through traditional sampling. Here we focus on the evaluation of acoustic profiling techniques (e.g. acoustic-Doppler sideways-looking profilers, or ADPs). One major advantage of acoustic profiling is the ability to concurrently measure water velocity (using Doppler-shift methods) and suspended-sediment concentration such that suspended-sediment flux can be directly computed using data from a single instrument. Acoustic-Doppler profilers have become popular for measuring water velocity and discharge in rivers, through both moving-boat operations and from fixed deployments such as bank-mounted sideways-looking instruments (Hirsch and Costa, 2004, Muste et al., 2007). The method presented herein is most suited to sideways-looking applications as a complement to the "index velocity" technique, whereby an index velocity from a sideways-looking instrument is related to the cross-section average velocity (determined from moving-boat discharge measurements) as a means for developing a continuous water-discharge record (Ruhl and Simpson, 2005). Topping et al. (2007) presented a method for discriminating silt-and-clay from suspended sand, using single frequency ADPs. This method takes advantage of the relations among acoustic backscatter, sediment-induced acoustic attenuation, suspended-sediment concentration (SSC), and particle size distribution (PSD). Backscatter is the amount of sound scattered back and received at the transducer while sediment-induced attenuation is the amount of sound scattered in other directions and absorbed by the sediment particles. Both of these parameters can be measured with an ADP, and their different dependencies on SSC and PSD allow for the

  13. Elemental compositions of suspended particles released in glass manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Mamuro, T; Mizohata, A; Kubota, T [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1980-03-01

    Suspended particles released in glass manufacture were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. Suspended particles emitted from glass manufacture generally consist of both particles emitted from glass fusion and those produced through fuel combustion (mainly oil combustion). Elemental compositions of suspended particles emitted from glass fusion were found to be strongly dependent on the kind and recipe of raw materials and additives. Of the various metallic elements involved in suspended particles emitted from glass fusion, the elements, As, Se, Cd, Sb, Pb and so on are regarded to produce the most serious air pollution. The amount of emission of these elements to the environment is, howerer, quite varied from manufacturer to manufacturer. The replacement of electric furnace by oil combustion in opal glass manufacture remarkably reduced the emission of metallic elements to the environment.

  14. Calcination of kaolinite clay particles for cement production

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2014-01-01

    Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO2 intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model...

  15. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure.

    Science.gov (United States)

    Rasmussen, Jes Jessen; Cedergreen, Nina; Kronvang, Brian; Andersen, Maj-Britt Bjergager; Nørum, Ulrik; Kretschmann, Andreas; Strobel, Bjarne Westergaard; Hansen, Hans Christian Bruun

    2016-04-01

    Current ecotoxicological research on particle-associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epibenthic freshwater amphipod Gammarus pulex (L.) using brief pulse exposures followed by a 144 h post exposure recovery phase. Humic acid (HA) and the clay mineral montmorillonite (MM) were used as model sorbents in environmentally realistic concentrations (5, 25 and 125 mg L(-1)). Mortality of G. pulex was recorded during the post exposure recovery phase and locomotor behavior was measured during exposure to lambda-cyhalothrin. We found that HA in concentrations ≥25 mg L(-1) adsorbed the majority of pyrethroids but only reduced mortality of G. pulex up to a factor of four compared to pyrethroid-only treatments. MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration-response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced in the presence of HA, whereas behavioral responses and immobilisation rate were increased in the presence of MM. This indicates that G. pulex was capable of sensing the bioavailable fraction of lambda-cyhalothrin. Our results imply that suspended particles reduce to only a limited extent the toxicity of pyrethroids to G. pulex and that passive uptake of pyrethroids can be significant even when pyrethroids are adsorbed to suspended particles.

  16. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  17. The role of colloids and suspended particles in radionuclide transport in the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Vilks, P.

    1994-02-01

    AECL Research is developing a concept for the permanent disposal of nuclear fuel waste in a deep engineered vault in plutonic rock of the Canadian Shield and is preparing an Environmental Impact Statement (EIS) to document its case for the acceptability of the disposal concept. This report, one in a series of supporting documents for the EIS, addresses the role of particles in radionuclide transport. It summarizes our studies of natural particles in groundwater and presents the arguments used to justify the omission of particle-facilitated transport in the geosphere model that is based on the Whiteshell Research Area (WRA) and used in the postclosure assessment study case. Because radiocolloids formed in the vault will not be able to migrate through the clay buffer, radiocolloid formation in the geosphere will be determined by the sorption of radionuclides onto particles in groundwater. These particles consist of typical fracture-lining minerals, such as clays, micas and quartz; precipitated particles, such as colloidal silica and Fe-Si oxyhydroxides; and organic particles. In groundwater from the WRA, the average concentrations of colloids and suspended particles are 0.34 and 1.4 mg/L respectively. Particle-facilitated transport is not included in the geosphere model because the concentrations of particles in groundwater from the WRA are too low to have a significant impact on radionuclide transport. (author). 92 refs., 11 tabs., 13 figs

  18. Particles matter: Transformation of suspended particles in constructed wetlands

    NARCIS (Netherlands)

    Mulling, B.T.M.

    2013-01-01

    This thesis shows that constructed wetlands transform suspended particles in (treated) municipal wastewater through selective precipitation in ponds, biological filtering by plankton communities and physical and biological retention in reed beds. These processes effectively remove faecal indicator

  19. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard)

    Science.gov (United States)

    Meslard, Florian; Bourrin, François; Many, Gaël; Kerhervé, Philippe

    2018-05-01

    An experiment was carried out during summer 2015 in the inner part of the Kongsfjorden to study the inputs of meltwater and behaviour of associated suspended particles. We used a wide range of oceanographic instruments to assess the hydrological and hydrodynamic characteristics of coastal waters. The transfer of suspended particles occurs from a large surface plume fed by two main sources: the most important one is the upwelling of fresh and turbid water coming from a tide-water glacier: the Kronebreen, and the second one from a continental glacier: the Kongsvegen. We estimated that these two sources discharged about 2.48 ± 0.37 × 106 t of suspended sediments during the two months of melting. The major part of these sediments is deposited within the first kilometre due to flocculation phenomena. Flocculation is initiated below the surface turbid plume and is mainly caused by the salinity gradient and high suspended particle concentration. Finally, our estimates of suspended particle fluxes by a typical Arctic coastal glacier showed the need to consider suspended sediment fluxes from high-latitude areas into global budgets in the context of climate change.

  20. IUTAM symposium on hydrodynamic diffusion of suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.H. [ed.

    1995-12-31

    Hydrodynamic diffusion refers to the fluctuating motion of nonBrownian particles (or droplets or bubbles) which occurs in a dispersion due to multiparticle interactions. For example, in a concentrated sheared suspension, particles do not move along streamlines but instead exhibit fluctuating motions as they tumble around each other. This leads to a net migration of particles down gradients in particle concentration and in shear rate, due to the higher frequency of encounters of a test particle with other particles on the side of the test particle which has higher concentration or shear rate. As another example, suspended particles subject to sedimentation, centrifugation, or fluidization, do not generally move relative to the fluid with a constant velocity, but instead experience diffusion-like fluctuations in velocity due to interactions with neighboring particles and the resulting variation in the microstructure or configuration of the suspended particles. In flowing granular materials, the particles interact through direct collisions or contacts (rather than through the surrounding fluid); these collisions also cause the particles to undergo fluctuating motions characteristic of diffusion processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Sedimentation of suspended solids in ultrasound field

    Directory of Open Access Journals (Sweden)

    Vikulina Vera

    2018-01-01

    Full Text Available Physical and chemical effects of aquatic environment that occur in an ultrasonic field change the sedimentation rate of coagulated suspension. This might only happen in case of cavitation of ultrasonic filed that causes a change of potentials of the medium. Research of the influence of ultrasonic vibrations on coagulation of suspended solids within water purification allows expanding their scope of implementation. The objective of the research is to estimate the effect of ultrasound on the sedimentation of the suspended solids, to determine of the efficiency of the process in relation to the dose of the coagulant, and to calculate the numerical values of the constants in the theoretical equation. The experiment condition was held in the water with the clay substances before the introduction of the coagulant. The method of magnetostriction ultrasonic generator was applied to receive ultrasonic vibration. Estimate of concentration of clay particles in water was performed using photometry. As a result of the research, the obtained data allow determining the increase in efficiency of suspended particles sedimentation related to the dose of coagulant, depending on time of ultrasonic treatment. The experiments confirmed the connection between the effect of sedimentation in the coagulation process, the coagulant dose and the time of scoring. Studies have shown that the increase in the duration of ultrasonic treatment causes a decrease of administered doses of coagulant.

  2. Particles of bottom and suspended sediments: height of rise

    Directory of Open Access Journals (Sweden)

    Khodzinskaya Anna Gennadievna

    2014-12-01

    Full Text Available In the article, characteristic values of dynamic sizes of bottom and suspended sediments, including their probabilistic assessment, are considered. The article presents the processing results in respect of the experimental data for bottom and suspended sediments, obtained in the laboratory environment using samples and filming methods. The experiments have proven that the dynamic hydraulic size determines the height of rise for the particles of the saltation load, rather than suspended ones. In the laboratory environment, the maximal height of rise is mainly driven by the relative flow depth. According to the assessment made by the co-authors, depths of flows employed in the experiments designated for the identification of heights of rises, were comparable to saltation heights of particles. Besides, the saltation height of particles, having relative density well below 2.65, nearly always exceeded half of the depth of the laboratory flow. Hydrodynamic conditions favourable for the separation and motion of artificial particles in coarse surface tanks are far different from the motion of sand particles on the bottom of lowland rivers. Values of hydraulic resistance ratios typical for laboratory experiments by far exceed their values typical for lowland rivers, and it means that the conditions of the experiments performed in the laboratory were similar to those typical for mountain rivers. The research findings have proven that the particle separation and motion pattern, if artificial particles are made of the materials demonstrating variable density and elasticity values and if loose particles travel over fixed ones, is different from the pattern typical for natural particles having variable coarseness.

  3. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    Science.gov (United States)

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  4. Relationship between dioxin concentration and particle size for suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, K.; Sakurai, T.; Choi, J.W.; Suzuki, N.; Morita, M. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    The purpose of the present study was to find out how the amounts of adsorbed dioxins, i.e., polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), mono-ortho-polychlorinated biphenyls (PCBs) and non-ortho-PCBs, vary with the particle size of suspended sediment. As dioxins are hydrophobic, they tend to adsorb onto particles suspended in water, and the determination of which dioxin congeners readily dissolve in water or adsorb onto particles is central to the characterization of dioxin behavior in water/sediment systems. Presumably suspension of sediments and the size of the particles govern the transfer of dioxins to aquatic organisms. Therefore, in the present study, we investigated the relationship between the amount of dioxins and the particle-size distribution of resuspended, rather than settled, sediment.

  5. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    Science.gov (United States)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  6. Suspended particle and drug ingredient concentrations in hospital dispensaries and implications for pharmacists' working environments.

    Science.gov (United States)

    Inaba, Ryoichi; Hioki, Atsushi; Kondo, Yoshihiro; Nakamura, Hiroki; Nakamura, Mitsuhiro

    2016-03-01

    The aim of this study was to assess the present status of working environments for pharmacists, including the concentrations of suspended particles and suspended drug ingredients in dispensaries. We conducted a survey on the work processes and working environment in 15 hospital dispensaries, and measured the concentrations of suspended particles and suspended drug ingredients using digital dust counter and high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Of 25 types of powdered drugs that were frequently handled in the 15 dispensaries surveyed, 11 could be quantitatively determined. The amounts of suspended particles were relatively high, but below the reference value, in three dispensaries without dust collectors. The sedative-hypnotic drug zopiclone was detected in the suspended particles at one dispensary that was not equipped with dust collectors, and the antipyretic and analgesic drug acetaminophen was detected in two dispensaries equipped with dust collectors. There was no correlation between the daily number of prescriptions containing powdered drugs and the concentration of suspended particles in dispensaries. On the basis of the suspended particle concentrations measured, we concluded that dust collectors were effective in these dispensaries. However, suspended drug ingredients were detected also in dispensaries with dust collectors. These results suggest that the drug dust control systems of individual dispensaries should be properly installed and managed.

  7. Suspended sediment assessment by combining sound attenuation and backscatter measurements - analytical method and experimental validation

    Science.gov (United States)

    Guerrero, Massimo; Di Federico, Vittorio

    2018-03-01

    The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.

  8. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    Science.gov (United States)

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin; Lian, Huiqin; Alonso, Rafael Herrera; Estevez, Luis; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2009-01-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  10. Nafion–clay hybrids with a network structure

    KAUST Repository

    Burgaz, Engin

    2009-05-01

    Nafion-clay hybrid membranes with a unique microstructure were synthesized using a fundamentally new approach. The new approach is based on depletion aggregation of suspended particles - a well-known phenomenon in colloids. For certain concentrations of clay and polymer, addition of Nafion solution to clay suspensions in water leads to a gel. Using Cryo-TEM we show that the clay particles in the hybrid gels form a network structure with an average cell size in the order of 500 nm. The hybrid gels are subsequently cast to produce hybrid Nafion-clay membranes. Compared to pure Nafion the swelling of the hybrid membranes in water and methanol is dramatically reduced while their selectivity (ratio of conductivity over permeability) increases. The small decrease of ionic conductivity for the hybrid membranes is more than compensated by the large decrease in methanol permeability. Lastly the hybrid membranes are much stiffer and can withstand higher temperatures compared to pure Nafion. Both of these characteristics are highly desirable for use in fuel cell applications, since a) they will allow the use of a thinner membrane circumventing problems associated with the membrane resistance and b) enable high temperature applications. © 2009 Elsevier Ltd. All rights reserved.

  11. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...

  12. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  13. Investigation on the cohesive silt/clay-particle sediment via the coupled CFD-DEM simulations

    Science.gov (United States)

    Xu, S.; Sun, H.; Sun, R.

    2017-12-01

    Sedimentation of silt/clay particles happens ubiquitously in nature and engineering field. There have been abundant studies focusing on the settling velocity of the cohesive particles, while studies on the sediment deposited from silt/clay irregular particles, including the vertical concentration profile of sediment and the various forces among the deposited particles are still lacking. This paper aims to investigate the above topics by employing the CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) simulations. In this work, we simulate the settling of the mono- and poly- dispersed silt/clay particles and mainly study the characteristics of the deposited cohesive sediment. We use the bonded particles to simulate the irregular silt/clay aggregates at the initial state and utilize the van der Waals force for all micro-particles to consider the cohesive force among silt/clay particles. The interparticle collision force and the fluid-particle interaction forces are also considered in our numerical model. The value of the mean structural density of cohesive sediment obtained from simulations is in good agreement with the previous research, and it is obviously smaller than no-cohesive sediment because of the existence of the silt/clay flocs. Moreover, the solid concentration of sediment increases with the growth of the depth. It is because the silt/clay flocs are more easily to break up due to the gradually increased submerged gravity of the deposited particles along the depth. We also obtain the noncontacted cohesive force and contact force profiles during the sedimentation and the self-weight consolidation process. The study of the concentration profile and the forces among silt/clay sediment will help to give an accurate initial condition for calculating the speed of the reconsolidation process by employing the artificial loads, which is necessary for practical designs of the land reclamation projects.

  14. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    Science.gov (United States)

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  15. Natural Ferrihydrite as an Agent for Reducing Turbidity Caused by Suspended Clays

    Science.gov (United States)

    The turbidity of water can be reduced by the addition of positively charged compounds which coagulate negatively charged clay particles in suspension causing them to flocculate. This research was conducted to determine the effectiveness of the Fe oxide mineral ferrihydrite as a flocculating agent fo...

  16. Particle transport in porous media

    Science.gov (United States)

    Corapcioglu, M. Yavuz; Hunt, James R.

    The migration and capture of particles (such as colloidal materials and microorganisms) through porous media occur in fields as diversified as water and wastewater treatment, well drilling, and various liquid-solid separation processes. In liquid waste disposal projects, suspended solids can cause the injection well to become clogged, and groundwater quality can be endangered by suspended clay and silt particles because of migration to the formation adjacent to the well bore. In addition to reducing the permeability of the soil, mobile particles can carry groundwater contaminants adsorbed onto their surfaces. Furthermore, as in the case of contamination from septic tanks, the particles themselves may be pathogens, i.e., bacteria and viruses.

  17. Influence of clay particles on microfluidic-based preparation of hydrogel composite microsphere

    Science.gov (United States)

    Hong, Joung Sook

    2016-05-01

    For the successful fabrication of a hydrogel composite microsphere, this study aimed to investigate the influence of clay particles on microsphere formation in a microfluidic device which has flow focusing and a 4.5:1 contraction channel. A poly alginic acid solution (2.0 wt.%) with clay particles was used as the dispersed phase to generate drops in an oil medium, which then merged with drops of a CaCl2 solution for gelation. Drop generations were observed with different flow rates and particles types. When the flow rate increased, drop generation was enhanced and drop size decreased by the build-up of more favorable hydrodynamic flow conditions to detach the droplets. The addition of a small amount of particles insignificantly changed the drop generation behavior even though it reduced interfacial tension and increased the viscosity of the solution. Instead, clays particles significantly affected hydro-gelation depending on the hydrophobicity of particles, which produced further heterogeneity in the shape and size of microsphere.

  18. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  19. A direct simulation method for flows with suspended paramagnetic particles

    NARCIS (Netherlands)

    Kang, T.G.; Hulsen, M.A.; Toonder, den J.M.J.; Anderson, P.D.; Meijer, H.E.H.

    2008-01-01

    A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a

  20. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Hoekstra, P.

    2005-01-01

    The ability of a 1.2-MHz Acoustic Doppler Current Profiler (ADCP) to measure suspended sediment concentration (SSC) and particle size variation in a mud-dominated environment has been investigated. Experiments were conducted in the Bay of Banten, Indonesia, where clays and silts in the range of 3-55

  1. The influence of clay particles on the hydraulic conductivity of sandy soils

    NARCIS (Netherlands)

    Fahmy, M.I.

    1961-01-01

    The relation between hydraulic conductivity and size of the sand particles and clay content was investigated in artificial mixtures of sand and clay and in natural soils, in four different ways in the laboratory and field.

    In the artificial mixtures coarse aggregates of illitic clay hardly

  2. Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, Aryeh; Packman, Aaron I.; Boano, Fulvio; Phillips, Colin B.; Arnon, Shai

    2018-05-01

    Fine particle deposition and streambed clogging affect many ecological and biogeochemical processes, but little is known about the effects of groundwater flow into and out of rivers on clogging. We evaluated the effects of losing and gaining flow on the deposition of suspended kaolinite clay particles in a sand streambed and the resulting changes in rates and patterns of hyporheic exchange flux (HEF). Observations of clay deposition from the water column, clay accumulation in the streambed sediments, and water exchange with the bed demonstrated that clay deposition in the bed substantially reduced both HEF and the size of the hyporheic zone. Clay deposition and HEF were strongly coupled, leading to rapid clogging in areas of water and clay influx into the bed. Local clogging diverted exchanged water laterally, producing clay deposit layers that reduced vertical hyporheic flow and favored horizontal flow. Under gaining conditions, HEF was spatially constrained by upwelling water, which focused clay deposition in a small region on the upstream side of each bed form. Because the area of inflow into the bed was smallest under gaining conditions, local clogging required less clay mass under gaining conditions than neutral or losing conditions. These results indicate that losing and gaining flow conditions need to be considered in assessments of hyporheic exchange, fine particle dynamics in streams, and streambed clogging and restoration.

  3. Wave-induced ripple development in mixed clay-sand substrates

    Science.gov (United States)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  4. Suspended sediment measurements and calculation of the particle load at HPP Fieschertal

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    In the scope of a research project on hydro-abrasive erosion of Pelton turbines, a field study was conducted at the high-head HPP Fieschertal in Valais, Switzerland. The suspended sediment mass concentration (SSC) and particle size distribution (PSD) in the penstock have been continuously measured since 2012 using a combination of six measuring techniques. The SSC was on average 0.52 g/l and rose to 50 g/l in a major flood event in July 2012. The median particle size d 50 was usually 15 pm, rising up to 100 μm when particles previously having settled in the headwater storage tunnel were re-suspended at low water levels. The annual suspended sediment loads (SSL) varied considerably depending on flood events. Moreover, so-called particle loads (PLs) according to the relevant guideline of the International Electrotechnical Commission (IEC 62364) were calculated using four relations between particle size and the relative abrasion potential. For the investigated HPP, the time series of the SSL and the PLs had generally similar shapes over the three years. The largest differences among the PLs were observed during re-suspension events when the particles were considerably coarser than usual. Further investigations on the effects of particle sizes on hydroabrasive erosion of splitters and cut-outs of coated Pelton turbines are recommended.

  5. Numerical simulation of the motion of charged suspended particle in multi-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    A method for computing numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  6. Numerical Simulation of the Motion of Charged Suspended Particle in Multi-Phase Flow

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    A method for computing Numerical simulation of the motion of charged suspended particle in multi-phase flow between two-long parallel plates is described in detail. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. Numerical solutions of the resulting ordinary differential equations provide velocity distributions for both fluid and solid phases and density distributions for the solid. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  7. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  8. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    Science.gov (United States)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow

  9. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    Science.gov (United States)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  10. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  11. Toxicity of inhaled 144Ce fused clay particles in beagle dogs. VII

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Hobbs, C.H.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    The metabolism, dosimetry, and effects of inhaled 144 Ce in fused clay particles are being investigated in the Beagle dog to aid in assessing the biological consequences of release of 144 Ce in a relatively insoluble form such as might occur in certain types of nuclear accidents. The toxicity of inhaled 144 Ce fused clay is also of general interest since it is representative of intermediate-lived beta-emitting radionuclides. Two major studies with young adult dogs (12 to 14 months of age at exposure) are involved: (1) a metabolism and dosimetry study in which 24 dogs were serially sacrificed over an extended period of time, and (2) a longevity study with 2 series of dogs; Series I with 15 dogs exposed to aerosols of 144 Ce in fused clay particles to yield initial lung burdens of 11 to 210 μCi/kg body weight and 3 control dogs exposed to nonradioactive fused clay particles and Series II with 96 dogs exposed to aerosols of 144 Ce in fused clay particles to yield initial lung burdens of 0.0024 to 66 μCi/kg body weight and 12 control dogs exposed to nonradioactive fused clay particles. Twenty-eight dogs died or were euthanized at 143 to 2396 days after inhalation of 144 Ce. The prominent findings were radiation pneumonitis in 17 dogs that died or were euthanized at early time periods and neoplastic disease in 10 of the 11 dogs that died or were euthanized at 750 days or later; 5 with hemangiosarcoma of the lung, 1 with both a hemangiosarcoma and a fibrosarcoma of the lung, 1 with both a bronchiolo-alveolar carcinoma and a hemangiosarcoma of lung, 1 with a hemangiosarcoma of lung, bronchiolo-alveolar carcinoma, and a bronchiogenic adenocarcinoma, and 1 each with a hemangiosarcoma of the mediastinum and of the spleen. The cumulative radiation dose to the lung at time of death has ranged from 22,000 to 140,000 rads. Serial observations are continuing on the 83 survivors and 15 controls. (U.S.)

  12. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  13. Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.

  14. Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated

    International Nuclear Information System (INIS)

    Abd-El Khalek, M.M.

    1998-01-01

    The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically

  15. The magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NARCIS (Netherlands)

    Seong, Y.; Kang, T.G.; Hulsen, M.A.; den Toonder, J.M.J.; Anderson, P.D.

    2016-01-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and non-magnetic sides. A direct numerical scheme is

  16. Concentration Measurements of Suspended Load using ADV with Influence of the Particle Size

    Science.gov (United States)

    Schwarzwälder, Kordula

    2017-04-01

    ADV backscatter data can be used under certain conditions to gain information about the concentrations of suspended loads. This was shown in many studies before (Fugate and Friedrichs 2002; Chanson et al 2008; Ha et al. 2009). This paper reports on a pre-study to investigate the influence of particle size on concentration measurements for suspended sediment load with ADV. The study was conducted in a flume in the Oskar-von-Miller-Institute using fresh water from a river including the natural suspended load. The ADV used in the experiments was a Vectrino Profiler (Nortek). In addition water samples were taken for TSS and TOC. For the measurements a surge was generated in the flume to ensure that also particles of larger size will be present in the water phase. The measurements and samples were taken during the whole surge event. Therefore we were able to find a good correlation between the backscatter data of the ADV and the TSS as well as TOC results. For the decreasing part of the flow event the concentration of TOC in the suspended load of the water phase is decreasing much slower than the TSS and results in a damped decrease of the backscatter values. This means that the results for concentration measurements might be slightly influenced by the size of the particles. Further evaluations of measurements conducted with a LISST SL (Sequoia) will be investigated to show the trend of the particle sizes during this process and fortify this result. David C. Fugate, Carl T. Friedrichs, Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST, Continental Shelf Research, Volume 22, Issues 11-13, 2002 H.K. Ha, W.-Y. Hsu, J.P.-Y. Maa, Y.Y. Shao, C.W. Holland, Using ADV backscatter strength for measuring suspended cohesive sediment concentration, Continental Shelf Research, Volume 29, Issue 10, 2009 Hubert Chanson, Maiko Takeuchi, Mark Trevethan, Using turbidity and acoustic backscatter intensity as surrogate measures of

  17. The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK

    Science.gov (United States)

    Walling; Owens; Waterfall; Leeks; Wass

    2000-05-05

    This paper presents information on the absolute (chemically-dispersed) particle size characteristics of the suspended sediment transported by rivers in the Humber and Tweed basins during the period 1994-1998. For most of the rivers, > 95% of the suspended sediment load at the time of sampling was 63 microm (i.e. sand-sized material). The sediment transported in the two basins were similar. There were, however, noticeable spatial variations in the particle size composition of suspended sediment within the study basins, which reflected the particle size of the sediment sources and their spatial variation, and the selectivity of the sediment mobilization and delivery processes. When particle size parameters were plotted against discharge, there were no significant relationships, although there was some evidence of trends varying between sites. The lack of significant relationships with discharge reflects the fact that sediment particle size is largely supply-controlled, rather than a function of flow and hydraulics. When particle size variations were examined during individual storm events, there was evidence of a pulse of coarse sediment on the rising limb of the hydrograph. This may reflect the remobilization of coarse channel bed sediment as flow velocity and shear stress increase. Finer sediment was transported subsequently during the hydrograph peak and on the falling limb. The findings reported have important implications for understanding and modelling suspended sediment, and associated contaminant, dynamics in river basins.

  18. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  19. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Rytwo, Giora, E-mail: rytwo@telhai.ac.il [Tel Hai College, Dept. of Environmental Sciences, Upper Galilee 12210 (Israel); Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Lavi, Roy; Rytwo, Yuval; Monchase, Hila [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel); Dultz, Stefan [Institute of Soil Science, Leibniz University Hannover, Herrenhaeuser Str. 2, D-30419 Hannover (Germany); Koenig, Tom N. [Environmental Physical Chemistry Laboratory, MIGAL, Galilee Technological Center, Kiryat Shmona (Israel)

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6 h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Highlights: Black-Right-Pointing-Pointer Nanocomposites yielded clarification of olive mill (OMW) and winery effluents (WW). Black-Right-Pointing-Pointer In smectite based nanocomposites intercalation of the polymer was measured. Black-Right-Pointing-Pointer In sepiolite based nanocomposites no changes in the spacing were observed. Black-Right-Pointing-Pointer Colloidal neutralization is the main clarification process in WW but not in OMW. Black-Right-Pointing-Pointer Several cycles of

  20. Complete Evaluation of Suspended Air Particles and Their Composition in the Central Area of Yazd City

    Directory of Open Access Journals (Sweden)

    M Younesian

    2009-01-01

    Full Text Available Introduction: Air pollution is one of the problems of the recent century caused by vehicles, industries and other urban activities. The City of Yazd faces air pollution due to its high population, vehicular traffic and industrial places around the city. One of the important parameters of air pollution is suspended air particles that have harmful effects on the health of people, plants and objects. Methods: This research has been carried out by first determining a station in the central area of the city (Shahid Beheshti Square of Yazd. The suspended particles were measured during a five-month period from March to July, 2006. A high volume sampler was used for measuring Total Suspended Particles (TSP. The amount of lead content of TSP was measured in samples by using atomic absorption method. In the next stage, the percentage of organic and inorganic particles in the TSP of all samples was measured by using gravimetric methods and by burning in the oven. Results: The results of this study showed that amount of suspended particles in the city of Yazd is higher than national standard and the general mean average of the suspended particles of air in five months was 233 micrograms per cubic meter. The average concentration of suspended air particles from end of March to August during the five month period was 118, 193, 231, 267and 333, respectively. The average concentration of lead was 0.04 microgram per cubic meter and amount of organic and inorganic particles in TSP was 25.31% and 74.68%, respectively. Conclusion: With respect to the results, the minimum amount of TSP concentration was in March. This could be due to reduction in trading and industrial activities and New Year vacations. In addition, the average monthly TSP increased from March to July; the cause of which could be relative decrease in humidity and increase in temperature. The amount of lead in samples was much less than standard, which could be due to omission of lead from petrol

  1. Concentration of aqueous extracts of defatted soy flour by ultrafiltration; Effect of suspended particles on the filtration flux

    NARCIS (Netherlands)

    Noordman, T.R.; Kooiker, K.; Bel, W.; Dekker, M.; Wesselingh, J.A.

    2003-01-01

    Suspended particles can have a positive effect on the flux and concentration curve of soy flour extracts during ultrafiltration. This is described by a simple empirical model. The suspended particles in this study were insoluble milled bean material (mean particle size 25 m). It is shown that it is

  2. Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed

  3. Cahn-Hilliard modeling of particles suspended in two-phase flows

    NARCIS (Netherlands)

    Choi, Y.J.; Anderson, P.D.

    2012-01-01

    In this paper, we present a model for the dynamics of particles suspended in two-phase flows by coupling the CahnHilliard theory with the extended finite element method (XFEM). In the CahnHilliard model the interface is considered to have a small but finite thickness, which circumvents explicit

  4. Unique morphology of dispersed clay particles in a polymer nanocomposite

    CSIR Research Space (South Africa)

    Malwela, T

    2011-02-01

    Full Text Available This communication reports a unique morphology of dispersed clay particles in a polymer nanocomposite. A nanocomposite of poly[butylene succinate)-co-adipate] (PBSA) with 3 wt% of organically modified montmorillonite was prepared by melt...

  5. Simulation of the long term alteration of clay minerals in engineered bentonite barriers: nucleation and growth of secondary clay particles

    International Nuclear Information System (INIS)

    Fritz, B.; Clement, A.; Zwingmann, H.; Noguera, C.

    2010-01-01

    with elevated temperature. Thermodynamic effects are then combined with solubility products and kinetic effects on nucleation and growth of precipitated particles. It is a real challenge for geo-chemists to be able to account for precipitation kinetics in water-rock interaction models, particularly considering systems on short to mid terms (x 1000 y) compared to geological timescales. The recently developed code NANOKIN models dissolution processes of primary minerals as well as the kinetics of precipitation of secondary minerals taking into account the first steps of nucleation and growth and the subsequent evolution of the classes of particles precipitated. With these modellings the predicted evolution of the clay phase gives information on the crystal size distribution of secondary particles precipitated as a function of time. The model also examines the state of the aqueous solution with various mineral phases and combines the classical theory of crystal nucleation with size and morphology dependent kinetic rate laws for growth and/or dissolution of particles i.e. Oswald ripening processes. Ion exchange in mineral phases, and particularly in clay minerals has to be considered as a possible geochemical process taking place in clay barriers under storage conditions. This process might control first the transfer or the fixation of the major cations present in aqueous solutions (Ca 2+ , Mg 2+ , K + , Na + mainly but also H + , Fe 2+ , Al 3+ ) but also radionuclide cations if they might diffuse in the barriers after corrosion of the canisters on long term. When one considers this process from the simulation point of view, the challenge is not so easy. The same simulation has to combine kinetic processes with largely different time scales: near equilibrium cationic exchange reactions, which can be considered as quasi-instantaneous, and clay mineral precipitation which occurs on longer term in over-saturation state with respect to the solution. We have extended the code

  6. Sedimentation of athermal particles in clay suspensions

    Science.gov (United States)

    Clotet, Xavier; Kudrolli, Arshad

    2015-03-01

    We discuss sedimentation of athermal particles in dense clay suspensions which appear liquid-like to glass-like. These studies are motivated by the physics important to a diverse range of problems including remediation of oil sands after the extraction of hydrocarbons, and formation of filter cakes in bore wells. We approach this problem by first considering collective sedimentation of athermal spherical particles in a viscous liquid in quasi-two dimensional and three dimensional containers. We examine the system using optical and x-ray tomography techniques which gives particle level information besides global information on the evolution of the volume fraction. Unlike sediments in the dilute limit - which can be modeled as isolated particles that sediment with a constant velocity and slow down exponentially as they approach the bottom of the container - we find interaction between the particles through the viscous fluids leads to qualitatively differences. We find significant avalanching behavior and cooperative motion as the grains collectively settle, and non-exponential increase in settling time. We discuss the effect of stirring caused by the sedimenting particles on their viscosity and consequently the sedimentation rates as a function of particle concentration. Supported by Petroleum Research Fund Grant PRF # 54045-ND9.

  7. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  8. Drift of suspended ferromagnetic particles due to the Magnus effect

    Science.gov (United States)

    Denisov, S. I.; Pedchenko, B. O.

    2017-01-01

    A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.

  9. Flocculation - Formation and structure of aggregates composed of polyelectrolyte chains and clay colloidal particles

    OpenAIRE

    Sakhawoth , Yasine

    2017-01-01

    Flocculation is a key process in numerous environmental and industrial technologies such as purification of waste-water or paper making. It is necessary to understand the formation and structure of the aggregates to control and optimize such a process. Most of the studies on flocculation involve spherical particles, but there is a clear need to understand the flocculation of anisotropic particles such as clay colloids, which are platelets. I studied the flocculation of montmorillonite clay su...

  10. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  11. Alpha particles emitted from the surface of granite, clay, and its fired products, 1

    International Nuclear Information System (INIS)

    Aratani, Michi; Otsuka, Hideko

    1975-01-01

    As a part of an investigation on ''the effect of long-time irradiation from a trace amount of radioisotopes'', the emitting rate of alpha particles per unit surface area (apparent) coming from natural alpha-particle emitters has been measured. The samples measured were granite and its weathered product; clay, especially potter's clay, and its fired product; pottery ware. The values obtained were 39.1 +-0.9--0.73+-0.08 cpm/100 cm 2 in granite, 16.8+-0.4--6.4+-0.2 cpm/100cm 2 in potter's clay, and 1.36+-0.04--0.82+-0.04 cpm/100cm 2 in pottery ware on substrate, and 1.33+-0.05--0.32+-0.02 cpm/100cm 2 on glazer. (auth.)

  12. Carbon saturation in the silt and clay particles in soils with contrasting mineralogy

    Directory of Open Access Journals (Sweden)

    Francisco Matus

    2016-07-01

    Full Text Available The silt and clay particles play a key role as stabilizing agents of soil organic carbon (SOC. Several lines of evidence indicate a theoretical maximum or C saturation in individual particles. In the present study, we hypothesized that a C fraction displaying linear accumulation relative to the SOC is not influenced by C saturation, while a fraction displaying an asymptotic relationship is regarded as saturated (Stewart et al., 2008. The aim of the present study was to compare the amount of C in the silt and clay sized fractions in temperate and subtropical cropping soils across a range of textures with different mineralogy. Twenty-one and 18 soil samples containing 1:1 and 2:1 clay of temperate soil from Chile under monoculture of maize (Zea maiz L. for at least 30 years and 9 subtropical soils from Mexico under maize and bean (Phaseolus vulgaris L. cropping for 9 years having mixed clay were collected at 0-0.1 m. The SOC of 2:1 soils was significantly higher (14±0.5 g kg-1 dry soil than 1:1 soils (10±0.7 g kg-1. However, subtropical soils showed the highest values (59±0.5 g kg-1. A positive (P < 0.01 relationship was observed between the SOC and the C in the silt fraction (R2 0.80-0.97, P < 0.01. In contrast, the clay fraction remained constant or showed asymptotic behavior. We conclude that the silt fraction, unlike clay, showed no evidence of C saturation, while clay accumulates C to a maximum. On average, the 2:1 clay was saturated at 1-2 g C kg-1 and 1:1 at 1 g C kg-1, and subtropical soils at 14 g C kg-1.

  13. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  14. Numerical analysis of the motion of a suspended charged particle in multi-phase flow. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The motion of a suspended charged particle in a two component viscous fluid through two infinite parallel plates was studied. The motion takes place under constant magnetic field normal to the plane of the motion. The effect of some parameters as particle volume, fluid density, viscosity of the fluid, and the magnetic force used on the motion were investigated. The particle is assumed moving initially from the midpoint of the channel with a velocity equal to the velocity of the fluid. The trajectory of solid spherical suspended charged particle is calculated by integrating the equations of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about the path lines were deduced. 5 figs.

  15. The behaviour of cesium 137, chromium 51, cobalt 60, Manganese 54, sodium 22 and zinc 65 in simulated estuarine environments. Effects of suspended mineral particles and dissolved organic matters

    International Nuclear Information System (INIS)

    Mahler, P.

    1985-09-01

    This laboratory investigation studied the retention of 6 radionuclides (cesium 137, chrome 51, cobalt 60, manganese 54, sodium 22 and zinc 65) on three types of clay particles (kaolinite, illite, montmorillonite) and on sediments, suspended in media with salinities ranging between 0 and 34 per mill, with or without organic matters. Measurement of the radioactivity retained by the particles after 5 days' contact with the radionuclide made it possible to calculate the percentages retained and the distribution coefficients, and to follow their evolution versus salinity. Parallel experiments studied the behaviours of the 6 radionuclides as a function of experimental factors (wall effect, contact time..). An exhaustive bibliographic review gives the state-of-the-art of the knowledge. The following conclusions were derived: - the retention of all the radionuclides but chromium 51 decreased as soon as a low salinity appeared. Chromium (available as Cr 3+ ) precipitated quickly and strongly during fixation whatever the surfaces or the conditions: - as for the role of the clay type, illite showed a strong affinity for cesium 137; manganese 54 had a particular behaviour with montmorillonite that enhanced its precipitation into MnO 2 ; with cobalt, sodium and zinc, the percentages retained were always [fr

  16. Hydromagnetic thermosolutal instability of compressible walters' (model B' rotating fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.

  17. Toxicity of inhaled 90Sr fused clay particles in beagle dogs. V

    International Nuclear Information System (INIS)

    Snipes, M.B.; Boecker, B.B.; Hahn, F.F.; Hobbs, C.H.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    Studies on the metabolism, dosimetry, and biological effects of 90 Sr in fused clay particles in Beagle dogs have continued with a view toward defining the biological consequences of inhaling this important radionuclide in a relatively insoluble form. Seventy-two dogs were exposed to a polydisperse aerosol (AMAD 1.4 to 2.8 μm and sigma/sub g/ 1.4 to 2.7) of fused montmorillonite clay particles labeled with 90 Sr to achieve graded initial lung burdens (ILB) of 3.7 to 94 μCi/kg body weight; 12 control dogs were exposed to an aerosol of stable strontium in fused clay particles. These 84 dogs were assigned to the 90 Sr fused clay longevity study. An additional 26 dogs were exposed similarly (AMAD 1.9 to 2.5 μm and sigma/sub g/ 1.6 to 2.0) and assigned for sacrifice (Series II) at intervals after exposure to define metabolism and dosimetry of this aerosol in Beagle dogs. Of the 72 longevity dogs, 32 dogs having ILBs of 29 to 94 μCi/kg and cumulative doses to lung to death of 40,000 to 96,000 rads have died from radiation pneumonitis and/or pulmonary fibrosis from 159 to 477 days post-exposure. Fourteen dogs with ILBs of 15 to 36 μCi/kg and cumulative doses to lung to death of 34,000 to 68,000 rads have died from primary pulmonary hemangiosarcomas between 644 and 1214 days post-exposure. In addition, one dog developed a bronchiolo-alveolar carcinoma, another epidermoid carcinoma of the lung and a third, a squamous cell carcinoma in the nasal cavity. The remaining 26 exposed dogs and 12 controls of the longevity study are surviving at 1070 to 1707 days post-exposure. Dogs in the sacrifice series have been sacrificed to 1536 days post-exposure. (U.S.)

  18. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  19. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    Science.gov (United States)

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  20. Particle size distribution and physico-chemical composition of clay.

    African Journals Online (AJOL)

    HP USER

    <300µm, <106µm, <63µm and <44µm respectively. There was no remarkable difference in silica (SiO2) as particle fractions reduced from <. 300µm - < 106µm - < 63µm but an observed. Table 1.0 Chemical composition of crude clay. Component wt (%). SiO2. 38.48. Al2O3. 12.46. Fe2O3. 6.18. TiO2. 1.85. MgO. 14.67. CaO.

  1. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    International Nuclear Information System (INIS)

    Daniel Molloy

    2003-01-01

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter

  2. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Molloy

    2003-08-04

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.

  3. A minimalistic microbial food web in an excavated deep subsurface clay rock.

    Science.gov (United States)

    Bagnoud, Alexandre; de Bruijn, Ino; Andersson, Anders F; Diomidis, Nikitas; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    Clay rocks are being considered for radioactive waste disposal, but relatively little is known about the impact of microbes on the long-term safety of geological repositories. Thus, a more complete understanding of microbial community structure and function in these environments would provide further detail for the evaluation of the safety of geological disposal of radioactive waste in clay rocks. It would also provide a unique glimpse into a poorly studied deep subsurface microbial ecosystem. Previous studies concluded that microorganisms were present in pristine Opalinus Clay, but inactive. In this work, we describe the microbial community and assess the metabolic activities taking place within borehole water. Metagenomic sequencing and genome-binning of a porewater sample containing suspended clay particles revealed a remarkably simple heterotrophic microbial community, fueled by sedimentary organic carbon, mainly composed of two organisms: a Pseudomonas sp. fermenting bacterium growing on organic macromolecules and releasing organic acids and H2, and a sulfate-reducing Peptococcaceae able to oxidize organic molecules to CO(2). In Opalinus Clay, this microbial system likely thrives where pore space allows it. In a repository, this may occur where the clay rock has been locally damaged by excavation or in engineered backfills. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Estimating vertical and lateral pressures in periodically structured montmorillonite clay particles

    Directory of Open Access Journals (Sweden)

    Guillermo A. Narsilio

    2010-03-01

    Full Text Available Given a montmorillonitic clay soil at high porosity and saturated by monovalent counterions, we investigate the particle level responses of the clay to different external loadings. As analytical solutions are not possible for complex arrangements of particles, we employ computational micromechanical models (based on the solution of the Poisson-Nernst-Planck equations using the finite element method, to estimate counterion and electrical potential distributions for particles at various angles and distances from one another. We then calculate the disjoining pressures using the Van't Hoff relation and Maxwell stress tensor. As the distance between the clay particles decreases and double-layers overlap, the concentration of counterions in the micropores among clay particles increases. This increase lowers the chemical potential of the pore fluid and creates a chemical potential gradient in the solvent that generates the socalled 'disjoining' or 'osmotic' pressure. Because of this disjoining pressure, particles do not need to contact one another in order to carry an 'effective stress'. This work may lead towards theoretical predictions of the macroscopic load deformation response of montmorillonitic soils based on micromechanical modelling of particles.Dada uma argila montmorilonítica de alta porosidade e saturada por counteríons monovalentes, investigamos as respostas da argila ao nível de partículas para diferentes cargas externas. Como soluções analíticas não são possíveis para arranjos complexos de partículas, empregamos modelos computacionais micro-mecânicos (baseados na solução das equações de Poisson-Nernst-Planck, utilizando o método de elementos finitos, para estimar counteríons e distribuições de potencial elétrico para partículas em diversos ângulos e distâncias uma da outra. Nós então calculamos as pressões de separação usando a relação de Van't Hoff e a tensão de cisalhamento de Maxwell. À medida que a

  5. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Cedergreen, Nina; Kronvang, Brian

    2016-01-01

    Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epi......Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin....... MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration–response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced...

  6. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO

    2016-12-01

    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  7. Motion of a suspended charged particle in a NON-Newtonian fluid. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The path lines of a solid spherical charged particle suspended in a non-newton electrical conducting viscous fluid through two infinite parallel plates in the presence of a constant magnetic field normal to the plane of particle motion were determined. The effect of some parameters such as particle volume, fluid density, fluid viscosity, and the use magnetic field strength on these path lines were determined. The present solution requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about width, maximum height and number of collisions with upper and lower plates were deduced. 4 figs.

  8. Application of nuclear techniques to the measurement of rock density and transport of solid particles suspended in rivers

    International Nuclear Information System (INIS)

    Seddiki, A.

    1984-10-01

    In order to better understand hydron phenomens in semi-arid regions characterized by torrential rains, we measured solid particles suspended to dums and in rivers. We also determined the density profile of a drilling and density of saline solutions. We designed an automatic nuclear gauge used for measuring the concentration of particles suspended to rivers. The installation, calibration and operations of a LABEN gauge were done in BENI SLIMANE on the 27th and 28th of February, 1984. The first results we obtained were received on the 24th of April, 1984

  9. Total suspended particles (TSP) and breathable particles (PM10) in Aburra Valley, Colombia

    International Nuclear Information System (INIS)

    Saldarriaga Molina, Julio Cesar; Echeverri Londono, Carlos Alberto; Molina Perez Francisco Jose

    2004-01-01

    In the Aburra's valley, nor-western region of Colombia, inhabited by 3 million people, crossed by 400,000 vehicles; with the presence of establishments of industrial sectors: textile, foods and metal-mechanical; The concentrations of total suspended particles (PST) and breathable particles (PM 1 0) were evaluated, during the period: December of 2000 to June of 2001. The determinations of PST and PM 1 0 were performed in ten stations, distributed of north to the south, covering urban and rural zones with the municipalities of: Girardota, Bello, Medellin, Itagui, Sabaneta and Caldas. When analyzing relation PM 1 0/PST, was that the best statistical correlations are located in the zones center and the south of the valley. In addition the increasing tendency in relation PM 1 0/PST was observed, from 0.527 for the rural station Girardota (North), to 0.813 in the urban station Caldas (South). This gradient in relation PM 1 0/PST apparently this related to the wind regime that predominates in the Valley of Aburra with direction the north-south, which causes that the fine particles migrate of north to the south, increasing relation PM 1 0/PST in the same direction

  10. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  11. A mathematical theorem on the onset of Couple-Stress fluid permeated with suspended dust particles saturating a porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available In this paper, the effect of suspended particles on thermal convection in Couple-Stress fluid saturating a porous medium is considered. By applying linear stability theory and normal mode analysis method, a mathematical theorem is derived which states that the viscoelastic thermal convection at marginal state, cannot manifest as stationary convection if the thermal Rayleigh number R, the medium permeability parameter Pl, the couple-stress parameter F and suspended particles parameter B, satisfy the inequality

  12. Suspended sediments from upstream tributaries as the source of downstream river sites

    Science.gov (United States)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  13. Physical Properties of Latvian Clays

    OpenAIRE

    Jurgelāne, I; Stepanova, V; Ločs, J; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  14. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  15. Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater.

    Science.gov (United States)

    Davidson, Marion C F; Berardi, Terra; Aguilar, Beatriz; Byrne, Barbara A; Shapiro, Karen

    2015-03-01

    The bacterium Salmonella enterica can infect marine mammals and has been increasingly implicated in seafood-borne disease outbreaks in humans. Despite the risk this zoonotic agent poses to animals and people, little is known regarding the environmental factors that affect its persistence in the sea. The goal of this study was to evaluate the impact of two constituents on the survival of Salmonella in the marine environment: transparent exopolymer particles (TEP) and suspended particles. A decay experiment was conducted by spiking Salmonella into bottles containing seawater, seawater with alginic acid as a source of TEP, filtered seawater or filtered seawater with alginic acid. Survival of Salmonella was monitored using culture followed by enrichment assays to evaluate if the bacteria entered a viable but non-cultivable (VBNC) state. Salmonella cell counts dropped significantly faster (P ≤ 0.05) in the unfiltered seawater samples with and without TEP. The slowest decay occurred in filtered seawater containing alginic acid, with VBNC Salmonella persisting for 17 months. These findings suggest that TEP may favor Salmonella survival while suspended particles facilitate its decay. Insight on the survival of allochthonous, zoonotic pathogens in seawater can guide monitoring, management and policy decisions relevant to wildlife and human public health. © FEMS 2015. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Ziegler-Natta Catalyst Based on MgCl₂/Clay/ID/TiCl₄ for the Synthesis of Spherical Particles of Polypropylene Nanocomposites.

    Science.gov (United States)

    Cardoso, Renata da Silva; Oliveira, Jaqueline da Silva; Ramis, Luciana Bortolin; Marques, Maria de Fátima V

    2018-07-01

    In the present work, we have designed MgCl2/clay/internal donor (ID)/TiCl4 based bisupported Ziegler-Natta catalysts containing varying amounts of organoclay (montmorillonite) in order to synthesize spherical particles of polypropylene/clay nanocomposites (PCN). The organoclay was introduced into the catalyst support formulation and PCN was obtained using the in situ polymerization technique. Decreasing the reaction time, it was possible to obtain nanocomposites with high concentrations of clay (masterbatches). Micrographs of SEM confirmed the spherical morphology of the catalysts. In addition, XRD patterns show that the active sites for polymerization were inserted in the clay galleries. The catalytic performance was evaluated in slurry propylene polymerization using triethylaluminium as cocatalyst and silane as external electron donor at 70 °C, 4 bar, and different reaction times. The PCNs obtained containing different clay amounts were characterized by X-ray diffraction, thermal analyses, transmission electronic microscopy, and extractables in heptane. The results revealed that the synthesized PP/clay particles were also spherical showing that the morphological control is possible even using catalysts containing high amounts of clay. The PCN presented high degradation temperature (459 °C). The XRD peak related to the clay interlamellar distance has shifted to lower angles, and TEM images confirmed the formation of exfoliated/intercalated clay on the PP matrix and absence of microparticles of clay.

  17. Analysis of clay particles behaviour during hydration-dehydration processes

    International Nuclear Information System (INIS)

    Maison, T.; Laouafa, F.; Delalain, P.; Fleureau, J.M.

    2010-01-01

    with time. The major part of strain takes place for high value of relative humidity (more than 85%), either during swelling or shrinkage phase. A gap of surface deformation is observed between the end of swelling (point A) and the beginning of shrinkage (point B). This gap has no physical meaning; it is due to image processing perturbed by the water presence in the form of a layer around the particle, inducing a surface area larger than reality. The maximum of surface area strains (2D strain in the plane of observation) for swelling is about 25%. This value is similar to the swelling value measured with classical oedometric free swelling tests. Several ESEM analyses show that microscopic measurements, performed on clay powder and during a few days, are quite identical to macroscopic measurements, carried out on macroscopic samples during a few months. (authors)

  18. Study of the Effect of Clay Particles on Low Salinity Water Injection in Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Sina Rezaei Gomari

    2017-03-01

    Full Text Available The need for optimal recovery of crude oil from sandstone and carbonate reservoirs around the world has never been greater for the petroleum industry. Water-flooding has been applied to the supplement primary depletion process or as a separate secondary recovery method. Low salinity water injection is a relatively new method that involves injecting low salinity brines at high pressure similar to conventional water-flooding techniques, in order to recover crude oil. The effectiveness of low salinity water injection in sandstone reservoirs depends on a number of parameters such as reservoir temperature, pressure, type of clay particle and salinity of injected brine. Clay particles present on reservoir rock surfaces adsorb polar components of oil and modify wettability of sandstone rocks to the oil-wet state, which is accountable for the reduced recovery rates by conventional water-flooding. The extent of wettability alteration caused by three low salinity brines on oil-wet sandstone samples containing varying clay content (15% or 30% and type of clay (kaolinite/montmorillonite were analyzed in the laboratory experiment. Contact angles of mica powder and clay mixture (kaolinite/montmorillonite modified with crude oil were measured before and after injection with three low salinity sodium chloride brines. The effect of temperature was also analyzed for each sample. The results of the experiment indicate that samples with kaolinite clay tend to produce higher contact angles than samples with montmorillonite clay when modified with crude oil. The highest degree or extent of wettability alteration from oil-wet to intermediate-wet state upon injection with low salinity brines was observed for samples injected with brine having salinity concentration of 2000 ppm. The increase in temperature tends to produce contact angles values lying in the higher end of the intermediate-wet range (75°–115° for samples treated at 50 °C, while their corresponding

  19. Atrazine biodegradation modulated by clays and clay/humic acid complexes

    International Nuclear Information System (INIS)

    Besse-Hoggan, Pascale; Alekseeva, Tatiana; Sancelme, Martine; Delort, Anne-Marie; Forano, Claude

    2009-01-01

    The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment. - The biodegradation rate of atrazine was greatly modulated by adsorption of the pesticide and also bacterial cells on clay particles.

  20. Decantation time of evaluation on bentonite clays fractionation

    International Nuclear Information System (INIS)

    Gomes, J.; Menezes, R.R.; Neves, G.A.; Lira, H.L; Santana, L.N.L.

    2009-01-01

    Bentonite clays present a great number of industrial uses, from petroleum to pharmaceutics and cosmetic industry. The bentonite clay present particles with very fine particles that is responsible by the vast application of these materials. However, commercial clays present wide particle size distribution and a significant content of impurities, particularly quartz, in the form of silt and fine silt. So, the aim of this work is to analyze the effect of the stirring and decantation time in the deagglomeration, purification and size separation of the bentonite clay particles from Paraiba. The clays were characterized by X-ray diffraction and particle size distribution. Based on the results it was observed the decantation time give the elimination of the agglomerates formed by submicrometric particles. The uses of decantation column give separation of the fraction below 200nm. (author)

  1. Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Querol, X.; Alastuey, A.; Lopez-Soler, A.; Boix, A.; Sanfeliu, T.; Martynov, V.V.; Piven, P.I.; Kabina, L.P.; Souschov, P.A.

    1997-01-01

    This study focuses on the determination of trace element concentrations in total suspended particles by instrumental neutron activation analysis (INAA) in two different areas in Northeastern Spain (a rural area influenced by the emissions of a large coal-fired power station, and the urban and industrial areas of Castellon). Total suspended particles were sampled by means of standard MCV high- and medium-volume captors, using cellulose membrane filters of 0.8 and 0.45 μm pore size. Preliminary research was performed on the homogeneous distribution of elements in the sample filters and on the study of blank filters for the calculations of the background average element contents. The results obtained allowed to distinguish different major anthropogenic sources of trace elements in the atmosphere at the sampling sites: (a) Zr, Hf, Sc, U and Th are related to atmospheric pollution derived from the ceramic industry of the Castellon area; (b) As, Cr, Cs, Rb, Sb, Se, Zn are related to traffic and other industrial emission in the Castellon area, and As, Cr, Sb and Zn to power generation emissions in the rural area. (orig.). With 3 figs., 5 tabs

  2. Fracture in Kaolinite clay suspensions

    Science.gov (United States)

    Kosgodagan Acharige, Sebastien; Jerolmack, Douglas J.; Arratia, Paulo E.

    2017-11-01

    Clay minerals are involved in many natural (landslides, river channels) and industrial processes (ceramics, cosmetics, oil recovery). They are plate shaped charged colloids and exhibit different flow properties than simpler colloids when suspended in a liquid such as thixotropy and shear-banding. kaolinite platelets are non-swelling, meaning that the stacks formed by the platelets do not have water layers, and thus the suspension does not have a sol-gel transition. However, it has been shown that kaolinite suspensions possesses a non-zero yield stress even at low concentrations, indicating that the particles arrange themselves in a structure through attractive interactions. Here, we experimentally investigate the sedimentation of kaolinite suspensions in a Hele-Shaw cell. The sedimentation of these dilute suspensions can display solid behavior like fracture, revealed in cross-polarized light, which is linked to the failure of the weakly-bonded structure (typical yield stress 10-2 Pa). By changing the interaction potential of the particles (by sonication or introducing salts), we show through these sedimentation experiments, how the fracture pattern can be avoided. Research was sponsored by the Army Research Laboratory and was accomplished under Grant Number 569074.

  3. Interactions of radionuclides with sediments and suspended particles

    International Nuclear Information System (INIS)

    Carpenter, R.

    1997-01-01

    This chapter reviews fundamental principles of the rates and extents of radionuclide uptake by sedimentary and suspended particles, defines sediment-water partition coefficients, and shows how they can explain first order features of radionuclide partitioning in aquatic environments. It then explains how sediment accumulation and mixing rates can be calculated from profiles of radionuclide activity measured in sediment cores. Such rates can be combined with profiles of other chemicals to establish the extent of temporal changes in chemical composition of the overlying water body. Since sediment processing and counting in the laboratory take much longer than the time required to collect the sample, suggestions are made to ensure that the sediment samples are not ruined or comprised during collection and handling in the field, and so are worth all the subsequent time and effort to analyze. (author)

  4. Influence of microorganism content in suspended particles on the particle-water partitioning of mercury in semi-enclosed coastal waters.

    Science.gov (United States)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle-water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a]algae to transfer Hg to marine food chains. © 2013.

  5. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  6. Transport of suspended matter through rock formations

    International Nuclear Information System (INIS)

    Wahlig, B.G.

    1980-01-01

    It may be hypothesized that significant quantities of some waste nuclides could be adsorbed on the surfaces of particles suspended in the flowing groundwater and thereby migrate farther or faster than they would in dissolved form. This thesis deals with one aspect of this proposed migration mechanism, the transport of suspended matter through rock formations. A theoretical examination of the forces effecting suspended particles in flowing groundwater indicates that only two interaction energies are likely to be significant compared to the particles' thermal energies. The responsible interactions are van der Waals attraction between the particles and the rock, and electrolytic double-layer repulsion between the atmospheres of ions near the surfaces of the particles and the rock. This theoretical understanding was tested in column flow adsorption experiments using fine kaolin particles as the suspended matter and crushed basalt as the rock medium. The effects of several parameters on kaolin mobility were explored, including the influences of the following: solution ion concentration, solution cation valence, degree of solution oxygen saturation, solution flow velocity, and degree of rock surface ageing. The experimental results indicate that the migration of suspended matter over kilometer distances in the lithosphere is very unlikely unless the average pore size of the conducting mediumis fairly large (> 1mm), or the flow occurs in large fractures

  7. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  8. Assessing the interactions of a natural antibacterial clay with model Gram-positive and Gram-negative human pathogens

    Science.gov (United States)

    Londono, S. C.; Williams, L. B.

    2013-12-01

    . Besides being toxic at high concentrations, these species affect the electrophoretic interactions between clay and bacteria surfaces. Additionally, the cation exchange neutralizes the clay surface charge thus modifying further the behavior of particles in suspension. Therefore, we evaluated the clay and bacteria zeta potential (ζ) as an index for possible electrostatic forces and modeled the total interactions using DLVO theory. We suspended the particles in water equilibrated with clay (leachate). Results show that at pH 4, the ζ of clays is -14 mV while it is -3mV for bacteria. The divalent ions and trivalent Aluminum, present in the AMZ leachate, compress the thickness of the double layer (hydration shell) thus decreasing electrostatic repulsion and allowing particles to come closer. The proximity of particles increases the probability of attractive forces to bind clays and cells. In summary, results indicate that a process other than simple chemical transfer from clay to bacteria is operating. The electrostatic attraction and physical proximity may enhance the toxic action of metals and interfere with the membrane properties or processes.

  9. Capillary Structured Suspensions from in Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media

    NARCIS (Netherlands)

    Dunstan, Timothy S.; Das, Anupam A.K.; Starck, Pierre; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2018-01-01

    We demonstrate that capillary suspensions can be formed from hydrophilic calcium carbonate particles suspended in a polar continuous media and connected by capillary bridges formed of minute amounts of an immiscible secondary liquid phase. This was achieved in two different polar continuous phases,

  10. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    Science.gov (United States)

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input

  11. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Science.gov (United States)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  12. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  13. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    Directory of Open Access Journals (Sweden)

    Landrou Gnanli

    2017-01-01

    Full Text Available In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  14. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  15. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    Science.gov (United States)

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  16. Assessment of the Atmospheric Suspended Particles Pollution in the Madrid Air Quality Networks

    International Nuclear Information System (INIS)

    Salvador, P.; Artinano, B.

    2000-01-01

    Suspended particles are a very complex type of atmospheric pollution because of their chemical composition and size. In fact, there are a quite high number of particles sources which are linked to different physicochemical processes that determine their size. At present particles smaller than 10 μm are considered the most dangerous, as has been recently pointed out by numerous epidemiologic studies. In this way, more restrictive concentration limit values have been approved in the EU countries, so an assessment of present airborne concentration values and the sources apportionment in their most representative areas is needed. In the Madrid Community a first approaching of these and other aims, has been carried out from an analysis of the Madrid Air Quality networks data. This will contribute to the establishment of concentration levels abatement strategies. (Author) 111 refs

  17. Cotransport of clay colloids and viruses through water-saturated vertically oriented columns packed with glass beads: Gravity effects.

    Science.gov (United States)

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2016-03-01

    The cotransport of clay colloids and viruses in vertically oriented laboratory columns packed with glass beads was investigated. Bacteriophages MS2 and ΦX174 were used as model viruses, and kaolinite (ΚGa-1b) and montmorillonite (STx-1b) as model clay colloids. A steady flow rate of Q=1.5 mL/min was applied in both vertical up (VU) and vertical down (VD) flow directions. In the presence of KGa-1b, estimated mass recovery values for both viruses were higher for VD than VU flow direction, while in the presence of STx-1b the opposite was observed. However, for all cases examined, the produced mass of viruses attached onto suspended clay particles were higher for VD than VU flow direction, suggesting that the flow direction significantly influences virus attachment onto clays, as well as packed column retention of viruses attached onto suspended clays. KGa-1b hindered the transport of ΦX174 under VD flow, while STx-1b facilitated the transport of ΦX174 under both VU and VD flow directions. Moreover, KGa-1b and STx-1b facilitated the transport of MS2 in most of the cases examined except of the case where KGa-1b was present under VD flow. Also, the experimental data were used for the estimation of virus surface-coverages and virus surface concentrations generated by virus diffusion-limited attachment, as well as virus attachment due to sedimentation. Both sedimentation and diffusion limited virus attachment were higher for VD than VU flow, except the case of MS2 and STx-1b cotransport. The diffusion-limited attachment was higher for MS2 than ΦΧ174 for all cases examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  19. Fe(0)-clays interactions at 90°C under anoxic conditions: a comparative study between clay fraction of Callovo-Oxfordian and other purified clays

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Barres, O.; Galmiche, M.; Ghanbaja, J.; Kohler, A.; Michau, N.

    2010-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste it is of prime importance to understand the interactions between the saturated clay formation and steel containers. This can be achieved through an in-depth analysis of iron-clay interactions. Previous studies on the subject investigated the influence of solid/liquid ratio, iron/clay ratio, temperature and reaction time. The aim of the present study is to explain Callovo-Oxfordian-Fe(0) interactions by determining the role of each mineral phases present in the Callovo-Oxfordian (clay minerals, quartz, carbonates and pyrite) on the mechanisms of interaction between metal iron and clay particles. In that context, it is especially important to understand in detail the influence of clay nature and to obtain some insight about the relationships between interaction mechanisms at the molecular scale and crystallographic properties (particle size, TO or TOT layers, amount of edge faces...). The influence of the combination of different clays and the addition of other minerals must also be studied. In a first step, the Callovo-Oxfordian argillite from the Andra's underground research laboratory was purified to extract the clay fraction (illite, illite-smectite, kaolinite and chlorite). Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) for durations of one, three or nine months in the presence of metallic iron powder. Experiments without iron were used as control. The iron/clay ratio was fixed at 1/3 with a solid/liquid ratio of 1/20. The above mentioned experiments were also carried out in parallel on other purified clays: two smectites (Georgia bentonite and SWy2 from the Clay Minerals Society), one illite (illite du Puy) and one kaolinite (KGa2, from the Clay Minerals society). At the end of the experiments, solid and liquid phases were

  20. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  1. Arsenic speciation in water, suspended particles, and coastal organisms from the Taehwa River Estuary of South Korea

    International Nuclear Information System (INIS)

    Hong, Seongjin; Kwon, Hye-Ok; Choi, Sung-Deuk; Lee, Jung-Suk; Khim, Jong Seong

    2016-01-01

    Water, suspended particulate matter (SPM), and biota samples were collected from the Taehwa River Estuary to determine the distributions, partitioning, and bioaccumulation of arsenicals. Six forms of As were quantitated by the use of HPLC-ICP/MS. As was found mainly near urban and industrial areas, and inorganic As V was the predominant As form in both water and SPM. Particulate arsenicals were found at the greatest concentrations in coarse particles (> 180 μm), followed by medium (30–180 μm) and fine (0.45–30 μm) particles, in freshwater. Arsenical concentrations were similar across the three particle fractions in saltwater. Field-based distribution coefficient (K d ) values for As depended strongly on SPM, with a less robust dependence on salinity. Concentrations of As were greater in macroalgae than in marine animals, such as fishes, bivalves, crabs, shrimps, and gastropods. Overall, the results of the present study provide useful information on the behaviors and fate of arsenicals in an estuarine environment. - Highlights: •Concentrations of As were greater in industrial and urban areas than in suburban area. •The predominant form of As in water and suspended particles was inorganic As V . •Particle-size distributions of arsenicals differed between freshwater and saltwater. •The K d values for As depended strongly on the presence of SPMs along the estuary. •Greater concentrations of arsenicals were found in macroalgae than in marine animals.

  2. A flowrate measurement method by counting of radioactive particles suspended in a liquid

    International Nuclear Information System (INIS)

    Daniel, G.

    1983-04-01

    By external counting of fine #betta# emitting radioactive particles suspended in a liquid, the flowrate in a system of pipes can be measured. The study comprises three phases: 1. - The hydraulic validity of the method is demonstrated in laminar as well as in turbulent flow under certain conditions of particles size and density and of liquid viscosity. 2. - Radioactive labelling of microspheres of serumalbumin or ion exchange resins with indium 113m delivered by a generator Tin 113 → Indium 113m. 3. - Counting with a scintillation detector: a method of threshold overstepping is experimented with a mechanical or electronic simulator; the statistical study of particle superposition under the detector enables a correction for the resulting counting losses to be proposed. The method provides absolute measurements, but is particularly suitable to measure relative flowrates in a hydraulic network. It can be continuous and does not perturb the flow and the network. The accuracy of the method is analysed in details [fr

  3. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  4. Antibacterial performance of nano polypropylene filter media containing nano-TiO{sub 2} and clay particles

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Sara; Zarrebini, Mohammad; Naghashzargar, Elham, E-mail: e.naghashzargar@tx.iut.ac.ir; Semnani, Dariush, E-mail: d-semnani@cc.iut.ac.ir [Isfahan University of Technology, Department of Textile Engineering (Iran, Islamic Republic of)

    2015-10-15

    Disinfection and elimination of pathogenic microorganisms from liquid can be achieved by filtration process using antibacterial filter media. The advent of nanotechnology has facilitated the introduction of membranes consisting of nano-fiber in filtration operations. The melt electro-spun fibers due to their extremely small diameters are used in the production of this particular filtration medium. In this work, antibacterial polypropylene filter medium containing clay particles and nano-TiO{sub 2} were made using melt electro-spun technology. Antibacterial performance of polypropylene nano-filters was evaluated using E. coli bacteria. Additionally, filtration efficiency of the samples in terms fiber diameter, filter porosity, and fiber distribution using image processing technique was determined. Air permeability and dust aerosol tests were conducted to establish the suitability of the samples as a filter medium. It was concluded that as far as antibacterial property is concerned, nano-fibers filter media containing clay particles are preferential to similar media containing TiO{sub 2} nanoparticles.

  5. Interaction of polymer with discotic clay particles

    International Nuclear Information System (INIS)

    Auvray, L.; Lal, J.

    1999-01-01

    Normally synthetic well defined monodisperse discotic laponite clays are known to form a gel phase at mass concentrations as low as a few percent in distilled water. Hydrosoluble polymer polyethylene oxide was added to this intriguing clay system, it was observed that it either prevents gelation or slows it down extremely depending on the polymer weight, concentration or the laponite concentration. Small Angle Neutron scattering (SANS) was used to study these systems because only by isotopic labeling can the structure of the adsorbed polymer layers be determined. The contrast variation technique is specifically used to determine separately the different partial structure factors of the clay and polymer. In this way the signal of the adsorbed chains is separated from the signal of the free chains in the dilute regime. Attempts have also been made to characterize the structure in the concentrated regime of laponite with polymer

  6. Transfer of suspended particles from liquid effluents of nuclear generating stations through the environment

    International Nuclear Information System (INIS)

    Devereaux, F.J.

    1989-07-01

    Due to the complexity of the environmental transfer of suspended particles in aquatic systems, the available literature usually deals with specific pathways and mechanisms of the transfer process. This paper attempts to give a brief overview of the entire transfer process. Potential routes of transfer in both the marine and freshwater environments are examined, and tentative conclusions presented. This work was performed while the author was employed by Atomic Energy Control Board under the McMaster University cooperative program

  7. Statistical modeling of road contribution as emission sources to total suspended particles (TSP) under MCF model downtown Medellin - Antioquia - Colombia, 2004

    International Nuclear Information System (INIS)

    Gomez, Miryam; Saldarriaga, Julio; Correa, Mauricio; Posada, Enrique; Castrillon M, Francisco Javier

    2007-01-01

    Sand fields, constructions, carbon boilers, roads, and biologic sources are air-contaminant-constituent factors in down town Valle de Aburra, among others. the distribution of road contribution data to total suspended particles according to the source receptor model MCF, source correlation modeling, is nearly a gamma distribution. Chi-square goodness of fit is used to model statistically. This test for goodness of fit also allows estimating the parameters of the distribution utilizing maximum likelihood method. As convergence criteria, the estimation maximization algorithm is used. The mean of road contribution data to total suspended particles according to the source receptor model MCF, is straightforward and validates the road contribution factor to the atmospheric pollution of the zone under study

  8. Insights into particle cycling in the Sargasso Sea from lipid biomarkers in suspended particles: Seasonality and physical forcing

    Science.gov (United States)

    Pedrosa Pàmies, R.; Conte, M. H.; Weber, J.

    2017-12-01

    Lipid biomarkers elucidate organic material (OM) sources and cycling within the water column. Biomarker composition and bulk properties (organic carbon (OC), nitrogen (N), OC/N ratio, CaCO3 and stable isotopes) were determined in suspended particles (30-4400 m, 100 mab) collected at Oceanic Flux Program site offshore Bermuda in April/November 2015 and October 2016, three periods of contrasting oceanographic conditions. Key lipid biomarkers were used to evaluate the relative importance of phytoplankton-, bacterial- and zooplankton-OM sources, diagenetic reprocessing, and the impact of upper ocean environmental forcing on the carbon pump. Additionally, we assessed benthic remineralization by comparing particles above and within the nepheloid layer (4400 m). N-fatty acids, n-alcohols and sterols comprise up to 85%, 12% and 7%, respectively, of total extractable lipids. Higher lipid concentrations in April vs November 2015 mirror seasonality in primary production, while change in sterol composition reflect shifts in phytoplankton community structure. In the mesopelagic zone, increased cholesterol/phytosterol ratios and percentages of C16 and C18 n-alcohols, odd-chain and branched n-fatty acids document a transition from algal to animal OM sources as well as bacterial reprocessing of labile OM. The impact of Hurricane Nicole (October 2016) on the mixed layer and subsequent increases in production/flux was evident in higher concentrations as well as greater depth penetration of particulate N and fresh/labile algal biomarkers (e.g. 18:5 ω3 and 22:6 ω3 polyunsaturated fatty acids) in the upper 1000 m. Suspended particles in the nepheloid layer had higher concentrations of OC and N and were more depleted in d13C than particles at 4200 m for all dates. While nepheloid lipid composition was similar for all dates, lipid concentrations in April 2015 (seasonal production peak) and October 2016 (hurricane physical forcing) were higher than in November 2015, consistent with the

  9. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  10. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Salvacion, J.; Murayama, M.; Otaguchi, K.; Koide, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The effects of alcohols, column dimensions, gas velocity, physical properties of liquids, and gel particles on the gas holdup e{sub G} and the volumetric liquid-phase mass transfer coefficient k{sub L}a in a gel-particle-suspended bubble column under liquid-solid batch operation were studied experimentally. It was shown that addition of at alcohols to water generally increases e{sub G}. However, k{sub L}a values in aqueous solutions of alcohols became larger or smaller than those in water, according to the kind and concentration of the alcohol added to water. It was also shown that the presence of suspended gel-particles in the bubble column reduces values of e{sub G} and k{sub L}a. Based on these observations, empirical equations for e{sub G} in the transition regime in an ethanol solution, for e{sub G} in the heterogeneous now regime applicable to various alcohol solutions and for k{sub L}a in both now regimes were proposed. 18 refs., 12 figs., 3 tabs.

  11. The oceanographic toolbox for the collection of sinking and suspended marine particles

    Science.gov (United States)

    McDonnell, Andrew M. P.; Lam, Phoebe J.; Lamborg, Carl H.; Buesseler, Ken O.; Sanders, Richard; Riley, Jennifer S.; Marsay, Chris; Smith, Helen E. K.; Sargent, Elizabeth C.; Lampitt, Richard S.; Bishop, James K. B.

    2015-04-01

    Marine particles play a central role in controlling the transport, cycling, and inventories of many major elements and trace elements and isotopes throughout the oceans. Studies seeking to elucidate the biogeochemical roles of marine particles often require reliable ways to collect them from the ocean. Here, we review the oceanographic toolbox of techniques and instrumentation that are employed to collect both suspended and sinking particles. With these tools, it is possible to determine both the concentrations and vertical fluxes of important elements and individual particle types. We describe the various methods for quantifying the concentrations of particulate matter with in situ pumps, towed sampling devices, bottle collectors, and large volume capture devices. The uses of various types of flux collection platforms are discussed including surface tethered, neutrally buoyant, and bottom moored devices. We address the issues of sediment trap collection biases and the apparent inconsistencies that can arise due to differences in the temporal and spatial scales sampled by the various methodologies. Special attention is given to collection considerations made for the analysis of trace metals and isotopes, as these methodologies are of high importance to the ongoing GEOTRACES program which seeks to identify the processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean. With the emergence of new particle collection methodologies and the continued reliance on traditional collection methods, it is imperative that we combine these multiple approaches in ways that will help improve their accuracy and precision while enhancing their utility in advancing understanding of the biogeochemical and ecological roles of marine particles.

  12. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  13. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  14. Spectromicroscopy of Fe distributions in clay microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grundl, T. [Univ. of Wisconsin, Milwaukee, WI (United States); Cerasari, S.; Garcia, A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Clays are ubiquitous crystalline particles found in nature that are responsible for contributing to a wide range of chemical reactions in soils. The structure of these mineral particles changes when the particle is hydrated ({open_quotes}wet{close_quotes}), from that when it is dry. This makes a study of the microscopic distribution of chemical content of these nanocrystals difficult using standard techniques that require vacuum. In addition to large structural changes, it is likely that chemical changes accompany the drying process. As a result, spectroscopic measurements on dried clay particles may not accurately reflect the actual composition of the material as found in the environment. In this work, the authors extend the use of the ALS Spectromicroscopy Facility STXM to high spectral and spatial resolution studies of transition metal L-edges in environmental materials. The authors are studying mineral particles of montmorillonite, which is an Fe bearing clay which can be prepared with a wide distribution of Fe concentrations, and with Fe occupying different substitutional sites.

  15. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  16. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    Science.gov (United States)

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. An at-grade stabilization structure impact on runoff and suspended sediment

    Science.gov (United States)

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby

  18. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  19. Rheological behavior of clay-nanoparticle hybrid-added bentonite suspensions: specific role of hybrid additives on the gelation of clay-based fluids.

    Science.gov (United States)

    Jung, Youngsoo; Son, You-Hwan; Lee, Jung-Kun; Phuoc, Tran X; Soong, Yee; Chyu, Minking K

    2011-09-01

    Two different types of clay nanoparticle hybrid, iron oxide nanoparticle clay hybrid (ICH) and Al(2)O(3)-SiO(2) nanoparticle clay hybrid (ASCH), were synthesized and their effects on the rheological properties of aqueous bentonite fluids in steady state and dynamic state were explored. When ICH particles were added, bentonite particles in the fluid cross-link to form relatively well-oriented porous structure. This is attributed to the development of positively charged edge surfaces in ICH that leads to strengthening of the gel structure of the bentonite susensions. The role of ASCH particles on the interparticle association of the bentonite fluids is different from that of ICH and sensitive to pH. As pH of ASCH-added bentonite suspensions increased, the viscosity, yield stress, storage modulus, and flow stress decreased. In contrast, at low pH, the clay suspensions containing ASCH additives were coagulated and their rheological properties become close to those of ICH added bentonite fluids. A correlation between the net surface charge of the hybrid additives and the rheological properties of the fluids indicates that the embedded nanoparticles within the interlayer space control the variable charge of the edge surfaces of the platelets and determine the particles association behavior of the clay fluids.

  20. Seasonal variations of total suspended particles (TSP) and heavy metals under tropical conditions in Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Pfeiffer, W.C.; Trindade, H.A.; Costa-Ribeiro, C.; Londres, H.; Oliveira, A.E.

    The total suspended particle (TSP) and heavy metal concentrations are studied in Rio de Janeiro, Brazil from 1974 until 1981. The principal aims are to determine how these things vary in two different areas and how meteorological parameters responsible for the transport and dilution of atmospheric pollutants affect these areas. (M.A.C.) [pt

  1. Deposition of Suspended Clay to Open and Sand-Filled Framework Gravel Beds in a Laboratory Flume

    Science.gov (United States)

    Mooneyham, Christian; Strom, Kyle

    2018-01-01

    Pulses of fine sediment composed of sand, silt, and clay can be introduced to gravel bed rivers through runoff from burn-impacted hillslopes, landslides, bank failure, or the introduction of reservoir sediment as a result of sluicing or dam decommissioning. Here we present a study aimed at quantifying exchange between suspensions of clay and gravel beds. The questions that motivate the work are: how do bed roughness and pore space characteristics, shear velocity (u∗), and initial concentration (C0) affect clay deposition on or within gravel beds? Where does deposition within these beds occur, and can deposited clay be resuspended while the gravel is immobile? We examine these questions in a laboratory flume using acrylic, open-framework gravel, and armored sand-gravel beds under conditions of varying u∗ and C0. Deposition of clay occurred to all beds (even with Rouse numbers ˜ 0.01). We attribute deposition under full suspension conditions to be an outcome of localized protected zones where clay can settle and available pore space in the bed. For smooth wall cases, protection came from the viscous wall region and the development of bed forms; for the rough beds, protection came from separation zones and low-velocity pore spaces. Bed porosity was the strongest influencer of nondimensional deposition rate; deposition increased with porosity. Deposition was inversely related to u∗ for the acrylic bed runs; no influence of u∗ was found for the porous bed runs. Increases in discharge resulted in resuspension of clay from acrylic beds; no resuspension was observed in the porous bed runs.

  2. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  3. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  4. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    Science.gov (United States)

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A smoothed particle hydrodynamics (SPH) study on polydisperse sediment from technical activities on seabed

    Science.gov (United States)

    Tran-Duc, Thien; Phan-Thien, Nhan; Khoo, Boo Cheong

    2018-02-01

    Technical activities to collect poly-metallic nodules on a seabed are likely to disturb the top-layer sediment and re-suspend it into the ambient ocean water. The transport of the re-suspended polydisperse-sized sediment is a process in which particles' size variation leads to a difference in their settling velocities; and thus the polydispersity in sizes of sediment has to be taken into account in the modeling process. The sediment transport within a window of 12 km is simulated and analyzed numerically in this study. The sediment characteristic and the ocean current data taken from the Peru Basin, Pacific Ocean, are used in the simulations. More than 50% of the re-suspended sediment are found to return to the bottom after 24 h. The sediment concentration in the ambient ocean water does not exceed 3.5 kg/m3 during the observed period. The deposition rate steadily increases and reaches 70% of the sediment re-suspension rate after 24 h. The sediment plume created by the activities comprises mainly very fine sediment particles (clays and silts), whereas coarser particles (sands) are found in abundance in the deposited sediment within 1 km from the source location. It is also found that the deposition process of the re-suspended sediment is changed remarkably as the current velocity increases from 0.05 m/s (medium current) to 0.1 m/s (strong current). The strong sediment deposition trend is also observed as the sediment source moves continuously over a region due to the sediment scattering effect.

  6. Characterization of the compounds of nitrogen and total suspended particles in the municipality Regla, Havana

    International Nuclear Information System (INIS)

    Wallo Vazquez, Antonio; Cuesta Santos, Osvaldo

    2006-01-01

    The questions related with the atmospheric contamination in urban areas every day they charge bigger importance for the affectations that it can take place so much in the health of the human beings as in the materials, constructions, etc. In the city of Havana those made up of nitrogen and the particles suspended totals are of the pollutants whose concentrations are elevated in the atmosphere. Inside this context, the present work intends the analysis of the behavior of this concentrations, taken as experimental polygon the municipality Regla in city of Havana

  7. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    Science.gov (United States)

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  8. Studying Suspended Sediment Mechanism with Two-Phase PIV

    Science.gov (United States)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  9. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    Science.gov (United States)

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  10. Toxicity of 144Ce fused clay particles inhaled by aged dogs. III

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Hobbs, C.H.; Jones, R.K.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    The toxicity of 144 Ce fused clay particles inhaled by 8- to 10.5-year-old dogs is being investigated to provide information on age-related differences in the response of older members of the human population to accidental inhalation of radioactive aerosols. These data on aged dogs will be compared to the results of similar studies using dogs exposed at approximately 3 months or 12 to 14 months of age. To date, 7 blocks of 5 dogs each, divided into 4 exposure levels with mean initial lung burdens of 7.5, 14, 24, and 57 μCi/kg body weight and control dogs exposed to non-labeled fused clay particles have been entered into a longevity study. Twelve dogs with initial lung burdens ranging from 20 to 75 μCi 144 Ce/kg body weight and cumulative doses to lung of from 22,000 to 74,000 rads have died at 197 to 943 days post-inhalation with clinico-pathologic findings of radiation pneumonitis and pulmonary fibrosis. Two of these also had congestive heart failure. In addition, 4 dogs with ILBs of 8 to 14 μCi 144 Ce/kg body weight have died of mammary neoplasms or congestive heart failure but without radiation pneumonitis. One dog with an ILB of 9 μCi 144 Ce/kg body weight died with a chronic interstitial foreign body pneumonia. Two control dogs have died, one with a mammary carcinoma and one with pyometra. Pulmonary retention of the inhaled 144 Ce was similar to that observed previously in dogs exposed at 18 to 22 months of age in a radiation dose pattern study. Serial observations are continuing on the 11 surviving 144 Ce-exposed dogs and 5 controls. (U.S.)

  11. Vertical transport of suspended particulate trace elements in the North Atlantic Ocean

    International Nuclear Information System (INIS)

    Kuss, J.; Kremling, K.; Scholten, J.

    1999-01-01

    Suspended marine particles play a key role in the exchange processes between rapidly sinking particles and seawater because of their large surface area and long residence times. They are involved in the transport processes of rapidly sinking particles (∼ 100 m/day) through aggregation and disaggregation. This mechanism results in a net downward transport of suspended particulate trace elements (TE). To provide more information to these processes TE in suspended particulate material (SPM) have been measured on three cruises from 1995 to 1997 along 20 deg. W using a large volume in situ filtration between 25 m and 4150 m depth in addition to particle flux measurements with sediment traps. These studies were performed under the framework of German JGOFS

  12. Influence of clay particles on Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles transport and retention through limestone porous media: measurements and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Ali Esfandyari, E-mail: ali.esfandiari.bayat@gmail.com; Junin, Radzuan [Universiti Teknologi Malaysia, Department of Petroleum Engineering, Faculty of Petroleum and Renewable Energy Engineering (Malaysia); Mohsin, Rahmat [Universiti Teknologi Malaysia, UTM-MPRC Institute for Oil and Gas, N29A, Lengkuk Suria (Malaysia); Hokmabadi, Mehrdad [Universiti Teknologi Malaysia, Department of Petroleum Engineering, Faculty of Petroleum and Renewable Energy Engineering (Malaysia); Shamshirband, Shahaboddin [University of Malaya, Department of Computer System and Information Technology, Faculty of Computer System and Information Technology (Malaysia)

    2015-05-15

    Utilization of nanoparticles (NPs) for a broad range of applications has caused considerable quantities of these materials to be released into the environment. Issues of how and where the NPs are distributed into the subsurface aquatic environments are questions for those in environmental engineering. This study investigated the influence of three abundant clay minerals namely kaolinite, montmorillonite, and illite in the subsurface natural aquatic systems on the transport and retention of aluminum oxide (Al{sub 2}O{sub 3}, 40 nm) and titanium dioxide (TiO{sub 2}, 10–30 nm) NPs through saturated limestone porous media. The clay concentrations in porous media were set at 2 and 4 vol% of the holder capacity. Breakthrough curves in the columns outlets were measured using a UV–Vis spectrophotometer. It was found that the maximum NPs recoveries were obtained when there was no clay particle in the porous medium. On the other hand, increase in concentration of clay particles has resulted in the NPs recoveries being significantly declined. Due to fibrous structure of illite, it was found to be more effective for NPs retention in comparison to montmorillonite and kaolinite. Overall, the position of clay particles in the porous media pores and their morphologies were found to be two main reasons for increase of NPs retention in porous media.

  13. Measurement of angular scattering function and degree of linear polarization of bentonite clay particles embedded in cylindrical epoxy matrix

    Directory of Open Access Journals (Sweden)

    A. Gogoi

    2011-09-01

    Full Text Available Scattering properties of bentonite clay particles were investigated at 543.5 nm incident laser wavelength by using a designed and fabricated light scattering setup. The scattering samples were held in front of a laser beam by using a transparent cylindrical thermosetting epoxy matrix.

  14. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    Science.gov (United States)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  15. Thermal stability of segmented polyurethane elastomers reinforced by clay particles

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2009-01-01

    Full Text Available The aim of this work was to determine the influence of clay nanoparticles on thermal properties of segmented polyurethanes based on hexamethylene- diisocyanate, aliphatic polycarbonate diol and 1,4-butanediol as chain extender. The organically modified particles of montmorillonite and bentonite were used as reinforcing fillers. The structure of elastomeric materials was varied either by diol type or chain extender content. The ratio of OH groups from diol and chain extender (R was either 1 or 10. Thermal properties of prepared materials were determined using modulated differential scanning calorimetry (MDSC. Thermal stability of obtained elastomers has been studied by simultaneously thermogravimetry coupled with DSC. The glass transition temperature, Tg, of soft segments for all investigated samples was about -33°C. On the basis of DTG results, it was concluded that obtained materials were very stable up to 300°C.

  16. How are macroinvertebrates of slow flowing lotic systems directly affected by suspended and deposited sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@rmit.edu.a [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Zalizniak, Liliana [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Dunlop, Jason E. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia); Smart Water Research Facility, Griffith University, Queensland (Australia); Nugegoda, Dayanthi [Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Choy, Satish C. [Department of Environment and Resource Management (DERM), 120 Meiers Rd, Indooroopilly, Queensland 4068 (Australia)

    2010-02-15

    The effects of suspended and deposited sediments on the macroinvertebrates are well documented in upland streams but not in slower flowing lowland rivers. Using species found in lowland lotic environments, we experimentally evaluate mechanisms for sediments to affect macroinvertebrates, and in one experiment whether salinity alters the effect of suspended sediments. Suspended kaolin clay reduced feeding of Ischnura heterosticta (Odonata: Coenagrionidae) at high turbidity (1000-1500 NTU) but had no effects on feeding of Hemianax papuensis (Odonata: Aeshnidae) and Micronecta australiensis (Hemiptera: Corixidae). In freshwater (0.1 mS/cm), survival of Ischnura aurora was poor in clear water, but improved with suspended kaolin. Growth and feeding of I. aurora were unaffected by suspended sediments and salinity. Burial (1-5 mm) of eggs with kaolin or sand reduced hatching in Physa acuta (Gastropoda: Physidae), Gyraulus tasmanica (Gastropoda: Planorbidae) and Chironomus cloacalis (Diptera: Chironomidae). Settling sediments may pose greater risk to lowland lotic invertebrates than suspended sediments. - Sediment deposition may be more directly detrimental to macroinvertebrates of lowland rivers than suspended sediments.

  17. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  18. Simulation of flash dehydroxylation of clay particle using gPROMS

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Bøjer, Martin; Adelsward, Anicka

    2014-01-01

    The use of SCMs (supplementary cementitious materials) to replace part of the clinker in cement industry is gaining an increasing interest in order to reduce the CO2 footprint. The abundantly available clay minerals are potential sources of SCMs. Thermal treatment of kaolinite clay under moderate...

  19. On Suspended matter grain size in Baltic sea

    Science.gov (United States)

    Bubnova, Ekaterina; Sivkov, Vadim; Zubarevich, Victor

    2016-04-01

    Suspended matter grain size data were gathered during the 25th research vessel "Akademik Mstislav Keldysh" cruise (1991, September-October). Initial quantitative data were obtained with a use of the Coulter counter and subsequently modified into volume concentrations (mm3/l) for size intervals. More than 80 samples from 15 stations were analyzed (depth range 0-355 m). The main goal of research was to illustrate the spatial variability of suspended matter concentration and dispersion in Baltic Sea. The mutual feature of suspended matter grain size distribution is the logical rise of particle number along with descending of particle's size. Vertical variability of grain size distribution was defined by Baltic Sea hydrological structure, including upper mixed layer - from the surface to the thermocline - with 35 m thick, cold intermediate layer - from the thermocline to the halocline- and bottom layer, which lied under the halocline. Upper layer showed a rise in total suspended matter concentration (up to 0.6 mm3/l), while cold intermediate level consisted of far more clear water (up to 0.1 mm3/l). Such a difference is caused by the thermocline boarding role. Meanwhile, deep bottom water experienced surges in suspended matter concentration owing to the nepheloid layer presence and "liquid bottom" effect. Coastal waters appeared to have the highest amount of particles (up to 5.0 mm3/l). Suspended matter grain size distribution in the upper mixed layer revealed a peak of concentration at 7 μ, which can be due to autumn plankton bloom. Another feature in suspended matter grain size distribution appeared at the deep layer below halocline, where both O2 and H2S were observed and red/ox barrier is. The simultaneous presence of Fe and Mn (in solutions below red/ox barrier) and O2 leads to precipitation of oxyhydrates Fe and Mn and grain size distribution graph peaking at 4.5 μ.

  20. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  1. Subsurface migration of radioactive waste materials by particulate transport

    International Nuclear Information System (INIS)

    Eichholz, G.G.; Craft, T.F.; Powell, G.F.; Wahlig, B.G.

    1982-01-01

    The role of suspended particles as carriers of dissolved nuclides from high-level radioactive waste repositories has been investigated. Depending on the concentrations of suspended particles and the nature of the invading water, it has been found that cationic nuclides may be competitively adsorbed on suspended clay particles, the partitioning being largely determined by pH, temperature, and comparative surface areas of particulates and surrounding rocks. Column tests with activated particles have been conducted and showed that the clay particles pass readily through porous mineral columns and are increasingly retained if salinity is increased. Retention in basalt columns is stronger in the presence of high concentrations of sodium and calcium ions and has been explained in terms of van der Waals forces. The range of particulate migration then depends on the condition of the rock surfaces, the persistence of a clay coating, and the total dissolved ion concentration. For adsorbable waste ions, this may represent a pathway comparable in significance to ion-exchange-controlled migration. For some bed materials, the particulate movement displayed a prompt and a delayed component; the nature of the delay mechanism is not fully understood at present

  2. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements. Biopoly......Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements...... in crude suspensions (suspended in cell culture medium) and crude suspensions filtrated through a 0.2 µm pore size filter in order to investigate the potential effect of “nanoparticles” only. The two clays showed noticeable differences in genotoxicity; both crude and filtered suspensions of Cloisite...

  3. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    Science.gov (United States)

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  4. Stochastic Dynamics of Clay Translocation and Formation of Argillic Horizons

    Science.gov (United States)

    Calabrese, S.; Richter, D. D., Jr.; Porporato, A. M.

    2017-12-01

    The formation of argillic horizons in vertical soil profiles is mainly attributed to lessivage, namely the transport of clay from an upper E horizon to a deeper illuviated horizon. Because of the long timescales involved in this phenomenon, quantitative modeling is useful to explore the role of clay lessivage on soil formation and sub-surface clay accumulation. The limitations of detailed models of colloidal transport to short timescales make it necessary to resort to simple models. Here, we present a parsimonious model of clay transport in which lessivage is interpreted stochastically. Clay particles approach the soil surface at a speed equal to the erosion rate and are intermittently transported to deeper soil layers when percolation events occur or removed by erosion. Along with the evolution of clay particles trajectories, the model predicts the vertical clay profile, the depth of the B horizon, and the mean time to erosion. Dimensional analysis reveals the two dimensionless parameters governing the dynamics, leading to a new classification of soil types based on erosion rates and intensity of lessivage.

  5. Documentation of particle-size analyzer time series, and discrete suspended-sediment and bed-sediment sample data collection, Niobrara River near Spencer, Nebraska, October 2014

    Science.gov (United States)

    Schaepe, Nathaniel J.; Coleman, Anthony M.; Zelt, Ronald B.

    2018-04-06

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and U.S. Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data.

  6. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles.

    Science.gov (United States)

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Byung J; An, Kwang Guk; Kim, Sang Don

    2011-06-01

    The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.

  7. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  8. Coal and potash flotation enhancement using a clay binder

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Zhou, X.H.; Zhao, C.; Fan, M.M.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)

    2007-07-15

    The adverse effects of clay particles on coal and mineral processing operations such as gravity separation, flotation, filtration and thickening are well known in the mining industry. In particular, the presence of ultra-fine clay particles deteriorates froth flotation performance, which has been attributed to slime coatings that inhibit bubble attachment and to adsorption of the frother and/or collector by the clay particles. The present study was conducted to evaluate the performance of a clay binding agent developed by Georgia-Pacific Resins, Inc. in enhancing coal and mineral flotation performance. Mechanical flotation tests were carried out using coal and potash samples. Process parameters investigated included slurry solids percentage, impeller rotation speed, binder dosage, etc. Flotation results show that the use of GP reagents significantly enhanced flotation efficiency under different conditions. The required binder dosage and conditioning time were about 0.45 kg/t and 0.5 to 1 minute, respectively. More significant improvements in process performance were observed at higher solids percentage and higher impeller rotation speed.

  9. Influence of carbonate micro-fabrics on the failure strength of Callovo-Oxfordian clay stones and Opalinus Clay

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Dohrmann, R.; Kaufhold, S.; Siegesmund, S.

    2010-01-01

    Document available in extended abstract form only. The potential use of clay stones as host rock for radioactive waste disposal is currently investigated. For this application, hydraulic conductivity, swelling properties, water uptake, rheological and mechanical properties are of great importance. The Opalinus Clay (Mont-Terri, Switzerland) and the Callovo- Oxfordian clay stone (France) are the most frequently studied clay stones. One goal is to develop a numerical model being able to predict the mechanical behaviour of clay stones under repository-like conditions. Experimental investigations reveal that Opalinus Clay and Callovo-Oxfordian clay stone behave different with respect to the dependence of mechanical strength on the carbonate content. The failure strength of Opalinus Clay decreases with increasing carbonate content, whereas it increases with increasing carbonate content when Callovo-Oxfordian clay stone is considered. To supply proper data and enable reliable model assumptions, the use of suitable experimental techniques for the description of the microstructure is indispensable. After mechanical testing, samples were taken perpendicular to the bedding and polished sections were prepared. The micro-fabrics were investigated using scanning electron microscopy (SEM) and image analysis. Backscattered electron (BSE) images were used for the image analysis because carbonates can be extracted by grey level analysis. The image analysis of the extracted particles provides the following parameters: area, longest and shortest axis of an ellipse (surrounding the particle), perimeter, the angle to horizontal (longest axis), and the aspect ratio (longest axis/shortest axis). Callovo-Oxfordian clay stone shows a homogenous distribution of fine-grained carbonates and dovetail connection of calcium carbonate with the clayey matrix. In contrast Opalinus Clay shows large elongated carbonate grains (high aspect ratios) of shell fragments. Cracks are mostly related to these

  10. Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization.

    Science.gov (United States)

    Paineau, Erwan; Michot, Laurent J; Bihannic, Isabelle; Baravian, Christophe

    2011-06-21

    We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties. © 2011 American Chemical Society

  11. Sampling in freshwater environments: Suspended particle traps and variability in the final data

    International Nuclear Information System (INIS)

    Barbizzi, Sabrina; Pati, Alessandra

    2008-01-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of 137 Cs activity concentration (Bq kg -1 ) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for 137 Cs and 4.5% for total carbon. For 137 Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed

  12. Sampling in freshwater environments: suspended particle traps and variability in the final data.

    Science.gov (United States)

    Barbizzi, Sabrina; Pati, Alessandra

    2008-11-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of (137)Cs activity concentration (Bq kg(-1)) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for (137)Cs and 4.5% for total carbon. For (137)Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed.

  13. Fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles

    International Nuclear Information System (INIS)

    Fogelson, A.L.; Peskin, C.S.

    1988-01-01

    A new fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles is presented. The fluid dynamics equations are solved on a lattice. A particle is represented by a set of points each of which moves at the local fluid velocity and is not constrained to lie on the lattice. These points are coupled by forces which resist deformation of the particle. These forces contribute to the force density in the Stokes' equations. As a result, a single set of fluid dynamics equations holds at all points of the domain and there are no internal boundaries. Particles size, shape, and deformability may be prescribed. Computational work increases only linearly with the number of particles, so large numbers (500--1000) of particles may be studied efficiently. The numerical method involves implicit calculation of the particle forces by minimizing an energy function and solution of a finite-difference approximation to the Stokes' equations using the Fourier--Toeplitz method. The numerical method has been implemented to run on all CRAY computers: the implementation exploits the CRAY's vectorized arithmetic, and on machines with insufficient central memory, it performs efficient disk I/O while storing most of the data on disk. Applications of the method to sedimentation of one-, two-, and many-particle systems are described. Trajectories and settling speeds for two-particle sedimentation, and settling speed for multiparticle sedimentation from initial distributions on a cubic lattice or at random give good quantitative agreement with existing theories. copyright 1988 Academic Press, Inc

  14. Self-Suspended Suspensions of Covalently Grafted Hairy Nanoparticles

    KAUST Repository

    Choudhury, Snehashis

    2015-03-17

    © 2015 American Chemical Society. Dispersions of small particles in liquids have been studied continuously for almost two centuries for their ability to simultaneously advance understanding of physical properties of fluids and their widespread use in applications. In both settings, the suspending (liquid) and suspended (solid) phases are normally distinct and uncoupled on long length and time scales. In this study, we report on the synthesis and physical properties of a novel family of covalently grafted nanoparticles that exist as self-suspended suspensions with high particle loadings. In such suspensions, we find that the grafted polymer chains exhibit unusual multiscale structural transitions and enhanced conformational stability on subnanometer and nanometer length scales. On mesoscopic length scales, the suspensions display exceptional homogeneity and colloidal stability. We attribute this feature to steric repulsions between grafted chains and the space-filling constraint on the tethered chains in the single-component self-suspended materials, which inhibits phase segregation. On macroscopic length scales, the suspensions exist as neat fluids that exhibit soft glassy rheology and, counterintuitively, enhanced elasticity with increasing temperature. This feature is discussed in terms of increased interpenetration of the grafted chains and jamming of the nanoparticles. (Chemical Presented).

  15. High frequency sonar variability in littoral environments: Irregular particles and bubbles

    Science.gov (United States)

    Richards, Simon D.; Leighton, Timothy G.; White, Paul R.

    2002-11-01

    Littoral environments may be characterized by high concentrations of suspended particles. Such suspensions contribute to attenuation through visco-inertial absorption and scattering and may therefore be partially responsible for the observed variability in high frequency sonar performance in littoral environments. Microbubbles which are prevalent in littoral waters also contribute to volume attenuation through radiation, viscous and thermal damping and cause dispersion. The attenuation due to a polydisperse suspension of particles with depth-dependent concentration has been included in a sonar model. The effects of a depth-dependent, polydisperse population of microbubbles on attenuation, sound speed and volume reverberation are also included. Marine suspensions are characterized by nonspherical particles, often plate-like clay particles. Measurements of absorption in dilute suspensions of nonspherical particles have shown disagreement with predictions of spherical particle models. These measurements have been reanalyzed using three techniques for particle sizing: laser diffraction, gravitational sedimentation, and centrifugal sedimentation, highlighting the difficulty of characterizing polydisperse suspensions of irregular particles. The measurements have been compared with predictions of a model for suspensions of oblate spheroids. Excellent agreement is obtained between this model and the measurements for kaolin particles, without requiring any a priori knowledge of the measurements.

  16. Properties and effects of dust particles suspended in the martian atmosphere

    International Nuclear Information System (INIS)

    Pollack, J.B.; Colburn, D.S.; Flasar, M.; Kahn, R.; Carlston, C.E.; Pidek, D.

    1979-01-01

    Direct measurements of the optical depth above the two Viking landers are reported for a period of covering the summer, fall, and winter seasons in the northern hemisphere, a time period during which two global dust storms occurred. The optical depth had a value of about 1 just before the onset of each storm; it increased very rapidly, on a time scale of a few days, to peak values of about 3 and 6 with the arrival of the first and second storms, respectively; and its steadily decreased shortly thereafter (> or approx. = few days to few weeks) for both storms, with the decay occurring more rapidly during the initial period of decay. We have also carried out further analyses of observations of the sky brightness made with the lander cameras during the summer season to obtain improved estimates of other dust particle parameters, including the cross section weighted mean particle radius, several shape factors, and the imaginary indices of refraction. These results have been used to define the radiative properties of the suspended dust particles at solar wavelenths. The derived radiative properties of the dust were incorporated into a 1D radiative convective model. Satisfactory agreement with the temperature structure determined during the descent of the landers to the surface. Is achieved when allowance is made for the effects of vertical motions induced by large scale atmospheric dynamics. The diurnal temperature variations predicted by the 1D calculations for the observed optical depths are also in crude agreement with values inferred from orbiter and lander measurements. The 1D model predicts that the diurnal temperature change and daily mean temperature, averaged over the entire atmospheric vertical column, steadily increase as the optical depth of the dust increases to a value of several, and then subsequently change little

  17. Analysis of the Danube river suspended load regime

    International Nuclear Information System (INIS)

    Lukac, M.

    2004-01-01

    In this presentation author deals with the analysis of the Danube river suspended load regime at the Slovak section of Danube. It is concluded and recommended: Suspended load transport at the Slovak section of Danube decreases in the downstream directions - annual averages: Utilize relation of the Water Research Institute in Medvedov, the relation of the Slovak Hydrometeorological Institute is probably slightly underestimated; Distribution of suspended load concentration in the cross-section is influenced mainly with local hydraulic and morphological conditions; Measured flow velocity in the range 0.6 - 2.65 m/sec -1 , influenced with water level slope; Silt particles the most numerous, less numerous sandy and clayey particles; Bratislava 3.54 mil. tonnes, Medvedov 2.22 mil. tonnes, and Komarno 1.96 mil. tonnes; Recommendation to measure actual volume of the Cunovo reservoir, in order to validate sediment transport balance; Recommendation to continue in a complex monitoring programme of sediment transport

  18. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  19. Decantation time of evaluation on bentonite clays fractionation; Avaliacao do tempo de decantacao no fracionamento de argilas bentonitas

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, J; Menezes, R R; Neves, G A; Lira, H L; Santana, L N.L., [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    Bentonite clays present a great number of industrial uses, from petroleum to pharmaceutics and cosmetic industry. The bentonite clay present particles with very fine particles that is responsible by the vast application of these materials. However, commercial clays present wide particle size distribution and a significant content of impurities, particularly quartz, in the form of silt and fine silt. So, the aim of this work is to analyze the effect of the stirring and decantation time in the deagglomeration, purification and size separation of the bentonite clay particles from Paraiba. The clays were characterized by X-ray diffraction and particle size distribution. Based on the results it was observed the decantation time give the elimination of the agglomerates formed by submicrometric particles. The uses of decantation column give separation of the fraction below 200nm. (author)

  20. "Clay grounds” in Denmark: from soil to canvas

    DEFF Research Database (Denmark)

    Buti, David; Vila, Anna; Haack Christensen, Anne

    decorative scheme showed that at least two grounds from those paintings consist mainly of clay mixed with iron and magnesium-containing compounds. Furthermore, both SEM-EDX and µRaman measurements clearly highlighted the presence of a large amount of quartz particles. It is well known that clay is a sheet...

  1. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    Science.gov (United States)

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  2. In-situ nanoscale imaging of clay minerals with atomic force microscopy

    International Nuclear Information System (INIS)

    Bosbach, D.

    2010-01-01

    Document available in extended abstract form only. Clay minerals play a key role in many concepts for high-level nuclear waste repository systems in deep geological formations. Various aspects related to the long-term safety of nuclear disposal are linked to their fundamental physical-chemical properties, in particular with respect to their reactivity in aqueous environments. Atomic Force Microscopy (AFM) allows high resolution imaging of clay minerals in-situ while they are exposed to an aqueous solution. The presentation is intended to provide an overview of examples of AFM studies on clay minerals: 1. AFM is an ideal tool to visualize the shape of individual clay particles down to molecular scales including a quantitative description of for example their aspect ratio. Furthermore, the particle size can be easily extracted from AFM data for individual particles as well as particle size distribution. 2. Surface area of clay minerals is a key issue when discussing heterogeneous reactions such as dissolution, adsorption or (surface) precipitation - total surface area, BET surface area, reactive surface area need to be distinguished. In particular reactive surface area is linked to specific reactive surface sites. AFM is of course able to identify such sites and consequently AFM data allow to characterize and to quantify reactive surface area. 3. The reactivity of clay mineral surfaces in aqueous environments controls the behaviour of clay minerals under repository conditions and also affects the migration/retention of radionuclides. It could be shown that the dissolution of smectite particles under acidic conditions at room temperature primarily occurs at (hk0) particle edges, whereas the reactivity of the (001) basal surfaces is very limited. The heterogeneous (surface) precipitation of secondary iron (hydr)oxides phase could be unraveled by AFM observations. Surface precipitation occurs preferentially at (hk0) edges surfaces. Ignoring the surface site specific

  3. Characterization of airborne particles in an open pit mining region.

    Science.gov (United States)

    Huertas, José I; Huertas, María E; Solís, Dora A

    2012-04-15

    We characterized airborne particle samples collected from 15 stations in operation since 2007 in one of the world's largest opencast coal mining regions. Using gravimetric, scanning electron microscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) analysis the samples were characterized in terms of concentration, morphology, particle size distribution (PSD), and elemental composition. All of the total suspended particulate (TSP) samples exhibited a log-normal PSD with a mean of d=5.46 ± 0.32 μm and σ(ln d)=0.61 ± 0.03. Similarly, all particles with an equivalent aerodynamic diameter less than 10 μm (PM(10)) exhibited a log-normal type distribution with a mean of d=3.6 ± 0.38 μm and σ(ln d)=0.55 ± 0.03. XPS analysis indicated that the main elements present in the particles were carbon, oxygen, potassium, and silicon with average mass concentrations of 41.5%, 34.7%, 11.6%, and 5.7% respectively. In SEM micrographs the particles appeared smooth-surfaced and irregular in shape, and tended to agglomerate. The particles were typically clay minerals, including limestone, calcite, quartz, and potassium feldspar. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Multisensor on-the-go mapping of readily dispersible clay, particle size and soil organic matter

    Science.gov (United States)

    Debaene, Guillaume; Niedźwiecki, Jacek; Papierowska, Ewa

    2016-04-01

    Particle size fractions affect strongly the physical and chemical properties of soil. Readily dispersible clay (RDC) is the part of the clay fraction in soils that is easily or potentially dispersible in water when small amounts of mechanical energy are applied to soil. The amount of RDC in the soil is of significant importance for agriculture and environment because clay dispersion is a cause of poor soil stability in water which in turn contributes to soil erodibility, mud flows, and cementation. To obtain a detailed map of soil texture, many samples are needed. Moreover, RDC determination is time consuming. The use of a mobile visible and near-infrared (VIS-NIR) platform is proposed here to map those soil properties and obtain the first detailed map of RDC at field level. Soil properties prediction was based on calibration model developed with 10 representative samples selected by a fuzzy logic algorithm. Calibration samples were analysed for soil texture (clay, silt and sand), RDC and soil organic carbon (SOC) using conventional wet chemistry analysis. Moreover, the Veris mobile sensor platform is also collecting electrical conductivity (EC) data (deep and shallow), and soil temperature. These auxiliary data were combined with VIS-NIR measurement (data fusion) to improve prediction results. EC maps were also produced to help understanding RDC data. The resulting maps were visually compared with an orthophotography of the field taken at the beginning of the plant growing season. Models were developed with partial least square regression (PLSR) and support vector machine regression (SVMR). There were no significant differences between calibration using PLSR or SVMR. Nevertheless, the best models were obtained with PLSR and standard normal variate (SNV) pretreatment and the fusion with deep EC data (e.g. for RDC and clay content: RMSECV = 0,35% and R2 = 0,71; RMSECV = 0,32% and R2 = 0,73 respectively). The best models were used to predict soil properties from the

  5. California Bearing Ratio (CBR) test on stabilization of clay with lime addition

    Science.gov (United States)

    Hastuty, I. P.; Roesyanto; Limbong, M. N.; Oberlyn, S. J.

    2018-02-01

    Clay is a type of soil with particles of certain minerals giving plastic properties when mixed with water. Soil has an important role in a construction, besides as a building material in a wide variety of civil engineering works, soil is also used as supporting foundation of the building. Basic properties of clay are rock-solid in dry and plastic with medium water content. In high water content, clay becomes sticky like (cohesive) and soften. Therefore, clay stabilization is necessary to repair soil’s mechanical properties. In this research, lime is use as a stabilizer that contains the Ca+ element to bond bigger particles. Lime used is slaked lime Ca(OH)2. Clay used has liquid limitation (LL) value of 47.33%, plasticity index of 29.88% and CBR value 6.29. The results explain about 10% lime mixture variation gives the optimum stabilized clay with CBR value of 8.75%.

  6. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  7. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  8. Investigation of suspended sediment transport using ultrasonic techniques

    DEFF Research Database (Denmark)

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1994-01-01

    The results of the initial experimental studies involving the scattering of ultrasonic signals from canonical and non-canonical shaped suspended particles with known elastical qualities are reported. These results have formed the basis for the development of a numerical model for ultrasound...... propagation through low-concentration suspensions of sand particles...

  9. On the gravitational instability of an ionized magnetized rotating plasma flowing through a porous medium with other transport processes and the suspended particles

    International Nuclear Information System (INIS)

    Vyas, M.K.; Chhajlani, R.K.

    1989-01-01

    The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion. (author)

  10. Soil clay content underlies prion infection odds

    Science.gov (United States)

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  11. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  12. Removal of Phenol in Aqueous Solution Using Kaolin Mineral Clay

    International Nuclear Information System (INIS)

    Sayed, M.S.

    2008-01-01

    Kaolin clay were tested for phenol removal as toxic liquid waste from aqueous waste water. Several experimental conditions such as weight and particle size of clay were investigated to study batch kinetic techniques, also the ph and concentration of the phenol solution were carried out. The stability of the Langmuir adsorption model of the equilibrium data were studied for phenol sorbent clay system. Infrared spectra, thermogravimetric and differential thermal analysis techniques were used to characterize the behavior of kaolin clay and kaolin clay saturated with phenol. The results obtained showed that kaolin clay could be used successfully as an efficient sorbent material to remove phenol from aqueous solution

  13. Field measurements of bottom boundary layer and suspend particle materials on Jyoban coast in Japan

    International Nuclear Information System (INIS)

    Yagi, Hiroshi; Sugimatsu, Kouichi; Nishi, Yoshihiro; Kawamata, Shigeru; Nakayama, Akiyoshi; Udagawa, Toru; Suzuki, Akira

    2013-01-01

    To understand the characteristics of the bottom boundary layer (BBL), movements of suspended particle material (SPM) and its related radionuclide transport on Jyoban coast, the continuous monitoring of bottom environments using the mooring system and the intensive field survey of BBL with FRA-TRIPOD were performed. The observation results have shown the fundamental characteristics of BBL (vertical distributions of velocities and bottom roughness, etc.) and bottom turbidity variations. The turbidity at the shallow water depth (30 m) was strongly influenced by waves and turbid water generated on rough wave conditions was transported by the coastal currents with the several days period. Turbidities at the deeper depths (80 m and 130 m) were affected by semidiurnal internal tides. (author)

  14. Real-time measurements of suspended sediment concentration and particle size using five techniques

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Fine sediments are important in the design and operation of hydropower plants (HPPs), in particular with respect to sediment management and hydro-abrasive erosion in hydraulic machines. Therefore, there is a need for reliable real-time measurements of suspended sediment mass concentration (SSC) and particle size distribution (PSD). The following instruments for SSC measurements were investigated in a field study during several years at the HPP Fieschertal in the Swiss Alps: (1) turbidimeters, (2) a Laser In-Situ Scattering and Trans- missometry instrument (LISST), (3) a Coriolis Flow and Density Meter (CFDM), (4) acoustic transducers, and (5) pressure sensors. LISST provided PSDs in addition to concentrations. Reference SSCs were obtained by gravimetrical analysis of automatically taken water samples. In contrast to widely used turbidimeters and the single-frequency acoustic method, SSCs obtained from LISST, the CFDM or the pressure sensors were less or not affected by particle size variations. The CFDM and the pressure sensors allowed measuring higher SSC than the optical or the acoustic techniques (without dilution). The CFDM and the pressure sensors were found to be suitable to measure SSC ≥ 2 g/l. In this paper, the measuring techniques, instruments, setup, methods for data treatment, and selected results are presented and discussed.

  15. Water diffusion in clays with added organic surfactants

    International Nuclear Information System (INIS)

    Pineda-Pinon, J; Mendoza-Lopez, M L; Manzano-RamIrez, A; Perez-Robles, J F; Vega-Duran, J T

    2007-01-01

    Tensoactive agents may decrease water absorption in clay products like adobes. They modify the characteristics of the surface of clay particles. Characterization of water diffusion through the pores of modified clays is important to apply appropriate surface modifiers and to improve their performance. We established a simple model for water diffusion in test samples of defined dimensions to estimate real physical parameters and their effect on water absorption. Adsorption mechanisms are examined based on experimental results. The fitting of the experimental data to the model provides a deep understanding of water adsorption in chemically modified clays. A better agreement between the model and the experimental data is achieved for complex molecules

  16. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  17. Effect of 144Ce inhaled in fused-clay particles on the tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    Hahn, F.F.; Boecker, B.B.; Hobbs, C.H.; Jones, R.K.; Muggenburg, B.A.

    1976-01-01

    Tracheobronchial lymph node changes and lymphopenia are sequelae of inhalation of relatively insoluble radioactive aerosols by beagle dogs. The tracheobronchial lymph nodes from dogs that inhaled 144 Ce in fused-clay particles were examined at intervals from 2 to 730 days after exposure to assess the development of these lesions. Initial lung burdens in the dogs studied ranged from 33 to 63 μCi/kg of body weight. The concentration of radioisotope in the tracheobronchial lymph nodes increased during the first year after exposure and exceeded that in the lung about 100 days after exposure. Autoradiographs of the lymph nodes showed that 144 Ce particles were present in macrophages in the paracortical zone two days after exposure and that concentrations continued to increase in the paracortical zone and medullary cords. Histologic changes in the nodes included atrophy of the germinal centers and lymphocytic follicles, loss of lymphocytes and accumulation of macrophages in the paracortical zone, accumulation of pigment and isotope-laden macrophages in the medullary cords, occasional infiltrates of neutrophils in the medullary cords, and at later time periods focal fibrosis of the medullary cords. Tracheobronchial lymph node weights of the dogs exposed to 144 Ce in fused clay were not decreased until 512 days after exposure. These findings indicate that tracheobronchial lymph nodes accumulate relatively high burdens of 144 Ce after 144 Ce is inhaled in a relatively insoluble form and that the pathologic changes resulting from these burdens are basically atrophy of the nodes. Primary neoplasms in lymph nodes were not observed in dogs with initial lung burdens of 0.0024 to more than 30 μCi/kg of body weight followed for up to 2000 days after exposure. At the higher levels, however, a high incidence of primary pulmonary neoplasia was observed

  18. Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doohyun; Ock, Hyun Geun; Ahn, Kyung Hyun; Lee, Seung Jong [Seoul National University, Seoul (Korea, Republic of)

    2015-12-15

    In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1-10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene- ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

  19. Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays

    International Nuclear Information System (INIS)

    Kim, Doohyun; Ock, Hyun Geun; Ahn, Kyung Hyun; Lee, Seung Jong

    2015-01-01

    In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1-10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene- ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

  20. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  1. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P practices which may call for local or regional planning based on natural (i.e., precipitation amount, type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  2. Association of uranium with colloidal and suspended particulate matter in Arabian sea near the west coast of Maharashtra (India)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, S.N.; Hegde, A.G.

    2004-01-01

    Association of natural uranium in seawater with colloidal and suspended-particulate matter was determined. The separation of suspended particulate material (>0.45 ) and colloidal fraction (as dissolved fractions) in seawater were done by suction and ultra filtration techniques. Seawater samples were collected at 1 km away from the shore and subjected to sequential fractionation in nine stages ranging from 2.7 μm to 1.1 nm. Suspended particulate matter were separated in three different size groups namely >2.7 μm, 0.45 μm and 0.22 μm by suction filtration using cellulose acetate and nitrate membranes filters. To concentrate the solution with colloidal particles <0.22 μm-1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit (NMWL), the solution obtained from filtration through <0.22 μm was passed through stirred ultra-filtration cell. The pH and conductivity at different stages of fractionation (dissolved) showed minor variations. The concentration of uranium was measured in suspended and dissolved fractions by using a pulsed nitrogen laser at 337.1 nm. In order to evaluate the role of mineral colloids in various stages of filtration, concentration of calcium, magnesium, potassium were measured by using ion chromatography and atomic absorption spectrometry. The clay mineral at seawater pH (approximately 8) behave as negative ions and provides binding site for the positively charge species of uranium. Among the dissolved fraction, the maximum concentrations of colloidal uranium was observed about 4 times higher than that compared to average concentration of 6.93 ± 3.10 ppb in other fractions. In the case of suspended particulate matter, the concentration of uranium was below detection limits (<1 ppb). The maximum concentration of Ca, Mg and K in the dissolved fraction were in the <1.1 nm fraction, while for suspended particulate matter, the concentration of Ca, Mg and K decreased with the decrease in size and it is highest in the fraction of 0.22 -0.45 μm.(author)

  3. Micromechanism Underlying Nonlinear Stress-Dependent K0 of Clays at a Wide Range of Pressures

    Directory of Open Access Journals (Sweden)

    Xiang-yu Shang

    2015-01-01

    Full Text Available In order to investigate the mechanism underlying the reported nonlinear at-rest coefficient of earth pressure, K0 of clays at high pressure, a particle-scale model which can be used to calculate vertical and horizontal repulsion between clay particles has been proposed. This model has two initial states which represent the clays at low pressure and high pressure, and the particles in this model can undergo rotation and vertical translation. The computation shows that the majority of particles in a clay sample at high pressure state would experience rotation during one-dimensional compression. In addition, rotation of particles which tends to form a parallel structure causes an increase of the horizontal interparticle force, while vertical translation leads to a decrease in it. Finally, the link between interparticle force, microstructure, and macroscopic K0 is analyzed and it can be used to interpret well the nonlinear changes in K0 with both vertical consolidation stress and height-diameter ratio.

  4. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Oats, W.J.; Ozdemir, O.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). School of Chemical Engineering

    2010-04-15

    Fine minerals, mostly clays, are known to have a detrimental effect on coal flotation. This paper focuses on the effect of mechanical and chemical removals of fine minerals by hydrocyclone and dispersants on coal flotation. The experimental results showed that the flotation recovery slightly increased from medium acidic to medium alkaline ranges. The flotation experiments carried out with dispersants at different dosages showed that the dispersants did not enhance the flotation recovery significantly. However, the removal of the fine fraction from the feed using a hydrocyclone significantly increased the flotation recovery. The bubble-particle attachment tests also indicated that the attachment time between an air bubble and the coal particles increased in the presence of clay particles. These attachment time results clearly showed that the clay particles adversely affected the flotation of coal particles by covering the coal surfaces which reduced the efficiency of bubble-coal attachment. An analysis based on the colloid stability theory showed that the clay coating was governed by the van der Waals attraction and that the double-layer interaction played a secondary role. It was also concluded that the best way to increase the flotation recovery in the presence of clays was to remove these fine minerals by mechanical means such as hydrocylones.

  5. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  6. A comparative study on Pb 2+ removal efficiencies of fired clay soils ...

    African Journals Online (AJOL)

    Abstract. Batch adsorption studies were carried out to evaluate the Pb2+ adsorption capacities of three different fired clay soils with different particle size distributions. Adsorption efficiency was observed to increase with an increase in clay content. Adsorption efficiencies of the fired clay soils were also influenced by the firing ...

  7. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen; Qi, Haibo; Archer, Lynden A.

    2010-01-01

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors

  8. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  9. The molecular aggregation of pyronin Y in natural bentonite clay suspension

    International Nuclear Information System (INIS)

    Meral, Kadem; Yilmaz, Nuray; Kaya, Mehmet; Tabak, Ahmet; Onganer, Yavuz

    2011-01-01

    The molecular aggregation and spectroscopic properties of Pyronin Y (PyY) in the suspension containing natural bentonite clay were studied using molecular absorption, steady-state and time-resolved fluorescence spectroscopy techniques. Interaction between the clay particles and the cationic dye compounds in aqueous solution resulted in significant changes in spectral properties of PyY compared to its molecular behavior in deionized water at the same concentration. These changes were due to the formation of dimer and aggregate of PyY in the clay suspension as well as the presence of the dye monomer. The H-type aggregates of PyY in the clay suspension were identified by the observation of a blue-shifted absorption band of the dye compared to that of its monomer. In spite of diluted dye concentrations, the H-aggregate of PyY in the clay suspension was formed. The intensive aggregation in the clay suspension attributed to the localized high dye concentration on the negatively charged clay surfaces. Adsorption sites of PyY on the clay particles were discussed by deconvulated absorption and excitation spectra. Fluorescence spectroscopy studies revealed that the fluorescence intensity of PyY in the clay suspension is decreased by H-aggregates drastically. Moreover, the presence of H-aggregates in the clay suspension resulted in the decrease of fluorescence lifetime and quantum yield of PyY compared to those in deionized water. - Highlights: → Molecular behavior of PyY adsorbed on clay surface was followed spectroscopically. → H-aggregates of PyY in the clay suspension were formed at very low dye concentrations. → The intensive H-aggregate structure drastically reduced the fluorescence intensity of PyY. → The fluorescence lifetime and quantum yield of PyY in the clay suspension was discussed.

  10. Deformation and Fabric in Compacted Clay Soils

    Science.gov (United States)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  11. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  12. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  13. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    Science.gov (United States)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  14. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    Science.gov (United States)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  15. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  16. Suspended particulate studies over the Madeira Abyssal Plain

    International Nuclear Information System (INIS)

    Simpson, W.R.

    1987-01-01

    Various aspects relating to suspended matter over the Madeira Abyssal Plain are discussed. Special attention is paid to the nepheloid layer including resuspension and transport processes; time variabilities in particle concentrations and fluxes; particle morphology, microbiology and chemical composition; phase association of metals. Also, tentative predictions of the behaviour of some radionuclides are made based on theory and data on rare earth elements. Instrumentation developed for the project is detailed - the deep water particle sampler. (author)

  17. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  18. Shear-induced morphology transition and microphase separation in a lamellar phase doped with clay particles.

    Science.gov (United States)

    Nettesheim, Florian; Grillo, Isabelle; Lindner, Peter; Richtering, Walter

    2004-05-11

    We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.

  19. Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Volume 1)

    International Nuclear Information System (INIS)

    Baldi, G.; Hueckel, T.; Peano, A.; Pellegrini, R.

    1991-01-01

    The results of two years of research on thermomechanics of clays performed within CEC contract Fl1W/0150 are described herein. Previous studies (research contracts with CEC/WAS/380.83.7 l) performed by ISMES have evidenced the need for an improved modelling of the volumetric response of natural clays. In a coupled approach, this leads to an improved prediction of pore-pressure development and dissipation. This is crucial for assessing conditions of a possible local thermal failure as verified in laboratory tests done at ISMES. The first part of the study lays the foundations of a comprehensive theoretical treatment of the interaction between water and soil skeleton. It consists in: (a) developing a framework for inclusion of water/soil particle thermally induced interaction into a thermodynamically consistent mixture theory approach (Section 2); (b) studying possible modelling approaches of considering the effective thermal expansion coefficient of pore water dependency on pore water status (Section 2); (c) testing artificial clays to assess pore water thermal expansion dependence on temperature in the presence of different amounts of active clay minerals and also Boom clay (Section 3); (d) performing a laboratory test campaign on Boom clay with special attention to the response in the overconsolidated domain (Section 4). 89 figs., 18 tabs., 102 refs

  20. Rheological properties of purified illite clays in glycerol/water suspensions

    Science.gov (United States)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  1. Effect of Sonification Time on Synthesisi and Corrosion Resistance of Epoxy-Clay Nanocomposite

    Directory of Open Access Journals (Sweden)

    Niloufar Bahrami Panah

    2016-09-01

    Full Text Available In recent years many research works have been carried out on anti-corrosive nanocomposites coatings containing mineral reinforcements. The most important criteria in these attempts are polymerization method and the type of matrix and reinforcement of nanocomposites. In this regard, the physical and mechanical properties of the polymers in which a small amount of filler is used can be improved. In this research, an epoxy-clay nanocomposite was synthesized by in-situ polymerization method using a resin matrix based on bisphenol-A type epoxy and montmorillonite clay (Closite 15A. The treatment was used at different ultrasonic stirring times to disperse 1-4 weight percentages of clay particles into the matrix. The structure of synthesized epoxy-clay nanocomposite was studied by scanning electron microscopy and X-ray diffraction techniques. The average size of clay particles was determined by X-ray diffraction measurement. Then, anti-corrosion properties of epoxy-clay coatings, prepared under different ultrasonic durations and applied on carbon steel panels, were investigated by Tafel and electrochemical impedance spectroscopy techniques. For this purpose, the carbon steel panels coated with these coatings were immersed in 3.5% sodium chloride solution and tested at different immersion times. The results indicated that a nanocomposite containing 1% clay, synthesized, stirred 60 min ultrasonically, produced smaller particle size, lower corrosion current density and higher coating corrosion resistance than the other composite formulations. This nanocomposite provided superior protection against corrosion in sodium chloride solution.

  2. A Study of Clay-Epoxy Nanocomposites Consisting of Unmodified Clay and Organo Clay

    Directory of Open Access Journals (Sweden)

    Graham Edward

    2006-04-01

    Full Text Available Clay-epoxy nanocomposites were synthesized from DGEBA resin and montmorillonite clay with an in-situ polymerization. One type of untreated clay and two types of organo clay were used to produce the nanocompsoites. The aims of this study were to examine the nanocomposite structure using different tools and to compare the results between the unmodified clay and modified clays as nanofillers. Although diffractogram in reflection mode did not show any apparent peak of both types of materials, the transmitted XRD (X-Ray Difraction graphs, DSC (Differential Scanning Calorimeter analysis and TEM (Transmission Electron Microscope images revealed that the modified clay-epoxy and unmodified clay-epoxy provides different results. Interestingly, the micrographs showed that some of the modified clay layers possessed non-exfoliated layers in the modified clay-epoxy nanocomposites. Clay aggregates and a hackle pattern were found from E-SEM images for both types of nanocomposite materials. It is shown that different tools should be used to determine the nanocomposite structure.

  3. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    Science.gov (United States)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  4. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Perianez, R.

    2005-01-01

    A model to simulate the transport of suspended particulate matter by the Rhone River plume has been developed. The model solves the 3D hydrodynamic equations, including baroclinic terms and a 1-equation turbulence model, and the suspended matter equations including advection/diffusion of particles, settling and deposition. Four particle classes are considered simultaneously according to observations in the Rhone. Computed currents, salinity and particle distributions are, in general, in good agreement with observations or previous calculations. The model also provides sedimentation rates and the distribution of different particle classes over the sea bed. It has been found that high sedimentation rates close to the river mouth are due to coarse particles that sink rapidly. Computed sedimentation rates are also similar to those derived from observations. The model has been applied to simulate the transport of radionuclides by the plume, since suspended matter is the main vector for them. The radionuclide transport model, previously described and validated, includes exchanges of radionuclides between water, suspended matter and bottom sediment described in terms of kinetic rates. A new feature is the explicit inclusion of the dependence of kinetic rates upon salinity. The model has been applied to 137 Cs and 239,240 Pu. Results are, in general, in good agreement with observations. - A model has been developed to simulate transport of suspended particulate matter in the Rhone River plume

  5. a study of the physico-chemistry and mineralogy of agbaja clay for ...

    African Journals Online (AJOL)

    MBI

    characterized for particle size distribution, plasticity index, chemical ... m = mass of sample after ignition (g). pH determination. .... the clay must have been of a secondary origin formed from .... The Chemistry and Physics of. Clay and Allied ...

  6. Polypropylene–clay composite prepared from Indian bentonite

    Indian Academy of Sciences (India)

    WINTEC

    composites have recently found applications in packaging, automotive ... process using xylene as the solvent. Solvent ... Particle size distribution curve for clay, bentonite. Table 2. .... greater probability of debonding due to the poor interfa-.

  7. Particle Tracking Model for Suspended Sediment Transport and Streambed Clogging Under Losing and Gaining Conditions

    Science.gov (United States)

    Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.

    2017-12-01

    Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.

  8. MECHANISM OF PARTICLE SUSPENSION OVER A SAND WAVE

    OpenAIRE

    芦田, 和男; 藤田, 正治; 向井, 健

    1986-01-01

    The characteristics of flow vary with space over sand waves. It is important to consider thisnouniformity in the modeling of motions of suspended particles, but few methods for calculationof suspended load have been proposed by consideration of this efects. In this paper mean velocityand turbulent strength of flow are discussed experimentally over a two-dimensinal sand wave andthe motion of suspended particle are formulated using these results and authors' theory on modelof particle motion ov...

  9. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Raman P. Singh

    2010-01-01

    Full Text Available This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  10. Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

    International Nuclear Information System (INIS)

    Singh, R.P.; Zunjarrao, S.C.; Pandey, G.; Khait, M.; Korach, C.S.

    2010-01-01

    This experimental investigation reports on the durability of epoxy-clay nanocomposites upon exposure to multiple environments. Nanocomposites are fabricated by mixing the clay particles using various combinations of mechanical mixing, high-shear dispersion, and ultrasonication. Clay morphology is characterized using X-ray diffraction and transmission electron microscopy. Specimens of both neat epoxy and the epoxy-clay nanocomposite are subjected to two environmental conditions: combined UV radiation and condensation on 3-hour repeat cycle and constant temperature-humidity, for a total exposure duration of 4770 hours. The presence of nanoscale clay inhibits moisture uptake, as demonstrated by exposure to constant temperature-humidity. Nonetheless, both materials lose mass under exposure to combined UV radiation and condensation due to the erosion of epoxy by a synergistic process. Surprisingly, the epoxy-clay specimens exhibit greater mass loss, as compared to neat epoxy. Mechanical testing shows that either environment does not significant affect the flexure modulus of either material. On the other hand, both materials undergo degradation in flexural strength when exposed to either environment. However, the epoxy-clay nanocomposite retains 37% more flexure strength than the neat epoxy after 4072 hours of exposure.

  11. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  12. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia

    Science.gov (United States)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don

    2017-09-01

    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  13. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    Science.gov (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  14. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Science.gov (United States)

    Moran, Anthony R.; Hettiarachchi, Hiroshan

    2011-01-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling. PMID:21845150

  15. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    Science.gov (United States)

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  16. Geotechnical Characterization of Mined Clay from Appalachian Ohio: Challenges and Implications for the Clay Mining Industry

    Directory of Open Access Journals (Sweden)

    Anthony R. Moran

    2011-06-01

    Full Text Available Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  17. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  18. Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.

    Science.gov (United States)

    Kimura, Yuji; Haraguchi, Kazutoshi

    2017-05-16

    Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.

  19. Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete

    Directory of Open Access Journals (Sweden)

    Gnanli Landrou

    2016-04-01

    Full Text Available This paper focuses on the modification of clay properties with inorganic additives to deflocculate and flocculate inorganic soil for the development of a material that would be as easy to use as the current concrete products, but with a much lower environmental impact. Considering that the rheological behaviour of clays is controlled by their surface charge, we first introduce potential determining ions to deflocculate the clay particles and to reduce the yield stress of the earth material. Their efficiency is characterized using zeta potential measurements and rheological tests. We then achieve the flocculation of clay particles by using natural minerals that slowly dissolve in the interstitial liquid and ultimately precipitate calcium silicate hydrate (C–S–H. The precipitation products are identified by X-ray diffraction and the consequences of this delayed precipitation are followed by oscillatory rheometric measurements. Finally, it is suggested that in this process, C–S–H precipitation is not used as a binding vector but as an anti-plasticizer that removes the inorganic dispersant additives.

  20. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    -serpentines, berthierine or odinite mainly or precipitates under the form of magnetite in low amount. Even if COx-iron and COxCF-iron interactions appear somehow similar, significant differences can be noticed in both the liquid and solid compartments of the reaction products. As far as solutions are concerned, pH is lower and Eh higher for COx compared with COxCF. In the solid phase, after 9 months of reaction, metallic iron is totally consumed in COx whereas it is still present for COxCF. In parallel, the formation of magnetite is negligible for COx. Upon reaction, the Al:Si ratio decreases in COx clay particles whereas it remains stable for COxCF. Finally, the evolution of specific surface areas (SSA) with reaction time is significantly different as an increase in SSA is observed for COx in contrast with a decrease for COxCF. The addition of either calcite or pyrite to COxCF does not significantly influence its interaction with iron. In contrast, the addition of quartz to COxCF leads to a pH decrease and an Eh increase. It also results in the quasi-complete absence of magnetite, a decrease of Al:Si ratio in clay particles and an increase in SSA. Upon quartz addition COxCF almost behaves as COx with regard to interactions with iron. Such a trend can be assigned to the partial dissolution of quartz, that provides additional silica for the precipitation of Fe-serpentines. As a conclusion, the main differences between COx-iron and COxCF-iron interactions can thus be explained by the presence and reactivity of quartz which modify the reaction pathway and products. (authors)

  1. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  3. Thermal stability of PMMA–clay hybrids

    Indian Academy of Sciences (India)

    Administrator

    Thermal stability of PMMA–clay hybrids. TANUSHREE CHOUDHURY* and NIRENDRA M MISRA. Department of Applied Chemistry, Indian School of Mines University, Dhanbad 826 004, India. MS received 9 December 2008. Abstract. Materials with small particle size are being extensively used in composites and hybrid ...

  4. Large scale structures in liquid crystal/clay colloids

    Science.gov (United States)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  5. Large scale structures in liquid crystal/clay colloids

    International Nuclear Information System (INIS)

    Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M

    2005-01-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods

  6. Characterization of bentonite clay from Cubati, PB, Brazil

    International Nuclear Information System (INIS)

    Batista, A.P.; Marques, L.N.; Campos, L.A.; Neves, G.A.; Ferreira, H.C.; Menezes, R.R.

    2009-01-01

    The bentonite of the State of Paraiba are commercially used in numerous technological sectors, particularly in oil drilling muds. However, these bentonite deposits are becoming exhausted after decades of exploitation. Thus, the aim of this work was to characterize physically, mineralogically and technologically bentonite clays from Cubati city, PB. The samples were dried at 60 deg C and characterized through X-ray fluorescence, particle size distribution, X-ray diffraction, differential thermal and gravimetric analyzes and scanning electronic microscopy. The natural bentonite clays were transformed into sodium bentonite by Na_2CO_3 solution treatment. It was estimated the rheological properties of the suspensions: apparent and plastic viscosities and water loss. The results showed that the samples are polycationic bentonite clays, containing amounts of MgO, CaO and K_2O similar to those of bentonite from Boa Vista, PB, and are composed of smectite, kaolinite and quartz. The samples presented fractions of particles size under 2 μm of 30 and 32%. The rheological properties showed that the samples presented technological potential to be used in drilling muds. (author)

  7. Concentration of elements in suspended matter discharges to Lerma River, Mexico

    International Nuclear Information System (INIS)

    Avila-Perez, P.; Tejeda, S.; Carapia, L.; Barcelo-Quintal, I.; Martinez, T.

    2011-01-01

    The S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn and Pb concentration and the elemental composition of particles in suspended matter from principal discharges to Lerma River, have been evaluated. The elemental concentration in suspended matter has been obtained by Energy Dispersive X-Ray Fluorescence Spectrometry. The elemental composition of particles has been obtained by means of Energy Dispersive X-Ray Spectrometry (EDS). The results show that K, Ca, Ti, Mn and Fe are mainly from natural origin in the Upper Course of the Lerma River (UCLR), where the principal contributions probably come from dragging of soils and sediments in the rainy season and Cr, Cu, Zn and Pb are mainly from anthropogenic origin where the principal contributions come from urban and industrial untreated discharge. The application of Energy Dispersive X-Ray Spectrometry plus Scanning Electron Microscopy is useful in the characterization of suspended matter in natural, anthropogenic and mixed water discharges. (author)

  8. Processing and characterization of Polystyrene/cornstarch/organophilic clay hybrids

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan R. de; Amorim, Ywrrenan C.; Andrade, Cristina T. de

    2011-01-01

    Polystyrene/cornstarch composite blends with organophilic Cloisite 15A were prepared in an internal mixer in the presence of maleic anhydride (MA). The contents of clay were 1, 3 and 5%, based on the weight of the blend. The results obtained by X-ray diffraction revealed significant intercalation and exfoliation of clay particles within the polymeric moiety, which indicate increased interaction between the components of the nanocomposites. Thermogravimetric analysis results revealed the increase in thermal stability for the compatibilized blends in relation to the noncompatibilized PS/starch blends. The composites showed better thermal stability with increasing clay content. (author)

  9. Development of photopolymerizable clay nanocomposites utilizing reactive dispersants

    Science.gov (United States)

    Owusu-Adom, Kwame

    Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation

  10. Comparison of laser-light diffraction method with other methods of analyzing the particle size distribution in suspensions of latex, pollen, and quartz, and in suspended particulate matter in river water

    International Nuclear Information System (INIS)

    Heyn, R.D.; Zimmermann, H.U.

    1983-01-01

    This report gives an idea of different methods being used for the particle size analysis, including a laser light diffraction method and an image analysis method. These comparing measurements have been carried out with suspensions consisting of fresh water and standard particles, ranging between 1 and 100 μm, as well as with suspended particulate matter of the Elbe river. As to standard particles, statistical errors are subject to the width of the size distribution. When using the light diffraction method, the errors vary between 0,7 and 16%, however, when applying the image analysis method, they range between 0,5 and 26%. As a result of the measurements of the suspended particulate matter of the Elbe river, a statistical error of 21% has occured with regard to the image analysis method, whilst the light diffraction method has shown an error of about 4 - 11%. Possible reasons for systematical and random errors have been discussed as to both of these methods. (orig.) [de

  11. The effect of clay amendment on substrate properties and growth of woody plants

    Directory of Open Access Journals (Sweden)

    Tomáš Meisl

    2012-01-01

    Full Text Available This work deals with the effect of two clay products differing in particle size distribution on properties of growing substrate and on growth of containerized woody plants in substrates amended with these clay products. Fine and coarse clay were added to a peat substrate, each at two rates. The peat substrate without clay was used as a control. The substrates were tested in experiments with two woody ornamentals (Thuja occidentalis ’Smaragd’ and Prunus cistena. Chemical and physical properties of the substrates were measured according to European Standards before planting. Proportion of water categories differing in availability to the plants were calculated from retention curves measured on the sand box. Properties of substrates in containers with and without plants were evaluated in the same way at the end of the culture. Clay addition changed chemical and physical properties of the tested substrates in terms: available nutrients content, particle density, bulk density, total pore volume, easy available water, water buffering capacity, air capacity, and shrinkage. The effect of fine clay was much stronger. In comparison with the clear effect of clay addition on the substrate chemical and physical properties, the effect on the growth and quality of model woody plants was not so explicit.

  12. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    International Nuclear Information System (INIS)

    Jang, Jiyi; Kim, Hyunji; Han, Seunghee

    2014-01-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] −1 , the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem

  13. Influence of microorganism content in suspended particles on the particle–water partitioning of mercury in semi-enclosed coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jiyi [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Global Bioresources Research Center, Korea Institute of Ocean Science and Technology (KIOST), Ansan 426-744 (Korea, Republic of); Kim, Hyunji [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Han, Seunghee, E-mail: shan@gist.ac.kr [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)

    2014-02-01

    It is known that particle scavenging of mercury (Hg) can be affected by the abundance of particulate organic matter in coastal waters. However, the role of living organic particles in Hg scavenging is not yet completely understood. In this study, we hypothesized that an abundance of living organic particles (i.e., phytoplankton and bacteria) would influence the particle–water partitioning of Hg in coastal waters. Surface seawater samples were collected from eight stations in Gwangyang Bay, Korea, in three seasons (November 2009, April 2010, and October 2010) for the determination of concentrations of suspended particulate matter (including chlorophyll-a and bacteria), and Hg in unfiltered and filtered waters. We found that more Hg partitioned toward particulate matter when phytoplankton biomass, indicated from the chlorophyll-a concentration in a particle, was higher. In the low algal season, when [chlorophyll-a] < 0.6 μg L{sup −1}, the bacterial number, instead of chlorophyll-a concentration in particle, showed a positive correlation with the particle–water partition coefficient of Hg. Overall, microbial abundance seems to play a critical role in particle scavenging of Hg in coastal water. Taking this result in light of Hg in pristine coastal zones, we predict that increases in algal biomass amplify the potential for algae to transfer Hg to marine food chains. - Highlights: • Abundance of phytoplankton and bacteria influenced particle–water partitioning of Hg. • More Hg partitioned toward particles when microorganism biomass in particle is large. • Increases of algal biomass may enhance Hg bioaccumulation in coastal ecosystem.

  14. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  15. Effect on canine lymphocyte function of 144Ce inhaled in fused clay particles

    International Nuclear Information System (INIS)

    Benjamin, S.A.; Ferris, A.C.

    1974-01-01

    Beagle dogs exposed by inhalation to 144 Ce in fused clay particles develop a persistent lymphopenia and the remaining peripheral lymphocytes in these dogs show a depressed in vitro response to plant mitogens. These studies were designed to evaluate the cellular basis for this defect. The survival and growth of lymphocytes from irradiated and control dogs were evaluated through 96 hours of culture. Many irradiated lymphocytes that were viable in vivo died within 24 hours in vitro. The remaining lymphocytes appeared to grow normally indicating that the early in vitro death was responsible for at least a portion of the difference between irradiated and control lymphocyte cultures. A second experiment was designed to determine if any humoral factors in plasma of irradiated dogs were responsible for the poor response of the lymphocytes. Lymphocytes from irradiated and control dogs were grown with plasma from both types of animals. Heterologous plasma had no apparent effect on lymphocyte growth, indicating that humoral factors were not involved. (U.S.)

  16. Estimating concentrations of fine-grained and total suspended sediment from close-range remote sensing imagery

    Science.gov (United States)

    Mosbrucker, Adam; Spicer, Kurt R.; Christianson, Tami; Uhrich, Mark A.

    2015-01-01

    data range among sensors. Of greatest interest to many programs is a hysteresis in the relationship between turbidity and SSC, attributed to temporal variation of particle size distribution (Landers and Sturm, 2013; Uhrich et al., 2014). This phenomenon causes increased uncertainty in regression-estimated values of SSC, due to changes in nephelometric reflectance off the varying grain sizes in suspension (Uhrich et al., 2014). Here, we assess the feasibility and application of close-range remote sensing to quantify SSC and particle size distribution of a disturbed, and highly-turbid, river system. We use a consumer-grade digital camera to acquire imagery of the river surface and a depth-integrating sampler to collect concurrent suspended-sediment samples. We then develop two empirical linear regression models to relate image spectral information to concentrations of fine sediment (clay to silt) and total suspended sediment. Before presenting our regression model development, we briefly summarize each data-acquisition method.

  17. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Sanchez, F

    2007-11-15

    Clay minerals are aluminium phyllosilicates, mostly products of the chemical alteration and mechanical breakdown of igneous and metamorphic rocks. Their physical and chemical properties can be directly related to their layered, fine-grained (large surface area) structure. These properties such as large water retention, low hydraulic conductivity, heat resistance and ionic exchange capacities, make clays ideal for many different applications, e.g. as sealing material for the underground disposal of radioactive waste. The long-term disposal of radioactive waste in an underground geological repository is based on a multibarrier concept. In the barrier of highly compacted clay, water is intercalated and confined between the clay layers. The narrow pores are responsible that under natural hydraulic gradients, molecular diffusion through water is the dominant transport mechanism for released radionuclides. The properties of water at the water-clay interface differ from that of bulk water. Therefore, a good and deep understanding of the water structure and dynamics in compacted clay systems is fundamental. This knowledge is the base for the progressing research about transport of pollutants through the compacted clays and argillaceous rock of radioactive waste barriers. This study focusses on four different types of pure clays, two of them charged, namely montmorillonite and illite (both in a Na and Ca form), and two uncharged, namely kaolinite and pyrophyllite. Their structural differences result in a significantly different behaviour in contact with water. In case of montmorillonite, water is located in between particles and in the interlayer space. In illite, water is found only in between particles, because the interlayer surfaces are tightly linked by potassium cations. The layers of kaolinite and pyrophyllite are uncharged and, consequently, water is located only in between particles. The clay powders were compacted to reach a high bulk dry density of about 1.9 g

  18. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    International Nuclear Information System (INIS)

    Gonzalez Sanchez, F.

    2007-11-01

    Clay minerals are aluminium phyllosilicates, mostly products of the chemical alteration and mechanical breakdown of igneous and metamorphic rocks. Their physical and chemical properties can be directly related to their layered, fine-grained (large surface area) structure. These properties such as large water retention, low hydraulic conductivity, heat resistance and ionic exchange capacities, make clays ideal for many different applications, e.g. as sealing material for the underground disposal of radioactive waste. The long-term disposal of radioactive waste in an underground geological repository is based on a multibarrier concept. In the barrier of highly compacted clay, water is intercalated and confined between the clay layers. The narrow pores are responsible that under natural hydraulic gradients, molecular diffusion through water is the dominant transport mechanism for released radionuclides. The properties of water at the water-clay interface differ from that of bulk water. Therefore, a good and deep understanding of the water structure and dynamics in compacted clay systems is fundamental. This knowledge is the base for the progressing research about transport of pollutants through the compacted clays and argillaceous rock of radioactive waste barriers. This study focusses on four different types of pure clays, two of them charged, namely montmorillonite and illite (both in a Na and Ca form), and two uncharged, namely kaolinite and pyrophyllite. Their structural differences result in a significantly different behaviour in contact with water. In case of montmorillonite, water is located in between particles and in the interlayer space. In illite, water is found only in between particles, because the interlayer surfaces are tightly linked by potassium cations. The layers of kaolinite and pyrophyllite are uncharged and, consequently, water is located only in between particles. The clay powders were compacted to reach a high bulk dry density of about 1.9 g

  19. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carja, Gabriela [Department of Physical Chemistry, Faculty of Industrial Chemistry, Technical University of Iasi, 71 Mangeron Boulevard, 700050 Iasi (Romania); Chiriac, Horia [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi (Romania)]. E-mail: hchiriac@phys-iasi.ro; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi (Romania)

    2007-04-15

    The structural 'memory effect' of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments.

  20. New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery

    International Nuclear Information System (INIS)

    Carja, Gabriela; Chiriac, Horia; Lupu, Nicoleta

    2007-01-01

    The structural 'memory effect' of anionic clays was used to obtain layered double hydroxides (LDHs) with tailored magnetic properties, by loading iron oxides and/or spinel structures on iron partially substituted hydrotalcite-like materials. The obtained magnetic layered structures were further used as precursors for new hybrid nanostructures, such as aspirin-hydrotalcite-like anionic clays. Transmission electron microscopy (TEM) analysis shows that small iron oxide or spinel nanoparticles coexist with the fibrous drug particles on the surface of partially aggregated typical clay-like particles. The specific saturation magnetization of the loaded LDHs can be increased up to 70 emu/g by using specific post-synthesis treatments

  1. Particle Settling in Low Energy Turbulence

    Science.gov (United States)

    Allen, Rachel; MacVean, Lissa; Tse, Ian; Mazzaro, Laura; Stacey, Mark; Variano, Evan

    2014-11-01

    Particle settling velocities can be altered by turbulence. In turbulence, dense particles may get trapped in convergent flow regions, and falling particles may be swept towards the downward side of turbulent eddies, resulting in enhanced settling velocities. The degree of velocity enhancement may depend on the Stokes number, the Rouse number, and the turbulent Reynolds number. In a homogeneous, isotropic turbulence tank, we tested the effects of particle size and type, suspended sediment concentration, and level of turbulence on the settling velocities of particles typically found in muddy estuaries. Two Acoustic Doppler Velocimeters (ADVs), separated vertically, measured turbulent velocities and suspended sediment concentrations, which yield condition dependent settling velocities, via ∂/á C ñ ∂ t = -∂/∂ z (ws á C ñ + á w ' C ' ñ) . These results are pertinent to fine sediment transport in estuaries, where high concentrations of suspended material are transported and impacted by low energy turbulence.

  2. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    Science.gov (United States)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay

  3. Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials

    Science.gov (United States)

    West, L. J.; Handley, K.

    High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.

  4. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis.

    Science.gov (United States)

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi

    2017-06-01

    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (pclay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (pclay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite

    International Nuclear Information System (INIS)

    Ganjaee Sari, M.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S.

    2015-01-01

    Highlights: • Nanoclay particles were modified with polyester-amide hyperbranched polymer. • Epoxy/clay nanocomposites were prepared using modified clay particles. • Surface modification enhanced the clay particles exfoliation properties. • Surface modified clay particles enhanced corrosion resistance of the epoxy coating. - Abstract: Surface modification of nanoclay particles was carried out by various amounts of polyester-amide hyperbranched polymer (HBP). Thermal gravimetric analysis and X-ray diffraction analysis were performed to estimate the efficiency of the HPB grafting on the clay particles. Epoxy/clay nanocomposites were prepared by addition of 1 wt.% unmodified and modified clays. The corrosion protection properties of the nanocomposites were evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that surface modification of the clay particles by HBP caused significant enhancement of the epoxy coating corrosion resistance especially when the ‘polymer/clay’ ratios were 10/1 and 5/1

  6. Determination of wind erosion intensity on heavy clay soils

    Directory of Open Access Journals (Sweden)

    Jana Kozlovsky Dufková

    2010-01-01

    Full Text Available Wind erosion, common problem of light-textured soils, was determined on heavy clay soils in the foothills of Bílé Karpaty Mountains, Czech Republic. Soil erodibility by wind was determined from the Map of potential erodibility of soil by wind and from the calculation of potential and real soil loss by wind. All the determinations show underestimation of soil erodibility by wind on heavy clay soils, because methods that are used for this are based above all on the assessment of clay particles content and the presumption the more clay particles soil contains, the less vulnerable to wind erosion is. The potential erodibility of soil by wind is 0,09 t . ha−1 per year. The determined value does not exceed the tolerable soil loss limit 10 t . ha−1 per year for deep soils. The real average erodibility of soil by wind has the highest value 1,47 g . m−2 on November 30th, 2008. Other soil losses that do not exceed the tolerable soil loss limit 1,4 g . m−2, were determined on March 18th and 28th, 2008. Big difficulties come with the assessment of the erodibility of heavy clay soils in the areas, where soil erosion ve­ri­fia­bly exists, but it is not assessable by objective calculating methods. Evident necessity of new know­ledge concerning the determination of wind erosion intensity follows from the results.

  7. Simulation of streamflow and water quality in the White Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins.The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested

  8. Geotechnical and physico chemical properties of clays associated ...

    African Journals Online (AJOL)

    2012-12-03

    Dec 3, 2012 ... which were later combined for the complete particle size distribution. ... leaching action of the finest materials (clay fraction) from the surface horizons ..... slopes on which the gravitational pull on the water charged soils rich in ...

  9. Evaluating Suspended Particles Concentration of the Inside and Outside Air of the Classroom and Its Influencing Factors in Middle schools and High Schools of Yazd

    Directory of Open Access Journals (Sweden)

    MH Ehrampoosh

    2015-11-01

    Full Text Available Abstract Introduction: Airborne pollution in such public environments as schools has adverse health effects on pupils and teachers who spend a noticeable amount of time in the school. Therefore, this study aimed to measure the suspended particles concentration of indoor and outdoor air of Yazd schools as well as to determine the influencing parameters on the pollution intensity. Methods: This analytical cross-sectional study was conducted in 20 middle-schools and high schools of males and females in winter of 2013. The environmental aerosol monitoring device, (HAZ-DUST EPAM5000 model was used to measure the concentration of PM1, PM2.5 and PM10. The study data were analyzed via applying correlation, simple linear regression and means comparison tests. Moreover, the study results were compared with the standards of World health organization(WHO and Environmental Health Organization(EPA. Results: The mean concentration of PM10, PM2.5 and PM1 in indoor class air was reported higher compared to the outdoor air. The indoor and outdoor air quality of schools in terms of Air Quality Index9 (AQI Calculator indicated an average condition for PM10, and an unhealthy condition for PM2.5 in regard with the vulnerable groups. A significant relationship was detected between indoor and outdoor air concentration particles (P<0.05. The mean indoor per outdoor air particles ratio (I/O was 1.68, 1.31, 1.46 respectively for PM10, PM2.5, PM1. Conclusion: The study findings revealed a significant relationship between indoor and outdoor suspended particle concentration demonstrating the particles penetration into the classrooms. Therefore, utilizing appropriate air conditioner systems are regarded effective in order to mitigate indoor class pollution.  

  10. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  11. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    International Nuclear Information System (INIS)

    Benchabane, A.

    2006-11-01

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  12. Crystal chemistry and Moessbauer spectroscopic analysis of clays around Riyadh for brick industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mutasim I., E-mail: mkhalil@ksu.edu.sa [King Saud University, Department of Chemistry, College of Science (Saudi Arabia)

    2013-04-15

    A total of 30 clay samples were collected from the area around Riyadh city, Saudi Arabia. A complete chemical analysis was carried out using different techniques. X-ray diffraction studies showed that the clay samples were mainly of the smectite group with traces of the kaolinite one. The samples studied were classified as nontronite clay minerals. One of the clay fraction has been studied by Moessbauer spectroscopy as raw clay fraction and after being fired at 950-1,000 Degree-Sign C. The Moessbauer spectra showed accessory iron compounds in the form of hematite and goethite. The structural iron contents disintegrate on firing transforming into magnetic iron oxide and a paramagnetic small particles iron oxide.

  13. Determination of the origin of suspended matter and sediments in the Elbe estuary using natural tracers

    International Nuclear Information System (INIS)

    Schoer, J.H.

    1990-01-01

    The clay mineral composition, the concentrations of carbonates, the proportions of carbon and oxygen isotopes in carbonates and organic matter, as well as the concentrations of different nonanthropogenic metals were used to determine the origin of different grain size fractions of sediments and suspended matter in the Elbe estuary. Analysis of the smectite/kaolinite proportion revealed that solid material · 2 μm from the North Sea is transported up the river, about 40 km beyond the most upstream position of the salt wedge. In the 2-20 μm fraction, the 16 O/ 18 O ratio in carbonates and the kaolinite/chlorite proportion demonstrate a transport of North Sea material between 40 and 20 km upstream of the marine water limit. The transport behavior of the 20-63 μm grain size fraction could be determined by the hafnium concentration, representative for the heavy mineral zircon. In this case, the transport distance beyond the salt wedge was up to 20 km. No information was available on the origin of the fine organic matter, whereas the coarser fractions were derived primarily from debris of salt marsh vegetation. The results demonstrate that in the Elbe estuary mixing between marine and fluvial solid material occurs upstream of the salt wedge and is significantly responsible for the observed decrease in the concentration of various pollutants in sediments and suspended matter along the estuary. The cause of the upstream particle transport is probably a scour lag mechanism based on asymmetries of the flood- and ebb-tide current distribution, especially their differing maximum velocities

  14. Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites

    NARCIS (Netherlands)

    Zhang, Wei-De; Phang, In Yee; Liu, Tianxi

    2006-01-01

    High-performance composites are produced using nanostructured clay-carbon nanotube (CNT) hybrids as a reinforcing filler. The intercalation of iron particles between the clay platelets serves as the catalyst for the growth of CNTs, while the platelets are exfoliated by the CNTs, forming the unique

  15. Clay membrane made of natural high plasticity clay

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1998-01-01

    Leachate containment in Denmark has through years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R 466). It states natural clay deposits may be used for membrane material provided the membrane and drainage system may contain at least 95% of all leachate created throughout...... ion transport as well as diffusion.Clay prospection for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island Lolland. The natural clay contains 60 to 75% smectite, dominantly as a sodium-type. The clay material...... has been evaluated using standardised methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15 to 0.3m thick clay membrane have been tested...

  16. Clay membrane made of natural high plasticity clay:

    DEFF Research Database (Denmark)

    Foged, Niels; Baumann, Jens

    1999-01-01

    Leachate containment in Denmark has throughout the years been regulated by the DIF Recommendation for Sanitary Landfill Liners (DS/R4669. It states that natural clay deposits may be used as membrane material provided the membrane and drainage system contains at least 95% of all leachate created...... into account advective ion transport as well as diffusion. Clay prospecting for clays rich in smectite has revealed large deposits of Tertiary clay of very high plasticity in the area around Rødbyhavn on the Danish island of Lolland. The natural clay contains 60-75% smectite, dominantly as a sodium......-type. The clay material has been evaluated using the standardized methods related to mineralogy, classification, compaction and permeability, and initial studies of diffusion properties have been carried out. Furthermore, at a test site the construction methods for establishing a 0.15-0.3 m thick clay membrane...

  17. Thermal volume changes in clays and clay-stones

    International Nuclear Information System (INIS)

    Delage, P.; Sulem, J.; Mohajerani, M.; Tang, A.M.; Monfared, M.

    2012-01-01

    Document available in extended abstract form only. The disposal of high activity exothermic radioactive waste at great depth in clay host rocks will induce a temperature elevation that has been investigated in various underground research laboratories in Belgium, France and Switzerland through in-situ tests. Thermal effects are better known in clays (in particular Boom clay) than in clay-stone (e.g. Opalinus clay and Callovo-Oxfordian clay-stone). In terms of volume changes, Figure 1 confirms the findings of Hueckel and Baldi (1990) that volume changes depend on the over-consolidation ratio (OCR) of the clay. In drained conditions, normally consolidated clays exhibit plastic contraction when heated, whereas over-consolidated clay exhibit elastic dilation. The nature of thermal volume changes in heated clays obviously has a significant effect on thermally induced pore pressures, when drainage is not instantaneous like what occurs in-situ. Compared to clays, the thermal volume change behaviour of clay-stones is less well known than that of clays. clay-stone are a priori suspected to behave like over-consolidated clays. In this paper, a comparison of recent results obtained in the laboratory on the drained thermal volume changes of clay-stones is presented and discussed. It is difficult to run drained mechanical tests in clay-stones like the Opalinus clay and the Callovo-Oxfordian clay-stone because of their quite low permeability (10 -12 - 10 -13 m/s). This also holds true for thermal tests. Due to the significant difference in thermal expansion coefficient between minerals and water, it is necessary to adopt very slow heating rate (0.5 - 1 C/h) to avoid any thermal pressurization. To do so, a new hollow cylinder apparatus (100 mm external diameter, 60 mm internal diameter) with lateral drainages reducing the drainage length to half the sample thickness (10 mm) has been developed (Monfared et al. 2011). The results of a drained cyclic thermal test carried out on

  18. Suspended matter and heavy metal content of the Elbe Estuary

    International Nuclear Information System (INIS)

    Vollbrecht, K.

    1980-01-01

    (1) In the River Elbe estuary there is a turbidity zone which is closely bound to the region of brackish waters. Its suspended matter content changes strongly with the tidal rhythm. Suspended matter and river bed sediments influence each other by exchanging their particles. Owing to that mechanism, the heavy metal ions bound or taken up by the suspended matter (sorption) enter the sediments. To obtain an estimation of the estuary's ability to cope with ( self purify ) a strong burden of industrial wastes, it is neccessary to take into consideration the absorbing capacity of both the mean suspension load and the sediments. (2) The concentration of nearly all heavy metal ions investigated in the suspension load decreases remarkably at the very beginning of the turbid zone already, in the Hamburg region. It indicates that the binding process are going on very rapidly and that the metal ion absorbing capacity of the Elbe estuary still requires only the first few miles of this self purification system. The results gained indicate that the suspended matter in Hamburg waters could bind or take up more heavy metal ions than are discharged into this area. (3) The concentration of most ions bound to the suspension material correlates very well with the grain size distribution of the (anorganic) particles. The concentration values decrease along the estuary and lead to a continuous transition to the values of the open sea. Cu, Ni and Cd appear to be captured preferably by organic suspended matter. This behaviour, however, is solely restricted to the turbid zone. In the open sea, after oxidation of the binding organic material, Cu and Ni correspond to the anorganic grain size distribution. (orig./HP) [de

  19. Adaption of the suspension behavior of suspended matter in natural water

    International Nuclear Information System (INIS)

    Hattenbach, K.; Schreier, H.H.; Zimmermann, H.U.

    1980-01-01

    The particle size distribution of an artificial tracer is adapted to that of suspended matter in natural water. Therefore the material of a tracer was divided into fractions and afterwards mixed according to computed proportions. The determination of particle size distribution was carried out using a sedimentation balance. For calculation of the distribution curve a special mathematical function was assumed. (orig.) [de

  20. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  1. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles

    Science.gov (United States)

    Mountrakis, L.; Lorenz, E.; Hoekstra, A. G.

    2017-07-01

    no consistent measure to recalibrate the radius of the suspended particle.

  2. Chemical composition modulates the adverse effects of particles on the mucociliary epithelium

    Directory of Open Access Journals (Sweden)

    Regiani Carvalho-Oliveira

    2015-10-01

    Full Text Available OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL, particulate matter 2.5 µm 0.1 mg/mL (PM0.1 or 3.0 mg/mL (PM3.0 and amphibian Ringer’s solution (control. Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.

  3. Erosion of common structural materials and the degradation of suspended particles in flowing suspension of graphite powder in carbon dioxide gas

    International Nuclear Information System (INIS)

    Garton, D.A.; Hawes, R.I.; Rose, P.W.

    1968-06-01

    Experiments have been performed to examine the erosion of common materials of construction by a flowing suspension of graphite powder in carbon dioxide gas and the degradation of the graphite powder in the suspension. The suspension was circulated through a stainless steel loop at a pressure of 200 p.s.i.g. and bulk fluid temperature of 100-150 deg. C. No change in the weight of pins of mild steel, stainless steel and zircaloy, which were placed across the flow stream in a region where the velocity approached 100 ft./sec, could be detected after 350 hours of circulation. Examination of micro-photographs of the cross sections of the specimens showed no change in the structure of the metals. Considerable erosion of graphite pins producing a 6% decrease in the weight was observed under similar conditions. Detailed spectrographic analysis of the suspended powder taken at various times during the experiment showed no noticeable increase in the impurity content which could be attributed to erosion of the test specimens. A considerable increase in the tungsten, tin and cobalt concentration was observed and this is attributed to wear of the pump seal surfaces. The mean particle size of the suspended graphite powder was observed to decrease rapidly from 5 microns to 3 microns after only a few hours of circulation in the loop. After this initial period there was little further change in the particle size, the mean diameter being 2.85 microns after 167 hours of circulation. (author)

  4. Measurements of Plutonium and Americium in Soil Samples from Project 57 using the Suspended Soil Particle Sizing System (SSPSS)

    International Nuclear Information System (INIS)

    John L. Bowen; Rowena Gonzalez; David S. Shafer

    2001-01-01

    As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site

  5. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  6. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  7. Validation of water sorption-based clay prediction models for calcareous soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Moosavi, Ali

    2017-01-01

    on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4......Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption-based models for determining the clay...... fraction. The applicability of such models to semi-arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption-based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3...

  8. Fabric and Geotechnical behavior of the volcanic clays of Xalapa, Mexico

    International Nuclear Information System (INIS)

    Lenz, O.

    2009-01-01

    The City of Xalapa is nailed in the Eastern part of the Axis Mexican Neovolcanico and is laid the foundations, in its majority, clays of volcanic origin of the Quaternary. These ashes have a peculiar behavior when the micro climate around them varies, as shown in previous slides of the slope and embankments. On the other hand, these clays problems for their identification, as these soils are rich in halloysite and to a lesser extent by allophones. To understand the microstructure in natural state of the clay one studies the characteristics physical-chemistries of his components by the method of ionic chromatography and the chemical isolated particle composition is analysed with an transmission electron microscope (TEM) with a connected detector of dispersion of X-ray energy. On the other hand, the mineralogical composition is obtained from X-ray diffractometer of dust in argillaceous fraction. The morphology of particles is identified by means of the TEM. Limits liquid associated with the specific surface of particles, this last one determined by adsorption of N 2 . The fabric of the clay in natural and artificial state (with different methods from compaction) in the scanning electron microscope (SEM) is compared. In accordance with the above-mentioned, it is studied the levels of the fabric, the morphology of the pores and the type of connections of the particles. In order to verify the hypothesis that the mechanical properties of the soil depend on the fabric of this artificial and natural samples prepared and geotechnical behavior is characterized to observe its answer and to compare it. Also it is observed as it influences the fabric in the deformation of this one under constant suction. The residual strength is investigated carefully and it is compared with that of the peak. (Author) 35 refs

  9. Ultrasound assisted synthesis of PMMA/clay nanocomposites: Study ...

    Indian Academy of Sciences (India)

    The Young's modulus, breaking stress, elongation at break, toughness, yield stress and yield strain of the nanocomposites as a function of different clay concentrations and ultrasonic power were measured. Particle diameter of the nanocomposites was measured by laser diffraction technique. Oxygen permeability of the ...

  10. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    OpenAIRE

    Kadi, Mohammad W.

    2014-01-01

    Elements associated with total suspended particulate matter (TSP) in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high lev...

  11. Clay Play

    Science.gov (United States)

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  12. Industrial testing of modified clay powders by the ''Permneft''' organization

    Energy Technology Data Exchange (ETDEWEB)

    Matytsyn, V I; Kosivchenko, A M; Ryabchenko, V I; Shishov, V A

    1980-01-01

    VNIIKRneft' has developed a modified clay powder based on Cherkask bentonite with one ton of solution resulting in 20-28 cubic meters of powder per TU 39-08-123-77 formula. The modification stems from the type of bentonite treatment used. Bentonite is used in the amount of 3-5% of the total mass and the treatment involves the use of 0.3% calcium soda, copolymer methacrylic acid with M-14VV methacrylate. These reagents induce processes of change within the clay. The carbonate-nitrate activity serves to penthiatize the clay particles and the reagent solution which accompany the process of coagulation in the polymer structure, and in turn, increases the incidence of viscosity in the newly emerging systems. Tests indicate that the use of modified clay powder enhances drill bit pass-through. The large quantity of drilling solution resulting from one ton of modified clay powder further enhances the practical aspects of this system and reduces overall expenditures for solution treatment and clay powder while permitting the reduction of expenditures for other chemical reagents. Such economic benefits have been confirmed by industrial testing.

  13. Synthesis and tissue distribution studies of two novel esters of haloperidol and the application of radiolabelling techniques using short-lived radionuclides in the study of the deposition characteristics of suspended aerosol particles

    International Nuclear Information System (INIS)

    Smith, M.F.

    1982-01-01

    In the present work, the Schotten-Baumann reaction conditions were modified to esterify the tertiary hydroxyl group of haloperidol. The rapid synthesis (less than 20 min) makes this procedure applicable to the preparation of esters of haloperidol containing fluorine-18 (t/sup (1/2)/ 110 min), a γ-emitting radioisotope useful in external scintigraphy. In vivo distribution studies of the synthesized tritiated esters and haloperidol in the rat demonstrated that neither ester prodrug achieved overall higher brain concentration levels than haloperidol. In this study, radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to utilize insoluble particles suspended in the aerosol formulation. The suspended micro-aggregated bovine albumin microspheres were labelled with iodine-131 (t/sup (1/2)/ 8 days). The techniques developed illustrate the use of short-lived radionuclides for: 1) quantitation of each metered dose; 2) characterization of particle size distribution by the aerosol; and 3) determination of the extent of deposition of the particles in the aerosol and all of its components

  14. Suspended-Bed Reactor preliminary design, 233U--232Th cycle. Final report (revised)

    International Nuclear Information System (INIS)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 μ thick, (2) silicon carbide pressure vessel, 30 μ thick, and (3) ZrC layer, 50 μ thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems

  15. Ball clay

    Science.gov (United States)

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  16. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  17. Iron-clay interactions under a thermal gradient

    International Nuclear Information System (INIS)

    Jodin-Caumon, Marie-Camille; Mosser-Ruck, Regine; Randi, Aurelien; Cathelineau, Michel; Michau, Nicolas

    2010-01-01

    . temperature 80 deg. C or 150 deg. C). At the end of experiments, the tubes were quenched and cut into 5 sections. The particles collected in each of the five sections of the gold tube and in the two platinum capsules were characterized by SEM, TEM-EDS and XRD. The argillite is mainly composed of clay minerals (illite, inter-stratified illite/smectite, and a few amount of chlorite and kaolinite) with calcite, dolomite, quartz, pyrite, muscovite and feldspars. After reaction, the clay particles are Fe-enriched and some of the accessory minerals are dissolved (or oxidized) depending on experimental conditions. Iron is oxidized into magnetite and sometimes siderite. Among the accessory minerals, quartz, dolomite, pyrite and feldspars are the most reactive. Oxidized pyrite is observed on SEM micro-photographies. Dolomite, feldspars and quartz are probably dissolved. The dissolution of quartz indicates that the medium becomes alkaline. Calcite is less affected, probably because it is more stable under alkaline conditions. The morphology of the clay reaction products depends on the Fe content. The initial illite morphology (voile) evolves toward flakes, platelets and hairy aggregates with increasing Fe content. At 300 deg. C, Fe-rich clay minerals are Fe/Mg-chlorite with platelet morphology. At 150 deg. C, Fe-rich clay particles are Fe-serpentine products with hairy aggregate morphology. Flakes have a lowest Fe-content and are less crystallized. It could be an intermediate reaction product. In newly formed clay minerals, Fe replaces Al in octahedral sheets, and is also present in tetrahedral sheets in place of Si and Al in the most transformed products. Al from octahedral sheets replaces Si in tetrahedral sheets. The becoming of Si and Al escaped from tetrahedral sheets is not solved. Mg escapes from octahedral sheets toward the hot point when iron was initially placed at the cold point. It enriches the octahedral sheets of the newly formed clay minerals above 200 deg. C. Finally

  18. The regeneration viability evaluation of zinc on bofe clay columns

    International Nuclear Information System (INIS)

    Araujo, A.L.P. de; Silva, M.G.C da; Gimenes, M.L.; Barros, M.A.S.D.

    2011-01-01

    In this study, the Bofe bentonite clay, calcined at 500 °C was used for removal of zinc in porous bed with multiple cycles of adsorption-desorption. The natural and calcined clay was characterized by N 2 physisorption (BET method), X-ray diffraction (XRD) and thermal analysis). The experiments for the removal of zinc were carried out at room temperature (25 °C) with particle diameter of 0.855 mm and a flow rate of 3 mL/min. The results indicated that over the four cycles of adsorption/desorption of which was submitted, the clay has not lost the capacity for adsorption of metal and that this process may be feasible to replace or complement conventional treatments to remove metals, since that clay was able to reduce the concentration of zinc to the amount recommended by Resolution Nº 357/2005 of CONAMA (5 mg.L -1 ). (author)

  19. Modelling of the thermomechanical behaviour of saturated clays: application to the radioactive wastes disposal

    International Nuclear Information System (INIS)

    Rahbaoui, A.

    1995-01-01

    During the waste disposal of containers, the clay barriers of backfill and the confining medium, which is essentially composed of clay, are submitted to heavy thermal stresses which induce volume change and can result in material failure. The clay, composed of solid skeleton, adsorbed water, and free water, is submitted to physico-chemical interactions which influence its thermomechanical behaviour, itself quits different from granular media such as sand. The principal factor responsible for this response is the effect of temperature on the clays water. Thus, the loss of special structure of adsorbed water and the increase in thickness of the diffused double-layer provoke microstructural rearrangement mechanisms of particles. Those mechanisms are strongly correlated with the mechanical state of material. When it is highly over-consolidated, an irreversible swelling occurs during thermal cycle, accompanied by a breaking up of the particles and a permanent expansion of meso-pores. The greater the OCR, the more important the thermal swelling. When the material is normally consolidated, the particles settle during heating under the external stress, which results in a denser rearrangement of the material. With a slight over-consolidated material, all the intermediate stages between the above mechanisms can be reached. However, cooling produces only a weak reversible compression characterising the thermal contraction of the components. Those microscopic phenomena have been used to elaborate a macroscopic thermomechanical model based on the Cam-Clay and the Hujeux Models. The model formulation includes a thermal softening, on one hand, by the reduction of the mechanical yield surface f c and the translation of the thermal yield surface f T (PTL), and, on the other hand, an irreversible thermal expansive volumetric strain. This approach of the problem was tested along various thermomechanical paths and especially on the laboratory tests, on the expansive and non expansive

  20. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    Science.gov (United States)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was

  1. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  2. Creep in buffer clay

    International Nuclear Information System (INIS)

    Pusch, R.; Adey, R.

    1999-12-01

    The study involved characterization of the microstructural arrangement and molecular forcefields in the buffer clay for getting a basis for selecting suitable creep models. It is concluded that the number of particles and wide range of the particle bond spectrum require that stochastical mechanics and thermodynamics will be considered and they are basic to the creep model proposed for predicting creep settlement of the canisters. The influence of the stress level on creep strain of MX-80 clay is not well known but for the buffer creep is approximately proportional to stress. Theoretical considerations suggest a moderate impact for temperatures up to 90 deg C and this is supported by model experiments. It is believed that the assumption of strain being proportional to temperature is conservative. The general performance of the stochastic model can be illustrated in principle by use of visco-elastic rheological models implying a time-related increase in viscosity. The shear-induced creep settlement under constant volume conditions calculated by using the proposed creep model is on the order of 1 mm in ten thousand years and up to a couple of millimeters in one million years. It is much smaller than the consolidation settlement, which is believed to be on the order of 10 mm. The general conclusion is that creep settlement of the canisters is very small and of no significance to the integrity of the buffer itself or of the canisters

  3. Preparation of PEO/Clay Nanocomposites Using Organoclay Produced via Micellar Adsorption of CTAB

    Science.gov (United States)

    Gürses, Ahmet; Ejder-Korucu, Mehtap; Doğar, Çetin

    2012-01-01

    The aim of this study was the preparation of polyethylene oxide (PEO)/clay nanocomposites using organoclay produced via micellar adsorption of cethyltrimethyl ammonium bromide (CTAB) and their characterisation by X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectra, and the investigation of certain mechanical properties of the composites. The results show that the basal distance between the layers increased with the increasing CTAB/clay ratio as parallel with the zeta potential values of particles. By considering the aggregation number of CTAB micelles and interlayer distances of organo-clay, it could be suggested that the predominant micelle geometry at lower CTAB/clay ratios is an ellipsoidal oblate, whereas, at higher CTAB/clay ratios, sphere-ellipsoid transition occurs. The increasing tendency of the exfoliation degree with an increase in clay content may be attributed to easier diffusion of PEO chains to interlayer regions. FT-IR spectra show that the intensity of Si-O stretching vibrations of the organoclays (1050 cm−1) increased, especially in the ratios of 1.0 g/g clay and 1.5 g/g clay with the increasing CTAB content. It was observed that the mechanical properties of the composites are dependent on both the CTAB/clay ratios and clay content of the composites. PMID:23365515

  4. Development of a field test method for total suspended solids analysis.

    Science.gov (United States)

    2013-11-01

    Total suspended solids (TSS) are all particles in water that will not pass through a glass fiber filter with a pore size less : than 2 m, including sediments, algae, nutrients, and metals. TSS is an important water quality parameter because of its ...

  5. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  6. Synthesis and characterization of a PbO2-clay nanocomposite: Removal of lead from water using montmorillonite

    International Nuclear Information System (INIS)

    Aroui, L.; Zerroual, L.; Boutahala, M.

    2012-01-01

    Graphical abstract: The replacement of Na by Pb in the interlayer space of the smectite leads to a decrease in the intensity of the the (0 0 1) reflection as the concentration of lead nitrate increases. A significant restructuring at the particle scale is observed leading probably to the exfoliation of the caly. In addition, the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities is significantly influenced. This leads to a lowering of the water content and a decrease in the ionic conductivity of the clay. Highlights: ► In the clay, Pb replaces Na ions and a significant restructuring at the particle scale is observed. ► Pb influenced significantly the thermal behaviour of the clay with regard to its dehydration. ► In the interlayer space, the exchange of Na by Pb leads to a decrease in the protonic conductivity. ► A PbO 2 -clay nanocomposite material with good conductivity is synthesized. -- Abstract: The aim of this paper is to present the results obtained with Pb(II) sorption on an Algerian Clay. The experiments were carried out using a batch process. Powder X-rays diffraction patterns (PXRD) prove that in the montmorillonite Pb replaces Na ions. A significant restructuring at the particle scale is observed leading to the disappearance of the d 001 reflection of the clay at high concentrations of lead. The replacement of hydrated Na with Pb ions influenced significantly the thermal behaviour of the montmorillonite samples with regard to their dehydration and dehydroxilation capacities with a lowering of the water content. A PbO 2 -clay composite material with good electrical conductivity is synthesized.

  7. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant.

    Science.gov (United States)

    Xia, Yining; Rubino, Maria; Auras, Rafael

    2014-12-02

    Release assessment of organo-modified montmorillonite (O-MMT) nanoclay and the organo-modifiers (surfactants) was performed on two types of polymer–clay nanocomposites: polypropylene (PP) and polyamide 6 (PA6) with O-MMT. In accordance with ASTM D4754-11, nanocomposite films were exposed to ethanol as a fatty-food simulant at 70 °C. The release of O-MMT, with Si and Al used as the nanoclay markers, was evaluated by graphite furnace atomic absorption spectrometry. The nanoclay particles released in ethanol were visualized by transmission electron microscopy (TEM). More nanoclay particles were released from PP–clay films (0.15 mg L(–1)) than from PA6–clay films (0.10 mg L(–1)), possibly due to the lack of interaction between the nanoclay and PP as indicated by the structure and morphology in the TEM images. The surfactant release was quantified by a liquid chromatography tandem mass spectrometry (LC-MS/MS) method. A substantial amount of surfactant was released into ethanol (3.5 mg L(–1) from PP–clay films and 16.2 mg L(–1) from PA6–clay films), indicating changes in the nanoclay structure within the nanocomposite while it was exposed to ethanol. This research has provided information for the determination of exposure doses of nanoclay and surfactant in biosystems and the environment, which enabled the risk assessment.

  8. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  9. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Paulo [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States); Qutubuddin, Syed [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States)]. E-mail: sxq@case.edu

    2006-03-15

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T {sub g}) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T {sub g} 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films.

  10. Clay filter-aid in ultrafiltration (UF) of humic acid solution

    KAUST Repository

    Pontié , M.; Thekkedath, A.; Kecili, K.; Dach, H.; De Nardi, F.; Castaing, J.B.

    2012-01-01

    Fouling studies with three different molecular weight cut-off (MWCO) (100. kDa, 30. kDa and 10. kDa) membranes in regenerated cellulose were carried out in the presence of Acros humic acids (HA) at pH 3.0, 6.7 and 9.5. It was shown that the tighter membranes were less fouled compared with the higher MWCO membranes. 100. kDa membrane showed the highest degree of fouling. The role of pH showed that the highest degree of fouling happened at a neutral pH (pH 6.7) and the lowest degree of fouling happened at a basic pH (pH 9.5).Effectiveness of a novel pre-treatment method was applied to the 100kDa membrane. We added in the HA solution clay particles, homemade synthetized from natural bentonite and denoted Mont-CTAB. We observed a gain in productivity of 25%. 2D-fractal dimension parameter decreased under 1.5, showing a de-organization of the cake due to clay particles in/on the cake and a specific resistance of 4.4×10 11m/kg was obtained in presence of clays versus 3.6×10 14m/kg with HA alone. Finally the development of clay assisted ultrafiltration process changes the cake morphology limiting fouling impact and it is hope that for long term experiments, formation of a gel-layer should be limited. © 2012 Elsevier B.V..

  11. Clay filter-aid in ultrafiltration (UF) of humic acid solution

    KAUST Repository

    Pontié, M.

    2012-04-01

    Fouling studies with three different molecular weight cut-off (MWCO) (100. kDa, 30. kDa and 10. kDa) membranes in regenerated cellulose were carried out in the presence of Acros humic acids (HA) at pH 3.0, 6.7 and 9.5. It was shown that the tighter membranes were less fouled compared with the higher MWCO membranes. 100. kDa membrane showed the highest degree of fouling. The role of pH showed that the highest degree of fouling happened at a neutral pH (pH 6.7) and the lowest degree of fouling happened at a basic pH (pH 9.5).Effectiveness of a novel pre-treatment method was applied to the 100kDa membrane. We added in the HA solution clay particles, homemade synthetized from natural bentonite and denoted Mont-CTAB. We observed a gain in productivity of 25%. 2D-fractal dimension parameter decreased under 1.5, showing a de-organization of the cake due to clay particles in/on the cake and a specific resistance of 4.4×10 11m/kg was obtained in presence of clays versus 3.6×10 14m/kg with HA alone. Finally the development of clay assisted ultrafiltration process changes the cake morphology limiting fouling impact and it is hope that for long term experiments, formation of a gel-layer should be limited. © 2012 Elsevier B.V..

  12. Clay colloid formation and release from MX-80 buffer

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Flowing groundwater can tear off clay colloids from buffer clay that has penetrated into fractures and transport them and bring sorbed radionuclides up to the biosphere. The colloids are 2-50 μm particle aggregates that are liberated from expanded, softened buffer if the water flow rate in the fractures exceeds a few centimeters per second. Except for the first few months or years after application of the buffer in the deposition holes the flow rate will not be as high as that. The aperture of the fractures will not hinder transport of colloids but most of the fractures contain clastic fillings, usually chlorite, that attract and immobilize them. This condition and the flow rate criterion combine to reduce the chance of radionuclide-bearing clay colloids to reach the biosphere to practically zero except for certain cases that need to be considered

  13. The Prediction Methods for Potential Suspended Solids Clogging Types during Managed Aquifer Recharge

    Directory of Open Access Journals (Sweden)

    Xinqiang Du

    2014-04-01

    Full Text Available The implementation and development of managed aquifer recharge (MAR have been limited by the clogging attributed to physical, chemical, and biological reactions. In application field of MAR, physical clogging is usually the dominant type. Although numerous studies on the physical clogging mechanism during MAR are available, studies on the more detailed suspended clogging types and its prediction methods still remain few. In this study, a series of column experiments were inducted to show the process of suspended solids clogging process. The suspended solids clogging was divided into three types of surface clogging, inner clogging and mixed clogging based on the different clogging characteristics. Surface clogging indicates that the suspended solids are intercepted by the medium surface when suspended solids grain diameter is larger than pore diameter of infiltration medium. Inner clogging indicates that the suspended solids particles could transport through the infiltration medium. Mixed clogging refers to the comprehensive performance of surface clogging and inner clogging. Each suspended solids clogging type has the different clogging position, different changing laws of hydraulic conductivity and different deposition profile of suspended solids. Based on the experiment data, the ratio of effective medium pore diameter (Dp and median grain size of suspended solids (d50 was proposed as the judgment index for suspended solids clogging types. Surface clogging occurred while Dp/d50 was less than 5.5, inner clogging occurred while Dp/d50 was greater than 180, and mixed clogging occurred while Dp/d50 was between 5.5 and 180. In order to improve the judgment accuracy and applicability, Bayesian method, which considered more ratios of medium pore diameter (Dp and different level of grain diameter of suspended solids (di, were developed to predict the potential suspended solids types.

  14. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    Science.gov (United States)

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, Psoil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, Psoil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, Psoil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  15. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron.

    Science.gov (United States)

    Yu, Kai; Gu, Cheng; Boyd, Stephen A; Liu, Cun; Sun, Cheng; Teppen, Brian J; Li, Hui

    2012-08-21

    Subnanoscale zerovalent iron (ZVI) synthesized using smectite clay as a template was utilized to investigate reduction of decabromodiphenyl ether (DBDE). The results revealed that DBDE was rapidly debrominated by the prepared smectite-templated ZVI with a reaction rate 10 times greater than that by conventionally prepared nanoscale ZVI. This enhanced reduction is plausibly attributed to the smaller-sized smectite-templated ZVI clusters (∼0.5 nm) vs that of the conventional nanoscale ZVI (∼40 nm). The degradation of DBDE occurred in a stepwise debromination manner. Pentabromodiphenyl ethers were the terminal products in an alkaline suspension (pH 9.6) of smectite-templated ZVI, whereas di-, tri-, and tetrabromodiphenyl ethers formed at the neutral pH. The presence of tetrahydrofuran (THF) as a cosolvent at large volume fractions (e.g., >70%) in water reduced the debromination rates due to enhanced aggregation of clay particles and/or diminished adsorption of DBDE to smectite surfaces. Modification of clay surfaces with tetramethylammonium (TMA) attenuated the colsovent effect on the aggregation of clay particles, resulting in enhanced debromination rates. Smectite clay provides an ideal template to form subnanoscale ZVI, which demonstrated superior debromination reactivity with DBDE compared with other known forms of ZVIs. The ability to modify the nature of smectite clay surface by cation exchange reaction utilizing organic cations can be harnessed to create surface properties compatible with various contaminated sites.

  16. Chemical, mineralogical and ceramic properties of clays from Northern Santa Catarina, Brazil

    International Nuclear Information System (INIS)

    Correia, S.L.; Bloot, E.L.; Folgueras, M.V.; Hotza, D.

    2009-01-01

    Clay materials crop out in the northern Santa Catarina mining district were investigated in order to assess their potential in the ceramic industry. Four different clays (A, B, C and D) were selected. Their chemical composition was obtained by Xray fluorescence and their mineralogy by X-ray diffraction, coupled with numerical rational analysis. Their thermal behaviour was studied by differential thermal analysis. Technological testing consisted in a simulation of the industrial processing performed at a laboratory scale. The test pieces were obtained by pressing and fired in the range of 850-1200 deg C. In each case their technological properties were studied. The main mineralogical phases detected were kaolinite, quartz and mica. Hematite and feldspars may be present in the clays. The clays show two groups of particle sizes almost equally frequent in the range of 1 to 60 μm. The northern Santa Catarina clays are suitable for the production of bricks and earthenware in the 900- 1100 deg C range. (author)

  17. Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay.

    Science.gov (United States)

    Kim, Sun-Il; Wu, Yuanzheng; Kim, Ka-Lyun; Kim, Geun-Joong; Shin, Hyun-Jae

    2013-06-01

    An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.

  18. Kinetic mechanism of steel corrosion in clay soils by impedance measurements

    International Nuclear Information System (INIS)

    Arpaia, M.; Pernice, P.; Costantini, A.

    1990-01-01

    The corrosion of steel in clay soil at m.c. 15% has been studied for a long exposure time by electrochemical methods. A.c. impedance measurements results show that at a short exposure time the corrosion process is controlled by the diffusion of H + coupled with a rate determining homogeneous reaction, whereas at a long exposure time the process is controlled by pure diffusion. We have hypothesized that the rate determining homogeneous reaction might be the clay particles cations exchange. (orig.)

  19. Calcined clay lightweight ceramics made with wood sawdust and sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Santis, Bruno Carlos de; Rossignolo, Joao Adriano, E-mail: desantis.bruno@gmail.com [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil); Morelli, Marcio Raymundo [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2016-11-15

    This paper aims to study the influence of including wood sawdust and sodium silicate in the production process of calcined clay lightweight ceramics. In the production process first, a sample used by a company that produces ceramic products in Brazil was collected. The sample was analysed by techniques of liquidity (LL) and plasticity (LP) limits, particle size analysis, specific mass, X-ray diffraction (XRD) and X ray fluorescence spectrometry (XRF). From the clay, specimens of pure clay and mixtures with wood sawdust (10%, 20% and 30% by mass) and sodium silicate were produced and fired at a temperature of 900 deg C. These specimens were submitted to tests of water absorption, porosity, specific mass and compressive strength. Results of this research indicate that the incorporation of wood sawdust and sodium silicate in the ceramic paste specimens can be useful to make calcined clay lightweight ceramics with special characteristics (low values of water absorption and specific mass and high values of compressive strength), which could be used to produce calcined clay lightweight aggregates to be used in structural concrete. (author)

  20. Treatment and conditioning of radioactive waste solution by natural clay minerals

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-Massry, E.H.; Khalifa, S.M.; Aly, H.F.

    1999-01-01

    Natural inorganic exchangers. Was used to remove caesium, cobalt and europium using zinc sulfate as coagulant also different clay minerals. These calys include, feldrspare, aswanly, bentionite, hematite, mud, calcite, basalt, magnetite, kaoline sand stone, limonite and sand. The factros affecting the removal process namely PH, particle size, temperature and weight of the clay have been studied. Highest removal for Cs-137, Co-60 and Eu-152 and 154 was achived by asswanly and bentonite. Sand stone is more effective than the other clays. Removal of Cs-137 from low level waste solution is in the order the sequence, aswanly (85.5%)> bentonite (82.2%)> sandstone (65.4%). Solidified cement products have been evaluated to determine optimum conditions of mixing most sludges contained clays by testing mechanical strength and leaching rates of the waste products. The solidified waste forms were found more acceptable for handing, storage and ultimate disposal

  1. Preparation of Stable Pt-Clay Nanocatalysts for Self-humidifying Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing

    and complexity of the whole system. Therefore, we have designed a novel Pt-clay nanocatalyst and developed a Pt-clay/Nafion nanocomposite membrane to significantly enhanced proton conductivity without any external humidification. In this study, monolayer of Pt nanoparticles of diameters of 2-3 nm with a high...... crystallinity were successfully anchored onto exfoliated nanoclay surfaces using a novel chemical vapor deposition process. Chemical bonding of Pt to the oxygen on the clay surface ensured the stability of the Pt nanoparticles, and hence, no leaching of Pt particles was observed after a prolonged...

  2. Radionuclide adsorption characteristics around coastal water

    International Nuclear Information System (INIS)

    Song, Young Il; Chung, Yang Geun; Hong, Sung Yul; Lee, Gab Bock

    1999-01-01

    The adsorption capacity of radionuclides onto suspended sediment was experimented on each of the coastal seawater sampled around the Kori and the Wolsung nuclear power plant. During the experiment the quantity and size fraction of suspended sediment were adjusted and the seawater and sediment chemistry is approximated to the expected field condition. Because the sorption capacity depends on the specific minerals, ocean chemistry and radionuclide involved, it is necessary to analyze sediment mineralogy. Clay mineral is dominant in seabed mineral and suspended sediment as the result of x-ray diffraction. Radionuclide sorbed to silty-clay mineral can be rather transported to ocean than scavenged to seabed because of low quantity and fine grained suspended sediment in the coast around the Kori and the Wolsung. The result of adsorption examinations shows that 139 Ce and 51 Cr and 110m Ag are strongly sorbed to suspended particle, while 137 Cs is less sorbed and 60 Co uptake is varied with experiment condition, which can be inferred from various biological factors. (author). 9 refs., 2 tabs., 7 figs

  3. Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    International Nuclear Information System (INIS)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai; Zheng, Lei

    2017-01-01

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr 2+ , Cs + , and Co 2+ in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr 2+ , Cs + , and Co 2+ with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater

  4. Remediation of internal phosphorus loads with modified clays, influence of fluvial suspended particulate matter and response of the benthic macroinvertebrate community.

    Science.gov (United States)

    Yin, Hongbin; Douglas, Grant B; Cai, Yongjiu; Liu, Cheng; Copetti, Diego

    2018-01-01

    Clay-based phosphorus (P) sorbents have been increasingly used as geoengineering materials for the management sediment-derived internal P loading in eutrophic lakes. However, the long-term behavior of these sorbents has remained elusive along with their response to burial under suspended particulate matter (SPM), and their effect on macroinvertebrate communities occupying dynamic regions at the sediment-water interface of shallow and turbid lakes. In this study, field mesocosm experiments were undertaken in Lake Chaohu, China, to study the effects of the application of lanthanum-modified bentonite (LMB) and thermally-modified calcium-rich attapulgite (TCAP) on sediment internal P loading and to assess their influence on macroinvertebrate community structure. A complementary laboratory core incubation study was also undertaken to investigate the effects of SPM deposition on LMB and TCAP performance. In the field, both LMB and TCAP effectively intercepted P released from sediment for up to five months. A P fractionation analysis indicated that LMB and TCAP application results in a substantial increase in inert P fractions in sediment. Laboratory studies indicated that deposition of SPM may increase in mobile P both in the upper sediment and across the new post-SPM deposition sediment-water interface. Importantly, a comparison of sediment chemical extractions and estimated P fluxes suggests that chemically-defined forms of P in the sediment may be used as a proxy to estimate the net sediment P flux. Significantly, the surficial application of either LMB or TCAP did not cause negative effects on macroinvertebrate communities. This study indicates that to sustain a low P flux across the sediment-water interface in shallow, turbid lakes, repeat dosing of geoengineering materials, temporally aligned to the deposition of fluvial SPM, may be required. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    International Nuclear Information System (INIS)

    Diaz A, Laura V.; Pacheco S, Joel O.; Pacheco P, Marquidia; Monroy G, Fabiola; Emeterio H, Miguel; Ramos F, Fidel

    2006-01-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment

  6. Electric alignment of plate shaped clay aggregates in oils

    Science.gov (United States)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  7. Effect of bovine manure on fecal coliform attachment to soil and soil particles of different sizes.

    Science.gov (United States)

    Guber, Andrey K; Pachepsky, Yakov A; Shelton, Daniel R; Yu, Olivia

    2007-05-01

    Manure-borne bacteria can be transported in runoff as free cells, cells attached to soil particles, and cells attached to manure particles. The objectives of this work were to compare the attachment of fecal coliforms (FC) to different soils and soil fractions and to assess the effect of bovine manure on FC attachment to soil and soil fractions. Three sand fractions of different sizes, the silt fraction, and the clay fraction of loam and sandy clay loam soils were separated and used along with soil samples in batch attachment experiments with water-FC suspensions and water-manure-FC suspensions. In the absence of manure colloids, bacterial attachment to soil, silt, and clay particles was much higher than the attachment to sand particles having no organic coating. The attachment to the coated sand particles was similar to the attachment to silt and clay. Manure colloids in suspensions decreased bacterial attachment to soils, clay and silt fractions, and coated sand fractions, but did not decrease the attachment to sand fractions without the coating. The low attachment of bacteria to silt and clay particles in the presence of manure colloids may cause predominantly free-cell transport of manure-borne FC in runoff.

  8. Carbon/Clay nanostructured composite obtained by hydrothermal method

    International Nuclear Information System (INIS)

    Barin, G.B.; Bispo, T.S.; Gimenez, I.F.; Barreto, L.S.; Souza Filho, A.G.

    2010-01-01

    The development of strategies for converting biomass into useful materials, more efficient energy carrier and / or hydrogen storage is shown a key issue for the present and future. Carbon nanostructure can be obtained by severe processing techniques such as arc discharge, chemical deposition and catalyzed pyrolysis of organic compounds. In this study we used hydrothermal methods for obtaining nanostructured composites of carbon / clay. To this end, we used coir dust and special clays. The samples were characterized by infrared spectroscopy, X-ray diffraction and Raman. The presence of the D band at 1350 cm -1 in the Raman spectrum shows the formation of amorphous carbon with particle size of about 8.85 nm. (author)

  9. Characteristics of suspended solids affect bifenthrin toxicity to the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi.

    Science.gov (United States)

    Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M

    2015-10-01

    Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms. © 2015 SETAC.

  10. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  11. Trapping Efficiency of Fine Sediments in Reservoir Lake in Fukushima Rivers as Revealed by Radiocaesium attached in Suspended Sediment

    Science.gov (United States)

    Taniguchi, K.; Onda, Y.; Kuramoto, T.; Smith, H.; Blake, W.; Onuma, S.; Sato, T.; Arai, H.; Blake, W.

    2017-12-01

    Radiocaesium released from Fukushima Daiichi Nuclear Power Plant were widely distributed in the surrounded area. The radiocaesium deposited inland area were adsorbed to fine particles of the surface soils such as silt and clay particles. The contaminated particles were eroded by rainfall events, and then transported through river systems. The purpose of this research is to investigate the impact of existence of large reservoirs on the riverine transport of fine sediments by using the 137Cs as a kind of tracer. At 30 monitoring sites located in 9 river systems in the area affected by the accident, suspended sediments (SS) ware collected by time-integrated SS samplers. The particulate radiocaesium activity concentration was measured by germanium detector. The water discharge and SS flux each site were calculated by the water level and turbidity data every 10 minutes obtained by monitoring. The 137Cs flux was calculated by multiplying the activity concentration and the SS flux. The Cs-137 flux normalized by the water discharge and initial deposition of 137Cs in the watershed (L/QD) showed a correlation with the coverages of land use types in the watershed in the case of monitoring sites where there was no large reservoir in the watershed. However, at the sites that have large reservoir in the watershed, the value of L/QD were 6.5 -21 % of the values estimated by the coverage of land use types. This result implies that approximately more than 80 % of the fine SS is trapped by the reservoirs.

  12. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    Science.gov (United States)

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.

  13. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min

    2018-02-01

    We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river

  14. Study of clay chemical composition in formation of new phases in crystalline materials ceramic

    International Nuclear Information System (INIS)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L.

    2016-01-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  15. Method for rapid particle size analysis by hydrosizing and nuclear sensing

    International Nuclear Information System (INIS)

    Daellenbach, C.B.; Mahan, W.M.

    1977-01-01

    A method and apparatus to practice the method for rapidly determining the size and mass distribution of a sample of randomly sized particles of a known total mass are described. A series of substantially identical hydrocyclones are connected by conduits to each other and to a temperature controlled water feed. By restricting the cross-sectional areas of these conduits to progressively smaller values, the slurry containing the sample particles is caused to increase its velocity as it moves from hydrocyclone to hydrocyclone. As described by the Stokesian theory which relates particle diameter and settling velocity, the largest sized particles are suspended in the closed apex of the first hydrocyclone with smaller sized particles, in given size ranges, being suspended in the next succeeding hydrocyclone's apexes. In this manner, the particles are separated into discrete fractional sizes with a residual slurry of the very smallest particles being discharged. Before the discrete fractions of particles are suspended in their hydrocyclone apexes, a combined photon source, like a gamma ray source, and detector are calibrated with the water temperature kept constant. When the suspension of particles takes place, an attenuation of the radiation from the source is observed at the detector. This attenuation can be related to the mass or weight of the discrete fractions of suspended particles. Electronic circuitry is used to indicate what this fractional mass or weight is as it relates to the total weight of the sample. 6 claims, 4 figs

  16. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    Science.gov (United States)

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.

  17. Evaluation of the healing activity of therapeutic clay in rat skin wounds.

    Science.gov (United States)

    Dário, Giordana Maciel; da Silva, Geovana Gomes; Gonçalves, Davi Ludvig; Silveira, Paulo; Junior, Adilson Teixeira; Angioletto, Elidio; Bernardin, Adriano Michael

    2014-10-01

    The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 μm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  19. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Multi-scale modeling of the behaviour of water and ions clays

    International Nuclear Information System (INIS)

    Rotenberg, B.

    2007-10-01

    Predicting the fate of radioactive waste stored in a clay formation requires a good understanding of the transport properties of water and ions in clays. Their diffusion in this charged porous medium is described by empirical parameters such as their partitioning coefficient Kd which accounts for the interactions with the mineral surfaces. The present work deals with the relevance of this concept and its definition based on microscopic grounds. We have first modeled the ionic contribution to the dielectric properties of clays and suggested an experimental determination of Kd from dielectric spectroscopy measurements. Using microscopic simulations (Monte-Carlo and Molecular Dynamics), we then have computed the Gibbs free energy and enthalpy for ionic exchange in the case of alkaline cations. They control the value of Kd and its evolution with the temperature. The results for cesium are in good agreement with both microcalorimetric measurements and the determination of Kd at different temperatures. We have participated in the development of a new lattice simulation method (Lattice Fokker-Planck), which we have then used to link explicitly the microscopic dynamics of ions to the diffusion-reaction model underlying the definition of Kd. Finally, we have used Molecular Dynamics to investigate the kinetics of exchange of water and ions between clay particles (interlayer) and the extra-particle porosity. The results confirm the generally admitted idea that water and ions can explore the whole porosity, whereas anions are excluded from the interlayers. (author)

  1. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  2. Lithogenic and biogenic particle deposition in an Antarctic coastal environment (Marian Cove, King George Island): Seasonal patterns from a sediment trap study

    Science.gov (United States)

    Khim, B. K.; Shim, J.; Yoon, H. I.; Kang, Y. C.; Jang, Y. H.

    2007-06-01

    Particulate suspended material was recovered over a 23-month period using two sediment traps deployed in shallow water (˜30 m deep) off the King Sejong Station located in Marian Cove of King George Island, West Antarctica. Variability in seasonal flux and geochemical characteristics of the sediment particles highlights seasonal patterns of sedimentation of both lithogenic (terrigenous) and biogenic particles in the coastal glaciomarine environment. All components including total mass flux, lithogenic particle flux and biogenic particle flux show distinct seasonal variation, with high recovery rates during the summer and low rates under winter fast ice. The major contributor to total mass flux is the lithogenic component, comprising from 88% during the summer months (about 21 g m -2 d -1) up to 97% during the winter season (about 2 g m -2 d -1). The lithogenic particle flux depends mainly on the amount of snow-melt (snow accumulation) delivered into the coastal region as well as on the resuspension of sedimentary materials. These fine-grained lithogenic particles are silt-to-clay sized, composed mostly of clay minerals weathered on King George Island. Biogenic particle flux is also seasonal. Winter flux is ˜0.2 g m -2 d -1, whereas the summer contribution increases more than tenfold, up to 2.6 g m -2 d -1. Different biogenic flux between the two summers indicates inter-annual variability to the spring-summer phytoplankton bloom. The maximum of lithogenic particle flux occurs over a short period of time, and follows the peak of biogenic particle flux, which lasts longer. The seasonal warming and sea-ice retreat result in change in seawater nutrient status and subsequent ice-edge phytoplankton production. Meanwhile, the meltwater input to Marian Cove from the coastal drainage in January to February plays a major role in transporting lithogenic particles into the shallow water environment, although the tidal currents may be the main agents of resuspension in this

  3. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles.

    Science.gov (United States)

    Binks, Bernard P; Clint, John H; Whitby, Catherine P

    2005-06-07

    A study of the rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles is described. Concentrated emulsions were prepared and diluted at constant particle concentration to investigate the effect of drop volume fraction on the viscosity and viscoelastic response of the emulsions. The influence of the structure of the hydrophobic clay particles in the oil has also been studied by using oils in which the clay swells to very different extents. Emulsions prepared from isopropyl myristate, in which the particles do not swell, are increasingly flocculated as the drop volume fraction increases and the viscosity of the emulsions increases accordingly. The concentrated emulsions are viscoelastic and the elastic storage and viscous loss moduli also increase with increasing drop volume fraction. Emulsions prepared from toluene, in which the clay particles swell to form tactoids, are highly structured due to the formation of an integrated network of clay tactoids and drops, and the moduli of the emulsions are significantly larger than those of the emulsions prepared from isopropyl myristate.

  4. Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay

    KAUST Repository

    Feddal, I.; Ramdani, Amina; Taleb, Safia; Gaigneaux, E. M.; Batis, Narjè s Harrouch; Ghaffour, NorEddine

    2013-01-01

    The isotherms and kinetics of the adsorption of a cationic dye in aqueous solution, methylene blue, on a local Algerian montmorillonite clay mineral (raw, sodium and thermally activated at 300 and 500°C) were determined experimentally. Various parameters influencing the adsorption were optimized, mainly solid-liquid contact time, mass of adsorbent, initial concentration of dye, pH of the solution and temperature. Results showed that the adsorption kinetics were fast: 30 min for the raw clay mineral, and 20 min for sodium clay mineral (SC) and thermally activated at 300°C, whereas with the clay mineral calcined at 500°C, the equilibrium was reached after 150 min only. The maximum adsorption capacity was reached at pH 6.6. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. In addition, it was found that the kinetics were in the order of 2 (K = 2.457 × 106 g/mg.h) for sodium clay and were limited by an intra-particle diffusion. SC was found to be a better adsorbent to remove methylene blue from industrial wastewater. © 2013 Balaban Desalination Publications. All rights reserved.

  5. Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay

    KAUST Repository

    Feddal, I.

    2013-11-19

    The isotherms and kinetics of the adsorption of a cationic dye in aqueous solution, methylene blue, on a local Algerian montmorillonite clay mineral (raw, sodium and thermally activated at 300 and 500°C) were determined experimentally. Various parameters influencing the adsorption were optimized, mainly solid-liquid contact time, mass of adsorbent, initial concentration of dye, pH of the solution and temperature. Results showed that the adsorption kinetics were fast: 30 min for the raw clay mineral, and 20 min for sodium clay mineral (SC) and thermally activated at 300°C, whereas with the clay mineral calcined at 500°C, the equilibrium was reached after 150 min only. The maximum adsorption capacity was reached at pH 6.6. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. In addition, it was found that the kinetics were in the order of 2 (K = 2.457 × 106 g/mg.h) for sodium clay and were limited by an intra-particle diffusion. SC was found to be a better adsorbent to remove methylene blue from industrial wastewater. © 2013 Balaban Desalination Publications. All rights reserved.

  6. Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars

    International Nuclear Information System (INIS)

    Aly, M.; Hashmi, M.S.J.; Olabi, A.G.; Messeiry, M.; Hussain, A.I.

    2011-01-01

    Highlights: → Glass powder (GP) and nano clay (NC) were used as a partial cement replacement in cement mortar (CM). → No damaging effect can be detected due to the reaction between GP and CM with particle size up to 75 μm. → Hybrid combination of GP/NC greatly improved mechanical properties and microstructure of CM. - Abstract: Worldwide, around 2.6 billion tons of cement is produced annually. This huge size of production consumes large amounts of energy and is one of the largest contributors to carbon dioxide (CO 2 ) release. Accordingly, there is a pressing demand to minimise the quantity of cement used in the concrete industry. The main challenge to this is to get durable concrete with less cement and within reasonable cost. The economic, environmental and engineering benefits of reusing ground waste-glass powder (WGP) as a partial cement replacement has been established, but low glass reactivity and the possible alkali-silica reaction (ASR) are a drawback. Recent advances in nano-technology have revealed that nano-sized particles such as nano clay (NC) have a high surface area to volume ratio that provides the potential for tremendous chemical reactivity, accelerating pozzolanic activity and hindering ASR. This paper presents a laboratory study of the properties of NC/WGP cement composites. The microstructure, ASR, fracture energy, compressive and flexural properties of cement mortars containing WGP as a cement replacement with and without NC are investigated and compared with plain matrix. In addition, the hydration of cement compounds was followed by differential thermal analysis (DTA), thermogravimetric analysis (TGA), and also X-ray diffraction (XRD). The results showed that incorporation of glass powder has a positive effect on the mechanical properties of cement mortars after 28 days of hydration. Also, the results revealed that the mechanical properties of the cement mortars with a hybrid combination of glass powder and NC were all higher than

  7. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    International Nuclear Information System (INIS)

    Anderson, B.S.; Phillips, B.M.; Hunt, J.W.; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2006-01-01

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River

  8. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)]. E-mail: anderson@ucdavis.edu; Phillips, B.M. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Hunt, J.W. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Connor, V. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Richard, N. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Tjeerdema, R.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River.

  9. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  10. Effect of milling time on the structure, particle size, and morphology of montmorillonite

    International Nuclear Information System (INIS)

    Abareshi, M.

    2017-01-01

    In the current research, effect of milling on the structure, particle size and morphology of montmorillonite was investigated. For this purpose, the montmorillonite was analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Then the montmorillonite was milled using high energy planetary ball mill at different milling times (1-60 hours). After that, the structure, particle size and morphology of all samples were investigated by XRD, FTIR, SEM, and transmission electron microscopy. Results showed that the ball milling causes the particle size reduction of clay and separation of the clay layers. Moreover, ball milling increases the overall structural disorder and transforms the crystalline structure into an amorphous phase. Also, the morphology of clay particle changes from layered to aggregates of almost rounded particles after 60 hours of milling.

  11. Numerical simulation of microstructure formation of suspended particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Ido, Y; Inagaki, T; Yamaguchi, T

    2010-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in magnetorheological (MR) fluids is investigated using the particle method simulation based on simplified Stokesian dynamics. Spherical nonmagnetic particles are rearranged in the field direction due to the formation of magnetic particles in chain-like clusters. Cluster formation of spherocylindrical magnetic particles forces spherical nonmagnetic particles to arrange in the direction of the field. In contrast, the spherocylindrical nonmagnetic particles, with an aspect ratio of two or three, are not sufficiently rearranged in the field direction by cluster formation of spherical magnetic particles. Even after cluster formation in the presence of a magnetic field, the uniformity of distribution of particles on the plane perpendicular to the field direction shows very little change. However, the deviation of uniformity in particle distribution is reduced when the volume fraction of magnetic particles is the same as that of nonmagnetic particles.

  12. The role of particulates in radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.; Vandergraaf, T.T.

    1991-01-01

    The colloid program at AECL Research is focused on characterizing natural particles in groundwater to evaluate their potential role in radiocolloid formation and to form a database for particle migration studies. The main objective of this program has been the study of colloids (1 to 450 nm) and suspended particles (> 450 nm) in fractured granites and sandstone in various locations in Canada and Switzerland. Groundwater particles were found to consist of clay minerals, micas, quartz, feldspar, iron-silica oxides and organic material. In groundwaters from granite, sandstone and clay-rich rock colloid concentrations were less than 5 mg/L. Some of these groundwaters may contain up to 260 mg/L of suspended particles. However, these particles are not expected to be mobile under the natural flow regimes of deep groundwaters. Provided radiocolloid formation is reversible, it is shown that the colloid concentrations observed in groundwaters from granites will have a negligible effect on radionuclide transport even when making the conservative assumption that these particles travel with the velocity of groundwater. For the case of irreversible radiocolloid formation, an equation is presented to calculate the fraction of total radionuclides in the geosphere which will form radiocolloids. The significance of these radiocolloids will depend upon the total amount of radionuclides released to the geosphere and on particle migration properties. (author)

  13. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    Directory of Open Access Journals (Sweden)

    Feinan Hu

    Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  14. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    Science.gov (United States)

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  15. Adhesion of the clay minerals montmorillonite, kaolinite, and attapulgite reduces respiration of Histoplasma capsulatum.

    Science.gov (United States)

    Lavie, S; Stotzky, G

    1986-01-01

    The respiration of three phenotypes of Histoplasma capsulatum, the causal agent of histoplasmosis in humans, was markedly reduced by low concentrations of montmorillonite but was reduced less by even higher concentrations of kaolinite or attapulgite (palygorskite). The reduction in respiration followed a pattern that suggested saturation-type kinetics: an initial sharp reduction that occurred with low concentrations of clay (0.01 to 0.5% [wt/vol]), followed by a more gradual reduction with higher concentrations (1 to 8%). Increases in viscosity (which could impair the movement of O2) caused by the clays were not responsible for the reduction in respiration, and the clays did not interfere with the availability of nutrients. Scanning electron microscopy after extensive washing showed that the clay particles were tightly bound to the hyphae, suggesting that the clays reduced the rate of respiration of H. capsulatum by adhering to the mycelial surface and, thereby, interfered with the movement of nutrients, metabolites, and gases across the mycelial wall.

  16. Effect of Crushed Glass Cullet Sizes on Physical and Mechanical Properties of Red Clay Bricks

    Directory of Open Access Journals (Sweden)

    Patricia Ponce Peña

    2016-01-01

    Full Text Available This study reports the effect of clear waste glass from bottles added on 20 to 30 wt.% and variable particle size (<500, <300, and <212 μm, into clay mixtures for the handmade brick manufacturing process. The bricks were manufactured with mixtures of clay, crushed glass, and water in different proportions, homogenized, casted in wooden molds, air-dried at room temperature for 72 h, and sintered at 1000°C for 12 h. Total shrinkage, water absorption, compressive strength, microstructure, and phase composition are discussed with respect to glass content and its particle size. The results indicate that increasing the content of glass and decreasing its particle size enhanced significantly the brick properties of water absorption and compressive strength by up to 18.5% and 6.8 MPa, for bricks with 30 wt% and particle size lower than 212 μm. It is proposed that decreasing the glass particle size its surface area increases allowing easier melting of glass by lower energy consumption, reducing porosity and enhancing brick properties.

  17. Removal of Cs{sup +}, Sr{sup 2+}, and Co{sup 2+} ions from the mixture of organics and suspended solids aqueous solutions by zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang Hong; Fang, Fang; Lu, Chun Hai [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Zheng, Lei [Southwest University of Science and Technology, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang (China)

    2017-04-15

    Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as Sr{sup 2+}, Cs{sup +}, and Co{sup 2+} with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater.

  18. Investigation of Phosphate Retention in some Allophanic and Non-Allophanic Nano-Clays from Karaj Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Monajjem

    2017-02-01

    Full Text Available Introduction: Nanoclays, due to their high specific surface area (SSA chemical and mechanical stabilities, and a variety of surface and structural properties are widely applied. Some of their applications are using them as nano composite polymers, heavy metal ions absorbents, catalysts, photochemical reaction fields, ceramics, paper fillings and coatings, sensors and biosensors. Nano clays and Clays are the most important components constructing soil ecosystems. The physical and chemical properties of soils are mainly depending on the type and amount their clay fraction pertaining to considerable nanoclays. Nano clays have been frequently used to eliminate environmental contaminants from soil and water. Nano clays have also an effective role in the phosphate sorption and desorption from soil solution. Phosphate retention is highly affected by the chemical bonds of the materials, cristalographic properties and pH. In clay size particles there are different structures of nano particles such as alominosilicates with nano ball and nano tube construction. Soils with andic properties have amorphous clay minerals such as allophone. Allophane has a diameter of 3 to 5 nano meter under a transmission electron microscope (TEM and its atomic Si/Al ratio ranges between 0.5 and 1. Allophane shows variable charge characteristics and high selectivity for divalent cations, and is highly reactive with phosphate. Materials and Methods: The objective of this research was to inspect the effect of soil components particularly clay and nanoclay on the sorption of phosphate. To achieve this goal, we studied the amount of phosphate sorption by the natural nanoclays. Samples with andic and vitric properties which were previously formed on volcanic ash in Karaj were chosen in 5 pedons as two Andic ( > 5 percent volcanic glass, > 25 percent P retention, pH NaF > 8.6 and Alo +½ Feo > 0.4 and non Andic soils.. After removal of organic materials, soluble salts, carbonates

  19. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    Science.gov (United States)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the

  20. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    Science.gov (United States)

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  1. Comprehensive review of geosynthetic clay liner and compacted clay liner

    Science.gov (United States)

    Shankar, M. Uma; Muthukumar, M.

    2017-11-01

    Human activity inevitably produces waste materials that must be managed. Some waste can be reused. However many wastes that cannot be used beneficially must be disposed of ensuring environmental safety. One of the common methods of disposal is landfilling. The most common problems of the landfill site are environmental degradation and groundwater contamination caused by leachate produced during the decomposition process of organic material and rainfall. Liner in a landfill is an important component which prevent leachate migration and prevent groundwater contamination. Earthen liners have been widely used to contain waste materials in landfill. Liners and covers for municipal and hazardous waste containment facilities are often constructed with the use of fine-grained, low plasticity soils. Because of low permeability geosynthetic clay liners and compacted clay liners are the main materials used in waste disposal landfills. This paper summaries the important geotechnical characteristics such as hydraulic conductivity, liquid limit and free swell index of geosynthetic clay liner and compacted clay liner based on research findings. This paper also compares geosynthetic clay liner and compacted clay liner based on certain criteria such as thickness, availability of materials, vulnerability to damage etc.

  2. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  3. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  4. Characterization and morphology of solids suspended in rain water; Caracterizacion y morfologia de solidos suspendidos en agua de lluvia

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. (Mexico)

    2000-07-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy.

  5. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.

    2003-01-01

    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as

  6. Colloid and phosphorus leaching from undisturbed soil cores sampled along a natural clay gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann

    2011-01-01

    correlated to the accumulated outflow and was described as a diffusion controlled process, using ¾(accumulated outflow). The mass of leached particles was positively correlated to the clay content as well as to water-dispersible colloids. Particulate phosphorus (P) was linearly correlated to concentration......The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus...

  7. Dynamics of confined reactive water in smectite clay-zeolite composites.

    Science.gov (United States)

    Pitman, Michael C; van Duin, Adri C T

    2012-02-15

    The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.

  8. Nanocomposite microcapsules from powders of polyhydroxybutyrate (PHB) and smectite clays

    International Nuclear Information System (INIS)

    Silva-Valenzuela, Maria das Gracas da; Wang, Shu Hui; Wiebeck, Helio; Valenzuela-Diaz, Francisco R.

    2009-01-01

    Drug delivery systems involving microcapsules provide an attractive way to improve the performance of many chemical and biological substances. These systems may be used for several industrial segments, especially medical, pharmaceuticals and cosmetics. PHB is a polyhydroxyalkanoate available in powder form, biocompatible, biodegradable and inert towards animal tissues. The obtained PHB/smectite clay nanocomposite improved the physical-chemical properties of PHB, including its biodegradability. In this work, we describe the preparation of microcapsules from two nanocomposites systems: a) PHB and Cloisite 20A organoclay (PHB1) and b) PHB and natural Brazilian green polycationic clay (PHB2). When analyzed by XRD, the films and microcapsules did not show a d (001) peak, demonstrating an exfoliated structure for the nanocomposites. The films have shown by SEM an homogeneous distribution with the clay mineral particles spread homogeneously by the PHB film. The new microcapsules/nanocomposites showed an 'hydrangea' morphology. The diameter of the microcapsules was variable between 0.5-15 μm. (author)

  9. Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept

    OpenAIRE

    Schjønning, P.; de Jonge, L.W.; Munkholm, L.J.; Moldrup, P.; Christensen, B.T.; Olesen, J.E.

    2011-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC as a predictor of clay dispersibility and soil friability. Soil was sampled three years in a field varying in clay content (~100 to ~220 g kg-1 soil) and grown with different crop rotations. Clay ...

  10. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    Science.gov (United States)

    Bout-Roumazeilles, V.; Riboulleau, A.; du Châtelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  11. Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH.

    Science.gov (United States)

    McFadden, M; Loconsole, J; Schockling, A J; Nerenberg, R; Pavissich, J P

    2017-12-01

    Peracetic acid (PAA) is an alternative disinfectant that may be effective for combined sewer overflow (CSO) disinfection, but little is known about the effect of particle size on PAA disinfection efficiency. In this work, PAA and hypochlorite were compared as disinfectants, with a focus on the effect of wastewater particles. Inactivation experiments were conducted on suspended cultures of Escherichia coli and wastewater suspended solids. Tested size fractions included particle diameters disinfection efficiency decreased with increasing solids size. However, solids size had little effect on PAA disinfection. The PAA disinfection efficiency decreased at pH values above 7.5. Live/dead staining revealed that PAA disinfection leaves most cells in a viable but non-culturable condition. Fourier transform infrared spectroscopy (FTIR) analyses suggests that PAA and hypochlorite may inactivate E. coli bacteria by similar mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Naturally occurring clay nanoparticles in Latosols of Brazil central region: detection and characterization

    Science.gov (United States)

    Dominika Dybowska, Agnieszka; Luciene Maltoni, Katia; Piella, Jordi; Najorka, Jens; Puntes, Victor; Valsami-Jones, Eugenia

    2015-04-01

    Stability and reactivity of minerals change as a particle size function, which makes mineral nanoparticles (defined here as sieved (53 µm) to remove the sand fraction. The clay fraction was collected by siphoning the supernatant, conditioned in 1000 ml cylinder, according to the Stock's law. This fraction was further processed by re-suspension in water, sonication and repeated centrifugation, to separate the fraction smaller than 100nm. This material, called here the soil "nanofraction", was analyzed using a range of techniques: 1) nanoparticle size/morphology and crystallinity with Transmission Electron Microscopy (TEM operateing in scanning (HAADF-STEM) and High Resolution (HRTEM) mode), 2) size distribution in water with Dynamic Light Scattering (DLS) and surface charge estimated from electrophoretic mobility measurements 3) crystal phase and crystallite size with X-ray Diffraction (XRD) 4) Chemical composition by quantitative analysis of elements (e.g., Si, Fe, Al, Ti) and their spatial distribution with HRTEM/EDS elemental mappings. The nanofraction had an average hydrodynamic particle diameter ranging from 83 to 92nm with a low polydispersity index of 0.13-0.17 and was found highly stable in aqueous suspension (no change in average particle size up to several months of storage). Particle surface charge (in water) ranged from -31mV to -34.5mV (pH = 5.7 - 6.2), this reflects the predominantly negative surface charge of kaolinites in soil environment effectively screening the positive charge of Fe oxides. Kaolinites appeared as single crystals (pseudo hexagonal platelets) while Fe oxides occurred mostly as micro-aggregates, with individual particles often not morphologically distinct with particle size <10nm. In addition, several anatase (TiO2) nanoparticles were also found. Both kaolinites and Fe oxides nanoparticles were crystalline, as evidenced from XRD measurements and HRTEM imaging. Distinction between different crystalline forms of Fe oxides (mainly

  13. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  14. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  15. Formation of metal clusters in halloysite clay nanotubes

    Science.gov (United States)

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-12-01

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length 1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

  16. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites

    International Nuclear Information System (INIS)

    Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N.

    2005-01-01

    Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite[reg] C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay-polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the 'rigid' amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay-polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries

  17. Clay Dispersibility and Soil Friability-Testing the Soil Clay-to-Carbon Saturation Concept

    DEFF Research Database (Denmark)

    Schjønning, Per; de Jonge, Lis Wollesen; Munkholm, Lars Juhl

    2012-01-01

    Soil organic carbon (OC) influences clay dispersibility, which affects soil tilth conditions and the risk of vertical migration of clay colloids. No universal lower threshold of OC has been identified for satisfactory stabilization of soil structure. We tested the concept of clay saturation with OC...... as a predictor of clay dispersibility and soil friability. Soil was sampled 3 yr in a field varying in clay content (∼100 to ∼220 g kg−1 soil) and grown with different crop rotations. Clay dispersibility was measured after end-over-end shaking of field-moist soil and 1- to 2-mm sized aggregates either air......-dried or rewetted to −100 hPa matric potential. Tensile strength of 1- to 2-, 2- to 4-, 4- to 8-, and 8- to 16-mm air-dried aggregates was calculated from their compressive strength, and soil friability estimated from the strength–volume relation. Crop rotation characteristics gave only minor effects on clay...

  18. Response surface method as a tool for heavy clay firing process optimization: Roofing tiles

    Directory of Open Access Journals (Sweden)

    Milica Arsenović

    2012-12-01

    Full Text Available Heavy clay samples collected in close vicinity of Toplička Mala Plana, Serbia, were surveyed to examine their possible use in heavy clay industry. The representative raw material, which contained the lowest content of clay minerals and the highest content of carbonates, was enriched with two more plastic clays. Chemical and mineralogical composition, as well as particle size distribution, were determined to distinct the samples. The samples in the form of tiles, hollow blocks and cubes were prepared following the usual practice in ceramic laboratories. The effect of process parameters, such as temperature (850–950 °C and concentration of the added clays (both in the range of 0–10 wt.%, were investigated in terms of compressive strength, water absorption, firing shrinkage, weight loss during firing and volume mass of cubes. The optimal conditions were determined by the response surface method, coupled with the fuzzy synthetic evaluation algorithm, using membership trapezoidal function, and showed that these materials can be used for roofing tiles production.

  19. SBR Brazilian organophilic/clay nanocomposites

    International Nuclear Information System (INIS)

    Guimaraes, Thiago R.; Valenzuela-Diaz, Francisco R.; Morales, Ana Rita; Paiva, Lucilene B.

    2009-01-01

    The aim of this work is the obtaining of SBR composites using a Brazilian raw bentonite and the same bentonite treated with an organic salt. The clays were characterized by XRD. The clay addition in the composites was 10 pcr. The composites were characterized by XRD and had measured theirs tension strength (TS). The composite with Brazilian treated clay showed TS 233% higher than a composite with no clay, 133% higher than a composite with Cloisite 30B organophilic clay and 17% lower than a composite with Cloisite 20 A organophilic clay. XRD and TS data evidence that the composite with Brazilian treated clay is an intercalated nanocomposite. (author)

  20. Influence of Polymer-Clay Interfacial Interactions on the Ignition Time of Polymer/Clay Nanocomposites.

    Science.gov (United States)

    Zope, Indraneel S; Dasari, Aravind; Yu, Zhong-Zhen

    2017-08-11

    Metal ions present on smectite clay (montmorillonite) platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 (PA6) thermal decomposition. This changes the decomposition pathway and negatively affects the ignition response of PA6. To restrict these interfacial interactions, high-temperature-resistant polymers such as polyetherimide (PEI) and polyimide (PI) were used to coat clay layers. PEI was deposited on clay by solution-precipitation, whereas PI was deposited through a solution-imidization-precipitation technique before melt blending with PA6. The absence of polymer-clay interfacial interactions has resulted in a similar time-to-ignition of PA6/PEI-clay (133 s) and PA6/PI-clay (139 s) composites as neat PA6 (140 s). On the contrary, PA6 with conventional ammonium-based surfactant modified clay has showed a huge drop in time-to-ignition (81 s), as expected. The experimental evidences provided herein reveal the role of the catalytic activity of clay during the early stages of polymer decomposition.

  1. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  2. Regional estimation of extreme suspended sediment concentrations using watershed characteristics

    Science.gov (United States)

    Tramblay, Yves; Ouarda, Taha B. M. J.; St-Hilaire, André; Poulin, Jimmy

    2010-01-01

    SummaryThe number of stations monitoring daily suspended sediment concentration (SSC) has been decreasing since the 1980s in North America while suspended sediment is considered as a key variable for water quality. The objective of this study is to test the feasibility of regionalising extreme SSC, i.e. estimating SSC extremes values for ungauged basins. Annual maximum SSC for 72 rivers in Canada and USA were modelled with probability distributions in order to estimate quantiles corresponding to different return periods. Regionalisation techniques, originally developed for flood prediction in ungauged basins, were tested using the climatic, topographic, land cover and soils attributes of the watersheds. Two approaches were compared, using either physiographic characteristics or seasonality of extreme SSC to delineate the regions. Multiple regression models to estimate SSC quantiles as a function of watershed characteristics were built in each region, and compared to a global model including all sites. Regional estimates of SSC quantiles were compared with the local values. Results show that regional estimation of extreme SSC is more efficient than a global regression model including all sites. Groups/regions of stations have been identified, using either the watershed characteristics or the seasonality of occurrence for extreme SSC values providing a method to better describe the extreme events of SSC. The most important variables for predicting extreme SSC are the percentage of clay in the soils, precipitation intensity and forest cover.

  3. Self-Assembly of Faceted Colloidal Particles

    NARCIS (Netherlands)

    Gantapara, A.P.

    2015-01-01

    A colloidal dispersion consists of insoluble microscopic particles that are suspended in a solvent. Typically, a colloid is a particle for which at least one of its dimension is within the size range of a nanometer to a micron. Due to collisions with much smaller solvent molecules, colloids perform

  4. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  5. Simulation of streamflow and water quality in the Red Clay Creek subbasin of the Christina River Basin, Pennsylvania and Delaware, 1994-98

    Science.gov (United States)

    Senior, Lisa A.; Koerkle, Edward H.

    2003-01-01

    The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin.The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek

  6. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  7. Capillary condensation and gelling of microemulsions with clay additives.

    Science.gov (United States)

    Gvaramia, Manuchar; Mangiapia, Gaetano; Falus, Peter; Ohl, Michael; Holderer, Olaf; Frielinghaus, Henrich

    2018-04-22

    The capillary condensation in bicontinuous microemulsions takes place when two parallel surfaces are narrowed that result in a completely lamellar microemulsion. We expected that this phase transition is also observable when the amount of hydrophilic surfaces from clay particles is raised, because hydrophilic surfaces induce lamellar ordering locally. Using small angle neutron scattering, the structure of microemulsions was observed as a function of clay content. The critical concentration is indicated by discontinuous structural changes and depends on the platelet diameter and is explained by the free energy of the platelets competing with the fluctuating medium. The gel phase transition is observed in the spectroscopic measurements where the diffusion motion is widely suppressed in the gel phase, but otherwise superimposes with the membrane undulations. Copyright © 2018. Published by Elsevier Inc.

  8. Polypropylene reinforced with organophilic clay and brazilian nut fibers

    International Nuclear Information System (INIS)

    Rocha-Gomes, L.V.; Mondelo-Garcia, F.J.; Vaccioli, K.; Valera, S.T.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.

    2014-01-01

    Polymer nanocomposites have been shown to possess better properties when compared with traditional composites. This study aims to investigate the effects of the addition of organophilic clay and Brazilian nut fiber on the polypropylene (PP). First, 5%, 10% and 20% PP/compatibilizer maleic anhydride (PP-g-MA) by weight was added to Pure PP, respectively. From the results, 5% PP-g-MA was defined for preparing the nanocomposites. Samples were prepared containing 5% PP / PP-g-MA reinforced with 5% organophilic Brazilian smectite clay and 5%, 10% and 15% Brazilian nut fiber. Specimens were tested for tensile strength and impact. The materials were characterized by laser diffraction particle size and X-ray diffraction, and the nanocomposites, by mechanical strength and impact. The best result was obtained by inserting 15% fiber. (author)

  9. Analysis of the eukaryotic community and metabolites found in clay wall material used in the construction of traditional Japanese buildings.

    Science.gov (United States)

    Kitajima, Sakihito; Kamei, Kaeko; Nishitani, Maiko; Sato, Hiroyuki

    2010-01-01

    Clay wall (tsuchikabe in Japanese) material for Japanese traditional buildings is manufactured by fermenting a mixture of clay, sand, and rice straw. The aim of this study was to understand the fermentation process in order to gain insight into the ways waste biomass can be used to produce useful materials. In this study, in addition to Clostridium, we suggested that the family Nectriaceae and the Scutellinia sp. of fungi were important in degrading cell wall materials of rice straw, such as cellulose and/or lignin. The microorganisms in the clay wall material produced sulfur-containing inorganic compounds that may sulfurate minerals in clay particles, and polysaccharides that give viscosity to clay wall material, thus increasing workability for plastering, and possibly giving water-resistance to the dried clay wall.

  10. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    were performed with a cylindrical four-electrode sample-holder (cylinder made of PVC with 30 cm in length and 19 cm in diameter) associated with a SIP-Fuchs II impedance meter and non-polarizing Cu/CuSO 4 electrodes. These electrodes were installed at 10 cm from the base of the sample holder and regularly spaced (each 90 degree). The results illustrate the strong impact of the Cationic Exchange Capacity (CEC) of the clay minerals upon the complex conductivity. The amplitude of the in-phase conductivity of the kaolinite-clay samples is strongly dependent to saturating fluid salinity for all volumetric clay fractions, whereas the in-phase conductivity of the smectite-clay samples is quite independent on the salinity, except at the low clay content (5% and 1% of clay in volume). This is due to the strong and constant surface conductivity of smectite associated with its very high CEC. The quadrature conductivity increases steadily with the CEC and the clay content. We observe that the dependence on frequency of the quadrature conductivity of sand-kaolinite mixtures is more important than for sand-bentonite mixtures. For both types of clay, the quadrature conductivity seems to be fairly independent on the pore fluid salinity except at very low clay contents (1% in volume of kaolinite-clay). This is due to the constant surface site density of Na counter-ions in the Stern layer of clay materials. At the lowest clay content (1%), the magnitude of the quadrature conductivity increases with the salinity, as expected for silica sands. In this case, the surface site density of Na counter-ions in the Stern layer increases with salinity. The experimental data show good agreement with predicted values given by our Spectral Induced Polarization (SIP) model. This complex conductivity model considers the electrochemical polarization of the Stern layer coating the clay particles and the Maxwell-Wagner polarization. We use the differential effective medium theory to calculate the complex

  11. Characterization of clays used in the fabrication of traditional brazilian ceramic pans: culture and technique

    International Nuclear Information System (INIS)

    Borlini, Monica Castoldi; Aguiar, Mariane Costalonga de; Vieira, Carlos Mauricio Fontes; Monteiro, Sergio Neves

    2009-01-01

    The fabrication process of clay pans in the state of Espirito Santo, southeast of Brazil, is a recognized part of the country's popular culture. In Goiabeiras, a district of the state capital Vitoria, the traditional production of these pans is the source of income for many families. The technique used in these ceramic pans is of indigenous origin, characterized by manual molding, outdoor burning and application of tannin dye. The clay pans are distributed to several Brazilian states and are nowadays conquering the external market. In producing these pans, two types of, yellow and gray, clays are used. The actual source of raw material comes from the deposit of the Mulemba valley, where a concern on the possibility of exhaustion exists. The objective of this study was then to characterize these two types of clays and so contribute to the continuity of traditional clay pan production by knowing the characteristics of the local clays in case of an eventual need for their replacement. Chemical analysis, X-ray diffraction, particle size distribution, plasticity and thermal analysis of the clays were performed. The results showed that the clays are high plasticity kaolinite with considerable amounts of SiO 2 and Al 2 O 3 as well as of alkaline oxides, earth alkaline oxides and Fe 2 O 3 . (author)

  12. Superconducting lead particles produced by chemical techniques

    Science.gov (United States)

    Fariss, T. L.; Nixon, W. E.; Bucelot, T. J.; Deaver, B. S., Jr.; Mitchell, J. W.

    1982-09-01

    The superconductivity of extremely small lead particles has been studied as a function of size, surface condition, and connectivity using chemical techniques to produce particles of well-controlled size and shape suspended in insulating media. Approximately monodisperse suspensions of equiaxed, rod, and lath-shaped particles of lead halides and other lead compounds suspended in gelatin, polyacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, methyl cellulose, and hydroxyethyl cellulose have been produced. These particles have been reduced to pseudomorphs of lead in the liquid phase or the suspensions have been coated on substrates and dried before reduction. Reducing solutions containing aminoiminomethanesulfinic acid are effective with particles of lead halides, lead phosphate, lead sulfate, and lead tartrate. Suspensions of smaller discrete lead particles have also been produced by direct reduction of solutions of soluble lead salts containing suitable polymers, chelating, and stabilizing agents. Dispersions with mean particle dimensions between 3 nm and 5 μm, and a narrow size-frequency distribution, have been produced. The superconductivity of the particles has been characterized by measurements of the magnetization as a function of temperature and magnetic field. The larger particles have a transition temperature of 7.2 K, the same as bulk lead; however, for particles of characteristic dimensions less than 20 nm, the transition temperature is lower by ˜0.1 K.

  13. Superconducting lead particles produced by chemical techniques

    International Nuclear Information System (INIS)

    Fariss, T.L.; Nixon, W.E.; Bucelot, T.J.; Deaver, B.S. Jr.; Mitchell, J.W.

    1982-01-01

    The superconductivity of extremely small lead particles has been studied as a function of size, surface condition, and connectivity using chemical techniques to produce particles of well-controlled size and shape suspended in insulating media. Approximately monodisperse suspensions of equiaxed, rod, and lath-shaped particles of lead halides and other lead compounds suspended in gelatin, polyacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, methyl cellulose, and hydroxyethyl cellulose have been produced. These particles have been reduced to pseudomorphs of lead in the liquid phase or the suspensions have been coated on substrates and dried before reduction. Reducing solutions containing aminoiminomethanesulfinic acid are effective with particles of lead halides, lead phosphate, lead sulfate, and lead tartrate. Suspensions of smaller discrete lead particles have also been produced by direct reduction of solutions of soluble lead salts containing suitable polymers, chelating, and stabilizing agents. Dispersions with mean particle dimensions between 3 nm and 5 μm, and a narrow size-frequency distribution, have been produced. The superconductivity of the particles has been characterized by measurements of the magnetization as a function of temperature and magnetic field. The larger particles have a transition temperature of 7.2 K, the same as bulk lead; however, for particles of characteristic dimensions less than 20 nm, the transition temperature is lower by approx.0.1 K

  14. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  15. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    Science.gov (United States)

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field

  16. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  17. A novel waste water cleanup, fines sequestration and consolidation technology for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Soane, D.; Ware, W.; Mahoney, R.; Kincaid, P. [Soane Energy LLC, Cambridge, MA (United States)

    2010-07-01

    This paper discussed a wastewater technology designed to rapidly sequester suspended fines and other pollutants from the tailings produced during oil sands processes. The technology can also be used to clarify existing tailings ponds, and is expected to help address growing environmental concerns over the remediation of oil sands tailings. The ATA system is comprised of the following 3 components: (1) an activator polymer, (2) a tether polymer, and (3) an anchor particle. A small dose of the activator polymer is added to the fine or mature tailings, which then causes the suspended clay fines to aggregate. The anchor particles are then coated with the tether polymer. The anchor particle is formed from sand derived from coarser tailings. The tether-bearing anchor particles bind to the aggregated clay fines in the activated tailings to form robust complexes that can easily be separated from the waste stream. Output streams from the ATA process include a clean water stream that can be reused in oil sands extraction processes; and a dewatered solid that can be used as landfill as well as in construction and reclamation applications. The sensible heat retained in the recycled water is expected to also reduce the energy requirements of the oil sands extraction process. 6 refs., 1 tab., 5 figs.

  18. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  19. The acceleration of solid particles subjected to cavitation nucleation

    DEFF Research Database (Denmark)

    Borkent, B.M.; Arora, M.; Ohl, C.-D.

    2008-01-01

    The cavity -particle dynamics at cavitation inception on the surface of spherical particles suspended in water and exposed to a strong tensile stress wave is experimentally studied with high-speed photography. Particles, which serve as nucleation sites for cavitation bubbles, are set into a fast...

  20. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    Science.gov (United States)

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  2. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions.

    Science.gov (United States)

    Philippe, A M; Baravian, C; Imperor-Clerc, M; De Silva, J; Paineau, E; Bihannic, I; Davidson, P; Meneau, F; Levitz, P; Michot, L J

    2011-05-18

    Aqueous suspensions of swelling clay minerals exhibit a rich and complex rheological behaviour. In particular, these repulsive systems display strong shear-thinning at very low volume fractions in both the isotropic and gel states. In this paper, we investigate the evolution with shear of the orientational distribution of aqueous clay suspensions by synchrotron-based rheo-SAXS experiments using a Couette device. Measurements in radial and tangential configurations were carried out for two swelling clay minerals of similar morphology and size, Wyoming montmorillonite and Idaho beidellite. The shear evolution of the small angle x-ray scattering (SAXS) patterns displays significantly different features for these two minerals. The detailed analysis of the angular dependence of the SAXS patterns in both directions provides the average Euler angles of the statistical effective particle in the shear plane. We show that for both samples, the average orientation is fully controlled by the local shear stress around the particle. We then apply an effective approach to take into account multiple hydrodynamic interactions in the system. Using such an approach, it is possible to calculate the evolution of viscosity as a function of shear rate from the knowledge of the average orientation of the particles. The viscosity thus recalculated almost perfectly matches the measured values as long as collective effects are not too important in the system.

  3. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions

    International Nuclear Information System (INIS)

    Philippe, A M; Baravian, C; Imperor-Clerc, M; De Silva, J; Davidson, P; Paineau, E; Bihannic, I; Michot, L J; Meneau, F; Levitz, P

    2011-01-01

    Aqueous suspensions of swelling clay minerals exhibit a rich and complex rheological behaviour. In particular, these repulsive systems display strong shear-thinning at very low volume fractions in both the isotropic and gel states. In this paper, we investigate the evolution with shear of the orientational distribution of aqueous clay suspensions by synchrotron-based rheo-SAXS experiments using a Couette device. Measurements in radial and tangential configurations were carried out for two swelling clay minerals of similar morphology and size, Wyoming montmorillonite and Idaho beidellite. The shear evolution of the small angle x-ray scattering (SAXS) patterns displays significantly different features for these two minerals. The detailed analysis of the angular dependence of the SAXS patterns in both directions provides the average Euler angles of the statistical effective particle in the shear plane. We show that for both samples, the average orientation is fully controlled by the local shear stress around the particle. We then apply an effective approach to take into account multiple hydrodynamic interactions in the system. Using such an approach, it is possible to calculate the evolution of viscosity as a function of shear rate from the knowledge of the average orientation of the particles. The viscosity thus recalculated almost perfectly matches the measured values as long as collective effects are not too important in the system.

  4. Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater

    Science.gov (United States)

    Brown, Giles H.; Tranter, M.; Sharp, M. J.

    1996-04-01

    The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.

  5. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method

    International Nuclear Information System (INIS)

    Venkatachalam, S.; Nanjo, H.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T.

    2011-01-01

    Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 x 10 -3 /Ω) was also higher than that of ITO/clay-1 (9.6 x 10 -3 /Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.

  6. Common clay and shale

    Science.gov (United States)

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  7. Effects of modified Clay on the morphology and thermal stability of PMMA/clay nanocomposites

    International Nuclear Information System (INIS)

    Tsai, Tsung-Yen; Lin, Mei-Ju; Chuang, Yi-Chen; Chou, Po-Chiang

    2013-01-01

    The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O 2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites. - Highlights: ► We control the dispersion morphology by protonation of K2 into the clay. ► The CL120 and CL88, with the higher CEC, are more random intercalated by K2. ► We report these materials have good optical clarity, and UV resistance

  8. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    Science.gov (United States)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  9. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Science.gov (United States)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  10. Thixotropic Properties of Latvian Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Ruplis, Augusts

    2015-01-01

    This research studies Latvia originated Devon (Tūja, Skaņkalne), quaternary (Ceplīši), Jurassic, (Strēļi) and Triassic (Vadakste) deposit clays as well as Lithuania originated Triassic (Akmene) deposit clays. Thixotropic properties of clay were researched by measuring relative viscosity of clay in water suspensions. Relative viscosity is measured with a hopper method. It was detected that, when concentration of suspension is increased, clay suspension’s viscosity also increases. It happens un...

  11. Acid-base properties of 2:1 clays. I. Modeling the role of electrostatics.

    Science.gov (United States)

    Delhorme, Maxime; Labbez, Christophe; Caillet, Céline; Thomas, Fabien

    2010-06-15

    We present a theoretical investigation of the titratable charge of clays with various structural charge (sigma(b)): pyrophyllite (sigma(b) = 0 e x nm(-2)), montmorillonite (sigma(b) = -0.7 e x nm(-2)) and illite (sigma(b) = -1.2 e x nm(-2)). The calculations were carried out using a Monte Carlo method in the Grand Canonical ensemble and in the framework of the primitive model. The clay particle was modeled as a perfect hexagonal platelet, with an "ideal" crystal structure. The only fitting parameters used are the intrinsic equilibrium constants (pK(0)) for the protonation/deprotonation reactions of the broken-bond sites on the lateral faces of the clay particles, silanol, =SiO(-) + H(+) --> =SiOH, and aluminol, =AlO(-1/2) + H(+) --> =AlOH(+1/2). Simulations are found to give a satisfactory description of the acid-base titration of montmorillonite without any additional fitting parameter. In particular, combining the electrostatics from the crystal substitutions with ionization constants, the simulations satisfactorily catch the shift in the titration curve of montmorillonite according to the ionic strength. Change in the ionic strength modulates the screening of the electrostatic interactions which results in this shift. Accordingly, the PZNPC is found to shift toward alkaline pH upon increasing the permanent basal charge. Unlike previous mean field model results, a significant decrease in PZNPC values is predicted in response to stack formation. Finally, the mean field approach is shown to be inappropriate to study the acid-base properties of clays.

  12. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    Science.gov (United States)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of

  13. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    Science.gov (United States)

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  14. Manipulation of magnetic particles in microfluidic volumes

    NARCIS (Netherlands)

    Gao, Y.; Reenen, van A.; Hulsen, M.A.; Jong, de A.M.; Prins, M.W.J.; Toonder, den J.M.J.

    2013-01-01

    This paper reports various ways of field-based manipulation of magnetic colloidal particles to enhance biochemical reactions in lab-on-chip systems [1]. For one (I), we show the possibility to assemble the suspended magnetic micro-particles as tunable re-formable micro-stirrers capable of performing

  15. Toxicity of inhaled 90Y in fused clay particles in beagle dogs. VI

    International Nuclear Information System (INIS)

    Hobbs, C.H.; Chiffelle, T.L.; Hahn, F.F.; Jones, R.K.; Mauderly, J.L.; McClellan, R.O.; Pickrell, J.A.

    1974-01-01

    Studies on the metabolism, dosimetry, and effects of inhaled 90 Y in fused clay in the Beagle dog are being continued to assess the consequences of inhalation of an energetic beta emitter that has a short effective half-life in the lung. A radiation dose pattern study in which 12 dogs were sacrificed in pairs at 0, 2, 4, 6, 8, and 12 days post-inhalation exposure has been completed. A longevity study in which 89 dogs have been exposed to 90 Y fused clay with initial lung burdens ranging from 80 to 5200 μCi/kg body weight and 12 control dogs were exposed to stable yttrium in fused clay is in progress. The 90 Y was retained in lung with a half-life similar to its physical half-life (64 hours) and with only small quantities translocated to tracheobronchial lymph nodes, skeleton, and liver. The infinite radiation doses to lung, tracheobronchial lymph nodes, skeleton, and liver for an initial lung burden of 100 μCi 90 Y/kg of body weight were estimated to be 1600, 170, 0.54, and 0.38 rads, respectively. Thirty-eight of 39 dogs with doses to lung from 9300 to 70,000 rads have died at 7.5 to 903 days post-exposure. The one surviving dog in this dose range has radiographic evidence of pulmonary fibrosis at 1316 days post-exposure. All the dogs that died had radiation pneumonitis. The dog that died at 903 days post-exposure with a dose to lung of 11,000 rads also had 2 small pulmonary adenomas. Fifty exposed dogs with doses to lung of 1300 to 7900 rads are surviving with no significant abnormalities at 1278 to 1834 days post-exposure and will be studied for the remainder of their lifespan. (U.S.)

  16. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.P.; Ding, H.; Wang, X.B. [Harvard University, Boston, MA (United States). Dept. of Environmental Health

    1995-11-01

    The acute effects of air pollution on preterm delivery were examined in a prospective cohort in Beijing, China. From early pregnancy until delivery in 1988, we followed all registered pregnant women who lived in four residential areas of Beijing. Information for both mothers and infants was collected. Daily air pollution and meteorological data were obtained independently. The sample for analysis included 25 370 resident women who gave first live births in 1988. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on gestational age and preterm delivery (i.e. {lt} 37 wk), with adjustment for outdoor temperature and humidity, day of the week, season, maternal age, gender of child, and residential area. Very high concentrations of ambient sulfur dioxide (mean = 102 {mu}g/m{sup 3}), (maximum = 630 {mu}g/m{sup 3}) and total suspended particulates (mean = 375 {mu}g/m{sup 3}), (maximum =1 003 {mu}g/m{sup 3}) were observed in these areas. There was a significant dose-dependent association between gestational age and sulfur dioxide and total suspended particulate concentrations. The estimated reduced duration of gestation was 0.075 wk (12.6 h) and 0.042 wk (7.1 h) for each 100 {mu}g/m{sup 3} increase in sulfur dioxide and total suspended particulates 7-d lagged moving average, respectively. We concluded that high levels of total suspended particulates and sulfur dioxide, or of a more complex pollution mixture associated with these pollutants, appear to contribute to excess risk of preterm delivery in this population. Further work needs to be carried out, with more detailed information on personal exposure and effect modifiers.

  17. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  18. Kaolin clays from Patagonia - Argentina. Relationship between the mineralogy and ceramic properties

    International Nuclear Information System (INIS)

    Factorovich, J.C.; Badino, D.; Cravero, F.; Dominguez, E.

    1997-01-01

    The mineralogy, grain size distribution, chemical composition, S and C contents, plasticity, and cationic exchange capacity are determined in the sedimentary kaolinitic clays from the clay pits Puma Negra, Puma Gris, Tincar Super; and Chenque and Cardenal located in Santa Cruz and Chubut Provinces. Mineralogy and Particle size distribution of > 5, 5-2 and <2μ fractions are determined. Modulus of rupture, 1100 and 1250 deg C shrinkage and water absorption and whiteness are found. It is accomplished a statistics correlation between the characteristics of grain size distribution, mineralogy, and other physical properties with the main ceramic properties to understand its influence in the ceramic process. (author)

  19. The impact of hazardous waste leachate on performance of clay liners.

    Science.gov (United States)

    Mosavat, Nasim; Nalbantoglu, Zalihe

    2013-02-01

    Penetration of hazardous liquids through waste containment barriers exerts contamination and considerable alterations in geotechnical properties of clay liners. In general, these changes are attributed to the variation of the dielectric constant and the chemistry of the pore fluids which cause changes in soil structure. In the present study, a series of laboratory tests were performed on natural and contaminated clay soil permeated with different hazardous liquids: ethylene glycol and toluene which are generally found in petroleum-contaminated sites, possessing intermediate and low dielectric constants. Toluene was used in its pure form and ethylene glycol was used at various percentages of 0, 20, 40 and 60% by the volume of distilled water. In addition, natural sea water was also utilized as an inorganic fluid for permeation and salinization of the clay soil. The overall test results indicated that plasticity, sedimentation time, unconfined compressive strength, swell and compressibility generally decreased with increasing organic fluid/water concentration, while a slight increase in the permeability values was observed. Pure toluene resulted in diminution of plasticity and considerable flocculation of the particles which caused the soil to become granular. Sea water also caused particle flocculation and reduction in plasticity, swell potential and unconfined compressive strength, although it was noted that compressibility properties remained unchanged compared to distilled water. Finally, the correlation between the electrical resistivity and plasticity index values suggested that the electrical resistivity measurements can be used as a detecting technique for subsurface soil and waste barrier contamination.

  20. Toxicity of 144Ce fused clay particles inhaled by immature beagle dogs. III

    International Nuclear Information System (INIS)

    Boecker, B.B.; McClellan, R.O.; Hahn, F.F.; Hobbs, C.H.; Mauderly, J.L.

    1974-01-01

    The metabolism, dosimetry, and biological effects of 144 Ce fused clay particles inhaled by immature Beagle dogs (approximately 3 months of age at exposure) are being investigated for comparison with studies of dogs exposed at 12 to 14 months of age and 8 to 10.5 years of age. These studies will assess possible age-related differences in the biological behavior and effects of inhaled radionuclides, differences that may be of significance in predicting the response of accidentally-exposed human populations that include individuals of different ages. Eighteen immature dogs have been entered into a radiation dose pattern study to be serially sacrificed at different intervals after inhalation exposure. During the first 2 months post-exposure, lung clearance and uptake by the tracheobronchial lymph nodes appeared to be greater in the immature dogs than in young adult dogs. Also, skeletal uptake was greater than hepatic uptake in the immature dogs. Three blocks of longevity animals, 10 per block, with graded initial lung burdens ranging from 0.004 to 120 μCi 144 Ce/kg body weight and 1 control, are currently on experiment. Three dogs with initial lung burdens of 73 to 120 μCi 144 Ce/kg body weight died at 66 to 121 days after exposure with pulmonary injury and congestive heart failure. Another dog with an initial lung burden of 70 μCi 144 Ce/kg body weight died at 511 days after exposure with pulmonary injury. Serial observations are continuing on the surviving 26 144 Ce-exposed and 3 control dogs. (U.S.)

  1. The Influence of Clay on the Rate of Decay of Amino Acid Metabolites Synthesized in Soils during Decomposition of Cellulose

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1975-01-01

    caused by the treatments in the different soils was, however, not related to the amount of silt + clay, and a high content of this material did not protect organic material against the effect of the treatments. is concluded that the silt + clay fraction ensures stabilization of amino acid metabolites...... produced during the period of intense biological activity that follows the addition of decomposable, energy rich material to the soil. The amount of amino acid metabolites stabilized increased with increasing concentration of silt + clay, but the rate of decay of the amino acid material during later stages......14C-labelled cellulose was added to seven different soils containing silt + clay (particles

  2. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Elsen, A; Grobet, P; Keung, M; Leeman, H; Schoonheydt, R; Toufar, H [eds.

    1995-08-20

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY `95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately.

  3. Euroclay 95. Clays and clay materials sciences. Book of abstracts

    International Nuclear Information System (INIS)

    Elsen, A.; Grobet, P.; Keung, M.; Leeman, H.; Schoonheydt, R.; Toufar, H.

    1995-01-01

    The document contains the abstracts of the invited lecturers (18) and posters (247) presented at EUROCLAY '95. Clays and clay materials sciences. 13 items (4 from the invited lecturers and 12 from posters) have been considered within the INIS Subject Scope and indexed separately

  4. Speciation of uranium in surface-modified, hydrothermally treated, (UO2)2+-exchanged smectite clays

    International Nuclear Information System (INIS)

    Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.; Wasserman, S.R.

    1997-01-01

    A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS data from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U VI to U IV

  5. A Visual Basic program to classify sediments based on gravel-sand-silt-clay ratios

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2003-01-01

    Nomenclature describing size distributions is important to geologists because grain size is the most basic attribute of sediments. Traditionally, geologists have divided sediments into four size fractions that include gravel, sand, silt, and clay, and classified these sediments based on ratios of the various proportions of the fractions. Definitions of these fractions have long been standardized to the grade scale described by Wentworth (1922), and two main classification schemes have been adopted to describe the approximate relationship between the size fractions.Specifically, according to the Wentworth grade scale gravel-sized particles have a nominal diameter of ⩾2.0 mm; sand-sized particles have nominal diameters from <2.0 mm to ⩾62.5 μm; silt-sized particles have nominal diameters from <62.5 to ⩾4.0 μm; and clay is <4.0 μm. As for sediment classification, most sedimentologists use one of the systems described either by Shepard (1954) or Folk (1954, 1974). The original scheme devised by Shepard (1954) utilized a single ternary diagram with sand, silt, and clay in the corners to graphically show the relative proportions among these three grades within a sample. This scheme, however, does not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme (Fig. 1) was subsequently modified by the addition of a second ternary diagram to account for the gravel fraction (Schlee, 1973). The system devised by Folk (1954, 1974) is also based on two triangular diagrams (Fig. 2), but it has 23 major categories, and uses the term mud (defined as silt plus clay). The patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of

  6. Potential assessment of Sergipe and Alagoas clays in aggregates production for use in concrete

    International Nuclear Information System (INIS)

    Oliveira, H.A.; Santos, C.P.; Oliveira, R.M.P.B.; Jesus, E. de; Macedo, Z.S.

    2017-01-01

    This study aims to characterize technologically three clays employed by ceramic industries in Sergipe state, Brazil. Its potential use for the production of calcined synthetic aggregate to substitute gravel in concrete production was evaluated. The characterization of the clays included particle size and plasticity analysis, X-ray diffraction, differential and thermogravimetric analyses, dilatometry, X-ray fluorescence, organic matter content, cation exchange capacity, specific area, and scanning electron microscopy. Ceramic bodies were uniaxially pressed under 30 MPa, into rectangular and cylindrical shapes. Ceramic bodies of individual clays and also ceramic formulations were fired and subsequently characterized to determine their water absorption, apparent density, compressive strength, and grain morphology. It was observed that, after firing at 1120 deg C, two formulations presented strength, water absorption and specific mass comparable to those of gravel used in concrete. (author)

  7. Treatment and Conditioning of Radioactive Waste Solution by Natural Clay Minerals

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; Abdel-Raouf, M.W.; El-Massry, E.H.; Khalifa, S.M.; Aly, H.F.

    1999-01-01

    Chemical precipitation processes have been used for the treatment of radioactive elements from aqueous solution. The volume reduction is not very great and storage facilities are expensive. There are some radionuclides which are so difficult to be precipitated by this common method, so they may be precipitated by adding solid materials such as natural inorganic exchangers. In this woek, improvement the removal of caesium, cobalt and europium with zinc sulfate as coagulant and different clay minerals have been investigated. These include, Feldespare, Aswanly, Bentionite, Hematite, Mud, Calcite, Basalt, Magnetite, Kaoline, Sand stone, Limonite and Sand. The parameters affecting the precipitation process such as pH, particle size, temperature and weight of the clay have been studied. The results indicate that, the highest removal for Cs-137, Co-60 and Eu-152 and154 by Asswanly, Bentonite and Sand stone is more than the other clays. Removal of Cs-137 from low level waste solution with these three natural clays took the sequence, Aswanly (85.5%) > Bentonite (82.2%) > Sandstone (65.4%). Solidified cement products have been evaluated to determine mechanical strength and leaching rates of the waste products. The solidified waste forms were found more acceptable for handling ,storage and ultimate disposal

  8. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites.

    Science.gov (United States)

    Hamim, Salah U; Singh, Raman P

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface.

  9. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Effects of Nasal Spray Suspension Particle Size and Properties.

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-04-01

    The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product. Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated. Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 μm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions. The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.

  10. Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater.

    Science.gov (United States)

    Jamal Khan, S; Ilyas, Shazia; Javid, Sadaf; Visvanathan, C; Jegatheesan, V

    2011-05-01

    The performance of laboratory-scale attached growth (AG) and suspended growth (SG) membrane bioreactors (MBRs) was evaluated in treating synthetic wastewater simulating high strength domestic wastewater. This study investigated the influence of sponge suspended carriers in AG-MBR system, occupying 15% reactor volume, on the removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP), and compared it to that of SG-MBR. Results showed that the removal efficiencies of COD, TN and TP in AG-MBR were 98%, 89% and 58%, respectively as compared to 98%, 74% and 38%, respectively in SG-MBR. Improved TN removal in AG-MBR systems was primarily based on simultaneous nitrification and denitrification (SND) process. These results infer that the presence of small bio-particles having higher microbial activity and the growth of complex biomass captured within the suspended sponge carriers resulted in improved TN and TP removal in AG-MBR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. The Ages in a Self-Suspended Nanoparticle Liquid

    KAUST Repository

    Agarwal, Praveen

    2010-01-13

    Telomers ionically tethered to nanometer-sized particles yield self-suspended, nanoparticle-Iaden liquids with unusual dynamical features. By subjecting these suspensions to controlled, modest shear strains, we find that their flow behaviors observed using experiments performed on time scales of tens of seconds can be projected to obtain maps of their dynamical response on geological time scales. That such extraordinarily slow dynamic processes can be uncovered from real-time measurements by simply stretching a system provides a simple but powerful tool for interrogating extremely slow motions in other jammed physical states. © 2010 American Chemical Society.

  12. Effect of smectite clays storage in their rheological properties; Efeito do armazenamento de argilas esmectiticas nas suas propriedades reologicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C., E-mail: isabelle_albuquerquecg@hotmail.com, E-mail: kegalves@gmail.com, E-mail: gelmires.neves@ufcg.edu.br, E-mail: heber.ferreira@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Ferreira, H.S., E-mail: hsivini@terra.com.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Educacao; Ferreira, H.S., E-mail: heber@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa (Brazil). Departamento de Engenharia de Materiais

    2017-01-15

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na{sub 2} CO{sub 3} is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na{sub 2} CO{sub 3} ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  13. A preliminary study on titanium-clay interactions

    International Nuclear Information System (INIS)

    Wersin, P.; Grolimund, D.; Kumpulainen, S.; Brendle, J.; Snellman, M.

    2010-01-01

    bentonite, Opalinus Clay, Illite du Puy) were characterized by XAS. Preliminary results can be summarized as: (1) Natural clay materials contain significant but variable amounts of Ti. The standard purification procedure for bentonites to remove accessories does not or only barely removes Ti. (2) The Ti in the natural clays materials Rokle bentonite, Opalinus Clay, Illite du Puy occurs as microcrystalline TiO 2 (presumably as anatase). On the other hand, the Ti spectra in MX-80 suggest the presence of structural Ti in the smectite, but the evidence is not conclusive so far. (3) The exposure of purified MX-80 to titanium powder at room temperature within a period of five months did not lead to measurable additional Ti in the clay. This was even true for samples exposed to acidic or alkaline conditions where corrosion rates and solubility of Ti are known to be higher. Thereof, the following preliminary conclusions can be drawn: - The Ti content in natural bentonites is concentrated mainly in the so-called clay fraction. Ti occurs therein either as separate small TiO 2 particles (Rokle, Opalinus Clay, Illite du Puy) or as structural Ti. As indicated by the study of Karnland et al. (2006), the properties of natural bentonites are not affected by the presence of Ti. In that study, the bulk properties (swelling pressure, hydraulic conductivity) were very similar for the different bentonites containing variable Ti content, ranging from 0.1 to 4.8 weight % TiO 2 in the purified clay fractions. The transfer rates of Ti from the metallic source, even in reactive powder form, to the clay are very low and no enrichment above background concentrations after several months could be observed. In order to obtain measurable effects, both the corrosion process must be increased and the background concentration must be reduced. Tests with Ti-free clay material at increased temperature are still ongoing and will hopefully enable identification of reacted Ti species. (authors)

  14. Swelling and sedimentation of bentonite clays in bulk and in slits: nuclear magnetic resonance spectroscopy and imaging studies

    International Nuclear Information System (INIS)

    Dvinskikh, S.V.; Furo, I.; Neretnieks, I.

    2010-01-01

    Document available in extended abstract form only. Compacted bentonite clay is currently attracting attention as a promising 'self-sealing' buffer material to build in-ground barriers for the encapsulation of radioactive waste. It is expected to fill up the space between waste canister and surrounding ground by swelling and thus delay flow and migration from the host rock to the canister. Evaluation and understanding of the swelling properties of pre-compacted bentonite are of uttermost importance for designing such buffers. The major goal of our studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during different physical processes in an aqueous environment such as swelling, dissolution, and sedimentation on the time scale from minutes to years. The propagation of the swelling front during clay expansion depending on the geometry of the confining space was also studied. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. The distribution and displacement within the bentonite systems of foreign particles, either natural ones (sand or quartz) or artificially admixed model particles of controlled size were also monitored. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Magnetic resonance imaging and nuclear magnetic resonance spectroscopy were adapted and used as main experimental techniques. With this approach, spatially resolved movement of the clay/water interface as well as clay particle distributions in gel phase can be monitored. Bulk samples with swelling in a vertical tube and in a horizontal channel were investigated and clay content distribution profiles in the concentration range over five orders of magnitude and with sub-millimetre spatial resolution were

  15. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  16. Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone−ethylene glycol blends

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The dielectric dispersion behaviour of montmorillonite (MMT clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone-ethylene glycol (PVP-EG blends were investigated over the frequency range 20 Hz to 1 MHz at 30°C. The 0, 1, 2, 3, 5 and 10 wt% MMT clay concentration of the weight of total solute (MMT+PVP were prepared in PVP-EG blends using EG as solvent. The complex relative dielectric function, alternating current (ac electrical conductivity, electric modulus and impedance spectra of these materials show the relaxation processes corresponding to the micro-Brownian motion of PVP chain, ion conduction and electrode polarization phenomena. The real part of ac conductivity spectra of these materials obeys Jonscher power law σ′(ω =σdc + Aωn in upper frequency end of the measurement, whereas dispersion in lower frequency end confirms the presence of electrode polarization effect. It was observed that the increase of clay concentration in the PVP-EG blends significantly increases the ac conductivity values, and simultaneously reduces the ionic conductivity relaxation time and electric double layer relaxation time, which suggests that PVP segmental dynamics and ionic motion are strongly coupled. The intercalation of EG structures in clay galleries and exfoliation of clay sheets by adsorption of PVP-EG structures on clay surfaces are discussed by considering the hydrogen bonding interactions between the hydroxyl group (–OH of EG molecules, carbonyl group (C=O of PVP monomer units, and the hydroxylated aluminate surfaces of the MMT clay particles. Results suggest that the colloidal suspension of MMT clay nano particles in the PVP-EG blends provide a convenient way to obtain an electrolyte solution with tailored electrical conduction properties.

  17. A spectrometer for submicron particles

    International Nuclear Information System (INIS)

    Pourprix, M.

    1995-01-01

    The electrostatic spectrometer for aerosol particles, is composed of two coaxial parallel conductive disks between which an electric field is established; an annular slot in the first disk allows for the atmosphere air intake. Suction and injection systems, and a third intermediate conductive disk are used to carry out a dynamic confinement that allows for the separation of particles having various electronic mobility and the determination of the suspended particle size distribution. Application to aerosol size spectrum determination and air quality monitoring

  18. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  19. Research of Deformation of Clay Soil Mixtures Mixtures

    OpenAIRE

    Romas Girkontas; Tadas Tamošiūnas; Andrius Savickas

    2014-01-01

    The aim of this article is to determine clay soils and clay soils mixtures deformations during drying. Experiments consisted from: a) clay and clay mixtures bridges (height ~ 0,30 m, span ~ 1,00 m); b) tiles of clay and clay, sand and straw (height, length, wide); c) cylinders of clay; clay and straw; clay, straw and sand (diameter; height). According to the findings recommendations for clay and clay mixtures drying technology application were presented. During the experiment clay bridge bear...

  20. Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla

    International Nuclear Information System (INIS)

    Madrid, F.; Diaz-Barrientos, E.; Madrid, L.

    2008-01-01

    The availability of Cd, Cr, Cu, Ni, Mn, Pb and Zn present in the finest size particles of urban soils is studied by comparing the concentrations in the clay fraction with those extracted from the whole soil by either single-extraction or sequential extraction method. Many metals are preferentially present in the finest particles as compared to coarser fractions. This is true for most metals studied, except Mn and, perhaps, Cd. Those metals present in the clay fraction are often in easily bio-accessible forms, especially Cu, Pb and Zn. The results suggest that bio-accessible forms of these three metals are distributed among the three sequential fractions, and even the fraction considered as 'residual' is also bio-accessible to a significant extent. The statistical analysis shows some distinctions among metals that are compared to the 'urban', 'natural', or intermediate behaviour of the various metals as proposed earlier in the literature. - The recreational use of most urban soils causes that the availability of metals in the finest soil particles must be studied and eventually controlled

  1. CFD Modelling and Experimental Testing of Thermal Calcination of Kaolinite Rich Clay Particles - An Effort towards Green Concrete

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay

    Cement industry is one of the major industrial emitters of greenhouse gases, generating 5-7% of the total anthropogenic CO2 emissions. Consequently, use of supplementary cementitious materials (SCM) to replace part of the CO2-intensive cement clinker is an attractive way to mitigate CO2 emissions...... from cement industry. SCMs based on industrial byproducts like fly ashes and slags are subject to availability problems. Yet clays are the most ubiquitous material on earth's crust. Thus, properly calcined clays are a very promising candidate for SCMs to produce green cements. Calcination...... property of the calcined clay material, among which is the density of calcines. By using the variation in density of calcines, an optimum residence time has been marked. At this time the calcines display a minimum density that corresponds to the most dehydroxylated calcines. The behavior of flash calcined...

  2. Suspended ceilings

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, C.

    1991-05-01

    The retrofitting of existing conventional ceiling systems to suspended ceiling type systems represents an interesting energy savings solution since this method, in addition to providing additional protection against space heat loss and thermal bridges, also creates the possibility of housing, in the void, additional mechanical and electrical lines which may be necessary due to other savings interventions. This paper reviews the various suspended ceiling systems (e.g., those making use of mineral fibre, gypsum panels, wood, vermiculite, etc.) currently marketed in Europe, and reports, for each, some key technical, economic and architectural advantages which include thermal efficiency, noise abatement, as well as, resistance to fire and humidity. Information is also given on the relative installation and maintenance requirements.

  3. Technetium migration in Boom Clay - Assessing the role of colloid-facilitated transport in a deep clay formation

    International Nuclear Information System (INIS)

    Bruggeman, C.; Martens, E.; Maes, N.; Jacops, E.; Van Gompel, M.; Van Ravestyn, L.

    2010-01-01

    Document available in extended abstract form only. The role of colloids - mainly dissolved natural organic matter (NOM, 50-150 mg/l) - in the transport of radionuclides in the Boom Clay formation (Mol, Belgium), has long since been a matter of (heavy) debate. For more than 20 years, batch experiments with Boom Clay suspensions showed a pronounced influence of the dissolved organic carbon concentration on the aqueous concentrations of different radionuclides like Tc, Np, Am and U. Moreover, small fractions of these radionuclides were also observed to elute almost un-retarded out of confined clay cores in percolation experiments. In the past years, a new conceptual model for the speciation of the long-lived fission product Technetium- 99 ( 99 Tc) under Boom Clay conditions has been drafted. In brief, the stable oxidation state of 99 Tc in these conditions is +IV, and, therefore, Tc solution concentrations are limited by the solubility of TcO 2 .nH 2 O(s). However, during reduction of TcVII (in the TcO 4 - form) to TcIV, precursor TcO 2 .nH 2 O colloids are formed, which are stabilised by the dissolved organic matter present in Boom Clay interstitial pore water, and in supernatants of Boom Clay batch suspensions. Moreover, this stabilisation process occurs in such a systematic way, that (conditional) interaction constants could be established, and the behaviour was described as a 'hydrophobic sorption', or, more accurately, a 'colloid-colloid' interaction. This conceptual model was implemented into PHREEQC geochemical and Hydrus transport code to come to a reactive transport model that was used to simulate both the outflow and the tracer profile in several long-term running percolation experiments (both in lab and under in situ conditions). To account for slow dissociation kinetics of Tc from the NOM colloid, a first-order kinetic rate equation was also added to the model. In order to describe the migration of colloidal particles (NOM), an

  4. Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2016-02-01

    Full Text Available In spite of the resurgence in ice nucleation research a comparatively small number of studies deal with the phenomenon of pre-activation in heterogeneous ice nucleation. Fifty years ago, it was shown that various mineral dust and volcanic ash particles can be pre-activated to become nuclei for ice crystal formation even at temperatures as high as 270–271 K. Pre-activation was achieved under ice-subsaturated conditions without any preceding macroscopic ice growth by just temporarily cooling the particles to temperatures below 228 K. A two-step mechanism involving capillary condensation of supercooled water and subsequent homogeneous freezing was proposed to account for the particles' enhanced ice nucleation ability at high temperatures. This work reinvestigates the efficiency of the proposed pre-activation mechanism in temperature-cycling experiments performed in a large cloud chamber with suspended particles. We find the efficiency to be highest for the clay mineral illite as well as for highly porous materials like zeolite and diatomaceous earth, whereas most aerosols generated from desert dust surface samples did not reveal a measurable pre-activation ability. The pre-activation efficiency is linked to particle pores in a certain size range. As estimated by model calculations, only pores with diameters between about 5 and 8 nm contribute to pre-activation under ice-subsaturated conditions. This range is set by a combination of requirements from the negative Kelvin effect for condensation and a critical size of ice embryos for ice nucleation and melting. In contrast to the early study, pre-activation is only observed for temperatures below 260 K. Above that threshold, the particles' improved ice nucleation ability disappears due to the melting of ice in the pores.

  5. Study of the chemo-hydro-mechanical behavior of stiff clays in the context of radioactive waste disposal

    International Nuclear Information System (INIS)

    Nguyen, Xuan Phu

    2013-01-01

    The present research aims to understand the chemo-hydro-mechanical behavior of stiff clays through two geological formations, the Boom Clay and the Ypresian clays which are considered as possible host formations for the radioactive wastes disposal in Belgium. The volume change behavior was studied in both intact and reconstituted states, and under different conditions: under K0 and isotropic loading, under loading/unloading loops. The results show that the volume change behavior is governed by the competition between the physico-chemical effect and the mechanical effect, characterized by a threshold stress which corresponds to the swelling stress in terms of structure changes. A constitutive law was developed to capture this aspect. The permeability was determined, compared with the results in literature and correlated with the parameters as void ratio. The permeability variation with depth shows the important role of macro-pores in fluids' transfer. The volume change behavior and permeability of intact Boom Clay and Ypresian clays are also influenced by pore water chemical composition changes which modify the diffuse double layer and give rise to the aggregation of clay particles. The elastic parameters, yield curve and failure envelope of Boom Clay and Ypresian clays were identified. A conceptual elasto-plastic model was developed, accounting for the swelling effects and the competition between the physico-chemical effect and the mechanical effect. (author)

  6. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments.

    Science.gov (United States)

    Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E

    2018-04-11

    In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  8. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  9. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  10. Automatic high-sensitivity control of suspended pollutants in drinking and natural water

    Science.gov (United States)

    Akopov, Edmund I.; Karabegov, M.; Ovanesyan, A.

    1993-11-01

    This article presents a description of the new instrumental method and device for automatic measurement of water turbidity (WT) by means of photoelectron flow ultramicroscope (PFU). The method presents the WT determination by measuring the number concentration (number of particles suspended in 1 cm3 of water under study) using the PFU and demonstrates much higher sensitivity and accuracy in comparison with the usual methods--turbidimetry and nephelometry.

  11. Advanced clay nanocomposites based on in situ photopolymerization utilizing novel polymerizable organoclays

    Science.gov (United States)

    Kim, Soon Ki

    Polymer nanocomposite technology has had significant impact on material design. With the environmental advantages of photopolymerization, a research has recently focused on producing nanocomposites utilizing inexpensive clay particles based on in situ photopolymerization. In this research, novel polymerizable organoclays and thiol-ene photopolymerization have been utilized to develop advanced photopolymer clay nanocomposites and to overcome several limitations in conventional free radical photopolymers. To this end, factors important in nanocomposite processes such as monomer composition, clay dispersion, and photopolymerization behavior in combination with the evolution of ultimate nanocomposite properties have been investigated. For monomer-organoclay compositions, higher chemical compatibility of components induces enhanced clay exfoliation, resulting in photopolymerization rate increases due to an amplified clay template effect. Additionally, by affecting the stoichiometric ratio between thiol and acrylate double bond in the clay gallery, thiolated organoclays enhance thiol-ene copolymerization with increased final thiol conversion while acrylated organoclays encourage acrylate homopolymerization. In accordance with the reaction behavior, incorporation of thiolated organoclays makes polymer chains more flexible with decreased glass transition temperature due to higher formation of thio-ether linkages while adding acrylated organoclays significantly increases the modulus. Photopolymer nanocomposites also help overcome two major drawbacks in conventional free radical photopolymerization, namely severe polymerization shrinkage and oxygen inhibition during polymerization. With addition of a low level of thiol monomers, the oxygen inhibition in various acrylate systems can be overcome by addition of only 5wt% thiolated organoclay. The same amount of polymerizable organoclay also induces up to 90% decreases in the shrinkage stress for acrylate or thiol

  12. Aspects of clay/concrete interactions

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Dixon, D.A.; Onofrei, M.

    1997-01-01

    In the Canadian concept for nuclear fuel waste management, both clay-based materials and concrete are proposed for use as barriers, seals or supporting structures. The main concern when clays and concrete are in proximity is the generation of a high-pH environment by concrete since clay minerals are relatively unstable at high pH. Here we examine the OH - -generating capacity of two high-performance concretes when in contact with several solutions. We also investigate various aspects of claylconcrete interactions. They are: (1) the alkalimetric titration of clay suspensions, (2) the effect of Ca(OH) 2 (portlandite) on the swelling and hydraulic properties of compacted bentonite, and (3) the influence of cement grout on a backfill clay retrieved from the 900-d Buffer/Container Experiment at the Underground Research Laboratory of AECL. The results indicate that although high-performance concretes establish significantly lower poresolution pH (9 to 10) than does ordinary portland cement, the pH is still somewhat higher than that of clay/groundwater systems of about pH 8. Hence, even if high-performance concrete is used in a disposal vault, the potential still exists for clay minerals to alter over long periods of time if in contact with this concrete. The data show, however, that clays have a substantial buffering capacity, and clay-based barriers can thus neutralize much of the OH - potentially released from concrete in a vault. Moreover, even after reacting for 120 d at 85 o C with up to 5 wt.% Ca(OH) 2 , compacted bentonite (dry density = 1.2 Mg/m 3 ) retains much of its swelling capacity and has a permeability low enough (hydraulic conductivity ≤ 10 -11 m/s) to ensure that molecular diffusion will be the main transport mechanism through compacted clay-based barriers. Furthermore, according to X-ray diffractometry, the clay mineral component of backfill was not altered by contact with a cement grout for 900 d in the Buffer/Container Experiment

  13. Investigation of mineral composition of differently treated devonian, quaternary and triassic clays of Latvia

    International Nuclear Information System (INIS)

    Kosorukovs, A.; Viss, R.

    1999-01-01

    Clayey fractions (particle size less than 5 μm )of the Latvian Devonian (Kuprava and Liepa deposits), Quaternary (Laza and Ugale deposits) and Triassic (Akmene deposit, Republic of Lithuania) clays have been obtained. The clayey fractions were converted in the form in which all the cations were exchanged for magnesium ions. After the ion exchange the fractions were treated with dimethyl sulfoxide or glycerol in the course for two days, one sample being subjected to thermal treatment at 550±110 C for two hours. Diffractograms for the treated samples have been obtained using a DRON-2,0 diffractometer (Co-radiation). Analysis of the obtained diffractograms show that: 1) the main clayey minerals of the Devonian clays occur to be hydromicas (mainly hydromuscovite) containing admixtures of kaolinite and quartz; 2) the main clayey minerals of the Quarternary clays also occur to be hydromicas - mixtures of hydrobiotite and hydromuscovite containing admixtures of kaolinite and iron-containing chlorite; 3) smectite occurs to be the main mineral of the Triassic clay; it contains admixtures of hydromica and chlorite; 4) the Triassic and Quaternary clays contain fine- and coarse-grained carbonates, mainly calcite, in quantities of 10-16%; 5) iron and titanium are included in fine grained minerals. (author)

  14. Suspended Solids Profiler Shop Test Report

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly

  15. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  16. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  17. Columns in Clay

    Science.gov (United States)

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  18. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    Directory of Open Access Journals (Sweden)

    Kim Jinwook

    2009-01-01

    Full Text Available Abstract Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu. Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans.

  19. Elemental Spatiotemporal Variations of Total Suspended Particles in Jeddah City

    Directory of Open Access Journals (Sweden)

    Mohammad W. Kadi

    2014-01-01

    Full Text Available Elements associated with total suspended particulate matter (TSP in Jeddah city were determined. Using high-volume samplers, TSP samples were simultaneously collected over a one-year period from seven sampling sites. Samples were analyzed for Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As, and Sr. Results revealed great dependence of element contents on spatial and temporal variations. Two sites characterized by busy roads, workshops, heavy population, and heavy trucking have high levels of all measured elements. Concentrations of most elements at the two sites exhibit strong spatial gradients and concentrations of elements at these sites are higher than other locations. The highest concentrations of elements were observed during June–August because of dust storms, significant increase in energy consumption, and active surface winds. Enrichment factors of elements at the high-level sites have values in the range >10~60 while for Cu and Zn the enrichment factors are much higher (~0–>700 indicating that greater percentage of TSP composition for these three elements in air comes from anthropogenic activities.

  20. Fast inertial particle manipulation in oscillating flows

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2017-05-01

    It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.

  1. Characterisation of urban catchment suspended particulate matter (Auckland region, New Zealand); a comparison with non-urban SPM

    International Nuclear Information System (INIS)

    Bibby, Rebecca L.; Webster-Brown, Jenny G.

    2005-01-01

    Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO 4 concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K D =[Me SPM ]/[Me DISS ]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non

  2. Understanding ice nucleation characteristics of selective mineral dusts suspended in solution

    Science.gov (United States)

    Kumar, Anand; Marcolli, Claudia; Kaufmann, Lukas; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Introduction & Objectives Freezing of liquid droplets and subsequent ice crystal growth affects optical properties of clouds and precipitation. Field measurements show that ice formation in cumulus and stratiform clouds begins at temperatures much warmer than those associated with homogeneous ice nucleation in pure water, which is ascribed to heterogeneous ice nucleation occurring on the foreign surfaces of ice nuclei (IN). Various insoluble particles such as mineral dust, soot, metallic particles, volcanic ash, or primary biological particles have been suggested as IN. Among these the suitability of mineral dusts is best established. The ice nucleation ability of mineral dust particles may be modified when secondary organic or inorganic substances are accumulating on the dust during atmospheric transport. If the coating is completely wetting the mineral dust particles, heterogeneous ice nucleation occurs in immersion mode also below 100 % RH. A previous study by Kaufmann (PhD Thesis 2015, ETHZ) with Hoggar Mountain dust suspensions in various solutes (ammonium sulfate, PEG, malonic acid and glucose) showed reduced ice nucleation efficiency (in immersion mode) of the particles. Though it is still quite unclear of how surface modifications and coatings influence the ice nucleation activity of the components present in natural dust samples. In view of these results we run freezing experiments using a differential scanning calorimeter (DSC) with the following mineral dust particles suspended in pure water and ammonium sulfate solutions: Arizona Test Dust (ATD), microcline, and kaolinite (KGa-2, Clay Mineral Society). Methodology Suspensions of mineral dust samples (ATD: 2 weight%, microcline: 5% weight, KGa-2: 5% weight) are prepared in pure water with varying solute concentrations (ammonium sulfate: 0 - 10% weight). 20 vol% of this suspension plus 80 vol% of a mixture of 95 wt% mineral oil (Aldrich Chemical) and 5 wt% lanolin (Fluka Chemical) is emulsified with a

  3. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  4. Intranasal inoculation of white-tailed deer (Odocoileus virginianus with lyophilized chronic wasting disease prion particulate complexed to montmorillonite clay.

    Directory of Open Access Journals (Sweden)

    Tracy A Nichols

    Full Text Available Chronic wasting disease (CWD, the only known prion disease endemic in wildlife, is a persistent problem in both wild and captive North American cervid populations. This disease continues to spread and cases are found in new areas each year. Indirect transmission can occur via the environment and is thought to occur by the oral and/or intranasal route. Oral transmission has been experimentally demonstrated and although intranasal transmission has been postulated, it has not been tested in a natural host until recently. Prions have been shown to adsorb strongly to clay particles and upon oral inoculation the prion/clay combination exhibits increased infectivity in rodent models. Deer and elk undoubtedly and chronically inhale dust particles routinely while living in the landscape while foraging and rutting. We therefore hypothesized that dust represents a viable vehicle for intranasal CWD prion exposure. To test this hypothesis, CWD-positive brain homogenate was mixed with montmorillonite clay (Mte, lyophilized, pulverized and inoculated intranasally into white-tailed deer once a week for 6 weeks. Deer were euthanized at 95, 105, 120 and 175 days post final inoculation and tissues examined for CWD-associated prion proteins by immunohistochemistry. Our results demonstrate that CWD can be efficiently transmitted utilizing Mte particles as a prion carrier and intranasal exposure.

  5. Current-use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements.

    Science.gov (United States)

    Bereswill, Renja; Streloke, Martin; Schulz, Ralf

    2013-06-01

    The European Union's directive for sustainable use of pesticides requires implementing risk mitigation measures at streams threatened by pesticide entries. The need for mitigation measures was investigated at 10 stream sites within an intensively used arable region in central Germany by characterizing pesticide exposure following edge-of-field runoff and effects on the aquatic macroinvertebrates. Moreover, the influence of riparian buffer strip width (as a mitigation measure) at the sampling sites was considered. Generally, invertebrate fauna was dominated by pesticide-tolerant species, suggesting a high pesticide exposure at almost all sites. This result is also reflected by the elevated levels of suspended particle contamination in terms of toxic units (logTUMax  > -2), corresponding to one-hundredth of the median lethal concentration (LC50) to Daphnia magna. At two sites that received high aqueous-phase entries of the pyrethroid lambda-cyhalothrin (logTUMax  > -0.6), the abundance and number of sensitive species in terms of the species at risk index decreased during the pesticide application period. In contrast, no acute significant negative effects on macroinvertebrates were observed at sites characterised by low water-phase toxicity (logTUMax  < -3.5). An influence of riparian buffer strip width on pesticide exposure was not observed, supposedly because of the presence of erosion rills and ephemeral ditches. In conclusion, results show that mitigation measures (such as the improvement of currently present riparian buffer strips) are needed in the study area. Copyright © 2013 SETAC.

  6. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    Science.gov (United States)

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Thixotropic Properties of Latvian Illite Containing Clays

    OpenAIRE

    Lakevičs, Vitālijs; Stepanova, Valentīna; Niedra, Santa; Dušenkova, Inga; Ruplis, Augusts

    2015-01-01

    Thixotropic properties of Latvian Devonian and Quaternary clays were studied. Dynamic viscosity of the water clay suspensions were measured with a rotating viscometer. Influence of concentration, pH and modifiers on the thixotropic clay properties was analyzed. It was found that Latvian clays have thixotropic properties. Stability of clay suspensions is described with the thixotropy hysteresis loop. Increasing the speed of the viscometer rotation, dynamic viscosity of the clay suspension decr...

  8. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  9. Electrochemical remediation of the phenol contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Lazareva, E.V. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study phenol migration induced by electric current is multiple analyze, because determine the governing factor of electrokinetic remediation is one more problem. The governing factor of phenol removal can be electroosmotic water transport, ionic migration or phenol destruction caused by electrolysis or oxidizing agents. Therefore research objective was study mechanism of removal phenol from soils with different mineral composition. To answer on set issue should be studied the effectiveness of electrochemcial remediation for contaminated soil and determination electrokinetic characteristics of interaction clay's particles with phenol solution. (orig.)

  10. Estimation of suspended sediment concentration in rivers using acoustic methods.

    Science.gov (United States)

    Elçi, Sebnem; Aydin, Ramazan; Work, Paul A

    2009-12-01

    Acoustic Doppler current meters (ADV, ADCP, and ADP) are widely used in water systems to measure flow velocities and velocity profiles. Although these meters are designed for flow velocity measurements, they can also provide information defining the quantity of particulate matter in the water, after appropriate calibration. When an acoustic instrument is calibrated for a water system, no additional sensor is needed to measure suspended sediment concentration (SSC). This provides the simultaneous measurements of velocity and concentration required for most sediment transport studies. The performance of acoustic Doppler current meters for measuring SSC was investigated in different studies where signal-to-noise ratio (SNR) and suspended sediment concentration were related using different formulations. However, these studies were each limited to a single study site where neither the effect of particle size nor the effect of temperature was investigated. In this study, different parameters that affect the performance of an ADV for the prediction of SSC are investigated. In order to investigate the reliability of an ADV for SSC measurements in different environments, flow and SSC measurements were made in different streams located in the Aegean region of Turkey having different soil types. Soil samples were collected from all measuring stations and particle size analysis was conducted by mechanical means. Multivariate analysis was utilized to investigate the effect of soil type and water temperature on the measurements. Statistical analysis indicates that SNR readings ob tained from the ADV are affected by water temperature and particle size distribution of the soil, as expected, and a prediction model is presented relating SNR readings to SSC mea surements where both water temperature and sediment characteristics type are incorporated into the model. The coefficients of the suggested model were obtained using the multivariate anal ysis. Effect of high turbidity

  11. Acoustic measurement of suspensions of clay and silt particles using single frequency attenuation and backscatter

    Science.gov (United States)

    The use of ultrasonic acoustic technology to measure the concentration of fine suspended sediments has the potential to greatly increase the temporal and spatial resolution of sediment measurements while reducing the need for personnel to be present at gauging stations during storm events. The conv...

  12. The treatment and purification of wool and mohair scouring wastes- a survey

    CSIR Research Space (South Africa)

    Mozes, TE

    1982-08-01

    Full Text Available fraction of suspended dirt of inorganic nature (hereafter called 'sus- pended solids') in the scouring wastes includes predominantly sand and dust particles originally on the fibre. These clay particles, varying within a wide range of sizes, have been.... In practice, however, the grease was of poor quality and still contained a large amount of dirt. Potassium recovery failed completely because, as we now know, the centrifuges could not remove alI the grease from the emulsion and the subsequent calcining...

  13. What makes a natural clay antibacterial?

    Science.gov (United States)

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Natural clays have been used in ancient and modern medicine, but the mechanism(s) that make certain clays lethal against bacterial pathogens has not been identified. We have compared the depositional environments, mineralogies, and chemistries of clays that exhibit antibacterial effects on a broad spectrum of human pathogens including antibiotic resistant strains. Natural antibacterial clays contain nanoscale (2+ solubility.

  14. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho [Univ. of Suwon, Hwaseong (Korea, Republic of); Lee, Young Chul [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2016-02-15

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

  15. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    International Nuclear Information System (INIS)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho; Lee, Young Chul

    2016-01-01

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites

  16. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites; Caracterizacao estrutural de argilas bentoniticas para utilizacao como nanocargas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera, E-mail: carlosivanr@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Silva, Ana Lucia Nazareth da [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano; Bertolino, Luiz Carlos [Centro de Tecnologia Mineral (CETEM/MCTI), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  17. Clay Portrait Boxes

    Science.gov (United States)

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  18. Clay matrix voltammetry

    International Nuclear Information System (INIS)

    Perdicakis, Michel

    2012-01-01

    Document available in extended abstract form only. In many countries, it is planned that the long life highly radioactive nuclear spent fuel will be stored in deep argillaceous rocks. The sites selected for this purpose are anoxic and satisfy several recommendations as mechanical stability, low permeability and low redox potential. Pyrite (FeS 2 ), iron(II) carbonate, iron(II) bearing clays and organic matter that are present in very small amounts (about 1% w:w) in soils play a major role in their reactivity and are considered today as responsible for the low redox potential values of these sites. In this communication, we describe an electrochemical technique derived from 'Salt matrix voltammetry' and allowing the almost in-situ voltammetric characterization of air-sensitive samples of soils after the only addition of the minimum humidity required for electrolytic conduction. Figure 1 shows the principle of the developed technique. It consists in the entrapment of the clay sample between a graphite working electrode and a silver counter/quasi-reference electrode. The sample was previously humidified by passing a water saturated inert gas through the electrochemical cell. The technique leads to well-defined voltammetric responses of the electro-active components of the clays. Figure 2 shows a typical voltammogram relative to a Callovo-Oxfordian argillite sample from Bure, the French place planned for the underground nuclear waste disposal. During the direct scan, one can clearly distinguish the anodic voltammetric signals for the oxidation of the iron (II) species associated with the clay and the oxidation of pyrite. The reverse scan displays a small cathodic signal for the reduction of iron (III) associated with the clay that demonstrates that the majority of the previously oxidized iron (II) species were transformed into iron (III) oxides reducible at lower potentials. When a second voltammetric cycle is performed, one can notice that the signal for iron (II

  19. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating ...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  20. Clay mineralogy, strontium and neodymium isotope ratios in the sediments of two High Arctic catchments (Svalbard)

    Science.gov (United States)

    Hindshaw, Ruth S.; Tosca, Nicholas J.; Piotrowski, Alexander M.; Tipper, Edward T.

    2018-03-01

    The identification of sediment sources to the ocean is a prerequisite to using marine sediment cores to extract information on past climate and ocean circulation. Sr and Nd isotopes are classical tools with which to trace source provenance. Despite considerable interest in the Arctic Ocean, the circum-Arctic source regions are poorly characterised in terms of their Sr and Nd isotopic compositions. In this study we present Sr and Nd isotope data from the Paleogene Central Basin sediments of Svalbard, including the first published data of stream suspended sediments from Svalbard. The stream suspended sediments exhibit considerable isotopic variation (ɛNd = -20.6 to -13.4; 87Sr / 86Sr = 0.73421 to 0.74704) which can be related to the depositional history of the sedimentary formations from which they are derived. In combination with analysis of the clay mineralogy of catchment rocks and sediments, we suggest that the Central Basin sedimentary rocks were derived from two sources. One source is Proterozoic sediments derived from Greenlandic basement rocks which are rich in illite and have high 87Sr / 86Sr and low ɛNd values. The second source is Carboniferous to Jurassic sediments derived from Siberian basalts which are rich in smectite and have low 87Sr / 86Sr and high ɛNd values. Due to a change in depositional conditions throughout the Paleogene (from deep sea to continental) the relative proportions of these two sources vary in the Central Basin formations. The modern stream suspended sediment isotopic composition is then controlled by modern processes, in particular glaciation, which determines the present-day exposure of the formations and therefore the relative contribution of each formation to the stream suspended sediment load. This study demonstrates that the Nd isotopic composition of stream suspended sediments exhibits seasonal variation, which likely mirrors longer-term hydrological changes, with implications for source provenance studies based on fixed

  1. Clay Animals and Their Habitats

    Science.gov (United States)

    Adamson, Kay

    2010-01-01

    Creating clay animals and their habitats with second-grade students has long been one of the author's favorite classroom activities. Students love working with clay and they also enjoy drawing animal homes. In this article, the author describes how the students created a diorama instead of drawing their clay animal's habitat. This gave students…

  2. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  3. 21 CFR 186.1256 - Clay (kaolin).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Clay (kaolin). 186.1256 Section 186.1256 Food and... Substances Affirmed as GRAS § 186.1256 Clay (kaolin). (a) Clay (kaolin) Al2O3.2SiO2.nH2O, Cas Reg. No. 1332-58-7) consists of hydrated aluminum silicate. The commercial products of clay (kaolin) contain...

  4. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  5. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    Science.gov (United States)

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014

  6. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.

    2007-01-01

    be done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...... to the regions of maximum electric field, enabling accurate positioning of a nanotube by controlling the shape of the microelectrodes. The CNT bridges are deflected tens of nm when a DC voltage is applied between the nanotube and a gate microelectrode indicating that the clamping through the catalyst particles...... is not only mechanically stable but also electrical conducting. This method could be used to fabricate nanoelectromechanical systems based on suspended double clamped CNTs depending only on photolithography and standard Cleanroom processes....

  7. Conditions of concentration and composition of suspended load in the Vistula River between Wyszogród and Chełmno

    Science.gov (United States)

    Kaszubski, Michal

    2014-05-01

    The main objective of the study is to explain causes of variations of concentration, particle size distribution and composition of suspended load in the riverbed of the lower Vistula between Wyszogród and Chełmno. The study was conducted in seven bridge cross-sections (three above and four below the Włocławek reservoir). In each cross-section, three water samples were collected in the characteristic parts of the riverbed. Since July 2012 fifteen measurement series were carried out. During each measurement series 22 samples of water were collected. In each sample the overall concentration of suspended load, the proportion of the organic matter and particle size distribution of the mineral fraction were measured. Variation of concentration and characteristics of suspended load were studied both in the cross-sections of the Vistula riverbed and along its longitudinal profile. The study focus primarily on determining the qualitative and quantitative variation in the properties of suspended load in the cross-sections located in different morphological riverbed type, various level of its hydrotechnical management, including the operation on the Włocławek reservoir, and the diversity of the water flow conditions. The author tested the correlation occurring between the size of suspended load concentration as well as the flow rate and flow velocity at the water sampling sites. Moreover, the author determined the effect of morphological variation of the Vistula riverbed (the riverbed depth and the location of points of collecting water samples relative to the riverbed mesoforms) on the concentration size, composition structure and the particle size distribution of suspended load. Measurement sessions were chosen in such a way as to cover the widest possible spectrum of the water flow conditions in the riverbed of the Vistula. In addition to the low and medium flow the variability in concentration during flood flows of various types (ice jam, snowmelt and rainfall) were

  8. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    Science.gov (United States)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  9. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  10. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  11. A suspended boron foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  12. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    Science.gov (United States)

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  13. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay

  14. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  15. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  16. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    Science.gov (United States)

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A New Measure for Transported Suspended Sediment

    Science.gov (United States)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  18. Scaling of the space-time correlation function of particle currents in a suspension of hard-sphere-like particles: exposing when the motion of particles is Brownian.

    Science.gov (United States)

    van Megen, W; Martinez, V A; Bryant, G

    2009-12-18

    The current correlation function is determined from dynamic light scattering measurements of a suspension of particles with hard spherelike interactions. For suspensions in thermodynamic equilibrium we find scaling of the space and time variables of the current correlation function. This finding supports the notion that the movement of suspended particles can be described in terms of uncorrelated Brownian encounters. However, in the metastable fluid, at volume fractions above freezing, this scaling fails.

  19. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no rest...... as to handling of nanoparticles in lab-on-a-chip systems.......We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well...

  20. Clay shale as host rock. A geomechanical contribution about Opalinus clay

    International Nuclear Information System (INIS)

    Lempp, Christof; Menezes, Flora; Sachwitz, Simon

    2016-01-01

    The Opalinuston is a prominent rock representing the type of organic clay shales or clay stones within the sequence of Triassic and Jurassic marine sediments in Southern Germany. The rock forms a homogenous unit some ten meters thick. The degree of consolidation of this type of pelitic rock depends mainly on the former load conditions, but is also dependent on the long-term weathering and even on the present exposition. The geomechanical parameters such as shear strength, tensional strength and permeability vary with the state of consolidation and become important when the use is discussed of such rocks for radioactive waste disposal. A tunneling project at the northern escarpment of the Swabian Alb (Southwest Germany) within the Opalinus clay offered the rare opportunity to obtain fresh unweathered rock samples in greater amounts compared to fresh drilling cores from which geomechanical investigations are usually undertaken. Consequently, the results of geomechanical laboratory testings are presented in order to compare here the results of multistep triaxial compression tests, of hydraulic fracturing laboratory tests and of some other tests for rock characterization with the corresponding results of Opalinus clay sites in Switzerland that were investigated by the Swiss Nagra Company for host rock characterization. After a discussion of the relevant state of fresh Opalinus clay, especially of suction pressure conditions and saturation state, the results of triaxial shear tests are presented. Increasing shear deformation at increasing pressure and unchanged water saturation do not result in a significant strength reduction of the Opalinus clay. The rock shows increasing cohesion and stiffness, if multiple loading has repeatedly reached the failure point. Thus there is no increased permeability with continued shearing. Only at the beginning of the shearing process is a temporarily increased permeability to be expected due to dilatation processes. An increased