Sample records for suspended bilayer graphene

  1. Broken-Symmetry States and Divergent Resistance in Suspended Bilayer Graphene (United States)

    Feldman, Benjamin; Martin, Jens; Weitz, Thomas; Allen, Monica; Yacoby, Amir


    We report the fabrication of suspended bilayer graphene devices with very little disorder. Transport measurements at zero magnetic field indicate that charge inhomogeneity in these flakes reaches as low as 10^10 cm-2. We observe quantum Hall states that are fully quantized at a magnetic field of 0.2 T, as well as broken-symmetry states at intermediate filling factors ν = 0, ±1, ±2 and ±3. In the ν = 0 state, the resistance of the flakes increases exponentially with applied magnetic field and scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field and the extracted gap size is larger than expected from Zeeman splitting, indicating that the broken-symmetry states arise from many-body interactions and underscoring the importance of Coulomb interactions in bilayer graphene.

  2. Wavelength-Tunable IR Detector based on Suspended Bilayer Graphene Micro Ribbons (United States)


    high purity copper foil using a low pressure CVD furnace at 1000 oC in a hydrogen, argon and methane environment. Raman spectrum of the graphene ...characterized in Year One a device with suspended graphene microribbons, and found that fully suspended CVD -grown graphene devices are dominated by the...photoelectric effect, which is promising towards CVD -grown graphene photodetectors approaching THz cut-off frequencies. chemical vapor deposition, strain

  3. Thermal conductivity of twisted bilayer graphene. (United States)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L; Cocemasov, Alexandr I; Cai, Weiwei; Balandin, Alexander A; Chen, Shanshan


    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  4. Resistance noise in electrically biased bilayer graphene. (United States)

    Pal, Atindra Nath; Ghosh, Arindam


    We demonstrate that the low-frequency resistance fluctuations, or noise, in bilayer graphene are strongly connected to its band structure and display a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization, and screening properties of bilayer graphene.

  5. Tunable excitons in bilayer graphene (United States)

    Ju, Long; Wang, Lei; Cao, Ting; Taniguchi, Takashi; Watanabe, Kenji; Louie, Steven G.; Rana, Farhan; Park, Jiwoong; Hone, James; Wang, Feng; McEuen, Paul L.


    Excitons, the bound states of an electron and a hole in a solid material, play a key role in the optical properties of insulators and semiconductors. Here, we report the observation of excitons in bilayer graphene (BLG) using photocurrent spectroscopy of high-quality BLG encapsulated in hexagonal boron nitride. We observed two prominent excitonic resonances with narrow line widths that are tunable from the mid-infrared to the terahertz range. These excitons obey optical selection rules distinct from those in conventional semiconductors and feature an electron pseudospin winding number of 2. An external magnetic field induces a large splitting of the valley excitons, corresponding to a g-factor of about 20. These findings open up opportunities to explore exciton physics with pseudospin texture in electrically tunable graphene systems​.

  6. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara


    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  7. Temperature effect on plasmons in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Digish K., E-mail:; Sharma, A. C. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002, Gujarat (India); Ashraf, S. S. Z. [Physics Department, Faculty of Science, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh (India); Ambavale, S. K. [Vishwakarma Government Engineering College Chandkheda, Ahmedabad-382424, Gujarat (India)


    We have theoretically investigated the plasmon dispersion and damping rate of doped bilayer graphene (BLG) at finite temperatures within the random phase approximation. Our computed results on plasmon dispersion show that plasmon frequency enhances with increasing temperatures in contrast to single layer graphene where it is suppressed. This can be attributed to the fact that the dynamic response of the electron gas or screening in bilayer graphene is different from that of single layer graphene. Further the temperature effect on damping rate is also discussed.

  8. Coulomb center instability in bilayer graphene (United States)

    Oriekhov, D. O.; Sobol, O. O.; Gorbar, E. V.; Gusynin, V. P.


    In the low-energy two-band as well as four-band continuum models, we study the supercritical charge instability in gapped bilayer graphene in the field of an impurity charge when the lowest-energy bound state dives into the hole continuum. It is found that the screening effects are crucially important in bilayer graphene. If they are neglected, then the critical value for the impurity charge tends to zero as the gap Δ vanishes. If the screened Coulomb interaction is considered, then the critical charge tends to a finite value for Δ →0 . The different scalings of the kinetic energy of quasiparticles and the Coulomb interaction with respect to the distance to the charged impurity ensure that the wave function of the electron bound state does not shrink toward the impurity as its charge increases. This results in the absence of the fall-to-center phenomenon in bilayer graphene although the supercritical charge instability is realized.

  9. Excitonic superfluid phase in double bilayer graphene (United States)

    Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R.


    A spatially indirect exciton is created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite boson. Such excitons are long-lived, and in the limit of strong interactions are predicted to undergo a Bose-Einstein condensate-like phase transition into a superfluid ground state. Here, we report evidence of an exciton condensate in the quantum Hall effect regime of double-layer structures of bilayer graphene. Interlayer correlation is identified by quantized Hall drag at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry. A selection rule for the condensate phase is observed involving both the orbital and valley indices of bilayer graphene. Our results establish double bilayer graphene as an ideal system for studying the rich phase diagram of strongly interacting bosonic particles in the solid state.

  10. Optically induced Lifshitz transition in bilayer graphene (United States)

    Iorsh, I. V.; Dini, K.; Kibis, O. V.; Shelykh, I. A.


    It is shown theoretically that the renormalization of the electron energy spectrum of bilayer graphene with a strong high-frequency electromagnetic field (dressing field) results in the Lifshitz transition—the abrupt change in the topology of the Fermi surface near the band edge. This effect substantially depends on the polarization of the field: The linearly polarized dressing field induces the Lifshitz transition from the quadruply connected Fermi surface to the doubly connected one, whereas the circularly polarized field induces the multicritical point where the four different Fermi topologies may coexist. As a consequence, the discussed phenomenon creates a physical basis to control the electronic properties of bilayer graphene with light.

  11. Superconducting Calcium-Intercalated Bilayer Graphene. (United States)

    Ichinokura, Satoru; Sugawara, Katsuaki; Takayama, Akari; Takahashi, Takashi; Hasegawa, Shuji


    We report the direct evidence for superconductivity in Ca-intercalated bilayer graphene C6CaC6, which is regarded as the thinnest limit of Ca-intercalated graphite. We performed the electrical transport measurements with the in situ 4-point-probe method in ultrahigh vacuum under zero- or nonzero-magnetic field for pristine bilayer graphene, Li-intercalated bilayer graphene (C6LiC6) and C6CaC6 fabricated on SiC substrate. We observed that the zero-resistance state occurs in C6CaC6 with the onset temperature (T(c)(onset)) of 4 K, while the T(c)(onset) is gradually decreased upon applying the magnetic field. This directly proves the superconductivity origin of the zero resistance in C6CaC6. On the other hand, both pristine bilayer graphene and C6LiC6 exhibit nonsuperconducting behavior, suggesting the importance of intercalated atoms and its species to drive the superconductivity.

  12. Confinement of charge carriers in bilayer graphene

    NARCIS (Netherlands)

    Goossens, A.M.


    In this thesis we investigate the fundamental properties of electronic transport in bilayer graphene. We do this by confining electrons to narrow constrictions and small islands. Our key result is the fabrication and measurement of nanoscale devices that permit confinement with electric fields in

  13. Localized plasmons in bilayer graphene nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Xiao, Sanshui; Mortensen, N. Asger


    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially...

  14. Topological valley transport at bilayer graphene domain walls. (United States)

    Ju, Long; Shi, Zhiwen; Nair, Nityan; Lv, Yinchuan; Jin, Chenhao; Velasco, Jairo; Ojeda-Aristizabal, Claudia; Bechtel, Hans A; Martin, Michael C; Zettl, Alex; Analytis, James; Wang, Feng


    Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.

  15. Electrically Controllable Magnetism in Twisted Bilayer Graphene. (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo


    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  16. Potassium-doped n-type bilayer graphene (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka


    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  17. Ultrafast lithium diffusion in bilayer graphene (United States)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.


    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  18. Optomechanics for thermal characterization of suspended graphene (United States)

    Dolleman, Robin J.; Houri, Samer; Davidovikj, Dejan; Cartamil-Bueno, Santiago J.; Blanter, Yaroslav M.; van der Zant, Herre S. J.; Steeneken, Peter G.


    The thermal response of graphene is expected to be extremely fast due to its low heat capacity and high thermal conductivity. In this work, the thermal response of suspended single-layer graphene membranes is investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time τ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled τ , a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.

  19. Homogeneous bilayer graphene film based flexible transparent conductor


    Lee, Seunghyun; Lee, Kyunghoon; Liu, Chang-Hua; Zhong, Zhaohui


    Graphene is considered a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown...

  20. Measuring Interlayer Shear Stress in Bilayer Graphene. (United States)

    Wang, Guorui; Dai, Zhaohe; Wang, Yanlei; Tan, PingHeng; Liu, Luqi; Xu, Zhiping; Wei, Yueguang; Huang, Rui; Zhang, Zhong


    Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.

  1. Superlubricity in quasicrystalline twisted bilayer graphene (United States)

    Koren, Elad; Duerig, Urs


    The unique atomic positions in quasicrystals lead to peculiar self-similarity and fractal-like structural morphology. Accordingly, many of the material properties are supposed to manifest exceptional characteristics. In this Rapid Communication, we explain through numerical simulations the fundamental and peculiar aspects of quasicrystals wearless friction manifested in a 30° twisted bilayer graphene system. In particular, the sliding force exhibits a fractal structure with distinct area correlations due to the natural mixture between both periodic and aperiodic lateral modulations. In addition, zero power scaling of the sliding force with respect to the contact area is demonstrated for a geometric sequence of dodecagonal elements.

  2. Twisted bi-layer graphene: microscopic rainbows. (United States)

    Campos-Delgado, J; Algara-Siller, G; Santos, C N; Kaiser, U; Raskin, J-P


    Blue, pink, and yellow colorations appear from twisted bi-layer graphene (tBLG) when transferred to a SiO2 /Si substrate (SiO2 = 100 nm-thick). Raman and electron microscope studies reveal that these colorations appear for twist angles in the 9-15° range. Optical contrast simulations confirm that the observed colorations are related to the angle-dependent electronic properties of tBLG combined with the reflection that results from the layered structure tBLG/100 nm-thick SiO2 /Si. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Band structure mapping of bilayer graphene via quasiparticle scattering

    Directory of Open Access Journals (Sweden)

    Matthew Yankowitz


    Full Text Available A perpendicular electric field breaks the layer symmetry of Bernal-stacked bilayer graphene, resulting in the opening of a band gap and a modification of the effective mass of the charge carriers. Using scanning tunneling microscopy and spectroscopy, we examine standing waves in the local density of states of bilayer graphene formed by scattering from a bilayer/trilayer boundary. The quasiparticle interference properties are controlled by the bilayer graphene band structure, allowing a direct local probe of the evolution of the band structure of bilayer graphene as a function of electric field. We extract the Slonczewski-Weiss-McClure model tight binding parameters as γ0 = 3.1 eV, γ1 = 0.39 eV, and γ4 = 0.22 eV.

  4. Superconductivity in Ca-intercalated bilayer graphene (United States)

    Mazin, I. I.; Balatsky, A. V.


    Recent observation of proximity effect [H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, bf 446 (2007) p. 05555.] has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable T c . We find substantial and suggestive similarities between Ca-intercalated bilayer (C6CaC6), and CaC6, an established superconductor with T c = 11.5 K. In particular, the nearly free electron band, proven to be instrumental for superconductivity in intercalated graphites, does cross the chemical potential in (C6CaC6), despite the twice smaller doping level, satisfying the so-called "Cambridge criterion". Calculated properties of zone-center phonons are very similar to those of CaC6. This suggests that the critical temperature would probably be on the same scale as in CaC6.

  5. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding. (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming


    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers.

  6. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming


    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  7. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke


    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  8. Double quantum dots defined in bilayer graphene (United States)

    Żebrowski, D. P.; Peeters, F. M.; Szafran, B.


    Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding method and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on sublattices of the layers and that the ground-state wave-function components change from bonding to antibonding with the interdot distance. In the weak-coupling limit, the one most relevant for quantum dots defined electrostatically, the signatures of the interdot coupling include, for the two-electron ground state, formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high-energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other.

  9. Semiconducting behavior of substitutionally doped bilayer graphene (United States)

    Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek


    In the framework of the Green's functions approach, random tight-binding model and using the coherent potential approximation, electronic characteristics of the bilayer graphene are investigated by exploring various forms of substitutional doping of a single or both layers of the system by either boron and (or) nitrogen atoms. The results for displacement of the Fermi level resemble the behavior of acceptor or donor doping in a conventional semiconductor, dependent on the impurity type and concentration. The particular pattern of doping of just one layer with one impurity type is most efficient for opening a gap within the energy bands which could be tuned directly by impurity concentration. Doping both layers at the same time, each with one impurity type, leads to an anomaly whereby the gap decreases with increasing impurity concentration.

  10. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian


    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  11. Using bicellar mixtures to form supported and suspended lipid bilayers on silicon chips. (United States)

    Zeineldin, Reema; Last, Julie A; Slade, Andrea L; Ista, Linnea K; Bisong, Paul; O'Brien, Michael J; Brueck, S R J; Sasaki, Darryl Y; Lopez, Gabriel P


    Bicellar mixtures, planar lipid bilayer assemblies comprising long- and short-chain phosphatidylcholine lipids in suspension, were used to form supported lipid bilayers on flat silicon substrate and on nanotextured silicon substrates containing arrays of parallel troughs (170 nm wide, 380 nm deep, and 300 nm apart). Confocal fluorescence and atomic force microscopies were used to characterize the resulting lipid bilayer. Formation of a continuous biphasic undulating lipid bilayer membrane, where the crests and troughs corresponded to supported and suspended lipid bilayer regions, is demonstrated. The use of interferometric lithography to fabricate nanotexured substrates provides an advantage over other nanotextured substrates such as nanoporous alumina by offering flexibility in designing different geometries for suspending lipid bilayers.

  12. Influence of charge carriers on corrugation of suspended graphene (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.


    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  13. The Electromechanical Responses of Suspended Graphene Ribbons for Electrostatic Discharge Applications (United States)

    Zhang, Wei

    This dissertation presents a novel suspended graphene ribbon device for electrostatic discharge (ESD) applications. The device structure is proposed and fabricated after careful design considerations. Compared to the conventional ESD devices such as diodes, bipolar junction transistors (BJTs), and metal-oxide-semiconductor field-effect transistors (MOSFETs), the proposed device structure is believed to render several advantages including zero leakage, low parasitic effects, fast response, and high current carrying capability, etc. A process flow is developed for higher yield and reliability of the suspended graphene ribbon device which is very delicate in nature. Direct current (DC) and transmission-line pulse test (TLP) measurements are carried out to investigate the switch-on behavior of the device which is crucial for ESD protection. DC measurement with a different configuration is used to characterize the mechanical shape evolution of the graphene ribbon upon biasing. Finite Element Simulations are also conducted to verify the experimental results, which are in good agreements. Furthermore, the breakdown properties of graphene ribbons are tested using TLP. It is found that graphene has a better current drivability compared to copper wires which is widely used as interconnects in integrated circuits (ICs). Also, bi-layer graphene has a higher breakdown current than monolayer graphene which indicates that multilayer graphene should be superior in current discharging. Last, Ab inito calculations are carried out to study the growth mechanism of multilayer graphene which is needed for graphene homo-epitaxy with precise control. It is found that a carbon cluster with six carbon atoms has the smallest kinetic barrier thus largest surface diffusivity during surface diffusion. So it is believed to be the most favorable diffusing species for graphene homo-epitaxy.

  14. Chemical potential and tunneling in bilayer graphene using double bilayer graphene heterostructures (United States)

    Tutuc, Emanuel


    Vertical heterostructures consisting of atomic layers separated by insulators can open a window to explore the role of electron interaction in these materials, otherwise not accessible in single layer devices. We describe here one such heterostructure, consisting of two bilayer graphene flakes separated by a hexagonal boron-nitride dielectric. Using the top layer as a resistively detected Kelvin probe we map the chemical potential of the bottom bilayer graphene as a function of electron density, perpendicular magnetic field, and transverse electric field. At zero magnetic field the chemical potential reveals a strongly non-linear dependence on density, with an electric field induced energy gap at charge neutrality. The data allow a direct measurement of the electric field-induced bandgap at zero magnetic field, the orbital Landau level energies, and the broken symmetry quantum Hall state gaps in high magnetic fields. In samples where the two layers are rotationally aligned the interlayer tunneling current measured as a function of interlayer bias reveals a gate-tunable negative differential resistance thanks to momentum conserving tunneling. Remarkably, the resonance width has a weak temperature dependence in the range 1.5 K to 300 K. Work done in collaboration with K. Lee, B. Fallahazad, S. Kang, J. Xue, D. C. Dillen, K. Kim, L. F. Register, S. K. Banerjee, T. Taniguchi, and K. Watanabe. This work supported by the Office of Naval Research, the Nanoelectronics Research Initiative SWAN center, and Intel Corp.

  15. Curvatronics with bilayer graphene in an effective $4D$ spacetime

    CERN Document Server

    Cariglia, M; Perali, A


    We show that in AB stacked bilayer graphene low energy excitations around the semimetallic points are described by massless, four dimensional Dirac fermions. There is an effective reconstruction of the 4 dimensional spacetime, including in particular the dimension perpendicular to the sheet, that arises dynamically from the physical graphene sheet and the interactions experienced by the carriers. The effective spacetime is the Eisenhart-Duval lift of the dynamics experienced by Galilei invariant L\\'evy-Leblond spin $\\frac{1}{2}$ particles near the Dirac points. We find that changing the intrinsic curvature of the bilayer sheet induces a change in the energy level of the electronic bands, switching from a conducting regime for negative curvature to an insulating one when curvature is positive. In particular, curving graphene bilayers allows opening or closing the energy gap between conduction and valence bands, a key effect for electronic devices. Thus using curvature as a tunable parameter opens the way for t...

  16. Photovoltaic response time in dual-gated bilayer graphene (United States)

    Kim, M.-H.; Yan, J.; Suess, R. J.; Murphy, T.; Fuhrer, M. S.; Drew, H. D.


    The intrinsic thermal response timescale of bilayer graphene is sub nanosecond, due to cooling of hot electrons mediated by acoustic phonon emission. We compare the response times of the photovoltaic and bolometric response as a function of temperature and dual-gate voltages in a gapped bilayer graphene device using a pulse coincidence technique at 1.5 μm. We find that the photovoltaic and bolometric response time are identical and vary from 100 ps to 10 ps for temperatures from 3 K to 100 K. This result shows that the near IR photovoltaic response of bilayer graphene is thermal over this temperature range. This work was supported by IARPA, the ONR MURI program, and the NSF (grants DMR-0804976 and DMR-1105224), and in part by the NSF MRSEC (grant DMR-0520471).

  17. Electro-absorption of silicene and bilayer graphene quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Abdelsalam, Hazem, E-mail: [Laboratory of Condensed Matter Physics, University of Picardie, Amiens 80039 (France); Department of Theoretical Physics, National Research Center, Cairo 12622 (Egypt); Talaat, Mohamed H. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Lukyanchuk, Igor [Laboratory of Condensed Matter Physics, University of Picardie, Amiens 80039 (France); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); Portnoi, M. E. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Saroka, V. A., E-mail: [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, 220030 Minsk (Belarus)


    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  18. Topological Valley Transport at Bilayer Graphene Domain Walls (United States)


    thematerial infrared responses with ,40 nm spatial resolution . The AB- and BA-stacked bilayer graphene, being inversion symmetric to each other, have...2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 5 Figure 3c displays the electrical transport at 4K in a reference bilayer graphene device...local optical conductivity at infrared frequencies with,40nm spatial resolution . The infrared contrast of the domain wall arises from its different

  19. Current regulation of universal conductance fluctuations in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Liao Zhimin; Han Binghong; Zhou Yangbo; Zhao Qing; Yu Dapeng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Zhang Hongzhou, E-mail:, E-mail: [School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College, Dublin 2 (Ireland)


    We report experimental results on the universal conductance fluctuations (UCFs) in the bilayer graphene system. The UCF properties under different temperatures, magnetic fields and current bias were investigated. An anomalous current-dependent UCF was observed: the rms amplitude of the conductance fluctuations is inversely proportional to the current bias. The detailed physical mechanisms were discussed by involving the confined scattering of chiral fermions in graphene.

  20. Quantum Hall effect in multi-terminal suspended graphene devices (United States)

    Ghahari, Fereshte; Zhao, Yue; Bolotin, Kirill; Kim, Philip


    The integer and fractional quantum hall effects have been already observed in two terminal suspended graphene devices. However in this two probe device geometry, mixing between magnetoresistance ρxx and Hall resistance ρxy for incompletely developed quantum Hall states leads to substantial deviation of conductance plateaus values. In this talk, we present the experimental results from four terminal suspended graphene devices. The quality of quantum Hall effect will be discussed in muti-terminal device geometry in conjunction with the current-induced annealing process to improve the quality of graphene samples.

  1. Colorimetry Technique for Scalable Characterization of Suspended Graphene. (United States)

    Cartamil-Bueno, Santiago J; Steeneken, Peter G; Centeno, Alba; Zurutuza, Amaia; van der Zant, Herre S J; Houri, Samer


    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, noninvasive, and affordable way of characterizing suspended graphene devices. We exploit Newton's rings interference patterns to study the deformation of a double-layer graphene drum 13.2 μm in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged.

  2. Lattice-layer entanglement in Bernal-stacked bilayer graphene (United States)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.


    The complete lattice-layer entanglement structure of Bernal-stacked bilayer graphene is obtained for the quantum system described by a tight-binding Hamiltonian which includes mass and bias voltage terms. Through a suitable correspondence with the parity-spin S U (2 )⊗S U (2 ) structure of a Dirac Hamiltonian, when it brings up tensor and pseudovector external field interactions, the lattice-layer degrees of freedom can be mapped into such a parity-spin two-qubit basis which supports the interpretation of the bilayer graphene eigenstates as entangled ones in a lattice-layer basis. The Dirac Hamiltonian mapping structure simply provides the tools for the manipulation of the corresponding eigenstates and eigenenergies of the Bernal-stacked graphene quantum system. The quantum correlational content is then quantified by means of quantum concurrence, in order to have the influence of mass and bias voltage terms quantified, and in order to identify the role of the trigonal warping of energy in the intrinsic entanglement. Our results show that while the mass term actively suppresses the intrinsic quantum entanglement of bilayer eigenstates, the bias voltage term spreads the entanglement in the Brillouin zone around the Dirac points. In addition, the interlayer coupling modifies the symmetry of the lattice-layer quantum concurrence around a given Dirac point. It produces some distortion on the quantum entanglement profile which follows the same pattern of the isoenergy line distortion in the Bernal-stacked bilayer graphene.

  3. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng


    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  4. Electrochemical behavior of monolayer and bilayer graphene. (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W


    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  5. Measurements of Interaction-Driven States in Monolayer and Bilayer Graphene (United States)

    Feldman, Benjamin Ezekiel

    In materials systems with flat energy bands and limited disorder, interactions among electrons dominate and can dramatically alter physical behavior. Traditionally, two-dimensional electron gases (2DEGs) have offered excellent platforms to study these effects because the kinetic energy of the electrons is effectively quenched by a perpendicular magnetic field. The recent discovery of graphene, a two-dimensional form of carbon, has opened the door for further exploration into many-body phenomena. Graphene, unlike conventional 2DEGs, has fourfold degenerate electronic states due to its spin and valley degrees of freedom. This thesis describes several experiments that show how these underlying symmetries combine with electron-electron interactions to produce novel and tunable correlated electronic phases of matter. We perform transport measurements of bilayer graphene flakes that are suspended above the substrate to minimize disorder. The data reveal full lifting of the degeneracy of the lowest Landau level (LL) due to electron-electron interactions as well as insulating behavior at the charge neutrality point. Using a scanning single-electron transistor (SET) to measure the local electronic compressibility, we quantitatively explore these broken-symmetry quantum Hall states as a function of magnetic field. Surprisingly, the measurements also reveal a correlated phase at zero electric and magnetic field. When applied to suspended monolayer graphene, the high SET sensitivity and low disorder afforded by local measurements combine to reveal a multitude of fractional quantum Hall (FQH) states whose sequence differs from that in conventional 2DEGs. This unique pattern reflects the spin and valley degeneracies in graphene, and changing the magnetic field leads to a series of phase transitions between FQH states with different spin and/or valley polarization. We also perform compressibility measurements of a bilayer graphene sample on boron nitride that show an electron

  6. Performance comparison of ideal and defected bilayer graphene nanoribbon FETs (United States)

    Shamloo, Hassan; Faez, Rahim; Nazari, Atefeh


    Bilayer graphene has a zero bandgap as the same as monolayer graphene, and thus behaves like a semimetal. Recent studies have shown different methods for opening bandgap of bilayer graphene. One of the opening bandgap methods is using graphene nanoribbons. By applying a defect, there is more increase on band gap of a double-gated armchair bilayer (BL) graphene nanoribbon (GNR) field effect transistor (BLGNRFET). In this paper, a double-gated armchair BLGNRFET with one single vacancy (1SV) defect (so-called 1SVBLGNRFET) on top layer studied and compared with Ideal BLGNRFET (No defect). The results show that BLGNRFET with a single vacancy (SV) defect in one of layers (top layer) has a larger bandgap than Ideal BLGNRFET. The proposed new structure of BLGNRFET, which has one single vacancy defect in one of layers, shows that a defect in one of layers of BLGNRFET rarely affects the other layer of BLGNRFET. The proposed structure with one single vacancy (SV) defect (so-called 1SVBLGNRFET) has 94% larger (ION /IOFF ) ratio than (No defect) Ideal structure BLGNRFET but this increase of (ION /IOFF) ratio still remains insufficient for obtaining an acceptable (ION /IOFF) ratio in CMOS performance. The energy band structure of nanoribbon is obtained by using an approximation tight-binding (TB) method. Transfer characteristic of the transistor is calculated with Poisson-Schrodinger equation self-consistently by using Non- Equilibrium Green Function (NEGF) and in the real space approach.

  7. Bilayer graphene: physics and application outlook in photonics

    Directory of Open Access Journals (Sweden)

    Yan Hugen


    Full Text Available Layered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin materials can find their unique position and strength in this field. In this article, I will focus on one specific two dimensional material: bilayer graphene. Basic physics will be reviewed, such as band-gap opening, electron-phonon interaction, phonon-plasmon interaction and Fano resonances in the optical response. Moreover, I will review the application of bilayer graphene as a sensitive and fast photodetector. An outlook will be given in the final part of the paper.

  8. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo


    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  9. Splitting of Van Hove singularities in slightly twisted bilayer graphene (United States)

    Li, Si-Yu; Liu, Ke-Qin; Yin, Long-Jing; Wang, Wen-Xiao; Yan, Wei; Yang, Xu-Qin; Yang, Jun-Kai; Liu, Haiwen; Jiang, Hua; He, Lin


    A variety of new and interesting electronic properties have been predicted in graphene monolayer doped to Van Hove singularities (VHSs) of its density of state. However, tuning the Fermi energy to reach a VHS of graphene by either gating or chemical doping is prohibitively difficult, owing to their large energy distance (˜3 eV). This difficulty can be easily overcome in twisted bilayer graphene (TBG). By introducing a small twist angle between two adjacent graphene sheets, we are able to generate two low-energy VHSs arbitrarily approaching the Fermi energy. Here, we report experimental studies of electronic properties around the VHSs of a slightly TBG through scanning tunneling microscopy measurements. The split of the VHSs is observed and the spatial symmetry breaking of electronic states around the VHSs is directly visualized. These exotic results provide motivation for further theoretical and experimental studies of graphene systems around the VHSs.

  10. Surface-enhanced Raman scattering of suspended monolayer graphene (United States)

    Huang, Cheng-Wen; Lin, Bing-Jie; Lin, Hsing-Ying; Huang, Chen-Han; Shih, Fu-Yu; Wang, Wei-Hua; Liu, Chih-Yi; Chui, Hsiang-Chen


    The interactions between phonons and electrons induced by the dopants or the substrate of graphene in spectroscopic investigation reveal a rich source of interesting physics. Raman spectra and surface-enhanced Raman spectra of supported and suspended monolayer graphenes were measured and analyzed systemically with different approaches. The weak Raman signals are greatly enhanced by the ability of surface-enhanced Raman spectroscopy which has attracted considerable interests. The technique is regarded as wonderful and useful tool, but the dopants that are produced by depositing metallic nanoparticles may affect the electron scattering processes of graphene. Therefore, the doping and substrate influences on graphene are also important issues to be investigated. In this work, the peak positions of G peak and 2D peak, the I 2D/ I G ratios, and enhancements of G and 2D bands with suspended and supported graphene flakes were measured and analyzed. The peak shifts of G and 2D bands between the Raman and SERS signals demonstrate the doping effect induced by silver nanoparticles by n-doping. The I 2D/ I G ratio can provide a more sensitive method to carry out the doping effect on the graphene surface than the peak shifts of G and 2D bands. The enhancements of 2D band of suspended and supported graphenes reached 138, and those of G band reached at least 169. Their good enhancements are helpful to measure the optical properties of graphene. The different substrates that covered the graphene surface with doping effect are more sensitive to the enhancements of G band with respect to 2D band. It provides us a new method to distinguish the substrate and doping effect on graphene.

  11. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating. (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li


    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  12. Magnetic properties of a doped graphene-like bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, An-Bang [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Jiang, Wei, E-mail: [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Zhang, Na [Shenyang Normal University, Shenyang 110034 (China)


    A doped graphene-like bilayer is described using a four-sublattice Heisenberg model both ferromagnetic and antiferrimagnetic couplings. The magnetic properties of the bilayer system are studied using the Heisenberg model, retarded Green's function and the linear spin-wave approximation. The spin-wave spectra, energy gap, and the magnetization and quantum fluctuation of the system at the ground state are calculated with various intra- and interlayer couplings. The results indicate that the effect of antiferromagnetic exchange coupling on the magnetic properties of the system is significant. Magnetizations at low temperature show intersection points due to the quantum effects.

  13. Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth (United States)


    ARL-TR-7593 ● FEB 2016 US Army Research Laboratory Preparation of Copper (Cu)-Nickel (Ni) Thin Films for Bilayer Graphene Growth...Laboratory Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth by Andrew Chen and Eugene Zakar Sensors and Electron...COVERED (From - To) June–August 2015 4. TITLE AND SUBTITLE Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth 5a

  14. Directional photoelectric current across the bilayer graphene junction. (United States)

    Shafranjuk, S E


    A directional photon-assisted resonant chiral tunneling through a bilayer graphene barrier is considered. An external electromagnetic field applied to the barrier switches the transparency T in the longitudinal direction from its steady state value T = 0 to the ideal T = 1 at no energy costs. The switch happens because the ac field affects the phase correlation between the electrons and holes inside the graphene barrier, changing the whole angular dependence of the chiral tunneling (directional photoelectric effect). The suggested phenomena can be implemented in relevant experiments and in various sub-millimeter and far-infrared optical electronic devices.

  15. Electrostatically Induced Quantum Point Contacts in Bilayer Graphene. (United States)

    Overweg, Hiske; Eggimann, Hannah; Chen, Xi; Slizovskiy, Sergey; Eich, Marius; Pisoni, Riccardo; Lee, Yongjin; Rickhaus, Peter; Watanabe, Kenji; Taniguchi, Takashi; Fal'ko, Vladimir; Ihn, Thomas; Ensslin, Klaus


    We report the fabrication of electrostatically defined nanostructures in encapsulated bilayer graphene, with leakage resistances below depletion gates as high as R ∼ 10 GΩ. This exceeds previously reported values of R = 10-100 kΩ.1-3 We attribute this improvement to the use of a graphite back gate. We realize two split gate devices which define an electronic channel on the scale of the Fermi-wavelength. A channel gate covering the gap between the split gates varies the charge carrier density in the channel. We observe device-dependent conductance quantization of ΔG = 2e2/h and ΔG = 4e2/h. In quantizing magnetic fields normal to the sample plane, we recover the four-fold Landau level degeneracy of bilayer graphene. Unexpected mode crossings appear at the crossover between zero magnetic field and the quantum Hall regime.

  16. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding


    Xiaoliang Zhang; Yufei Gao; Yuli Chen; Ming Hu


    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the...

  17. Anisotropy of Conductivity in Bilayer Graphene with Relatively Shifted Layers


    Litovchenko, V. G.; Kurchak, A. I.; Strikha, M. V.


    A transformation of the band structure in bilayer graphene (BLG) with relatively shifted layers has been studied in the framework of the tight-binding model. BLG is demonstrated to remain a zero-gap material in the whole range of experimentally attainable shifts, but the positions of contact points between the conduction and valence bands depend substantially on the shift direction. The shift results in a considerable anisotropy of the band spectrum, which is, in turn, responsible for a subst...

  18. Superluminal plasmons with resonant gain in population inverted bilayer graphene

    KAUST Repository

    Low, Tony


    AB-stacked bilayer graphene with a tunable electronic bandgap in excess of the optical phonon energy presents an interesting active medium, and we consider such theoretical possibility in this work. We argue the possibility of a highly resonant optical gain in the vicinity of the asymmetry gap. Associated with this resonant gain are strongly amplified plasmons, plasmons with negative group velocity and superluminal effects, as well as directional leaky modes.

  19. Microscopic characterisation of suspended graphene grown by chemical vapour deposition

    NARCIS (Netherlands)

    Bignardi, L.; Dorp, W.F. van; Gottardi, S.; Ivashenko, O.; Dudin, P.; Barinov, A.; de Hosson, J.T.M.; Stöhr, M.; Rudolf, P.


    We present a multi-technique characterisation of graphene grown by chemical vapour deposition (CVD) and thereafter transferred to and suspended on a grid for transmission electron microscopy (TEM). The properties of the electronic band structure are investigated by angle-resolved photoelectron

  20. Spin Transport in High-Quality Suspended Graphene Devices

    NARCIS (Netherlands)

    Guimaraes, Marcos H. D.; Veligura, A.; Zomer, P. J.; Maassen, T.; Vera-Marun, I. J.; Tombros, N.; van Arees, B. J.; Wees, B.J. van

    We measure spin transport in high mobility suspended graphene (mu approximate to 10(5)cm(2)/(V s)), obtaining a (spin) diffusion coefficient of 0.1 m(2)/s and giving a lower bound on the spin relaxation time (tau(s) approximate to 150 ps) and spin relaxation length (lambda(s) = 4.7 mu m) for

  1. Discrete Dynamics of Nanoparticle Channelling in Suspended Graphene

    DEFF Research Database (Denmark)

    Booth, Tim; Pizzocchero, Filippo; Andersen, Henrik


    We have observed a previously undescribed stepwise oxidation of mono- and few layer suspended graphene by silver nanoparticles in situ at subnanometer scale in an environmental transmission electron microscope. Over the range of 600–850 K, we observe crystallographically oriented channelling...

  2. Transport spectroscopy in bilayer graphene using double layer heterostructures (United States)

    Lee, Kayoung; Jung, Jeil; Fallahazad, Babak; Tutuc, Emanuel


    We provide a comprehensive study of the chemical potential of bilayer graphene in a wide range of carrier density, at zero and high magnetic (B)-fields, and at different transverse electric (E)-fields, using high quality double bilayer graphene heterostructures. Using a direct thermodynamic transport spectroscopic technique, we probe the chemical potential as a function of carrier density in six samples. The data clearly reveal the non-parabolicity and electron-hole asymmetry of energy-momentum dispersion in bilayer graphene. The tight-binding hopping amplitudes, t 0, t 1, and t 4, renormalized by electron-electron interaction are extracted from the chemical potential versus density dependence. A diverse set of electron-electron interaction driven phenomena were also clearly discerned at zero and high B-fields. We measure the gaps at integer fillings with orbital index N  =  0, 1, and discuss about the dependence of the N  =  0, 1 quantum Hall phases on the carrier density (or filling factor), E-field, and B-field.

  3. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene


    D'Souza, Ransell; Mukherjee, Sugata


    We report the transport properties of monolayer and bilayer graphene from first principles calculations and Boltzmann transport theory (BTE). Our resistivity studies on monolayer graphene show Bloch-Gr${\\rm \\ddot{u}}$neisen behavior in a certain range of chemical potentials. By substituting boron nitride in place of a carbon dimer of graphene, we predict a twofold increase in the Seebeck coefficient. A similar increase in the Seebeck coefficient for bilayer graphene under the influence of a s...

  4. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers (United States)

    Chegel, Raad


    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB1- and AB2- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  5. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chegel, Raad, E-mail:


    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB{sub 1}- and AB{sub 2}- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  6. Dual-gated bilayer graphene hot-electron bolometer. (United States)

    Yan, Jun; Kim, M-H; Elle, J A; Sushkov, A B; Jenkins, G S; Milchberg, H M; Fuhrer, M S; Drew, H D


    Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat capacity and weak electron-phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz(-1/2) at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures.

  7. Bilayer Graphene Application on NO2 Sensor Modelling

    Directory of Open Access Journals (Sweden)

    Elnaz Akbari


    Full Text Available Graphene is one of the carbon allotropes which is a single atom thin layer with sp2 hybridized and two-dimensional (2D honeycomb structure of carbon. As an outstanding material exhibiting unique mechanical, electrical, and chemical characteristics including high strength, high conductivity, and high surface area, graphene has earned a remarkable position in today’s experimental and theoretical studies as well as industrial applications. One such application incorporates the idea of using graphene to achieve accuracy and higher speed in detection devices utilized in cases where gas sensing is required. Although there are plenty of experimental studies in this field, the lack of analytical models is felt deeply. To start with modelling, the field effect transistor- (FET- based structure has been chosen to serve as the platform and bilayer graphene density of state variation effect by NO2 injection has been discussed. The chemical reaction between graphene and gas creates new carriers in graphene which cause density changes and eventually cause changes in the carrier velocity. In the presence of NO2 gas, electrons are donated to the FET channel which is employed as a sensing mechanism. In order to evaluate the accuracy of the proposed models, the results obtained are compared with the existing experimental data and acceptable agreement is reported.

  8. Direct transfer and Raman characterization of twisted graphene bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Othmen, R., E-mail: [Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 El Manar Tunis (Tunisia); CNRS/LPN, Route de Nozay, F-91460 Marcoussis (France); Arezki, H.; Boutchich, M. [GeePs, CNRS UMR8507, CentraleSupelec, Univ Paris-Sud, Sorbonne Universités-UPMC, Univ Paris 06, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Ajlani, H.; Oueslati, M. [Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire, 2092 El Manar Tunis (Tunisia); Cavanna, A.; Madouri, A. [CNRS/LPN, Route de Nozay, F-91460 Marcoussis (France)


    Twisted bilayer graphene (tBLG) is constituted of a two-graphene layer with a mismatch angle θ between the two hexagonal structures. It has recently attracted much attention—thanks to its diverse electronic and optical properties. Here, we study the tBLG fabricated by the direct transfer of graphene monolayer prepared by chemical vapor deposition (CVD) onto another CVD graphene layer remaining attached to the copper foil. We show that high quality and homogeneous tBLG can be obtained by the direct transfer which prevents interface contamination. In this situation, the top graphene layer plays a supporting mechanical role to the bottom graphene layer as confirmed by optical microscopy, scanning electron microscopy, and Raman spectroscopy measurements. The effect of annealing tBLG was also investigated using micro-Raman spectroscopy. The Raman spectra exhibit a splitting of the G peak as well as a change in the 2D band shape indicating a possible decoupling of the two monolayers. We attribute these changes to the different interactions of the top and bottom layers with the substrate.

  9. Photon-assisted transport in bilayer graphene flakes (United States)

    Zambrano, D.; Rosales, L.; Latgé, A.; Pacheco, M.; Orellana, P. A.


    The electronic conductance of graphene-based bilayer flake systems reveals different quantum interference effects, such as Fabry-Pérot resonances and sharp Fano antiresonances on account of competing electronic paths through the device. These properties may be exploited to obtain spin-polarized currents when the same nanostructure is deposited above a ferromagnetic insulator. Here, we study how the spin-dependent conductance is affected when a time-dependent gate potential is applied to the bilayer flake. Following a Tien-Gordon formalism, we explore how to modulate the transport properties of such systems via appropriate choices of the ac-field gate parameters. The presence of an oscillating field opens the possibility of tuning the original antiresonances for a large set of field parameters. We show that interference patterns can be partially or fully removed by the time-dependent gate voltage. The results are reflected in the corresponding weighted spin polarization, which can reach maximum values for a given spin component. We found that differential conductance maps as functions of bias and gate potentials show interference patterns for different ac-field parameter configurations. The proposed bilayer graphene flake systems may be used as a frequency detector in the THz range.

  10. Chiral Response of Twisted Bilayer Graphene (United States)

    Stauber, T.; Low, T.; Gómez-Santos, G.


    We present an effective (minimal) theory for chiral two-dimensional materials. These materials possess an electromagnetic coupling without exhibiting a topological gap. As an example, we study the response of doped twisted bilayers, unveiling unusual phenomena in the zero frequency limit. An in-plane magnetic field induces a huge paramagnetic response at the neutrality point and, upon doping, also gives rise to a substantial longitudinal Hall response. The system also accommodates nontrivial longitudinal plasmonic modes that are associated with a longitudinal magnetic moment, thus endowing them with a chiral character. Finally, we note that the optical activity can be considerably enhanced upon doping and our general approach would enable systematic exploration of 2D material heterostructures with optical activity.

  11. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu


    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  12. Valley-selective topologically ordered states in irradiated bilayer graphene (United States)

    Qu, Chunlei; Zhang, Chuanwei; Zhang, Fan


    Gapless bilayer graphene is susceptible to a variety of spontaneously gapped states. As predicted by theory and observed by experiment, the ground state is, however, topologically trivial, because a valley-independent gap is energetically favorable. Here, we show that under the application of interlayer electric field and circularly polarized light, one valley can be selected to exhibit the original interaction instability while the other is frozen out. Tuning this Floquet system stabilizes multiple competing topologically ordered states, distinguishable by edge transport and circular dichroism. Notably, quantized charge, spin, and valley Hall conductivities coexist in one stabilized state.

  13. Twisting dirac fermions: circular dichroism in bilayer graphene (United States)

    Suárez Morell, E.; Chico, Leonor; Brey, Luis


    Twisted bilayer graphene is a chiral system which has been recently shown to present circular dichroism. In this work we show that the origin of this optical activity is the rotation of the Dirac fermions’ helicities in the top and bottom layer. Starting from the Kubo formula, we obtain a compact expression for the Hall conductivity that takes into account the dephasing of the electromagnetic field between the top and bottom layers and gathers all the symmetries of the system. Our results are based in both a continuum and a tight-binding model, and they can be generalized to any two-dimensional Dirac material with a chiral stacking between layers.

  14. Valley Chern numbers and boundary modes in gapped bilayer graphene. (United States)

    Zhang, Fan; MacDonald, Allan H; Mele, Eugene J


    Electronic states at domain walls in bilayer graphene are studied by analyzing their four- and two-band continuum models, by performing numerical calculations on the lattice, and by using quantum geometric arguments. The continuum theories explain the distinct electronic properties of boundary modes localized near domain walls formed by interlayer electric field reversal, by interlayer stacking reversal, and by simultaneous reversal of both quantities. Boundary mode properties are related to topological transitions and gap closures, which occur in the bulk Hamiltonian parameter space. The important role played by intervalley coupling effects not directly captured by the continuum model is addressed using lattice calculations for specific domain wall structures.

  15. Valley filtering due to orbital magnetic moment in bilayer graphene (United States)

    Park, Chang-Soo


    We investigate the effect of valley-dependent orbital magnetic moment on the transmission of quasiparticles through biased bilayer graphene npn and pnp junctions in the presence of out-of-plane magnetic field. It is shown that the valley-polarized Zeeman-like energy splitting, due to the interaction of orbital magnetic moment with magnetic field, can suppress the transmission of quasiparticles of one valley while transmitting those of the other valley. This valley-selective transmission property can be exploited for valley filtering. We demonstrate that the npn and pnp junction, respectively, filters off the K‧-valley and K-valley particles, with nearly perfect degree of filtration.

  16. Fluorine and sulfur simultaneously co-doped suspended graphene (United States)

    Struzzi, C.; Sezen, H.; Amati, M.; Gregoratti, L.; Reckinger, N.; Colomer, J.-F.; Snyders, R.; Bittencourt, C.; Scardamaglia, M.


    Suspended graphene flakes are exposed simultaneously to fluorine and sulfur ions produced by the μ-wave plasma discharge of the SF6 precursor gas. The microscopic and spectroscopic analyses, performed by Raman spectroscopy, scanning electron microscopy and photoelectron spectromicroscopy, show the homogeneity in functionalization yield over the graphene flakes with F and S atoms covalently bonded to the carbon lattice. This promising surface shows potential for several applications ranging from biomolecule immobilization to lithium battery and hydrogen storage devices. The present co-doping process is an optimal strategy to engineer the graphene surface with a concurrent hydrophobic character, thanks to the fluorine atoms, and a high affinity with metal nanoparticles due to the presence of sulfur atoms.

  17. Giant magneto-photoelectric effect in suspended graphene (United States)

    Sonntag, Jens; Kurzmann, Annika; Geller, Martin; Queisser, Friedemann; Lorke, Axel; Schützhold, Ralf


    We study the optical response of a suspended, monolayer graphene field-effect transistor structure in magnetic fields of up to 9 T (quantum Hall regime). With an illumination power of only 3 μW, we measure a photocurrent of up to 400 nA (without an applied bias) corresponding to a photo-responsivity of 0.13 A W-1, which we believe to be one of the highest values ever measured in single-layer graphene. We discuss possible mechanisms for generating this strong photo-response (17 electron-hole pairs per 100 incident photons). Based on our experimental findings, we believe that the most likely scenario is a ballistic two-stage process including carrier multiplication via Auger-type inelastic Coulomb scattering at the graphene edge.

  18. Gate tunable infrared phonon anomalies in bilayer graphene. (United States)

    Kuzmenko, A B; Benfatto, L; Cappelluti, E; Crassee, I; van der Marel, D; Blake, P; Novoselov, K S; Geim, A K


    We observe a giant increase of the infrared intensity and a softening of the in-plane antisymmetric phonon mode E(u) ( approximately 0.2 eV) in bilayer graphene as a function of the gate-induced doping. The phonon peak has a pronounced Fano-like asymmetry. We suggest that the intensity growth and the softening originate from the coupling of the phonon mode to the narrow electronic transition between parallel bands of the same character, while the asymmetry is due to the interaction with the continuum of transitions between the lowest hole and electron bands. The growth of the peak can be interpreted as a "charged-phonon" effect observed previously in organic chain conductors and doped fullerenes, which can be tuned in graphene with the gate voltage.

  19. First-principles study of the electrical and lattice thermal transport in monolayer and bilayer graphene (United States)

    D'Souza, Ransell; Mukherjee, Sugata


    We report the transport properties of monolayer and bilayer graphene from first-principles calculations and Boltzmann transport theory (BTE). Our resistivity studies on monolayer graphene show Bloch-Grüneisen behavior in a certain range of chemical potentials. By substituting boron nitride in place of a carbon dimer of graphene, we predict a twofold increase in the Seebeck coefficient. A similar increase in the Seebeck coefficient for bilayer graphene under the influence of a small electric field ˜0.3 eV has been observed in our calculations. Graphene with impurities shows a systematic decrease of electrical conductivity and mobility. We have also calculated the lattice thermal conductivities of monolayer graphene and bilayer graphene using phonon BTE which show excellent agreement with experimental data available in the temperature range 300-700 K.

  20. Fabrication of patterned flexible graphene devices via facile direct transfer of as-grown bi-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heun; Kim, Kyung Hoon; Yoon, Jangyeol [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Kuk Ki; Park, Seung Min [Department of Chemistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Ha, Jeong Sook, E-mail: [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of)


    Highlights: • Patterned bi-layer graphene was directly transferred onto various polymer substrates by using micro-contact printing technique. • Coating of dimethylformamide onto the polydimethylsiloxane (PDMS) stamp enhanced the adhesion between the bi-layer graphene and the PDMS stamp. • Patterned graphene devices showed mechanically stable electrical properties upon repeated bending cycles. - Abstract: We report on the fabrication of patterned flexible graphene devices via a facile direct transfer of bi-layer graphene grown on alumina (Al{sub 2}O{sub 3}) substrate, and the use of Ag nanowire stickers as flexible electrodes. Patterned polydimethylsiloxane (PDMS) stamps coated with vaporized dimethylformamide (DMF) are utilized to transfer as-grown graphene directly onto a flexible polyethylene terephthalate (PET) substrate. The facile direct transfer is attributed to the enhanced adhesion of the bi-layer graphene to PDMS, due to DMF-coating, as well as the weak adhesion between the bi-layer graphene and the Al{sub 2}O{sub 3} substrate. In this way, flexible patterned graphene devices have been fabricated with Ag nanowire stickers as electrodes. Stable electrical conduction characteristics were measured over repetitive bending with a bending radius down to 5 mm.

  1. Dynamical thermoelectric properties of doped AA-stacked bilayer graphene (United States)

    Rezania, Hamed; Yarmohammadi, Mohsen


    The frequency dependence of thermoelectric properties of doped biased bilayer graphene are investigated using the Green's function approach in the context of tight-binding model. We find that the thermoelectric figure of merit (ZT) can be remarkably enhanced by electronic chemical potential, temperature, bias voltage and frequency. The electronic contribution to thermal conductivity of doped materials is dominant and therefore we have considered this contribution. The improvement due to the combined increase in the Seebeck coefficient and the reduction in the thermal conductivity outweighing the decrease in the electrical conductance is studied. We have found a good ZT value for normal conditions in the lab, i.e, for room temperature (RT), high bias voltages and low frequencies. We have found the temperature dependence of ZT for different values of frequency, bias voltage and chemical potential. Also the dependence of ZT on the chemical potential and bias voltage has been investigated in details. The calculated ZT values qualify bilayer graphene as a very promising material for thermoelectric applications.

  2. High mobility dry-transferred CVD bilayer graphene (United States)

    Schmitz, Michael; Engels, Stephan; Banszerus, Luca; Watanabe, Kenji; Taniguchi, Takashi; Stampfer, Christoph; Beschoten, Bernd


    We report on the fabrication and characterization of high-quality chemical vapor-deposited (CVD) bilayer graphene (BLG). In particular, we demonstrate that CVD-grown BLG can be detached mechanically from the copper foil by a hexagonal boron nitride (hBN) crystal after oxidation of the copper-to-BLG interface. Confocal Raman spectroscopy reveals an AB-stacking order of the BLG crystals and a high structural quality. From transport measurements on fully encapsulated hBN/BLG/hBN Hall bar devices, we extract charge carrier mobilities up to 180 000 cm2/(Vs) at 2 K and up to 40 000 cm2/(Vs) at 300 K, outperforming state-of-the-art CVD bilayer graphene devices. Moreover, we show an on-off ratio of more than 10 000 and a band gap opening with values of up to 15 meV for a displacement field of 0.2 V/nm in such CVD grown BLG.

  3. Spectral properties of excitons in the bilayer graphene (United States)

    Apinyan, V.; Kopeć, T. K.


    In this paper, we consider the spectral properties of the bilayer graphene with the local excitonic pairing interaction between the electrons and holes. We consider the generalized Hubbard model, which includes both intralayer and interlayer Coulomb interaction parameters. The solution of the excitonic gap parameter is used to calculate the electronic band structure, single-particle spectral functions, the hybridization gap, and the excitonic coherence length in the bilayer graphene. We show that the local interlayer Coulomb interaction is responsible for the semimetal-semiconductor transition in the double layer system, and we calculate the hybridization gap in the band structure above the critical interaction value. The formation of the excitonic band gap is reported as the threshold process and the momentum distribution functions have been calculated numerically. We show that in the weak coupling limit the system is governed by the Bardeen-Cooper-Schrieffer (BCS)-like pairing state. Contrary, in the strong coupling limit the excitonic condensate states appear in the semiconducting phase, by forming the Dirac's pockets in the reciprocal space.

  4. Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur (United States)

    Denis, Pablo A.


    The chemical doping of monolayer and bilayer graphene with aluminium, silicon, phosphorus and sulfur was investigated. Si-doped graphene has the lowest formation energy although it is semimetallic. P-doped graphene has a magnetic moment of 1 μ B and for 3 at.% of doping the band gap is 0.67 eV. Al-doped graphene is very unstable but it is an attractive material because it is metallic. To reduce the formation energies of the substitutional defects we investigated the formation of interlayer bonds in bilayer graphene. Phosphorus forms the strongest bonds between layers giving particular stability to this material. P-doped bilayer graphene has a gap of 0.43 eV but it is has no magnetic moment.

  5. Epitaxial nucleation of CVD bilayer graphene on copper. (United States)

    Song, Yenan; Zhuang, Jianing; Song, Meng; Yin, Shaoqian; Cheng, Yu; Zhang, Xuewei; Wang, Miao; Xiang, Rong; Xia, Yang; Maruyama, Shigeo; Zhao, Pei; Ding, Feng; Wang, Hongtao


    Bilayer graphene (BLG) has emerged as a promising candidate for next-generation electronic applications, especially when it exists in the Bernal-stacked form, but its large-scale production remains a challenge. Here we present an experimental and first-principles calculation study of the epitaxial chemical vapor deposition (CVD) nucleation process for Bernal-stacked BLG growth on Cu using ethanol as a precursor. Results show that a carefully adjusted flow rate of ethanol can yield a uniform BLG film with a surface coverage of nearly 90% and a Bernal-stacking ratio of nearly 100% on ordinary flat Cu substrates, and its epitaxial nucleation of the second layer is mainly due to the active CH 3 radicals with the presence of a monolayer-graphene-covered Cu surface. We believe that this nucleation mechanism will help clarify the formation of BLG by the epitaxial CVD process, and lead to many new strategies for scalable synthesis of graphene with more controllable structures and numbers of layers.

  6. Wettability of water droplet on misoriented graphene bilayer sructure: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Qingchang Liu


    Full Text Available Graphene continues to attract growing attention with its exceptional physical and mechanical properties, and more than one layer graphene structure with an orientation mismatch is often involved in practice. Using molecular dynamics (MD simulations, we report the wettability of water droplet on a misoriented graphene bilayer structure. The contact angle of water droplet will change with the interlayer orientation of bilayer graphene structure, and reaches a maximum of 97.97 ± 1.15° at orientation mismatch of 40°. Comprehensive understanding on density profile and hydrogen bonding of water molecules and water-carbon interactive energy is explored to reveal the molecular mechanism.

  7. Tunable moire bands and strong correlations in small-twist-angle bilayer graphene

    National Research Council Canada - National Science Library

    Kim, Kyounghwan; DaSilva, Ashley; Huang, Shengqiang; Fallahazad, Babak; Larentis, Stefano; Taniguchi, Takashi; Watanabe, Kenji; LeRoy, Brian J; MacDonald, Allan H; Tutuc, Emanuel


    ... between its individual layer honeycomb lattices. We have realized bilayer graphene moire crystals with accurately controlled twist angles smaller than 1 degree and studied their properties using scanning probe microscopy and electron transport...

  8. Quantum oscillations in inverted insulators: gated bilayer graphene (United States)

    Grubinskas, Simonas; Fritz, Lars

    It was recently demonstrated that a band insulator, i.e., a system without a Fermi surface can exhibit quantum oscillations with well-defined frequencies. We consider a concrete model that has a valence band of the shape of the Goldstone potential which subsequently is subjected to a magnetic field. The quantum oscillations come from the fact that as the magnetic field is varied, different Landau levels come closest to the chemical potential without crossing it. We derive an analytic expression for the Lifshitz-Kosevich formula in such a system and show that the role of 'the area of the Fermi surface' is taken by the area enclosed by the circular minimum of the Goldstone potential. Furthermore, we find that the damping is governed by a complicated interplay of the gap and the finite temperature. We propose to measure this effect in gated bilayer graphene.

  9. Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene (United States)

    Jiang, Bor-Yuan; Ni, Guang-Xin; Addison, Zachariah; Shi, Jing K.; Liu, Xiaomeng; Zhao, Shu Yang Frank; Kim, Philip; Mele, Eugene J.; Basov, Dimitri N.; Fogler, Michael M.


    Domain walls separating regions of AB and BA interlayer stacking in bilayer graphene have attracted attention as novel examples of structural solitons, topological electronic boundaries, and nanoscale plasmonic scatterers. We show that strong coupling of domain walls to surface plasmons observed in infrared nanoimaging experiments is due to topological chiral modes confined to the walls. The optical transitions among these chiral modes and the band continua enhance the local ac conductivity, which leads to plasmon reflection by the domain walls. The imaging reveals two kinds of plasmonic standing-wave interference patterns, which we attribute to shear and tensile domain walls. We compute the electronic structure of both wall varieties and show that the tensile wall contain additional confined bands which produce a structure-specific contrast of the local conductivity. The calculated plasmonic interference profiles are in quantitative agreement with our experiments.

  10. High-field electrical and thermal transport in suspended graphene. (United States)

    Dorgan, Vincent E; Behnam, Ashkan; Conley, Hiram J; Bolotin, Kirill I; Pop, Eric


    We study the intrinsic transport properties of suspended graphene devices at high fields (≥1 V/μm) and high temperatures (≥1000 K). Across 15 samples, we find peak (average) saturation velocity of 3.6 × 10(7) cm/s (1.7 × 10(7) cm/s) and peak (average) thermal conductivity of 530 W m(-1) K(-1) (310 W m(-1) K(-1)) at 1000 K. The saturation velocity is 2-4 times and the thermal conductivity 10-17 times greater than in silicon at such elevated temperatures. However, the thermal conductivity shows a steeper decrease at high temperature than in graphite, consistent with stronger effects of second-order three-phonon scattering. Our analysis of sample-to-sample variation suggests the behavior of "cleaner" devices most closely approaches the intrinsic high-field properties of graphene. This study reveals key features of charge and heat flow in graphene up to device breakdown at ~2230 K in vacuum, highlighting remaining unknowns under extreme operating conditions.

  11. The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance

    Directory of Open Access Journals (Sweden)

    Meisam Rahmani


    Full Text Available Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking and metal (AA stacking layers. To this end, an analytical model joint with numerical solution of carrier concentration for bilayer graphene nanoribbon in the degenerate and nondegenerate regimes is presented. Moreover, to determine the proposed diode performance, the carrier concentration model is adopted to derive the current-voltage characteristic of the device. The simulated results indicate a strong bilayer graphene nanoribbon geometry and temperature dependence of current-voltage characteristic showing that the forward current of the diode rises by increasing of width. In addition, the lower value of turn-on voltage appears as the more temperature increases. Finally, comparative study indicates that the proposed diode has a better performance compared to the silicon schottky diode, graphene nanoribbon homo-junction contact, and graphene-silicon schottky diode in terms of electrical parameters such as turn-on voltage and forward current.

  12. Optical and magneto-optical far-infrared properties of bilayer graphene


    Abergel, D. S. L.; Fal'ko, Vladimir I.


    We analyze the spectroscopic features of bilayer graphene determined by the formation of pairs of low-energy and split bands in this material. We show that the inter-Landau-level absorption spectrum in bilayer graphene at high magnetic field is much denser in the far-infrared range than that in monolayer material, and that the polarization dependence of its lowest energy peak can be used to test the form of the bilayer ground state in the quantum Hall-effect regime.

  13. Anomalous Dirac point transport due to extended defects in bilayer graphene. (United States)

    Shallcross, Sam; Sharma, Sangeeta; Weber, Heiko B


    Charge transport at the Dirac point in bilayer graphene exhibits two dramatically different transport states, insulating and metallic, that occur in apparently otherwise indistinguishable experimental samples. We demonstrate that the existence of these two transport states has its origin in an interplay between evanescent modes, that dominate charge transport near the Dirac point, and disordered configurations of extended defects in the form of partial dislocations. In a large ensemble of bilayer systems with randomly positioned partial dislocations, the distribution of conductivities is found to be strongly peaked at both the insulating and metallic limits. We argue that this distribution form, that occurs only at the Dirac point, lies at the heart of the observation of both metallic and insulating states in bilayer graphene.In seemingly indistinguishable bilayer graphene samples, two distinct transport regimes, insulating and metallic, have been identified experimentally. Here, the authors demonstrate that these two states originate from the interplay between extended defects and evanescent modes at the Dirac point.

  14. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. (United States)

    Fang, Wenjing; Hsu, Allen L; Song, Yi; Birdwell, Anthony G; Amani, Matin; Dubey, Madan; Dresselhaus, Mildred S; Palacios, Tomás; Kong, Jing


    In this work, we investigated the growth mechanisms of bilayer graphene on the outside surface of Cu enclosures at low pressures. We observed that the asymmetric growth environment of a Cu enclosure can yield a much higher (up to 100%) bilayer coverage on the outside surface as compared to the bilayer growth on a flat Cu foil, where both sides are exposed to the same growth environment. By simultaneously examining the graphene films grown on both the outside and inside surfaces of the Cu enclosure, we find that carbon can diffuse from the inside surface to the outside via exposed copper regions on the inside surface. The kinetics of this process are examined by coupling the asymmetric growth between the two surfaces through a carbon diffusion model. Finally, using these results, we show that the coverage of bilayer graphene can be tuned simply by changing the thickness of the Cu foil, further confirming our model of carbon delivery through the Cu foil.

  15. Tunable double fano resonances based on bilayer graphene/metal gratings (United States)

    Lu, Yanan; Yang, Guofeng; Yan, Pengfei; Cao, Jintao


    A novel structure with bilayer hybrid graphene/metal (G/M) gratings to realize tunable double Fano resonances has been proposed. Different band gaps can be obtained by applying voltages on the bilayer graphenes. Due to the tunability of the hybrid structure, two different resonances are separately tuned under various parametric conditions. The Fano resonances are produced by the interaction between the metal and graphene gratings, the related mechanism is investigated by the electric field distribution and transmission phase. The superior characteristics of the separately tunable double Fano resonances indicate a promising application in THz optical devices.

  16. Quantum transport across van der Waals domain walls in bilayer graphene (United States)

    Abdullah, H. M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F. M.


    Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.

  17. Spin-orbit coupling in a graphene bilayer and in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, F, E-mail: paco.guinea@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, E28049 Madrid (Spain)


    The intrinsic spin-orbit interactions in bilayer graphene and in graphite are studied, using a tight binding model and an intra-atomic LS coupling. The spin-orbit interactions in bilayer graphene and graphite are larger, by about one order of magnitude, than the interactions in single-layer graphene, due to the mixing of {pi} and {sigma} bands by interlayer hopping. Their values are in the range 0.1-1 K. The spin-orbit coupling opens a gap in bilayer graphene, and also gives rise to two edge modes. The spin-orbit couplings are largest, {approx}1-4 K, in orthorhombic graphite, which does not have a center of inversion.

  18. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition. (United States)

    Wu, Qinke; Jung, Seong Jun; Jang, Sung Kyu; Lee, Joohyun; Jeon, Insu; Suh, Hwansoo; Kim, Yong Ho; Lee, Young Hee; Lee, Sungjoo; Song, Young Jae


    We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 μm, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for engineering the band structures of large-area graphene for electronic device applications.

  19. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics. (United States)

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae


    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.

  20. Low-energy electron point projection microscopy/diffraction study of suspended graphene (United States)

    Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Chang, Mu-Tung; Hsieh, Chia-Tso; Wang, Chang-Ran; Lee, Wei-Li; Hwang, Ing-Shouh


    In this work, we present our study of suspended graphene with low-energy electrons based on a point projection microscopic/diffractive imaging technique. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. This method allows imaging of individual adsorbates at the nanometer scale and characterizing graphene layers, graphene lattice orientations, ripples on graphene membranes, etc. We found that long-duration exposure to low-energy electron beams induced aggregation of adsorbates on graphene when the electron dose rate was above a certain level. We also discuss the potential of this technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules adsorbed on suspended graphene.

  1. In-plane magnetotransport in gapped bilayer graphene (United States)

    Studer, Matthias; Chen, Sifang; Folk, Joshua


    The tunability of the band gap in bilayer graphene using a perpendicular electric field makes this material a promising candidate for future carbon electronics.ootnotetextJ. B. Oostinga et al., Nat. Mat., 7, 151 (2007) Y. Zhang et al., Nature, 459, 820 (2009) Recent studies show that the residual conductivity at low temperature in the gapped state with zero total carrier density is a result of hopping transport.ootnotetextT. Taychatanapat and P. Jarillo-Herrero, Phys. Rev. Lett., 105, 166601, (2010) We have studied the transport in this regime as a function of an in-plane magnetic field. We find a strikingly strong positive magnetoresistance that leads to a increase of the resistance by an order of magnitude at 10 Teslas in-plane magnetic field compared to the value at 0 T. The temperature dependence of the resistance is well described by variable range hopping transport for all magnetic field values, and suggests that the hopping range is strongly dependent on the in-plane magnetic field.

  2. Berry phase shift from 2π to π in bilayer graphene by Li-intercalation and sequential desorption (United States)

    Akiyama, Ryota; Takano, Yuma; Endo, Yukihiro; Ichinokura, Satoru; Nakanishi, Ryosuke; Nomura, Kentaro; Hasegawa, Shuji


    We have found that the Berry phase of bilayer graphene becomes π from 2π estimated by Shubnikov-de Haas oscillations when the A-B stacked pristine bilayer graphene experiences the Li-intercalation and sequential Li-desorption process in ultrahigh vacuum. Furthermore, the mobility of such processed bilayer graphene increases around four times larger, 8000 cm2/V.s, than that of the pristine bilayer graphene. This is mainly due to increment of the scattering time and decrement of the cyclotron mass, which can be interpreted as a result of the change of the stacking structure of bilayer graphene from A-B to A-A, corresponding to a change from the parabolic to the linear band dispersion.

  3. Structural and electronic transformation in low-angle twisted bilayer graphene (United States)

    Gargiulo, Fernando; Yazyev, Oleg V.


    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.

  4. Suspended graphene devices with local gate control on an insulating substrate. (United States)

    Ong, Florian R; Cui, Zheng; Yurtalan, Muhammet A; Vojvodin, Cameron; Papaj, Michał; Orgiazzi, Jean-Luc F X; Deng, Chunqing; Bal, Mustafa; Lupascu, Adrian


    We present a fabrication process for graphene-based devices where a graphene monolayer is suspended above a local metallic gate placed in a trench. As an example we detail the fabrication steps of a graphene field-effect transistor. The devices are built on a bare high-resistivity silicon substrate. At temperatures of 77 K and below, we observe the field-effect modulation of the graphene resistivity by a voltage applied to the gate. This fabrication approach enables new experiments involving graphene-based superconducting qubits and nano-electromechanical resonators. The method is applicable to other two-dimensional materials.

  5. Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Jalilvand, Samira [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Kurdestany, Jamshid Moradi [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65201 (United States)


    We study the contribution of s and p orbitals on the Pauli magnetic susceptibility (PMS) and density of state (DOS) of the following three structures (1) bilayer graphene (2) bilayer boron-nitride (BN) and (3) bilayer graphene-BN within a two-band tight-binding Harrison Hamiltonian and the Green's function technique. It is shown that in all three cases, the contribution of s and p{sub x} or p{sub y} orbitals have no states around the Fermi level, while for bilayer graphene and graphene-BN the total DOS and DOS of p{sub z} orbital appear to be a linear function around this level. We show explicitly that for bilayer BN the contribution of p{sub z} orbital does not have states around the Fermi level, because of ionization energy difference between the boron (B) and nitrogen (N) atoms. We find that the bandwidth of s, p{sub x} or p{sub y} is more extension than case of p{sub z} orbital as a result of the Van-Hove singularities in the DOS. This leads to consideration of the PMS in two, low and high temperature, regions.

  6. Controlling dynamical thermal transport of biased bilayer graphene by impurity atoms

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, Hamed, E-mail: [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Yarmohammadi, Mohsen [Young Researchers and Elit Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of)


    We address the dynamical thermal conductivity of biased bilayer graphene doped with acceptor impurity atoms for AA-stacking in the context of tight binding model Hamiltonian. The effect of scattering by dilute charged impurities is discussed in terms of the self-consistent Born approximation. Green’s function approach has been exploited to find the behavior of thermal conductivity of bilayer graphene within the linear response theory. We have found the frequency dependence of thermal conductivity for different values of concentration and scattering strength of dopant impurity. Also the dependence of thermal conductivity on the impurity concentration and bias voltage has been investigated in details.

  7. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures (United States)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  8. Oxygen-Activated Growth and Bandgap Tunability of Large Single-Crystal Bilayer Graphene (United States)

    Hao, Yufeng; Hone, James; Ruoff, Rodney; Colombo, Luigi; the Hone Group Team

    Distinct from zero-bandgap single-layer graphene, Bernal-stacked bilayer graphene (BLG) is a semiconductor whose bandgap can be tuned by a transverse electric field, making it a unique material for a number of electronic and photonic devices. In this presentation, we will focus on the most recent progress in the identification of new growth mechanisms towards large-area single-layer BLG on Copper: multiple control experiments and first-principles calculations are used to support the proposed mechanisms. We emphasize that trace amount of impurities on metal surface are critical to initiate graphene growth and affect the growth kinetics. Furthermore, contrary to the traditional viewpoint that graphene growth is always surface-limited process, our new observations strongly suggest that metal bulk plays a role to feed carbon species for graphene growth. State-of-the-art structural characterizations and electrical transport measurements of the CVD graphene layers will be presented as well.

  9. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate thin film

    Directory of Open Access Journals (Sweden)

    Minggang Xia


    Full Text Available The Raman spectra of bilayer graphene covered with poly(methyl methacrylate (PMMA were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  10. Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC (United States)

    Kruskopf, Mattias; Momeni Pakdehi, Davood; Pierz, Klaus; Wundrack, Stefan; Stosch, Rainer; Dziomba, Thorsten; Götz, Martin; Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph; Lidzba, Jakob; Seyller, Thomas; Hohls, Frank; Ahlers, Franz J.; Schumacher, Hans W.


    We present a new fabrication method for epitaxial graphene on SiC which enables the growth of ultra-smooth defect- and bilayer-free graphene sheets with an unprecedented reproducibility, a necessary prerequisite for wafer-scale fabrication of high quality graphene-based electronic devices. The inherent but unfavorable formation of high SiC surface terrace steps during high temperature sublimation growth is suppressed by rapid formation of the graphene buffer layer which stabilizes the SiC surface. The enhanced nucleation is enforced by decomposition of deposited polymer adsorbate which acts as a carbon source. Unique to this method are the conservation of mainly 0.25 and 0.5 nm high surface steps and the formation of bilayer-free graphene on an area only limited by the size of the sample. This makes the polymer-assisted sublimation growth technique a promising method for commercial wafer scale epitaxial graphene fabrication. The extraordinary electronic quality is evidenced by quantum resistance metrology at 4.2 K showing ultra-high precision and high electron mobility on mm scale devices comparable to state-of-the-art graphene.

  11. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene (United States)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Ago, Hiroki; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Takata, Yasuyuki


    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω-1 m-1 and 2100 W m-1 K-1 for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  12. Simultaneous measurement of electrical and thermal conductivities of suspended monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi, E-mail:, E-mail: [Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Ago, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580 (Japan); Zhang, Xing, E-mail:, E-mail: [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); Takata, Yasuyuki [International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka 819-0395 (Japan)


    We measured both in-plane electrical and thermal properties of the same suspended monolayer graphene using a novel T-type sensor method. At room temperature, the values are about 240 000 Ω{sup −1} m{sup −1} and 2100 W m{sup −1} K{sup −1} for the electrical and thermal conductivities, respectively. Based on the Wiedemann-Franz law, the electrons have negligible contribution to the thermal conductivity of graphene, while the in-plane LA and TA modes phonons are the dominant heat carriers. In monolayer graphene, the absence of layer-layer and layer-substrate interactions enhances the contribution of long wave-length phonons to the heat transport and increases the thermal conductivity accordingly. The reported method and experimental data of suspended monolayer graphene are useful for understanding the basic physics and designing the future graphene electronic devices.

  13. Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material (United States)

    Butz, Benjamin


    Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research Foundation

  14. Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets

    NARCIS (Netherlands)

    Kwieciñski, Wojciech; Sotthewes, Kai; Poelsema, Bene; Zandvliet, Harold J.W.; Bampoulis, Pantelis


    Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 °C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms

  15. Anomalous Coulomb drag between bilayer graphene and a GaAs electron gas (United States)

    Simonet, Pauline; Hennel, Szymon; Overweg, Hiske; Steinacher, Richard; Eich, Marius; Pisoni, Riccardo; Lee, Yongjin; Märki, Peter; Ihn, Thomas; Ensslin, Klaus; Beck, Mattias; Faist, Jérôme


    We report on Coulomb drag experiments between a bilayer graphene flake and a GaAs two-dimensional electron gas, where the charge-carrier densities of both systems can be tuned independently. For both p- and n-type graphene charge carriers, we observe that the Coulomb drag unexpectedly changes direction when the temperature is lowered. We find this phenomenon to be dominant when the Fermi wave vector in graphene is larger than in GaAs. At temperatures above ≈ 70 {{K}}, the drag signal is consistent with momentum exchange. In all discussed regimes, the Onsager relation is respected.

  16. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sahdan, Muhammad Fauzi; Darma, Yudi, E-mail: [Department of Physics, InstitutTeknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)


    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  17. Theoretical study of electronic transport properties of a graphene-silicene bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G. R. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Bahlouli, H. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Saudi Center for Theoretical Physics, 31261 Dhahran (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)


    Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.

  18. Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots (United States)

    Żebrowski, D. P.; Peeters, F. M.; Szafran, B.


    Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.

  19. Uniformity of large-area bilayer graphene grown by chemical vapor deposition (United States)

    Sheng, Yuewen; Rong, Youmin; He, Zhengyu; Fan, Ye; Warner, Jamie H.


    Graphene grown by chemical vapor deposition (CVD) on copper foils is a viable method for large area films for transparent conducting electrode (TCE) applications. We examine the spatial uniformity of large area films on the centimeter scale when transferred onto both Si substrates with 300 nm oxide and flexible transparent polyethylene terephthalate substrates. A difference in the quality of graphene, as measured by the sheet resistance and transparency, is found for the areas at the edges of large sheets that depends on the supporting boat used for the CVD growth. Bilayer graphene is grown with uniform properties on the centimeter scale when a flat support is used for CVD growth. The flat support provides consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights into the upscaling of CVD methods for growing high quality graphene and its transfer onto flexible substrates for potential applications as a TCE.

  20. Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene (United States)

    Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit


    The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.

  1. Effects of vacancies on spin-dependent behavior of monolayer and bilayer graphene nanoribbons (United States)

    Safari, E. Keshavarz; Shokri, A. A.; BabaeiPour, M.


    In this work, the effect of vacancies on magnetic properties and spin-dependent behaviors of monolayer and bilayer armchair and zigzag graphene nanoribbons is investigated using first principles calculations based on density functional theory (DFT). The armchair and zigzag graphene nanoribbons are composed of 6 rows and 4 rows of carbon atoms with the edges closed by the hydrogen atoms, respectively. Our results show that vacancies affect the magnetic properties and spin polarization of the graphene nanoribbons. It is seen that the monolayer armchair graphene nanoribbon with one vacancy in its supercell (24 carbon sites + 8 hydrogen sites) gives the magnetic moment of 0.79 μB , while magnetic moment in the monolayer zigzag graphene nanoribbon with one vacancy in its supercell (24 carbon sites + 6 hydrogen sites) is 1.72 μB (for site α) and 1.84 μB (for site β). The highest and lowest values of magnetic moment in different configurations of the bilayer armchair (zigzag) graphene nanoribbons with one vacancy in each layer of the supercell give 1.54 μB and 1.29 μB (3.51 μB and 2.72 μB), respectively. Numerical values of the magnetic moment in different configurations depended on the distance of vacancies from each other and from nanoribbon's edge as well as their orientations.

  2. Layer-selective synthesis of bilayer graphene via chemical vapor deposition (United States)

    Yang, Ning; Choi, Kyoungjun; Robertson, John; Park, Hyung Gyu


    A controlled synthesis of high-quality AB-stacked bilayer graphene by chemical vapor deposition demands a detailed understanding of the mechanism and kinetics. By decoupling the growth of the two layers via a growth-and-regrowth scheme, we report the kinetics and termination mechanisms of the bilayer graphene growth on copper. We observe, for the first time, that the secondary layer growth follows Gompertzian kinetics. Our observations affirm the postulate of a time-variant transition from a mass-transport-limited to a reaction-limited regimes and identify the mechanistic disparity between the monolayer growth and the secondary-layer expansion underneath the monolayer cover. It is the continuous carbon supply that drives the expansion of the graphene secondary layer, rather than the initially captured carbon amount, suggesting an essential role of the surface diffusion of reactant adsorbates in the interspace between the top graphene layer and the underneath copper surface. We anticipate that the layer selectivity of the growth relies on the entrance energetics of the adsorbed reactants to the graphene-copper interspace across the primary-layer edge, which could be engineered by tailoring the edge termination state. The temperature-reliant saturation area of the secondary-layer expansion is understood as a result of competitive attachment of carbon and hydrogen adatoms to the secondary-layer graphene edge.

  3. Length-dependent thermal conductivity in suspended single-layer graphene. (United States)

    Xu, Xiangfan; Pereira, Luiz F C; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T L; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros


    Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studying thermal conductivity in two-dimensional systems, which is of primary importance for phonon transport in low-dimensional materials. Here we report experimental measurements and non-equilibrium molecular dynamics simulations of thermal conduction in suspended single-layer graphene as a function of both temperature and sample length. Interestingly and in contrast to bulk materials, at 300 K, thermal conductivity keeps increasing and remains logarithmically divergent with sample length even for sample lengths much larger than the average phonon mean free path. This result is a consequence of the two-dimensional nature of phonons in graphene, and provides fundamental understanding of thermal transport in two-dimensional materials.

  4. Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. (United States)

    Li, Peng; Zhang, Bo; Cui, Tianhong


    Graphene biosensors reported so far are based on polycrystalline graphene flakes which are anchored on supporting substrates. The influence of grain boundary and the scattering from substrate drastically degrade the properties of graphene and conceal the performance of intrinsic graphene as a sensor. Here we report a label-free biosensor based on suspended single crystalline graphene (SCG), which can get rid of grain boundary and substrate scattering, revealing the biosensing mechanism of intrinsic graphene for the first time. Monolayer SCG flakes were derived from low pressure chemical vapor deposition (LPCVD) method. Multiplex detection of three different lung cancer tumor markers was realized. The suspended structure can largely improve the sensitivity and detection limit (0.1 pg/ml) of the sensor, and the single crystalline nature of SCG enable the biosensor to have superior uniformity compared to polycrystalline ones. The SCG sensors exhibit superb specificity and large linear detection range from 1 pg/ml to 1 μg/ml, showing the prominent advantages of graphene as a sensing material. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca. (United States)

    Kanetani, Kohei; Sugawara, Katsuaki; Sato, Takafumi; Shimizu, Ryota; Iwaya, Katsuya; Hitosugi, Taro; Takahashi, Takashi


    Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we report a unique experimental realization of 2D GIC, by fabricating calcium-intercalated bilayer graphene C(6)CaC(6) on silicon carbide. We have investigated the structure and electronic states by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. We observed a free-electron-like interlayer band at the Brillouin-zone center, which is thought to be responsible for the superconductivity in 3D GICs, in addition to a large π* Fermi surface at the zone boundary. The present success in fabricating Ca-intercalated bilayer graphene would open a promising route to search for other 2D superconductors as well as to explore its application in devices.

  6. Stacking order dependent mechanical properties of graphene/MoS{sub 2} bilayer and trilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Elder, Robert M., E-mail:, E-mail:; Neupane, Mahesh R., E-mail:, E-mail:; Chantawansri, Tanya L. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)


    Transition metal dichalcogenides (TMDC) such as molybdenum disulfide (MoS{sub 2}) are two-dimensional materials that show promise for flexible electronics and piezoelectric applications, but their weak mechanical strength is a barrier to practical use. In this work, we perform nanoindentation simulations using atomistic molecular dynamics to study the mechanical properties of heterostructures formed by combining MoS{sub 2} with graphene. We consider both bi- and tri-layer heterostructures formed with MoS{sub 2} either supported or encapsulated by graphene. Mechanical properties, such as Young's modulus, bending modulus, ultimate tensile strength, and fracture strain, are extracted from nanoindentation simulations and compared to the monolayer and homogeneous bilayer systems. We observed that the heterostructures, regardless of the stacking order, are mechanically more robust than the mono- and bi-layer MoS{sub 2}, mainly due to the mechanical reinforcement provided by the graphene layer. The magnitudes of ultimate strength and fracture strain are similar for both the bi- and tri-layer heterostructures, but substantially larger than either the mono- and bi-layer MoS{sub 2}. Our results demonstrate the potential of graphene-based heterostructures to improve the mechanical properties of TMDC materials.

  7. Experimental study of thermal rectification in suspended monolayer graphene (United States)

    Wang, Haidong; Hu, Shiqian; Takahashi, Koji; Zhang, Xing; Takamatsu, Hiroshi; Chen, Jie


    Thermal rectification is a fundamental phenomenon for active heat flow control. Significant thermal rectification is expected to exist in the asymmetric nanostructures, such as nanowires and thin films. As a one-atom-thick membrane, graphene has attracted much attention for realizing thermal rectification as shown by many molecular dynamics simulations. Here, we experimentally demonstrate thermal rectification in various asymmetric monolayer graphene nanostructures. A large thermal rectification factor of 26% is achieved in a defect-engineered monolayer graphene with nanopores on one side. A thermal rectification factor of 10% is achieved in a pristine monolayer graphene with nanoparticles deposited on one side or with a tapered width. The results indicate that the monolayer graphene has great potential to be used for designing high-performance thermal rectifiers for heat flow control and energy harvesting.

  8. Raman spectroscopy and in situ Raman spectroelectrochemistry of bilayer ¹²C/¹³C graphene. (United States)

    Kalbac, Martin; Farhat, Hootan; Kong, Jing; Janda, Pavel; Kavan, Ladislav; Dresselhaus, Mildred S


    Bilayer graphene was prepared by the subsequent deposition of a (13)C single-layer graphene and a (12)C single-layer graphene on top of a SiO(2)/Si substrate. The bilayer graphene thus prepared was studied using Raman spectroscopy and in situ Raman spectroelectrochemistry. The Raman frequencies of the (13)C graphene bands are significantly shifted with respect to those of (12)C graphene, which allows us to investigate the single layer components of bilayer graphene individually. It is shown that the bottom layer of the bilayer graphene is significantly doped from the substrate, while the top layer does not exhibit a signature of the doping from the environment. The electrochemical doping has the same effect on the charge carrier concentration at the top and the bottom layer despite the top layer being the only layer in contact with the electrolyte. This is here demonstrated by essentially the same frequency shifts of the G and G' bands as a function of the electrode potential for both the top and bottom layers. Nevertheless, analysis of the intensity of the Raman modes showed an anomalous bleaching of the Raman intensity of the G mode with increasing electrode potential, which was not observed previously in one-layer graphene.

  9. Sticking of Hydrogen on Supported and Suspended Graphene at Low Temperature (United States)

    Lepetit, Bruno; Jackson, Bret


    The physisorption of atomic hydrogen on graphene is investigated quantum mechanically using a semiempirical model for the lattice dynamics. A thermally averaged wave packet propagation describes the motion of the H atoms with respect to the membrane. Two graphene configurations, either supported on a silicone oxide substrate or suspended over a hole in the substrate, are considered. In both cases, the phonon spectrum is modified in such a way that graphene is stabilized with respect to thermal fluctuations. The sticking probabilities of hydrogen on these stabilized membranes at 10 K are high at low collision energies, and larger than on graphite.

  10. Measuring the height-to-height correlation function of corrugation in suspended graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kirilenko, D.A., E-mail: [Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg (Russian Federation); EMAT, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Brunkov, P.N. [Ioffe Institute, Politekhnicheskaya ul. 26, 194021 St-Petersburg (Russian Federation); ITMO University, Kronverksky pr. 49, 197101 St. Petersburg (Russian Federation)


    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm{sup −1}. At the upper limit of this range H(q) does follow the T/κq{sup 4} law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q{sup −3.15} but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  11. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)


    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  12. Bilayer Graphene Application on NO2 Sensor Modelling


    Elnaz Akbari; Yusof, R.; M. T. Ahmadi; Enzevaee, A.; M. J. Kiani; H. Karimi; Rahmani, M.


    Graphene is one of the carbon allotropes which is a single atom thin layer with sp2 hybridized and two-dimensional (2D) honeycomb structure of carbon. As an outstanding material exhibiting unique mechanical, electrical, and chemical characteristics including high strength, high conductivity, and high surface area, graphene has earned a remarkable position in today’s experimental and theoretical studies as well as industrial applications. One such application incorporates the idea of using gra...

  13. Interlayer shear effect on vibrational behavior of bilayer graphene using the molecular mechanics simulation

    Directory of Open Access Journals (Sweden)

    Mina Mirparizi


    Full Text Available In this article, the interlayer shear effects on vibrational behavior of bilayer graphene (BG are studied by using the molecular mechanics (MM simulation. Investigation on mechanical behavior of graphenes has recently attracted because of their excellent properties. MM simulation is exploited for modeling of covalent bond in the plane of graphene layers and they are modeled as space-frame structures. The interaction between two layers is modeled by Lennard–Jones potential for not only two apposite atoms but also for all adjacent atoms. The frequencies and mode shapes for cantilever and bridged bilayer graphene as well as monolayer graphene (MG are obtained by a finite element approach. Results show that the interlayer shear interaction has considerable effect on vibrational behavior of BG and increases the natural frequencies, because existence of horizontal forces (shear forces that prevent the lateral displacements. It can be seen that the interaction between two layers are more considerable in second mode because the curvature and variation of displacement are higher in second mode. Also it can be found that changing of mode shapes has considerable effect on shear interaction.

  14. Band gap and broken chirality in single-layer and bilayer graphene (United States)

    Varlet, Anastasia; Liu, Ming-Hao; Bischoff, Dominik; Simonet, Pauline; Taniguchi, Takashi; Watanabe, Kenji; Richter, Klaus; Ihn, Thomas; Ensslin, Klaus


    Chirality is one of the key features governing the electronic properties of single- and bilayer graphene: the basics of this concept and its consequences on transport are presented in this review. By breaking the inversion symmetry, a band gap can be opened in the band structures of both systems at the K-point. This leads to interesting consequences for the pseudospin and, therefore, for the chirality. These consequences can be accessed by investigating the evolution of the Berry phase in such systems. Experimental observations of Fabry-Perot interference in a dual-gated bilayer graphene device are finally presented and are used to illustrate the role played by the band gap on the evolution of the pseudospin. The presented results can be attributed to the breaking of the chirality in the energy range close to the gap.

  15. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Bin; Wang, Peng; Pan, Cheng; Miao, Tengfei; Wu, Yong; Lau, C. N.; Bockrath, M., E-mail: [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Taniguchi, T.; Watanabe, K. [Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan)


    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine the twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.

  16. In situ high-temperature scanning tunneling microscopy study of bilayer graphene growth on 6H-SiC(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yuya [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Petrova, V.; Petrov, I. [Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Kodambaka, S., E-mail: [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)


    Using in situ high-temperature (1395 K), ultra-high vacuum, scanning tunneling microscopy (STM), we investigated the growth of bilayer graphene on 6H-SiC(0001). From the STM images, we measured areal coverages of SiC and graphene as a function of annealing time and found that graphene grows at the expense of SiC. Graphene domains were observed to grow, at comparable rates, at (I) graphene-free SiC step edges, (II) graphene-SiC interfaces, and (III) the existing graphene domain edges. Based upon our results, we suggest that the rate-limiting step controlling bilayer graphene growth is the desorption of Si from the substrate. - Highlights: Black-Right-Pointing-Pointer Use of scanning tunneling microscopy at temperatures as high as 1395 K. Black-Right-Pointing-Pointer Direct observation of graphene formation on SiC surfaces at the growth temperature. Black-Right-Pointing-Pointer Identification of atomic-scale pathways for bilayer graphene growth.

  17. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation

    Czech Academy of Sciences Publication Activity Database

    del Corro, Elena; Peňa-Álvarez, Miriam; Sato, K.; Morales-García, A.; Bouša, Milan; Mračko, Michal; Kolman, Radek; Pacáková, Barbara; Kavan, Ladislav; Kalbáč, Martin; Frank, Otakar


    Roč. 95, č. 8 (2017), č. článku 085138. ISSN 2469-9950 R&D Projects: GA ČR GA14-15357S; GA MŠk LL1301; GA ČR GA16-03823S Institutional support: RVO:61388955 ; RVO:61388998 ; RVO:68378271 Keywords : twisted bilayer graphene * tuning * silicon Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 3.836, year: 2016

  18. The electro-mechanical responses of suspended graphene ribbons for electrostatic discharge applications (United States)

    Zhang, Wei; Ma, Rui; Chen, Qi; Xia, Ming; Ng, Jimmy; Wang, Albert; Xie, Ya-Hong


    This work presents a suspended graphene ribbon device for electrostatic discharge (ESD) applications. The device structure was proposed and fabricated after careful design considerations. Compared to the conventional ESD devices such as diodes, bipolar junction transistors, and metal-oxide-semiconductor field effect transistors, the proposed device structure is believed to render several advantages including zero leakage, low parasitic effects, fast response, and high critical current density. A process flow was developed for higher yield and reliability of the suspended graphene ribbons. Direct current (DC) and transmission-line pulse (TLP) measurements were carried out to investigate the switching behavior of the device, which is crucial for ESD operation. DC measurements with a different configuration were used to assess the mechanical shape evolution of the graphene ribbon upon biasing. Finite Element Simulations were conducted and agreed well with the experimental results. Furthermore, the current carrying capability of non-suspended graphene ribbons was tested using TLP. It was found that the critical current density of graphene is higher than that of copper wires widely used as interconnects in integrated circuits (ICs).

  19. Anomalous Sequence of Quantum Hall Liquids Revealing a Tunable Lifshitz Transition in Bilayer Graphene (United States)

    Varlet, Anastasia; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Ihn, Thomas; Ensslin, Klaus; Mucha-Kruczyński, Marcin; Fal'ko, Vladimir I.


    Bilayer graphene is a unique system where both the Fermi energy and the low-energy electron dispersion can be tuned. This is brought about by an interplay between trigonal warping and the band gap opened by a transverse electric field. Here, we drive the Lifshitz transition in bilayer graphene to experimentally controllable carrier densities by applying a large transverse electric field to a h-BN-encapsulated bilayer graphene structure. We perform magnetotransport measurements and investigate the different degeneracies in the Landau level spectrum. At low magnetic fields, the observation of filling factors -3 and -6 quantum Hall states reflects the existence of three maxima at the top of the valence-band dispersion. At high magnetic fields, all integer quantum Hall states are observed, indicating that deeper in the valence band the constant energy contours are singly connected. The fact that we observe ferromagnetic quantum Hall states at odd-integer filling factors testifies to the high quality of our sample. This enables us to identify several phase transitions between correlated quantum Hall states at intermediate magnetic fields, in agreement with the calculated evolution of the Landau level spectrum. The observed evolution of the degeneracies, therefore, reveals the presence of a Lifshitz transition in our system.

  20. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene (United States)

    Kim, Kyounghwan; DaSilva, Ashley; Huang, Shengqiang; Fallahazad, Babak; Larentis, Stefano; Taniguchi, Takashi; Watanabe, Kenji; LeRoy, Brian J.; MacDonald, Allan H.; Tutuc, Emanuel


    According to electronic structure theory, bilayer graphene is expected to have anomalous electronic properties when it has long-period moiré patterns produced by small misalignments between its individual layer honeycomb lattices. We have realized bilayer graphene moiré crystals with accurately controlled twist angles smaller than 1° and studied their properties using scanning probe microscopy and electron transport. We observe conductivity minima at charge neutrality, satellite gaps that appear at anomalous carrier densities for twist angles smaller than 1°, and tunneling densities-of-states that are strongly dependent on carrier density. These features are robust up to large transverse electric fields. In perpendicular magnetic fields, we observe the emergence of a Hofstadter butterfly in the energy spectrum, with fourfold degenerate Landau levels, and broken symmetry quantum Hall states at filling factors ±1, 2, 3. These observations demonstrate that at small twist angles, the electronic properties of bilayer graphene moiré crystals are strongly altered by electron-electron interactions.

  1. An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Directory of Open Access Journals (Sweden)

    Qingshun Bai


    Full Text Available We performed molecular dynamics (MD simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the frictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction.

  2. An atomistic investigation of the effect of strain on frictional properties of suspended graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Qingshun; He, Xin; Bai, Jinxuan [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tong, Zhen [Centre for precision technologies, University of Huddersfield, Huddersfield, HD1 3DH (United Kingdom)


    We performed molecular dynamics (MD) simulations of a diamond probe scanned on a suspended graphene to reveal the effect of strain on the frictional properties of suspended graphene. The graphene was subjected to some certain strain along the scanning direction. We compared the friction coefficient obtained from different normal loads and strain. The results show that the friction coefficient can be decreased about one order of magnitude with the increase of the strain. And that can be a result of the decreased asymmetry of the contact region which is caused by strain. The synthetic effect of potential energy and the fluctuation of contact region were found to be the main reason accounting for the fluctuation of the friction force. The strain can reduce the fluctuation of the contact region and improve the stability of friction.

  3. Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications (United States)

    Ho, Hsin-Chia; Nien, Li-Wei; Li, Jia-Han; Hsueh, Chun-Hway


    Periodic gold dimer nanoantennas on a one-atomic-layer graphene sheet elevated above Si cavities were fabricated to systematically study the effects of the cavity depth on surface-enhanced Raman scattering (SERS). The periodic trend of Raman intensity as a function of the cavity depth resulting from the interference effect between the plasmonic resonance of the gold dimer and the cavity resonance of the underlying Si cavity was observed, and the electric field was greatly enhanced compared with the non-suspended system. The finite-difference time-domain method was used to simulate the interaction between the electromagnetic wave and the suspended system and to verify the observed SERS response in experiments. Our work has the advantages of combining the superior properties of graphene with suspended metallic nanostructures to result in the enhanced electric field for SERS applications.

  4. First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene (United States)

    Kaneko, Tomoaki; Saito, Riichiro


    Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.

  5. Study on the optical and electrical properties of tetracyanoethylene doped bilayer graphene stack for transparent conducting electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Limbu, Tej B., E-mail:; Barrionuevo, Danilo; Katiyar, Ram S.; Morell, Gerardo [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931 (United States); Mendoza, Frank [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Carpena, Jennifer [National Research Council, Washington D.C. 20001 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Maruyama, Benji [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Weiner, Brad R. [Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931 (United States); Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931 (United States)


    We report the optical and electrical properties of chemically-doped bilayer graphene stack by tetracyanoethylene, a strong electron acceptor. The Tetracyanoethylene doping on the bilayer graphene via charge transfer was confirmed by Raman spectroscopy and Infrared Fourier transform spectroscopy. Doped graphene shows a significant increase in the sheet carrier concentration of up to 1.520 × 10{sup 13} cm{sup −2} with a concomitant reduction of the sheet resistance down to 414.1 Ω/sq. The high optical transmittance (ca. 84%) in the visible region in combination with the low sheet resistance of the Tetracyanoethylene-doped bilayer graphene stack opens up the possibility of making transparent conducting electrodes for practical applications.

  6. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method (United States)

    Jang, W.; Bao, W.; Jing, L.; Lau, C. N.; Dames, C.


    We measured the in-plane thermal conductivity of suspended few-layer graphene flakes by a modified T-bridge technique from 300 K to below 100 K. The thermal conductivities at room temperature are 389, 344, 302, and 596 W/m K for 2-, 3-, 4-, and 8-layer graphene, respectively. The thinner (2-, 3-, 4-layer) graphene samples did not show any clear thickness dependence, while the thicker (8-layer) sample clearly has higher thermal conductivity. In situ current annealing was used to remove polymer residues from the central portion of the 3- and 8-layer graphene samples, as confirmed by electrical transport measurements and post-experiment characterization by Raman and scanning electron microscopy, although some residues still remained near both ends (heater and heat sink). Comparing the 2, 3, and 4-layer samples suggests the annealing had little effect near room temperature but leads to increased thermal conductivity at low temperature. These results also show that the thermal conductivities of suspended few-layer graphene are higher than those of encased few-layer graphene of similar thickness measured previously [Jang et al., Nano Lett. 10, 3909 (2010)].

  7. Bilayer graphene: physics and application outlook in photonics


    Yan Hugen


    Layered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin...

  8. Formation, Energetics, and Electronic Properties of Graphene Monolayer and Bilayer Doped with Heteroatoms

    Directory of Open Access Journals (Sweden)

    Yoshitaka Fujimoto


    Full Text Available Doping with heteroatoms is one of the most effective methods to tailor the electronic properties of carbon nanomaterials such as graphene and carbon nanotubes, and such nanomaterials doped with heteroatom dopants might therefore provide not only new physical and chemical properties but also novel nanoelectronics/optoelectronics device applications. The boron and nitrogen are neighboring elements to carbon in the periodic table, and they are considered to be good dopants for carbon nanomaterials. We here review the recent work of boron and nitrogen doping effects into graphene monolayer as well as bilayer on the basis of the first-principles electronic structure calculations in the framework of the density-functional theory. We show the energetics and the electronic properties of boron and nitrogen defects in graphene monolayer and bilayer. As for the nitrogen doping, we further discuss the stabilities, the growth processes, and the electronic properties associated with the plausible nitrogen defect formation in graphene which is suggested by experimental observations.

  9. Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Hatef Sadeghi


    Full Text Available Our focus in this study is on characterizing the capacitance voltage (C-V behavior of Bernal stacking bilayer graphene (BG and trilayer graphene (TG as the channel of FET devices. The analytical models of quantum capacitance (QC of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.

  10. Enhanced Performance of Dye-Sensitized Solar Cells with Graphene/ZnO Nanoparticles Bilayer Structure

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu


    Full Text Available This study reports characteristics of dye-sensitized solar cells (DSSCs with graphene/ZnO nanoparticle bilayer structure. The enhancement of the performance of DSSCs achieved using graphene/ZnO nanoparticle films is attributable to the introduction of an electron-extraction layer and absorption of light in the visible range and especially in the range 300–420 nm. DSSC that was fabricated with graphene/ZnO nanoparticle film composite photoanodes exhibited a Voc of 0.5 V, a Jsc of 17.5 mA/cm2, an FF of 0.456, and a calculated η of 3.98%.

  11. Model of an exotic chiral superconducting phase in a graphene bilayer. (United States)

    Hosseini, Mir Vahid; Zareyan, Malek


    We theoretically demonstrate the formation of a new type of unconventional superconductivity in graphene materials, which exhibits a gapless property. The studied superconductivity is based on an interlayer pairing of chiral electrons in bilayer graphene, which results in an exotic s-wave spin-triplet condensate order with anomalous thermodynamic properties. These include the possibility of a temperature-induced condensation causing an increase of the pairing gap with increasing temperature and an entropy of the stable superconducting state which can be higher than its value in the normal state. Our study reveals the analogy of the interlayer superconductivity in graphene materials to the color superconductivity in dense quark matter and the gapless pairing states in nuclear matter and ultracold atomic gases. © 2012 American Physical Society

  12. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, An-Ping [ORNL; Clark, Kendal W [ORNL; Zhang, Xiaoguang [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK); He, Guowei [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)


    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  13. Electron-phonon coupling in bilayer and single-layer graphene at sub-Kelvin temperatures (United States)

    McKitterick, Chris; Vora, Heli; Du, Xu; Rooks, Michael; Prober, Daniel


    Graphene has been proposed by many groups as a detector of terahertz photons1 , 2 , 3, due to its very small heat capacity and predicted low thermal conductance. We present Johnson noise thermometry measurements of single and bilayer graphene samples fabricated at Stony Brook University and at Yale University. These measurements probe the graphene electron-phonon coupling at sub-Kelvin temperatures. The devices are fabricated with superconducting contacts (NbN at Stony Brook, Al and Nb at Yale) to confine the hot electrons in the graphene device, diminishing the contribution of electron out-diffusion in cooling the electron system. By using commercially-available CVD-grown graphene for some samples, we can define large area sections, allowing us to emphasize the thermal conductance due to electron-phonon coupling. These measurements allow for performance estimates for using similar graphene devices to detect terahertz photons. 1C. B. McKitterick, D. E. Prober, B. S. Karasik, Journal of Applied Physics 113, 044512 (2013). 2H. Vora, P. Kumaravadivel, B. Nielsen, X. Du, Applied Physics Letters 100, 153507 (2012). 3K. Fong, K. Schwab, Physical Review X 2, 1 (2012). This work supported by NSF-DMR 0907082.

  14. Self-assembly of suspended graphene wrinkles with high pre-tension and elastic property (United States)

    Yang, Liusi; Niu, Tianxiao; Zhang, Hui; Xu, Wenjing; Zou, Mingchu; Xu, Lu; Cao, Guoxin; Cao, Anyuan


    Wrinkles exist universally in graphene-based structures, yet their controlled fabrication remains challenging; most graphene wrinkles have been produced either in attachment to elastic substrates or limited in small single sheets. Here, we utilize the phenomenon of gel-cracking to generate uniaxial strains locally on solution-precipitated graphene oxide (GO) sheets, thus creating suspended and aligned wrinkles over the trenches between cracked TiO2 islands. In particular, those GO wrinkles are subjected to a high pre-tension, which is important for making stable suspended configuration, as confirmed by theoretical calculations based on the wrinkle geometry and measured spring constants, respectively. As a result, in situ atomic force microscope indentation reveals elastic deformation with tunable spring constants depending on the gap width. We further obtain chemically reduced GO wrinkles with enhanced spring constants and reversible behavior after 1000 indentation cycles. Our suspended and aligned graphene wrinkles have potential applications in many areas such as sensors, actuators, and micro/nano electromechanical systems.

  15. Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators (United States)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.

  16. Graphene-polydimethylsiloxane/chromium bilayer-based flexible, reversible, and large bendable photomechanical actuators (United States)

    Leeladhar; Raturi, Parul; Kumar, Ajeet; Singh, J. P.


    We demonstrate the fabrication of highly versatile photomechanical actuators based on graphene-polymer/metal bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation under zero applied pre-strain, and wavelength-selective response. The photomechanical actuator consists of a graphene nanoplatelet (GNP)-polydimethylsiloxane (PDMS) nanocomposite with a thin chromium metal coating of 35 nm thickness on the backside of the structure. The photomechanical response of the GNP-PDMS/Cr photomechanical actuator was measured by recording the variation of the bending angle upon infrared (IR) light illumination. The bending in the bilayer actuator is caused by the generation of thermal stress due to the large mismatch (the ratio being 1/20) of the thermal expansion coefficient between the two layers as a result of IR absorption by GNPs and a subsequent increase in the local temperature. The maximum bending angle was found to be about 40 degrees with a corresponding large deflection value of about 6–7 mm within 6 s for IR illumination with an intensity of 550 mW cm‑2. The corresponding actuation response and relaxation times were about 1 and 3 s, respectively. The GNP-PDMS/Cr bilayer combination when integrated with the standard surface micromachining technique of micro-electromechanical system fabrication can find useful applications in the realization of micro soft-robotics, controlled drug delivery, and light-driven micro switches i.e. micro-optomechanical systems.

  17. Ultrafast carrier dynamics in bilayer graphene studied by broadband infrared pump-probe spectroscopy (United States)

    Limmer, Thomas; da Como, Enrico; Niggebaum, Alexander; Feldmann, Jochen


    Recently, bilayer graphene gained a large interest because of its electrically tunable gap appearing in the middle infrared part of the electromagnetic spectrum. This feature is expected to open a number of applications of bilayer graphene in optoelectronics. In this communication we report on the first pump-probe experiment on a single bilayer flake with an unprecedented probe photon energy interval (0.25 -- 1.3 eV). Single flakes were prepared by mechanical exfoliation of graphite and transferred to calcium fluoride substrates. When illuminated with 800 nm (1.5 eV) pump pulses the induced change in transmission shows an ultrafast saturation of the interband transitions from 1.3 to 0.5 eV. In this energy range the saturation recovery occurs within 3 ps and is consistent with an ultrafast relaxation of hot carriers. Interestingly, we report on the observation of a resonance at 0.4 eV characterized by a longer dynamics. The results are discussed considering many-body interactions.

  18. Measurement of the ν=1/3 Fractional Quantum Hall Energy Gap in Suspended Graphene (United States)

    Ghahari, Fereshte; Zhao, Yue; Cadden-Zimansky, Paul; Bolotin, Kirill; Kim, Philip


    We report on magnetotransport measurements of multiterminal suspended graphene devices. Fully developed integer quantum Hall states appear in magnetic fields as low as 2 T. At higher fields the formation of longitudinal resistance minima and transverse resistance plateaus are seen corresponding to fractional quantum Hall states, most strongly for ν=1/3. By measuring the temperature dependence of these resistance minima, the energy gap for the 1/3 fractional state in graphene is determined to be at ˜20K at 14 T.

  19. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer (United States)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo


    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  20. Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling (United States)

    Varlet, Anastasia; Liu, Ming-Hao; Krueckl, Viktor; Bischoff, Dominik; Simonet, Pauline; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Ensslin, Klaus; Ihn, Thomas


    We report the experimental observation of Fabry-Pérot interference in the conductance of a gate-defined cavity in a dual-gated bilayer graphene device. The high quality of the bilayer graphene flake, combined with the device's electrical robustness provided by the encapsulation between two hexagonal boron nitride layers, allows us to observe ballistic phase-coherent transport through a 1-μm-long cavity. We confirm the origin of the observed interference pattern by comparing to tight-binding calculations accounting for the gate-tunable band gap. The good agreement between experiment and theory, free of tuning parameters, further verifies that a gap opens in our device. The gap is shown to destroy the perfect reflection for electrons traversing the barrier with normal incidence (anti-Klein tunneling). The broken anti-Klein tunneling implies that the Berry phase, which is found to vary with the gate voltages, is always involved in the Fabry-Pérot oscillations regardless of the magnetic field, in sharp contrast with single-layer graphene.

  1. Process Characterization of 32nm Semi Analytical Bilayer Graphene-based MOSFET

    Directory of Open Access Journals (Sweden)

    Noor Faizah Z.A.


    Full Text Available This paper presents an inclusive study and analysis of graphene-based MOSFET device at 32nm gate length. The analysis was based on top-gated structure which utilized Hafnium Dioxide (HfO2 dielectrics and metal gate. The same conventional process flows of a transistor were applied except the deposition of bilayer graphene as a channel. The analytical expression of the channel potential includes all relevant physics of bilayer graphene and by assuming that this device displays an ideal ohmic contact and functioned at a ballistic transport. Based on the designed transistor, the on-state current (ION for both GNMOS and GPMOS shows a promising performance where the value is 982.857uA/um and 99.501uA/um respectively. The devices also possess a very small leakage current (IOFF of 0.289578nA/um for GNMOS and 0.130034nA/um for GPMOS as compared to the conventional SiO2/Poly-Si and high-k metal gate transistors. However, the devices suffer an inappropriate subthreshold swing (SS and high value of drain induced barrier lowering (DIBL.

  2. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes. (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus


    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  3. Fractional quantum Hall effect in suspended graphene: Transport coefficients and electron interaction strength (United States)

    Abanin, D. A.; Skachko, I.; Du, X.; Andrei, E. Y.; Levitov, L. S.


    Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10K . The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we address the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a general method, based on the conformal invariance of two-dimensional magnetotransport, and employ it to analyze the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized ν=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a tool for the studies of quantum transport in suspended graphene and other nanoscale systems.

  4. Using the G' Raman cross-section to understand the phonon dynamics in bilayer graphene systems. (United States)

    Mafra, D L; Kong, J; Sato, K; Saito, R; Dresselhaus, M S; Araujo, P T


    The G' (or 2D) Raman band of AB stacked bilayer graphene comes from a double resonance Raman (DRR) process and is composed of four peaks (P(11), P(12), P(21), and P(22)). In this work, the integrated areas (IA) of these four peaks are analyzed as a function of the laser power for different laser lines. We show that the dependence of the IA of each peak on temperature is different for each distinct laser excitation energy. This special dependence is explained in terms of the electron-phonon coupling and the relaxation of the photon-excited electron. In this DRR process, the electron is scattered by an iTO phonon from a K to an inequivalent K' point of the Brillouin zone. Here, we show that this electron relaxes while in the conduction band before being scattered by an iTO phonon due to the short relaxation time of the excited electron, and the carrier relaxation occurs predominantly by emitting a low-energy acoustic phonon. The different combinations of relaxation processes determine the relative intensities of the four peaks that give rise to the G' band. Some peaks show an increase of their IA at the expense of others, thereby making the IA of the peaks both different from each other and dependent on laser excitation energy and on power level. Also, we report that the IA of the G' mode excited at 532 nm, shows a resonance regime involving ZO' phonons (related to the interlayer breathing mode in bilayer graphene systems) in which a saturation of what we call the P(12) process occurs. This effect gives important information about the electron and phonon dynamics and needs to be taken into account for certain applications of bilayer graphene in the field of nanotechnology.

  5. Large yield production of high mobility freely suspended graphene electronic devices on a polydimethylglutarimide based organic polymer

    NARCIS (Netherlands)

    Tombros, Nikolaos; Veligura, Alina; Junesch, Juliane; Berg, J. Jasper van den; Zomer, Paul J.; Wojtaszek, Magdalena; Vera Marun, Ivan J.; Jonkman, Harry T.; Wees, Bart J. van


    The recent observation of a fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron–electron interaction dynamics. However, the technique used currently for the fabrication of such high mobility devices has

  6. Energy Gap Induced by Friedel Oscillations Manifested as Transport Asymmetry at Monolayer-Bilayer Graphene Boundaries

    Directory of Open Access Journals (Sweden)

    Kendal W. Clark


    Full Text Available We show that Friedel charge oscillation near an interface opens a gap at the Fermi energy for electrons with wave vectors perpendicular to the interface. If the Friedel gaps on two sides of the interface are different, a nonequilibrium effect—shifting of these gaps under bias—leads to asymmetric transport upon reversing the bias polarity. The predicted transport asymmetry is revealed by scanning tunneling potentiometry at monolayer-bilayer interfaces in epitaxial graphene on SiC(0001. This intriguing interfacial transport behavior opens a new avenue toward novel quantum functions such as quantum switching.

  7. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene. (United States)

    Margine, E R; Lambert, Henry; Giustino, Feliciano


    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8-8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets.

  8. Layer Polarizability and Easy-Axis Quantum Hall Ferromagnetism in Bilayer Graphene. (United States)

    Pan, C; Wu, Y; Cheng, B; Che, S; Taniguchi, T; Watanabe, K; Lau, C N; Bockrath, M


    We report magnetotransport measurements of graphene bilayers at large perpendicular electric displacement fields, up to ∼1.5 V/nm, where we observe crossings between Landau levels with different orbital quantum numbers. The displacement fields at the studied crossings are primarily determined by energy shifts originating from the Landau level layer polarizability or polarization. Despite decreasing Landau level spacing with energy, successive crossings occur at larger displacement fields, resulting from decreasing polarizability with orbital quantum number. For particular crossings we observe resistivity hysteresis in displacement field, indicating the presence of a first-order transition between states exhibiting easy-axis quantum Hall ferromagnetism.

  9. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.


    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Switchable photovoltaic effect in bilayer graphene/BiFeO3/Pt heterostructures (United States)

    Katiyar, Rajesh K.; Misra, Pankaj; Mendoza, Frank; Morell, Gerardo; Katiyar, Ram S.


    We report the switchable photovoltaic effects in graphene/BiFeO3/Pt heterostructures. Pure phase polycrystalline BiFeO3 films were deposited on Pt/TiO2/SiO2/Si substrates by pulse laser deposition. A bilayer graphene was transferred onto the BiFeO3 film which serves as transparent conducting electrodes. The heterostructures showed switchable photovoltaic effect depending on ferroelectric polarization directions indicating depolarization field induced separation of photo-generated carriers. The open circuit voltage (VOC) and short circuit current density (JSC) were measured to be ˜110 mV, ˜92 μA/cm2 in positive polarity and similar values were obtained when the polarity was reversed. The JSC and VOC also showed rapid response (<100 ms) as a function of light exposure time.

  11. Magnetism of an adatom on biased AA-stacked bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Yawar, E-mail: [Department of Physics, Islamic Azad University, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Nano Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of)


    We study the magnetism of an adatom adsorbed on AA-stacked bilayer graphene (BLG) in both unbiased and biased cases using the Anderson impurity model. We find different magnetic phase diagrams for the adatom, depending on its energy level. The magnetic phase of the adatom varies from that in normal metals to that in graphene. This is because of the individual energy dependence of the density of states (DOS) of AA-stacked BLG and anomalous broadening of the adatom energy level. We also investigate the effect of a bias voltage on the DOS of AA-stacked BLG and show that adatom magnetization can be controlled by applying a bias voltage. This allows the possibility of using AA-stacked BLG in spintronic devices.

  12. Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas; Ranjan, Shivendu; Dasgupta, Nandita


    In this paper, we report an enzyme dependent, green one-pot deoxygenation cum decoration method to synthesize diastase-conjugated reduced graphene oxide (DRG) nanosheets, DRG/gold nanoparticles (DRG/Au) composite. The DRG synthesis was completed in 7h under heating at 90°C on water bath. Selected area electron diffraction (SAED) and Atomic force microscopy (AFM) study has revealed the formation of bilayered reduced graphene oxide sheets. Transmission electron microscopy (TEM) images of DRG/Au composite have shown the uniform decoration of gold nanoparticles (AuNPs) onto the DRG nanosheet surface. Fourier transform infrared spectroscopy (FTIR) and Raman results additionally have shown the functionalization of enzyme molecules onto the DRG nanosheet surface after reduction making it as an effective platform towards the efficient binding of gold nanoparticles. In vitro cytotoxicity studies by MTT assay on A549 and HCT116 cell lines exhibited that the cytotoxicity of the prepared graphene oxide (GO), DRG and DRG/Au is dose dependant. These results have shown that this synthetic method is effective for the production of large scale graphene in a low cost, simple and green method. Since this process avoids the use of hazardous and toxic substances, the produced DRG/Au composites are likely to offer various potential applications in biology and medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions (United States)

    Kumaravadivel, Piranavan; Du, Xu


    In Dirac materials, the low energy excitations behave like ultra-relativistic massless particles with linear energy dispersion. A particularly intriguing phenomenon arises with the intrinsic charge transport behavior at the Dirac point where the charge density approaches zero. In graphene, a 2-D Dirac fermion gas system, it was predicted that charge transport near the Dirac point is carried by evanescent modes, resulting in unconventional “pseudo-diffusive” charge transport even in the absence of disorder. In the past decade, experimental observation of this phenomenon remained challenging due to the presence of strong disorder in graphene devices which limits the accessibility of the low carrier density regime close enough to the Dirac point. Here we report transport measurements on ballistic suspended graphene-Niobium Josephson weak links that demonstrate a transition from ballistic to pseudo-diffusive like evanescent transport below a carrier density of ~1010 cm-2. Approaching the Dirac point, the sub-harmonic gap structures due to multiple Andreev reflections display a strong Fermi energy-dependence and become increasingly pronounced, while the normalized excess current through the superconductor-graphene interface decreases sharply. Our observations are in qualitative agreement with the long standing theoretical prediction for the emergence of evanescent transport mediated pseudo-diffusive transport in graphene.

  14. Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene. (United States)

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong


    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.

  15. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions. (United States)

    Vuong, A; Trevethan, T; Latham, C D; Ewels, C P; Erbahar, D; Briddon, P R; Rayson, M J; Heggie, M I


    AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded 'wormhole' or tunnel defect between the layers. We also identify a new class of 'mezzanine' structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.

  16. Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene (United States)

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong


    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.

  17. Continuous and reversible tuning of the disorder-driven superconductor–insulator transition in bilayer graphene (United States)

    Lee, Gil-Ho; Jeong, Dongchan; Park, Kee-Su; Meir, Yigal; Cha, Min-Chul; Lee, Hu-Jong


    The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor–insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes. PMID:26310774

  18. Scanning tunneling microscopy and spectroscopy of finite-size twisted bilayer graphene (United States)

    Wang, Wen-Xiao; Jiang, Hua; Zhang, Yu; Li, Si-Yu; Liu, Haiwen; Li, Xinqi; Wu, Xiaosong; He, Lin


    Finite-size twisted bilayer graphene (TBG, where here the TBG is of nanoscale size) is quite unstable and will change its structure to a Bernal (or A B -stacking) bilayer with a much lower energy. Therefore, the lack of finite-size TBG makes its electronic properties difficult to access in experiments. In this paper, a special confined TBG is obtained in the overlaid area of two continuous misoriented graphene sheets. The width of the confined region of the TBG changes gradually from about 22 to 0 nm. By using scanning tunneling microscopy, we study carefully the structure and the electronic properties of finite-size TBG. Our results indicate that the low-energy electronic properties, including twist-induced Van Hove singularities (VHSs) and spatial modulation of the local density of states, are strongly affected by the translational symmetry breaking of the finite-size TBG. However, the electronic properties above the energy of the VHSs are almost not influenced by quantum confinement even when the width of the TBG is reduced to only a single moiré spot.

  19. Coupled electron-hole bilayer graphene sheets: Superfluidity, Charge Density Waves, and Coupled Wigner Crystals (United States)

    Zarenia, Mohammad; Peeters, Francois; Neilson, David

    The juxtaposition of superconducting and charge density wave (CDW) phases that is often observed in connection with High-Temperature Superconductors, is attracting considerable attention. In these systems, the crystal lattice provides a polarizable background, needed to drive the CDW phase. We report on a different system that exhibits the association of superfluid and CDW phases, but in which the polarizable background is uniform. Our system consists of two coupled two-dimensional bilayers of graphene, one bilayer containing electrons and the other holes interacting through the long range Coulomb interaction. To account for the inter-layer correlation energy accurately, we introduce a new approach which is based on the random phase approximation at high densities and interpolation between the weakly- and strongly-interacting regimes. We determine the zero temperature phase diagram in which the two control parameters are the equal electron and hole densities and the thickness of the insulating barrier separating the two bilayers. We find in addition to an electron-hole superfluid and a one-dimensional CDW phases that there exist also a coupled electron-hole Wigner crystal. The structure of the crystal background plays no role in determining the phase diagram. This work was supported by the Flemish Science Foundation (FWO).

  20. One-step synthesis of a suspended ultrathin graphene oxide film: application in transmission electron microscopy. (United States)

    Kirilenko, D A; Dideykin, A T; Aleksenskiy, A E; Sitnikova, A A; Konnikov, S G; Vul', A Ya


    Ultrathin graphene films find their use as advantageous support for nano- and biomaterials investigations. Thin film causes a very slight deterioration to measured signals, thus providing more details of the object's structure at nanoscale. The ultimate thinness of graphene works in the best way for this purpose. However, obtaining suspended thin film of a large-area, which is convenient for applications, is often a relatively complicated and time-consuming task. Here we present a one-step 1-min technique for synthesis of an extremely thin (about 1-2 nm) continuous film suspended over cells of a conventional copper grid (50-400 μm mesh). This technique enables us to acquire a large-area film which is water-resistant, stable in organic solvents and can act as a support when studying nanoparticles or biomaterials. Moreover, the very mechanism of the film formation can be interesting from the point of view of other applications of ultrathin graphene oxide papers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enhanced magnetic response and metallicity in AB stacked bilayer graphene via Cr-doping

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra 136119, Haryana (India); Kashyap, Manish K., E-mail: [Department of Physics, Kurukshetra University, Kurukshetra 136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh 160014 (India); Reshak, Ali H. [New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)


    First-principles study for the electronic and magnetic properties of Cr atom doping in lower layer of AB bernal stacked bilayer graphene (BLG) is presented. This doping is analysed in three different configurations; (i) Hollow type (above the centre of C hexagon), (ii) Top-type (directly on the top of any C atom) and (iii) Bridge type (mid point of any C–C bond). It has been observed that the doping of Cr atom enlarges the interlayer spacing in BLG as compared to pure one. The Top-type (T-type) doping is found to be most stable energetically. The doping of Cr atom in all configurations generates the large spin polarization and induces the appreciable magnetic moment. Half metallicity has been obtained in Hollow type (H-type) doping with a suitable band gap of 0.28 eV in minority spin channel. The origin of magnetism has been identified via interactions of 3d-states of doped Cr atom with p-states of inequivalent C atoms present in the vicinity of doping site. The electron densities plots also confirm the metallic nature of Cr-doped BLG. Our results reveal that the resultant BLG has potential for futuristic applications such as high frequency transistors, spintronics, photodetectors and energy resources. - Highlights: • Cr-doping in bilayer graphene induces magnetic channel. • Half metallicity is observed only in H-type Cr-doping in graphene. • T-type doping is most energetically stable among all types (H-type, B-type and T-type). • The strong hybridization of Cr-3d states with C-p states governs the magnetism in BLG.

  2. Fabrication of bi-layer graphene and theoretical simulation for its possible application in thin film solar cell. (United States)

    Behura, Sanjay K; Mahala, Pramila; Nayak, Sasmita; Yang, Qiaoqin; Mukhopadhyay, Indrajit; Janil, Omkar


    High quality graphene film is fabricated using mechanical exfoliation of highly-oriented pyrolytic graphite. The graphene films on glass substrates are characterized using field-emission scanning electron microscopy, atomic force microscopy, Raman spectroscopy, UV-vis spectroscopy and Fourier transform infrared spectroscopy. A very high intensity ratio of 2D to G-band (to approximately 1.67) and narrow 2D-band full-width at half maximum (to approximately 40 cm(-1)) correspond to the bi-layer graphene formation. The bi-layer graphene/p-GaN/n-InGaN/n-GaN/GaN/sAl2O3 system is studied theoretically using TCAD Silvaco software, in which the properties of exfoliated bi-layer graphene are used as transparent and conductive film, and the device exhibits an efficiency of 15.24% compared to 13.63% for ITO/p-GaN/n-InGaN/n-GaN/GaN/Al2O3 system.

  3. Determining the Gaussian Modulus and Edge Properties of 2D Materials: From Graphene to Lipid Bilayers (United States)

    Zelisko, Matthew; Ahmadpoor, Fatemeh; Gao, Huajian; Sharma, Pradeep


    The dominant deformation behavior of two-dimensional materials (bending) is primarily governed by just two parameters: bending rigidity and the Gaussian modulus. These properties also set the energy scale for various important physical and biological processes such as pore formation, cell fission and generally, any event accompanied by a topological change. Unlike the bending rigidity, the Gaussian modulus is, however, notoriously difficult to evaluate via either experiments or atomistic simulations. In this Letter, recognizing that the Gaussian modulus and edge tension play a nontrivial role in the fluctuations of a 2D material edge, we derive closed-form expressions for edge fluctuations. Combined with atomistic simulations, we use the developed approach to extract the Gaussian modulus and edge tension at finite temperatures for both graphene and various types of lipid bilayers. Our results possibly provide the first reliable estimate of this elusive property at finite temperatures and appear to suggest that earlier estimates must be revised. In particular, we show that, if previously estimated properties are employed, the graphene-free edge will exhibit unstable behavior at room temperature. Remarkably, in the case of graphene, we show that the Gaussian modulus and edge tension even change sign at finite temperatures.

  4. Dirac cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals (United States)

    Pakhira, Srimanta; Lucht, Kevin P.; Mendoza-Cortes, Jose L.


    Bilayer graphene (BLG) is a semiconductor whose band gap and properties can be tuned by various methods such as doping or applying gate voltage. Here, we show how to tune electronic properties of BLG by intercalation of transition metal (TM) atoms between two monolayer graphene (MLG) using a novel dispersion-corrected first-principle density functional theory (DFT) approach. We intercalated V, Nb, and Ta atoms between two MLG. We found that the symmetry, the spin, and the concentration of TM atoms in BLG-intercalated materials are the important parameters to control and to obtain a Dirac cone in their band structures. Our study reveals that the BLG intercalated with one vanadium (V) atom, BLG-1V, has a Dirac cone at the K-point. In all the cases, the present DFT calculations show that the 2pz sub-shells of C atoms in graphene and the 3dyz sub-shells of the TM atoms provide the electron density near the Fermi energy level (EF) which controls the material properties. Thus, we show that out-of-plane atoms can influence in-plane electronic densities in BLG and enumerate the conditions necessary to control the Dirac point. This study offers insight into the physical properties of 2D BLG intercalated materials and presents a new strategy for controlling the electronic properties of BLG through TM intercalation by varying the concentration and spin arrangement of the metals resulting in various conducting properties, which include: metal, semi-metal and semiconducting states.

  5. On-Demand Spin–Orbit Interaction from Which-Layer Tunability in Bilayer Graphene (United States)

    Khoo, Jun Yong; Morpurgo, Alberto F.; Levitov, Leonid


    Spin-orbit interaction (SOI) that is gate-tunable over a broad range is essential to exploiting novel spin phenomena. Achieving this regime has remained elusive because of the weakness of the underlying relativistic coupling and lack of its tunability in solids. Here we outline a general strategy that enables exceptionally high tunability of SOI through creating a which-layer spin-orbit field inhomogeneity in graphene multilayers. An external transverse electric field is applied to shift carriers between the layers with strong and weak SOI. Because graphene layers are separated by sub-nm scales, exceptionally high tunability of SOI can be achieved through a minute carrier displacement. A detailed analysis of the experimentally relevant case of bilayer graphene on a semiconducting transition metal dichalchogenide substrate is presented. In this system, a complete tunability of SOI amounting to its ON/OFF switching can be achieved. New opportunities for spin control are exemplified with electrically driven spin resonance and topological phases with different quantized intrinsic valley Hall conductivities.

  6. Sub-harmonic gap structure and Magneto-transport in suspended graphene -Superconductor ballistic junctions (United States)

    Kumaravadivel, Piranavan; Du, Xu


    Inducing superconductivity in graphene via the proximity effect enables to study the rich transport of the massless Dirac fermions at the Superconductor(S) - Graphene (G) interface. Some of the predictions are pseudo diffusive transport in Ballistic SGS junctions at low carrier densities and the unique specular and retro Andreev reflections in graphene. One of the challenges in observing these experimentally is to fabricate highly transparent ballistic SGS junctions that can be probed at low carrier densities near the Dirac point. In this talk we will present our recent results on suspended graphene- Niobium Josephson weak links. Our devices exhibit a mobility of ~ 350000 cm2V-1s-1 with a carrier density as low as 109 cm-2. Below the Superconducting transition temperature (Tc) ~ 9K, the devices show supercurrent and sub-harmonic gap structure due to Multiple Andreev reflections. In the vicinity of the Dirac point, the sub-harmonic gap structure becomes more pronounced, which as predicated, is indicative of pseudo-diffusive transport. With a fine scanning of gate voltage close to Dirac point we see emergence of some unusual sub- gap structures. We also report on our study of these samples below the upper critical field of Nb (~ 3.5T), where superconducting proximity effect coexists with Quantum Hall effect.

  7. Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors. (United States)

    Patil, Vikram; Capone, Aaron; Strauf, Stefan; Yang, Eui-Hyeok


    Graphene's unique optoelectronic properties are promising to realize photodetectors with ultrafast photoresponse over a wide spectral range from far-infrared to ultraviolet radiation. The underlying mechanism of the photoresponse has been a particular focus of recent work and was found to be either photoelectric or photo-thermoelectric in nature and enhanced by hot carrier effects. Graphene supported by a substrate was found to be dominated by the photo-thermoelectric effect, which is known to be an order of magnitude slower than the photoelectric effect. Here we demonstrate fully-suspended chemical vapor deposition grown graphene microribbon arrays that are dominated by the faster photoelectric effect. Substrate removal was found to enhance the photoresponse by four-fold compared to substrate-supported microribbons. Furthermore, we show that the light-current input/output curves give valuable information about the underlying photophysical process responsible for the generated photocurrent. These findings are promising towards wafer-scale fabrication of graphene photodetectors approaching THz cut-off frequencies.

  8. Seebeck Coefficient of a Single van der Waals Junction in Twisted Bilayer Graphene. (United States)

    Mahapatra, Phanibhusan S; Sarkar, Kingshuk; Krishnamurthy, H R; Mukerjee, Subroto; Ghosh, Arindam


    When two planar atomic membranes are placed within the van der Waals distance, the charge and heat transport across the interface are coupled by the rules of momentum conservation and structural commensurability, leading to outstanding thermoelectric properties. Here we show that an effective "interlayer phonon drag" determines the Seebeck coecient (S) across the van der Waals gap formed in twisted bilayer graphene (tBLG). The cross-plane thermovoltage, which is nonmonotonic in both temperature and density, is generated through scattering of electrons by the out-of-plane layer breathing (ZO'/ZA 2 ) phonon modes and differs dramatically from the expected Landauer-Buttiker formalism in conventional tunnel junctions. The tunability of the cross-plane Seebeck effect in van der Waals junctions may be valuable in creating a new genre of versatile thermoelectric systems with layered solids.

  9. Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions (United States)

    Bischoff, D.; Varlet, A.; Simonet, P.; Ihn, T.; Ensslin, K.


    A quantum dot has been etched in bilayer graphene connected by two small constrictions to the leads. We show that this structure does not behave like a single quantum dot but consists of at least three sites of localized charge in series. The high symmetry and electrical stability of the device allowed us to triangulate the positions of the different sites of localized charge and find that one site is located in the island and one in each of the constrictions. Nevertheless we measure many consecutive non-overlapping Coulomb-diamonds in series. In order to describe these findings, we treat the system as a strongly coupled serial triple quantum dot. We find that the non-overlapping Coulomb diamonds arise due to higher order cotunneling through the outer dots located in the constrictions. We extract all relevant capacitances, simulate the measured data with a capacitance model and discuss its implications on electrical transport.

  10. Critical point for the canted antiferromagnetic to ferromagnetic phase transition at charge neutrality in bilayer graphene (United States)

    Pezzini, S.; Cobaleda, C.; Piot, B. A.; Bellani, V.; Diez, E.


    We report on magnetotransport measurements up to 30 T performed on a bilayer graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. In the quantum Hall regime, our high-mobility sample exhibits an insulating state at the neutrality point which evolves into a metallic phase when a strong in-plane field is applied, as expected for a transition from a canted antiferromagnetic to a ferromagnetic spin-ordered phase. We individuate a temperature-independent crossing in the four-terminal resistance as a function of the total magnetic field, corresponding to the critical point of the transition. We show that the critical field scales linearly with the perpendicular component of the field, as expected from the underlying competition between the Zeeman energy and interaction-induced anisotropies. A clear scaling of the resistance is also found and a universal behavior is proposed in the vicinity of the transition.

  11. Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain (United States)

    Nascimento, J. S.; da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Pereira, J. M.


    Using the tight-binding approach coupled with mean-field Hubbard model, we theoretically study the effect of mechanical deformations on the magnetic properties of bilayer graphene (BLG) quantum dots (QDs). Results are obtained for AA- and AB(Bernal)-stacked BLG QDs, considering different geometries (hexagonal, triangular and square shapes) and edge types (armchair and zigzag edges). In the absence of strain, our results show that (i) the magnetization is affected by taking different dot sizes only for hexagonal BLG QDs with zigzag edges, exhibiting different critical Hubbard interactions, and (ii) the magnetization does not depend on the interlayer hopping energies, except for the geometries with zigzag edges and AA stacking. In the presence of in-plane and uniaxial strain, for all geometries we obtain two different magnetization regimes depending on the applied strain amplitude. The appearance of such different regimes is due to the breaking of layer and sublattice symmetries in BLG QDs.

  12. Orbital diamagnetism of weakly doped bilayer graphene in a magnetic field. (United States)

    Lv, Min; Wan, Shaolong


    We investigate the orbital diamagnetism of weakly doped bilayer graphene (BLG) in a spatially smoothly varying magnetic field and obtain the general analytic expression for the orbital susceptibility of BLG, with finite wavenumber and Fermi energy, at zero temperature. We find that the magnetic field screening factor of BLG is dependent on the wavenumber, which results in a more complicated screening behavior compared with that of monolayer graphene (MLG). We also study the induced magnetization and electric current in BLG, under a nonuniform magnetic field, and find that they are qualitatively different from those for MLG and the two-dimensional electron gas (2DEG). However, as for MLG, a magnetic object placed above BLG is repelled by a diamagnetic force from the BLG, which is approximately equivalent to the force produced by its mirror image on the other side of the BLG with a reduced amplitude dependent on the typical length of the systems. BLG shows crossover behaviors in the responses to the external magnetic field, intermediate between those of MLG and 2DEG.

  13. Enhancement of electron-phonon coupling in Cs-overlayered intercalated bilayer graphene. (United States)

    Kleeman, J; Sugawara, K; Sato, T; Takahashi, T


    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on cesium (Cs) intercalated bilayer graphene with a Cs overlayer (Cs-C8CsC8). Low-energy electron diffraction shows a (2  ×  2) pattern consistent with intercalation of a Cs layer similar to bulk C8Cs, in addition to the signature of a nearly commensurate superstructure created by the Cs overlayer. ARPES results reveal folding of the π bands due to the periodic (2  ×  2) potential of the intercalated Cs atoms, together with a free-electron-like state at the [Formula: see text] point. Significant mass renormalization is observed in the band dispersion near the Fermi level, indicative of strong electron-phonon coupling. Based on analysis of the self-energy, we find anisotropic electron-phonon coupling with an estimated strength of [Formula: see text]  ±  0.02 in the K-[Formula: see text] direction, and [Formula: see text] in the K-M direction. This coupling is much larger than that of other doped graphenes, and comparable to superconducting bulk GICs. We attribute this large electron-phonon coupling constant to the presence of the Cs overlayer, which highly dopes [Formula: see text] bands, and creates a structure similar to stage-I graphite intercalation compounds.

  14. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level (United States)

    Zibrov, A. A.; Kometter, C.; Zhou, H.; Spanton, E. M.; Taniguchi, T.; Watanabe, K.; Zaletel, M. P.; Young, A. F.


    Non-Abelian anyons are a type of quasiparticle with the potential to encode quantum information in topological qubits protected from decoherence. Experimental systems that are predicted to harbour non-Abelian anyons include p-wave superfluids, superconducting systems with strong spin–orbit coupling, and paired states of interacting composite fermions that emerge at even denominators in the fractional quantum Hall (FQH) regime. Although even-denominator FQH states have been observed in several two-dimensional systems, small energy gaps and limited tunability have stymied definitive experimental probes of their non-Abelian nature. Here we report the observation of robust even-denominator FQH phases at half-integer Landau-level filling in van der Waals heterostructures consisting of dual-gated, hexagonal-boron-nitride-encapsulated bilayer graphene. The measured energy gap is three times larger than observed previously. We compare these FQH phases with numerical and theoretical models while simultaneously controlling the carrier density, layer polarization and magnetic field, and find evidence for the paired Pfaffian phase that is predicted to host non-Abelian anyons. Electric-field-controlled level crossings between states with different Landau-level indices reveal a cascade of FQH phase transitions, including a continuous phase transition between the even-denominator FQH state and a compressible composite fermion liquid. Our results establish graphene as a pristine and tunable experimental platform for studying the interplay between topology and quantum criticality, and for detecting non-Abelian qubits.

  15. Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy. (United States)

    Hwang, Gwangseok; Kwon, Ohmyoung


    Using null-point scanning thermal microscopy (NP SThM), we have measured and analyzed the size dependence of the thermal conductivity of graphene. To do so, we rigorously re-derived the principal equation of NP SThM in terms of thermal property measurements so as to explain how this technique can be effectively used to quantitatively measure the local thermal resistance with nanoscale spatial resolution. This technique has already been proven to resolve the major problems of conventional SThM, and to quantitatively measure the temperature profile. Using NP SThM, we measured the variation in the thermal resistance of suspended chemical vapor deposition (CVD)-grown graphene disks with radii of 50-3680 nm from the center to the edge with respect to the size. By thoroughly analyzing the size dependence of the thermal resistance, we show that, with increasing graphene size, the ballistic resistance becomes more dominant in the thermal resistance experienced by a heat source of finite size and that the thermal conductivity experienced by such a heat source can even decrease. The results of this study reveal that the thermal conductivity of graphene detected by a heat source depends on the size of the heat source relative to that of the suspended graphene and on how the heat source and graphene are connected. As demonstrated in this study, NP SThM will be very useful for quantitative thermal characterization of not only CVD-grown graphene but also various other nanomaterials and nanodevices.

  16. Molecular dynamics simulations on deformation and fracture of bi-layer graphene with different stacking pattern under tension

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, M.D.; Wang, L. [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Wang, C.Y. [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Zhang, Q., E-mail: [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ye, S.Y.; Wang, F.Y. [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China)


    Based on AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) potential, molecular dynamics simulations (MDs) are performed to study the mechanical behavior of AB- and AA-stacked bi-layer graphene films (BGFs) under tension. Stress–strain relationship is established and deformation mechanism is investigated via morphology analysis. It is found that AA-stacked BGFs show wavy folds, i.e. the structural instability, and the local structure of AB-stacked BGFs transforms into AA-stacked ones during free relaxation. The values of the Young's modulus obtained for AA-stacked zigzag and armchair BGFs are 797.2 GPa and 727.4 GPa, and those of their AB-stacked counterparts are 646.7 GPa and 603.5 GPa, respectively. In comparison with single-layer graphene, low anisotropy is observed for BGFs, especially AB-stacked ones. During the tensile deformation, hexagonal cells at the edge of BGFs are found to transform into pentagonal rings and the number of such defects increases with the rise of tensile strain. - Highlights: • Molecular dynamics simulations are performed to study the mechanical behavior of AB- and AA-stacked bi-layer graphene films under tension. • Stress–strain relationship is established and deformation mechanism is investigated via morphology analysis. • AA-stacked graphene shows structural instability and the local structure of AB-stacked films transforms into AA-stacked in free relaxation. • Low anisotropy is observed for bi-layer graphene films, especially for AB-stacked ones.

  17. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean ( Vicia faba L.) (United States)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal


    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed "graphene oxide") are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean ( Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L-1) of graphene oxide (0.5-5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L-1), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L-1) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione-metabolizing enzymes.

  18. Electromagnetic absorption and Kerr effect in quantum Hall ferromagnetic states of bilayer graphene (United States)

    Côté, R.; Barrette, Manuel; Bouffard, Élie


    In a quantizing magnetic field, the chiral two-dimensional electron gas in Landau level N =0 of bilayer graphene goes through a series of phase transitions at integer filling factors ν ∈[-3 ,3 ] when the strength of an electric field applied perpendicularly to the layers is increased. At filling factor ν =3 , the electron gas can be described by a simple two-level system where layer and spin degrees of freedom are frozen. The gas then behaves as an orbital quantum Hall ferromagnet. A Coulomb-induced Dzyaloshinskii-Moriya term in the orbital pseudospin Hamiltonian is responsible for a series of transitions first to a Wigner crystal state and then to a spiral state as the electric field is increased. Both states have a nontrivial orbital pseudospin texture. In this work, we study how the phase diagram at ν =3 is modified by an electric field applied in the plane of the layers and then derive several experimental signatures of the uniform and nonuniform states in the phase diagram. In addition to the transport gap, we study the electromagnetic absorption and the Kerr rotation due to the excitations of the orbital pseudospin-wave modes in the broken-symmetry states.

  19. Retro reflection of electrons at the interface of bilayer graphene and superconductor. (United States)

    Ang, Yee Sin; Ma, Zhongshui; Zhang, C


    Electron reflection at an interface is a fundamental quantum transport phenomenon. The most famous electron reflection is the electron→hole Andreev reflection (AR) at a metal/superconductor interface. While AR can be either specular or retro-type, electron→electron reflection is limited to only the specular type. Here we show that electrons can undergo retro-reflection in bilayer graphene (BLG). The underlying mechanism for this previously unknown process is the anisotropic constant energy band contour of BLG. The electron group velocity is fully reversed upon reflection, causing electrons to be retro-reflected. Utilizing a BLG/superconductor junction (BLG/S) as a model structure, we show that the unique low energy quasiparticle nature of BLG results in two striking features: (1) AR is completely absent, making BLG/S 100% electron reflective; (2) electrons are valley-selectively focused upon retro-reflection. Our results suggest that BLG/S is a valley-selective Veselago electron focusing mirror which can be useful in valleytronic applications.

  20. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene (United States)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.


    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles (𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  1. First principle DFT study of electric field effects on the characteristics of bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry


    First principle density functional theory methods, local density and Perdew-Burke-Ernzerhof generalized gradient approximations with Goedecker pseudopotential (LDA-G and PBE-G), are used to study the electric field effects on the binding energy and atomic charges of bilayer graphene (BLG) at the Γ point of the Brillouin zone based on two types of unit cells (α and β) containing n{sub C}=8-32 carbon atoms. Results show that application of electric fields of 4-24 V/nm strengths reduces the binding energies and induces charge transfer between the two layers. The transferred charge increases almost linearly with the strength of the electric field for all sizes of the two types of unit cells. Furthermore, the charge transfer calculated with the α-type unit cells is more sensitive to the electric field strength. The calculated field-dependent contour plots of the differential charge densities of the two layers show details of charge density redistribution under the influence of the electric field.

  2. Bilayer Graphene as a Platform for Bosonic Symmetry-Protected Topological States. (United States)

    Bi, Zhen; Zhang, Ruixing; You, Yi-Zhuang; Young, Andrea; Balents, Leon; Liu, Chao-Xing; Xu, Cenke


    Bosonic symmetry protected topological (BSPT) states, the bosonic analogue of topological insulators, have attracted enormous theoretical interest in the last few years. Although BSPT states have been classified by various approaches, there is so far no successful experimental realization of any BSPT state in two or higher dimensions. In this paper, we propose that a two-dimensional BSPT state with U(1)×U(1) symmetry can be realized in bilayer graphene in a magnetic field. Here the two U(1) symmetries represent total spin S^{z} and total charge conservation, respectively. The Coulomb interaction plays a central role in this proposal-it gaps out all the fermions at the boundary, so that only bosonic charge and spin degrees of freedom are gapless and protected at the edge. Based on the above conclusion, we propose that the bulk quantum phase transition between the BSPT and trivial phase, which can be driven by applying both magnetic and electric fields, can become a "bosonic phase transition" with interactions. That is, only bosonic modes close their gap at the transition, which is fundamentally different from all the well-known topological insulator to trivial insulator transitions that occur for free fermion systems. We discuss various experimental consequences of this proposal.

  3. Bilayer Graphene: Interaction-Induced Quantum Hall States and Unusual Excitations (United States)

    Sondhi, Shivaji; Abanin, D. A.; Parameswaran, S. A.


    Recently, new interaction-induced quantum Hall (QH) states were observedfootnotetextB. Feldman et al., Nature Physics, doi:10.1038/nphys1406 (2009); Y. Zhao et al., arXiv:0910.0217 (2009). in bilayer graphene (BG). In this talk we address the nature of these QH states, as well as their propertiesfootnotetextD. Abanin et al., Phys. Rev. Lett. 103, 076802 (2009), and to be published.. We focus on the ferromagnetic (FM) states at even filling factors, which, in the leading approximation, result from the spontaneous breaking of valley/spin SU(4) symmetry. Calculating microscopic anisotropies of the QHFM, we find the order in which Landau level (LL) degeneracies are lifted. Furthermore, we discuss the phase diagram of the system as a function of perpendicular electric field and parallel magnetic field, and find that they can be used to drive transitions between different QH states. We show that, as a result of unusual LL structure of BG, some of the QHFM states support new type of excitations -- spin/valley textures (skyrmions) that carry charge two, which provides a unique example of pairing of charges in a system with purely repulsive interactions. We propose several experiments to test our findings.

  4. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures. (United States)

    Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel


    We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 and 2.5 μA/μm2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

  5. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene. (United States)

    Cheung, W M; Chan, K S


    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  6. Topological approach to quantum Hall effects and its important applications: higher Landau levels, graphene and its bilayer (United States)

    Jacak, Janusz; Łydżba, Patrycja; Jacak, Lucjan


    In this paper the topological approach to quantum Hall effects is carefully described. Commensurability conditions together with proposed generators of a system braid group are employed to establish the fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene structures. Obtained filling factors are compared with experimental data and a very good agreement is achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts of the well-known composite-fermion hierarchy - it provides with the cause for an intriguing robustness of ν = 7/3 , 8/3 and 5/2 states (also in graphene). The argumentation why paired states can be developed in two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an observation of the fractional quantum Hall effect near half-filling, ν = 1/2 .

  7. Graphene-Based Polymer Bilayers with Superior Light-Driven Properties for Remote Construction of 3D Structures. (United States)

    Tang, Zhenhua; Gao, Ziwei; Jia, Shuhai; Wang, Fei; Wang, Yonglin


    3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light-driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) and an active layer comprising reduced graphene oxides (RGOs), thermally expanding microspheres (TEMs), and PDMS. The corresponding fabrication method is versatile and simple. Owing to the large volume expansion of the TEMs, the two layers exhibit large differences in their coefficients of thermal expansion. The RGO-TEM-PDMS/PDMS bilayers can deflect toward the PDMS side upon IR irradiation via the cooperative effect of the photothermal effect of the RGOs and the expansion of the TEMs, and exhibit excellent light-driven, a large bending deformation, and rapid responsive properties. The proposed RGO-TEM-PDMS/PDMS composites with excellent light-driven bending properties are demonstrated as active hinges for building 3D geometries such as bidirectionally folded columns, boxes, pyramids, and cars. The folding angle (ranging from 0° to 180°) is well-controlled by tuning the active hinge length. Furthermore, the folded 3D architectures can permanently preserve the deformed shape without energy supply. The presented approach has potential in biomedical devices, aerospace applications, microfluidic devices, and 4D printing.

  8. Analytical modeling of photon absorption coefficient in mono and bilayer circular graphene quantum dots for light absorber applications (United States)

    Tamandani, Shahryar; Darvish, Ghafar


    We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved

  9. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes (United States)

    Northcutt, Robert; Sundaresan, Vishnu-Baba


    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements.

  10. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature (United States)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong


    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  11. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature. (United States)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong


    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  12. Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition. (United States)

    Wang, Jiayi; Zhu, Liyan; Chen, Jie; Li, Baowen; Thong, John T L


    A simple and general strategy for suppressing the thermal conductivity in graphene is shown. The strategy uses gold nano-particles physically deposited on graphene to continuously reduce the thermal conductivity of graphene with increasing coverage, which demonstrates the potential for practical development of graphene-based devices with tunable thermal conductivity for thermal management. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity (United States)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young


    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  14. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization. (United States)

    Wang, Tun; Guo, Hong-Chen; Chen, Xin-Yi; Lu, Miao


    A reduced graphene oxide (RGO) based capacitive real time bio-sensor was presented. Suspended graphene oxide (GO) film was assembled electrophoretically between the source and drain electrodes of a transistor and then reduced by annealing in hydrogen/nitrogen forming gas to optimize the surface functional groups and conductivity. The resonance frequency of the transmission coefficient (S21) of the transistor was observed to shift with deoxyribonucleic acid (DNA)-hybridization, with a detecting limit of ~5nM. The advantages of the bio-sensing approach include low-noise frequency output, solution based real time detection and capable of on-chip integration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. (United States)

    Liu, Xianghong; Zhang, Jun; Si, Wenping; Xi, Lixia; Eichler, Barbara; Yan, Chenglin; Schmidt, Oliver G


    The large capacity loss and huge volume change of silicon anodes severely restricts their practical applications in lithium ion batteries. In this contribution, the sandwich nanoarchitecture of rolled-up Si/reduced graphene oxide bilayer nanomembranes was designed via a strain released strategy. Within this nanoarchitecture, the inner void space and the mechanical feature of nanomembranes can help to buffer the strain during lithiation/delithiation; the alternately stacked conductive rGO layers can protect the Si layers from excessive formation of SEI layers. As anodes for lithium-ion batteries, the sandwiched Si/rGO nanoarchitecture demonstrates long cycling life of 2000 cycles at 3 A g(-1) with a capacity degradation of only 3.3% per 100 cycles.

  16. Proximity Effects in Bilayer Graphene on Monolayer WSe2 : Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor (United States)

    Gmitra, Martin; Fabian, Jaroslav


    Proximity orbital and spin-orbit effects of bilayer graphene on monolayer WSe2 are investigated from first principles. We find that the built-in electric field induces an orbital band gap of about 10 meV in bilayer graphene. Remarkably, the proximity spin-orbit splitting for holes is 2 orders of magnitude—the spin-orbit splitting of the valence band at K is about 2 meV—more than for electrons. Effectively, holes experience spin valley locking due to the strong proximity of the lower graphene layer to WSe2 . However, applying an external transverse electric field of some 1 V /nm , countering the built-in field of the heterostructure, completely reverses this effect and allows, instead of holes, electrons to be spin valley locked with 2 meV spin-orbit splitting. Such a behavior constitutes a highly efficient field-effect spin-orbit valve, making bilayer graphene on WSe2 a potential platform for a field-effect spin transistor.

  17. Bilayers of Ni3C12S12 and Pt3C12S12: graphene-like 2D topological insulators tunable by electric fields (United States)

    Silveira, Orlando J.; Lima, Érika N.; Chacham, Hélio


    In the present work we predict, through first-principles calculations, that bilayers of the recently synthesized Ni3 C12 S12 and Pt3 C12 S12 layered materials are topological insulators upon electron doping, and that their topological insulator properties can be modulated by the application of electric fields with magnitudes achievable in devices. The electronic structures of both bilayers are characterized by spin–orbit split graphene-like bands, with gap magnitudes that are three orders of magnitude larger than graphene’s. In ribbon geometries, chiral edge modes develop at each side with band dispersions similar to that of Kane–Mele graphene model. Surprisingly, the edge states’ spin-propagation locking occurs even for very thin ribbons. We also find that the response of the electronic structure of both materials to applied electric fields are similar to both graphene and the Kane–Mele model with a Rashba term. All these findings indicate that these bilayer systems can be considered as large-spin–orbit graphene analogues with a strong sensitivity to applied electric fields.

  18. A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli. (United States)

    Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan


    A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm(-1) °C(-1). Upon irradiation with 60 mW cm(-2) infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s(-1). Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm(-1) upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.

  19. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2

    NARCIS (Netherlands)

    Castellanos-Gomez, A.; Poot, M.; Steele, G.A.; Van der Zant, H.S.J.; Agrait, N.; Rubio-Bollinger, G.


    We fabricate freely suspended nanosheets of molybdenum disulphide (MoS2) which are characterized by quantitative optical microscopy and high-resolution friction force microscopy. We study the elastic deformation of freely suspended nanosheets of MoS2 using an atomic force microscope. The Young’s

  20. Graphite from the viewpoint of Landau level spectroscopy: an effective graphene bilayer and monolayer

    Czech Academy of Sciences Publication Activity Database

    Orlita, Milan; Faugeras, C.; Schneider, J.M.; Martinez, G.; Maude, D. K.; Potemski, M.


    Roč. 102, č. 16 (2009), 166401/1-166401/4 ISSN 0031-9007 R&D Projects: GA AV ČR KAN400100652 Grant - others:ANR(FR) ANR-06-NANO-019 Institutional research plan: CEZ:AV0Z10100521 Keywords : IR spectroscopy * graphene * graphite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.328, year: 2009

  1. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. (United States)

    Li, Qin-Yi; Xia, Kailun; Zhang, Ji; Zhang, Yingying; Li, Qunyang; Takahashi, Koji; Zhang, Xing


    The last decade has seen the rapid growth of research on two-dimensional (2D) materials, represented by graphene, but research on their thermophysical properties is still far from sufficient owing to the experimental challenges. Herein, we report the first measurement of the specific heat of multilayer and monolayer graphene in both supported and suspended geometries. Their thermal conductivities were also simultaneously measured using a comprehensive Raman optothermal method without needing to know the laser absorption. Both continuous-wave (CW) and pulsed lasers were used to heat the samples, based on consideration of the variable laser spot radius and pulse duration as well as the heat conduction within the substrate. The error from the laser absorption was eliminated by comparing the Raman-measured temperature rises for different spot radii and pulse durations. The thermal conductivity and specific heat were extracted by analytically fitting the temperature rise ratios as a function of spot size and pulse duration, respectively. The measured specific heat was about 700 J (kg K)(-1) at room temperature, which is in accordance with theoretical predictions, and the measured thermal conductivities were in the range of 0.84-1.5 × 10(3) W (m K)(-1). The measurement method demonstrated here can be used to investigate in situ and comprehensively the thermophysical properties of many other emerging 2D materials.

  2. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications. (United States)

    Wen, Ting; Yang, Baocheng; Guo, Yanzhen; Sun, Jing; Zhao, Chunmei; Zhang, Shouren; Zhang, Miao; Wang, Yonggang


    Graphene quantum dots (GQDs) represent an important class of luminescent quantum dots owing to their low toxicity and superior biocompatibility. Chemical functionalization of GQDs and subsequent combination with other materials further provide attractive techniques for advanced bioapplications. Herein, we report the facile fabrication of fluorescent organosilane-functionalized graphene quantum dots (Si-GQDs) and their embedding into mesoporous hollow silica spheres as a biolabel for the first time. Well-proportioned Si-GQDs with bright and excitation dependent tunable emissions in the visible region were obtained via a simple and economical solvothermal route adopting graphite oxide as a carbon source and 3-(2-aminoethylamino)-propyltrimethoxysilane as a surface modifier. The as-synthesized Si-GQDs can be well dispersed and stored in organic solvents, easily manufactured into transparent film and bulk form, and particularly provide great potential to be combined with other materials. As a proof-of-principle experiment, we demonstrate the successful incorporation of Si-GQDs into hollow mesoporous silica spheres and conduct preliminary cellular imaging experiments. Interestingly, the Si-GQDs not only serve as fluorescent chromophores in the composite material, but also play a crucial role in the formation of mesoporous hollow silica spheres with a distinctive bi-layer architecture. The layer thickness and optical properties can be precisely controlled by simply adjusting the silane coupling agent addition procedure in the preparation process. Our demonstration of low-cost Si-GQDs and their encapsulation into multifunctional composites may expand the applications of carbon-based nanomaterials for future biomedical imaging and other optoelectronic applications.

  3. Graphene on graphene antidot lattices

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen


    Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...

  4. The role of vector potential coupling in the hot electron cooling power in bilayer graphene at low temperature (United States)

    Kubakaddi, S. S.


    We have studied, in bilayer graphene (BLG), the hot electron cooling power FVP (T, ns) due to acoustic phonons via vector potential (VP) coupling. It is calculated as a function of electron concentration ns and temperature T and compared with FDP (T, ns), the contribution from the deformation potential (DP) coupling. For the ns around 1 × 1012 cm-2, FVP (T, ns) is much smaller than FDP (T, ns). With increase of ns, FDP (T, ns) decreases faster than FVP (T, ns) does. A cross over is predicted and dominant contribution of FVP (T, ns) can be observed at large ns. In the Bloch- Grüneisen (BG) regime FVP (T, ns) ns-1/2 and FDP (T, ns) ns-3/2. Both FVP (T, ns) and FDP (T, ns) have the same T dependence with T4 power law in the BG regime. Behaviour of FDP (T, ns) ns-3/2 and T4 is in agreement with the experimental results at moderate ns. Besides, in the BG regime, we have predicted, for both the VP and DP coupling, a relation between F(T,ns) and the acoustic phonon limited mobility μp, opening a new door to determine μp from the measurements of F(T,ns)

  5. Temperature- and density-dependent transport regimes in a h-BN/bilayer graphene/h-BN heterostructure (United States)

    Cobaleda, C.; Pezzini, S.; Diez, E.; Bellani, V.


    We report on multiterminal electrical transport measurements performed on a bilayer graphene sheet enclosed by two hexagonal boron nitride flakes. We characterize the temperature dependence of electrical resistivity from 300 mK to 50 K, varying the carrier densities with a back gate. The resistivity curves clearly show a temperature-independent crossing point at density n =nc≈2.5×1011 cm-2 for both positive and negative carriers, separating two distinct regions with dρ /dT0, respectively. Our analysis rules out the possibility of a zero-T quantum phase transition, revealing instead the onset of robust ballistic transport for n >nc, while the T dependence close to the neutrality point is the one expected from the parabolic energy-momentum relation. At low temperature (T ≪10 K), the data are compatible with transport via variable range hopping mediated by localized impurity sites, with a characteristic exponent 1/3 that is renormalized to 1/2 by Coulomb interaction in the high-density regime.

  6. Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment (United States)

    Zabihi, Fatemeh; Chen, Qianli; Xie, Yu; Eslamian, Morteza


    In this work, in an attempt to improve the performance and lifetime of organic solar cells, P3HT photon absorbing polymer was doped with graphene (G) nano-sheets, to make light harvesting G-P3HT composite thin film. The composite this film was then employed as the donor of a bilayer organic solar cell with the structure of glass/ITO/PEDOT:PSS/G-P3HT/C60/Al. The reference P3HT:PCBM bulk heterojunction solar cell was also fabricated for comparison. All solution-processed layers were made by spin coating in humid air (Shanghai, China); C60 and Al were deposited by thermal evaporation. An effective mechanical treatment approach developed by the authors, i.e. the application of forced ultrasonic vibration on the wet spun-on films, was used to improve the dispersion of graphene in G-P3HT composite films to obtain a uniform nanostructure. This mechanical method eliminates tedious and expensive chemical steps, currently performed to engineer the structure of organic solar cells. It is evidenced that the G-P3HT composite thin films, post treated by ultrasonic vibration at the optimum vibration duration, possess superior electrical conductivity, charge carrier mobility and density, uniform surface potential distribution, and lower surface roughness, compared to those of P3HT and G-P3HT thin films made without vibration. The results show significant improvement in the power conversion efficiency (PCE) of vibration-treated G-P3HT/C60 cell (PCE = 5.17%, the highest reported for this structure), substantiating the strong positive effect of using graphene and forced vibration for the fabrication of P3HT active layer in the bilayer cell structure.

  7. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation

    KAUST Repository

    Shi, Le


    Solar-driven water evaporation has been emerging as a highly efficient way for utilizing solar energy for clean water production and wastewater treatment. Here we rationally designed and fabricated a bi-layered photothermal membrane with a porous film of reduced graphene oxide (rGO) on the top and polystyrene (PS) foam at the bottom. The top porous rGO layer acts as a light absorber to harvest and convert light efficiently to thermal energy and the bottom PS layer, which purposefully disintegrates water transport channels, acts as an excellent thermal barrier to minimize heat transfer to the nonevaporative bulk water. The optimized bi-layered membrane was able to produce water evaporation rate as high as 1.31 kg m−2 h−1 with light to evaporation conversion efficiency as high as 83%, which makes it a promising photothermal material in the literature. Furthermore, the experiments and theoretical simulation were both conducted to examine the relationship between the overall energy efficiency and the depth of the photothermal material underwater and the experimental and simulations results coincided with each other. Therefore, this work provides systematic evidence in support of the concept of the interfacial heating and shines important light on practical applications of solar-driven processes for clean water production.

  8. Suspended graphene device fabrication


    Hiltunen, Vesa-Matti


    Tämän pro gradu -tutkielman aiheena oli tutkia itsekantavien grafeeninäytteiden valmistusta. Grafeeni syntetisoitiin kaasufaasikasvatuksella ilmakehän paineessa kupariohutkalvoille. Kupariohutkalvot valmistattiin käyttämällä elektronisuihkuhöyrystystä. Projektin aikana synteesiprosessia parannettiin optimoimalla synteesiparametreja. Syntetisoinnin jälkeen grafeeninäytteet siirrettiin piinitridikalvoille, joihin oli valmistettu reikiä. Viimeinen vaihe siirrossa on PMMA tukikerro...

  9. A New Mechanism for THz Detection Based on the Tunneling Effect in Bi-Layer Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Antonio Maffucci


    Full Text Available A new possible mechanism of signal detection in the THz range is investigated, based on the excitation of resonances due to the tunneling effect between two graphene nanoribbons. A simple detector is proposed, where two graphene nanoribbons are used to contact two copper electrodes. The terminal voltages are shown to exhibit strong resonances when the frequency of an external impinging field is tuned to the characteristic tunneling frequency of the graphene layer pair. An electrodynamic model for the electron transport along the graphene nanoribbons is extended here to include the tunneling effect, and a coupled transmission line model is finally derived. This model is able to predict not only the tunneling resonance, but also the well-known plasmon resonances, related to the propagation of slow surface waves.

  10. PEGylated lipid bilayer-wrapped nano-graphene oxides for synergistic co-delivery of doxorubicin and rapamycin to prevent drug resistance in cancers (United States)

    Thapa, Raj Kumar; Byeon, Jeong Hoon; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh


    Nano-graphene oxide (nGO) is a carbon allotrope studied for its potential as carrier for chemotherapeutic delivery and its photoablation effects. However, interaction of nGO with blood components and the subsequent toxicities warrant a hybrid system for effective cancer drug delivery. Combination chemotherapy aids in effective cancer treatment and prevention of drug resistance. Therefore, in this study, we attempted to prepare polyethylene glycosylated (PEGylated) lipid bilayer-wrapped nGO co-loaded with doxorubicin (DOX) and rapamycin (RAPA), GOLDR, for the prevention and treatment of resistant cancers. Our results revealed a stable GOLDR formulation with appropriate particle size (∼170 nm), polydispersity (∼0.19) and drug loading. Free drug combination (DOX and RAPA) presented synergistic anticancer effects in MDA-MB-231, MCF-7, and BT474 cells. Treatment with GOLDR formulation maintained this synergism in treated cancer cells, which was further enhanced by the near infrared (NIR) laser irradiation-induced photothermal effects of nGO. Higher chromatin condensation and apoptotic body formation, and enhanced protein expression of apoptosis-related markers (Bax, p53, p21, and c-caspase 3) following GOLDR treatment in the presence of NIR laser treatment clearly suggests its superiority in effective chemo-photothermal therapy of resistant cancers. The hybrid nanosystem that we developed provides a basis for the effective use of GOLDR treatment in the prevention and treatment of resistant cancer types.

  11. Stability and electronic properties of hybrid SnO bilayers: SnO/graphene and SnO/BN (United States)

    Guo, Qing; Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra


    Van der Waals structures based on two-dimensional materials have been considered as promising structures for novel nanoscale electronic devices. Two-dimensional SnO films which display intrinsic p-type semiconducting properties were fabricated recently. In this paper, we consider vertically stacked heterostructures consisting of a SnO monolayer with graphene or a BN monolayer to investigate their stability, electronic and transport properties using density functional theory. The calculated results find that the properties of the constituent monolayers are retained in these SnO-based heterostructures, and a p-type Schottky barrier is formed in the SnO/graphene heterostructure. Additionally, the Schottky barrier can be effectively controlled with an external electric field, which is useful characteristic for the van der Waals heterostructure-based electronic devices. In the SnO/BN heterostructure, the electronic properties of SnO are least affected by the insulating monolayer suggesting that the BN monolayer would be an ideal substrate for SnO-based nanoscale devices.

  12. Coherent nonlinear electromagnetic response in twisted bilayer and ...

    Indian Academy of Sciences (India)

    The phenomenon of Rabi oscillations far from resonance is described in bilayer and few-layer graphene. These oscillations in the population and polarization at the Dirac point in -layer graphene are seen in the nth harmonic termin the external driving frequency. The underlying reason behind these oscillations is ...

  13. Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array. (United States)

    Nien, Li-Wei; Chen, Kai; Dao, Thang Duy; Ishii, Satoshi; Hsueh, Chun-Hway; Nagao, Tadaaki


    The optical hybridization of localized surface plasmons and photonic modes of dielectric nanostructures provides us wide arenas of opportunities for designing tunable nanophotonics with excellent spectral selectivity, signal enhancement, and light harvesting for many optical applications. Graphene-supported Au nanoprisms on a periodic Si nanopillar array will be an ideal model system for examining such an optical hybridization effect between plasmonic modes and photonic modes. Here, through the measurement of the reflectance spectra as well as graphene phonons by surface-enhanced Raman scattering (SERS), we investigated both the far-field and near-field properties of these optically hybridized modes. The effects of photonic modes and Mie resonances of the Si nanopillars on the localized surface plasmons of the Au nanoprisms and on their near-field enhancement were experimentally elucidated through the measurements of graphene phonons using two excitation lasers with wavelengths of 532 and 785 nm. The wavelength-dependent SERS intensities of monolayer graphene are clearly understood in terms of the optical hybridization, and the SERS enhancement factor estimated from finite-difference time-domain simulations exhibited good agreement with the measurements. The elucidated spectral tunability in the near-field light-matter interaction would be useful for potential applications in various types of graphene-based photonics.

  14. Suspended microfluidics


    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Jean BERTHIER; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.


    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale...

  15. Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study

    Directory of Open Access Journals (Sweden)

    Chao Lian


    Full Text Available Using first principles and tight-binding calculations, we have investigated the structures of silicene bilayers under the isotropic tensile strain. We find that (i the strain induce several barrierless phase transitions. (ii After the phase transitions, the bilayer structures become planar, similar with the AA-stacking graphene bilayers, but combined with the strong covalent interlayer bonds. The tight-binding results demonstrate that this silicene bilayer is characterized by intralayer sp2 hybridization and the interlayer sp1 hybridization. (iii The electronic properties of the silicene bilayers change from semiconducting to metallic with the increase of strain.

  16. Effects of low energy E-beam irradiation on graphene and graphene field effect transistors and raman metrology of graphene on split gate test structures (United States)

    Rao, Gayathri S.


    Apart from its compelling performance in conventional nanoelectronic device geometries, graphene is an appropriate candidate to study certain interesting phenomenon (e.g. the Veselago lens effect) predicted on the basis of its linear electron dispersion relation. A key requirement for the observation of such phenomenon in graphene and for its use in conventional field-effect transistor (FET) devices is the need to minimize defects such as consisting of -- or resulting from -- adsorbates and lattice non-uniformities, and reduce deleterious substrate effects. Consequently the investigation of the origin and interaction of defects in the graphene lattice is essential to improve and tailor graphene-based device performance. In this thesis, optical spectroscopic studies on the influence of low-energy electron irradiation on adsorbate-induced defectivity and doping for substrate supported and suspended graphene were carried out along with spectroscopic and transport measurements on graphene FETs. A comparative investigation of the effects of single-step versus multi-step, low-energy electron irradiation (500 eV) on suspended, substrate supported graphene and on graphene FETs is reported. E-beam irradiation (single-step and multi-step) of substrate-supported graphene resulted in an increase in the Raman ID/IG ratio largely from hydrogenation due to radiolysis of the interfacial water layer between the graphene and the SiO2 substrate and from irradiated surface adsorbates. GFETs subjected to single and multi-step irradiation showed n-doping from CNP (charge neutrality point) shift of ˜ -8 and ˜ -16 V respectively. Correlation of this data with Raman analysis of suspended and supported graphene samples implied a strong role of the substrate and irradiation sequence in determining the level of doping. A correspondingly higher reduction in mobility per incident electron was also observed for GFETs subjected to multi-step irradiation compared to single step, in line with

  17. Suppression of intrinsic roughness in encapsulated graphene (United States)

    Thomsen, Joachim Dahl; Gunst, Tue; Gregersen, Søren Schou; Gammelgaard, Lene; Jessen, Bjarke Sørensen; Mackenzie, David M. A.; Watanabe, Kenji; Taniguchi, Takashi; Bøggild, Peter; Booth, Timothy J.


    Roughness in graphene is known to contribute to scattering effects which lower carrier mobility. Encapsulating graphene in hexagonal boron nitride (hBN) leads to a significant reduction in roughness and has become the de facto standard method for producing high-quality graphene devices. We have fabricated graphene samples encapsulated by hBN that are suspended over apertures in a substrate and used noncontact electron diffraction measurements in a transmission electron microscope to measure the roughness of encapsulated graphene inside such structures. We furthermore compare the roughness of these samples to suspended bare graphene and suspended graphene on hBN. The suspended heterostructures display a root mean square (rms) roughness down to 12 pm, considerably less than that previously reported for both suspended graphene and graphene on any substrate and identical within experimental error to the rms vibrational amplitudes of carbon atoms in bulk graphite. Our first-principles calculations of the phonon bands in graphene/hBN heterostructures show that the flexural acoustic phonon mode is localized predominantly in the hBN layer. Consequently, the flexural displacement of the atoms in the graphene layer is strongly suppressed when it is supported by hBN, and this effect increases when graphene is fully encapsulated.

  18. Lipid bilayers and interfaces

    NARCIS (Netherlands)

    Kik, R.A.


    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  19. Controlled Chemical Synthesis in CVD Graphene (United States)

    Liu, Hongtao; Liu, Yunqi


    Due to the unique properties of graphene, single layer, bilayer or even few layer graphene peeled off from bulk graphite cannot meet the need of practical applications. Large size graphene with quality comparable to mechanically exfoliated graphene has been synthesized by chemical vapor deposition (CVD). The main development and the key issues in controllable chemical vapor deposition of graphene has been briefly discussed in this chapter. Various strategies for graphene layer number and stacking control, large size single crystal graphene domains on copper, graphene direct growth on dielectric substrates, and doping of graphene have been demonstrated. The methods summarized here will provide guidance on how to synthesize other two-dimensional materials beyond graphene.

  20. Graphene growth with ‘no’ feedstock (United States)

    Qing, Fangzhu; Jia, Ruitao; Li, Bao-Wen; Liu, Chunlin; Li, Congzhou; Peng, Bo; Deng, Longjiang; Zhang, Wanli; Li, Yanrong; Ruoff, Rodney S.; Li, Xuesong


    Synthesis of graphene by chemical vapor deposition (CVD) from hydrocarbons on Cu foil substrates can yield high quality and large area graphene films. In a typical CVD process, a hydrocarbon in the gas phase is introduced for graphene growth and hydrogen is usually required to achieve high quality graphene. We have found that in a low pressure CVD system equipped with an oil mechanical vacuum pump located downstream, graphene can be grown without deliberate introduction of a carbon feedstock but with only trace amounts of C present in the system, the origin of which we attribute to the vapor of the pump oil. This finding may help to rationalize the differences in graphene growth reported by different research groups. It should also help to gain an in-depth understanding of graphene growth mechanisms with the aim to improve the reproducibility and structure control in graphene synthesis, e.g. the formation of large area single crystal graphene and uniform bilayer graphene.

  1. Modeling of Cross-Plane Interface Thermal Conductance Between Graphene Nano-Ribbons (Postprint) (United States)


    to the intrinsic thermal conductance across bi-layer graphene in the limit of no edges, i.e. η∼ 1 or large bi-layer graphene flakes . On the other...AFRL-RX-WP-JA-2014-0192 MODELING OF CROSS-PLANE INTERFACE THERMAL CONDUCTANCE BETWEEN GRAPHENE NANO- RIBBONS (POSTPRINT) Ajit K. Roy...MODELING OF CROSS-PLANE INTERFACE THERMAL CONDUCTANCE BETWEEN GRAPHENE NANO-RIBBONS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER

  2. Coherent nonlinear electromagnetic response in twisted bilayer and ...

    Indian Academy of Sciences (India)

    The same phenomena are also described in twisted bilayer graphene with and without an electric potential difference between the ... and conduction band touch one another. These chiral quasiparticles ... we find that the anomalous Rabi frequency (ARF) is highly sensitive to the low-energy band structure and therefore, ...

  3. Molecular dynamics study on the relaxation properties of bilayered ...

    Indian Academy of Sciences (India)

    The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by moleculardynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. Theresults show that great changes begin to occur in the morphology after introducing ...

  4. Molecular dynamics study on the relaxation properties of bilayered ...

    Indian Academy of Sciences (India)


    Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...

  5. Rippling instabilities in suspended nanoribbons (United States)

    Wang, Hailong; Upmanyu, Moneesh


    Morphology mediates the interplay between the structure and electronic transport in atomically thin nanoribbons such as graphene as the relaxation of edge stresses occurs preferentially via out-of-plane deflections. In the case of end-supported suspended nanoribbons that we study here, past experiments and computations have identified a range of equilibrium morphologies, in particular, for graphene flakes, yet a unified understanding of their relative stability remains elusive. Here, we employ atomic-scale simulations and a composite framework based on isotropic elastic plate theory to chart out the morphological stability space of suspended nanoribbons with respect to intrinsic (ribbon elasticity) and engineered (ribbon geometry) parameters, and the combination of edge and body actuation. The computations highlight a rich morphological shape space that can be naturally classified into two competing shapes, bendinglike and twistlike, depending on the distribution of ripples across the interacting edges. The linearized elastic framework yields exact solutions for these rippled shapes. For compressive edge stresses, the body strain emerges as a key variable that controls their relative stability and in extreme cases stabilizes coexisting transverse ripples. Tensile edge stresses lead to dimples within the ribbon core that decay into the edges, a feature of obvious significance for stretchable nanoelectronics. The interplay between geometry and mechanics that we report should serve as a key input for quantifying the transport along these ribbons.

  6. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.


    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  7. Adhesion between cerebroside bilayers. (United States)

    Kulkarni, K; Snyder, D S; McIntosh, T J


    The structure, hydration properties, and adhesion energy of the membrane glycolipid galactosylceramide (GalCer) were studied by osmotic stress/X-ray diffraction analysis.(1) Fully hydrated GalCer gave a repeat period of 67 A, which decreased less than 2 A with application of applied osmotic pressures as large as 1.6 x 10(9) dyn/cm(2). These results, along with the invariance of GalCer structure obtained by a Fourier analysis of the X-ray data, indicated that there was an extremely narrow fluid space (less than the diameter of a single water molecule) between fully hydrated cerebroside bilayers. Electron density profiles showed that the hydrocarbon chains from apposing GalCer monolayers partially interdigitated in the center of the bilayer. To obtain information on the adhesive properties of GalCer bilayers, we incorporated into the bilayer various mole ratios of the negatively charged lipid dipalmitoylphosphatidylglycerol (DPPG) to provide known electrostatic repulsion between the bilayers. Although 17 and 20 mol % DPPG swelled (disjoined) the GalCer bilayers by an amount predictable from electrostatic double-layer theory, 5, 10, 13, and 15 mol % DPPG did not disjoin the bilayers. By calculating the magnitude of the electrostatic pressure necessary to disjoin the bilayers, we estimated the adhesion energy for GalCer bilayers to be about -1.5 erg/cm(2), a much larger value than that previously measured for phosphatidylcholine bilayers. The observed discontinuous disjoining with increased electrostatic pressure and this relatively large value for adhesion energy indicated the presence of an attractive interaction, in addition to van der Waals attraction, between cerebroside bilayers. Possible attractive interactions are hydrogen bond formation and hydrophobic interactions between the galactose headgroups of apposing GalCer bilayers.

  8. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sung Oh [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Teizer, Winfried [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)


    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  9. Lattice Expansion in Seamless Bi layer Graphene Constrictions at High Bias


    Boerrnert, Felix; Barreiro, Amelia; Wolf, Daniel; Katsnelson, Mikhail I.; Buechner, Bernd; Vandersypen, Lieven M. K.; Ruemmeli, Mark H.


    Our understanding of sp2 carbon nanostructures is still emerging and is important for the development of high performance all carbon devices. For example, in terms of the structural behavior of graphene or bi-layer graphene at high bias, little to nothing is known. To this end we investigated bi-layer graphene constrictions with closed edges (seamless) at high bias using in situ atomic resolution transmission electron microscopy. We directly observe a highly localized anomalously large lattic...

  10. Dopant-Induced Plasmon Decay in Graphene (United States)

    Novko, Dino


    Chemically doped graphene could support plasmon excitations up to telecommunication or even visible frequencies. Apart from that, the presence of dopant may influence electron scattering mechanisms in graphene and thus impact the plasmon decay rate. Here I study from first principles these effects in single-layer and bilayer graphene doped with various alkali and alkaline earth metals. I find new dopant-activated damping channels: loss due to out-of-plane graphene and in-plane dopant vibrations, and electron transitions between graphene and dopant states. The latter excitations interact with the graphene plasmon and together they form a new hybrid mode. The study points out a strong dependence of these features on the type of dopants and the number of layers, which could be used as a tuning mechanism in future graphene-based plasmonic devices.

  11. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene. (United States)

    Wang, Xinquan; Wu, Zhigang


    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  12. Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts (United States)

    Pettes, Michael Thompson

    As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress. This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, kappa, of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low kappa in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the kappa is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the kappa of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the kappa temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2. Furthermore, a method is developed to investigate heat transfer through a nanoscale

  13. Direct transfer of graphene films for polyurethane substrate

    Energy Technology Data Exchange (ETDEWEB)

    Vilani, C.; Romani, E.C.; Larrudé, D.G. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Barbosa, Gelza M. [Diretoria de Sistemas de Armas da Marinha, Marinha do Brasil, 20010-00 Rio de Janeiro, RJ (Brazil); Freire, F.L., E-mail: [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ (Brazil)


    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  14. Tunneling spectra of graphene on copper unraveled

    DEFF Research Database (Denmark)

    Zhang, Xin; Stradi, Daniele; Liu, Lei


    mechanisms, etc. The interpretation of the spectra can be complicated, however. Specifically for graphene grown on copper, there have been conflicting reports of tunneling spectra. A clear understanding of the mechanisms behind the variability is desired. In this work, we have revealed that the root cause...... of the variability in tunneling spectra is the variation in graphene-substrate coupling under various experimental conditions, providing a salutary perspective on the important role of 2D material-substrate interactions. The conclusions are drawn from measured data and theoretical calculations for monolayer, AB......-stacked bilayer, and twisted bilayer graphene coexisting on the same substrates in areas with and without intercalated oxygen, demonstrating a high degree of consistency. The Van Hove singularities of the twisted graphene unambiguously indicate the Dirac energy between them, lending strong evidence to our...

  15. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure. (United States)

    Wang, Lei; Chen, Zheyuan; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Brus, Louis E; Hone, James


    Using Raman spectroscopy, we study the environmental sensitivity of mechanically exfoliated and electrically floating single-layer graphene transferred onto a hexagonal boron nitride (h-BN) substrate, in comparison with graphene deposited on a SiO(2) substrate. In order to understand and isolate the substrate effect on graphene electrical properties, we model and correct for Raman optical interference in the substrates. As-deposited and unannealed graphene shows a large I(2D)/I(G) ratio on both substrates, indicating extremely high quality, close to that of graphene suspended in vacuum. Thermal annealing strongly activates subsequent environmental sensitivity on the SiO(2) substrate; such activation is reduced but not eliminated on the h-BN substrate. In contrast, in a h-BN/graphene/h-BN sandwich structure, with graphene protected on both sides, graphene remains pristine despite thermal processing. Raman data provide a deeper understanding of the previously observed improved graphene electrical conductivity on h-BN substrates. In the sandwich structure, the graphene 2D Raman feature has a higher frequency and narrower line width than in pristine suspended graphene, implying that the local h-BN environment modestly yet measurably changes graphene electron and phonon dispersions.

  16. Optical characterization of directly deposited graphene on a dielectric substrate

    DEFF Research Database (Denmark)

    Kaplas, Tommi; Karvonen, Lasse; Ahmadi, Sepehr


    By using scanning multiphoton microscopy we compare the nonlinear optical properties of the directly deposited and transferred to the dielectric substrate graphene. The direct deposition of graphene on oxidized silicon wafer was done by utilizing sacrificial copper catalyst film. We demonstrate...... that the directly deposited graphene and bi-layered transferred graphene produce comparable third harmonic signals and have almost the same damage thresholds. Therefore, we believe directly deposited graphene is suitable for the use of e.g. nanofabricated optical setups. (C) 2016 Optical Society of America...

  17. Toward wafer scale fabrication of graphene based spin valve devices. (United States)

    Avsar, Ahmet; Yang, Tsung-Yeh; Bae, Sukang; Balakrishnan, Jayakumar; Volmer, Frank; Jaiswal, Manu; Yi, Zheng; Ali, Syed Rizwan; Güntherodt, Gernot; Hong, Byung Hee; Beschoten, Bernd; Özyilmaz, Barbaros


    We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.

  18. Protection from Below: Stabilizing Hydrogenated Graphene Using Graphene Underlayers. (United States)

    Whitener, Keith E; Robinson, Jeremy T; Sheehan, Paul E


    We show that dehydrogenation of hydrogenated graphene proceeds much more slowly for bilayer systems than for single layer systems. We observe that an underlayer of either pristine or hydrogenated graphene will protect an overlayer of hydrogenated graphene against a number of chemical oxidants, thermal dehydrogenation, and degradation in an ambient environment over extended periods of time. Chemical protection depends on the ease of oxidant intercalation, with good intercalants such as Br 2 demonstrating much higher reactivity than poor intercalants such as 1,2-dichloro-4,5-dicyanonbenzoquinone (DDQ). Additionally, the rate of dehydrogenation of hydrogenated graphene at 300 °C in H 2 /Ar was reduced by a factor of roughly 10 in the presence of a protective underlayer of graphene or hydrogenated graphene. Finally, the slow dehydrogenation of hydrogenated graphene in air at room temperature, which is normally apparent after a week, could be completely eliminated in samples with protective underlayers over the course of 39 days. Such protection will be critical for ensuring the long-term stability of devices made from functionalized graphene.

  19. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.


    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  20. Electrochemically Triggered Release of Reagent to the Proximal Leaflet of a Microcavity Supported Lipid Bilayer. (United States)

    Basit, H; Maher, S; Forster, R J; Keyes, T E


    A novel and versatile approach to electrichemically triggering the release of a reagent, β-cyclodextrin (β-CD), selectively to the proximal leaflet of a supported lipid bilayer is described. Selective delivery is achieved by creating a spanning lipid bilayer across a microcavity array and exploiting the irreversible redox disassembly of the host-guest complex formed between thiolated ferrocene (Fc) and β-cyclodextrin (β-CD) in the presence of chloride. Self-assembled monolayers of the ferrocene-alkanethiols were formed regioselectively on the interior surface of highly ordered 2.8 μm cavities while the exterior top surface of the array was blocked with a monolayer of mercaptoethanol. The Fc monolayers were complexed with β-CD or β-CD-conjugated to streptavidin (β-CD-SA). Phospholipid bilayers were then assembled across the array via combined Langmuir-Blodgett/vesicle fusion leading to a spanning bilayer suspended across the aqueous filled microcavities. Upon application of a positive potential, ferrocene is oxidized to ferrocinium cation, disrupting the inclusion complex and leading to the release of the β-CD into the microcavity solution where it diffuses to the lower leaflet of the suspended bilayer. Disassembly of the supramolecular complex within the cavities and binding of the β-CD-SA to a biotinylated bilayer was followed by voltammetry and impedance spectroscopy where it caused a large increase in membrane resistance. For unmodified β-CD, the extraction of cholesterol from a cholesterol containing bilayer was evident in a decrease in the bilayer resistance. For the first time, this direct approach to targeted delivery of a reagent to the proximal layer of a lipid bilayer offers the potential to build models of bidirectional signaling (inside-out vs outside-in) in cell membrane model systems.

  1. Pseudospin pairing and transport in atomic Fermi gases and bilayer systems

    NARCIS (Netherlands)

    Mink, M.P.


    In this Thesis we consider the behavior of the drag conductivity close to exciton condensation in bilayer systems and close to the superfluid transition in cold Fermi gases. In chapter 2 we calculate the transition temperature for exciton condensation in double-layer graphene, showing that the

  2. Quasi-Freestanding multilayer graphene films on the carbon face of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, D. A.; Hwang, C. G.; Fedorov, A. V.; Lanzara, A.


    The electronic band structure of as-grown and doped graphene grown on the carbon face of SiC is studied by high-resolution angle-resolved photoemission spectroscopy, where we observe both rotations between adjacent layers and AB-stacking. The band structure of quasi-freestanding AB-bilayers is directly compared with bilayer graphene grown on the Si-face of SiC to study the impact of the substrate on the electronic properties of epitaxial graphene. Our results show that the C-face films are nearly freestanding from an electronic point of view, due to the rotations between graphene layers.

  3. EDITORIAL: Special issue on Graphene Special issue on Graphene (United States)

    Morpurgo, Alberto F.; Trauzettel, Björn


    Since the revolutionary experimental discovery of graphene in the year 2004, research on this new two-dimensional carbon allotrope has progressed at a spectacular pace. The impact of graphene on different areas of research— including physics, chemistry, and applied sciences— is only now starting to be fully appreciated. There are different factors that make graphene a truly impressive system. Regarding nano-electronics and related fields, for instance, it is the exceptional electronic and mechanical properties that yield very high room-temperature mobility values, due to the particular band structure, the material `cleanliness' (very low-concentration of impurities), as well as its stiffness. Also interesting is the possibility to have a high electrical conductivity and optical transparency, a combination which cannot be easily found in other material systems. For other fields, other properties could be mentioned, many of which are currently being explored. In the first years following this discovery, research on graphene has mainly focused on the fundamental physics aspects, triggered by the fact that electrons in graphene behave as Dirac fermions due to their interaction with the ions of the honeycomb lattice. This direction has led to the discovery of new phenomena such as Klein tunneling in a solid state system and the so-called half-integer quantum Hall effect due to a special type of Berry phase that appears in graphene. It has also led to the appreciation of thicker layers of graphene, which also have outstanding new properties of great interest in their own right (e.g., bilayer graphene, which supports chiral quasiparticles that, contrary to Dirac electrons, are not massless). Now the time is coming to deepen our knowledge and improve our control of the material properties, which is a key aspect to take one step further towards applications. The articles in the Semiconductor Science and Technology Graphene special issue deal with a diversity of topics

  4. Study on the graphene-based actuator (United States)

    Xu, Liang; Oh, Il Kwon


    Bilayer actuators comprising of MWCNT (Multi-walled carbon nanotubes) and Graphene oxide (GO) were studied for their actuation performance by using induction heating system. A simple fabrication method namely, filtration of the colloidal suspensions of MWCNT and GO through an Anodisc membrane was used to fabricate the actuators. In case of bilayer actuators, sequential filtration of MWCNTs and Graphene oxide dispersions through a membrane filter membrane was used. Morphological studies by SEM showed that the bilayer paper did not delaminate at the macro-scale and a certain degree of adhesion between MWCNT and GO can be achieved even without any functionalization of either of the constituents of bilayer actuators. Actuation was tested by using the induction heating system, operated at different current densities. Substantial degree of deformation, as much as 0.128 mm-1 at 300 A was measured. The degree of actuation was defined in terms of bending curvature, because the deformation was too large to be detected by conventional displacement laser sensors. An attempt has been made to explain the basic mechanism of bilayer actuator in terms of the differential thermal expansion rates and eddy current which was confirmed from images obtained from thermal camera wherein the variation in bilayer actuator's surface temperature were monitored. Finally the deformation trend under different pulses is also examined.

  5. h-BN-layer-induced chiral decomposition in the electronic properties of multilayer graphene (United States)

    Zasada, I.; Maślanka, P.; Molenda, A.; Łuczak, K.


    We discuss the chiral decomposition of non-symmetric stacking structures. It is shown that the low-energy electronic structure of a Bernal stacked graphene multilayer deposited on h-BN consists of chiral pseudospin doublets. N-layer graphene stacks on the h-BN layer have N/2 effective bilayer graphene systems and one effective h-BN layer if N is even or (N-1)/2 effective graphene bilayers plus one graphene monolayer modified by an h-BN layer if N is odd. We present the decomposition procedure and derive the recurrence relations for the effective parameters characterizing the chiral subsystems. In this case, the effective parameters consist of interlayer couplings and on-site potentials in contrast to pure graphene multilayer systems where only interlayer couplings are modified. We apply this procedure to discuss the Klein tunnelling phenomena and quantitatively compare the results with pure graphene multilayer systems.

  6. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Song, Eui Sang; Yu, Bin


    Schottky barriers formed by graphene (monolayer, bilayer, and multilayer) on 2D layered semiconductor tungsten disulfide (WS2) nanosheets are explored for solar energy harvesting. The characteristics of the graphene-WS2 Schottky junction vary significantly with the number of graphene layers on WS2, resulting in differences in solar cell performance. Compared with monolayer or stacked bilayer graphene, multilayer graphene helps in achieving improved solar cell performance due to superior electrical conductivity. The all-layered-material Schottky barrier solar cell employing WS2 as a photoactive semiconductor exhibits efficient photon absorption in the visible spectral range, yielding 3.3% photoelectric conversion efficiency with multilayer graphene as the Schottky contact. Carrier transport at the graphene/WS2 interface and the interfacial recombination process in the Schottky barrier solar cells are examined.

  7. Spin caloritronics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Angsula; Frota, H. O. [Department of Physics, Federal University of Amazonas, Av. Rodrigo Octavio 3000-Japiim, 69077-000 Manaus, AM (Brazil)


    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  8. Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction (United States)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Matsushita, Tomohiro; Koh, Shinji; Daimon, Hiroshi


    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions.

  9. Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling (United States)

    Liu, Ming-Hao; Bundesmann, Jan; Richter, Klaus


    Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnpjunctions as a concrete example. A real-space Green's function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation are observed within the single-band n↔p transmission regime. The former comes from real-spin conservation, in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall mechanism of the Rashba coupling.

  10. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Directory of Open Access Journals (Sweden)

    Yong-Jun Li


    Full Text Available We proposed intercalation of hexagonal boron nitride (hBN in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  11. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology (United States)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei


    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  12. Graphene preparation by annealing of Co/SiC structure

    Energy Technology Data Exchange (ETDEWEB)

    Macháč, Petr, E-mail: [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Cichoň, Stanislav [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Institute of Physics of the ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8 (Czech Republic); Mišková, Linda [Central Laboratories, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Vondráček, Martin [Institute of Physics of the ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8 (Czech Republic)


    Graphical abstract: - Highlights: • Low temperature preparation of graphene by the annealing of Co/SiC structures. • Influence of cooling rates on graphene parameters. • Analysis of graphene structure by Raman spectroscopy, Atomic Force Microscopy and X-ray Photoelectron Spectroscopy. • Exfoliation of graphene with help of PMMA, electrical parameters measurement. • Preparation of bi-layer graphene by the annealing at 850 °C for 10 s. - Abstract: This work is focused on graphene preparation using the segregation method with Co/SiC structure, the method being a viable low temperature synthesis approach. The graphene preparation was carried out with the cobalt layer of 300 nm thickness; the technological process is based on an optimization of parameters (temperature and duration) of annealing which is a crucial step of the synthesis. 850 °C as an annealing temperature and 10 s as an annealing duration have been found to be the most optimal. The prepared graphene is close to the bi-layer graphene structure with its parameters. Structural parameters of the prepared graphene were determined from spectra obtained by Raman spectroscopy.

  13. Photocatalytic Nanostructuring of Graphene Guided by Block Copolymer Self-Assembly

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Schulte, Lars


    graphene nanomesh was fabricated by photocatalysis of single-layer graphene suspended on top of TiO2-covered nanopillars, which were produced by combining block copolymer nanolithography with atomic layer deposition. Graphene nanoribbons were also prepared by the same method applied to a line-forming block...

  14. Thermal conductivity of graphene laminate. (United States)

    Malekpour, H; Chang, K-H; Chen, J-C; Lu, C-Y; Nika, D L; Novoselov, K S; Balandin, A A


    We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphene laminate thickness from 9 to 44 μm. The thermal conductivity of graphene laminate was found to be in the range from 40 to 90 W/mK at room temperature. It was found unexpectedly that the average size and the alignment of graphene flakes are more important parameters defining the heat conduction than the mass density of the graphene laminate. The thermal conductivity scales up linearly with the average graphene flake size in both uncompressed and compressed laminates. The compressed laminates have higher thermal conductivity for the same average flake size owing to better flake alignment. Coating plastic materials with thin graphene laminate films that have up to 600× higher thermal conductivity than plastics may have important practical implications.

  15. Cable suspended windmill (United States)

    Farmer, Moses G. (Inventor)


    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  16. Review of bilayer tablet technology. (United States)

    Abebe, Admassu; Akseli, Ilgaz; Sprockel, Omar; Kottala, Niranjan; Cuitiño, Alberto M


    Therapeutic strategies based on oral delivery of bilayer (and multilayer) tablets are gaining more acceptance among brand and generic products due to a confluence of factors including advanced delivery strategies, patient compliance and combination therapy. Successful manufacturing of these ever more complex systems needs to overcome a series of challenges from formulation design to tablet press monitoring and control. This article provides an overview of the state-of-the-art of bilayer tablet technology, highlighting the main benefits of this type of oral dosage forms while providing a description of current challenges and advances toward improving manufacturing practices and product quality. Several aspects relevant to bilayer tablet manufacturing are addressed including material properties, lubrication, layer ordering, layer thickness, layer weight control, as well as first and final compression forces. A section is also devoted to bilayer tablet characterization that present additional complexities associated with interfaces between layers. The available features of the manufacturing equipment for bilayer tablet production are also described indicating the different strategies for sensing and controls offered by bilayer tablet press manufacturers. Finally, a roadmap for bilayer tablet manufacturing is advanced as a guideline to formulation design and selection of process parameters and equipment. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Graphene-Based Superconducting Weak Links in Low Magnetic Field (United States)

    Mills, Scott; Kumaravadivel, Piranavan; Du, Xu

    The impact of magnetic field on Andreev reflection is studied in graphene-based superconducting weak links. We found, through studying weak links with different adhesion layers and superconducting leads (including Graphene-Ti/Au-Nb, Graphene-Ti/Pd-Nb, Graphene-V-Nb, Graphene-Ti-Nb, Graphene-Ti/Pd-NbN), that in low field (B graphene-superconductor interface. As the effective gap of the weak link approaches the intrinsic gap of the superconducting leads, a remnant of Andreev reflection can survive into the quantum Hall regime, allowing study of the interplay between the quantum Hall effect and Andreev reflection in high quality suspended graphene-superconductor weak links.

  18. Bright visible light emission from graphene. (United States)

    Kim, Young Duck; Kim, Hakseong; Cho, Yujin; Ryoo, Ji Hoon; Park, Cheol-Hwan; Kim, Pilkwang; Kim, Yong Seung; Lee, Sunwoo; Li, Yilei; Park, Seung-Nam; Yoo, Yong Shim; Yoon, Duhee; Dorgan, Vincent E; Pop, Eric; Heinz, Tony F; Hone, James; Chun, Seung-Hyun; Cheong, Hyeonsik; Lee, Sang Wook; Bae, Myung-Ho; Park, Yun Daniel


    Graphene and related two-dimensional materials are promising candidates for atomically thin, flexible and transparent optoelectronics. In particular, the strong light-matter interaction in graphene has allowed for the development of state-of-the-art photodetectors, optical modulators and plasmonic devices. In addition, electrically biased graphene on SiO2 substrates can be used as a low-efficiency emitter in the mid-infrared range. However, emission in the visible range has remained elusive. Here, we report the observation of bright visible light emission from electrically biased suspended graphene devices. In these devices, heat transport is greatly reduced. Hot electrons (∼2,800 K) therefore become spatially localized at the centre of the graphene layer, resulting in a 1,000-fold enhancement in thermal radiation efficiency. Moreover, strong optical interference between the suspended graphene and substrate can be used to tune the emission spectrum. We also demonstrate the scalability of this technique by realizing arrays of chemical-vapour-deposited graphene light emitters. These results pave the way towards the realization of commercially viable large-scale, atomically thin, flexible and transparent light emitters and displays with low operation voltage and graphene-based on-chip ultrafast optical communications.

  19. Extremely High Thermal Conductivity of Graphene: Experimental Study


    Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.


    We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.

  20. Biomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study. (United States)

    Willems, Nathalie; Urtizberea, Ainhoa; Verre, Andrea F; Iliut, Maria; Lelimousin, Mickael; Hirtz, Michael; Vijayaraghavan, Aravind; Sansom, Mark S P


    Supported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.

  1. Interface-controlled growth of organic semiconductors on graphene (United States)

    Mathew, Jinta; Emin, Saim; Pavlica, Egon; Valant, Matjaž; Bratina, Gvido


    We have studied submonolayer coverages of N,N-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) on mechanically exfoliated graphene transferred onto SiO2 substrates. Our atomic force microscopy (AFM) data show that PDIF-CN2 forms irregularly-shaped 1.4 nm-high islands. From the selected area diffraction performed with transmission electron microscope (TEM) we conclude that this height corresponds to π - π stacks of molecules, which are inclined for 43° relative to the graphene surface. AFM also showed complete absence of PDIF-CN2 on single-layer graphene (SLG). Electric force microscopy revealed a marked difference in surface charge density between a single-layer graphene and bilayer graphene, with a higher surface charge on SLG than on the bilayer graphene. We associate this behavior with p - type doping of graphene due to the electrostatic dipole induced by the molecular water layer present at the graphene/SiO2 interface. The crucial role of the graphene/SiO2 interface in determining growth of PDIF-CN2 was further confirmed by TEM examination of PDIF-CN2 deposited onto unsupported SLG.

  2. Strain and deformations engineered germanene bilayer double gate-field effect transistor by first principles (United States)

    Meher Abhinav, E.; Chandrasekaran, Gopalakrishnan; Kasmir Raja, S. V.


    Germanene, silicene, stanene, phosphorene and graphene are some of single atomic materials with novel properties. In this paper, we explored bilayer germanene-based Double Gate-Field Effect Transistor (DG-FET) with various strains and deformations using Density Functional Theory (DFT) and Green's approach by first-principle calculations. The DG-FET of 1.6 nm width, 6 nm channel length (Lch) and HfO2 as gate dielectric has been modeled. For intrinsic deformation of germanene bilayer, we have enforced minute mechanical deformation of wrap and twist (5°) and ripple (0.5 Å) on germanene bilayer channel material. By using NEGF formalism, I-V Characteristics of various strains and deformation tailored DG-FET was calculated. Our results show that rough edge and single vacancy (5-9) in bilayer germanene diminishes the current around 47% and 58% respectively as compared with pristine bilayer germanene. In case of strain tailored bilayer DG-FET, multiple NDR regions were observed which can be utilized in building stable multiple logic states in digital circuits and high frequency oscillators using negative resistive techniques.

  3. Dispersive suspended microextraction. (United States)

    Yang, Zhong-Hua; Liu, Yu; Lu, Yue-Le; Wu, Tong; Zhou, Zhi-Qiang; Liu, Dong-Hui


    A novel sample pre-treatment technique termed dispersive suspended microextraction (DSME) coupled with gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of eight organophosphorus pesticides (ethoprophos, malathion, chlorpyrifos, isocarbophos, methidathion, fenamiphos, profenofos, triazophos) in aqueous samples. In this method, both extraction and two phases' separation process were performed by the assistance of magnetic stirring. After separating the two phases, 1 μL of the suspended phase was injected into GC for further instrument analysis. Varieties of experiment factors which could affect the experiment results were optimized and the following were selected: 12.0 μL p-xylene was selected as extraction solvent, extraction speed was 1200 rpm, extraction time was 30 s, the restoration speed was 800 rpm, the restoration time was 8 min, and no salt was added. Under the optimum conditions, limits of detections (LODs) varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSDs, n=6) ranged from 4.6% to 12.1%. The linearity was obtained by five points in the concentration range of 0.1-100.0 μg L(-1). Correlation coefficients (r) varied from 0.9964 to 0.9995. The enrichment factors (EFs) were between 206 and 243. In the final experiment, the developed method has been successfully applied to the determination of organophosphorus pesticides in wine and tap water samples and the obtained recoveries were between 83.8% and 101.3%. Compared with other pre-treatment methods, DSME has its own features and could achieve satisfied results for the analysis of trace components in complicated matrices. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The shear mode of multilayer graphene (United States)

    Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N.; Savini, G.; Lombardo, A.; Ferrari, A. C.


    The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm-1 in bulk graphite to ~31 cm-1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions.

  5. Alcohol Interactions with Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Tomáš Kondela


    Full Text Available We investigate the structural changes to lipid membrane that ensue from the addition of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts of the membrane curvature and the alcohol’s membrane-water partitioning. We have observed clear changes to membrane structure in both transversal and lateral directions. Most importantly, our results suggest the alteration of the membrane-water interface. The water encroachment has shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics simulations to reveal further details. Namely, the order parameter profiles have been fruitful in correlating the mechanical model of structural changes to the effect of anesthesia.

  6. Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas; Perkins, Edward; Johannsen, Jens


    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility...

  7. Determination of the Thermal Noise Limit of Graphene Biotransistors. (United States)

    Crosser, Michael S; Brown, Morgan A; McEuen, Paul L; Minot, Ethan D


    To determine the thermal noise limit of graphene biotransistors, we have measured the complex impedance between the basal plane of single-layer graphene and an aqueous electrolyte. The impedance is dominated by an imaginary component but has a finite real component. Invoking the fluctuation-dissipation theorem, we determine the power spectral density of thermally driven voltage fluctuations at the graphene/electrolyte interface. The fluctuations have 1/f(p) dependence, with p = 0.75-0.85, and the magnitude of fluctuations scales inversely with area. Our results explain noise spectra previously measured in liquid-gated suspended graphene devices and provide realistic targets for future device performance.

  8. Electron transmission through a stacking domain boundary in multilayer graphene (United States)

    Nam, Nguyen N. T.; Koshino, Mikito


    We present a theoretical study of the electron transmission through the AB-BA stacking boundary in multilayer graphenes. Using the tight-binding model and the transfer matrix method, we calculate the electron transmission probability through the boundary as a function of electron Fermi energy in multilayers from bilayer to five-layer. We find that the transmission is strongly suppressed particularly near the band touching point, suggesting that the electronic conductivity in general multilayer graphenes is significantly interfered with by stacking fault. The conductivity suppression by stacking fault is the strongest in the bilayer graphene, while it is gradually relaxed as the number of layers increases. At a large carrier density, we observe an even-odd effect where the transmission is relatively lower in trilayer and five-layer than in bilayer and four-layer, and this is related to the existence of a monolayerlike linear band in odd layers. For bilayer graphene, we also study the effect of the perpendicular electric field opening an energy gap, and show that the band deformation enhances the electron transmission at a fixed carrier density.

  9. Optical bistability of graphene in the terahertz range

    DEFF Research Database (Denmark)

    Peres, N. M. R.; Bludov, Yu V.; Santos, Jaime E.


    We use an exact solution of the relaxation-time Boltzmann equation in a uniform ac electric field to describe the nonlinear optical response of graphene in the terahertz (THz) range. The cases of monolayer, bilayer, and ABA-stacked trilayer graphene are considered, and the monolayer species...... is shown to be the most appropriate one to exploit the nonlinear free electron response. We find that a single layer of graphene shows optical bistability in the THz range, within the electromagnetic power range attainable in practice. The current associated with the third harmonic generation is also...

  10. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons

    Directory of Open Access Journals (Sweden)

    Hatef Sadeghi


    Full Text Available We demonstrate that thermoelectric properties of graphene nanoribbons can be dramatically improved by introducing nanopores. In monolayer graphene, this increases the electronic thermoelectric figure of merit ZTe from 0.01 to 0.5. The largest values of ZTe are found when a nanopore is introduced into bilayer graphene, such that the current flows from one layer to the other via the inner surface of the pore, for which values as high as ZTe = 2.45 are obtained. All thermoelectric properties can be further enhanced by tuning the Fermi energy of the leads.

  11. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.


    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  12. Graphene Spintronics


    Han, Wei; Kawakami, Roland K.; Gmitra, Martin; Fabian, Jaroslav


    The isolation of graphene has triggered an avalanche of studies into the spin-dependent physical properties of this material and of graphene-based spintronic devices. Here, we review the experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin–orbit coupling and spin relaxation in graphene. Future research in graphene spintronics will need to address the development of applications such as spin transistors and spin logic devices,...

  13. Graphene aerogels (United States)

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen


    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  14. Tunability of 1/f Noise at Multiple Dirac Cones in hBN Encapsulated Graphene Devices. (United States)

    Kumar, Chandan; Kuiri, Manabendra; Jung, Jeil; Das, Tanmoy; Das, Anindya


    The emergence of multiple Dirac cones in hexagonal boron nitride (hBN)-graphene heterostructures is particularly attractive because it offers potentially better landscape for higher and versatile transport properties than the primary Dirac cone. However, the transport coefficients of the cloned Dirac cones is yet not fully characterized and many open questions, including the evolution of charge dynamics and impurity scattering responsible for them, have remained unexplored. Noise measurements, having the potential to address these questions, have not been performed to date in dual-gated hBN-graphene-hBN devices. Here, we present the low-frequency 1/f noise measurements at multiple Dirac cones in hBN encapsulated single and bilayer graphene in dual-gated geometry. Our results reveal that the low-frequency noise in graphene can be tuned by more than two-orders of magnitude by changing carrier concentration as well as by modifying the band structure in bilayer graphene. We find that the noise is surprisingly suppressed at the cloned Dirac cone compared to the primary Dirac cone in single layer graphene device, while it is strongly enhanced for the bilayer graphene with band gap opening. The results are explained with the calculation of dielectric function using tight-binding model. Our results also indicate that the 1/f noise indeed follows the Hooge's empirical formula in hBN-protected devices in dual-gated geometry. We also present for the first time the noise data in bipolar regime of a graphene device.

  15. Surfactant transport on viscous bilayers (United States)

    Matar, Omar; Craster, Richard; Warner, Mark


    We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).

  16. Current switching in superconductor semiconductor bilayers (United States)

    Rahman, F.; Thornton, T. J.; Huber, R.


    We describe results of electrical transport experiments on niobium-on-indium arsenide and aluminium-on-indium arsenide bilayers. The temperature-dependent properties of electrical conduction in these bilayers is examined first in order to characterize the quality of super-semi interfaces. Next, we look at the differential resistance of the bilayers as a function of bias current. The switching of current between the metal and semiconductor components of the bilayer gives rise to a quasi-inductive effect as it causes voltage spikes in the composite system. Also described is the variation of critical current for these bilayers with temperature and magnetic field.

  17. Minimal Bending Energies of Bilayer Polyhedra (United States)

    Haselwandter, Christoph A.; Phillips, Rob


    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra. PMID:21231425

  18. Quantum dots and spin qubits in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Recher, Patrik; Trauzettel, Bjoern, E-mail:, E-mail: [Institut fuer Theoretische Physik und Astrophysik, University of Wuerzburg, 97074 Wuerzburg (Germany)


    This is a review on graphene quantum dots and their use as a host for spin qubits. We discuss the advantages but also the challenges to use graphene quantum dots for spin qubits as compared to the more standard materials like GaAs. We start with an overview of this young and fascinating field and then discuss gate-tunable quantum dots in detail. We calculate the bound states for three different quantum dot architectures where a bulk gap allows for confinement via electrostatic fields: (i) graphene nanoribbons with armchair boundaries, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer graphene. In order for graphene quantum dots to be useful in the context of spin qubits, one needs to find reliable ways to break the valley degeneracy. This is achieved here, either by a specific termination of graphene in (i) or in (ii) and (iii) by a magnetic field, without the need of a specific boundary. We further discuss how to manipulate spin in these quantum dots and explain the mechanism of spin decoherence and relaxation caused by spin-orbit interaction in combination with electron-phonon coupling, and by hyperfine interaction with the nuclear-spin system. (topical review)

  19. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. (United States)

    Shahil, Khan M F; Balandin, Alexander A


    We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (~10-15%) present simultaneously with the thicker multilayers of large lateral size (~1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of ~5.8 W/mK to K = 14 W/mK at the small loading f = 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface. © 2012 American Chemical Society

  20. Magnetoresistance effect in Fe{sub 20}Ni{sub 80}/graphene/Fe{sub 20}Ni{sub 80} vertical spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Entani, Shiro, E-mail:; Naramoto, Hiroshi; Sakai, Seiji [Quantum Beam Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Seki, Takeshi; Yamamoto, Tatsuya; Takahashi, Saburo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Sakuraba, Yuya [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-004 (Japan); Takanashi, Koki [Quantum Beam Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)


    Vertical spin valve devices with junctions of single- and bi-layer graphene interlayers sandwiched with Fe{sub 20}Ni{sub 80} (Permalloy) electrodes were fabricated by exploiting the direct growth of graphene on the Permalloy. The linear current-voltage characteristics indicated that ohmic contacts were realized at the interfaces. The systematic characterization revealed the significant modification of the electronic state of the interfacial graphene layer on the Permalloy surface, which indicates the strong interactions at the interface. The ohmic transport was attributable to the strong interface-interaction. The vertical resistivity of the graphene interlayer and the spin asymmetry coefficient at the graphene/Permalloy interface were obtained to be 0.13 Ω cm and 0.06, respectively. It was found that the strong interface interaction modifies the electronic structure and metallic properties in the vertical spin valve devices with bi-layer graphene as well as single-layer graphene.

  1. Fabrication of nanoporous graphene/polymer composite membranes. (United States)

    Madauß, Lukas; Schumacher, Jens; Ghosh, Mandakranta; Ochedowski, Oliver; Meyer, Jens; Lebius, Henning; Ban-d'Etat, Brigitte; Toimil-Molares, Maria Eugenia; Trautmann, Christina; Lammertink, Rob G H; Ulbricht, Mathias; Schleberger, Marika


    Graphene is currently investigated as a promising membrane material in which selective pores can be created depending on the requirements of the application. However, to handle large-area nanoporous graphene a stable support material is needed. Here, we report on composite membranes consisting of large-area single layer nanoporous graphene supported by a porous polymer. The fabrication is based on ion-track nanotechnology with swift heavy ions directly creating atomic pores in the graphene lattice and damaged tracks in the polymer support. Subsequent chemical etching converts the latent ion tracks in the supporting polymer foil, here polyethylene terephthalate (PET), into open microchannels while the perfectly aligned pores in the graphene top layer remain unaffected. To avoid unintentional damage creation and delamination of the graphene layer from the substrate, the graphene is encapsulated by a protecting poly(methyl methacrylate) (PMMA) layer. By this procedure a stable composite membrane is obtained consisting of nanoporous graphene (coverage close to 100%) suspended across selfaligned track-etched microchannels in a polymer support film. Our method presents a facile way to create high quality suspended graphene of tunable pore size supported on a flexible porous polymeric support, thus enabling the development of membranes for fast and selective ultrafiltration separation processes.

  2. Phonons and thermal transport in graphene and graphene-based materials (United States)

    Nika, Denis L.; Balandin, Alexander A.


    A discovery of the unusual thermal properties of graphene stimulated experimental, theoretical and computational research directed at understanding phonon transport and thermal conduction in two-dimensional material systems. We provide a critical review of recent results in the graphene thermal field focusing on phonon dispersion, specific heat, thermal conductivity, and comparison of different models and computational approaches. The correlation between the phonon spectrum in graphene-based materials and the heat conduction properties is analyzed in details. The effects of the atomic plane rotations in bilayer graphene, isotope engineering, and relative contributions of different phonon dispersion branches are discussed. For readers’ convenience, the summaries of main experimental and theoretical results on thermal conductivity as well as phonon mode contributions to thermal transport are provided in the form of comprehensive annotated tables.

  3. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite. (United States)

    Sevilla, Marta; Ferrero, Guillermo A; Fuertes, Antonio B


    A facile and environmentally friendly synthetic strategy for the production of stable and easily processable dispersions of graphene in water is presented. This strategy represents an alternative to classical chemical exfoliation methods (for example the Hummers method) that are more complex, harmful, and dangerous. The process is based on the electrochemical exfoliation of graphite and includes three simple steps: 1) the anodic exfoliation of graphite in (NH4 )2 SO4 , 2) sonication to separate the oxidized graphene sheets, and 3) reduction of oxidized graphene to graphene. The procedure makes it possible to convert around 30 wt % of the initial graphite into graphene with short processing times and high yields. The graphene sheets are well dispersed in water, have a carbon/oxygen atomic ratio of 11.7, a lateral size of about 0.5-1 μm, and contain only a few graphene layers, most of which are bilayer sheets. The processability of this type of aqueous dispersion has been demonstrated in the fabrication of macroscopic graphene structures, such as graphene aerogels and graphene films, which have been successfully employed as absorbents or as electrodes in supercapacitors, respectively. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role. (United States)

    Chae, Sieun; Jin Choi, Won; Sang Chae, Soo; Jang, Seunghun; Chang, Hyunju; Lee, Tae Il; Kim, Youn Sang; Lee, Jeong-O


    Due to its extreme thinness, graphene can transmit some surface properties of its underlying substrate, a phenomenon referred to as graphene transparency. Here we demonstrate the application of the transparency of graphene as a protector of thin-film catalysts and a booster of their catalytic efficiency. The photocatalytic degradation of dye molecules by ZnO thin films was chosen as a model system. A ZnO thin film coated with monolayer graphene showed greater catalytic efficiency and long-term stability than did bare ZnO. Interestingly, we found the catalytic efficiency of the graphene-coated ZnO thin film to depend critically on the nature of the bottom ZnO layer; graphene transferred to a relatively rough, sputter-coated ZnO thin film showed rather poor catalytic degradation of the dye molecules while a smooth sol-gel-synthesized ZnO covered with monolayer graphene showed enhanced catalytic degradation. Based on a systematic investigation of the interface between graphene and ZnO thin films, we concluded the transparency of graphene to be critically dependent on its interface with a supporting substrate. Graphene supported on an atomically flat substrate was found to efficiently transmit the properties of the substrate, but graphene suspended on a substrate with a rough nanoscale topography was completely opaque to the substrate properties. Our experimental observations revealed the morphology of the substrate to be a key factor affecting the transparency of graphene, and should be taken into account in order to optimally apply graphene as a protector of catalytic thin films and a booster of their catalysis.

  5. Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role (United States)

    Chae, Sieun; Choi, Won Jin; Chae, Soo Sang; Jang, Seunghun; Chang, Hyunju; Lee, Tae Il; Kim, Youn Sang; Lee, Jeong-O.


    Due to its extreme thinness, graphene can transmit some surface properties of its underlying substrate, a phenomenon referred to as graphene transparency. Here we demonstrate the application of the transparency of graphene as a protector of thin-film catalysts and a booster of their catalytic efficiency. The photocatalytic degradation of dye molecules by ZnO thin films was chosen as a model system. A ZnO thin film coated with monolayer graphene showed greater catalytic efficiency and long-term stability than did bare ZnO. Interestingly, we found the catalytic efficiency of the graphene-coated ZnO thin film to depend critically on the nature of the bottom ZnO layer; graphene transferred to a relatively rough, sputter-coated ZnO thin film showed rather poor catalytic degradation of the dye molecules while a smooth sol–gel-synthesized ZnO covered with monolayer graphene showed enhanced catalytic degradation. Based on a systematic investigation of the interface between graphene and ZnO thin films, we concluded the transparency of graphene to be critically dependent on its interface with a supporting substrate. Graphene supported on an atomically flat substrate was found to efficiently transmit the properties of the substrate, but graphene suspended on a substrate with a rough nanoscale topography was completely opaque to the substrate properties. Our experimental observations revealed the morphology of the substrate to be a key factor affecting the transparency of graphene, and should be taken into account in order to optimally apply graphene as a protector of catalytic thin films and a booster of their catalysis.

  6. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter


    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  7. Towards inducing superconductivity into graphene (United States)

    Efetov, Dmitri K.

    dependent effective Debey temperature - the so-called Bloch-Gruneisen temperature theta BG. We also probe the transport properties of the high energy sub-bands in bilayer graphene by electrolyte gating. Furthermore we demonstrate that electrolyte gates can be used to drive intercalation reactions in graphite and present an all optical study of the reaction kinetics during the creation of the graphene derived graphite intercalation compound LiC 6, and show the general applicability of the electrolyte gates to other 2-dimensional materials such as thin films of complex oxides, where we demonstrate gating dependent conductance changes in the spin-orbit Mott insulator Sr 2IrO4. Another, entirely different approach to induce superconducting correlations into graphene is by bringing it into proximity to a superconductor. Although not intrinsic to graphene, Cooper pairs can leak in from the superconductor and exist in graphene in the form of phase-coherent electron-hole states, the so-called Andreev states. Here we demonstrate a new way of fabricating highly transparent graphene/superconductor junctions by vertical stacking of graphene and the type-II van der Waals superconductor NbSe2. Due to NbSe2's high upper critical field of Hc2=4T we are able to test a long proposed and yet not well understood regime, where proximity effect and quantum Hall effect coexist.

  8. Final Report on Investigation of the Electron Interactions in Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Philip [Columbia University


    In graphene, combined with the real spin degree of freedom, which exhibits SU(2) symmetry, the total internal degrees of freedom of graphene carriers is thus described by a larger SU(4) symmetry, which produces a richer space for potential phenomena of emergent correlated electron phenomena. The major part of this proposal is exploring this unique multicomponent correlated system in the quantum limit. In the current period of DOE BES support we have made several key advances that will serve as a foundation for the new studies in this proposal. Employing the high-mobility encapsulated graphene heterostructures developed during the current phase of research, we have investigated spin and valley quantum Hall ferromagnetism in graphene and discovered a spin phase transition leading to a quantum spin Hall analogue. We have also observed the fractal quantum Hall effect arising from the Hofstadter’s butterfly energy spectrum. In addition, we have discovered multiband transport phenomena in bilayer graphene at high carrier densities.

  9. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)


    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  10. Effect of spatial charge inhomogeneity on 1/f noise behavior in graphene. (United States)

    Xu, Guangyu; Torres, Carlos M; Zhang, Yuegang; Liu, Fei; Song, Emil B; Wang, Minsheng; Zhou, Yi; Zeng, Caifu; Wang, Kang L


    Scattering mechanisms in graphene are critical to understanding the limits of signal-to-noise ratios of unsuspended graphene devices. Here we present the four-probe low-frequency noise (1/f) characteristics in back-gated single layer graphene (SLG) and bilayer graphene (BLG) samples. Contrary to the expected noise increase with the resistance, the noise for SLG decreases near the Dirac point, possibly due to the effects of the spatial charge inhomogeneity. For BLG, a similar noise reduction near the Dirac point is observed, but with a different gate dependence of its noise behavior. Some possible reasons for the different noise behavior between SLG and BLG are discussed.

  11. Intersubband Landau Level Couplings Induced by In-Plane Magnetic Fields in Trilayer Graphene (United States)

    Asakawa, Yuta; Masubuchi, Satoru; Inoue, Naoko; Morikawa, Sei; Watanabe, Kenji; Taniguchi, Takashi; Machida, Tomoki


    We observed broken-symmetry quantum Hall effects and level crossings between spin- and valley- resolved Landau levels (LLs) in Bernal stacked trilayer graphene. When the magnetic field was tilted with respect to the sample normal from 0° to 66°, the LL crossings formed at intersections of zeroth and second LLs from monolayer-graphene-like and bilayer-graphene-like subbands, respectively, exhibited a sequence of transitions. The results indicate the LLs from different subbands are coupled by in-plane magnetic fields (B∥), which was explained by developing the tight-binding model Hamiltonian of trilayer graphene under B∥.

  12. Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride (United States)

    Souibgui, Mourad; Ajlani, Hosni; Cavanna, Antonnella; Oueslati, Meherzi; Meftah, Abdelaziz; Madouri, Ali


    In this paper, we investigate stacked 2D graphene layers on hexagonal boron nitride (h-BN). The graphene is obtained by high-quality chemical vapor deposition (CVD) and transferred to the h-BN substrate. We focus our attention on annealing effect at 1040 °C on single graphene layer (SGL) and bilayer graphene (BLG) on h-BN substrate using Raman spectroscopy. Our results show, before annealing, a twist angle θ = 0.63 ° between the SGL and the h-BN substrate and a twist angle 3 ° graphene layers of the BLG. After annealing, the analysis of the graphene G and 2D bands show a rotational reorientation of the graphene layer with respect to the h-BN substrate. Raman mapping also shows that the rotational reorientation is spatially dependent.

  13. Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors

    CERN Document Server

    Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.


    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  14. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. (United States)

    Zhang, Xiuyun; Wang, Lu; Xin, John; Yakobson, Boris I; Ding, Feng


    Synthesizing bilayer graphene (BLG), which has a band gap, is an important step in graphene application in microelectronics. Experimentally, it was broadly observed that hydrogen plays a crucial role in graphene chemical vapor deposition (CVD) growth on a copper surface. Here, by using ab initio calculations, we have revealed a crucial role of hydrogen in graphene CVD growth, terminating the graphene edges. Our study demonstrates the following. (i) At a low hydrogen pressure, the graphene edges are not passivated by H and thus tend to tightly attach to the catalyst surface. As a consequence, the diffusion of active C species into the area beneath the graphene top layer (GTL) is prohibited, and therefore, single-layer graphene growth is favored. (ii) At a high hydrogen pressure, the graphene edges tend to be terminated by H, and therefore, its detachment from the catalyst surface favors the diffusion of active C species into the area beneath the GTL to form the adlayer graphene below the GTL; as a result, the growth of BLG or few-layer graphene (FLG) is preferred. This insightful understanding reveals a crucial role of H in graphene CVD growth and paves a way for the controllable synthesis of BLG or FLG. Besides, this study also provides a reasonable explanation for the hydrogen pressure-dependent graphene CVD growth behaviors on a Cu surface.

  15. Bilayer Effects of Antimalarial Compounds.

    Directory of Open Access Journals (Sweden)

    Nicole B Ramsey

    Full Text Available Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05; MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  16. Polydopamine-Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Souryvanh Nirasay


    Full Text Available We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC and dioleoylphosphatidylcholine (DOPC vesicles. Polydopamine films preserved the lateral mobility of the phospholipids as shown by fluorescence microscopy recovery after photobleaching (FRAP experiments. Diffusion coefficients of ~5.9 and 7.2 µm2 s−1 were respectively determined for DMPC and DOPC at room temperature, values which are characteristic of lipids in a free standing bilayer system.

  17. Polydopamine-Supported Lipid Bilayers (United States)

    Nirasay, Souryvanh; Badia, Antonella; Leclair, Grégoire; Claverie, Jerome P.; Marcotte, Isabelle


    We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) vesicles. Polydopamine films preserved the lateral mobility of the phospholipids as shown by fluorescence microscopy recovery after photobleaching (FRAP) experiments. Diffusion coefficients of ~5.9 and 7.2 µm2 s−1 were respectively determined for DMPC and DOPC at room temperature, values which are characteristic of lipids in a free standing bilayer system.

  18. Polydopamine-Supported Lipid Bilayers


    Souryvanh Nirasay; Antonella Badia; Grégoire Leclair; Claverie, Jerome P.; Isabelle Marcotte


    We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) vesicles. Polydopamine...

  19. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel


    Wang, Yung Yu; Pham, Ted D.; Zand, Katayoun; Li, Jinfeng; Burke, Peter J.


    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilay...

  20. Imaging of few‐layer graphene flakes

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Albrektsen, Ole; Novikov, Sergey M.

    In this work, we successfully demonstrate how imaging ellipsometry can be applied to obtain high‐resolution thickness maps of few‐layer graphene (FLG) samples, with the results being thoroughly validated in a comparative study using several complementary techniques: Optical reflection microscopy...... (ORM), atomic force microscopy (AFM), and scanning confocal Raman microscopy. The thickness map, revealing distinct terraces separated by steps corresponding to mono‐ and bilayers of graphene, is extracted from a pixel‐to‐pixel fitting of ellipsometric spectra using optical constants derived by fitting...... slab model calculations to averaged spectra collected in large homogenous sample areas. An analysis of reflection spectra and contrast images acquired by ORM confirm the results by quantifying the number of graphene layers and retrieving the FLG optical constants using a simple Fresnel‐law‐based slab...

  1. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging (United States)

    Yu, Yuanfang; Li, Zhenzhen; Wang, Wenhui; Guo, Xitao; Jiang, Jie; Nan, Haiyan; Ni, Zhenhua


    CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene. Project supported by the National Natural Science Foundation of China (Nos. 61422503, 61376104), the Open Research Funds of Key Laboratory of MEMS of Ministry of Education (SEU, China), and the Fundamental Research Funds for the Central Universities.

  2. Star polymer unimicelles on graphene oxide flakes. (United States)

    Choi, Ikjun; Kulkarni, Dhaval D; Xu, Weinan; Tsitsilianis, Constantinos; Tsukruk, Vladimir V


    We report the interfacial assembly of amphiphilic heteroarm star copolymers (PSnP2VPn and PSn(P2VP-b-PtBA)n (n = 28 arms)) on graphene oxide flakes at the air-water interface. Adsorption, spreading, and ordering of star polymer micelles on the surface of the basal plane and edge of monolayer graphene oxide sheets were investigated on a Langmuir trough. This interface-mediated assembly resulted in micelle-decorated graphene oxide sheets with uniform spacing and organized morphology. We found that the surface activity of solvated graphene oxide sheets enables star polymer surfactants to subsequently adsorb on the presuspended graphene oxide sheets, thereby producing a bilayer complex. The positively charged heterocyclic pyridine-containing star polymers exhibited strong affinity onto the basal plane and edge of graphene oxide, leading to a well-organized and long-range ordered discrete micelle assembly. The preferred binding can be related to the increased conformational entropy due to the reduction of interarm repulsion. The extent of coverage was tuned by controlling assembly parameters such as concentration and solvent polarity. The polymer micelles on the basal plane remained incompressible under lateral compression in contrast to ones on the water surface due to strongly repulsive confined arms on the polar surface of graphene oxide and a preventive barrier in the form of the sheet edges. The densely packed biphasic tile-like morphology was evident, suggesting the high interfacial stability and mechanically stiff nature of graphene oxide sheets decorated with star polymer micelles. This noncovalent assembly represents a facile route for the control and fabrication of graphene oxide-inclusive ultrathin hybrid films applicable for layered nanocomposites.

  3. Noncommutative Graphene


    Bastos, C.; Bertolami, O.; Dias, N.; Prata, J.


    We consider a noncommutative description of graphene. This description consists of a Dirac equation for massless Dirac fermions plus noncommutative corrections, which are treated in the presence of an external magnetic field. We argue that, being a two-dimensional Dirac system, graphene is particularly interesting to test noncommutativity. We find that momentum noncommutativity affects the energy levels of graphene, but that it does not entail any kind of correction to the Hall conductivity.

  4. Epitaxial graphene


    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gerard


    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and l...

  5. Aromatic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Das, D. K., E-mail: [Department of Metallurgical and Material Science Engineering, National Institute of Technology Durgapur-713209, West Bengal (India); Sahoo, S., E-mail: [Department of Physics, National Institute of Technology Durgapur-713209, West Bengal (India)


    In recent years graphene attracts the scientific and engineering communities due to its outstanding electronic, thermal, mechanical and optical properties and many potential applications. Recently, Popov et al. [1] have studied the properties of graphene and proved that it is aromatic but without fragrance. In this paper, we present a theory to prepare graphene with fragrance. This can be used as scented pencils, perfumes, room and car fresheners, cosmetics and many other useful household substances.

  6. Enhanced solar light absorption of graphene by interaction with anisole

    KAUST Repository

    Kahaly, M. Upadhyay


    We study suspended graphene in contact with the organic molecule anisole to analyse the implications of the interaction for the optical absorption, using first principle calculations. Because of a weak interaction multiple orientations of the molecule with respect to the graphene sheet are possible. A substantial enhancement of the optical absorption independent of the specific orientation is observed, which is promising for energy harvesting. © 2014 Elsevier Ltd. All rights reserved.

  7. Elastic energy of polyhedral bilayer vesicles. (United States)

    Haselwandter, Christoph A; Phillips, Rob


    In recent experiments [M. Dubois, B. Demé, T. Gulik-Krzywicki, J.-C. Dedieu, C. Vautrin, S. Désert, E. Perez, and T. Zemb, Nature (London) 411, 672 (2001)] the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested [M. Dubois, V. Lizunov, A. Meister, T. Gulik-Krzywicki, J. M. Verbavatz, E. Perez, J. Zimmerberg, and T. Zemb, Proc. Natl. Acad. Sci. USA 101, 15082 (2004)] that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron.

  8. Graphene Origami (United States)

    Blees, Melina; Barnard, Arthur; Roberts, Samantha; Ong, Peijie; Zaretski, Aliaksandr; Wang, Si Ping; McEuen, Paul


    Graphene, which features unparalleled in-plane strength and low out-of-plane bending energy, is an ideal material with which to tackle the challenge of building three-dimensional structures and moving parts at the nanoscale. Here we demonstrate laser-induced folding and scrolling of large-area monolayer graphene in solution. Monolayer graphene is typically well-adhered to its substrate, but we have achieved control of the adhesion using a combination of an aluminum sacrificial layer and surfactants. Once the graphene can move, local heating with an infrared laser and the interfacial tension of laser-nucleated bubbles allow us to lift, fold, and scroll the graphene. We have also formed a regular array of polymer dots on the graphene surface which can be easily imaged in three dimensions, allowing us to optically track the shape of the graphene as it moves. And finally, we establish graphene's viability as a strong but flexible sheet hinge by building and manipulating structures of rigid metallic panels connected by strips of graphene.

  9. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues. (United States)

    Chung, Kyungwha; Rani, Adila; Lee, Ji-Eun; Kim, Ji Eun; Kim, Yonghwi; Yang, Heejin; Kim, Sang Ouk; Kim, Donghyun; Kim, Dong Ha


    The use of graphene in conventional plasmonic devices was suggested by several theoretic research studies. However, the existing theoretic studies are not consistent with one another and the experimental studies are still at the initial stage. To reveal the role of graphenes on the plasmonic sensors, we deposited graphene oxide (GO) and reduced graphene oxide (rGO) thin films on Au films and their refractive index (RI) sensitivity was compared for the first time in SPR-based sensors. The deposition of GO bilayers with number of deposition L from 1 to 5 was carried out by alternative dipping of Au substrate in positively- and negatively charged GO solutions. The fabrication of layer-by-layer self-assembly of the graphene films was monitored in terms of the SPR angle shift. GO-deposited Au film was treated with hydrazine to reduce the GO. For the rGO-Au sample, 1 bilayer sample showed a higher RI sensitivity than bare Au film, whereas increasing the rGO film from 2 to 5 layers reduced the RI sensitivity. In the case of GO-deposited Au film, the 3 bilayer sample showed the highest sensitivity. The biomolecular sensing was also performed for the graphene multilayer systems using BSA and anti-BSA antibody.

  10. Selective Andreev reflection tuned by magnetic barriers in graphene-superconductor hybrid junctions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hengyi; Heinzel, Thomas


    We investigate the direction-dependent Andreev reflection of normal state-superconductor junctions both in monolayer and bilayer graphene with a single magnetic barrier by means of the Green's function formalism. Such a barrier is capable of tuning the preferred angles of incidence for the Andreev retro-reflection. It enhances the specular reflection probability for certain angles of incidence in bilayer-based hybrid structures. We further study the impacts of magnetic barriers on the monolayer and bilayer hybrid structures by calculating the differential conductances within the Blonder–Tinkham–Klapwijk formula for experimental comparisons.

  11. Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air (United States)

    Son, Seok-Kyun; Šiškins, Makars; Mullan, Ciaran; Yin, Jun; Kravets, Vasyl G.; Kozikov, Aleksey; Ozdemir, Servet; Alhazmi, Manal; Holwill, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Ghazaryan, Davit; Novoselov, Kostya S.; Fal’ko, Vladimir I.; Mishchenko, Artem


    The excellent electronic and mechanical properties of graphene allow it to sustain very large currents, enabling its incandescence through Joule heating in suspended devices. Although interesting scientifically and promising technologically, this process is unattainable in ambient environment, because graphene quickly oxidises at high temperatures. Here, we take the performance of graphene-based incandescent devices to the next level by encapsulating graphene with hexagonal boron nitride (hBN). Remarkably, we found that the hBN encapsulation provides an excellent protection for hot graphene filaments even at temperatures well above 2000 K. Unrivalled oxidation resistance of hBN combined with atomically clean graphene/hBN interface allows for a stable light emission from our devices in atmosphere for many hours of continuous operation. Furthermore, when confined in a simple photonic cavity, the thermal emission spectrum is modified by a cavity mode, shifting the emission to the visible range spectrum. We believe our results demonstrate that hBN/graphene heterostructures can be used to conveniently explore the technologically important high-temperature regime and to pave the way for future optoelectronic applications of graphene-based systems.

  12. Integrated circuits based on bilayer MoS₂ transistors. (United States)

    Wang, Han; Yu, Lili; Lee, Yi-Hsien; Shi, Yumeng; Hsu, Allen; Chin, Matthew L; Li, Lain-Jong; Dubey, Madan; Kong, Jing; Palacios, Tomas


    Two-dimensional (2D) materials, such as molybdenum disulfide (MoS(2)), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS(2) allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene's advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors, and photodetectors made from few-layer MoS(2) show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multistage circuits and logic building blocks on MoS(2) to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between 2 to 12 transistors seamlessly integrated side-by-side on a single sheet of bilayer MoS(2). Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions.

  13. EDITORIAL: Epitaxial graphene Epitaxial graphene (United States)

    de Heer, Walt A.; Berger, Claire


    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  14. Spin and valley resolved Landau level crossing in tri-layer ABA stacked graphene (United States)

    Datta, Biswajit; Gupta, Vishakha; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Deshmukh, Mandar

    We present quantum Hall measurements on a high quality encapsulated tri-layer graphene device. Low temperature field effect mobility of this device is around 500,000 cm2/Vs and we see SdH oscillations at a magnetic field as low as 0.3 T. Quantum Hall measurements confirm that the chosen tri layer graphene is Bernal (ABA) stacked. Due to the presence of both mass-less monolayer like Dirac fermions and massive bi-layer like Dirac fermions in Bernal stacked tri-layer graphene, there are Landau level crossings between monolayer and bi-layer bands in quantum Hall regime. Although most of the Landau Level crossings are predominantly present on the electron sides, we also observe signatures of the crossings on the hole side. This behaviour is consistent with the asymmetry of electron and hole in ABA tri-layer graphene. We observe a series of crossings of the spin and valley resolved Landau Levels.

  15. Suspended animation for delayed resuscitation. (United States)

    Safar, Peter J; Tisherman, Samuel A


    'Suspended animation for delayed resuscitation' is a new concept for attempting resuscitation from cardiac arrest of patients who currently (totally or temporarily) cannot be resuscitated, such as traumatic exsanguination cardiac arrest. Suspended animation means preservation of the viability of brain and organism during cardiac arrest, until restoration of stable spontaneous circulation or prolonged artificial circulation is possible. Suspended animation for exsanguination cardiac arrest of trauma victims would have to be induced within the critical first 5 min after the start of cardiac arrest no-flow, to buy time for transport and resuscitative surgery (hemostasis) performed during no-flow. Cardiac arrest is then reversed with all-out resuscitation, usually requiring cardiopulmonary bypass. Suspended animation has been explored and documented as effective in dogs in terms of long-term survival without brain damage after very prolonged cardiac arrest. In the 1990s, the Pittsburgh group achieved survival without brain damage in dogs after cardiac arrest of up to 90 min no-flow at brain (tympanic) temperature of 10 degrees C, with functionally and histologically normal brains. These studies used emergency cardiopulmonary bypass with heat exchanger or a single hypothermic saline flush into the aorta, which proved superior to pharmacologic strategies. For the large number of normovolemic sudden cardiac death victims, which currently cannot be resuscitated, more research in large animals is needed.

  16. Graphene Nanodevices

    NARCIS (Netherlands)

    Calado, V.E.


    This thesis describes a divergent set of experiments on graphene, a one-atom thin sheet of carbon. We employ graphene’s unique properties to explore fundamental physics and novel applications. This is done by nano fabricating graphene to nanodevices, which are subject to experiments. Here we first

  17. Understanding the Fundamental Properties of Transfer-Free, Wafer-Level Graphene on Silicon and its Potential for Micro- and Nanodevices (United States)


    quality, uniform bilayer graphene directly was realized on silicon wafers, at temperatures compatible with conventional semiconductor processing. The...conventional semiconductor processing. We demonstrated the highest doping ever reported for graphene (~ 1015 at cm-2, in the same order of magnitude as the...compatible with conventional semiconductor processing. The sheet resistance of the graphene is about 25 ohms/square, unprecedented for Distribution A

  18. Graphene Electrodes

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo

    The production of graphene and the other 2D materials is presented in the beginning of this thesis. Micromechanical exfoliation is the best method for obtaining relatively small and top quality samples. The invention of Graphene Finder simplifies the procedure of finding the exfoliated flakes...... in copper thin films is studied and found to be detrimental for the growth of graphene. The modified synthesis of rGO is introduced, as rGO represents a cheap alternative to CVD for large scale production of graphene. The transfer of flakes is performed by several methods, such as with PVA/PMMA support, CAB...... wedging and the pick-up technique with hBN. Several important improvements of the pick-up technique are introduced. These allowed us to transfer any 2D crystals and patterned graphene flakes with PMMA residues. We also developed the drop-down technique, which is used to release any crystal on the surface...

  19. Spin-dependent Klein tunneling in graphene: Role of Rashba spin-orbit coupling


    Liu, Ming-Hao; Bundesmann, Jan; Richter, Klaus


    Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Green's function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cove...

  20. Oscillating Magnetoresistance in Graphene p-n Junctions at Intermediate Magnetic Fields (United States)

    Overweg, Hiske; Eggimann, Hannah; Liu, Ming-Hao; Varlet, Anastasia; Eich, Marius; Simonet, Pauline; Lee, Yongjin; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Fal'ko, Vladimir I.; Ensslin, Klaus; Ihn, Thomas


    We report on the observation of magnetoresistance oscillations in graphene p-n junctions. The oscillations have been observed for six samples, consisting of single-layer and bilayer graphene, and persist up to temperatures of 30 K, where standard Shubnikov-de Haas oscillations are no longer discernible. The oscillatory magnetoresistance can be reproduced by tight-binding simulations. We attribute this phenomenon to the modulated densities of states in the n- and p- regions.

  1. Band gap tunning in BN-doped graphene systems with high carrier mobility

    KAUST Repository

    Kaloni, T. P.


    Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02 eV to 2.43 eV. We demonstrate a low effective mass of the charge carriers.

  2. DNA nanotechnology: Bringing lipid bilayers into shape (United States)

    Howorka, Stefan


    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research.

  3. Pseudocritical Behavior and Unbinding of Phospholipid Bilayers

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth


    The temperature dependence of the small-angle neutron scattering from fully hydrated multilamellar phospholipid bilayers near the main phase transition is analyzed by means of a simple geometric model which yields both the lamellar repeat distance as well as the hydrophobic thickness of the bilayer...

  4. Alcohol's Effects on Lipid Bilayer Properties (United States)

    Ingólfsson, Helgi I.; Andersen, Olaf S.


    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  5. Exposure monitoring of graphene nanoplatelets manufacturing workplaces. (United States)

    Lee, Ji Hyun; Han, Jong Hun; Kim, Jae Hyun; Kim, Boowook; Bello, Dhimiter; Kim, Jin Kwon; Lee, Gun Ho; Sohn, Eun Kyung; Lee, Kyungmin; Ahn, Kangho; Faustman, Elaine M; Yu, Il Je


    Graphenes have emerged as a highly promising, two-dimensional engineered nanomaterial that can possibly substitute carbon nanotubes. They are being explored in numerous R&D and industrial applications in laboratories across the globe, leading to possible human and environmental exposures to them. Yet, there are no published data on graphene exposures in occupational settings and no readily available methods for their detection and quantitation exist. This study investigates for the first time the potential exposure of workers and research personnel to graphenes in two research facilities and evaluates the status of the control measures. One facility manufactures graphene using graphite exfoliation and chemical vapor deposition (CVD), while the other facility grows graphene on a copper plate using CVD, which is then transferred to a polyethylene terephthalate (PET) sheet. Graphene exposures and process emissions were investigated for three tasks - CVD growth, exfoliation, and transfer - using a multi-metric approach, which utilizes several direct reading instruments, integrated sampling, and chemical and morphological analysis. Real-time instruments included a dust monitor, condensation particle counter (CPC), nanoparticle surface area monitor, scanning mobility particle sizer, and an aethalometer. Morphologically, graphenes and other nanostructures released from the work process were investigated using a transmission electron microscope (TEM). Graphenes were quantified in airborne respirable samples as elemental carbon via thermo-optical analysis. The mass concentrations of total suspended particulate at Workplaces A and B were very low, and elemental carbon concentrations were mostly below the detection limit, indicating very low exposure to graphene or any other particles. The real-time monitoring, especially the aethalometer, showed a good response to the released black carbon, providing a signature of the graphene released during the opening of the CVD reactor

  6. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong


    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  7. Platinum adsorption onto graphene and oxidized graphene: A quantum mechanics study

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, S.A.; Jahanshahi, M. [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Ahangari, M. Ghorbanzadeh, E-mail: [Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar (Iran, Islamic Republic of)


    Density functional theory based on first-principle calculations was used to examine platinum-supported oxidized graphene as a beneficial nanomaterial in terms of its catalytic activity and utility for contaminant removal and disinfecting polluted solutions in both domestic and industrial applications. The first step was to select the most appropriate available computing package to apply the supercell technique, which would provide a better representation of a large and real graphene slab. Using OpenMX was less time-consuming after we enforced a basis set for valence electrons to avoid an all-electron calculation, and this had very slight and negligible effect on the accuracy of the calculations. The OpenMX software was selected to perform forward steps of investigating changes in the properties such as adsorption energy and ground state structure of the complexes made by the adsorption of a platinum atom on the surface of pristine graphene (Pt/PG) and oxidized graphene (Pt/OG), which had the lowest adsorption energy of −5.28 eV. Moreover, we examined the effect of Pt atom adsorption on the surface and between two layers of graphene. Our results show that, there was no specific change observed in mentioned properties of Pt atom adsorption on bilayer graphene in comparison with single layer. - Highlights: • Pt adsorption on graphene and oxidized graphene was examined. • We have also considered the effect of the layered graphene on the Pt adsorption. • We first compared two different DFT calculation codes, SIESTA and OpenMX. • We then used ORCA to validate and select a suitable computation package for this study.

  8. 7 CFR 1206.21 - Suspend. (United States)


    ... part thereof during a particular period of time specified in the rule. ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MANGO PROMOTION, RESEARCH, AND INFORMATION Mango Promotion, Research, and Information Order Definitions § 1206.21 Suspend. Suspend means to...

  9. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization. (United States)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D; Östling, Mikael; Kataria, Satender; Lemme, Max C


    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  10. Thermal conductance of graphene/hexagonal boron nitride heterostructures (United States)

    Lu, Simon; McGaughey, Alan J. H.


    The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their single-layer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.

  11. Electric-field control of magnetism in graphene on chromia (United States)

    Choudhary, R.; Skomski, R.; Kashyap, A.


    First-principle calculations are used to investigate how an external electric field controls the spin polarization in graphene on chromia, a system of interest in the area of spin field-effect transistors. Both free-standing chromia thin films and graphene-bilayers are considered. The effect of the electric field depends on the thickness of the chromia and ranges from moderately strong and linear effects to very strong nonlinear magnetoelectricity. The graphene modifies and generally enhances the nonlinear magnetoelectric effect. We also find that the external electric field drastically changes the energy-dependent spin polarization in the graphene layers, which is predicted to reach values of up to about 80%.

  12. Hydrogen sensor based on a graphene - palladium nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ulrich, E-mail: ulrich.lange@chemie.uni-r.d [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany); Hirsch, Thomas [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany); Mirsky, Vladimir M. [Department of Nanobiotechnology, Lausitz University of Applied Sciences, 01968 Senftenberg (Germany); Wolfbeis, Otto S. [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany)


    A composite material was prepared from graphene and palladium nanoparticles (PdNP) by layer-by-layer deposition on gold electrodes. The material was characterized by absorption spectroscopy, scanning electron microscopy, Raman spectroscopy and surface plasmon resonance. Cyclic voltammetry demonstrated the presence of electrocatalytic centers in the palladium decorated graphene. This material can serve as a sensor material for hydrogen at levels from 0.5 to 1% in synthetic air. Pure graphene is poorly sensitive to hydrogen, but incorporation of PdNPs increases its sensitivity by more than an order of magnitude. The effects of hydrogen, nitrogen dioxide and humidity were studied. Sensor regeneration is accelerated in humid air. The sensitivity of the nanocomposite depends on the number of bilayers of graphene-PdNPs.

  13. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene. (United States)

    Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos


    The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.

  14. Superlubricating graphene and graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho; Berman, Diana


    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  15. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation (United States)

    Zhang, Zhongwei; Hu, Shiqian; Chen, Jie; Li, Baowen


    Supported graphene on a standard SiO2 substrate exhibits unsatisfactory heat dissipation performance that is far inferior to the intrinsic ultrahigh thermal conductivity of a suspended sample. A suitable substrate for enhancing thermal transport in supported graphene is highly desirable for the development of graphene devices for thermal management. By using molecular dynamics simulations, here we demonstrate that bulk hexagonal boron nitride (h-BN) is a more appealing substrate to achieve high performance heat dissipation in supported graphene. Notable length dependence and high thermal conductivity are observed in h-BN-supported single-layer graphene (SLG), suggesting that the thermal transport characteristics are close to that of suspended SLG. At room temperature, the thermal conductivity of h-BN-supported SLG is as high as 1347.3 ± 20.5 Wm-1 K-1, which is about 77% of that for the suspended case, and is more than twice that of the SiO2-supported SLG. Furthermore, we find that the smooth and atomically flat h-BN substrate gives rise to a regular and weak stress distribution in graphene, resulting in a less affected phonon relaxation time and dominant phonon mean free path. We also find that stacking and rotation significantly impacts the thermal transport in h-BN-supported graphene. Our study provides valuable insights towards the design of graphene devices on realistic substrate for high performance heat dissipation applications.

  16. Atomic-Scale Topographic and Electronic Structure of Graphene Films on Ultraflat Insulating Materials (United States)

    Gutierrez, Christopher; Zhao, Liuyan; Ghahari, Fereshte; Dean, Cory; Rim, Kwang; Hone, James; Flynn, George; Kim, Philip; Pasupathy, Abhay


    Graphene, a unique two-dimensional material, has attracted much attention for its exotic electronic properties. But owing to its nature as a single monolayer, many of these interesting properties depend heavily on the substrate on which the graphene rests. Scanning tunneling microscope (STM) experiments offer the unique ability to investigate the effect of the substrate on the surface roughness (via topography maps) as well as the local electronic properties (via spectroscopy maps) of graphene. In this talk we will present such experimental results of graphene on atomically flat insulating substrates such as mica and boron nitride, as well as suspended graphene sheets. We will describe experiments performed both on exfoliated graphene flakes as well as large-area graphene films grown by chemical vapor deposition (CVD).

  17. Quantum elasticity of graphene: Thermal expansion coefficient and specific heat

    NARCIS (Netherlands)

    Burmistrov, I.S.; Gornyi, I.V.; Kachorovskii, V.Y.; Katsnelson, M.I.; Mirlin, A.D.


    We explore thermodynamics of a quantum membrane, with a particular application to suspended graphene membrane and with a particular focus on the thermal expansion coefficient. We show that an interplay between quantum and classical anharmonicity-controlled fluctuations leads to unusual elastic

  18. Nanomechanical properties of few-layer graphene membranes

    NARCIS (Netherlands)

    Poot, M.; Van der Zant, H.S.J.


    We have measured the mechanical properties of few-layer graphene and graphite flakes that are suspended over circular holes. The spatial profile of the flake’s spring constant is measured with an atomic force microscope. The bending rigidity of and the tension in the membranes are extracted by

  19. Nonlinear Nanomechanical Resonators using CVD Graphene (United States)

    Knobel, Robert; Chaudhuri, Arnab

    Graphene is an ideal material for high quality nanoelectromechanical resonators due to high Young's modulus, low mass, ability to sustain high in-plane strain, and unique electrical properties. In this work, atmospheric pressure chemical vapour deposition is employed to obtain monolayer graphene on copper. Scanning electron microscopy, Raman imaging and two-terminal electrical measurements reveal the presence of high quality, monolayer graphene. The graphene is transferred to Si/SiO2 substrate and electron beam lithography is used to fabricate suspended doubly-clamped resonators. The devices are electrostatically actuated and their motion is read out using nonlinear mixing of graphene's electrical conductivity. Modeling the devices as Duffing resonators shows the presence of mechanical nonlinearity in response to an applied force even at moderate bias voltages. We discuss implications of this nonlinearity for parametric amplification, mode-mixing and the generation and measurement of squeezed thermomechanical states. The models are compared with experimental data and prospects for developing measurement techniques for high precision sensors and quantum-limited mechanical measurements of graphene are explored.

  20. Sharp Zero-Energy Landau Levels in Multilayer Graphene (United States)

    Sakamoto, Hiroki; Hatsugai, Yasuhiro; Aoki, Hideo; Kawarabayashi, Tohru

    Stability of the zero-energy Landau levels in trilayer graphene is theoretically investigated for both ABA and ABC stackings with a tight-binding model that incorporates a bond disorder. The zero-energy Landau level is shown to exhibit an anomalous sharpness as soon as the spatial correlation length of random bonds, which respect the chiral symmetry, exceeds a few lattice constants, as in the monolayer and bilayer graphene. Effect of the broken chiral symmetry due to the interlayer hopping that does not respect the symmetry is then examined. The result indicates that the broken chiral symmetry indeed degrades the anomalous sharpness of the zero-energy Landau levels.

  1. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail:; Djotyan, A. P., E-mail: [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: [University of Cyprus, Department of Physics (Cyprus)


    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  2. Quantum Hall Effect (QHE) in ABA stacked trilayer graphene (United States)

    Stepanov, Petr; Barlas, Yafis; Gillgren, Nathaniel; Taniguchi, Takashi; Lau, Jeanie


    Since its experimental discovery in 2004 graphene was under extensive research as a promising counterpart of silicon for the future electronics application as well as an excellent model of 2 dimensional electron gas. Here we investigate quantum Hall effect in ABA trilayer graphene - hexagonal boron nitride heterostructures. Landau Levels (LL) crossings at low filling factors were observed and explored at different external electric fields. The formation of the QH states as an interaction of monlayer-like and bilayer-like branches will be discussed. We will present the most recent experimental results.

  3. Polycrystallinity and stacking in CVD graphene. (United States)

    Tsen, Adam W; Brown, Lola; Havener, Robin W; Park, Jiwoong


    slowly grown films. These structural differences can affect the material's electrical properties: for example, better-connected grain boundaries are more electrically conductive. However, grain boundaries in general are mechanically weaker than pristine graphene, which is an order of magnitude stronger than CVD graphene based on indentation measurements performed with an atomic force microscope. Vertical junctions in multilayer CVD graphene have two key structural features. First, bilayer graphene (BLG) with Bernal stacking exists in two mirrored configurations (AB or AC) that also form isolated domains. Similarly, oriented trilayer graphene also has alternating ABA and ABC stacked layers. Second, in twisted multilayer graphene, stacked layers lack long-range atomic registry and can move freely relative to each other, which generates unique optical properties. In particular, an interlayer optical excitation produces strong Raman and absorption peaks, dependent on the twist angle. A better understanding of the structural and physical properties of grain boundaries and multilayers in CVD graphene is central to realizing the full potential of graphene in large-scale applications. In addition, these studies provide a model for characterizing other layered materials, such as hexagonal boron nitride and MoS2, where similar polycrystallinity and stacking are expected when grown in large areas.

  4. Graphene: powder, flakes, ribbons, and sheets. (United States)

    James, Dustin K; Tour, James M


    fibers and in the fabrication of large area transparent electrodes. Using solid carbon sources such as polymers, food, insects, and waste, we can grow monolayer and bilayer graphene directly on metal catalysts, and carbon-sources containing nitrogen can produce nitrogen-doped graphene. The resulting graphene can be transferred to other surfaces, such as metal grids, for potential use in transparent touch screens for applications in personal electronics and large area photovoltaic devices. Because the transfer of graphene from one surface to another can lead to defects, low yields, and higher costs, we have developed methods for growing graphene directly on the substrates of interest. We can also produce patterned graphene to make GNRs or graphane/graphene superlattices within a single sheet. These superlattices could have multiple functions for use in sensors and other devices. This Account only touches upon this burgeoning area of materials chemistry, and the field will continue to expand as researchers imagine new forms and applications of graphene.

  5. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov


    which correlates with the phase state of the membrane. This is quantified by the generalized polarization (GP) function, and we demonstrate that a GP analysis can be performed on supported membranes. The results show that although the gel domains have heterogeneous texture, the membrane phase state does......We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...

  6. Graphene Exfoliation at a Ferroelectric Domain Wall Induced by the Piezoelectric Effect: Impact on the Conductance of the Graphene Channel (United States)

    Morozovska, Anna N.; Kurchak, Anatolii I.; Strikha, Maksym V.


    p -n junctions in graphene on ferroelectric substrates have been actively studied, but the impact of the piezoelectric effect in ferroelectric substrate with ferroelectric domain walls (FDWs) on graphene characteristics was not considered. Because of the piezoeffect, ferroelectric domain stripes with opposite spontaneous polarizations elongate or contract depending on the polarity of voltage applied to the substrate. We show that the alternating piezoelectric displacement of the ferroelectric domain surfaces can lead to the alternate stretching and separation of graphene areas at the steps between elongated and contracted domains. Graphene separation at FDWs induced by the piezoeffect can cause unusual effects. In particular, the conductance of the graphene channel in a field-effect transistor increases significantly because electrons in the stretched section scatter on acoustic phonons. At the same time, the graphene conductance is determined by ferroelectric spontaneous polarization and varies greatly in the presence of FDWs. The revealed piezomechanism of graphene conductance control is promising for next generations of graphene-based field-effect transistors, modulators, electrical transducers, and piezoresistive elements. Also, our results propose the method of suspended graphene fabrication based on the piezoeffect in a ferroelectric substrate that does not require any additional technological procedures.

  7. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids. (United States)

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo


    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  8. Fragmented state of lipid bilayers in water

    DEFF Research Database (Denmark)

    Helfrich, W.; Thimmel, J.; Klösgen, Beate Maria


    The bilayers of some typical biological membrane lipids such as PC and DGDG disintegrate in a large excess of water to form an optically invisible dispersive bilayer phase. `Dark bodies' can be reversibly precipitated from it by raising the temperature. The dispersive phase probably consists...... of `knotted sticks', i.e. very thin nodular tubes of bilayer. After reviewing pertinent experimental and theoretical work we report on the discovery of a lower consolute point near room temperature in DGDG/water systems. Its existence shows that the dispersive phase and the dark bodies belong to the same...

  9. Beyond graphene

    National Research Council Canada - National Science Library

    Service, Robert F


      In 2013, researchers around the globe published more than 15000 papers on single-layer graphite, called graphene, a number that has grown exponentially since the material was invented 11 years ago...

  10. Bilayer-thickness-mediated interactions between integral membrane proteins

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A


    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology al...

  11. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D


    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  12. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.


    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early

  13. Even-odd oscillation and valley polarization of transmission between multilayer graphenes

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Takeshi [Nanosystem Research Institute, AIST, 1-1-1 Umezono, Tsukuba 305-8568 (Japan); Ando, Tsuneya [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)


    Electron transmission through a boundary between multi-layer graphenes with Bernal stacking consisting of different number of layers is studied. A valley polarization in transmission probability appears as in monolayer and bilayer systems, exhibits considerable oscillation depending of even or odd layer numbers, and its amplitude gradually decreases with the layer number. The total transmission shows oscillation with much smaller amplitude.

  14. A road to hydrogenating graphene by a reactive ion etching plasma

    NARCIS (Netherlands)

    Wojtaszek, M.; Tombros, N.; Caretta, A.; van Loosdrecht, P. H. M.; van Wees, B. J.


    We report the hydrogenation of single and bilayer graphene by an argon-hydrogen plasma produced in a reactive ion etching (RIE) system. Electronic transport measurements in combination with Raman spectroscopy are used to link the electric mean free path to the optically extracted defect

  15. Rebar Graphene (United States)


    As the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry. PMID:24694285

  16. Static Capacitive Pressure Sensing Using a Single Graphene Drum. (United States)

    Davidovikj, Dejan; Scheepers, Paul H; van der Zant, Herre S J; Steeneken, Peter G


    To realize nanomechanical graphene-based pressure sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electromechanical systems, gets increasingly challenging as one starts shrinking the dimensions of these devices because the expected responsivity of such devices is below 0.1 aF/Pa. To overcome the challenges of detecting small capacitance changes, we design an electrical readout device fabricated on top of an insulating quartz substrate, maximizing the contribution of the suspended membrane to the total capacitance of the device. The capacitance of the drum is further increased by reducing the gap size to 110 nm. Using an external pressure load, we demonstrate the successful detection of capacitance changes of a single graphene drum down to 50 aF, and pressure differences down to 25 mbar.

  17. Interlayer repulsion and decoupling effects in stacked turbostratic graphene flakes


    Berashevich, Julia; Chakraborty, Tapash


    We have explored the electronic properties of stacked graphene flakes with the help of the quantum chemistry methods. We found that the behavior of a bilayer system is governed by the strength of the repulsive interactions that arise between the layers as a result of the orthogonality of their $\\pi$ orbitals. The decoupling effect, seen experimentally in AA stacked layers is a result of the repulsion being dominant over the orbital interactions and the observed layer misorientation of 2$^{\\ci...

  18. Young's Modulus of bilayer Silicene Nanoribbons (United States)

    Meza-Montes, Lilia; Chávez-Castillo, M. R.; Rodríguez-Meza, M. A.

    Mechanical properties of Silicene Nanoribbons (SNRs) are determined by their width and chirality, and can be also be modified by the presence of vacancy defects. In the case of bilayer SNRs, interlayer interactions influence its physical properties. We report results, at room temperature, on the Young's Modulus (YM) of pristine and monovacancy defective bilayers of SNRs. Molecular dynamics simulations were performed using the EDIP potential. YM increases with SNRs length, depends on chirality, the number and location of vacancies. Distance between layers is also important. These results are discussed in terms of missing bonds. Atomic stress distributions for defective bilayer SNRs show a larger stress concentration around the vacancy defect. Besides, if only the second layer has a mono-vacancy at its center, a larger stress concentration is observed on the atom located just below the vacancy defect. Thus, the bilayer structure carries less strain and it can be easily deformed. Partially supported by VIEP-BUAP, Mexico.

  19. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc


    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  20. Graphene and Graphene Nanomesh Spintronics

    Directory of Open Access Journals (Sweden)

    Junji Haruyama


    Full Text Available Spintronics, which manipulate spins but not electron charge, are highly valued as energy and thermal dissipationless systems. A variety of materials are challenging the realization of spintronic devices. Among those, graphene, a carbon mono-atomic layer, is very promising for efficient spin manipulation and the creation of a full spectrum of beyond-CMOS spin-based nano-devices. In the present article, the recent advancements in graphene spintronics are reviewed, introducing the observation of spin coherence and the spin Hall effect. Some research has reported the strong spin coherence of graphene. Avoiding undesirable influences from the substrate are crucial. Magnetism and spintronics arising from graphene edges are reviewed based on my previous results. In spite of carbon-based material with only sp2 bonds, the zigzag-type atomic structure of graphene edges theoretically produces spontaneous spin polarization of electrons due to mutual Coulomb interaction of extremely high electron density of states (edge states localizing at the flat energy band. We fabricate honeycomb-like arrays of low-defect hexagonal nanopores (graphene nanomeshes; GNMs on graphenes, which produce a large amount of zigzag pore edges, by using a nonlithographic method (nanoporous alumina templates and critical temperature annealing under high vacuum and hydrogen atmosphere. We observe large-magnitude ferromagnetism, which arises from polarized spins localizing at the hydrogen-terminated zigzag-nanopore edges of the GNMs, even at room temperature. Moreover, spin pumping effects are found for magnetic fields applied in parallel with the few-layer GNM planes. Strong spin coherence and spontaneously polarized edge spins of graphene can be expected to lead to novel spintronics with invisible, flexible, and ultra-light (wearable features.

  1. Graphene formation mechanisms on 4H-SiC(0001) (United States)

    Bolen, Michael L.; Harrison, Sara E.; Biedermann, Laura B.; Capano, Michael A.


    Graphene is created through thermal decomposition of the Si face of 4H-SiC in high-vacuum. Growth temperature and time are varied independently to gain a better understanding of how surface features and morphology affect graphene formation. Growth mechanisms of graphene are studied by ex situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM). On the route toward a continuous graphene film, various growth features, such as macroscale step bunching, terrace pits, and fingers, are found and analyzed. Topographic and phase AFM analysis demonstrates how surface morphology changes with experimental conditions. Step-bunched terraces and terrace pits show a strong preference for eroding along the {112¯0} planes. Data from AFM are corroborated with STM to determine the surface structure of the growth features. It is shown that elevated finger structures are SiC while the depressed interdigitated areas between the fingers are comprised of at least a monolayer of graphene. Graphene formation at the bottom of terrace pits shows a dependence on pit depth. These features lend support for a stoichiometric view of graphene formation based on the number of decomposing SiC bilayers.

  2. Thickness-Dependent Strain Effect on the Deformation of the Graphene-Encapsulated Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuangli Ye


    Full Text Available The strain effect on graphene-encapsulated Au nanoparticles is investigated. A finite-element calculation is performed to simulate the strain distribution and morphology of the monolayer and multilayer graphene-encapsulated Au nanoparticles, respectively. It can be found that the inhomogeneous strain and deformation are enhanced with the increasing shrinkage of the graphene shell. Moreover, the strain distribution and deformation are very sensitive to the layer number of the graphene shell. Especially, the inhomogeneous strain at the interface between the graphene shell and encapsulated Au nanoparticles is strongly tuned by the graphene thickness. For the mono- and bilayer graphene-encapsulated Au nanoparticles, the dramatic shape transformation can be observed. However, with increasing the graphene thickness further, there is hardly deformation for the encapsulated Au nanoparticles. These simulated results indicate that the strain and deformation can be designed by the graphene layer thickness, which provides an opportunity to engineer the structure and morphology of the graphene-encapsulated nanoparticles.

  3. Coating of graphene


    Schneider, G.F.; Dekker, C.


    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as a sensor, etc. The invention therefor also relates to use of coated graphene.

  4. Symmetry Breaking in Hofstadter's Butterfly in graphene (United States)

    Forsythe, Carlos; Dean, Cory; Wang, Lei; Maher, Patrick; Ghahari, Fereshte; Moon, Pilkyung; Koshino, Mikito; Taniguchi, Takashi; Watanabe, Kenji; Shepard, Ken; Hone, Jim; Kim, Philip


    We will present magnetotransport measurements in hBN encapsulated bilayer graphene devices where one of hBN substrates provides a weak modulation of lattice potential. Under a strong magnetic field, interplay between periodic electric potential and quantizing magnetic field lead to a fractal energy spectrum known as Hofstadter's butterfly. In graphene, while spin and layer symmetry breakings are expected in dual gated devices under large magnetic fields, valley symmetry breaking in the Hofstadter regime is not so easily understood. We will present the observance of these measured gaps along with a discussion of symmetry breaking in our BLG-hBN devices. Further quantitative analysis of these breakings will be presented through the temperature dependence of quantized conductance at these gaps. Through careful modulation of temperature and electron density, we have extracted a range of activation energies associated with symmetry breakings. the speaker acknowledges support from the Columbia Optics and Quantum Electronics IGERT under NSF grant DGE-1069420

  5. Ab initio study of polarizability and induced charge densities in multilayer graphene films (United States)

    Yu, E. K.; Stewart, D. A.; Tiwari, S.


    We present an ab initio analysis of polarization of multilayer graphene systems under applied electric fields. The effects of applied electric fields are calculated using a Berry phase approach within a plane-wave density functional formalism. We have determined polarizability values for graphene films and carbon nanotubes and found that the polarizability of graphene films follows a linear relationship with the number of layers. We also examined changes in the induced charge distribution as a function of graphene layers. We focus, in particular, on the bilayer graphene system. Under applied electric fields, we found the Mexican hat band structure near the K point reported by previous groups. We found that the induced charge primarily accumulated on the B sublattice sites. This observation is supported by additional calculations with a tight-binding Green’s function model. By examining the local density of states at the Fermi energy, we found a high density of states at the B sites at the Fermi energy. In contrast, coupling between A sites in neighboring graphene layers leads to negligible density of states at the Fermi level. This high density of states at the B sites results in greater induced charge under applied electric fields. This scenario of preferential induced charge on the B sublattice sites under applied electric fields could impact the stability of atoms and molecules absorbed on bilayer graphene.

  6. Localized states at zigzag edges of graphene multilayers and graphite steps (United States)

    Castro, Eduardo V.; Lopes Dos Santos, J. M. B.; Peres, N. M. R.; Guinea, F.; Castro Neto, A. H.


    Among the uncommon features of graphene monolayer we find the presence of zero energy states localized at zigzag edges, leading to the self-doping phenomenon and inducing edge magnetization. Here we report the existence of zero energy surface states localized at zigzag edges of bilayer graphene and stacks with any number of layers. Working within the tight-binding approximation we derive an analytic solution for the wavefunctions of these peculiar surface states. It is shown that zero energy edge states in bilayer graphene can be divided into two families: (i) states living only on a single plane, equivalent to surface states in monolayer graphene; (ii) states with finite amplitude over the two layers, with an enhanced penetration into the bulk. The effect of edge states on the electronic structure and magnetic order of bilayer graphene nanoribbons is also studied. We show that edge states measured through scanning tunneling microscopy and spectroscopy of graphite step edges belong to family (i) or (ii) mentioned above, depending on the way the top layer is cut.

  7. Switch on the high thermal conductivity of graphene paper. (United States)

    Xie, Yangsu; Yuan, Pengyu; Wang, Tianyu; Hashemi, Nastaran; Wang, Xinwei


    This work reports on the discovery of a high thermal conductivity (κ) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The κ after switch-on (1732 to 3013 W m(-1) K(-1)) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold κ increase. The measured κ before and after switch-on is consistent with the literature reported κ values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.

  8. PECVD growth of high quality graphene on interdigital electrodes of MEMS supercapacitor (United States)

    Zainal Abidin, Hafzaliza Erny; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop


    In the field of science, there is a significant interest in graphene due to its extraordinary properties such as high electrical conductivity, good electrochemical stability and excellent mechanical behavior. This paper presents the direct graphene growth on interdigital electrodes by plasma enhanced chemical vapor deposition (PECVD) using Ni catalyst and methane (CH4) as the carbon source. The 100 nm of Ni was deposited on the top of SiO2 substrate functional as catalyst and electrode of MEMS supercapacitor. The growth of graphene was investigated at temperature 1000°C at 10 minutes and at fix power of 40 Watt. The morphology and structure of as- grown graphene were characterized by Raman spectroscopy, Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscopy (AFM). From Raman spectra, it is observed that the intensity ratio of the 2D band to G band produced a good quality bilayer graphene.

  9. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy (United States)

    Lee, Hyunjae; Choi, Tae Kyu; Lee, Young Bum; Cho, Hye Rim; Ghaffari, Roozbeh; Wang, Liu; Choi, Hyung Jin; Chung, Taek Dong; Lu, Nanshu; Hyeon, Taeghwan; Choi, Seung Hong; Kim, Dae-Hyeong


    Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.

  10. Biomedical applications of graphene and graphene oxide. (United States)

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee


    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  11. Shuffle dislocation induced magnetic moment in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Sancho, M.P., E-mail: pilar@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Juan, F. de; Vozmediano, M.A.H. [Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)


    Graphene, a honeycomb arrangement of carbon atoms, is a promising material for nanoelectronics applications due to its unusual electronic properties. Recent experiments performed on suspended graphene indicate the existence of intrinsic defects on the samples. It is known that lattice defects such as vacancies or voids leaving unpaired atoms, lead to the formation of local magnetic moments (Vozmediano et al., 2005). The existence and ordering of these moments is largely determined by the bipartite character of the honeycomb lattice seen as two interpenetrating triangular sublattices. Dislocations made by pentagon-heptagon pairs or octagons with an unpaired atom have been studied recently and found to be stable in the graphene lattice (Carpio et al., 2008). These defects frustrate the sublattice structure and affect the magnetic properties of graphene. We study the magnetic properties of graphene in the presence of these defects. The system is described by a p{sub z} tight-binding model with electron-electron interactions modelled by a Hubbard term. Spin-polarized mean-field solutions are investigated within an unrestricted Hartree-Fock approximation.

  12. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics. (United States)

    Kou, Liangzhi; Hu, Feiming; Yan, Binghai; Frauenheim, Thomas; Chen, Changfeng


    Developing graphene-based nanoelectronics hinges on opening a band gap in the electronic structure of graphene, which is commonly achieved by breaking the inversion symmetry of the graphene lattice via an electric field (gate bias) or asymmetric doping of graphene layers. Here we introduce a new design strategy that places a bilayer graphene sheet sandwiched between two cladding layers of materials that possess strong spin-orbit coupling (e.g., Bi2Te3). Our ab initio and tight-binding calculations show that a proximity enhanced spin-orbit coupling effect opens a large (44 meV) band gap in bilayer graphene without breaking its lattice symmetry, and the band gap can be effectively tuned by an interlayer stacking pattern and significantly enhanced by interlayer compression. The feasibility of this quantum-well structure is demonstrated by recent experimental realization of high-quality heterojunctions between graphene and Bi2Te3, and this design also conforms to existing fabrication techniques in the semiconductor industry. The proposed quantum-well structure is expected to be especially robust since it does not require an external power supply to open and maintain a band gap, and the cladding layers provide protection against environmental degradation of the graphene layer in its device applications.

  13. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes. (United States)

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F; Ajayan, Pulickel M; Harutyunyan, Avetik R


    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.

  14. Macroscopic quantum coherence and mechanical squeezing of a graphene sheet (United States)

    Li, Xiyun; Nie, Wenjie; Chen, Aixi; Lan, Yueheng


    We theoretically investigate the macroscopic quantum coherence and the mechanical squeezing of a mechanical oscillator in a hybrid optomechanical system consisting of a suspended graphene sheet and an ultracold atomic ensemble trapped inside a Fabry-Pérot cavity. In the study the vacuum is used to mediate an effective optomechanical coupling between the graphene oscillator and the cavity field driven by an external laser beam. We find that in the presence of this coupling, the macroscopic quantum coherence and the mechanical squeezing of the graphene sheet can be attained in a certain range of driving power. In particular, the quantum coherence in the optomechanical system can be transferred from the optical field to the mechanical oscillator. We also investigate in detail the spectrum and the squeezing of the output field and the attained results may be used to study the mechanical squeezing of a graphene sheet.

  15. Hydrophilic and size-controlled graphene nanopores for protein detection (United States)

    Goyal, Gaurav; Bok Lee, Yong; Darvish, Armin; Ahn, Chi Won; Kim, Min Jun


    This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.

  16. Observation of the fractional quantum Hall effect in graphene (United States)

    Bolotin, Kirill; Ghahari, Fereshte; Shulman, Michael D.; Stormer, Horst L.; Kim, Philip


    Only a glimpse of correlated electron physics has been observed in graphene so far, mostly due to the strong electron scattering caused by charged impurities in the substrate. To overcome this limitation,we fabricate devices where electrically contacted and electrostatically gated graphene samples are suspended over a substrate. The measured low-temperature sample mobility is found to exceed 100,000 cm2/Vs in such devices. The very high mobility of our specimens allows us to observe previously inaccessible transport regimes in graphene. We report the observation of the fractional quantum Hall effect, supporting the existence of interaction induced correlated electron states in the presence of a magnetic field. In addition, at low carrier density graphene becomes an insulator with an energy gap tunable by magnetic field.

  17. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. (United States)

    Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili


    Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.

  18. In-situ Raman Spectroscopy of the Graphene / Water Interface of a Solution-Gated Field Effect Transistor: Electron-Phonon Coupling and Spectroelectrochemistry


    Binder, J.; Urban, J. M.; Stepniewski, R.; Strupinski, W.; Wysmolek, A.


    We present a novel measurement approach which combines the electrical characterization of solution-gated field effect transistors based on epitaxial bilayer graphene on 4H-SiC (0001) with simultaneous Raman spectroscopy. By changing the gate voltage, we observed Raman signatures related to the resonant electron-phonon coupling. An analysis of these Raman bands enabled the extraction of the geometrical capacitance of the system and an accurate calculation of the Fermi levels for bilayer graphe...

  19. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. (United States)

    Dai, Jun; Zeng, Xiao Cheng


    Phosphorene, a monolayer of black phosphorus, is promising for nanoelectronic applications not only because it is a natural p-type semiconductor but also because it possesses a layer-number-dependent direct bandgap (in the range of 0.3 to 1.5 eV). On basis of the density functional theory calculations, we investigate electronic properties of the bilayer phosphorene with different stacking orders. We find that the direct bandgap of the bilayers can vary from 0.78 to 1.04 eV with three different stacking orders. In addition, a vertical electric field can further reduce the bandgap to 0.56 eV (at the field strength 0.5 V/Å). More importantly, we find that when a monolayer of MoS2 is superimposed with the p-type AA- or AB-stacked bilayer phosphorene, the combined trilayer can be an effective solar-cell material with type-II heterojunction alignment. The power conversion efficiency is predicted to be ∼18 or 16% with AA- or AB-stacked bilayer phosphorene, higher than reported efficiencies of the state-of-the-art trilayer graphene/transition metal dichalcogenide solar cells.

  20. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers (United States)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  1. Edge currents shunt the insulating bulk in gapped graphene (United States)

    Zhu, M. J.; Kretinin, A. V.; Thompson, M. D.; Bandurin, D. A.; Hu, S.; Yu, G. L.; Birkbeck, J.; Mishchenko, A.; Vera-Marun, I. J.; Watanabe, K.; Taniguchi, T.; Polini, M.; Prance, J. R.; Novoselov, K. S.; Geim, A. K.; Ben Shalom, M.


    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

  2. Graphene-graphite oxide field-effect transistors. (United States)

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc


    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  3. Nanoscale synthesis and characterization of graphene-based objects

    Directory of Open Access Journals (Sweden)

    Daisuke Fujita


    Full Text Available Graphene-based nano-objects such as nanotrenches, nanowires, nanobelts and nanoscale superstructures have been grown by surface segregation and precipitation on carbon-doped mono- and polycrystalline nickel substrates in ultrahigh vacuum. The dominant morphologies of the nano-objects were nanowire and nanosheet. Nucleation of graphene sheets occurred at surface defects such as step edges and resulted in the directional growth of nanowires. Surface analysis by scanning tunneling microscopy (STM has clarified the structure and functionality of the novel nano-objects at atomic resolution. Nanobelts were detected consisting of bilayer graphene sheets with a nanoscale width and a length of several microns. Moiré patterns and one-dimensional reconstruction were observed on multilayer graphite terraces. As a useful functionality, application to repairable high-resolution STM probes is demonstrated.

  4. Open quantum dots in graphene: Scaling relativistic pointer states

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D K; Huang, L; Yang, R; Lai, Y-C; Akis, R, E-mail: ferry@asu.ed [School of Electrical, Computer, and Energy Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706 (United States)


    Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not 'ashed out' through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.

  5. 23 Elemental Composition of Suspended Particulate Matter ...

    African Journals Online (AJOL)


    Elemental Composition of Suspended Particulate Matter Collected at Two Different. Heights above the Ground in A Sub-Urban Site in Kenya. Gitari W. M1, Kinyua A. M. 2, Kamau G. N3 and C. K. Gatebe C. K4. Abstract. Suspended particulate matter samples were collected in a sub-urban area in Nairobi over a 12 month ...

  6. Preparation of bilayer-core osmotic pump tablet by coating the indented core tablet. (United States)

    Liu, Longxiao; Xu, Xiangning


    In this paper, a bilayer-core osmotic pump tablet (OPT) which does not require laser drilling to form the drug delivery orifice is described. The bilayer-core consisted of two layers: (a) push layer and (b) drug layer, and was made with a modified upper tablet punch, which produced an indentation at the center of the drug layer surface. The indented tablets were coated by using a conventional pan-coating process. Although the bottom of the indentation could be coated, the side face of the indentation was scarcely sprayed by the coating solution and this part of the tablet remained at least partly uncoated leaving an aperture from which drug release could occur. Nifedipine was selected as the model drug. Sodium chloride was used as osmotic agent, polyvinylpyrrolidone as suspending agent and croscarmellose sodium as expanding agent. The indented core tablet was coated by ethyl cellulose as semipermeable membrane containing polyethylene glycol 400 for controlling the membrane permeability. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f(2)). It was found that the optimal OPT was able to deliver nifedipine at an approximate zero-order up to 24 h, independent on both release media and agitation rates. The preparation of bilayer-core OPT was simplified by coating the indented core tablet, by which sophisticated technology of the drug layer identification and laser drilling could be eliminated. It might be promising in the field of preparation of bilayer-core OPT.

  7. Droplet Microfluidics for Artificial Lipid Bilayers (United States)

    Punnamaraju, Srikoundinya; Steckl, Andrew


    Droplet interface bilayer is a versatile approach that allows formation of artificial lipid bilayer membrane at the interface of two lipid monolayer coated aqueous droplets in a lipid filled oil medium. Versatility exists in the form of voltage control of DIB area, ability of forming networks of DIBs, volume control of droplets and lipid-oil, and ease of reformation. Significant effect of voltage on the area and capacitance of DIB as well as DIB networks are characterized using simultaneous optical and electrical recordings. Mechanisms behind voltage-induced effects on DIBs are investigated. Photo induced effect on the DIB membrane porosity is obtained by incorporating UVC-sensitive photo-polymerizable lipids in DIB. Photo-induced effects can be extended for in-vitro studies of triggered release of encapsulated contents across membranes. A droplet based low voltage digital microfluidic platform is developed to automate DIB formation, which could potentially be used for forming arrays of lipid bilayer membranes.

  8. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.


    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigate......>(b), in the transformation from onion to plane to multiply connected bilayer structure as a function of temperature. (C) 2000 Elsevier Science B.V. All rights reserved.......Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigated...

  9. Band gap opening in graphene: a short theoretical study (United States)

    Sahu, Sivabrata; Rout, G. C.


    Graphene, being a gapless semiconductor, cannot be used in pristine form for nano-electronic applications. Therefore, it is essential to generate a finite gap in the energy dispersion at Dirac point. We present here the tight-binding model Hamiltonian taking into account of various interactions for tuning band gap in graphene. The model Hamiltonian describes the hopping of the π-electrons up to third nearest-neighbours, substrate effects, Coulomb interaction at two sub-lattices, electron-phonon interaction in graphene-on-substrates and high phonon frequency vibrations, besides the bi-layer graphene. We have solved the Hamiltonian using Zubarev's double time single particle Green's function technique. The quasi-particle energies, electron band dispersions, the expression for effective band gap and the density of states (DOS) are calculated numerically. The results are discussed by varying different model parameters of the system. It is observed that the electron DOS and band dispersion exhibit linear energy dependence near Dirac point for nearest-neighbour hopping integral. However, the second and third nearest-neighbour hoppings provide asymmetry in DOS. The band dispersions exhibit wider band gaps with stronger substrate effect. The modified gap in graphene-on-substrate attains its maximum value for Coulomb interaction energy U_{{C}} = 1.7 t1. The critical Coulomb interaction is enhanced to U_{{C}} = 2.5 t1 to produce maximum band gap in the presence of electron-phonon interaction and phonon vibration. The bi-layer graphene exhibits Mexican hat type band gap near Dirac point for transverse gating potential. The other conclusions for the present work are described in the text.

  10. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; Ghellinck, Alexis de; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of red grape and accordingly in their wines, is hold liable for health impacts such as cardiovascular protection and anti-oxidative effect. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. However, basic...... knowledge on its probable working mechanism is rare. In this biophysical study, neutron reflectometry was used to investigate the direct impact of resveratrol on lipid membranes with solid supported bilayers. When interacting with di- palmitoyl-phosphatidyl-choline (DPPC) bilayers, resveratrol accumulates...

  11. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth


    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  12. Effects of metallic contacts on electron transport through graphene (United States)

    Barraza-Lopez, Salvador; Vanevic, Mihajlo; Kindermann, Markus; Chou, Mei-Yin


    Despite their undoubted importance in eventual graphene electronics, theoretical studies of the specific features of electron transport through graphene between metal contacts are in their first stages. In order to bridge this gap we perform a first-principles based, non-equilibrium Green's functions study of the conductance through graphene junctions suspended between noncovalent aluminum contacts as a function of the distance L between metal leads and the width W (up to 100 nm) of the junction. Electron-hole asymmetry is obtained as a consequence of doping at the leads. Furthermore, the doping in graphene originated by charge transfer from metals at the leads results in two conductance minima at the energies of the crossing of the linear bands in suspended and clamped graphene, for sufficiently large L. We present a tight-binding model that accounts for the first-principles results and can be employed for larger lengths and widths of the junctions up to experimental accessible values and for arbitrary noncovalent-bonding metal leads.

  13. Designed CVD growth of graphene via process engineering. (United States)

    Yan, Kai; Fu, Lei; Peng, Hailin; Liu, Zhongfan


    able to further enhance the control to such a segregation technique, especially for the thickness of graphene. By designing a cosegregation process of carbon atoms with other elements, such as nitrogen, doped graphene could be synthesized directly with a tunable doping profile. Copper with negligible carbon solubility provides another platform for process engineering, where both carbon dissolution and segregation steps are negligible in the CVD process. Carbon atoms decomposed from precursors diffuse on the surface and build up the thermodynamically stable honeycomb lattice. As a result, graphene growth on copper is self-limited, and formation of multilayer graphene is generally prohibited. Being able to control this process better, as well as the high quality produced, makes copper-based growth the dominating synthesis procedure in the graphene community. We designed a two-temperature zone system to spatially separate the catalytic decomposition step of carbon precursors and the surface graphitization step for breaking this self-limited growth feature, giving high-quality Bernal stacked bilayer graphene via van der Waals epitaxy. We performed the so-called wrinkle engineering by growing graphene on nanostructured copper foil together with a structure-preserved surface transfer. In such a way, we controlled the wrinkling or folding on graphene and further fabricated graphene nanoribbon arrays by self-masked plasma etching. Moreover, by designing a two-step patching growth process on copper, we succeeded in synthesizing the mosaic graphene, a patchwork of intrinsic and nitrogen-doped graphene connected by single crystalline graphene p-n junctions. By following a general concept of process engineering, our work on the designed CVD growth of graphene and its 2D hybrids provides a unique insight of this research field. It enables the precise growth control of graphene together with the in-depth understanding of CVD growth process, which would further stimulate the pace of

  14. Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters (United States)

    Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent


    We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.

  15. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.


    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  16. Improving suspended sediment measurements by automatic samplers. (United States)

    Gettel, Melissa; Gulliver, John S; Kayhanian, Masoud; DeGroot, Gregory; Brand, Joshua; Mohseni, Omid; Erickson, Andrew J


    Suspended solids either as total suspended solids (TSS) or suspended sediment concentration (SSC) is an integral particulate water quality parameter that is important in assessing particle-bound contaminants. At present, nearly all stormwater runoff quality monitoring is performed with automatic samplers in which the sampling intake is typically installed at the bottom of a storm sewer or channel. This method of sampling often results in a less accurate measurement of suspended sediment and associated pollutants due to the vertical variation in particle concentration caused by particle settling. In this study, the inaccuracies associated with sampling by conventional intakes for automatic samplers have been verified by testing with known suspended sediment concentrations and known particle sizes ranging from approximately 20 μm to 355 μm under various flow rates. Experimental results show that, for samples collected at a typical automatic sampler intake position, the ratio of sampled to feed suspended sediment concentration is up to 6600% without an intake strainer and up to 300% with a strainer. When the sampling intake is modified with multiple sampling tubes and fitted with a wing to provide lift (winged arm sampler intake), the accuracy of sampling improves substantially. With this modification, the differences between sampled and feed suspended sediment concentration were more consistent and the sampled to feed concentration ratio was accurate to within 10% for particle sizes up to 250 μm.

  17. Thermal Transport in Graphene and Graphene Multilayers


    Alexander A. Balandin; Nika, Denis L.


    In this paper we review thermal properties of graphene and multilayer graphene and discuss the optothermal technique developed for the thermal conductivity measurements. We also outline different theoretical approaches used for the description of phonon transport in graphene and provide comparison with available experimental thermal conductivity data.

  18. Ballistic thermophoresis on graphene (United States)

    Tosatti, Erio; Panizon, Emanuele; Guerra, Roberto

    The textbook thermophoretic force acting on a diffusing body in a fluid is proportional to the local temperature gradient. Not so for a diffusing physisorbed body on a submicron sized 2D suspended layer. A non-equilibrium Molecular Dynamics study of a test nanosystem - a gold nanocluster adsorbed on a single graphene sheet of length L clamped between two temperatures ΔT apart - reveals a phoretic force that is parallel to, but essentially independent of, the gradient magnitude ΔT / L up to a substantial L of up to 150 nm. This is argued to represent ballistic thermophoresis, where the force is provided by the flux of massively excited flexural phonons, whose flow is in turn known to be ballistic and distance-independent up to relatively long scattering lengths before the eventual onset of the more standard diffusive regime. The surprising thrust and real momentum provided by the flexural modes are analysed and understood in terms of the large mass non-uniformity involved with these modes. The ensuing surf-riding of adsorbates on the vibrating 2D hard sheet, and the resulting gradient independent thermophoretic force, are not unlikely to possess practical applications. ERC MODPHYSFRICT Advanced Grant No. 320796.

  19. Substrate-enhanced superconductivity in Li-decorated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.


    We investigate the role of the substrate for the strength of the electron-phonon coupling in Li-decorated graphene. We find that the interaction with a h-BN substrate leads to a significant enhancement from to , which corresponds to a 25% increase of the transition temperature from to . The superconducting gaps amount to 1.56 meV (suspended) and 1.98 meV (supported). These findings open up a new route to enhanced superconducting transition temperatures in graphene-based materials by substrate engineering. © 2013 EPLA.

  20. Exciton condensation in strongly correlated electron bilayers

    NARCIS (Netherlands)

    Rademaker, Louk; van den Brink, J.; Zaanen, Jan; Hilgenkamp, H.


    We studied the possibility of exciton condensation in Mott insulating bilayers. In these strongly correlated systems, an exciton is the bound state of a double occupied and empty site. In the strong coupling limit, the exciton acts as a hard-core boson. Its physics is captured by the exciton t -J


    NARCIS (Netherlands)



    We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to

  2. Electromagnetic resonant modes of dielectric sphere bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Andueza, A., E-mail:; Pérez-Conde, J.; Sevilla, J. [Departamento de Ingeniería Eléctrica y Electrónica, Universidad Pública de Navarra, 31006, Pamplona, Navarra (Spain)


    Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10–25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.

  3. Finite element modeling of lipid bilayer membranes (United States)

    Feng, Feng; Klug, William S.


    A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.

  4. Novel biomedical applications of supported lipid bilayers

    NARCIS (Netherlands)

    van Weerd, Jasper


    Studying and steering cell behaviour on artificial surfaces is challenged by the correct presentation of ligands and interaction with cells. Cell membrane mimics such as supported lipid bilayers (SLBs) offer unique possibilities in this field. For example, ligands that are displayed on SLBs can move

  5. Bifurcation of self-folded polygonal bilayers (United States)

    Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy


    Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

  6. Capillary wrinkling of thin bilayer polymeric sheets (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  7. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms. (United States)

    Rumyantsev, S; Liu, G; Stillman, W; Shur, M; Balandin, A A


    We fabricated a large number of single and bilayer graphene transistors and carried out a systematic experimental study of their low-frequency noise characteristics. Special attention was given to determining the dominant noise sources in these devices and the effect of aging on the current-voltage and noise characteristics. The analysis of the noise spectral density dependence on the area of graphene channel showed that the dominant contributions to the low-frequency electronic noise come from the graphene layer itself rather than from the contacts. Aging of graphene transistors due to exposure to ambient conditions for over a month resulted in substantially increased noise, attributed to the decreasing mobility of graphene and increasing contact resistance. The noise spectral density in both single and bilayer graphene transistors either increased with deviation from the charge neutrality point or depended weakly on the gate bias. This observation confirms that the low-frequency noise characteristics of graphene transistors are qualitatively different from those of conventional silicon metal-oxide-semiconductor field-effect transistors.

  8. Influence of the Total Gas Flow at Different Reaction Times for CVD-Graphene Synthesis on Polycrystalline Nickel

    Directory of Open Access Journals (Sweden)

    M. P. Lavin-Lopez


    Full Text Available Optimization of the total gas flow (CH4+H2 during the reaction step for different reaction times for CVD-graphene synthesis on polycrystalline nickel foil using an atmospheric pressure set-up is reported. A thickness value related to number of graphene layers in each of the synthesized samples was determined using an Excel-VBA application. This method assigned a thickness value between 1 and 1000 and provided information on the percentage of each type of graphene (monolayer, bilayer, and multilayer deposited onto the polycrystalline nickel sheet. The influence of the total gas flow during the reaction step and the reaction time was studied in detail. Optical microscopy showed that samples were covered with different types of graphene, such as multilayer, few-layer, bilayer, and monolayer graphene. The synthesis variables were optimized according to the thickness value and the results were verified by Raman spectroscopy. The best conditions were obtained with a reaction temperature of 980°C, a CH4/H2 flow rate ratio of 0.07 v/v, a reaction time of 1 minute, and a total gas flow of 80 NmL/min. In the sample obtained under the optimized conditions, 80% of the area was covered with monolayer graphene and less than 1% with multilayer graphene.

  9. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim


    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  10. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate (United States)

    Liu, Jing; Wang, Tianyu; Xu, Shen; Yuan, Pengyu; Xu, Xu; Wang, Xinwei


    The thermal conductivity (k) of supported graphene is a critical property that reflects the graphene-substrate interaction, graphene structure quality, and is needed for thermal design of a graphene device. Yet the related k measurement has never been a trivial work and very few studies are reported to date, only at the μm level. In this work, for the first time, the k of giant chemical vapor decomposition (CVD) graphene supported on poly(methyl methacrylate) (PMMA) is characterized using our transient electro-thermal technique based on a differential concept. Our graphene size is ~mm, far above the samples studied in the past. This giant graphene measurement eliminates the thermal contact resistance problems and edge phonon scattering encountered in μm-scale graphene k measurement. Such mm-scale measurement is critical for device/system-level thermal design since it reflects the effect of abundant grains in graphene. The k of 1.33-layered, 1.53-layered, 2.74-layered and 5.2-layered supported graphene is measured as 365 W m-1 K-1, 359 W m-1 K-1, 273 W m-1 K-1 and 33.5 W m-1 K-1, respectively. These values are significantly lower than the k of supported graphene on SiO2, and are about one order of magnitude lower than the k of suspended graphene. We speculate that the abundant C atoms in the PMMA promote more ready energy and momentum exchange with the supported graphene, and give rise to more phonon scattering than the SiO2 substrate. This leads to a lower k of CVD graphene on PMMA than that on SiO2. We attribute the existence of disorder in the sp2 domain, graphene oxide (GO) and stratification in the 5.2-layered graphene to its more k reduction. The Raman linewidth (G peak) of the 5.2-layered graphene is also twice larger than that of the other three kinds of graphene, indicating the much more phonon scattering and shorter phonon lifetime in it. Also the electrical conductivity of the 5.2-layered graphene is about one-fifth of that for the other three. This

  11. Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate. (United States)

    Liu, Jing; Wang, Tianyu; Xu, Shen; Yuan, Pengyu; Xu, Xu; Wang, Xinwei


    The thermal conductivity (k) of supported graphene is a critical property that reflects the graphene-substrate interaction, graphene structure quality, and is needed for thermal design of a graphene device. Yet the related k measurement has never been a trivial work and very few studies are reported to date, only at the μm level. In this work, for the first time, the k of giant chemical vapor decomposition (CVD) graphene supported on poly(methyl methacrylate) (PMMA) is characterized using our transient electro-thermal technique based on a differential concept. Our graphene size is ∼mm, far above the samples studied in the past. This giant graphene measurement eliminates the thermal contact resistance problems and edge phonon scattering encountered in μm-scale graphene k measurement. Such mm-scale measurement is critical for device/system-level thermal design since it reflects the effect of abundant grains in graphene. The k of 1.33-layered, 1.53-layered, 2.74-layered and 5.2-layered supported graphene is measured as 365 W m(-1) K(-1), 359 W m(-1) K(-1), 273 W m(-1) K(-1) and 33.5 W m(-1) K(-1), respectively. These values are significantly lower than the k of supported graphene on SiO2, and are about one order of magnitude lower than the k of suspended graphene. We speculate that the abundant C atoms in the PMMA promote more ready energy and momentum exchange with the supported graphene, and give rise to more phonon scattering than the SiO2 substrate. This leads to a lower k of CVD graphene on PMMA than that on SiO2. We attribute the existence of disorder in the sp(2) domain, graphene oxide (GO) and stratification in the 5.2-layered graphene to its more k reduction. The Raman linewidth (G peak) of the 5.2-layered graphene is also twice larger than that of the other three kinds of graphene, indicating the much more phonon scattering and shorter phonon lifetime in it. Also the electrical conductivity of the 5.2-layered graphene is about one-fifth of that for the

  12. Optothermal Raman Studies of Thermal Properties of Graphene Based Films (United States)

    Malekpour, Hoda

    Efficient thermal management is becoming a critical issue for development of the next generation of electronics. As the size of electronic devices shrinks, the dissipated power density increases, demanding a better heat removal. The discovery of graphene's unique electrical and thermal properties stimulated interest of electronic industry to development of graphene based technologies. In this dissertation, I report the results of my investigation of thermal properties of graphene derivatives and their applications in thermal management. The dissertation consists of three parts. In the first part, I investigated thermal conductivity of graphene laminate films deposited on thermally insulating polyethylene terephthalate substrates. Graphene laminate is made of chemically derived graphene and few layer graphene flakes packed in overlapping structure. Two types of graphene laminate were studied: as deposited and compressed. The thermal conductivity of the laminate was found to be in the range from 40 W/mK to 90 W/mK at room temperature. It was established that the average size and the alignment of graphene flakes are parameters dominating the heat conduction. In the second part of this dissertation, I investigated thermal conductivity of chemically reduced freestanding graphene oxide films. It was found that the in-plane thermal conductivity of graphene oxide can be increased significantly using chemical reduction and temperature treatment. Finally, I studied the effect of defects on thermal conductivity of suspended graphene. The knowledge of the thermal conductivity dependence on the concentration of defects can shed light on the strength of the phonon - point defect scattering in two-dimensional materials. The defects were introduced to graphene in a controllable way using the low-energy electron beam irradiation. It was determined that as the defect density increases the thermal conductivity decreases down to about 400 W/mK, and then reveal saturation type behavior

  13. Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. (United States)

    Pereira, Vitor M; Castro Neto, A H; Liang, H Y; Mahadevan, L


    As the thinnest atomic membrane, graphene presents an opportunity to combine geometry, elasticity, and electronics at the limits of their validity. We describe the transport and electronic structure in the neighborhood of conical singularities, the elementary excitations of the ubiquitous wrinkled and crumpled graphene. We use a combination of atomistic mechanical simulations, analytical geometry, and transport calculations in curved graphene, and exact diagonalization of the electronic spectrum to calculate the effects of geometry on electronic structure, transport, and mobility in suspended samples, and how the geometry-generated pseudomagnetic and pseudoelectric fields might disrupt Landau quantization.

  14. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rajratan, E-mail: [Department of Physics, Soft-matter and Nanomaterials Laboratory, The United States Naval Academy, Annapolis, Maryland 21402 (United States)


    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the π–π electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  15. Platinum Nanoparticles Strongly Bonded to Freestanding Graphene (United States)

    Thibado, Paul; Schoelz, J. K.; Ghosh, P. K.; Thompson, J.; Dong, L.; Neek-Amal, M.; Peeters, F. M.


    Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). The membranes were imaged using high-resolution transmission electron microscopy, revealing a homogeneous distribution of uniformly sized, single-crystal Pt NPs that exhibit a preferred orientation and nearest-neighbor distance. The Pt NPs were also found to be partially elevated by the graphene substrate, as deduced from atomic-resolution scanning tunneling microscopy (STM) images. Furthermore, the electrostatic force between the STM tip and sample was utilized to estimate the binding energy of the Pt NPs to the suspended graphene. Local strain accumulation due to strong sp3 bond formation is thought to be the origin of the Pt NP self-organization. Such detailed insight into the atomic nature of this functionalized system was only possible through the cooperation of dual microscopic techniques combined with molecular dynamics simulations. The findings are expected to shape future approaches to develop high-performance electronics based on nanoparticle-functionalized graphene as well as fuel cells using Pt NP catalysts. Financial support provided by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358.

  16. Effects of the electric field on the properties of ZnO-graphene composites: a density functional theory study. (United States)

    Geng, Wei; Zhao, Xuefei; Zan, Wenyan; Liu, Huanxiang; Yao, Xiaojun


    In this work, the effects of the electric field on the properties of ZnO-graphene composites were theoretically studied using density functional theory calculations. Three types of ZnO-graphene composites including composites of pristine graphene, graphene with defects as well as graphene oxide and a ZnO bilayer were studied. We calculated and analyzed the binding energies, charge transfer, band structures and work functions of the above composites under the external electric fields. The DFT calculation results demonstrate that the binding energies are sensitive to the electric field, and increasing the external electric field gives rise to stronger binding energies. The extent of charge transfer is correlated with the magnitude of the external electric field, but the band gaps are hardly affected by the external electric field. The work functions vary depending on the different structures of the composites and surface sides, and they are also tunable by the external electric field.

  17. Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications (United States)

    Chen, Hsuan-An; Chen, Wei-Chan; Sun, Hsu; Lin, Chien-Chung; Lin, Shih-Yen


    Bi-layer graphene is grown directly on sapphire substrates by using ethane as the precursor without the assistance of a metal catalyst. A growth model of graphene flake formation in the furnace, followed by a complete film growth is also proposed. Using the graphene/sapphire sample as the new substrate, scalable MoS2 films with good layer number controllability can be grown directly on the substrate. After fabricating the MoS2/graphene hetero-structures into bottom-gate photo-transistors, a Dirac point shift is observed for the device under the light irradiation condition, which is attributed to the extraction of photo-excited electrons in the MoS2 layer to the graphene channel. The photo-voltaic response observed for the photo-transistors may provide a potential application of the 2D material hetero-structure in thin-film solar cells.

  18. New two dimensional compounds: beyond graphene (United States)

    Lebegue, Sebastien


    In the field of nanosciences, the quest for materials with reduced dimensionality is only at its beginning. While a lot of effort has been put initially on graphene, the focus has been extended in the last past years to functionalized graphene, boron nitride, silicene, and transition metal dichalcogenides in the form of single layers. Although these two-dimensional compounds offer a larger range of properties than graphene, there is a constant need for new materials presenting equivalent or superior performances to the ones already known. Here I will present an approach that we have used to discover potential new two-dimensional materials. This approach corresponds to perform datamining in the Inorganic Crystal Structure Database using simple geometrical criterias, and allowed us to identify nearly 40 new materials that could be exfoliated into two-dimensional sheets. Then, their electronic structure (density of states and bandstructure) was obtained with density functional theory to predict whether the two-dimensional material is metallic or insulating, as well as if it undergoes magnetic ordering at low temperatures. If time allows, I will also present some of our recent results concerning the electronic structure of transition metal dichalcogenides bilayers.

  19. Backside absorbing layer microscopy: Watching graphene chemistry. (United States)

    Campidelli, Stéphane; Abou Khachfe, Refahi; Jaouen, Kevin; Monteiller, Jean; Amra, Claude; Zerrad, Myriam; Cornut, Renaud; Derycke, Vincent; Ausserré, Dominique


    The rapid rise of two-dimensional nanomaterials implies the development of new versatile, high-resolution visualization and placement techniques. For example, a single graphene layer becomes observable on Si/SiO2 substrates by reflected light under optical microscopy because of interference effects when the thickness of silicon oxide is optimized. However, differentiating monolayers from bilayers remains challenging, and advanced techniques, such as Raman mapping, atomic force microscopy (AFM), or scanning electron microscopy (SEM) are more suitable to observe graphene monolayers. The first two techniques are slow, and the third is operated in vacuum; hence, in all cases, real-time experiments including notably chemical modifications are not accessible. The development of optical microscopy techniques that combine the speed, large area, and high contrast of SEM with the topological information of AFM is therefore highly desirable. We introduce a new widefield optical microscopy technique based on the use of previously unknown antireflection and absorbing (ARA) layers that yield ultrahigh contrast reflection imaging of monolayers. The BALM (backside absorbing layer microscopy) technique can achieve the subnanometer-scale vertical resolution, large area, and real-time imaging. Moreover, the inverted optical microscope geometry allows its easy implementation and combination with other techniques. We notably demonstrate the potentiality of BALM by in operando imaging chemical modifications of graphene oxide. The technique can be applied to the deposition, observation, and modification of any nanometer-thick materials.

  20. Graphene flakes under controlled biaxial deformation. (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N; Parthenios, John; Kalosakas, George; Papagelis, Konstantinos; Galiotis, Costas


    Thin membranes, such as monolayer graphene of monoatomic thickness, are bound to exhibit lateral buckling under uniaxial tensile loading that impairs its mechanical behaviour. In this work, we have developed an experimental device to subject 2D materials to controlled equibiaxial strain on supported beams that can be flexed up or down to subject the material to either compression or tension, respectively. Using strain gauges in tandem with Raman spectroscopy measurements, we monitor the G and 2D phonon properties of graphene under biaxial strain and thus extract important information about the uptake of stress under these conditions. The experimental shift over strain for the G and 2D Raman peaks were found to be in the range of 62.3 ± 5 cm(-1)/%, and 148.2 ± 6 cm(-1)/%, respectively, for monolayer but also bilayer graphenes. The corresponding Grüneisen parameters for the G and 2D peaks were found to be between 1.97 ± 0.15 and 2.86 ± 0.12, respectively. These values agree reasonably well with those obtained from small-strain bubble-type experiments. The results presented are also backed up by classical and ab initio molecular dynamics simulations and excellent agreement of Γ-E2g shifts with strains and the Grüneisen parameter was observed.

  1. A graphene Zener-Klein transistor cooled by a hyperbolic substrate (United States)

    Yang, Wei; Berthou, Simon; Lu, Xiaobo; Wilmart, Quentin; Denis, Anne; Rosticher, Michael; Taniguchi, Takashi; Watanabe, Kenji; Fève, Gwendal; Berroir, Jean-Marc; Zhang, Guangyu; Voisin, Christophe; Baudin, Emmanuel; Plaçais, Bernard


    The engineering of cooling mechanisms is a bottleneck in nanoelectronics. Thermal exchanges in diffusive graphene are mostly driven by defect-assisted acoustic phonon scattering, but the case of high-mobility graphene on hexagonal boron nitride (hBN) is radically different, with a prominent contribution of remote phonons from the substrate. Bilayer graphene on a hBN transistor with a local gate is driven in a regime where almost perfect current saturation is achieved by compensation of the decrease in the carrier density and Zener-Klein tunnelling (ZKT) at high bias. Using noise thermometry, we show that the ZKT triggers a new cooling pathway due to the emission of hyperbolic phonon polaritons in hBN by out-of-equilibrium electron-hole pairs beyond the super-Planckian regime. The combination of ZKT transport and hyperbolic phonon polariton cooling renders graphene on BN transistors a valuable nanotechnology for power devices and RF electronics.

  2. Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands. (United States)

    Janaszek, Bartosz; Tyszka-Zawadzka, Anna; Szczepański, Paweł


    The tunability of graphene-based hyperbolic metamaterial structure operating in SCLU telecom bands is investigated. For the first time it has been shown that for the proper design of a graphene/dielectric multilayer stack, the HMM Type I, Epsilon-Near-Zero and Type II regimes are possible by changing the biasing potential. Numerical results reveal the effect of structure parameters such as the thickness of the dielectric layer as well as a number of graphene sheets in a unit cell (i.e., dielectric/graphene bilayer) on the tunability range and shape of the dispersion characteristics (i.e., Type I/ENZ/Type II) in SCLU telecom bands. This kind of materials could offer a technological platform for novel devices having various applications in optical communications technology.

  3. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.


    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  4. Transformation of graphene flakes into carbon nanostructures by γ-irradiation (United States)

    Tiagulskyi, S. I.; Vasin, A. V.; Rusavsky, A. V.; Lytvyn, P. M.; Nikolenko, A. S.; Strelchuk, V. V.; Stubrov, Yu Yu; Gomeniuk, Yu Yu; Slobodian, O. M.; Lysenko, V. S.; Poroshin, V. N.; Povarchuk, V. Yu; Nazarov, A. N.


    In this paper the gamma irradiation effect on graphene layers is investigated. A simple method of synthesis from a solid-source bilayer (SiC/Ni) precursor has been used for the production of graphene flakes, both single-layer and multilayer. Samples with graphene flakes on the Ni surface were subjected to gamma irradiation in vacuum and in air under ambient atmospheric conditions. After a dose of 36 kGy, a variety of new carbon structures were observed on the surface of multilayer graphene flakes. This paper summarizes our thorough studies of the special features of these new carbon formations, including our study of the initial film morphology using optical and electron scanning microscopy, micro-Raman spectroscopy, atomic force microscopy and Kelvin probe force microscopy.

  5. Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning (United States)

    Le Quang, T.; Cherkez, V.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J.-Y.


    We have investigated the electronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs), namely trilayer WSe2 and monolayer MoSe2, deposited on epitaxial graphene on silicon carbide, by using scanning tunneling microscopy and spectroscopy (STM/STS) in ultra-high vacuum. Depending on the number of graphene layers below the TMD flakes, we identified variations in the electronic dI/dV(V) spectra measured by the STM tip: the most salient feature is a rigid shift of the TMD spectra (i.e. of the different band onset positions) towards occupied states by about 120 mV when passing from bilayer to monolayer underlying graphene. Since both graphene phases are metallic and present a work function difference in the same energy range, our measurements point towards the absence of Fermi-level pinning for such van der Waals 2D TMD/Metal heterojunctions, following the prediction of the Schottky-Mott model.

  6. Light-assisted recharging of graphene quantum dots in fluorographene matrix

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, I. V. [A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Acad. Lavrentiev Avenue 13, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090 (Russian Federation); Nebogatikova, N. A.; Prinz, V. Ya. [A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Acad. Lavrentiev Avenue 13, Novosibirsk 630090 (Russian Federation); Popov, V. I.; Smagulova, S. A. [North - East Federal University, Yakutsk (Russian Federation)


    In the present study, the charge transient spectroscopy was used to analyze the transient relaxation of charges in graphene and bilayer-graphene quantum dot (QD) systems formed by chemical functionalization of graphene and few-layer graphene layers. A set of activation energies (one to three different values) for the emission of charges from QDs sized 50 to 70 nm, most likely proceeding via the thermal activation of charge carriers from QD quantum confinement levels, were deduced from measurements performed in the dark. Daylight illumination of samples during measurements was found to result in a strong decrease of the activation energies and in an involvement of an athermal process in the charge relaxation phenomenon. The time of the light-assisted emission of charge carriers from QDs proved to be two to four orders of magnitude shorter than the time of their emission from QDs under no-illumination conditions.

  7. Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. (United States)

    Toumia, Yosra; Domenici, Fabio; Orlanducci, Silvia; Mura, Francesco; Grishenkov, Dmitry; Trochet, Philippe; Lacerenza, Savino; Bordi, Federico; Paradossi, Gaio


    Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical, and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focused on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pros and cons, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin.

  8. Competition between Kondo effect and RKKY physics in graphene magnetism (United States)

    Allerdt, A.; Feiguin, A. E.; Das Sarma, S.


    The cooperative behavior of quantum impurities on two-dimensional (2D) materials, such as graphene and bilayer graphene, is characterized by a nontrivial competition between screening (Kondo effect) and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, due to the small density of states at the Fermi level, impurities may not couple to the conduction electrons at all, behaving as free moments. Employing a recently developed exact numerical method to study multi-impurity lattice systems, we obtain nonperturbative results that dramatically depart from expectations based on the conventional RKKY theory. At half filling and for weak coupling, impurities remain in the local moment regime when they are on opposite sublattices, up to a critical value of the interactions when they start coupling antiferromagnetically with correlations that decay very slowly with interimpurity distance. At finite doping, away from half filling, ferromagnetism is completely absent and the physics is dominated by a competition between antiferromagnetism and Kondo effect. In bilayer graphene, impurities on opposite layers behave as free moments, unless the interaction is of the order of the hopping or larger.

  9. Gigahertz quantized charge pumping in graphene quantum dots. (United States)

    Connolly, M R; Chiu, K L; Giblin, S P; Kataoka, M; Fletcher, J D; Chua, C; Griffiths, J P; Jones, G A C; Fal'ko, V I; Smith, C G; Janssen, T J B M


    Single-electron pumps are set to revolutionize electrical metrology by enabling the ampere to be redefined in terms of the elementary charge of an electron. Pumps based on lithographically fixed tunnel barriers in mesoscopic metallic systems and normal/superconducting hybrid turnstiles can reach very small error rates, but only at megahertz pumping speeds that correspond to small currents of the order of picoamperes. Tunable barrier pumps in semiconductor structures are operated at gigahertz frequencies, but the theoretical treatment of the error rate is more complex and only approximate predictions are available. Here, we present a monolithic, fixed-barrier single-electron pump made entirely from graphene that performs at frequencies up to several gigahertz. Combined with the record-high accuracy of the quantum Hall effect and proximity-induced Josephson junctions, quantized-current generation brings an all-graphene closure of the quantum metrological triangle within reach. Envisaged applications for graphene charge pumps outside quantum metrology include single-photon generation via electron-hole recombination in electrostatically doped bilayer graphene reservoirs, single Dirac fermion emission in relativistic electron quantum optics and read-out of spin-based graphene qubits in quantum information processing.

  10. Performance enhancement of reduced graphene oxide-modified carbon electrodes for vanadium redox-flow systems

    NARCIS (Netherlands)

    Chakrabarti, B.; Nir, D.; Yufit, V; Tariq, F; Rubio-Garcia, J.; Maher, R.; Kucernak, A.; Purushothaman Vellayani, A.; Brandon, N.


    Reduced graphene oxide (rGO) suspended in an N,N′-dimethylformamide (DMF) solvent underwent electrophoretic deposition (EPD) on carbon paper (CP) electrodes. X-ray computed micro-tomography (XMT) indicates a 24 % increase in the specific surface area of CP modified with rGO in comparison to the

  11. Identification of pristine and defective graphene nanoribbons by phonon signatures in the electron transport characteristics

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard; Frederiksen, Thomas; Brandbyge, Mads


    Inspired by recent experiments where electron transport was measured across graphene nanoribbons (GNRs) suspended between a metal surface and the tip of a scanning tunneling microscope [Koch, Nat. Nanotechnol.7, 713 (2012)], we present detailed first-principles simulations of inelastic electron t...

  12. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures (United States)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.


    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  13. Driving skyrmions in a composite bilayer (United States)

    Wang, Zidong; Grimson, Malcolm J.


    Magnetic skyrmions and multiferroics are the most interesting objects in nanostructure science that have great potential in future spin-electronic technology. The study of multiferroic skyrmions has attracted much interest in recent years. This article reports magnetic Bloch skyrmions induced by an electric driving field in a composite bilayer (chiral-magnetic/ferroelectric bilayer) lattice. By using the spin dynamics method, we use a classical magnetic spin model and an electric pseudospin model, which are coupled by a strong magnetoelectric coupling in the dynamical simulations. Interestingly, we observe some skyrmionlike objects in the electric component either during the switching process or by applying a magnetic field, which is due to the connection between the electric and the magnetic structures.

  14. Bilayer expurgated LDPC codes with uncoded relaying

    Directory of Open Access Journals (Sweden)

    Md. Noor-A-Rahim


    Full Text Available Bilayer low-density parity-check (LDPC codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uncoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.

  15. Interaction of neurotransmitters with a phospholipid bilayer

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved


    We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABAneu) and the osmolyte molecule glycerol...... that there is no intermediate exchange of slow moving water molecules from the solutes to the lipid atoms and vice versa. Instead, the exchange relies on the reservoir of unbounded (“free”) water molecules in the interfacial bilayer region. Results from the equilibrium simulations are in good agreement with the results from...... umbrella sampling simulations, which were conducted for the four naturally occurring NTs. Free energy profiles for ACH and GLU show a minimum of ∼2–3 kJ/mol close to the bilayer interface, while for GABA and GLY, a minimum of respectively ∼2 kJ/mol and ∼5 kJ/mol is observed when these NTs are located...

  16. A route to strong p-doping of epitaxial graphene on SiC

    KAUST Repository

    Cheng, Yingchun


    The effects of Au intercalation on the electronic properties of epitaxialgraphenegrown on SiC{0001} substrates are studied using first principles calculations. A graphenemonolayer on SiC{0001} restores the shape of the pristine graphene dispersion, where doping levels between strongly n-doped and weakly p-doped can be achieved by altering the Au coverage. We predict that Au intercalation between the two C layers of bilayer graphenegrown on SiC{0001} makes it possible to achieve a strongly p-doped graphene state, where the p-doping level can be controlled by means of the Au coverage.

  17. Lipid Bilayers: Clusters, Domains and Phases


    Ackerman, David G.; Feigenson, Gerald W.


    In this chapter we discuss the complex mixing behavior of plasma membrane lipids. To do so, we first introduce the plasma membrane and membrane mixtures often used to model its complexity. We then discuss the nature of lipid phase behavior in bilayers and the distinction between these phases and other manifestations of nonrandom mixing found in one-phase mixtures, such as clusters, micelles, and microemulsions. Finally, we demonstrate the applicability of Gibbs phase diagrams to the study of ...

  18. Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles (United States)

    Wang, Xi

    This dissertation work focuses on: (i) obtaining a phospholipid bilayer membrane (LBM)/conducting electrode system with low defect density and optimized rigidity; (ii) investigating vesicle stability and mechanical properties. LBM is a simplified yet representative cell membrane model. LBMs assembled on conductive surfaces can probe protein-LBM interactions activities electrochemically. Sterically stabilized vesicles could be used as cell models or for drug delivery. The main challenges for LBM assembly on gold are vesicles do not spontaneously rupture to form LBMs on gold and the roughness of the gold substrate has considerable influence on molecular film defect density. In this study, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles were functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) to yield stable LBMs on gold without surface modification. A template-stripping method was used to obtain atomically flat and pristine gold surfaces. The critical force to initiate vesicle rupture decreases with increasing DSPE-PEG-PDP concentration, indicating that gold-thiolate bonding between DSPE-PEG-PDP and gold substrates promotes LBM formation. Mechanical properties of LBMs and vesicles were investigated as a function of DSPE-PEG-PDP concentration via Atomic Force Microscopy. The elastic moduli of LBMs were determined with DSPE-PEG-PDP concentration ranging from 0mol% to 24mol% and were found to depend on PEG chain conformation. Incorporating DSPE-PEG-PDP molecules with PEG in mushroom conformation results in a decrease of LBM rigidity, while incorporating PEG in brush conformation leads to LBM stiffening. Contrarily, mechanical properties of functionalized vesicles did not vary significantly by varying DSPE-PEG-PDP concentration. LBM with tunable rigidity by adjusting DSPE-PEG-PDP concentration provides a versatile cell membrane model for studying protein or

  19. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics


    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  20. Stability analysis of the pulmonary liquid bilayer. (United States)

    Halpern, David; Grotberg, James


    The lung consists of liquid-lined compliant airways that convey air to and from the alveoli where gas exchange takes place. Because the airways are coated with a bilayer consisting of a mucus layer on top of a periciliary fluid layer, a surface tension instability can generate flows within the bilayer and induce the formation of liquid plugs that block the passage of air. This is a problem for example with premature neonates whose lungs do not produce sufficient quantities of surfactant and suffer from respiratory distress syndrome. To study this instability a system of coupled nonlinear evolution equations are derived using lubrication theory for the thicknesses of the two liquid layers which are assumed to be Newtonian. A normal mode analysis is used to investigate the initial growth of the disturbances, and reveals how the grow rate is affected by the ratio of viscosities λ, film thicknesses η and surface tensions δ of the two layers which can change by disease. Numerical solutions of the evolution equations show that there is a critical bilayer thickness ɛc above which closure occurs, and that a more viscous and thicker layer compared to the periciliary layer closes more slowly. However, ɛcis weakly dependent on λ, η and δ. We also examine the potential impact of wall shear stress and normal stress on cell damage. This work is funded by NIH HL85156.

  1. Crystallization in mass and charge asymmetric bilayers (United States)

    Bonitz, Michael; Ludwig, Patrick; Filinov, Alexei; Lozovik, Yurii; Stolz, Heinrich


    We consider Coulomb crystal formation in quantum electron-ion (hole) bilayers. Varying the mass ratio M of ions and electrons between 1 and 100 for a fixed layer separation d at low temperature and high density, one can tune the hole behavior from delocalized (quantum) to localized (quasi-classical) while the electrons remain delocalized all the time. While in 3D plasmas [1], ions crystallize if the mass ratio exceeds a critical value of Mcr˜80, in bilayers Mcr can be drastically reduced by properly choosing d and the in-layer particle density. The complicated overlap of correlation and quantum effects of both, electrons and holes, is fully taken care of by performing first-principle path integral Monte Carlo simulations. [1] M. Bonitz, V.S. Filinov, V.E. Fortov. P.R. Levashov, and H. Fehske, Phys. Rev. Lett. 95, 235006 (2005) and J. Phys. A: Math. Gen. 39, 4717 (2006). [2] P. Ludwig, A. Filinov, Yu. Lozovik, H. Stolz, and M. Bonitz, Crystallization in mass-asymmetric electron-hole bilayers, Contrib. Plasma Phys. (2007), ArXiv: cond-mat/0611556

  2. Molecular dynamics modelling of EGCG clusters on ceramide bilayers (United States)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei


    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  3. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)


    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  4. Method of fabricating lipid bilayer membranes on solid supports (United States)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)


    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  5. Thermal Conduction in Graphene and Graphene Multilayers


    Ghosh, Suchismita


    There has been increasing interest in thermal conductivity of materials motivated by the heat removal issues in electronics and by the need of fundamental science to understand heat conduction at nanoscale. This dissertation reports the results of the experimental investigation of heat conduction in graphene and graphene multilayers. Graphene is a planar single sheet of sp2–bonded carbon atoms arranged in honeycomb lattice. It reveals many unique properties, including the extraordinaril...

  6. Graphene Chemical Sensor Project (United States)

    National Aeronautics and Space Administration — The sensor uses graphene based devices to sense the surface potential of a graphene channel exposed to an analyte. When analyte molecules adsorb onto the...

  7. Gauge fields in graphene

    National Research Council Canada - National Science Library

    Vozmediano, M.A.H; Katsnelson, M.I; Guinea, F


    The physics of graphene is acting as a bridge between quantum field theory and condensed matter physics due to the special quality of the graphene quasiparticles behaving as massless two dimensional Dirac fermions...

  8. Graphene for Space Project (United States)

    National Aeronautics and Space Administration — Individual talks by JPL and Caltech experts on graphene to present the different ambits of application in which graphene is currently being used on campus,...

  9. Design and Fabrication of Bilayer Hydrogel System with Self-Healing and Detachment Properties Achieved by Near-Infrared Irradiation

    Directory of Open Access Journals (Sweden)

    Qian Zhao


    Full Text Available A novel kind of graphene oxide (GO-containing bilayer hydrogel system with excellent self-healing and detachment properties stimulated by near-infrared irradiation is successively fabricated via a two-step in situ free radical polymerization. In addition to high mechanical strength, as components of a bilayer hydrogel system, a poly N,N-dimethylacrylamide (PDMAA layer with 3 mg/mL GO and a poly N-isopropylacrylamide (PNIPAm layer with 3 mg/mL GO exhibits firm interface bonding. GO in a PDMAA layer transforms under a near-infrared laser into heat, which promotes mutual diffusion of hydrogen bonds and realizes a self-healing property. The irradiation of near infrared laser results in the temperature of PNIPAm layer being higher than the volume phase transition temperature, reducing the corresponding biological viscidity and achieving detachment property. The increase of GO content enhances the self-healing degree and detachment rate. The bilayer hydrogel system fabricated via mold design combines characteristics of PDMAA layer and PNIPAm layer, which can be treated as materials for medical dressings, soft actuators, and robots.

  10. Topological Edge States at a Tilt Boundary in Gated Multilayer Graphene


    Abolhassan Vaezi; Yufeng Liang; Ngai, Darryl H.; Li Yang; Eun-Ah Kim


    Despite much interest in engineering new topological surface (edge) states using structural defects, such topological surface states have not been observed yet. We show that recently imaged tilt boundaries in gated multilayer graphene should support topologically protected gapless edge states. We approach the problem from two perspectives: the microscopic perspective of a tight-binding model and an ab initio calculation on a bilayer, and the symmetry-protected topological (SPT) state perspect...

  11. Graphene-polymer composites (United States)

    Carotenuto, G.; Romeo, V.; Cannavaro, I.; Roncato, D.; Martorana, B.; Gosso, M.


    Graphene is a novel nanostructured material that can be conveniently used as filler for thermoplastic polymers or thermosetting resins, and the resulting nanocomposite material has unique mechanical and chemical/physical properties. Industrial production of graphene/polymer materials requires the availability of a chemical route to produce massive amount of graphene. Natural graphite flakes can be the best starting material for a bulk-production of graphene to be used in the polymeric nanocomposite preparation.

  12. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel


    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  13. Characterization of the Transverse Relaxation Rates in Lipid Bilayers (United States)

    Watnick, Paula I.; Dea, Phoebe; Chan, Sunney I.


    The ^2H NMR transverse relaxation rates of a deuterated phospholipid bilayer reflect slow motions in the bilayer membrane. A study of dimyristoyl lecithin specifically deuterated at several positions of the hydrocarbon chains indicates that these motions are cooperative and are confined to the hydrocarbon chains of the lipid bilayer. However, lipid head group interactions do play an important role in modulating the properties of the cooperative fluctuations of the hydrocarbon chains (director fluctuations), as evidenced by the effects of various lipid additives on the ^2H NMR transverse relaxation rates of the dimyristoyl lecithin bilayer.

  14. Quantifying the bending of bilayer temperature-sensitive hydrogels (United States)

    Dong, Chenling; Chen, Bin


    Stimuli-responsive hydrogels can serve as manipulators, including grippers, sensors, etc., where structures can undergo significant bending. Here, a finite-deformation theory is developed to quantify the evolution of the curvature of bilayer temperature-sensitive hydrogels when subjected to a temperature change. Analysis of the theory indicates that there is an optimal thickness ratio to acquire the largest curvature in the bilayer and also suggests that the sign or the magnitude of the curvature can be significantly affected by pre-stretches or small pores in the bilayer. This study may provide important guidelines in fabricating temperature-responsive bilayers with desirable mechanical performance.

  15. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)


    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  16. The magnetorheological fluid of carbonyl iron suspension blended with grafted MWCNT or graphene (United States)

    Rwei, Syang-Peng; Ranganathan, Palraj; Chiang, Whe-Yi; Wang, Tza-Yi


    In this work, the magnetorheological (MR) fluids containing MWCNT/CI (carbonyl iron) complex and graphene/CI complex were prepared and have the better dispersity in silicone oil than CI powders alone. 1, 4-Aminobenzoic acid (PABA) was used as a grafting agent to modify CI powders to have NH2-end-group so that such nanoparticles can adsorb to acid-treated MWCNT or graphene via attraction of NH2 and COOH groups. The MWCNT/CI complex and graphene/CI complex have a structure of carbonyl iron nanoparticles adsorbed to MWCNT and graphene by self assembly, respectively. Because the carbonyl iron particles possessing magnetic permeability in nanometer scale adsorb to MWCNT or graphene which usually has a nanometer-scaled diameter and a micrometer-scaled length in this work, the dispersity of MWCNT/CI or graphene/CI complex in silicone oil is superior than the previous report [15] that the micrometer-scaled carbonyl iron microspheres were coated with multiwalled carbon nanotubes. Among CI (unmodified), MWCNT/CI and graphene/CI, graphene/CI has the best dispersity while MWCNT/CI still has the better dispersity than unmodified CI. At the temperature T = 300 K, the saturation magnetizations of CI, MWCNT/CI, graphene/CI are 208, 211 emu/g, and 204 emu/g, respectively, indicating that MWCNT/CI complex and graphene/CI complex still maintain the saturation magnetization as high as CI without being interfered by the blended MWCNT or graphene. A wide dynamic range of the yield stress adjusted through varying the electric current can be achieved by the MR fluids containing 69 wt% MWCNT/CI and graphene/CI which is useful in a shock absorber or damper. The result of the yield stress indicates the suspended MWCNT/CI particles are oriented more easily toward the direction perpendicular to the flow direction to block the flow stream lines.

  17. Plasmon modes in graphene-GaAs heterostructures (United States)

    Van Men, Nguyen; Khanh, Nguyen Quoc


    We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance d, at zero temperature with no interlayer tunneling. We use the random-phase-approximation dielectric function and take into account the nonhomogeneity of the dielectric background of the system. We show that the plasmon frequencies and damping rates depend considerably on interlayer correlation parameters, electron densities and dielectric constants of the contacting media.

  18. Graphene-graphene oxide-graphene hybrid nanopapers with superior mechanical, gas barrier and electrical properties


    Xilian Ouyang; Wenyi Huang; Eusebio Cabrera; Jose Castro; James Lee, L.


    Hybrid nanopaper-like thin films with a graphene oxide (GO) layer sandwiched by two functionalized graphene (GP-SO3H) layers were successfully prepared from oxidized graphene and benzene sulfonic modified graphene. The hybrid graphene-graphene oxide-graphene (GP-GO-GP) nanopapers showed combination of high mechanic strength and good electrical conductivity, leading to desirable electromagnetic interference shielding performance, from the GP-SO3H layers, and superior gas diffusion barrier prov...

  19. Simulation of Graphene Mechanics

    NARCIS (Netherlands)

    Jain, S.K.|info:eu-repo/dai/nl/412769646


    Graphene is a one atom thick layer of carbon atoms arranged in hexagonal lattice in two-dimensions. The discovery of graphene has provoked a revolution in nanotechnology, as the structural, thermal, and electronic properties of graphene make it a very useful component for a large variety of devices.

  20. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer (United States)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.


    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  1. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh


    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  2. Self-spreading method for forming lipid bilayer on a patterned agarose gel: Toward precise lipid bilayer patterning. (United States)

    Shimba, Kenta; Shoji, Kazuma; Miyamoto, Yoshitaka; Yagi, Tohru


    Forming artificial cell membranes is a suitable strategy for studying drug responses of membrane proteins. In order to form lipid bilayer with both mechanical stability and membrane protein functions, hydrogel supported bilayer has attracted attentions. Combinational use of self-extraction method for lipid bilayer formation and agarose gel patterning should realize hydrogel-supported bilayer with any shape and large area. In this study, we aimed to form a lipid bilayer on a patterned agarose gel and to characterize the membrane. First, lipid mixture was attached on an agarose gel, and lipid layers spread on the gel surface. With fluorescent observation, it is suggested that thin lipid layer was formed on the agarose gel, and their distance-dependent changes in spreading velocity was consistent with that in lipid bilayer. Next, the lipid layer was characterized with fluorescence recovery after photo breaching experiment. As a result, it is indicated that lipid molecules in the lipid layer on the agarose showed lateral diffusion, a typical characteristic of lipid bilayer. Taken together, we confirmed that lipid bilayer can be formed on the patterned agarose gel with self-spreading method. The hydrogel-supported bilayer will be a suitable tool for drug discovery.

  3. Differential Effect of Bilayer Thickness on Sticholysin Activity. (United States)

    Palacios-Ortega, Juan; García-Linares, Sara; Rivera-de-Torre, Esperanza; Gavilanes, José G; Martínez-Del-Pozo, Álvaro; Slotte, J Peter


    In this study, we examined the influence of bilayer thickness on the activity of the actinoporin toxins sticholysin I and II (StnI and StnII) at 25 °C. Bilayer thickness was varied using dimonounsaturated phosphatidylcholine (PC) analogues (with 14:1, 16:1, 18:1, 20:1, and 22:1 acyl chains). In addition, N-14:0-sphingomyelin (SM) was always included because StnI and StnII are SM specific. Cholesterol was also incorporated as indicated. In cholesterol-free large unilamellar vesicles (LUVs) the PC:SM molar ratio was 4:1, and when cholesterol was included, the complete molar ratio was 4:1:0.5 (PC:SM:cholesterol, respectively). Stn toxins promote bilayer leakage through pores formed by oligomerized toxin monomers. Initial calcein leakage was moderately dependent on bilayer PC acyl chain length (and thus bilayer thickness), with higher rates observed with di-16:1 and di-18:1 PC bilayers. In the presence of cholesterol, the maximum rates of calcein leakage were observed in di-14:1 and di-16:1 PC bilayers. Using isothermal titration calorimetry to study the Stn-LUV interaction, we observed that the bilayer affinity constant (Ka) peaked with LUVs containing di-18:1 PC, and was lower in shorter and longer PC acyl chain bilayers. The presence of cholesterol increased the binding affinity approximately 30-fold at the optimal bilayer thickness (di-18:1-PC). We conclude that bilayer thickness affects both functional and conformational aspects of Stn membrane binding and pore formation. Moreover, the length of the actinoporins' N-terminal α-helix, which penetrates the membrane to form a functional pore, appears to be optimal for the membrane thickness represented by di-18:1 PC.

  4. 9 CFR 201.81 - Suspended registrants. (United States)


    ... 201.81 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS ADMINISTRATION (PACKERS AND STOCKYARDS PROGRAMS), DEPARTMENT OF AGRICULTURE REGULATIONS UNDER THE PACKERS AND STOCKYARDS ACT Services § 201.81 Suspended registrants. No stockyard owner, packer, market agency, or dealer shall employ...

  5. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse


    experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  6. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    ... from the control values were found significant at 99% confidence level. Possible inhalatory problems are thus anticipated from prolonged accumulation of the dust in the respiratory system. KEY WORDS: Environmental toxicology, Suspended particulate matter, Dust analysis, Hematological indices, Wister albino rats. Bull.

  7. Suspended sediment concentration and particle size distribution ...

    Indian Academy of Sciences (India)

    face area, shape, minerals and source) and conse- quent interaction with heavy metal concentrations. (HMCs). Recent studies have shown a growing awareness of the wider environmental significance of the suspended sediment loads transported by rivers and streams. This includes the importance of fine grain sediment in ...

  8. Environmental toxicology: Acute effects of suspended particulate ...

    African Journals Online (AJOL)

    The elemental contents of suspended particulate matter (dust) samples from Maiduguri, Nigeria, were determined which showed appreciably high levels for especially Pb, Fe, Cu, Zn, K, Ca, and. Na. Wister albino rats were exposed to graded doses of phosphate buffered saline carried dust particles. The hematological ...

  9. A depth integrated model for suspended transport

    NARCIS (Netherlands)

    Galappatti, R.


    A new depth averaged model for suspended sediment transport in open channels has been developed based on an asymptotic solution to the two dimensional convection-diffusion equation in the vertical plane. The solution for the depth averaged concentration is derived from the bed boundary condition and

  10. The Shape of Breasts Suspended in Liquid

    NARCIS (Netherlands)

    De Kleijn, S.C.; Rensen, W.H.J.


    Philips has designed an optical mammography machine. In this machine the breast is suspended into a cup in which the measurements take place. A special fluid is inserted into the cup to prevent the light from going around the breast instead of going through it but this fluid also weakens the signal.

  11. Flow Laminarization and Acceleration by Suspended Particles

    NARCIS (Netherlands)

    Bertsch, M.; Hulshof, J.; Prostokishin, V.M.


    In [Comm. Appl. Math. Comput. Sci., 4(2009), pp. 153-175], Barenblatt presents a model for partial laminarization and acceleration of shear flows by the presence of suspended particles of different sizes, and provides a formal asymptotic analysis of the resulting velocity equation. In the present

  12. Emulsifying and Suspending Properties of Enterolobium ...

    African Journals Online (AJOL)

    Background:The thermodynamic instability of emulsions and suspensions necessitate the incorporation of emulsifiers and suspending agents respectively, in order to stabilize the formulations and ensure administration of accurate doses. Objective:Enterolobium cyclocarpum gum was characterized and evaluated for its ...

  13. Streptavidin 2D crystals on supported phospholipid bilayers : Toward constructing anchored phospholipid bilayers

    NARCIS (Netherlands)

    Reviakine, [No Value; Brisson, A


    Streptavidin two-dimensional (2D) crystals were grown on mica-supported phospholipid bilayers containing a biotinylated phospholipid. Their topography structure obtained by atomic force microscopy compares favorably with the electron microscopy analysis of streptavidin 2D crystals grown on lipid

  14. Silica-based cationic bilayers as immunoadjuvants

    Directory of Open Access Journals (Sweden)

    Carmona-Ribeiro Ana M


    Full Text Available Abstract Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris.HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001–1 mM by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid.

  15. Graphene transfer process and optimization of graphene coverage (United States)

    Norfaezah Sabki, Syarifah; Hafly Shamsuri, Shafiq; Fazlina Fauzi, Siti; Lim Chon-Ki, Meghashama; Othman, Noraini


    Graphene grown on transition metal is known to be high in quality due to its controlled amount of defects and potentially used for many electronic applications. The transfer process of graphene grown on transition metal to a new substrate requires optimization in order to ensure that high graphene coverage can be obtained. In this work, an improvement in the graphene transfer process is performed from graphene grown on copper foil. It has been observed that the graphene coverage is affected by the pressure given to the top of PDMS to eliminate water and air between graphene and SiO2 (new substrate). This work experimented with different approaches to optimize the graphene coverage, and stamping method has proven to be the best technique in obtaining the largest graphene coverage. This work also highlights the elimination of impurities from graphene after the transfer process, known to be PMMA residues, which involved immersion of graphene in acetone. This method has improved the graphene conductivity.

  16. Permeation through graphene ripples (United States)

    Liang, Tao; He, Guangyu; Wu, Xu; Ren, Jindong; Guo, Hongxuan; Kong, Yuhan; Iwai, Hideo; Fujita, Daisuke; Gao, Hongjun; Guo, Haiming; Liu, Yingchun; Xu, Mingsheng


    Real graphene sheets show limited anti-permeation performance deviating from the ideally flat honeycomb carbon lattice that is impermeable to gases. Ripples in graphene are prevalent and they could significantly influence carrier transport. However, little attention has been paid to the role of ripples in the permeation properties of graphene. Here, we report that gases can permeate through graphene ripples at room temperature. The feasibility of gas permeation through graphene ripples is determined by detecting the initial oxidation sites of Cu surface covered with isolated graphene domain. Nudged elastic band (NEB) calculations demonstrate that the oxygen atom permeation occurs via the formation of C-O-C bond, in which process the energy barrier through the rippled graphene lattice is much smaller than that through a flat graphene lattice, rendering permeation through ripples more favorable. Combining with the recent advances in atoms intercalation between graphene and metal substrate for transfer-free and electrically insulated graphene, this discovery provides new perspectives regarding graphene’s limited anti-permeation performance and evokes for rational design of graphene-based encapsulation for barrier and selective gas separation applications through ripple engineering.

  17. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method. (United States)

    Feng, Jian-Min; Dai, Ye-Jing


    Combining carbon nanotubes (CNTs) with graphene has been proved to be a feasible method for improving the performance of graphene for some practical applications. This paper reports a water-assisted route to grow graphene on CNTs from ferrocene and thiophene dissolved in ethanol by the chemical vapor deposition method in an argon flow. A double injection technique was used to separately inject ethanol solution and water for the preparation of graphene/CNTs. First, CNTs were prepared from ethanol solution and water. The injection of ethanol solution was suspended and water alone was injected into the reactor to etch the CNTs. Thereafter, ethanol solution was injected along with water, which is the key factor in obtaining graphene/CNTs. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Raman scattering analyses confirmed that the products were the hybrid materials of graphene/CNTs. X-ray photo-electron spectroscopy analysis showed the presence of oxygen rich functional groups on the surface of the graphene/CNTs. Given the activity of the graphene/CNT surface, CdS quantum dots adhered onto it uniformly through simple mechanical mixing.

  18. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers. (United States)

    Raja, Shyamprasad N; Osenberg, David; Choi, Kyoungjun; Park, Hyung Gyu; Poulikakos, Dimos


    The thermal transport properties of graphene are strongly influenced by its contact environment and the strength of such interactions can be used to tailor these properties. Here we find that annealing suppresses the basal plane thermal conductivity (κ) of graphene supported on silicon dioxide, due to the increased conformity of graphene to the nanoscale asperities of the substrate after annealing. Intriguingly, increasing the polycrystallinity of graphene, grown by chemical vapor deposition on copper, increases the severity of this suppression after annealing, revealing the role of grain boundaries and associated defects in aiding phonon scattering by the substrate. In highly polycrystalline graphene, the value of κ after annealing is comparable to that after significant fluorination of an identical unannealed sample. Our experiments employ the suspended micro-bridge platform for basal plane thermal conductivity measurements. Using xenon difluoride gas for the final release also enables the investigation of thermal transport in graphene in contact with polymers. We find evidence for weaker phonon scattering in graphene, due to a 10 nm thick polymer layer on top compared to the pre-existing silicon dioxide substrate, which is a promising result for flexible electronics applications of graphene.

  19. Lipid bilayers: clusters, domains and phases. (United States)

    Ackerman, David G; Feigenson, Gerald W


    In the present chapter we discuss the complex mixing behaviour of plasma membrane lipids. To do so, we first introduce the plasma membrane and membrane mixtures often used to model its complexity. We then discuss the nature of lipid phase behaviour in bilayers and the distinction between these phases and other manifestations of non-random mixing found in one-phase mixtures, such as clusters, micelles and microemulsions. Finally, we demonstrate the applicability of Gibbs phase diagrams to the study of increasingly complex model membrane systems, with a focus on phase coexistence, morphology and their implications for the cell plasma membrane.

  20. DNA nanostructures interacting with lipid bilayer membranes. (United States)

    Langecker, Martin; Arnaut, Vera; List, Jonathan; Simmel, Friedrich C


    CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on