WorldWideScience

Sample records for suspected potential contaminants

  1. Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Alygizakis, Nikiforos A; Samanipour, Saer; Hollender, Juliane; Ibáñez, María; Kaserzon, Sarit; Kokkali, Varvara; van Leerdam, Jan A; Mueller, Jochen F; Pijnappels, Martijn; Reid, Malcolm J; Schymanski, Emma L; Slobodnik, Jaroslav; Thomaidis, Nikolaos S; Thomas, Kevin V

    2018-04-13

    A key challenge in the environmental and exposure sciences is to establish experimental evidence of the role of chemical exposure in human and environmental systems. High resolution and accurate tandem mass spectrometry (HRMS) is increasingly being used for the analysis of environmental samples. One lauded benefit of HRMS is the possibility to retrospectively process data for (previously omitted) compounds that has led to the archiving of HRMS data. Archived HRMS data affords the possibility of exploiting historical data to rapidly and effectively establish the temporal and spatial occurrence of newly identified contaminants through retrospective suspect screening. We propose to establish a global emerging contaminant early warning network to rapidly assess the spatial and temporal distribution of contaminants of emerging concern in environmental samples through performing retrospective analysis on HRMS data. The effectiveness of such a network is demonstrated through a pilot study, where eight reference laboratories with available archived HRMS data retrospectively screened data acquired from aqueous environmental samples collected in 14 countries on 3 different continents. The widespread spatial occurrence of several surfactants (e.g., polyethylene glycols ( PEGs ) and C12AEO-PEGs ), transformation products of selected drugs (e.g., gabapentin-lactam, metoprolol-acid, carbamazepine-10-hydroxy, omeprazole-4-hydroxy-sulfide, and 2-benzothiazole-sulfonic-acid), and industrial chemicals (3-nitrobenzenesulfonate and bisphenol-S) was revealed. Obtaining identifications of increased reliability through retrospective suspect screening is challenging, and recommendations for dealing with issues such as broad chromatographic peaks, data acquisition, and sensitivity are provided.

  2. 32 CFR 644.530 - Conditions in conveying land suspected of contamination.

    Science.gov (United States)

    2010-07-01

    ... contamination. 644.530 Section 644.530 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Contamination from Proposed Excess Land and Improvements § 644.530 Conditions in conveying land suspected of contamination. The following conditions, appropriately modified to conform to local law, will be included in...

  3. Amnioinfusion for potential or suspected umbilical cord compression in labour.

    Science.gov (United States)

    Hofmeyr, G Justus; Lawrie, Theresa A

    2012-01-18

    Amnioinfusion aims to prevent or relieve umbilical cord compression during labour by infusing a solution into the uterine cavity. To assess the effects of amnioinfusion for potential or suspected umbilical cord compression on maternal and perinatal outcome . We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 October 2011). Randomised trials of amnioinfusion compared with no amnioinfusion in women with babies at risk of umbilical cord compression in labour. The original review had one author only (Justus Hofmeyr (GJH)). For this update, two authors (GJH and T Lawrie) assessed 13 additional trial reports for eligibility and quality. We extracted data and checked for accuracy. We have included 19 studies, with all but two studies having fewer than 200 participants. Transcervical amnioinfusion for potential or suspected umbilical cord compression was associated with the following reductions: caesarean section overall (13 trials, 1493 participants; average risk ratio (RR) 0.62, 95% confidence interval (CI) 0.46 to 0.83); fetal heart rate (FHR) decelerations (seven trials, 1006 participants; average RR 0.53, 95% CI 0.38 to 0.74); Apgar score less than seven at five minutes (12 trials, 1804 participants; average RR 0.47, 95% CI 0.30 to 0.72); meconium below the vocal cords (three trials, 674 participants, RR 0.53, 95% CI 0.31 to 0.92); postpartum endometritis (six trials, 767 participants; RR 0.45, 95% CI 0.25 to 0.81) and maternal hospital stay greater than three days (four trials, 1051 participants; average RR 0.45, 95% CI 0.25 to 0.78). Transabdominal amnioinfusion showed similar trends, though numbers studied were small.Mean cord umbilical artery pH was higher in the amnioinfusion group (seven trials, 855 participants; average mean difference 0.03, 95% CI 0.00 to 0.06) and there was a trend toward fewer neonates with a low cord arterial pH (less than 7.2 or as defined by trial authors) in the amnioinfusion group (eight trials, 972

  4. Attitudes to coping with radiologically suspect or contaminated milk in the UK: a dairy industry viewpoint

    International Nuclear Information System (INIS)

    Komorowski, E.S.

    2005-01-01

    The attitudes of the UK milk processing industry to a nuclear incident which resulted in milk supplies being suspected of being contaminated, or actually being contaminated, with radioactivity is examined. The factors influencing these attitudes are discussed, together with their implications. In the event of a nuclear incident in which part of the United Kingdom's milk supply is possibly contaminated, the milk processing industry will want to ensure that consumers and retailers maintain complete confidence in dairy products. As a consequence the industry will require that solutions are not adopted merely to avoid wastage of milk, or awkward milk disposal problems. In the early history of the BSE crisis the government wrongly assured consumers that beef was completely safe to eat. It will be necessary to ensure that any assurances that milk is safe, following a nuclear incident, are well founded

  5. Fly pupae and puparia as potential contaminants of forensic entomology samples from sites of body discovery.

    Science.gov (United States)

    Archer, M S; Elgar, M A; Briggs, C A; Ranson, D L

    2006-11-01

    Fly pupae and puparia may contaminate forensic entomology samples at death scenes if they have originated not from human remains but from animal carcasses or other decomposing organic material. These contaminants may erroneously lengthen post-mortem interval estimates if no pupae or puparia are genuinely associated with the body. Three forensic entomology case studies are presented, in which contamination either occurred or was suspected. In the first case, blow fly puparia collected near the body were detected as contaminants because the species was inactive both when the body was found and when the deceased was last sighted reliably. The second case illustrates that contamination may be suspected at particularly squalid death scenes because of the likely presence of carcasses or organic material. The third case involves the presence at the body discovery site of numerous potentially contaminating animal carcasses. Soil samples were taken along transects to show that pupae and puparia were clustered around their probable sources.

  6. Potential Well Water Contaminants and Their Impacts

    Science.gov (United States)

    The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.

  7. PATIENTS WITH SUSPECTED METAL IMPLANT ALLERGY: POTENTIAL CLINICAL PICTURES AND ALLERGOLOGICAL DIAGNOSTIC APPROACH (REVIEW

    Directory of Open Access Journals (Sweden)

    P. Thomas

    2014-01-01

    Full Text Available The focus of this review are allergic complications following insertion of metallic orthopedic implants. Such potential allergic reactions encompass eczema, impaired wound and fracture healing, infection-mimicking reactions, effusions, pain and loosening. Nickel, cobalt and chromium seem to be the predominant eliciting allergens. Allergy might be considered prior to planned orthopaedic surgery or in patients with complications following arthroplasty We recommend, that differential diagnoses - in particular infection -should always be excluded in cooperation with surgery collegues. The clinical work up of a patient suspected of suffering from metal implant allergy should include a combined evaluation of medical history, clinical findings, patch testing and histology In vitro testing, namely the lymphocyte transformation test (LTT, can indicate metal sensitization, but needs careful interpretation.

  8. In vivo micronucleus test as a biomarker of genotoxicity in free-range goats from suspected contaminated environment

    Directory of Open Access Journals (Sweden)

    Afusat Jagun Jubril

    2017-09-01

    Conclusion: The finding indicates the prevalence and frequency of micronucleus as a biomarker of genotoxicity and an indicator of exposure to environmental genotoxic subtances. Hence, this highlights the relevance of these goats as important sentinel animal model. These findings, therefore, serve as a preliminary data for further studies on the latent genotoxic environmental contaminants and their potential deleterious impact. [J Adv Vet Anim Res 2017; 4(3.000: 281-287

  9. Transformers as a potential for soil contamination

    Directory of Open Access Journals (Sweden)

    N. Stojić

    2014-10-01

    Full Text Available The aim of this paper is to investigate the presence of PCBs and heavy metals in the surrounding soil and also in the soil of the receiving pit located below the PCB contaminated transformer. Concentrations of PCBs in our samples are ranged from 0,308 to 0,872 mg/kg of absolutely dry soil.

  10. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.

    Science.gov (United States)

    Torres, Eric M; Hess, Derek; McNeil, Brian T; Guy, Tessa; Quinn, Jason C

    2017-05-01

    As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Case study: Managing potentially contaminated records

    International Nuclear Information System (INIS)

    Sprouse, B.S.

    1993-06-01

    For the past 10 or more years, Analytical Laboratory data cards have been generated and stored in the 222-S Laboratory at the Hanford Site in Richland, Washington. These cards are classified as record material and require retention for a minimum of 75 years in an approved storage facility in accordance with Westinghouse Hanford Company procedures. The cards are maintained in records boxes in the attic of the 222-S Laboratory and are subject to potential risk and loss. The most significant potential risks are radiological hazards. Various options are available for removal, cataloging, transmittal, and storage of these long-term records. Because the records are currently stored in a radiation protection zone, they surveyed before being released from the facility. This survey can be arduous and time consuming. Resolutions to the problem of removal and proper storage of the records from the facility need to be addressed. The records were reviewed and inventoried to determine the quantity of information. A study of the various options available was conducted, and based on the information collected, it was determined that the most feasible and cost-effective approach is to microfilm the cards inside the laboratory. This option complies with all applicable company requirements and decreases the estimated radiological survey time from approximately 3.5 years to under 40 hours. This activity will result in a potential savings of $350,000 over the life of the activity

  12. Potential contamination of groundwater in the World Heritage Site of ...

    African Journals Online (AJOL)

    The rapid population growth, high levels of tourism and poor sewage waste disposal (at least for the foreseeable future) in St. Katherine have resulted in potential contamination of groundwater and subsequent high risk to human health. To evaluate the safety of well water for human use in St. Katherine, water samples were ...

  13. Datura contamination of hay as the suspected cause of an extensive outbreak of impaction colic in horses : clinical communication

    Directory of Open Access Journals (Sweden)

    T.W. Naudé

    2005-06-01

    Full Text Available atura poisoning of horses is extensively reviewed. An outbreak of intractable impaction colic affecting 18 of 83 horses was stopped by withdrawing dried tef hay contaminated with young Datura plants. The dried, botanically identified Datura stramonium and D. ferox contained respectively 0.15 % mass/mass (m/m hyoscyamine as well as 0.16 % m/m hyoscine (scopolamine and only hyoscine at a concentration of 0.11 % m/m. Immature, unidentifiable plants resembling D. stramonium, contained 0.14 % m/m and 0.12 % m/m of the 2 respective tropane alkaloids. The outbreak was characterised by protracted and repeated colic attacks due to impaction of the large colon and/or caecum without any other anti-muscarinic signs. Comparative analyses of single specimens of dried seed of the 2 species collected from both fertilised and waste areas revealed that young South African Datura spp. had levels of tropane alkaloids comparable to those in the well-known toxic seed and were, consequently, equally toxic. The inherent danger of tef hay being contaminated with Datura is emphasised. To our knowledge this is the 1st field case of poisoning in horses ascribed to the vegetative parts of Datura spp.

  14. Challenges in the Management of Potentially Contaminated Scrap Metal

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W., E-mail: meehanrw@em.doe.gov [US Department of Energy, National Nuclear Security Administration, Washington, DC (United States)

    2011-07-15

    This paper describes the background and current status of the management of potentially contaminated metals and materials at the US Department of Energy (DOE) sites across the USA. The current DOE policy prohibiting the release of metal scrap for recycling from radiation areas is explained. Finally, a potential path forward to competently assess, characterize and clear material from radiological control is proposed that uses a combination of administrative processes and empirical techniques that are valid irrespective of the standard used for clearance. (author)

  15. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels

    International Nuclear Information System (INIS)

    Miller Julianne J.; Mizell Steve A.; Nikolich George; Campbell Scott A.

    2012-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 550, Area 8 Smoky Contamination Area (CA), during precipitation runoff events. CAU 550 includes Corrective Action Sites (CASs) 08-23-03, 08-23-04, 08-23-06, and 08-23-07; these CASs are associated with tests designated Ceres, Smoky, Oberon, and Titania, respectively.

  16. Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis.

    Science.gov (United States)

    Bade, Richard; Bijlsma, Lubertus; Miller, Thomas H; Barron, Leon P; Sancho, Juan Vicente; Hernández, Felix

    2015-12-15

    The recent development of broad-scope high resolution mass spectrometry (HRMS) screening methods has resulted in a much improved capability for new compound identification in environmental samples. However, positive identifications at the ng/L concentration level rely on analytical reference standards for chromatographic retention time (tR) and mass spectral comparisons. Chromatographic tR prediction can play a role in increasing confidence in suspect screening efforts for new compounds in the environment, especially when standards are not available, but reliable methods are lacking. The current work focuses on the development of artificial neural networks (ANNs) for tR prediction in gradient reversed-phase liquid chromatography and applied along with HRMS data to suspect screening of wastewater and environmental surface water samples. Based on a compound tR dataset of >500 compounds, an optimized 4-layer back-propagation multi-layer perceptron model enabled predictions for 85% of all compounds to within 2min of their measured tR for training (n=344) and verification (n=100) datasets. To evaluate the ANN ability for generalization to new data, the model was further tested using 100 randomly selected compounds and revealed 95% prediction accuracy within the 2-minute elution interval. Given the increasing concern on the presence of drug metabolites and other transformation products (TPs) in the aquatic environment, the model was applied along with HRMS data for preliminary identification of pharmaceutically-related compounds in real samples. Examples of compounds where reference standards were subsequently acquired and later confirmed are also presented. To our knowledge, this work presents for the first time, the successful application of an accurate retention time predictor and HRMS data-mining using the largest number of compounds to preliminarily identify new or emerging contaminants in wastewater and surface waters. Copyright © 2015 Elsevier B.V. All rights

  17. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    Science.gov (United States)

    1981-05-01

    well as long term effects on specific water bodies such as lakes and groundwater basins. Both the hydrazine propellants and the alternative jet fuels... freshwater bioassays was S. capricornutum. Initial investigations of marine waters used Dunaliella tertiolecta as the test organism but the differences in...AFAMRL-TR-80-85 USE OF UNICELLUAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS JAN SCHERFIG PETER S. DIXON CAROL A. JUSTICE ALBERTO ACEVEDO

  18. Spooky Suspects

    Science.gov (United States)

    Pacifici, Lara

    2011-01-01

    This activity presents an option for covering biology content while engaging students in an investigation that highlights the spirit of Halloween. Students are engaged in the story line and have fun trying to solve the mystery kidnapping by using science skills to examine the evidence and eliminate some ghoulish suspects. (Contains 1 figure.)

  19. Onsite disposal of radioactive waste: Estimating potential groundwater contamination

    International Nuclear Information System (INIS)

    Goode, D.J.; Neuder, S.M.; Pennifill, R.A.; Ginn, T.

    1986-11-01

    Volumes 1 and 2 of this report describe the NRC's methodology for assessing the potential public health and environmental impacts associated with onsite disposal of very low activity radioactive materials. This volume (Vol. 3) describes a general methodology for predicting potential groundwater contamination from onsite disposal. The methodology includes formulating a conceptual model, representing the conceptual model mathematically, estimating conservative parameters, and predicting receptor concentrations. Processes which must generally be considered in the methodology include infiltration, leaching of radionuclides from the waste, transport to the saturated zone, transport within the saturated zone, and withdrawal at a receptor location. A case study of shallow burial of iodine-125 illustrates application of the MOCMOD84 version of the US Geological Survey's 2-D solute transport model and a corresponding analytical solution. The appendices include a description and listing of MOCMOD84, descriptions of several analytical solution techniques, and a procedure for estimating conservative groundwater velocity values

  20. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  1. Potential for phytoextraction of PCBs from contaminated soils using weeds.

    Science.gov (United States)

    Ficko, Sarah A; Rutter, Allison; Zeeb, Barbara A

    2010-07-15

    A comprehensive investigation of the potential of twenty-seven different species of weeds to phytoextract polychlorinated biphenyls (PCBs) from contaminated soil was conducted at two field sites (Etobicoke and Lindsay) in southern Ontario, Canada. Soil concentrations were 31 microg/g and 4.7 microg/g at each site respectively. All species accumulated PCBs in their root and shoot tissues. Mean shoot concentrations at the two sites ranged from 0.42 microg/g for Chenopodium album to 35 microg/g for Vicia cracca (dry weight). Bioaccumulation factors (BAF=[PCB](plant tissue)/[PCB](mean soil)) at the two sites ranged from 0.08 for Cirsium vulgare to 1.1 for V. cracca. Maximum shoot extractions were 420 microg for Solidago canadensis at the Etobicoke site, and 120 microg for Chrysanthemum leucanthemum at the Lindsay site. When plant density was taken into account with a theoretical density value, seventeen species appeared to be able to extract a similar or greater quantity of PCBs into the shoot tissue than pumpkins (Curcurbita pepo ssp. pepo) which are known PCB accumulators. Therefore, some of these weed species are promising candidates for future phytoremediation studies. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  2. Review of risk from potential emerging contaminants in UK groundwater.

    Science.gov (United States)

    Stuart, Marianne; Lapworth, Dan; Crane, Emily; Hart, Alwyn

    2012-02-01

    This paper provides a review of the types of emerging organic groundwater contaminants (EGCs) which are beginning to be found in the UK. EGCs are compounds being found in groundwater that were previously not detectable or known to be significant and can come from agricultural, urban and rural point sources. EGCs include nanomaterials, pesticides, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as caffeine and nicotine. Many are relatively small polar molecules which may not be effectively removed by drinking water treatment. Data from the UK Environment Agency's groundwater screening programme for organic pollutants found within the 30 most frequently detected compounds a number of EGCs such as pesticide metabolites, caffeine and DEET. Specific determinands frequently detected include pesticides metabolites, pharmaceuticals including carbamazepine and triclosan, nicotine, food additives and alkyl phosphates. This paper discusses the routes by which these compounds enter groundwater, their toxicity and potential risks to drinking water and the environment. It identifies challenges that need to be met to minimise risk to drinking water and ecosystems. Copyright © 2012. Published by Elsevier B.V.

  3. Potential Risks of Freshwater Aquifer Contamination with Geosequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Robert

    2013-09-30

    Substantial leakage of CO{sub 2} from deep geological strata to shallow potable aquifers is likely to be rare, but chemical detection of potential leakage nonetheless remains an integral component of any safe carbon capture and storage system. CO{sub 2} that infiltrates an unconfined freshwater aquifer will have an immediate impact on water chemistry by lowering pH in most cases and by altering the concentration of total dissolved solids. Chemical signatures in affected waters provide an important opportunity for early detection of leaks. In the presence of CO{sub 2}, trace elements such as Mn, Fe, and Ca can increase by an order of magnitude or more above control concentrations within 100 days. Therefore, these and other elements should be monitored along with pH as geochemical markers of potential CO{sub 2} leaks. Dissolved inorganic carbon and alkalinity can also be rapidly responsive to CO{sub 2} and are stable indicators of a leak. Importantly, such changes may be detectable long before direct changes in CO{sub 2} are observed. The experimental results also suggest that the relative severity of the impact of leaks on overlying drinking-water aquifers should be considered in the selection of CO{sub 2} sequestration sites. One primary selection criteria should be metal and metalloid availability, such as uranium and arsenic abundance, to carefully monitor chemical species that could trigger changes above maximum contaminant levels (MCLs). Overall, the risks of leakage from underground CO{sub 2} storage are real but appear to be manageable if systems are closely monitored.

  4. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures.

    Science.gov (United States)

    Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C

    2016-03-01

    Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  5. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  6. Potential Human Health Risks of Tannery Waste-contaminated Poultry Feed

    Directory of Open Access Journals (Sweden)

    Mohammad Latiful Bari

    2015-01-01

    Conclusions. The estimated daily intake value, THQ, along with the aggregate hazard index value, indicated a potential risk to consumers through consumption of contaminated chicken. Therefore, the study results clearly demonstrate heavy metals accumulation in chicken due to feeding SCW-based feed. The contaminated chicken further transfers these heavy metals to humans through ingestion. Hence, there is a potential human health risk through consumption of contaminated chicken meat.

  7. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  8. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg D. [Desert Research Inst. (DRI), Reno, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-06-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure design and post-closure monitoring program.

  9. Creosote-contaminated sites: their potential for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J G; Chapman, P J; Pritchard, P H [US EPA Environmental Research Laboratory, Gulf Breeze, FL (USA)

    1989-10-01

    Coal tar creosote contamination is generally associated with surface soils, waters in treatment lagoons or evaporation areas, and groundwater contaminated with leachate from the above sources. The basic principle of bioremediation is to exploit the ability of microorganisms to catabolize a wide range of organic substrates. There are limitations which much be addressed if in situ bioremediation is to be successful: the pollutant must be in a chemical state conducive to microbial utilization, aeration and nutrient supplementation are essential elements of many in situ treatments, and there must be present an acclimated microbial population capable of degrading the pollutant. 35 refs., 3 tabs.

  10. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    Science.gov (United States)

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  12. Review of risk from potential emerging contaminants in UK groundwater

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan; Crane, Emily; Hart, Alwyn

    2012-01-01

    This paper provides a review of the types of emerging organic groundwater contaminants (EGCs) which are beginning to be found in the UK. EGCs are compounds being found in groundwater that were previously not detectable or known to be significant and can come from agricultural, urban and rural point sources. EGCs include nanomaterials, pesticides, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well a...

  13. Monosilicic acid potential in phytoremediation of the contaminated areas.

    Science.gov (United States)

    Ji, Xionghui; Liu, Saihua; Huang, Juan; Bocharnikova, Elena; Matichenkov, Vladimir

    2016-08-01

    The contamination of agricultural areas by heavy metals has a negative influence on food quality and human health. Various remediation techniques have been developed for the removal and/or immobilization of heavy metals (HM) in contaminated soils. Phytoremediation is innovative technology, which has advantages (low cost, easy monitoring, high selectivity) and limitations, including long time for procedure and negative impact of contaminants on used plants. Greenhouse investigations have shown that monosilicic acid can be used for regulation of the HM (Cd, Cr, Pb and Zn) mobility in the soil-plant system. If the concentration of monosilicic acid in soil was increased from 0 to 20 mg L(-1) of Si in soil solution, the HM bioavailability was increased by 30-150%. However, the negative influence on the barley by HM was reduced under monosilicic acid application. If the concentration of monosilicic acid was increased more than 20 mg L(-1), the HM mobility in the soil was decreased by 40-300% and heavy metal uptake by plants was reduced 2-3 times. The using of the monosilicic acid may increase the phytoremediation efficiency. However the technique adaptation will be necessary for phytoremediation on certain areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Erratum: potential microbial contamination during sampling of permafrost soil assessed by tracers

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Schostag, Morten Dencker; Priemé, Anders

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial b...

  15. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    Lajoie, C.A.

    1991-01-01

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14 C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14 C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  16. Allee effect in polar bears: a potential consequence of polychlorinated biphenyl contamination.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Sonne, Christian; Grimm, Volker

    2016-11-30

    Polar bears (Ursus maritimus) from East Greenland and Svalbard exhibited very high concentrations of polychlorinated biphenyls (PCBs) in the 1980s and 1990s. In Svalbard, slow population growth during that period was suspected to be linked to PCB contamination. In this case study, we explored how PCBs could have impacted polar bear population growth and/or male reproductive success in Svalbard during the mid-1990s by reducing the fertility of contaminated males. A dose-response relationship linking the effects of PCBs to male polar bear fertility was extrapolated from studies of the effects of PCBs on sperm quality in rodents. Based on this relationship, an individual-based model of bear interactions during the breeding season predicted fertilization success under alternative assumptions regarding male-male competition for females. Contamination reduced pregnancy rates by decreasing the availability of fertile males, thus triggering a mate-finding Allee effect, particularly when male-male competition for females was limited or when infertile males were able to compete with fertile males for females. Comparisons of our model predictions on age-dependent reproductive success of males with published empirical observations revealed that the low representation of 10-14-year-old males among breeding males documented in Svalbard in mid-1990s could have resulted from PCB contamination. We conclude that contamination-related male infertility may lead to a reduction in population growth via an Allee effect. The magnitude of the effect is largely dependent on the population-specific mating system. In eco-toxicological risk assessments, appropriate consideration should therefore be given to negative effects of contaminants on male fertility and male mating behaviour. © 2016 The Author(s).

  17. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites

    Directory of Open Access Journals (Sweden)

    Katarzyna Szwabe

    2017-03-01

    Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  18. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    Science.gov (United States)

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  19. Evaluating suspect sites open-quotes to clean or not to clean?close quotes

    International Nuclear Information System (INIS)

    Murray, M.E.; Coleman, R.L.; Tiner, P.F.

    1996-01-01

    Within many large government reservations are many sites that are potentially contaminated from various uses such as experiments, material storage, or material processes. There also exist many smaller areas that, by proximity to contaminated sites, or due to work contracts, are likely to be contaminated. The party responsible for such sites must evaluate if remediation is required, based on current guidelines and future uses. The Departments of Defense and Energy have many sites and properties that are suspected of being contaminated or associated with operations that could cause contamination. In some cases the contaminants may have been adequately cleaned up, then decayed away, biodegraded, or dispersed to a nondetectable level. The decision to remove these sites from any further consideration of remediation or control must be based on historical data, potential contaminants, current analytical data, future uses, and the cost associated with managing the sites. This paper deals with the methodology for evaluating small sites and gives some case studies

  20. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar.

    Science.gov (United States)

    Kosolsaksakul, Peerapat; Oliver, Ian W; Graham, Margaret C

    2018-06-01

    Cadmium (Cd) contaminated soils from the Mae Sot district in northwest Thailand, a region in which rice Cd concentrations often exceed health limits (0.4 mg/kg) set by the World Health Organisation, were examined for isotopically exchangeable Cd (Cd E values using a 111 Cd spike) to determine how this rates as a predictor of rice grain Cd in comparison with soil total Cd and solution extractable Cd (using the commonly applied BCR scheme and, in an attempt to distinguish carbonate bound forms, the Tessier soil sequential extraction scheme reagents). Step 1 of the BCR scheme (0.11 M CH 3 COOH) and step 1 of the Tessier scheme (1M MgCl 2 ) showed the highest R 2 values in regressions with rice Cd (91% and 90%, respectively), but all predictors were strongly linked to rice Cd (p soil, of the six tested, was an exception to this, where all predictors over-estimated grain Cd by a factor of 2.5-5.7, suggesting that rice grain Cd had been restricted here by the differing flooding regime and subsequent changes to redox conditions. E values and Tessier step 1 extractions were closely related, indicating that these measurements access similar pools of soil Cd. Separately, the isotopic exchangeability (representing bioavailability) of Cd was also assessed in two soils amended with rice husk and miscanthus biochars (0, 1, 5, 10, 15 and 20% w/w) in order to assess the utility of the biochars as a soil amendment for immobilising Cd in situ. One soil showed significant reductions in Cd E value at 5% rice husk biochar addition and at 15% miscanthus biochar addition however, based on the E value-rice grain Cd regression relationship previously established, the E values in the amended soils still predicted for a rice Cd concentration above the health limit. In the second soil, neither of the biochars successfully reduced the Cd E value. This indicates that further work is needed to customise biochar properties to suit specific soil and contaminant situations if they are to be

  1. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data

    Science.gov (United States)

    Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.

    2017-11-01

    Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in

  2. Potential soil contaminant levels of polychlorinated dibenzodioxins and dibenzofurans at industrial facilities employing heat transfer operations

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Muhr, C.A.; Greene, D.W.

    1992-04-01

    Certain manufacturing facilities formerly used large quantities of polychlorinated biphenyl (PCB) fluids in heat transfer operations. At many of these locations, operations have also involved PCB-containing electrical equipment. Commonly, over many years of plant operations, spills and leaks have resulted in PCB soil contamination. Dioxins and furans have been associated with PCB contamination in both the technical and popular press. Consequently, the need for analyses for dioxins and furans must be evaluated at locations where soils are contaminated with PCBs. This report presents an evaluation of potential dioxin and furan soil contamination based on heat transfer operations and spills from electrical equipment. The following five scenarios were examined for dioxin and furan contamination: (1) impurities in heat transfer fluids, (2) formation during heat transfer operations, (3) pyrolysis of heat transfer fluids, (4) impurities in dielectric fluids, and (5) pyrolysis of dielectric fluids. The potential contamination with dioxins and furans was calculated and compared with a 20 ppb guideline that has been used by the Centers for Disease Control for dioxin in subsoil. The results demonstrated that dioxins are formed only under pyrolytic conditions and only from the trichlorobenzenes present in dielectric fluids. Furans are found as impurities in PCB fluids but, as with dioxins, are not formed in significant quantities except during pyrolysis. Fortunately, pyrolytic conditions involving PCB fluids and soil contamination are unlikely; therefore, analyses for dioxin and furan contamination in soils will rarely be needed.

  3. Contamination potential of drinking water distribution network biofilms.

    Science.gov (United States)

    Wingender, J; Flemming, H C

    2004-01-01

    Drinking water distribution system biofilms were investigated for the presence of hygienically relevant microorganisms. Early biofilm formation was evaluated in biofilm reactors on stainless steel, copper, polyvinyl chloride (PVC) and polyethylene coupons exposed to unchlorinated drinking water. After 12 to 18 months, a plateau phase of biofilm development was reached. Surface colonization on the materials ranged between 4 x 10(6) and 3 x 10(7) cells/cm2, with heterotrophic plate count (HPC) bacteria between 9 x 10(3) and 7 x 10(5) colony-forming units (cfu)/cm2. Established biofilms were investigated in 18 pipe sections (2 to 99 years old) cut out from distribution pipelines. Materials included cast iron, galvanized steel, cement and PVC. Colonization ranged from 4 x 10(5) to 2 x 10(8) cells/cm2, HPC levels varied between 1 and 2 x 10(5) cfu/cm2. No correlation was found between extent of colonization and age of the pipes. Using cultural detection methods, coliform bacteria were rarely found, while Escherichia coli, Pseudomonas aeruginosa and Legionella spp. were not detected in the biofilms. In regular operation, distribution system biofilms do not seem to be common habitats for pathogens. However, nutrient-leaching materials like rubber-coated valves were observed with massive biofilms which harboured coliform bacteria contaminating drinking water.

  4. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P

    2017-09-20

    Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban

  5. Evaluating Potential Human Health Risks Associated with the Development of Utility-Scale Solar Energy Facilities on Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. -J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chang, Y. -S. [Argonne National Lab. (ANL), Argonne, IL (United States); Hartmann, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Wescott, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Kygeris, C. [Indiana Univ. of Pennsylvania, PA (United States)

    2013-09-01

    This report presents a general methodology for obtaining preliminary estimates of the potential human health risks associated with developing a utility-scale solar energy facility on a contaminated site, based on potential exposures to contaminants in soils (including transport of those contaminants into the air).

  6. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  7. Toxicological benchmarks for screening potential contaminants of concern for effects on terrestrial plants

    International Nuclear Information System (INIS)

    Suter, G.W. II; Will, M.E.; Evans, C.

    1993-09-01

    One of the initial stages in ecological risk assessment for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as ''contaminants of potential concern.'' This process is termed ''contaminant screening.'' It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a set of phytotoxicity benchmarks for 34 chemicals potentially associated with US Department of Energy (DOE) sites. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern. The purpose of this report is to present plant toxicity data and discuss their utility as benchmarks for determining the hazard to terrestrial plants caused by contaminants in soil. Benchmarks are provided for soils and solutions

  8. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA

    Science.gov (United States)

    Bradley, Paul M.; Battaglin, William A.; Clark, Jimmy M.; Henning, Frank; Hladik, Michelle L.; Iwanowicz, Luke R.; Journey, Celeste A.; Riley, Jeffrey W.; Romanok, Kristin

    2017-01-01

    Organic contaminants with designed molecular bioactivity, such as pesticides and pharmaceuticals, originate from human and agricultural sources, occur frequently in surface waters, and threaten the structure and function of aquatic and terrestrial ecosystems. Congaree National Park in South Carolina (USA) is a vulnerable park unit due to its location downstream of multiple urban and agricultural contaminant sources and its hydrologic setting, being composed almost entirely of floodplain and aquatic environments. Seventy-two water and sediment samples were collected from 16 sites in Congaree National Park during 2013 to 2015, and analyzed for 199 and 81 targeted organic contaminants, respectively. More than half of these water and sediment analytes were not detected or potentially had natural sources. Pharmaceutical contaminants were detected (49 total) frequently in water throughout Congaree National Park, with higher detection frequencies and concentrations at Congaree and Wateree River sites, downstream from major urban areas. Forty-seven organic wastewater indicator chemicals were detected in water, and 36 were detected in sediment, of which approximately half are distinctly anthropogenic. Endogenous sterols and hormones, which may originate from humans or wildlife, were detected in water and sediment samples throughout Congaree National Park, but synthetic hormones were detected only once, suggesting a comparatively low risk of adverse impacts. Assessment of the biodegradation potentials of 8 14C-radiolabeled model contaminants indicated poor potentials for some contaminants, particularly under anaerobic sediments conditions.

  9. Toxicological benchmarks for screening potential contaminants of concern for effects on terrestrial plants. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II; Will, M.E.; Evans, C.

    1993-09-01

    One of the initial stages in ecological risk assessment for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as ``contaminants of potential concern.`` This process is termed ``contaminant screening.`` It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a set of phytotoxicity benchmarks for 34 chemicals potentially associated with US Department of Energy (DOE) sites. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern. The purpose of this report is to present plant toxicity data and discuss their utility as benchmarks for determining the hazard to terrestrial plants caused by contaminants in soil. Benchmarks are provided for soils and solutions.

  10. Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides

    International Nuclear Information System (INIS)

    Zheng, Guiling; Pemberton, Robert; Li, Peng

    2016-01-01

    Tillandsia species have been recognized as efficient biomonitors of air pollution, but rarely exploited in bioindicating of strontium, an important nuclide. We exposed Tillandsia usneoides, colloquially known as Spanish moss due to its filamentous morphology but is an atypical angiosperm in the family Bromeliaceae, to the solutions with different Sr concentrations (0.1–100 mmol/L). The results showed that plants were able to endure Sr stress for a relatively long period, which suggests that T. usneoides is able to resist this toxic element. T. usneoides had the highest uptake ratio of Sr (82.21 ± 0.12%) when the plants were exposed to 0.1 mmol/L Sr solutions. Sr contents in T. usneoides increased significantly with the increase in applied metal solution concentrations. Low Sr stimulated the formation of chlorophyll, but high Sr decreased the contents of chlorophyll, and no significant effect on the total biomass was found in T. usneoides. In contrast, the permeability of plasma membrane based on the relative electronic conductivity in T. usneoides increased significantly under Sr stress, indicating that Sr probably caused oxidative stress. Moreover, correlation analysis showed that the leaf relative conductivity was significantly positively correlated with Sr contents in the plants after Sr treatments. Therefore, T. usneoides has considerable potential for monitoring Sr polluted environments through measuring Sr contents in the plant directly or exploiting the leaf relative conductivity as an indirect biomarker. - Highlights: • Sr contents in T. usneoides increase significantly with the increase of Sr concentrations. • Leaf relative conductivity is significantly positively correlated with Sr contents in the plant. • Tillandsia has high potential for monitoring Sr.

  11. Metagenomic Functional Potential Predicts Degradation Rates of a Model Organophosphorus Xenobiotic in Pesticide Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Thomas C. Jeffries

    2018-02-01

    Full Text Available Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats.

  12. Potential radiation dose from eating fish exposed to actinide contamination

    International Nuclear Information System (INIS)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238 U, 238 Pu, /sup 239,240/Pu and 241 Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (∼1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs

  13. Potential radiation dose from eating fish exposed to actinide contamination

    International Nuclear Information System (INIS)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1981-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of 238 U, 238 Pu, sup(239,240)Pu and 241 Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. (author)

  14. Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides.

    Science.gov (United States)

    Zheng, Guiling; Pemberton, Robert; Li, Peng

    2016-02-01

    Tillandsia species have been recognized as efficient biomonitors of air pollution, but rarely exploited in bioindicating of strontium, an important nuclide. We exposed Tillandsia usneoides, colloquially known as Spanish moss due to its filamentous morphology but is an atypical angiosperm in the family Bromeliaceae, to the solutions with different Sr concentrations (0.1-100 mmol/L). The results showed that plants were able to endure Sr stress for a relatively long period, which suggests that T. usneoides is able to resist this toxic element. T. usneoides had the highest uptake ratio of Sr (82.21 ± 0.12%) when the plants were exposed to 0.1 mmol/L Sr solutions. Sr contents in T. usneoides increased significantly with the increase in applied metal solution concentrations. Low Sr stimulated the formation of chlorophyll, but high Sr decreased the contents of chlorophyll, and no significant effect on the total biomass was found in T. usneoides. In contrast, the permeability of plasma membrane based on the relative electronic conductivity in T. usneoides increased significantly under Sr stress, indicating that Sr probably caused oxidative stress. Moreover, correlation analysis showed that the leaf relative conductivity was significantly positively correlated with Sr contents in the plants after Sr treatments. Therefore, T. usneoides has considerable potential for monitoring Sr polluted environments through measuring Sr contents in the plant directly or exploiting the leaf relative conductivity as an indirect biomarker. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  16. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): kinetics and effect on the NDMA formation potential of natural waters.

    Science.gov (United States)

    Lee, Changha; Lee, Yunho; Schmidt, Carsten; Yoon, Jeyong; Von Gunten, Urs

    2008-01-01

    The potential of ferrate (Fe(VI)) oxidation to remove N-nitrosodimethylamine (NDMA) precursors during water treatment was assessed. Apparent second-order rate constants (k(app)) for the reactions of NDMA and its suspected precursors (dimethylamine (DMA) and 7 tertiary amines with DMA functional group) with Fe(VI) were determined in the range of pH 6-12. Four model NDMA precursors (dimethyldithiocarbamate, dimethylaminobenzene, 3-(dimethylaminomethyl)indole and 4-dimethylaminoantipyrine) showed high reactivity toward Fe(VI) with k(app) values at pH 7 between 2.6 x 10(2) and 3.2 x 10(5)M(-1)s(-1). The other NDMA precursors (DMA, trimethylamine, dimethylethanolamine, dimethylformamide) and NDMA had k(app) values ranging from 0.55 to 9.1M(-1)s(-1) at pH 7. In the second part of the study, the NDMA formation potentials (NDMA-FP) of the model NDMA precursors and natural waters were measured with and without pre-oxidation by Fe(VI). For most of the NDMA precursors with the exception of DMA, a significant reduction of the NDMA-FP (>95%) was observed after complete transformation of the NDMA precursor. This result was supported by low yields of DMA from the Fe(VI) oxidation of tertiary amine NDMA precursors. Pre-oxidation of several natural waters (rivers Rhine, Neckar and Pfinz) with a high dose of Fe(VI) (0.38 mM = 21 mg L(-1) as Fe) led to removals of the NDMA-FP of 46-84%. This indicates that the NDMA precursors in these waters have a low reactivity toward Fe(VI) because it has been shown that for fast-reacting NDMA precursors Fe(VI) doses of 20 microM (1.1 mg L(-1) as Fe) are sufficient to completely oxidize the precursors.

  17. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    Science.gov (United States)

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  18. Toxicological benchmarks for screening potential contaminants of concern for effects on terrestrial plants: 1994 revision

    International Nuclear Information System (INIS)

    Will, M.E.; Suter, G.W. II.

    1994-09-01

    One of the initial stages in ecological risk assessment for hazardous waste sites is screening contaminants to determine which of them are worthy of further consideration as contaminants of potential concern. This process is termed contaminant screening. It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a set of phytotoxicity benchmarks for 38 chemicals potentially associated with United States Department of Energy (DOE) sites. In addition, background information on the phytotoxicity and occurrence of the chemicals in soils is presented, and literature describing the experiments from which data were drawn for benchmark derivation is reviewed. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern

  19. Toxicological benchmarks for screening potential contaminants of concern for effects on terrestrial plants: 1994 revision

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessment for hazardous waste sites is screening contaminants to determine which of them are worthy of further consideration as contaminants of potential concern. This process is termed contaminant screening. It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a set of phytotoxicity benchmarks for 38 chemicals potentially associated with United States Department of Energy (DOE) sites. In addition, background information on the phytotoxicity and occurrence of the chemicals in soils is presented, and literature describing the experiments from which data were drawn for benchmark derivation is reviewed. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern.

  20. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II

    1993-01-01

    One of the initial stages in ecological risk assessment for hazardous waste sites is screening contaminants to determine which of them are worthy of further consideration as contaminants of potential concern. This process is termed contaminant screening. It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to plants. This report presents a standard method for deriving benchmarks for this purpose (phytotoxicity benchmarks), a set of data concerning effects of chemicals in soil or soil solution on plants, and a set of phytotoxicity benchmarks for 38 chemicals potentially associated with United States Department of Energy (DOE) sites. In addition, background information on the phytotoxicity and occurrence of the chemicals in soils is presented, and literature describing the experiments from which data were drawn for benchmark derivation is reviewed. Chemicals that are found in soil at concentrations exceeding both the phytotoxicity benchmark and the background concentration for the soil type should be considered contaminants of potential concern.

  1. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  2. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  3. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh.

    Science.gov (United States)

    Mahmud, Rezwanul; Inoue, Naoto; Kasajima, Shin-Ya; Shaheen, Riffat

    2008-01-01

    Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.

  4. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil

    Czech Academy of Sciences Publication Activity Database

    Rídl, Jakub; Kolář, Michal; Strejček, M.; Strnad, Hynek; Štursa, P.; Pačes, Jan; Macek, T.; Uhlík, O.

    2016-01-01

    Roč. 7, JUN 24 (2016), č. článku 995. ISSN 1664-302X R&D Projects: GA ČR GA13-28283S Institutional support: RVO:68378050 Keywords : microbial community structure * plants * fertilization * contaminated soil * functional potential Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.076, year: 2016

  5. HOLISTIC APPROACH FOR ASSESSING THE PRESENCE AND POTENTIAL IMPACTS OF WATERBORNE ENVIRONMENTAL CONTAMINANTS

    Science.gov (United States)

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipe...

  6. Methodological guide: management of industrial sites potentially contaminated by radioactive substances

    International Nuclear Information System (INIS)

    2001-01-01

    At the request of the Ministries of Health and the Environment, IPSN is preparing and publishing the first version of the methodological guide devoted to managing industrial sites potentially contaminated by radioactive substances. This guide describes a procedure for defining and choosing strategies for rehabilitating such industrial sites. (author)

  7. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA.

    Science.gov (United States)

    Bradley, Paul M; Battaglin, William A; Clark, Jimmy M; Henning, Frank P; Hladik, Michelle L; Iwanowicz, Luke R; Journey, Celeste A; Riley, Jeffrey W; Romanok, Kristin M

    2017-11-01

    Organic contaminants with designed molecular bioactivity, such as pesticides and pharmaceuticals, originate from human and agricultural sources, occur frequently in surface waters, and threaten the structure and function of aquatic and terrestrial ecosystems. Congaree National Park in South Carolina (USA) is a vulnerable park unit due to its location downstream of multiple urban and agricultural contaminant sources and its hydrologic setting, being composed almost entirely of floodplain and aquatic environments. Seventy-two water and sediment samples were collected from 16 sites in Congaree National Park during 2013 to 2015, and analyzed for 199 and 81 targeted organic contaminants, respectively. More than half of these water and sediment analytes were not detected or potentially had natural sources. Pharmaceutical contaminants were detected (49 total) frequently in water throughout Congaree National Park, with higher detection frequencies and concentrations at Congaree and Wateree River sites, downstream from major urban areas. Forty-seven organic wastewater indicator chemicals were detected in water, and 36 were detected in sediment, of which approximately half are distinctly anthropogenic. Endogenous sterols and hormones, which may originate from humans or wildlife, were detected in water and sediment samples throughout Congaree National Park, but synthetic hormones were detected only once, suggesting a comparatively low risk of adverse impacts. Assessment of the biodegradation potentials of 8 14 C-radiolabeled model contaminants indicated poor potentials for some contaminants, particularly under anaerobic sediments conditions. Environ Toxicol Chem 2017;36:3045-3056. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2017 SETAC.

  8. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  9. Assessing the potential of brachiaria decumbens as remediation agent for soil contaminated wit oil sludge

    International Nuclear Information System (INIS)

    Latiffah Norddin; Ahmad Nazrul Abd Wahid; Hazlina Abdullah; Abdul Razak Ruslan

    2005-01-01

    Bioremediation is a method of treatment of soil or water contaminated with toxic materials, involving the use of living organisms. Oil or petroleum sludge is a waste product of the petroleum refining industry, and is now accumulating at a fast rate at petroleum refinery sites in the country. Common components of oil sludge are mud and sand, containing toxic materials from hydrocarbons, heavy metals and radioactive elements from the seabed. In the present study, the oil sludge samples were obtained from barrels of the materials stored at the Radioactive Waste Treatment Centre, MINT. The samples were analysed of their compounds, elemental and radioactive contents. Trials on microbial degradation of the sludge materials were ongoing. This paper discusses the potential of a grass to remediate soils contaminated with petroleum sludge. Remediation of soils contaminated with organic compounds and heavy metals using plants, including grasses, including Vetiver, Lolium and Agrostis have been carried out in many countries. A greenhouse pot trial was conducted to assess the suitability of the pasture grass Brachiaria decumbens Stapf. and its mutant Brachiaria decumbens KLUANG Comel as a remediation agent for oil sludge contaminated soil. Samples of grasses and soils before planting, during growth stage and at end of experiment were analysed for the different toxicity. Although the grasses were promoted for use in pasture, and KLUANG Comel has good potential as an ornamental plant, too, their other potentials, including as phytoremediation agents need to be explored. (Author)

  10. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

    Science.gov (United States)

    Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C

    2014-06-01

    Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Identifying potential sources of Sudan I contamination in Capsicum fruits over its growth period.

    Science.gov (United States)

    Wu, Naiying; Gao, Wei; Zhou, Li; Lian, Yunhe; Li, Fengfei; Han, Wenjie

    2015-04-15

    Sudan dyes in spices are often assumed to arise from cross-contamination or malicious addition. Here, experiments were carried out to identify the potential source of Sudan I-IV in Capsicum fruits through investigation of their contents in native Capsicum tissues, soils and associated agronomic materials. Sudan II-IV was not detected in any of the tested samples. Sudan I was found in almost all samples except for the mulching film. Sudan I concentrations decreased from stems to leaves and then to fruits or roots. Sudan I levels in soils were significantly elevated by vegetation treatment. These results exclude the possibility of soil as the main source for Sudan I contamination in Capsicum fruits. Further study found out pesticide and fertilizer constitutes the major source of Sudan I contamination. This work represents a preliminary step for a detailed Sudan I assessment to support Capsicum management and protection in the studied region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Healthcare workers mobile phone usage: A potential risk for viral contamination. Surveillance pilot study.

    Science.gov (United States)

    Cavari, Yuval; Kaplan, Or; Zander, Aviva; Hazan, Guy; Shemer-Avni, Yonat; Borer, Abraham

    2016-01-01

    Mobile phones are commonly used by healthcare workers (HCW) in the working environment, as they allow instant communication and endless resource utilisation. Studies suggest that mobile phones have been implicated as reservoirs of bacterial pathogens, with the potential to cause nosocomial infection. This study aimed to investigate the presence of Respiratory Syncytial Virus, Adenovirus and Influenza Virus on HCWs mobile phones and to identify risk factors implied by HCWs practice of mobile phones in a clinical paediatric environment. Fifty HCWs' mobile phones were swabbed over both sides of the mobile phone, for testing of viral contamination during 8 days in January 2015. During the same period, a questionnaire investigating usage of mobile phones was given to 101 HCWs. Ten per cent of sampled phones were contaminated with viral pathogens tested for. A total of 91% of sampled individuals by questionnaire used their mobile phone within the workplace, where 37% used their phone at least every hour. Eighty-nine (88%) responders were aware that mobile phones could be a source of contamination, yet only 13 (13%) disinfect their cell phone regularly. Mobile phones in clinical practice may be contaminated with viral pathogenic viruses. HCWs use their mobile phone regularly while working and, although the majority are aware of contamination, they do not disinfect their phones.

  13. Potential of Trichoderma spp. strains for the bioremediation of soils contaminated with petroleum

    Directory of Open Access Journals (Sweden)

    Marcia Pesántez

    2016-10-01

    Full Text Available Fungi species can degrade xenobiotic compounds contaminating the soil, including hydrocarbons. The objective of this work was to determine the potential of three strains of Trichoderma, isolated from soil contaminated with petroleum, for bioremediation. Trichoderma harzianum CCECH-Te1, Trichoderma viride CCECH-Te2 and Trichoderma psedokoningii CCECH-Te3 were included in one assay with each independent strain. The inoculum was adjusted to a concentration of 1x1010 conidia ml-1 which was applied to soil contaminated by an oil spill. After 96 days of inoculation, soil samples were taken at 10 and 15 cm depth. The content of total hydrocarbons, polycyclic aromatic hydrocarbons and heavy metals such as cadmium, nickel and lead were determined. With the data, it was calculated the percentage of removal of the analyzed compounds by each strain. At 10 cm and 15 cm depth, it was observed the removal of the compounds in percentages that reached between 47 and 69.1% in the hydrocarbons and up to 53.72% in the heavy metals. It which denoted the potential of the three strains for bioremediation in contaminated soils.   Keywords: heavy metals, polycyclic aromatic hydrocarbons, xenobiotic compounds

  14. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  15. Development of methods and criteria for a standardized evaluation of contaminated sites and abandoned waste disposal sites particularly concerning their ground water contamination potential. Pt. 1. Final Report

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Arneth, J.D.; Struppe, T.; Milde, G.

    1994-01-01

    Contaminated sites should be evaluated to such an extend, that nearly all risks for man and environment can be safely estimated. An assessment for such sites is presented which combines a substance-specific and a site-specific evaluation. It is a standardized path-specific concept in which - as an example - the contamination path ''waste - groundwater - drinking-water'' is investigated and evaluated in detail. Path-specific main contaminants are established on a statistic basis and ranked according to normalized evaluation numbers of 1-100. Their toxicity potential is calculated for which a particular and standardized method was developed. Main contaminants having a high toxicity potential are called priority contaminants. For the most important exposure/usage on this contamination path, the drinking-water catchment, hygienic and toxicologic based standards are presented. Together with site-specific conditions and the also path-specific and normalized transfer/persistency potential of the priority contaminants it is possible to come to a site- and usage/exposure-specific evaluation of individual sites. (orig.) [de

  16. Butyltin contamination in Northern Chilean coast: Is there a potential risk for consumers?

    Science.gov (United States)

    Mattos, Yasna; Stotz, Wolfgang B; Romero, María Soledad; Bravo, Manuel; Fillmann, Gilberto; Castro, Ítalo B

    2017-10-01

    Imposex is the superimposition of non-functional male sex organs in gastropod females. This syndrome is a hormonal imbalance induced by tributyltin (TBT) which have been used in antifouling paints formulation. The present study aimed to perform an integrated environmental assessment of imposex and butyltin (BT) contamination using surface sediments and tissues of Thaisella chocolata (an edible gastropod) from northern Chile. The results showed imposex incidence in 11 out of 12 sites. In the most contaminated sites, which are areas under the influence of maritime activities, and also used for fishing and aquaculture, RPLI were over 60 and VDSI over 4 (high incidence of sterile females). Exceptionally high contamination levels and evidences of fresh inputs of tributyltin (TBT) were detected along the studied area. TBT levels above 300 and 90ngSng -1 , respectively, were recorded in sediments and edible gastropod tissues of 6 sites. Thus, a daily ingestion of 90 to 173g of T. chocolata foot (4 to 8 organisms) from the most contaminated sites will certainly lead to the consumption of BT exceeding the tolerable daily intake recommended by European Food Safety Authority. It is reasonable to consider that human risk is even higher if daily consumption of additional seafood is considered. Moreover, some contaminated sites were located within the marine reserve "Isla Grande Atacama", indicating that even marine protected areas are under the influence of TBT contamination. These findings suggest that current levels of TBT in the studied area are sufficient to induce harmful effects on the environment and constitutes a potential threat to seafood consumers. Thus, national regulatory actions toward environmental protection and food safety of local populations are still mandatory, even after 8years of the TBT global ban by IMO. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil

    Directory of Open Access Journals (Sweden)

    Marta Zalewska

    2014-12-01

    Full Text Available Phytoextraction relies on plants with a high capacity to absorb heavy metals and remove them from the soil. The objective of this study was to analyze the potential of sunflower (Helianthus annuus L. and white mustard (Sinapis alba L. for phytoextraction of Zn-contaminated soil. Research was based on a strict pot experiment conducted in a greenhouse. Seven treatments were established with increasing Zn concentrations: 0, 25, 50, 100, 200, 400, and 600 mg Zn kg-1 air-dry soil. The first tested plant was fodder sunflower. In the following year, white mustard was sown in the same pots. Plants were harvested at the end of the flowering stage. The toxic effect of Zn on sunflower yields occurred at the contamination level of 200 mg Zn kg-1 soil. In the second year of the experiment, a significant decrease in mustard biomass took place in response to 400 mg Zn kg-1 soil. The contamination level of 600 mg Zn kg-1 soil resulted in complete plant death. Plant growth was not inhibited even at high tissue Zn concentrations of 515 mg Zn kg-1 sunflower DM and 422 mg Zn kg-1 mustard DM. The 2-yr cropping system did not contribute to a significant decrease in soil Zn content. Despite high concentrations of Zn in sunflower and mustard plants, total Zn uptake accounted for only 1% to 8% of the Zn rate introduced into the soil. However, in the long run, the growing of crops could reduce Zn contamination levels in the soil. The relatively high tolerance of sunflower and white mustard for Zn contamination and rapid growth of these species are possible alternatives for phytoextraction and phytostabilization of Zn-contaminated soil.

  18. Rapid Analysis of Eukaryotic Bioluminescence to Assess Potential Groundwater Contamination Events

    Directory of Open Access Journals (Sweden)

    Zacariah L. Hildenbrand

    2015-01-01

    Full Text Available Here we present data using a bioluminescent dinoflagellate, Pyrocystis lunula, in a toxicological bioassay to rapidly assess potential instances of groundwater contamination associated with natural gas extraction. P. lunula bioluminescence can be quantified using spectrophotometry as a measurement of organismal viability, with normal bioluminescent output declining with increasing concentration(s of aqueous toxicants. Glutaraldehyde and hydrochloric acid (HCl, components used in hydraulic fracturing and shale acidization, triggered significant toxicological responses in as little as 4 h. Conversely, P. lunula was not affected by the presence of arsenic, selenium, barium, and strontium, naturally occurring heavy metal ions potentially associated with unconventional drilling activities. If exogenous compounds, such as glutaraldehyde and HCl, are thought to have been introduced into groundwater, quantification of P. lunula bioluminescence after exposure to water samples can serve as a cost-effective detection and risk assessment tool to rapidly assess the impact of putative contamination events attributed to unconventional drilling activity.

  19. Biofuel and other biomass based products from contaminated sites - Potentials and barriers from Swedish perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Enell, Anja; Rihm, Thomas; Haglund, Kristina; Wik, Ola [Swedish Geotechnical Institute, Linkoeping (Sweden); Blom, Sonja; Angelbratt, Alexandra [FB Engineering AB, Goeteborg (Sweden); Bardos, Paul [r3 Environmental Technology Ltd, Reading (United Kingdom); Track, Thomas [DECHEMA e. V., Frankfurt am Main (Germany); Keuning, Sytze [Bioclear b.v., Groningen (Netherlands)

    2009-07-01

    In this report, results are presented based on interviews and literature surveys on the triggers and stoppers for non food crop on contaminated land in Sweden. The report also includes a first estimate of potential marginal land for biofuel production in Sweden. The report is a first step to explore the feasibility of a range of possible approaches to combine risk based land management (RBLM) with non-food crop land-uses and organic matter re-use as appropriate in a Swedish context. The focus of the report is on the treatment of contaminated land by phyto-remediation and on biofuel cultivation. In Sweden, like all other countries in Europe, areas of land have been degraded by past use. Such previously developed land includes areas affected by mining, fallout from industrial processes such as smelting, areas elevated with contaminated dredged sediments, former landfill sites and many other areas where the decline of industrial activity has left a legacy of degraded land and communities. The extent of contamination may not be sufficient to trigger remediation under current regulatory conditions, and there may be little economic incentive to regenerate the affected areas. An ideal solution would be a land management approach that is able to pay for itself. Biomass from coppice or other plantations has long been seen as a possible means of achieving this goal. Phyto remediation offers a low cost method for remediation of areas that are not candidates for conventional regeneration. The optimal conditions for phyto remediation are large land areas of low or mediate contamination. Phyto remediation is also suitable to prevent spreading of contaminants, for example in green areas such as in cities, as waste water buffer and small size remediation areas with diffuse spreading. Phyto remediation implies that plants, fungi or algae are used to remediate, control or increase the natural attenuation of contaminants. Depending on the contaminating species and the site conditions

  20. Biofuel and other biomass based products from contaminated sites - Potentials and barriers from Swedish perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Enell, Anja; Rihm, Thomas; Haglund, Kristina; Wik, Ola (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja; Angelbratt, Alexandra (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas (DECHEMA e. V., Frankfurt am Main (Germany)); Keuning, Sytze (Bioclear b.v., Groningen (Netherlands))

    2009-07-01

    In this report, results are presented based on interviews and literature surveys on the triggers and stoppers for non food crop on contaminated land in Sweden. The report also includes a first estimate of potential marginal land for biofuel production in Sweden. The report is a first step to explore the feasibility of a range of possible approaches to combine risk based land management (RBLM) with non-food crop land-uses and organic matter re-use as appropriate in a Swedish context. The focus of the report is on the treatment of contaminated land by phyto-remediation and on biofuel cultivation. In Sweden, like all other countries in Europe, areas of land have been degraded by past use. Such previously developed land includes areas affected by mining, fallout from industrial processes such as smelting, areas elevated with contaminated dredged sediments, former landfill sites and many other areas where the decline of industrial activity has left a legacy of degraded land and communities. The extent of contamination may not be sufficient to trigger remediation under current regulatory conditions, and there may be little economic incentive to regenerate the affected areas. An ideal solution would be a land management approach that is able to pay for itself. Biomass from coppice or other plantations has long been seen as a possible means of achieving this goal. Phyto remediation offers a low cost method for remediation of areas that are not candidates for conventional regeneration. The optimal conditions for phyto remediation are large land areas of low or mediate contamination. Phyto remediation is also suitable to prevent spreading of contaminants, for example in green areas such as in cities, as waste water buffer and small size remediation areas with diffuse spreading. Phyto remediation implies that plants, fungi or algae are used to remediate, control or increase the natural attenuation of contaminants. Depending on the contaminating species and the site conditions

  1. Potential economic losses to the US corn industry from aflatoxin contamination.

    Science.gov (United States)

    Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years.

  2. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    International Nuclear Information System (INIS)

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    Current efforts to remediate subsurface contamination have spurred research in the application of in situ bioremediation. In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14 C-labeled organic compounds, and the evolution of 14 CO 2 was measured over time. Gas chromatographic analyses were used to monitor CO 2 production and O 2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14 CO 2 was measured from [ 14 C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [ 14 C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14 C label. [ 14 C]benzene and [ 14 C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO 3 , CO 2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rte of 0.099 μmol g -1 (dry weight) day -1 while oxygen concentration decreased at a rate of 0.124 μmol g -1 (dry weight) day -1 . With no added nitrate, CO 2 production was not different from that in metabolically inhibited control vials. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation

  3. Potential economic losses to the USA corn industry from aflatoxin contamination

    Science.gov (United States)

    Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F.

    2016-01-01

    Mycotoxins, toxins produced by fungi that colonize food crops, can pose a heavy economic burden to the United States corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the US and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (FDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from $52.1 million to $1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606

  4. Immunostimulatory Potential of β-Lactoglobulin Preparations: Effects Caused by Endotoxin Contamination

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Bovetto, L.; Fritsche, R.

    2003-01-01

    Background: The immunomodulating potential residing in cow's milk proteins is currently receiving increasing attention because of growing interest in functional foods and the complex problem of cow's milk allergy. One of the major cow's milk allergens, whey protein beta-lactoglobulin, has...... the immunomodulatory activity. Eventually, the immunostimulatory effect was found to be caused by endotoxin contamination.Conclusion: These results identify endotoxin as the main immunostimulatory component present in some commercial beta-lactoglobulin preparations. Moreover, the present study makes it evident...

  5. Hyperspectral fluorescence imaging of animal feces and soil: potential use of fluorescence imaging for assessment of soil fecal contamination and compost maturity

    Science.gov (United States)

    Contamination by pathogenic microorganisms can lead to serious illnesses, particularly if thermal mishandling of contaminated agricultural produce occurs and promotes the incubation of potential pathogens. Pathogenic microbial contamination of agricultural products can occur through a variety of pat...

  6. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2015-08-01

    The aim of this work was to assess the suitability of Miscanthus × giganteus and Spartina pectinata link to Cu, Ni, and Zn phytoremediation. A 2-year microplot experiment with the tested grasses growing on metal-contaminated soil was carried out. Microplots with cement borders, measuring 1 × 1 × 1m, were filled with Haplic Luvisols soil. Simulated soil contamination with Cu, Ni, and Zn was introduced in the following doses in mg kg(-1): 0-no metals, Cu1-100, Cu2-200, Cu3-400, Ni1-60, Ni2-100, Ni3-240, Zn1-300, Zn2-600, and Zn3-1200. The phytoremediation potential of grasses was evaluated using a tolerance index (TI), bioaccumulation factor (BF), bioconcentration factor (BCF), and translocation factor (TF). S. pectinata showed a higher tolerance to soil contamination with Cu, Ni, and Zn compared to M. × giganteus. S. pectinata was found to have a high suitability for phytostabilization of Zn and lower suitability of Cu and Ni. M. × giganteus had a lower phytostabilization potential than S. pectinata. The suitability of both grasses for Zn phytoextraction depended on the age of the plants. Both grasses were not suitable for Cu and Ni phytoextraction. The research showed that one-season studies were not valuable for fully assessing the phytoremediation potential of perennial plants.

  7. Phytoremediation potential of willow tress for aquifers contaminated with ethanol-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Corseuil, H.X. [Universidade Federal de Santa Catarina, Florianopolis (Brazil). Departamento de Engenharia Sanitaria e Ambiental; Moreno, F.N. [Universidade do Sul de Santa Catarina, Palhoca (Brazil). Centro de Ciencias Agrarias e das Engenharias

    2001-07-01

    Ethanol-blended gasoline has been used in Brazil for 20 years and, probably, is going to be more widely used in North America due to the MtBE environmental effects on groundwater. The potential impacts caused by the presence of ethanol in UST spills are related to the co-solvency effect and the preferential degradation of ethanol over the BTEX compounds. These interactions may increase the length of dissolved hydrocarbon plumes and the costs associated with site remediation. This study investigates the advantages of phytoremediation to overcome the problems associated with the presence of ethanol in groundwater contaminated with gasoline-ethanol mixtures. Experiments were performed under lab conditions with cuttings of Willow tree (Salix babylonica) cultivated hydroponically. Results showed that the cuttings were able to reduce ethanol and benzene concentrations by more than 99% in less than a week. The uptake of both contaminants was confirmed by blank controls and was significantly related to cuttings transpiration capacity. Sorption onto roots biomass also markedly affected the behavior of contaminants in solution. Experiments to evaluate plants' toxicity to ethanol indicated that plants were only affected when aqueous ethanol concentration reached 2000mgl{sup -1}. Results suggest that phytoremediation can be a good complement to intrinsic remediation in shallow aquifer sites contaminated with ethanol-blended gasoline spills. (Author)

  8. Pollution potential of oil-contaminated soil on groundwater resources in Kuwait

    International Nuclear Information System (INIS)

    Literathy, P.; Quinn, M.; Al-Rashed, M.

    2003-01-01

    The only natural freshwater resource of Kuwait occurs as lenses floating on the saline groundwater in the northern part of the country, near to the oil fields. Rainwater is the only means of recharge of this limited groundwater resource. This groundwater is used as bottled drinking water and the fresh groundwater aquifer is considered as a strategic drinking water reserve for Kuwait. As a result of the 1991 Gulf War, the upper soil layer has been widely contaminated with crude oil and crude oil combustion products, which are potential pollutants likely affecting the groundwater resources. Significant efforts have been made to assess this pollution. These included: (a) a soil survey for assessing the soil contamination, and (b) leaching experiments to characterise the mobilization of the soil-associated pollutants. Fluorescence measurement techniques were used during field surveys as well as for laboratory testing. In addition, determination of the total extractable matter (TEM), total petroleum hydrocarbons (TPH), and GC/MS measurement of polyaromatic hydrocarbons (PAHs) were performed for the assessments. The laser induced fluorescence (LIF) measurement, having good correlation with the other laboratory measurements, was proved to provide necessary information for the assessment of the oil-contamination level in the desert soil. The subsequent leaching test with water demonstrated the mobilization of the fluorescing compounds (e.g. PAHs), and the alteration in the leaching characteristics of the contamination during the long term environmental weathering of the oil. (author)

  9. Potential for effects of land contamination on human health. 2. The case of waste disposal sites.

    Science.gov (United States)

    Kah, Melanie; Levy, Len; Brown, Colin

    2012-01-01

    This review of the epidemiological literature shows that evidence for negative impacts of land contaminated by waste disposal on human health is limited. However, the potential for health impacts cannot be dismissed. The link between residence close to hazardous waste disposal sites and heightened levels of stress and anxiety is relatively well established. However, studies on self-reported outcomes generally suffer from interpretational problems, as subjective symptoms may be due to increased perception and recall. Several recent multiple-site studies support a plausible linkage between residence near waste disposal sites and reproductive effects (including congenital anomalies and low birth weight). There is some conflict in the literature investigating links between land contamination and cancers; the evidence for and against a link is equally balanced and is insufficient to make causal inferences. These are difficult to establish because of lack of data on individual exposures, and other socioeconomic and lifestyle factors that may confound a relationship with area of residence. There is no consistently occurring risk for any specific tumor across multiple studies on sites expected to contain similar contaminants. Further insights on health effects of land contamination are likely to be gained from studies that consider exposure pathways and biomarkers of exposure and effect, similar to those deployed with some success in investigating impacts of cadmium on human health.

  10. Direct and indirect effects of a potential aquatic contaminant on grazer-algae interactions.

    Science.gov (United States)

    Evans-White, Michelle A; Lamberti, Gary A

    2009-02-01

    Contaminants have direct, harmful effects across multiple ecological scales, including the individual, the community, and the ecosystem levels. Less, however, is known about how indirect effects of contaminants on consumer physiology or behavior might alter community interactions or ecosystem processes. We examined whether a potential aquatic contaminant, an ionic liquid, can indirectly alter benthic algal biomass and primary production through direct effects on herbivorous snails. Ionic liquids are nonvolatile organic salts being considered as an environmentally friendly potential replacement for volatile organic compounds in industry. In two greenhouse experiments, we factorially crossed four concentrations of 1-N-butyl-3-methylimidazolium bromide (bmimBr; experiment 1: 0 or 10 mg/L; experiment 2: 0, 1, or 100 mg/L) with the presence or absence of the snail Physa acuta in aquatic mesocosms. Experimental results were weighted by their respective control (no bmimBr or P. acuta) and combined for statistical analysis. When both bmimBr and snails were present, chlorophyll a abundance and algal biovolume were higher than would be expected if both factors acted additively. In addition, snail growth rates, relative to those of controls, declined by 41 to 101% at 10 and 100 mg/L of bmimBr. Taken together, these two results suggest that snails were less efficient grazers in the presence of bmimBr, resulting in release of algae from the grazer control. Snails stimulated periphyton primary production in the absence, but not in the presence, of bmimBr, suggesting that bmimBr also can indirectly alter ecosystem function. These findings suggest that sublethal contaminant levels can negatively impact communities and ecosystem processes via complex interactions, and they provide baseline information regarding the potential effects of an emergent industrial chemical on aquatic systems.

  11. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Badawi, Nora; Johnsen, Anders R.; Brandt, Kristian K.; Sørensen, Jan; Aamand, Jens

    2012-01-01

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14 C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  12. Potential contaminants in the food chain: identification, prevention and issue management.

    Science.gov (United States)

    Scanlan, Francis P

    2007-01-01

    Contaminants are a vast subject area of food safety and quality. They are generally divided into chemical, microbiological and physical classes and are present in our food chain from raw materials to finished products. They are the subject of international and national legislation that has widened to cover more and more contaminant classes and food categories. In addition, consumers have become increasingly aware of and alarmed by their risks, whether rightly or not. What is the food industry doing to ensure the safety and quality of the products we feed our children? This is a valid question which this article attempts to address from an industrial viewpoint. Chemical food safety is considered a complex field where the risk perception of consumers is often the highest. The effects of chronic or acute exposure to chemical carcinogens may cause disease conditions long after exposure that can be permanently debilitating or even fatal. It is also a moving target, as knowledge about the toxicity and occurrence data of new chemical contaminants continues to be generated. Their identification, prevention and management are challenges to the food industry as a whole. A reminder of the known chemical hazards in the food chain will be presented with an emphasis on the use of early warning to identify potential new contaminants. Early warning is also a means of prevention, anticipating food safety concerns before they become issues to manage. Current best management practices including Hazard Analysis and Critical Control Points relating to the supply chain of baby foods and infant formulae will be developed. Finally, key lessons from a case study on recent contamination issues in baby food products will be presented.

  13. Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay estuary

    Science.gov (United States)

    Rattner, Barnett A.; McGowan, Peter C.

    2007-01-01

    A search of the Contaminant Exposure and Effects-Terrestrial Vertebrates (CEE-TV) database revealed that 70% of the 839 Chesapeake Bay records deal with avian species. Studies conducted on waterbirds in the past 15 years indicate that organochlorine contaminants have declined in eggs and tissues, although p,p'-DDE, total polychlorinated biphenyls (PCBs) and coplanar PCB congeners may still exert sublethal and reproductive effects in some locations. There have been numerous reports of avian die-off events related to organophosphorus and carbamate pesticides. More contemporary contaminants (e.g., alkylphenols, ethoxylates, perfluorinated compounds, polybrominated diphenyl ethers) are detectable in bird eggs in the most industrialized portions of the Bay, but interpretation of these data is difficult because adverse effect levels are incompletely known for birds. Two moderaterized oil spills resulted in the death of several hundred birds, and about 500 smaller spill events occur annually in the watershed. With the exception of lead, concentrations of cadmium, mercury, and selenium in eggs and tissues appear to be below toxic thresholds for waterbirds. Fishing tackle and discarded plastics, that can entangle and kill young and adults, are prevalent in nests in some Bay tributaries. It is apparent that exposure and potential effects of several classes of contaminants (e.g., dioxins, dibenzofurans, rodenticides, pharmaceuticals, personal care products, lead shot, and some metals) have not been systematically examined in the past 15 years, highlighting the need for toxicological evaluation of birds found dead, and perhaps an avian ecotoxicological monitoring program. Although oil spills, spent lead shot, some pesticides, and industrial pollutants occasionally harm Chesapeake avifauna, contaminants no longer evoke the population level effects that were observed in Ospreys (Pandion haliaetus) and Bald Eagles (Haliaeetus leucocephalus) through the 1970s.

  14. Soaking grapevine cuttings in water: a potential source of cross contamination by micro-organisms

    Directory of Open Access Journals (Sweden)

    Helen WAITE

    2013-09-01

    Full Text Available Grapevine nurseries soak cuttings in water during propagation to compensate for dehydration and promote root initiation. However, trunk disease pathogens have been isolated from soaking water, indicating cross contamination. Cuttings of Vitis vinifera cv. Sunmuscat and V. berlandieri x V. rupestris rootstock cv. 140 Ruggeri were immersed in sterilized, deionised water for 1, 2, 4, 8 and 16 h. The soaking water was cultured (25°C for 3 days on non-specific and specific media for fungi and bacteria. The base of each cutting was debarked and trimmed and three 3 mm thick, contiguous, transverse slices of wood cultured at 25°C for 3 days. The soaking water for both cultivars became contaminated with microorganisms within the first hour. Numbers of fungi iso-lated from the wood slices soaked for one hour were significantly greater than those from non-soaked cuttings. The number of bacterial colonies growing from the wood slices increased after soaking for 2‒4 h in Sunmuscat. In a second experiment Shiraz cuttings were soaked for 1, 2, 4, 8 and 24 h. The soaking water became contaminated within the first hour but only the bacterial count increased significantly over time. Microorganisms also established on the container surfaces within the first hour although there were no significant increases over 24 h. These results confirm that soaking cuttings is a potential cause of cross contamination and demonstrate contamination of cuttings occurs after relatively short periods of soaking. Avoiding exposing cuttings to water will reduce the transmission of trunk diseases in propagation.

  15. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China

    International Nuclear Information System (INIS)

    Liu Chuanping; Luo Chunling; Gao Yun; Li Fangbai; Lin Lanwen; Wu Changan; Li Xiangdong

    2010-01-01

    In an extensive environmental study, field samples, including soil, water, rice, vegetable, fish, human hair and urine, were collected at an abandoned tungsten mine in Shantou City, southern China. Results showed that arsenic (As) concentration in agricultural soils ranged from 3.5 to 935 mg kg -1 with the mean value of 129 mg kg -1 . In addition, As concentration reached up to 325 μg L -1 in the groundwater, and the maximum As concentration in local food were 1.09, 2.38 and 0.60 mg kg -1 for brown rice, vegetable and fish samples, respectively, suggesting the local water resource and food have been severely contaminated with As. Health impact monitoring data revealed that As concentrations in hair and urine samples were up to 2.92 mg kg -1 and 164 μg L -1 , respectively, indicating a potential health risk among the local residents. Effective measurements should be implemented to protect the local community from the As contamination in the environment. - It is the first report on arsenic contamination and potential health risk implications at abandoned Lianhuashan tungsten mine.

  16. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  17. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  18. Assessing Contamination Potential of Nitrate-N in Groundwater of Lanyang Plain

    Science.gov (United States)

    Liang, Ching-Ping; Tu, Yu-Lin; Lin, Chien-Wen; Jang, Cheng-Shin

    2013-04-01

    Nitrate-N pollution is often relevant to agricultural activities such as the fertilization of crops. Significant increases in the nitrate-N pollution of groundwater are found in natural recharging zones of Taiwan. The increasing nitrate-N contamination seriously threatens public drinking water supply and human health. Constructing a correct map of aquifer contamination potential is an effective and feasible way to protect groundwater for quality assessment and management. Therefore, in this study, we use DRASTIC model with the help of geographic information system (GIS) to assess and predict the contamination potential of nitrate-N in the aquifer of Lanyang Plain, Taiwan. Seven factors of hydrogeology and hydrology, which includes seven parameters - Depth to groundwater, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and hydraulic Conductivity, are considered to carry out this assessment. The validity of the presented model is established by comparing the results with the measured nitrate concentration in wells within the study area. Adjusting factor weightings via the discriminant analysis is performed to improve the assessment and prediction. The analyzed results can provide residents with suggestive strategies against nitrate-N pollution in agricultural regions and government administrators with explicit information of Nitrate-N pollution extents when plans of water resources are considered.

  19. Dissipation of the herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater.

    Science.gov (United States)

    Yen, Jui-Hung; Sheu, Wey-Shin; Wang, Yei-Shung

    2003-02-01

    The dissipation and mobility of the herbicide oxyfluorfen (2-chloro-alpha,alpha,alpha-trifluoro-p-tolyl 3-ethoxy-4-nitrophenyl ether) in field soil of Taiwan were investigated in the laboratory with six tea garden soils. The dissipation coefficients of oxyfluorfen in soils of different moisture content (30%, 60%, and 90% of soil field capacity) and soil temperature (10 degrees C, 25 degrees C, and 40 degrees C) were studied. Results indicate that the half-life of oxyfluorfen ranged from 72 to 160 days for six tea garden soils. It was found that if the temperature is high, the dissipation rate is rapid, and there is almost no dissipation at 10 degrees C. Possible contamination of groundwater by the herbicide oxyfluorfen was assessed using the behavior assessment model and the groundwater pollution-potential (GWP) model. The results obtained after evaluating the residue and travel time using the GWP model illustrated that oxyfluorfen is not very mobile in soil and may not contaminate groundwater under normal conditions. But in the case of soil of extremely low organic carbon content and coarse texture, oxyfluorfen has the potential to contaminate groundwater less than 3m deep.

  20. Supplementary guidance for the investigation and risk-assessment of potentially contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Spadaro, P.; Starr, J.; Thomas, J. [Arcadis, Arnhem (Netherlands); Hildenbrand, B. [Energy Institute, London (United Kingdom); Smith, J.W.N.; Dunk, M.; Grosjean, T.; De Ibarra, M.; Medve, A.; Den Haan, K.

    2013-11-15

    This report provides guidance on the investigation and assessment of potentially contaminated sediments, focusing on the inland, estuarine and coastal environments. It is designed as a complementary, technical companion document to Energy Institute and CONCAWE (2013) report 'Guidance on characterising, assessing and managing risks associated with potentially contaminated sediments' (Report E1001). It highlights a number of significant challenges associated with assessing the aquatic and water bottom environment, which means that a sediment assessment should not be undertaken lightly. Where a decision is taken to undertake a site assessment, this report promotes the use of an iterative process of Conceptual Site Model (CSM) development, data collection, data evaluation and a continuous CSM refinement, taking into account the results obtained. Risk-based assessment is described throughout the report, entailing four tiers of assessment, which progress from a qualitative assessment (Tier 0) through to a detailed cause-attribution assessment (Tier 3), in which the decrease in uncertainty in the assessment process is balanced against the increased costs and timescales with progress to a higher tier assessment. The application of this evidence-driven risk-based approach to sediment site management, including remedial control measures, should help to overcome at least some of the challenges associated with contaminants in sediment sites in Europe, and promote a sustainable approach to sediment management on a case-by-case basis.

  1. Ranking harbours in the Maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J. [Department of Fisheries and Oceans, Halifax, NS (Canada). Biological Sciences Branch

    1997-05-01

    The sources of polycyclic aromatic hydrocarbon (PAH) contamination within selected harbors in the Maritime provinces of Canada were evaluated by assessing point sources, population, industrial and commercial activity, international and domestic ship traffic, and the number of commercial fishing vessels. Results showed that Sydney ranked as the highest potential for PAH contamination. Ranking of the other Maritime harbors was also presented. The lobster contamination with PAHs was reviewed.

  2. First evidence of persistent organic contaminants as potential anthropogenic stressors in the Barndoor Skate Dipturus laevis.

    Science.gov (United States)

    Lyons, Kady; Adams, Douglas H

    2017-03-15

    Although exploited populations of elasmobranchs may be able to recover from fishing pressure, there is little information regarding the Barndoor Skate's ability to cope with other anthropogenic stressors such as organic contaminants (OCs). Legacy OCs were measured in liver, muscle and ova from fourteen Barndoor Skates with mature skates having significantly greater mean concentrations of OCs than immature skates, demonstrating bioaccumulation with age. Using Toxic Equivalency Factors, skates were found to have levels of PCBs that have been shown to elicit negative physiological responses in other fishes and these results highlight the need for future studies to investigate the potential impacts that bioaccumulated organic contaminants have on the recovery and conservation of this vulnerable species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Phytostabilization potential of evening primrose (Oenothera glazioviana) for copper-contaminated sites.

    Science.gov (United States)

    Guo, Pan; Wang, Ting; Liu, Yanli; Xia, Yan; Wang, Guiping; Shen, Zhenguo; Chen, Yahua

    2014-01-01

    A field investigation, field experiment, and hydroponic experiment were conducted to evaluate feasibility of using Oenothera glazioviana for phytostabilization of copper-contaminated soil. In semiarid mine tailings in Tongling, Anhui, China, O. glazioviana, a copper excluder, was a dominant species in the community, with a low bioaccumulation factor, the lowest copper translocation factor, and the lowest copper content in seed (8 mg kg(-1)). When O. glazioviana was planted in copper-polluted farmland soil in Nanjing, Jiangsu, China, its growth and development improved and the level of γ-linolenic acid in seeds reached 17.1%, compared with 8.73% in mine tailings. A hydroponic study showed that O. glazioviana had high tolerance to copper, low upward transportation capacity of copper, and a high γ-linolenic acid content. Therefore, it has great potential for the phytostabilization of copper-contaminated soils and a high commercial value without risk to human health.

  4. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Santos, Silvia Cristina Cunha Dos Santos; Casella, Renata da Costa; Vital, Ronalt Leite; Sebastin, Gina Vasquez; Seldin, Lucy

    2008-12-01

    A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

  5. Generic Assessment Criteria for human health risk assessment of potentially contaminated land in China.

    Science.gov (United States)

    Cheng, Yuanyuan; Nathanail, Paul C

    2009-12-20

    Generic Assessment Criteria (GAC) are derived using widely applicable assumptions about the characteristics and behaviour of contaminant sources, pathways and receptors. GAC provide nationally consistent guidance, thereby saving money and time. Currently, there are no human health based Generic Assessment Criteria (GAC) for contaminated sites in China. Protection of human health is therefore difficult to ensure and demonstrate; and the lack of GAC makes it difficult to tell if there is potential significant risk to human health unless site-specific criteria are derived. This paper derived Chinese GAC (GAC) for five inorganic and eight organic substances for three regions in China for three land uses: urban residential without plant uptake, Chinese cultivated land, and commercial/industrial using the SNIFFER model. The SNIFFER model has been further implemented with a dermal absorption algorithm and the model default input values have been changed to reflect the Chinese exposure scenarios. It is envisaged that the modified SNIFFER model could be used to derive GAC for more contaminants, more Regions, and more land uses. Further research to enhance the reliability and acceptability of the GAC is needed in regional/national surveys in diet and working patterns.

  6. Toxicological benchmarks for screening potential contaminants of concern for effects on sediment-associated biota

    International Nuclear Information System (INIS)

    Hull, R.N.; Suter, G.W. II.

    1993-08-01

    Because a hazardous waste site may contain hundreds of chemicals, it is important to screen contaminants of concern for the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen potential contaminants of concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark, more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test results, and field survey data. A fourth integrative approach incorporates all three types of data

  7. Potential reuse of petroleum-contaminated soil: A directory of permitted recycling facilities

    International Nuclear Information System (INIS)

    Rosenthal, S.; Wolf, G.; Avery, M.; Nash, J.H.

    1992-06-01

    Soil contaminated by virgin petroleum products leaking from underground storage tanks is a pervasive problem in the United States. Economically feasible disposal of such soil concerns the responsible party (RP), whether the RP is one individual small business owner, a group of owners, or a large multinational corporation. They may need a starting point in their search for an appropriate solution, such as recycling. The report provides initial assistance in two important areas. First it discusses four potential recycling technologies that manufacture marketable products from recycled petroleum-contaminated soil: the hot mix asphalt process, the cold mix asphalt system, cement production, and brick manufacturing. The report also presents the results of a project survey designed to identify recycling facilities. It lists recycling facilities alphabetically by location within each state, organized by U.S. Environmental Protection Agency (EPA) Region. The report also includes detailed addresses, recycling locations, telephone numbers, and contacts for these facilities. The scope of the project limits listings to fixed facilities or small mobile facility owners that recycle soil contaminated by virgin petroleum products into marketable commodities. It does not address site-specific or commercial hazardous waste remediation facilities

  8. Cadmium content of commercial and contaminated rice, Oryza sativa, in Thailand and potential health implications.

    Science.gov (United States)

    Zwicker, R; Promsawad, A; Zwicker, B M; Laoharojanaphand, S

    2010-03-01

    Thailand is the number one global exporter and among the top five producers of rice in the world. A significant increase in anthropogenic contamination in agricultural soils over the past few decades has lead to concerns with cadmium and its uptake in rice. The cadmium levels in Thai rice from different sources/areas were determined and used to estimate the potential health risks to consumers. The cadmium concentration in the commercial rice samples ranged from below the detection limit to 0.016 mg/kg. The cadmium concentrations in the contaminated rice samples ranged from a low of 0.007 mg/kg to a high of 0.579 mg/kg. Five of the calculated values exceed the proposed PTWI, with one value almost three times higher and two values almost double. The three highly elevated values are certainly a concern from a health standpoint. Ultimately, action is required to address the health implications resulting from the cadmium contamination in agricultural soils used for rice production in a few select areas of Thailand. Overall, this study indicates that the vast majority of rice produced, consumed and exported by Thailand is safe pertaining to cadmium content.

  9. Printed paper and board food contact materials as a potential source of food contamination.

    Science.gov (United States)

    Van Bossuyt, Melissa; Van Hoeck, Els; Vanhaecke, Tamara; Rogiers, Vera; Mertens, Birgit

    2016-11-01

    Food contact materials (FCM) are estimated to be the largest source of food contamination. Apart from plastics, the most commonly used FCM are made of printed paper and board. Unlike their plastic counterparts, these are not covered by a specific European regulation. Several contamination issues have raised concerns towards potential adverse health effects caused by exposure to substances migrating from printed paper and board FCM. In the current study, an inventory combining the substances which may be used in printed paper and board FCM, was created. More than 6000 unique compounds were identified, the majority (77%) considered non-evaluated in terms of potential toxicity. Based on a preliminary study of their physicochemical properties, it is estimated that most of the non-evaluated single substances have the potential to migrate into the food and become bioavailable after oral intake. Almost all are included in the FACET tool, indicating that their use in primary food packaging has been confirmed by industry. Importantly, 19 substances are also present in one of the lists with substances of concern compiled by the European Chemicals Agency (ECHA). To ensure consumer safety, the actual use of these substances in printed paper and board FCM should be investigated urgently. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium

    Directory of Open Access Journals (Sweden)

    Gołda Sylwia

    2016-03-01

    Full Text Available The aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF and translocation factor (TF. All three tested species of grasses had TF 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.

  11. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  12. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II [Oak Ridge National Lab., TN (United States); Tsao, C.L. [Duke Univ., Durham, NC (United States). School of the Environment

    1996-06-01

    This report presents potential screening benchmarks for protection of aquatic life form contaminants in water. Because there is no guidance for screening for benchmarks, a set of alternative benchmarks is presented herein. This report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility. Also included is the updates of benchmark values where appropriate, new benchmark values, secondary sources are replaced by primary sources, and a more complete documentation of the sources and derivation of all values are presented.

  13. Microbial Detoxification of Bifenthrin by a Novel Yeast and Its Potential for Contaminated Soils Treatment

    OpenAIRE

    Chen, Shaohua; Luo, Jianjun; Hu, Meiying; Geng, Peng; Zhang, Yanbo

    2012-01-01

    Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly effective in degrading bifenthrin over a wide range of temperatures (20-40 °C) and pH (5-9). On the basis of response surface methodology...

  14. Potential of the Galega – Rhizobium galegae System for Bioremediation of Oil-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Minna M. Jussila

    2003-01-01

    Full Text Available Bioremediation potential of the nitrogen-fixing leguminous plant Galega orientalis Lam. and its microsymbiont Rhizobium galegae was evaluated in microcosm and mesocosm scale in oil and BTEX (benzene, toluene, ethylbenzene, xylene contaminated soils, with m-toluate serving as a model for the latter group. G. orientalis and Rhizobium galegae remained viable in m-toluate fractions up to 3000 ppm. Plant growth and nodulation were inhibited in 500 ppm m-toluate, but were restored when plants were transferred to clean medium. In soil, G. orientalis nodulated and showed good growth in 2000 ppm m-toluate as well as in diesel-contaminated soil in the field, where the plant was stimulating bacterial growth in the rhizosphere. A collection of 52 indigenous m-toluate-tolerating bacteria isolated from oil-contaminated rhizosphere of G. orientalis was characterised and identified by classical and molecular biological methods. 16SrDNA PCR-RFLP and (GTG5-PCR genomic fingerprinting combined with partial sequencing indicated the presence of five major lineages of the Bacteria domain. A TOL plasmid-specific xylE-PCR was developed in order to detect both active and potential degraders of m-toluate. The ability to degrade m-toluate in the presence of the gene xylE was detected only within the genus Pseudomonas. The isolates were tested for capacity to grow on m-toluate as their sole carbon and energy source. In laboratory experiments, the best rhizosphere isolates performed equally well to the positive control strain and are good candidates for inoculant production in the future. They have been tagged with marker genes for further studies on colonisation and persistence.

  15. Potential of vetiver (vetiveria zizanioides l.) grass in removing selected pahs from diesel contaminated soil

    International Nuclear Information System (INIS)

    Nisa, W.U.; Rashid, A.

    2015-01-01

    Phytoremediation has been renowned as an encouraging technology for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils, little is known about how plant species behave during the process of PAH phytoremediation. Therefore, the aim of this study was to investigate the effectiveness of vetiver (Vetiveria zizanioides L.) plant in PAH phytoremediation and extraction potential of Vetiveria zizanioides for selected PAHs from the diesel contaminated soil. The field soil samples were spiked with varying concentrations (0.5% and 1%) of diesel and used for pot experiment which was conducted in greenhouse. Vetiver grass was used as experimental plant. Physico-chemical analysis of soil was performed before and after the experiment. Concentration of selected PAHs i.e. phenanthrene, pyrene and benzo(a)pyrene in soil was determined using HPLC. Plant parameters such as root/shoot length and dry mass were compared after harvest. Concentrations of PAHs were also determined in plant material and in soils after harvesting. Result showed that initial concentration of phenanthrene was significantly different from final concentration in treatments in which soil was spiked with diesel. Initial and final concentration of pyrene in soil was also significantly different from each other in two treatments in which soil was spiked with 1% diesel. Pyrene concentration was significantly different in roots and shoots of plants while benzo(a)pyrene concentration in treatments in which soil was spiked with diesel was also significantly different from roots and shoots. Phenanthrene was less extracted by the plant in all the treatments and it was present in higher concentration in soil as compared to plant. Our results indicate that vetiver grass has effectively removed PAHs from soil consequently a significantly higher root and shoot uptake of PAHs was observed than control treatments. Study concludes Vetiveria zizanioides as potentially promising plant specie for the removal

  16. Methodological guide: management of industrial sites potentially contaminated by radioactive substances; Guide methodologique: gestion des sites industriels potentiellement contamines par des substances radioactives

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    At the request of the Ministries of Health and the Environment, IPSN is preparing and publishing the first version of the methodological guide devoted to managing industrial sites potentially contaminated by radioactive substances. This guide describes a procedure for defining and choosing strategies for rehabilitating such industrial sites. (author)

  17. A decision tree approach to screen drinking water contaminants for multiroute exposure potential in developing guideline values.

    Science.gov (United States)

    Krishnan, Kannan; Carrier, Richard

    2017-07-03

    The consideration of inhalation and dermal routes of exposures in developing guideline values for drinking water contaminants is important. However, there is no guidance for determining the eligibility of a drinking water contaminant for its multiroute exposure potential. The objective of the present study was to develop a 4-step framework to screen chemicals for their dermal and inhalation exposure potential in the process of developing guideline values. The proposed framework emphasizes the importance of considering basic physicochemical properties prior to detailed assessment of dermal and inhalation routes of exposure to drinking water contaminants in setting guideline values.

  18. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  19. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  20. Toxicological benchmarks for screening contaminants of potential concern for effects on freshwater biota

    International Nuclear Information System (INIS)

    Suter, G.W. II

    1996-01-01

    An important early step in the assessment of ecological risks at contaminated sites is the screening of chemicals detected on the site to identify those that constitute a potential risk. Part of this screening process is the comparison of measured ambient concentrations to concentrations that are believed to be nonhazardous, termed benchmarks. This article discusses 13 methods by which benchmarks may be derived for aquatic biota and presents benchmarks for 105 chemicals. It then compares them with respect to their sensitivity, availability, magnitude relative to background concentrations, and conceptual bases. This compilation is limited to chemicals that have been detected on the US Department of Energy's Oak Ridge Reservation (ORR) and to benchmarks derived from studies of toxic effects on freshwater organisms. The list of chemicals includes 45 metals and 56 industrial organic chemicals but only four pesticides. Although some individual values can be shown to be too high to be protective and others are too low to be useful for screening, none of the approaches to benchmark derivation can be rejected without further definition of what constitutes adequate protection. The most appropriate screening strategy is to use multiple benchmark values along with background concentrations, knowledge of waste composition, and physicochemical properties to identify contaminants of potential concern

  1. Child's play : investigating the exposure potential of environmental contaminants in soil

    International Nuclear Information System (INIS)

    Pearce, D.C.; Dowling, K.; Waldron, H.; Garnett, D.

    2005-01-01

    Arsenic and chromium have been identified as soil contaminants from smelting, industrial and mining activities. The potential for human uptake of these elements from soil has been established with highest concentrations found in children, who are particularly susceptible to environmental exposure. This study explores the exposure potential of selected soil trace elements in rural Victoria, Australia, by investigating the relationship between uptake, measured using toenail clippings as the biomarker of exposure, and soil concentrations in two communities: one near current and historic gold mining, the other an agricultural community. We report the preliminary findings of a cross-sectional survey, in which toenail clippings were obtained from 12 children in the former community, and 16 children in the latter. (author). 26 refs., 3 tabs

  2. Multisite Direct Determination of the Potential for Environmental Contamination of Urine Samples Used for Diagnosis of Sexually Transmitted Infections.

    Science.gov (United States)

    Andersson, Patiyan; Tong, Steven Y C; Lilliebridge, Rachael A; Brenner, Nicole C; Martin, Louise M; Spencer, Emma; Delima, Jennifer; Singh, Gurmeet; McCann, Frances; Hudson, Carolyn; Johns, Tracy; Giffard, Philip M

    2014-09-01

    The detection of a sexually transmitted infection (STI) agent in a urine specimen from a young child is regarded as an indicator of sexual contact. False positives may conceivably arise from the transfer of environmental contaminants in clinic toilet or bathroom facilities into urine specimens. The potential for contamination of urine specimens with environmental STI nucleic acid was tested empirically in the male and female toilets or bathrooms at 10 Northern Territory (Australia) clinics, on 7 separate occasions at each. At each of the 140 experiments, environmental contamination with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis nucleic acid contamination was determined by swabbing 10 locations, and urine collection was simulated 5 times, using a (1) synthetic urine surrogate and (2) a standardized finger contamination procedure. The most contaminated toilets and bathrooms were in remote Indigenous communities. No contamination was found in the Northern Territory Government Sexual Assault Referral Centre clinics, and intermediate levels of contamination were found in sexual health clinics and in clinics in regional urban centres. The frequency of surrogate urine sample contamination was low but non-zero. For example, 4 of 558 of the urine surrogate specimens from remote clinics were STI positive. This is by far the largest study addressing the potential environmental contamination of urine samples with STI agents. Positive STI tests arising from environmental contamination of urine specimens cannot be ruled out. The results emphasize that urine specimens from young children taken for STI testing should be obtained by trained staff in clean environments, and duplicate specimens should be obtained if possible. © The Author 2013. Published by Oxford University Press on behalf of the Pediatric Infectious Diseases Society.

  3. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  4. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    International Nuclear Information System (INIS)

    Aponte, C.I.

    2000-01-01

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events

  5. PAHs contamination in urban soils from Lisbon: spatial variability and potential risks

    Science.gov (United States)

    Cachada, Anabela; Pereira, Ruth; Ferreira da Silva, Eduardo; Duarte, Armando

    2015-04-01

    Polycyclic Aromatic hydrocarbons (PAHs) can become major contaminants in urban and industrial areas, due to the existence of a plethora of diffuse and point sources. Particularly diffuse pollution, which is normally characterized by continuous and long-term emission of contaminants below risk levels, can be a major problem in urban areas. Since PAHs are persistent and tend to accumulate in soils, levels are often above the recommended guidelines indicating that ecological functions of soils may be affected. Moreover, due to the lipophilic nature, hydrophobicity and low chemical and biological degradation rates of PAHs, which leads to their bioconcentration and bioamplification, they may reach toxicological relevant concentrations in organisms. The importance and interest of studying this group of contaminants is magnified due to their carcinogenic, mutagenic and endocrine disrupting effects. In this study, a risk assessment framework has been followed in order to evaluate the potential hazards posed by the presence of PAHs in Lisbon urban soils. Hence, the first step consisted in screening the total concentrations of PAHs followed by the calculation of risks based on existing models. Considering these models several samples were identified as representing a potential risk when comparing with the guidelines for soil protection. Moreover, it was found that for 38% of samples more than 50% of species can be potentially affected by the mixture of PAHs. The use of geostatistical methods allowed to visualize the predicted distribution of PAHs in Lisbon area and identify the areas where possible risk to the environment are likely occurring However, it is known that total concentration may not allow a direct prediction of environmental risk, since in general only a fraction of total concentration is available for partitioning between soil and solution and thus to be uptake or transformed by organisms (bioacessible or bioavailable) or to be leached to groundwater. The

  6. Comparison of 18F-FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer: a follow-up study.

    Science.gov (United States)

    Sawicki, Lino M; Kirchner, Julian; Grueneisen, Johannes; Ruhlmann, Verena; Aktas, Bahriye; Schaarschmidt, Benedikt M; Forsting, Michael; Herrmann, Ken; Antoch, Gerald; Umutlu, Lale

    2018-04-01

    To evaluate the diagnostic performance of 18 F-FDG PET/MRI for whole-body staging and potential changes in therapeutic management of women with suspected recurrent pelvic cancer in comparison with MRI alone. Seventy-one consecutive women (54 ± 13 years, range: 25-80 years) with suspected recurrence of cervical (32), ovarian (26), endometrial (7), vulvar (4), and vaginal (2) cancer underwent PET/MRI including a diagnostic contrast-enhanced MRI protocol. PET/MRI and MRI datasets were separately evaluated regarding lesion count, localization, categorization (benign/malignant), and diagnostic confidence (3-point scale; 1-3) by two physicians. The reference standard was based on histopathology results and follow-up imaging. Diagnostic accuracy and proportions of malignant and benign lesions rated correctly were retrospectively compared using McNemar's chi 2 test. Differences in diagnostic confidence were assessed by Wilcoxon test. Fifty-five patients showed cancer recurrence. PET/MRI correctly identified more patients with cancer recurrence than MRI alone (100% vs. 83.6%, p PET/MRI, MRI alone missed 4/15 patients with pelvic recurrence and miscategorized 8/40 patients with distant metastases as having local recurrence only. Based on the reference standard, 241 lesions were detected in the study cohort (181 malignant, 60 benign). While PET/MRI provided correct identification of 181/181 (100%) malignant lesions, MRI alone correctly identified 135/181 (74.6%) malignant lesions, which was significantly less compared to PET/MRI (p PET/MRI offered superior diagnostic accuracy (99.2% vs. 79.3%, p PET/MRI demonstrates excellent diagnostic performance and outperforms MRI alone for whole-body staging of women with suspected recurrent pelvic cancer, indicating potential changes in therapy management based on evaluation of local recurrence and distant metastatic spread.

  7. Risk communication considerations to facilitate the screening of mass populations for potential contamination with radioactive material.

    Science.gov (United States)

    Emery, R J; Sprau, D D; Morecook, R C

    2008-11-01

    Experience gained during a field training exercise with a Medical Reserve Corps unit on the screening of large groups of individuals for possible contamination with radioactive material revealed that while exercise participants were generally attentive to the proper use of protective equipment and detectors, they tended to overlook important basic risk communications aspects. For example, drill participants did not actively communicate with the persons waiting in line for screening, a step which would provide re-assurance, possibly minimize apprehension, and would clarify expectations. When questioned on this issue of risk communication, drill participants were often able to craft ad hoc messages, but the messages were inconsistent and likely would not have significantly helped diminish anxiety and maintain crowd control. Similar difficulties were encountered regarding messaging for persons determined to be contaminated, those departing the screening center, and those to be delivered to the media. Based on these experiences, the need for a suggested list of risk communication points was identified. To address this need, a set of risk communication templates were developed that focused on the issues likely to be encountered in a mass screening event. The points include issues such as the importance of remaining calm, steps for minimizing possible intake or uptake, considerations for those exhibiting acute injuries, expected screening wait times, the process to be followed and the information to be collected, the process to be undertaken for those exhibiting contamination, and symptoms to watch for after departure. Drill participants indicated in follow-up discussions that such pre-established risk communication templates would serve to enhance their ability to assist in times of emergency and noted the potential broader applicably of the approach for use in responses for other disasters types as well.

  8. Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1994 Revision

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II [Oak Ridge National Lab., TN (United States); Mabrey, J.B. [University of West Florida, Pensacola, FL (United States)

    1994-07-01

    This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented herein. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. For the upper screening benchmark, there are the acute National Ambient Water Quality Criteria (NAWQC) and the Secondary Acute Values (SAV). The SAV concentrations are values estimated with 80% confidence not to exceed the unknown acute NAWQC for those chemicals with no NAWQC. The alternative chronic benchmarks are the chronic NAWQC, the Secondary Chronic Value (SCV), the lowest chronic values for fish and daphnids from chronic toxicity tests, the estimated EC20 for a sensitive species, and the concentration estimated to cause a 20% reduction in the recruit abundance of largemouth bass. It is recommended that ambient chemical concentrations be compared to all of these benchmarks. If NAWQC are exceeded, the chemicals must be contaminants of concern because the NAWQC are applicable or relevant and appropriate requirements (ARARs). If NAWQC are not exceeded, but other benchmarks are, contaminants should be selected on the basis of the number of benchmarks exceeded and the conservatism of the particular benchmark values, as discussed in the text. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate benchmarks and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility.

  9. Aflatoxin contamination of groundnut and maize in Zambia: observed and potential concentrations.

    Science.gov (United States)

    Kachapulula, P W; Akello, J; Bandyopadhyay, R; Cotty, P J

    2017-06-01

    The aims of the study were to quantify aflatoxins, the potent carcinogens associated with stunting and immune suppression, in maize and groundnut across Zambia's three agroecologies and to determine the vulnerability to aflatoxin increases after purchase. Aflatoxin concentrations were determined for 334 maize and groundnut samples from 27 districts using lateral-flow immunochromatography. Seventeen per cent of crops from markets contained aflatoxin concentrations above allowable levels in Zambia (10 μg kg -1 ). Proportions of crops unsafe for human consumption differed significantly (P agroecologies with more contamination (38%) in the warmest (Agroecology I) and the least (8%) in cool, wet Agroecology III. Aflatoxin in groundnut (39 μg kg -1 ) and maize (16 μg kg -1 ) differed (P = 0·032). Poor storage (31°C, 100% RH, 1 week) increased aflatoxin in safe crops by over 1000-fold in both maize and groundnut. The L morphotype of Aspergillus flavus was negatively correlated with postharvest increases in groundnut. Aflatoxins are common in Zambia's food staples with proportions of unsafe crops dependent on agroecology. Fungal community structure influences contamination suggesting Zambia would benefit from biocontrol with atoxigenic A. flavus. Aflatoxin contamination across the three agroecologies of Zambia is detailed and the case for aflatoxin management with atoxigenic biocontrol agents provided. The first method for evaluating the potential for aflatoxin increase after purchase is presented. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  10. Hazard identification of contaminated sites. Ranking potential toxicity of organic sediment extracts in crustacean and fish

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, J.; Sundberg, H.; Aakerman, G.; Grunder, K.; Eklund, B.; Breitholtz, M. [Dept. of Applied Environmental Science (ITM), Stockholm Univ. (Sweden)

    2008-09-15

    Background, aim, and scope: It is well known that contaminated sediments represent a potential long-term source of pollutants to the aquatic environment. To protect human and ecosystem health, it is becoming common to remediate contaminated sites. However, the great cost associated with, e.g., dredging in combination with the large numbers of contaminated sites makes it crucial to pinpoint those sites that are in greatest need of remediation. In most European countries, this prioritization process has almost exclusively been based on chemical analyses of known substances; only seldom toxicity data has been considered. The main objective of the current study was therefore to develop a tool for hazard identification of sediment by ranking potential toxicity of organic sediment extracts in a crustacean and a fish. A secondary objective was to investigate the difference in potential toxicity between compounds with different polarities. Materials and methods Early life stages of the crustacean Nitocra spinipes and the fish Oncorhynchus mykiss, which represent organisms from different trophic levels (primary and secondary consumer) and with different routes of exposure (i.e. ingestion through food, diffusive uptake, and maternal transfer), were exposed to hexane and acetone fractions (semi-polar compounds) of sediment from five locations, ranging from heavily to low contaminated. Preliminary tests showed that the extracts were non-bioavailable to the crustacean when exposed via water, and the extracts were therefore loaded on silica gel. Rainbow trout embryos were exposed using nano-injection technique. Results and discussion Clear concentration-response relationships of both mortality and larval development were observed in all tests with N. spinipes. Also for rainbow trout, the observed effects (e.g., abnormality, hemorrhage, asymmetric yolk sac) followed a dose-related pattern. Interestingly, our results indicate that some of the locations contained toxic semi

  11. RNA Sequencing of Contaminated Seeds Reveals the State of the Seed Permissive for Pre-Harvest Aflatoxin Contamination and Points to a Potential Susceptibility Factor

    Directory of Open Access Journals (Sweden)

    Josh Clevenger

    2016-11-01

    Full Text Available Pre-harvest aflatoxin contamination (PAC is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and breeding for PAC resistance has been slow. It has been shown that aflatoxin production can be induced by applying drought stress as peanut seeds mature. We have implemented an automated rainout shelter that controls temperature and moisture in the root and peg zone to induce aflatoxin production. Using polymerase chain reaction (PCR and high performance liquid chromatography (HPLC, seeds meeting the following conditions were selected: infected with Aspergillus flavus and contaminated with aflatoxin; and not contaminated with aflatoxin. RNA sequencing analysis revealed groups of genes that describe the transcriptional state of contaminated vs. uncontaminated seed. These data suggest that fatty acid biosynthesis and abscisic acid (ABA signaling are altered in contaminated seeds and point to a potential susceptibility factor, ABR1, as a repressor of ABA signaling that may play a role in permitting PAC.

  12. RNA Sequencing of Contaminated Seeds Reveals the State of the Seed Permissive for Pre-Harvest Aflatoxin Contamination and Points to a Potential Susceptibility Factor

    Science.gov (United States)

    Clevenger, Josh; Marasigan, Kathleen; Liakos, Vasileios; Sobolev, Victor; Vellidis, George; Holbrook, Corley; Ozias-Akins, Peggy

    2016-01-01

    Pre-harvest aflatoxin contamination (PAC) is a major problem facing peanut production worldwide. Produced by the ubiquitous soil fungus, Aspergillus flavus, aflatoxin is the most naturally occurring known carcinogen. The interaction between fungus and host resulting in PAC is complex, and breeding for PAC resistance has been slow. It has been shown that aflatoxin production can be induced by applying drought stress as peanut seeds mature. We have implemented an automated rainout shelter that controls temperature and moisture in the root and peg zone to induce aflatoxin production. Using polymerase chain reaction (PCR) and high performance liquid chromatography (HPLC), seeds meeting the following conditions were selected: infected with Aspergillus flavus and contaminated with aflatoxin; and not contaminated with aflatoxin. RNA sequencing analysis revealed groups of genes that describe the transcriptional state of contaminated vs. uncontaminated seed. These data suggest that fatty acid biosynthesis and abscisic acid (ABA) signaling are altered in contaminated seeds and point to a potential susceptibility factor, ABR1, as a repressor of ABA signaling that may play a role in permitting PAC. PMID:27827875

  13. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.

    Science.gov (United States)

    Čudić, Vladica; Stojiljković, Dragoslava; Jovović, Aleksandar

    2016-09-01

    Phytoremediation is an emerging technology that employs higher plants to cleanup contaminated environments, including metal-polluted soils. Because it produces a biomass rich in extracted toxic metals, further treatment of this biomass is necessary. The aim of our study was to assess the five-year potential of the following native wild plants to produce biomass and remove heavy metals from a polluted site: poplar (Populus ssp.), ailanthus (Ailanthus glandulosa L.), false acacia (Robinia pseudoacacia L.), ragweed (Artemisia artemisiifolia L.), and mullein (Verbascum thapsus L). Average soil contamination with Pb, Cd, Zn, Cu, Ni, Cr, and As in the root zone was 22,948.6 mg kg-1, 865.4 mg kg-1, 85,301.7 mg kg-1, 3,193.3 mg kg-1, 50.7 mg kg-1, 41.7 mg kg-1,and 617.9 mg kg-1, respectively. We measured moisture and ash content, concentrations of Pb, Cd, Zn, Cu, Ni, Cr, and As in the above-ground parts of the plants and in ash produced by combustion of the plants, plus gross calorific values. The plants' phytoextraction and phytostabilisation potential was evaluated based on their bioconcentration factor (BCF) and translocation factor (TF). Mullein was identified as a hyperaccumulator for Cd. It also showed a higher gross calorific value (19,735 kJ kg-1) than ragweed (16,469 kJ kg-1).The results of this study suggest that mullein has a great potential for phytoextraction and for biomass generation, and that ragweed could be an effective tool of phytostabilisation.

  14. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    Science.gov (United States)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  15. Assessing Potential Environmental Contamination by Baylisascaris procyonis Eggs from Infected Raccoons in Southern Texas.

    Science.gov (United States)

    Ogdee, Jacob L; Henke, Scott E; Wester, David B; Fedynich, Alan M

    2017-03-01

    Baylisascaris procyonis is a large ascarid of raccoons (Procyon lotor) and is a zoonotic threat. We documented the potential rate a raccoon population can contaminate their environment with B. procyonis eggs. We estimated the population size of raccoons using a 9 × 7 trapping grid of Havahart traps, identified locations of raccoon scats through systematic searches, and enumerated the distance B. procyonis eggs passively travel from site of origin upon scat decay. During an 8-week capture period, the raccoon population was estimated to be 19.6 ± 1.3 raccoons within the 63-ha study area (1 raccoon/3.2 ha). There were 781 defecation sites, of which 744 (95.3%) were isolated sites and 37 (4.7%) were latrine sites. Fifty-three (6.8%) defecation sites occurred in areas associated with human structures (commensal zone). Of the noncommensal sites, 9 (1.2%) and 719 (98.8%) sites were identified as latrine sites and isolated scats, respectively. More latrine sites were located within the commensal zone (p contaminate 0.03 ± 0.01 ha/year with B. procyonis eggs. Our findings indicate that B. procyonis represents a substantial risk to humans in areas where infected raccoons and humans co-occur.

  16. Engineered Nanoparticles as Potential Food Contaminants and Their Toxicity to Caco-2 Cells.

    Science.gov (United States)

    Mao, Xiaomo; Nguyen, Trang H D; Lin, Mengshi; Mustapha, Azlin

    2016-08-01

    Engineered nanoparticles (ENPs), such as metallic or metallic oxide nanoparticles (NPs), have gained much attention in recent years. Increasing use of ENPs in various areas may lead to the release of ENPs into the environment and cause the contamination of agricultural and food products by ENPs. In this study, we selected two important ENPs (zinc oxide [ZnO] and silver [Ag] NPs) as potential food contaminants and investigated their toxicity via an in vitro model using Caco-2 cells. The physical properties of ENPs and their effects on Caco-2 cells were characterized by electron microscopy and energy dispersive X-ray spectroscopic (EDS) techniques. Results demonstrate that a significant inhibition of cell viability was observed after a 24-h of exposure of Caco-2 cells to 3-, 6-, and 12-mM ZnO NPs or 0.5-, 1.5-, and 3-mM Ag NPs. The noticeable changes of cells include the alteration in cell shape, abnormal nuclear structure, membrane blebbing, and cytoplasmic deterioration. The toxicity of ZnO NPs, but not that of Ag NPs after exposure to simulated gastric fluid, significantly decreased. Scanning transmission electron microscopy shows that ZnO and Ag NPs penetrated the membrane of Caco-2 cells. EDS results also confirm the presence of NPs in the cytoplasm of the cells. This study demonstrates that ZnO and Ag NPs have cytotoxic effects and can inhibit the growth of Caco-2 cells. © 2016 Institute of Food Technologists®

  17. Automated radiological scanning of potentially contaminated railroad crossties for free-release or disposal

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1996-06-01

    The Savannah River Site (SRS) has accumulated approximately 300,000 crossties that have been replaced over a 40-year period of maintaining the site's 62 miles of railroad track. The ties reside in a pile on an open area of 2.3 acres near the site's F-Area facilities. A small fraction of the ties are potentially contaminated with radioactivity as a result of past site practices and service. Contamination was possible from occasional leaks in transport-casks moved by rail from the site's five nuclear materials production reactors to its two reprocessing facilities. Casks typically were filled with spent fuel, targets, and water from the reactor disassembly basins, which contained small amounts of fission and neutron activation product radioactivity normal to the operation of nuclear reactors. What to do with the ties has been debated for sometime. Proposals have ranged from simple burial, to bio-remediation, to burning as a fuel in the site's powerhouse, to free-release to off-site markets. In the past, burial was the disposal method of choice; however, the Department of Energy (DOE) order 5820.2A and premium on new space for low-level waste largely rule out burial. Instead, the last option is now cost effective and was begun under a contract with National Environmental Services Corporation started in January, 1996

  18. Industrially contaminated areas in Serbia as a potential public health threat to the exposed population

    Directory of Open Access Journals (Sweden)

    Matić Branislava I.

    2017-01-01

    Full Text Available Mining and mineral processing is still a vital source of income in Serbia, due to mineral abundance in copper, lead, zinc, antimony. Copper mining and metal-processing are located in the east: Bor, Veliki Krivelj, Cerovo, Majdanpek. Abandoned sites from antimony mining and processing and secondary lead smelter are at the western border: Zajača, Krupanj, Stolice. Coal mining and power plants are surrounding Belgrade: Obrenovac (2 power plants, Grabovac (plant ash landfill, Kolubara and Kostolac. Main objective is to focus on potential public health hazards from industrial contamination in Serbia. Key public health issue is presence of As and Cd in ambient air PM10 close to industrially contaminated sites due to the fact that ores have high naturally occurring contents of heavy metals and metalloids. Data originate from Serbian Environmental Protection Agency, Mining and Metallurgy Institute Bor, Belgrade Institute of Public Health, as part of continuous measurement of air quality within State network of automatic stations. Concentration of As in PM10 are extremely above the limit value in Bor and Lazarevac, with Cd values slightly increased in Bor. Serbia lacks the legal framework for continuous and institutionalized follow-up of population groups vulnerable to hazardous environmental exposure, although measured concentration indicate urgent need for such activities.

  19. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese.

    Science.gov (United States)

    Cao-Hoang, Lan; Chaine, Aline; Grégoire, Lydie; Waché, Yves

    2010-10-01

    A sodium caseinate film containing nisin (1000 IU/cm(2)) was produced and used to control Listeria innocua in an artificially contaminated cheese. Mini red Babybel cheese was chosen as a model semi-soft cheese. L. innocua was both surface- and in-depth inoculated to investigate the effectiveness of the antimicrobial film as a function of the distance from the surface in contact with the film. The presence of the active film resulted in a 1.1 log CFU/g reduction in L. innocua counts in surface-inoculated cheese samples after one week of storage at 4 degrees C as compared to control samples. With regard to in-depth inoculated cheese samples, antimicrobial efficiency was found to be dependent on the distance from the surface in contact with the active films to the cheese matrix. The inactivation rates obtained were 1.1, 0.9 and 0.25 log CFU/g for distances from the contact surface of 1 mm, 2 mm and 3 mm, respectively. Our study demonstrates the potential application of sodium caseinate films containing nisin as a promising method to overcome problems associated with post-process contamination, thereby extending the shelf life and possibly enhancing the microbial safety of cheeses. 2010 Elsevier Ltd. All rights reserved.

  20. Solubility and Potential Mobility of Heavy Metals in Two Contaminated Urban Soils from Stockholm, Sweden

    International Nuclear Information System (INIS)

    Oborn, Ingrid; Linde, Mats

    2001-01-01

    The solubility and potential mobility of heavy metals (Cd, Cu,Hg, Pb and Zn) in two urban soils were studied by sequential and leaching extractions (rainwater). Compared to rural (arable) soils on similar parent material, the urban soils were highly contaminated with Hg and Pb and to a lesser extent also with Cd,Cu and Zn. Metal concentrations in rainwater leachates were related to sequential extractions and metal levels reported from Stockholm groundwater. Cadmium and Zn in the soils were mainly recovered in easily extractable fractions, whereas Cu and Pb were complex bound. Concentrations of Pb in the residual fraction were between two- and eightfold those in arable soils, indicating that the sequential extraction scheme did not reflect the solid phases affected by anthropogenic inputs. Cadmium and Zn conc. in the rainwater leachates were within the range detected in Stockholm groundwater, while Cu and Pb conc. were higher, which suggests that Cu and Pb released from the surface soil were immobilised in deeper soil layers. In a soil highly contaminated with Hg, the Hg conc. in the leachate was above the median concentration, but still 50 times lower than the max concentration found in groundwater, indicating the possibility of other sources. In conclusion, it proved difficult to quantitatively predict the mobility of metals in soils by sequential extractions

  1. The potential of Thelypteris palustris and Asparagus sprengeri in phytoremediation of arsenic contamination.

    Science.gov (United States)

    Anderson, LaShunda L; Walsh, Maud; Roy, Amitava; Bianchetti, Christopher M; Merchan, Gregory

    2011-02-01

    The potential of two plants, Thelypteris palustris (marsh fern) and Asparagus sprengeri (asparagus fern), for phytoremediation of arsenic contamination was evaluated. The plants were chosen for this study because of the discovery of the arsenic hyperaccumulating fern, Pteris vittata (Ma et al., 2001) and previous research indicating asparagus fern's ability to tolerate > 1200 ppm soil arsenic. Objectives were (1) to assess if selected plants are arsenic hyperaccumulators; and (2) to assess changes in the species of arsenic upon accumulation in selected plants. Greenhouse hydroponic experiments arsenic treatment levels were established by adding potassium arsenate to solution. All plants were placed into the hydroponic experiments while still potted in their growth media. Marsh fern and Asparagus fern can both accumulate arsenic. Marsh fern bioaccumulation factors (> 10) are in the range of known hyperaccumulator, Pteris vittata Therefore, Thelypteris palustris is may be a good candidate for remediation of arsenic soil contamination levels of arsenic. Total oxidation of As (III) to As (V) does not occur in asparagus fern. The asparagus fern is arsenic tolerant (bioaccumulation factors phytoremediation candidate.

  2. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    Science.gov (United States)

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  3. Meta-analysis of biochar potential for pollutant immobilization and stabilization in contaminated soils

    Science.gov (United States)

    Soja, Gerhard; Marsz, Aleksandra; Fristak, Vladimir

    2015-04-01

    -reviewed literature about the immobilizing potential of biochar for pollutants, we could use about 1300 comparisons of biochar application versus no application for a range of organic and inorganic pollutants in a soil environment. Our assessments have shown that in the average of all studies biochar decreased the availability of cationic heavy metals and organic pollutants significantly by 40-50 %. We could confirm that an increasing biochar application rate also increases contaminant sorption. The only exception was found for anionic heavy metals like As or Mo that are clearly mobilized by biochar applications. Differences in sorption efficiency depend on the type of biochar, on different pollutants and on the compartment where the reduction of bioavailability has been studied.

  4. Potential Application of Nanomaterials to treat and detect the contaminated water

    Science.gov (United States)

    Singh, R. P.

    2011-12-01

    An ecosystem is very immense to maintain global environmental balance but an imbalance of water alters the function of ecosystems that affects all life on our planet Earth. The destruction of agricultural land, lakes, ponds, rivers, and oceans locally and globally creates environmental imbalances so that catastrophically damage to be appeared widely. The water cycle continually circulates evaporated water into the atmosphere and returns it as precipitation in balance form. If variety of toxins, heavy metals, oils and agricultural chemicals such as pesticides and fertilizers, all get absorbed into soil and groundwater. Then an imbalance appeared for example runoff carries these pollutants into lakes, rivers and oceanic water, as a result, all forms of water evaporated as part of the water cycle and return to the earth as acid rain, which causes worldwide environmental imbalances by killing our ecosystems. Deforestation, urbanization, and industrialization create environmental imbalances in many ways. Soil erosion in the form of dust from wind causes human infectious diseases, including anthrax and tuberculosis. An environmental imbalance occurs due to greenhouse gases, which accumulate in the atmosphere and trap excessive amounts of heat causes global warming, that is purportedly responsible for environmental disasters such as, rising sea levels, floods and the melting of polar ice caps. Our problem is "all talk, no action" and "jack of all trades, master of none". Our efforts in this hot topic are to make balance of water rather than imbalance of water by using positive potential of naomaterials utility and applications to eliminate toxicants/pollutants/adulterants/carcinogens from all forms of imbalance water to save our local and global ecosystems as a balance and healthy wealthy. Several natural, engineered, and non-engineered nanomaterials have strong antimicrobial properties (e.g. TiO2, ZnO, AgNPs, CNTs, fullerene, graphene), used as antimicrobial agents as

  5. Unregulated Contaminant Monitoring Program Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA uses the Unregulated Contaminant Monitoring (UCM) program to collect data for contaminants suspected to be present in drinking water, but that do not have...

  6. Potential and real ecological threat of heavy metals in contaminated soils

    Science.gov (United States)

    Motuzova, Galina; Barsova, Natalia; Makarichev, Ivan; Karpova, Elena

    2013-04-01

    Introduction. Microelements or heavy metals (HM) occur in nature and are required for living organisms at low concentrations. High content of HM in soils characterize their potential danger for ecosystem. Their real ecological threat is presented by the mobility of HM in soils. The aim of this work was to characterize the potential and real danger of HM on the basis of HM mobility in soils and their influence of the most important soils properties. Materials and methods. Two types of materials are presented in this paper. The first ones are presented by the summarized information about the content of Cu, Zn, Mn and their mobile species in the soils of Russia and are included into the National Atlas of Russian soils (2011). The second part is presented by the results of laboratory experiments with some samples of Podzols, Podzoluvisol and Chernozem. The following parameters have been determined: a) the main chemical properties of soils; b) the water extracts from soils were investigated by the potentiometric titration with HM salts; c) the properties of the samples of humic acids (HA, extracted by 1n. NaOH) and HA-Cu complexes were determined: molecular-masses distribution (MMD), infrared spectra (IRS), hydrophobility, 1? NMR spectra Results and discussions. The major part of HM in soils of natural landscapes is firmly bound to several minerals. Their threat for living organisms is largely dependent on a relatively higher mobility of HM in soils. The main factors affecting the mobility of HM include soil reaction and sorption processes. In soils of natural landscapes the share of mobile HM compounds is estimated as some per cents from their total content. Having used the data about microelements in soils, their availability to living organisms, 14 natural biogeochemical provinces have been distinguished at the territory of the European part of the former USSR. It permitted to show the adverse impact rendered by microelements at low or high concentrations on living

  7. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water.

    Science.gov (United States)

    Agunbiade, Foluso O; Olu-Owolabi, Bamidele I; Adebowale, Kayode O

    2009-10-01

    The potential of Eichornia crassipes to serve as a phytoremediation plant in the cleaning up of metals from contaminated coastal areas was evaluated in this study. Ten metals, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V and Zn were assessed in water and the plant roots and shoots from the coastal area of Ondo State, Nigeria and the values were used to evaluate the enrichment factor (EF) and translocation factor (TF) in the plant. The critical concentrations of the metals were lower than those specified for hyperaccumulators thus classifying the plant as an accumulator but the EF and TF revealed that the plant accumulated toxic metals such as Cr, Cd, Pb and As both at the root and at the shoot in high degree, which indicates that the plant that forms a large biomass on the water surface and is not fed upon by animals can serve as a plant for both phytoextraction and rhizofiltration in phytoremediation technology.

  8. Impact of Saw Dust Application on the Distribution of Potentially Toxic Metals in Contaminated Soil.

    Science.gov (United States)

    Awokunmi, Emmmanuel E

    2017-12-01

    The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.

  9. Assessment of the potential radiological impact of residual contamination in the Maralinga and Emu areas

    International Nuclear Information System (INIS)

    Haywood, S.M.; Smith, J.

    1990-10-01

    The report presents an assessment of potential doses to future inhabitants of the Maralinga and Emu areas of Southern Australia, where nuclear weapons tests in the 1950s and 1960s resulted in widespread residual radioactive contamination. Annual effective doses of several millisieverts would be expected to result from continual occupancy within contours enclosing areas of several hundred square kilometres. Larger predicted annual effective doses - of the order of 0.5 Sv -would be expected to occur from 100% occupancy in small regions immediately surrounding the test sites, but continual occupancy of such areas is highly unlikely because of their small size. The most significant dose pathways are inhalation of resuspended activity and ingestion of soil by infants. An analysis of the effects of uncertainties in the dose calculation indicated the uncertainty distribution on predicted doses from the inhalation pathway. (author)

  10. Outlier identification in urban soils and its implications for identification of potential contaminated land

    Science.gov (United States)

    Zhang, Chaosheng

    2010-05-01

    Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with.

  11. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  12. Pesticide and Water management alternatives to mitigate potential ground-water contamination for selected counties in Utah

    OpenAIRE

    Ehteshami, Majid; Requena, Antonio M.; Peralta, R. C.; Deer, Howard M.; Hill, Robert W.; Ranjha, Ahmad Yar

    1990-01-01

    Production of adequate supplies of food and fiber currently requires that pesticides be used to limit crop losses from insects, pathogens, weeds and other pests. Although pesticides are necessary in today's agriculture, they can be a serious problem if they reach and contaminate ground water, especially in places where drinking water needs are supplied from ground water. The relative reduction of potential ground-water contamination due to agricultural use of pesticides was analyzed for parti...

  13. Estimation of Potential Population Level Effects of Contaminants on Wildlife; FINAL

    International Nuclear Information System (INIS)

    Loar, J.M.

    2001-01-01

    The objective of this project is to provide DOE with improved methods to assess risks from contaminants to wildlife populations. The current approach for wildlife risk assessment consists of comparison of contaminant exposure estimates for individual animals to literature-derived toxicity test endpoints. These test endpoints are assumed to estimate thresholds for population-level effects. Moreover, species sensitivities to contaminants is one of several criteria to be considered when selecting assessment endpoints (EPA 1997 and 1998), yet data on the sensitivities of many birds and mammals are lacking. The uncertainties associated with this approach are considerable. First, because toxicity data are not available for most potential wildlife endpoint species, extrapolation of toxicity data from test species to the species of interest is required. There is no consensus on the most appropriate extrapolation method. Second, toxicity data are represented as statistical measures (e.g., NOAEL s or LOAELs) that provide no information on the nature or magnitude of effects. The level of effect is an artifact of the replication and dosing regime employed, and does not indicate how effects might increase with increasing exposure. Consequently, slight exceedance of a LOAEL is not distinguished from greatly exceeding it. Third, the relationship of toxic effects on individuals to effects on populations is poorly estimated by existing methods. It is assumed that if the exposure of individuals exceeds levels associated with impaired reproduction, then population level effects are likely. Uncertainty associated with this assumption is large because depending on the reproductive strategy of a given species, comparable levels of reproductive impairment may result in dramatically different population-level responses. This project included several tasks to address these problems: (1) investigation of the validity of the current allometric scaling approach for interspecies extrapolation

  14. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    Science.gov (United States)

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  15. Ionizing radiation in the disinfection of water contaminated with potentially pathogenic mycobacteria

    International Nuclear Information System (INIS)

    Kubin, M.; Sedlackova, J.; Vacek, K.

    1982-01-01

    Sterile drinking water samples were artificially colonized with M. kansasii, M. gardonae and M. fortuitum suspensions (the numbers of viable units in 1 ml were 1.2x10 3 , 48.5 and 3.2x10 3 , respectively) prepared from mycobacterial strains replicated in Tween 80-free liquid Dubos medium STO. The contaminated water samples were irradiated from a rotary cobalt 60 source (gamma radiation, E=1.17 and 1.33 MeV, dose rate 1 kJ/kg.h at room temperature) with doses 0.7, 1.5, 2.2, 3, 9, 16 and 27 kJ/kg. The disinfecting effectiveness was assessed by direct cultivation tests (0.5 ml volumes of water inoculated on egg medium) and by cultivation on membrane filtres after filtering the whole amount of the water examined (about 500 ml). Total disinfection was recorded for M. kansasii and M. fortuitum irradiated with 9 kJ/kg and for M. gordonae after irradiation with 1.5 kJ/kg. The calculated value of D 10 =0.4 kJ/kg (i.e., the radiation dose that reduces the number of viable mycobacteria by an order of magnitude) is suggestive of a strong disinfecting effect of ionizing radiation on the tested strains of potentially pathogenic mycobacteria. The results indicate that ionizing radiation could be applxcable in disinfecting supply and potable water contaminated with mycobacteria difficult to remove by other methods which, as a rule, cannot ensure permanent disinfection. (author)

  16. Ionizing radiation in the disinfection of water contaminated with potentially pathogenic mycobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kubin, M [Institut Hygieny a Epidemiologie, Prague (Czechoslovakia); Sedlackova, J; Vacek, K [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1982-01-01

    Sterile drinking water samples were artificially colonized with M. kansasii, M. gardonae and M. fortuitum suspensions (the numbers of viable units in 1 ml were 1.2x10/sup 3/, 48.5 and 3.2x10/sup 3/, respectively) prepared from mycobacterial strains replicated in Tween 80-free liquid Dubos medium STO. The contaminated water samples were irradiated from a rotary cobalt 60 source (gamma radiation, E=1.17 and 1.33 MeV, dose rate 1 kJ/kg.h at room temperature) with doses 0.7, 1.5, 2.2, 3, 9, 16 and 27 kJ/kg. The disinfecting effectiveness was assessed by direct cultivation tests (0.5 ml volumes of water inoculated on egg medium) and by cultivation on membrane filtres after filtering the whole amount of the water examined (about 500 ml). Total disinfection was recorded for M. kansasii and M. fortuitum irradiated with 9 kJ/kg and for M. gordonae after irradiation with 1.5 kJ/kg. The calculated value of D/sub 10/=0.4 kJ/kg (i.e., the radiation dose that reduces the number of viable mycobacteria by an order of magnitude) is suggestive of a strong disinfecting effect of ionizing radiation on the tested strains of potentially pathogenic mycobacteria. The results indicate that ionizing radiation could be applicable in disinfecting supply and potable water contaminated with mycobacteria difficult to remove by other methods which, as a rule, cannot ensure permanent disinfection.

  17. Perched aquifers - their potential impact on contaminant transport in the southern High Plains, Texas

    International Nuclear Information System (INIS)

    Mullican, W.F. III; Fryar, A.E.; Johns, N.D.

    1993-01-01

    Understanding the hydrogeology and hydrochemistry of perched aquifers at potential and known contaminated waste sites has become increasingly important because of the impact these aquifers may have on contaminant transport independent of regional aquifer processes. Investigations of a perched aquifer above the Ogallala aquifer are being conducted in the region of the U.S. Department of Energy's Pantex Plant, a proposed Superfund site, located approximately 20 mi northeast of Amarillo, Texas. Since the early 1950s, a small playa basin located on the Pantex Plant has been used as a waste-water discharge pond with daily discharge rates ranging from 400,000 to 1 million gal. The focus of this investigation is an unconfined, perched aquifer that overlies a thick silty clay sequence within the upper, mostly unsaturated part of the Ogallala Formation (Neogene). In the area of the Pantex Plant, measured depths to the perched aquifer range from 200 to 300 ft below land surface, whereas depth to the regional Ogallala aquifer ranges from 375 to 500 ft. The potentiometric surface of the perched aquifer typically represents groundwater mounds proximal to the playas and thins into trough in the interplaya areas. Hydrologic gradients of the primary mound under investigation are relatively high, ranging from 28 to 45 ft/mi. Calculated transmissivities have a geometric mean of 54 ft 2 /day, with saturated thicknesses ranging from 4 to 1000 ft. Modeling of the perched aquifer was designed to determine how much, if any, discharge to the small playa basin has enhanced recharge to the perched aquifers and increased the vertical and lateral extent of the perched aquifer. Preliminary results indicate that measurements of vertical conductance through the perching silty-clay sequence and recharge rates through playas are critical for calibrating the model. Accurate delineation of rates and flow directions in the perched aquifer is critical to any successful remediation effort

  18. Stray dogs and cats as potential sources of soil contamination with zoonotic parasites.

    Science.gov (United States)

    Szwabe, Katarzyna; Blaszkowska, Joanna

    2017-03-22

    The main source of many zoonoses is soil contaminated with feline and canine faeces. Thus, the aim of this study was to estimate the prevalence of intestinal parasites in stray dogs and cats adopted in Lodz shelter (Poland). In total, 163 faecal samples were collected from 95 dogs and 68 cats from 2011 to 2012. The samples were processed by sedimentation techniques using Mini Parasep®SF. Six parasite genera belonging to protozoa, cestoda, and nematoda, were found in dogs, while eight were found in cats. Out of the 163 fecal samples, 37.4% were positive for the presence at least one species of intestinal parasites. The majority of positive dog samples contained eggs from Toxocara and Trichuris genera, and the family Ancylostomatidae, while Toxocara and Taenia eggs, as well as Cystoisospora oocysts, predominated in cat faeces. A significantly higher prevalence of parasites was noted in cats (48.5%) than in dogs (29.5%) (χ2=6.15, P=0.013). The Toxocara genus was the most prevalent parasite in both populations; eggs were found in 27.9% and 16.8% of cats and dogs, respectively. Animals younger than 12 months of age showed higher infection rates with Toxocara, but differences were not statistically significant. The average numbers of Toxocara eggs/gram of faeces in positive puppy and kitten samples were over 5 and 7 times higher than in older dogs and cats, respectively. Mixed infection were found in dogs (5.3%) and cats (8.8%). Cat faeces represent a more important potential source of environmental contamination with zoonotic parasites than dog faeces. Among the detected parasites of stray dogs and cats, Toxocara present an important zoonotic risk for the local human population, especially children.

  19. Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate

    Directory of Open Access Journals (Sweden)

    Juan M. Trujillo-González

    2017-06-01

    Full Text Available Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their potential toxicity and persistence in the environment. The Villavicencio region (Colombia is an equatorial area where rainfall (near 3000 mm/year and temperature (average 25.6 °C are high. Soil processes in tropical conditions are fast and react quickly to changing conditions. Soil properties from agricultural fields irrigated with river water polluted by a variety of sources were analysed and compared to non-irrigated control soils. In this study, no physico-chemical alterations were found that gave evidence of a change due to the constant use of river water that contained wastes. This fact may be associated with the climatic factors (temperature and precipitation, which contribute to fast degradation of organic matter and nutrient and contaminants (such as heavy metals leaching, or to dilution of wastes by the river.

  20. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China.

    Science.gov (United States)

    Li, J T; Qiu, J W; Wang, X W; Zhong, Y; Lan, C Y; Shu, W S

    2006-09-01

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.

  1. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.T. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Qiu, J.W. [Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong (China); Wang, X.W. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Zhong, Y. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China); Lan, C.Y. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China)]. E-mail: ls04@zsu.edu.cn; Shu, W.S. [School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275 (China)]. E-mail: ls53@zsu.edu.cn

    2006-09-15

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents. - Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans.

  2. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China

    International Nuclear Information System (INIS)

    Li, J.T.; Qiu, J.W.; Wang, X.W.; Zhong, Y.; Lan, C.Y.; Shu, W.S.

    2006-01-01

    This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0-24 times and 4.0-10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04-0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents. - Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans

  3. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients.

    Science.gov (United States)

    LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E

    2003-03-01

    The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.

  4. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  5. Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    OpenAIRE

    Norzila Othman; Mohd Irwan Juki; Norhana Hussain; Suhaimi Abdul Talib

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compou...

  6. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Campbell, Scott A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2018-04-01

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Site Contamination Area (CA) as a result of storm runoff. This activity supports U.S. Department of Energy (DOE) Environmental Management Nevada Program (EM-NV) efforts to establish post-closure monitoring plans for the Smoky Site Soils Corrective Action Unit (CAU) 550. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause the movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the design of the appropriate post-closure monitoring program. In 2011, DRI installed a meteorological monitoring station on the west side of the Smoky Site CA and a hydrologic (runoff) monitoring station within the CA, near the east side. Air temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and soil water content are collected at the meteorological station. The maximum, minimum, and average or total values (as appropriate) for each of these parameters are recorded for each 10-minute interval. The maximum, minimum, and average water depth in the flume installed at the hydrology station are also recorded for every 10-minute interval. This report presents data collected from these stations during fiscal year (FY) 2017. During the FY2017 reporting period, the warmest months were June, July, and August and the coldest were December and January. Solar radiation showed the same seasonal trend, although the months with the most solar radiation were May and June. Monthly mean wind speeds were highest in the spring (April and May). Winds were generally from the southwest during the summer and from the northwest throughout the remainder of the year. The monthly average

  7. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  8. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    International Nuclear Information System (INIS)

    Will, M.E.; Suter, G.W. II.

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as open-quotes contaminants of potential concern.close quotes This process is termed open-quotes contaminant screening.close quotes It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern

  9. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    International Nuclear Information System (INIS)

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon

  10. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.

  11. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils.

    Science.gov (United States)

    Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L

    2014-04-01

    In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Comparison of {sup 18}F-FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer. A follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, Lino M.; Kirchner, Julian; Schaarschmidt, Benedikt M.; Antoch, Gerald [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); Grueneisen, Johannes; Forsting, Michael; Umutlu, Lale [University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ruhlmann, Verena; Herrmann, Ken [University Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Aktas, Bahriye [University Duisburg-Essen, Medical Faculty, Department of Obstetrics and Gynecology, Essen (Germany)

    2018-04-15

    To evaluate the diagnostic performance of {sup 18}F-FDG PET/MRI for whole-body staging and potential changes in therapeutic management of women with suspected recurrent pelvic cancer in comparison with MRI alone. Seventy-one consecutive women (54 ± 13 years, range: 25-80 years) with suspected recurrence of cervical (32), ovarian (26), endometrial (7), vulvar (4), and vaginal (2) cancer underwent PET/MRI including a diagnostic contrast-enhanced MRI protocol. PET/MRI and MRI datasets were separately evaluated regarding lesion count, localization, categorization (benign/malignant), and diagnostic confidence (3-point scale; 1-3) by two physicians. The reference standard was based on histopathology results and follow-up imaging. Diagnostic accuracy and proportions of malignant and benign lesions rated correctly were retrospectively compared using McNemar's chi{sup 2} test. Differences in diagnostic confidence were assessed by Wilcoxon test. Fifty-five patients showed cancer recurrence. PET/MRI correctly identified more patients with cancer recurrence than MRI alone (100% vs. 83.6%, p < 0.01). In contrast to PET/MRI, MRI alone missed 4/15 patients with pelvic recurrence and miscategorized 8/40 patients with distant metastases as having local recurrence only. Based on the reference standard, 241 lesions were detected in the study cohort (181 malignant, 60 benign). While PET/MRI provided correct identification of 181/181 (100%) malignant lesions, MRI alone correctly identified 135/181 (74.6%) malignant lesions, which was significantly less compared to PET/MRI (p < 0.001). PET/MRI offered superior diagnostic accuracy (99.2% vs. 79.3%, p < 0.001) and diagnostic confidence in the categorization of malignant lesions compared with MRI alone (2.7 ± 0.5 vs. 2.4 ± 0.7, p < 0.001). PET/MRI demonstrates excellent diagnostic performance and outperforms MRI alone for whole-body staging of women with suspected recurrent pelvic cancer, indicating potential changes in therapy

  13. Use of liquid nitrogen during storage in a cell and tissue bank: contamination risk and effect on the detectability of potential viral contaminants.

    Science.gov (United States)

    Mirabet, Vicente; Alvarez, Manuel; Solves, Pilar; Ocete, Dolores; Gimeno, Concepción

    2012-04-01

    Cryopreservation is widely used for banking cells and tissues intended for transplantation. Liquid nitrogen provides a very stable ultra-low temperature environment. Thus, it is used for longterm storage. Unlike the exhaustive microbiological monitoring of the environmental conditions during tissue processing, storage is not usually considered as a critical point of potential contamination risk in professional standards for cell and tissue banking. We have analysed the presence of microbial agents inside our nitrogen tanks. We have mainly detected environmental and water-borne bacteria and fungi. In addition, we have studied the effect of liquid nitrogen exposure on virus detectability. Only differences for hepatitis C virus RNA were observed. Measures for contamination risk reduction during storage must be mandatory in cell and tissue banking. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Risks to Ecological Receptors Posed by Contaminants of Potential Concern in the Lower Three Runs Cooling Ponds and Canals

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Blas, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-21

    The upper portion of Lower Three Runs includes several ponds, reservoirs, and canals that were formerly used as a cooling system for nuclear production reactors. This area was divided into nine exposure areas (EAs) for the assessment of environmental contamination resulting from past reactor operations and other industrial processes. A tiered screening process identified several contaminants of potential concern including aluminum, cyanide, lead, manganese, mercury, DDD, DDE, and DDT. Risks posed by these contaminants to ecological receptors (river otter, belted kingfisher, raccoon, and blue heron) were assessed using contaminant exposure models that estimated contaminant intake resulting from ingestion of food, water, and sediment/ soil and compared these intakes with toxicity reference values (TRVs). The contaminant exposure models showed that the TRVs were not exceeded in the otter model, exceeded by aluminum in EA 7 (Pond 2 and associated canals) in the raccoon model, and exceeded by mercury in EAs 2, 3 (Pond B), 6 (Par Pond), and 8 (Ponds 4 and 5 and Canal to Pond C) in both the kingfisher and blue heron models. Hazard quotients (total exposure dose divided by the TRV) were 2.8 for aluminum and 1.7- 3.6 for mercury. The primary route of exposure for aluminum was the ingestion of soil, and the primary route of exposure for mercury was the ingestion of mercury contaminated fish. Elevated levels of mercury in fish were at least partly the result of the aerial deposition of mercury onto Lower Three Runs and its watershed. The atmospheric deposition of mercury creates pervasive contamination in fish throughout the Savannah River basin. Another possible source of mercury was the discharge of mercury contaminated Savannah River water into the Lower Three Runs cooling ponds and canals during previous years of reactor operation. This contamination originated from industries located upstream of the SRS. The aluminum exceedance for the raccoon was likely the result of

  15. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge.

    Science.gov (United States)

    Ye, Xiaoyun; Zhou, Xiaoliu; Hennings, Ryan; Kramer, Joshua; Calafat, Antonia M

    2013-03-01

    Biomonitoring studies are conducted to assess internal dose (i.e., body burden) to environmental chemicals. However, because of the ubiquitous presence in the environment of some of these chemicals, such as bisphenol A (BPA), external contamination during handling and analysis of the biospecimens collected for biomonitoring evaluations could compromise the reported concentrations of such chemicals. We examined the contamination with the target analytes during analysis of biological specimens in biomonitoring laboratories equipped with state-of-the-art analytical instrumentation. We present several case studies using the quantitative determination of BPA and other organic chemicals (i.e., benzophenone-3, triclosan, parabens) in human urine, milk, and serum to identify potential contamination sources when the biomarkers measured are ubiquitous environmental contaminants. Contamination with target analytes during biomonitoring analysis could result from solvents and reagents, the experimental apparatus used, the laboratory environment, and/or even the analyst. For biomonotoring data to be valid-even when obtained from high-quality analytical methods and good laboratory practices-the following practices must be followed to identify and track unintended contamination with the target analytes during analysis of the biological specimens: strict quality control measures including use of laboratory blanks; replicate analyses; engineering controls (e.g., clean rooms, biosafety cabinets) as needed; and homogeneous matrix-based quality control materials within the expected concentration ranges of the study samples.

  16. The Potential Use of Vetiveria zizanioides for the Phytoremediation of Antimony, Arsenic and Their Co-Contamination.

    Science.gov (United States)

    Mirza, Nosheen; Mubarak, Hussani; Chai, Li-Yuan; Yong, Wang; Khan, Muhammad Jamil; Khan, Qudrat Ullah; Hashmi, Muhammad Zaffar; Farooq, Umar; Sarwar, Rizwana; Yang, Zhi-Hui

    2017-10-01

    Antimony (Sb) and arsenic (As) contaminations are the well reported and alarming issues of various contaminated smelting and mining sites all over the world, especially in China. The present hydroponic study was to assess the capacity of Vetiveria zizanioides for Sb, As and their interactive accumulations. The novelty of the present research is this that the potential of V. zizanioides for Sb and As alone and their interactive accumulation are unaddressed. This is the first report about the interactive co-accumulation of Sb and As in V. zizanioides. Highest applied Sb and As contaminations significantly inhibited the plant growth. Applied Sb and As alone significantly increased their concentrations in the roots/shoot of V. zizanioides. While co-contamination of Sb and As steadily increased their concentrations, in the plant. The co-contamination of Sb and As revealed a positive correlation between the two, as they supplemented the uptake and accumulation of each other. The overall translocation (TF) and bioaccumulation factors (BF) of Sb in V. zizanioides, were 0.75 and 4. While the TF and BF of As in V. zizanioides, were 0.86 and 10. V. zizanioides proved as an effective choice for the phytoremediation and ecosystem restoration of Sb and As contaminated areas.

  17. Potential Use of Polyacrylamide Encapsulation for Treatment of Petroleum Drilling Cuttings and Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Randy H. Adams

    2011-07-01

    Full Text Available Mineral soil of alluvial origin, contaminated with diesel+lubricating oil (1:2, was treated with a commercial polyacrylamide product at 100 % of the distributer recommended dosage, producing a reduction in hydrocarbon concentration (EPA 9074 of 76 % that remained stable during the study period (38 days and even after thermal treatment (60 ºC, 18 hrs.. Increasing the dosage to 150 % did not improve the treatment results, but repeating the treatment (at 100 % resulted in a slight additional reduction (4 %. Similar results were obtained with oil-based drilling cuttings (~60 % reduction at both 100 % and 150 %. Pre-drying of the drilling cuttings prior to treatment did not improve the hydrocarbon reduction, but it did produce smaller, potentially more stable aggregates (0.5 – 1-0 mm in diameter. The treatment of organic soil resulted in a similar reduction in hydrocarbon concentration (65 % and a reduction of acute toxicity (Microtox to below background levels, however this effect was not stable. An additional application (including mixing of the polyacrylamide product resulted in partial disintegration of the organic fibres and release of the stabilized hydrocarbons, measuring an overall increase in hydrocarbon concentration of 19 %.

  18. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater.

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Pervez, Arshid; Ahmad, Raza; Farooq, Robina; Shah, Mohammad Maroof; Azim, Muhammad Rashid

    2010-08-01

    The present study reports the potential of Arundo donax for phytoextraction of arsenic from synthetic wastewater. A. donax plants were grown under greenhouse conditions in pots containing a nutrient solution amended with increasing doses of As (0, 50, 100, 300, 600 and 1000 microg L(-1)) for 21 days in a completely randomized design. Shoot and roots dry matter production, growth parameters, arsenic and nutrient tissue concentrations were measured at the end of the experiment. Increasing As concentration in nutrient solution caused an increase in shoot and root biomass without toxicity symptoms in A. donax growing under a range of As concentration from 50 to 600 microg L(-1). Elevated oxidative stress was observed at As supplied level of 1000 microg L(-1). The As doses up to 600 microg L(-1) did not affect the growth of A. donax. It is suggested that A. donax plants may be employed to treat contaminated waters containing arsenic concentrations up to 600 microg L(-1). (c) 2010 Elsevier Ltd. All rights reserved.

  19. Potential Use of Apple Polyphenol Oxidase for Bioremediation of Phenolic Contaminants

    Directory of Open Access Journals (Sweden)

    Anita Šalić

    2018-04-01

    Full Text Available Phenolic compounds, such as catechol, are released into the environment from a variety of industrial sources and they present a serious ecosystem burden. This work examined the possibility of using partially purified apple polyphenol oxidase (PPO for bioremediation of phenolic contaminants. In order to optimize process conditions, the optimal pH and temperature for PPO activity were determined, while PPO affinity toward various phenols, as well as the effect of some salts and organic solvents which can be found in wastewaters, was used to confirm applicability of PPO in wastewater treatment. It was found that partially purified apple PPO shows maximal activity at pH 6.8 and 25 °C, but exhibits more than 85 % of its maximal activity in pH range from 5 to 8, and more than 90 % of activity in temperature range from 10 to 50 °C. PPO showed high affinity for various diphenols, but lack of affinity toward monophenols. Sodium tetraborate decahydrate moderately inhibited PPO activity, while exposure of PPO to the presence of organic solvents (φ = 5 % caused 40 % loss in its activity. Catechol oxidation by PPO performed for just 5 min in a batch reactor at optimal process conditions resulted in 25 % conversion. Based on obtained data, it seems that partially purified apple PPO has reasonable potential in wastewater treatment.

  20. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Neuparth, Teresa S.; Caeiro, Sandra; Lobo, Jorge; Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos; Angel DelValls, T.; Costa, Maria H.

    2011-01-01

    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or 'comet') assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with sediment

  1. Potential of coconut shell activated carbon (CSAC) in removing contaminants for water quality improvement: A critical review

    Science.gov (United States)

    Akhir, Muhammad Fitri Mohd; Saad, Noor Aida; Zakaria, Nor Azazi

    2017-10-01

    Commonly, water contaminations occur due to human-induced conditions such as industrial discharge and urban activities. The widely identified contaminants are heavy metal. The toxicity of those heavy metal elements is high and very poisonous to humans' health and environment even at lower dose or concentration of exposure. Chronic poisoning can cause fatal or defect to one's body or environment. Organic contaminants such as oil and microbial are also found due to decomposition of organic matter. The excellent quality adsorption of contaminants is highly related to surface area, pore size, pore volume, and amount plus type of functional group on surface of CSAC. The higher the surface area and pore volume, the higher adsorption that CSAC have towards contaminants. In comparison to meso-pore and macro-pore, micro-pore is better for trapping and adsorbing water contaminants. The purpose of this article is to critically review the potential of CSAC in increasing adsorption to remove contaminants for water quality improvement. A critical review is implemented using search engine like Science Direct. Alkali-modification is shown to have good adsorption in anion elements and organic matter due to improvement of hydrophobic organic compound (HOC) while acid-modification is good in cation elements adsorption. Strong alkali impregnated solution makes CSAC more hydrophobic and positively charge especially after increasing the impregnation dosage. Strong acid of adsorbate affects the quality of adsorption by reducing the surface area, pore volume and it also breaks the Van der Waals forces between adsorbent and adsorbate. However, the formation of oxygen helps the activated carbon surface to become more hydrophilic and negative charge is produced. It helps the effectiveness of metal adsorption. Therefore, by controlling dosage and types of functional groups on surface of CSAC and the pH of adsorbate, it can contribute to high adsorption of organic and inorganic contaminants in

  2. Assessment of the genotoxic potential of contaminated estuarine sediments in fish peripheral blood: Laboratory versus in situ studies

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M., E-mail: pmcosta@fct.unl.pt [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Neuparth, Teresa S. [CIIMAR-Centro Interdisciplinar de Investigacao Marinha e Ambiental, Laboratorio de Toxicologia Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto (Portugal); Caeiro, Sandra [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Departamento de Ciencias e Tecnologia, Universidade Aberta, Rua da Escola Politecnica, 141, 1269-001 Lisboa (Portugal); Lobo, Jorge [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Martins, Marta; Ferreira, Ana M.; Caetano, Miguel; Vale, Carlos [IPIMAR-INRB, Instituto Nacional dos Recursos Biologicos, Avenida de Brasilia, 1449-006 Lisboa (Portugal); Angel DelValls, T. [UNESCO/UNITWIN/WiCop Chair-Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cadiz, Poligono rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Costa, Maria H. [IMAR-Instituto do Mar, Departamento de Ciencias e Engenharia do Ambiente, Faculdade de Ciencias e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-01-15

    Juvenile Senegalese soles (Solea senegalensis) were exposed to estuarine sediments through 28-day laboratory and in situ (field) bioassays. The sediments, collected from three distinct sites (a reference plus two contaminated) of the Sado Estuary (W Portugal) were characterized for total organic matter, redox potential, fine fraction and for the levels of metals, polycyclic aromatic hydrocarbons (PAHs) and organochlorines, namely polychlorinated biphenyls (PCBs) and dichloro diphenyl tricholoethane plus its main metabolites (DDTs). Genotoxicity was determined in whole peripheral blood by the single-cell gel electrophoresis (SCGE or 'comet') assay and by scoring erythrocytic nuclear abnormalities (ENA). Analysis was complemented with the determination of lipid peroxidation in blood plasma by the thiobarbituric acid reactive substances (TBARS) protocol and cell type sorting. The results showed that exposure to contaminated sediments induced DNA fragmentation and clastogenesis. Still, laboratory exposure to the most contaminated sediment revealed a possible antagonistic effect between metallic and organic contaminants that might have been enhanced by increased bioavailability. The laboratory assay caused a more pronounced increase in ENA whereas a very significant increase in DNA fragmentation was observed in field-tested fish exposed to the reference sediment, which is likely linked to increased lipid peroxidation that probably occurred due to impaired access to food. Influence of natural pathogens was ruled out by unaltered leukocyte counts. The statistical integration of data correlated lipid peroxidation with biological variables such as fish length and weight, whereas the genotoxicity biomarkers were more correlated to sediment contamination. It was demonstrated that laboratory and field bioassays for the risk assessment of sediment contamination may yield different genotoxicity profiles although both provided results that are in overall accordance with

  3. Radioactive contamination in the Arctic--sources, dose assessment and potential risks

    International Nuclear Information System (INIS)

    Strand, P.; Howard, B.J.; Aarkrog, A.; Balonov, M.; Tsaturov, Y.; Bewers, J.M.; Salo, A.; Sickel, M.; Bergman, R.; Rissanen, K.

    2002-01-01

    Arctic residents, whose diets comprise a large proportion of traditional terrestrial and freshwater foodstuffs, have received the highest radiation exposures to artificial radionuclides in the Arctic. Doses to members of both the average population and selected indigenous population groups in the Arctic depend on the rates of consumption of locally-derived terrestrial and freshwater foodstuffs, including reindeer/caribou meat, freshwater fish, goat cheese, berries, mushrooms and lamb. The vulnerability of arctic populations, especially indigenous peoples, to radiocaesium deposition is much greater than for temperate populations due to the importance of terrestrial, semi-natural exposure pathways where there is high radiocaesium transfer and a long ecological half-life for this radionuclide. In contrast, arctic residents with diets largely comprising marine foodstuffs have received comparatively low radiation exposures because of the lower levels of contamination of marine organisms. Using arctic-specific information, the predicted collective dose is five times higher than that estimated by UNSCEAR for temperate areas. The greatest threats to human health and the environment posed by human and industrial activities in the Arctic are associated with the potential for accidents in the civilian and military nuclear sectors. Of most concern are the consequences of potential accidents in nuclear power plant reactors, during the handling and storage of nuclear weapons, in the decommissioning of nuclear submarines and in the disposal of spent nuclear fuel from vessels. It is important to foster a close association between risk assessment and practical programmes for the purposes of improving monitoring, formulating response strategies and implementing action plans

  4. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    International Nuclear Information System (INIS)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline; Billon, Gabriel; Ouddane, Baghdad; Boughriet, Abdel

    2011-01-01

    Research highlights: → A historical environmental pollution is evidenced with reference to background levels. → Sedimentary trace metals partitioning is examined under undisturbed conditions. → Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. → Do metals present in particles and pore waters exhibit a potential toxicity risk? → Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended

  5. Evaluation of metal contamination and phytoremediation potential of aquatic macrophytes of East Kolkata Wetlands, India.

    Science.gov (United States)

    Khatun, Amina; Pal, Sandipan; Mukherjee, Aloke Kumar; Samanta, Palas; Mondal, Subinoy; Kole, Debraj; Chandra, Priyanka; Ghosh, Apurba Ratan

    2016-01-01

    The present study analyzes metal contamination in sediment of the East Kolkata Wetlands, a Ramsar site, which is receiving a huge amount of domestic and industrial wastewater from surrounding areas. The subsequent uptake and accumulation of metals in different macrophytes are also examined in regard to their phytoremediation potential. Metals like cadmium (Cd), copper (Cu), manganese (Mn), and lead (Pb) were estimated in sediment, water and different parts of the macrophytes Colocasia esculenta and Scirpus articulatus . The concentration of metals in sediment were, from highest to lowest, Mn (205.0±65.5 mg/kg)>Cu (29.9±10.2 mg/kg)>Pb (22.7±10.3 mg/kg)>Cd (3.7±2.2 mg/kg). The phytoaccumulation tendency of these metals showed similar trends in both native aquatic macrophyte species. The rate of accumulation of metals in roots was higher than in shoots. There were strong positive correlations ( p <0.001) between soil organic carbon (OC) percentage and Mn (r =0.771), and sediment OC percentage and Pb (r=0.832). Cation exchange capacity (CEC) also showed a positive correlation ( p <0.001) with Cu (r=0.721), Mn (r=0.713), and Pb (r=0.788), while correlations between sediment OC percentage and Cu (r=0.628), sediment OC percentage and Cd (r=0.559), and CEC and Cd (r=0.625) were significant at the p <0.05 level. Bioaccumulation factor and translocation factors of these two plants revealed that S. articulatus was comparatively more efficient for phytoremediation, whereas phytostabilization potential was higher in C. esculenta .

  6. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment.

    Directory of Open Access Journals (Sweden)

    Shaohua Chen

    Full Text Available Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly effective in degrading bifenthrin over a wide range of temperatures (20-40 °C and pH (5-9. On the basis of response surface methodology (RSM, the optimal degradation conditions were determined to be 32.3 °C and pH 7.2. Under these conditions, the yeast completely metabolized bifenthrin (50 mg · L(-1 within 8 days. This strain utilized bifenthrin as the sole carbon source for growth as well as co-metabolized it in the presence of glucose, and tolerated concentrations as high as 600 mg · L(-1 with a q(max, K(s and K(i of 1.7015 day(-1, 86.2259 mg · L(-1 and 187.2340 mg · L(-1, respectively. The yeast first degraded bifenthrin by hydrolysis of the carboxylester linkage to produce cyclopropanecarboxylic acid and 2-methyl-3-biphenylyl methanol. Subsequently, 2-methyl-3-biphenylyl methanol was further transformed by biphenyl cleavage to form 4-trifluoromethoxy phenol, 2-chloro-6-fluoro benzylalcohol, and 3,5-dimethoxy phenol, resulting in its detoxification. Eventually, no persistent accumulative product was detected by gas chromatopraphy-mass spectrometry (GC-MS analysis. This is the first report of a novel pathway of degradation of bifenthrin by hydrolysis of ester linkage and cleavage of biphenyl in a microorganism. Furthermore, strain ZS-02 degraded a variety of pyrethroids including bifenthrin, cyfluthrin, deltamethrin, fenvalerate, cypermethrin, and fenpropathrin. In different contaminated soils introduced with strain ZS-02, 65-75% of the 50 mg · kg(-1 bifenthrin was eliminated within 10 days, suggesting the yeast could be a promising candidate for remediation of environments affected

  7. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment.

    Science.gov (United States)

    Chen, Shaohua; Luo, Jianjun; Hu, Meiying; Geng, Peng; Zhang, Yanbo

    2012-01-01

    Bifenthrin is one the most widespread pollutants and has caused potential effect on aquatic life and human health, yet little is known about microbial degradation in contaminated regions. A novel yeast strain ZS-02, isolated from activated sludge and identified as Candida pelliculosa based on morphology, API test and 18S rDNA gene analysis, was found highly effective in degrading bifenthrin over a wide range of temperatures (20-40 °C) and pH (5-9). On the basis of response surface methodology (RSM), the optimal degradation conditions were determined to be 32.3 °C and pH 7.2. Under these conditions, the yeast completely metabolized bifenthrin (50 mg · L(-1)) within 8 days. This strain utilized bifenthrin as the sole carbon source for growth as well as co-metabolized it in the presence of glucose, and tolerated concentrations as high as 600 mg · L(-1) with a q(max), K(s) and K(i) of 1.7015 day(-1), 86.2259 mg · L(-1) and 187.2340 mg · L(-1), respectively. The yeast first degraded bifenthrin by hydrolysis of the carboxylester linkage to produce cyclopropanecarboxylic acid and 2-methyl-3-biphenylyl methanol. Subsequently, 2-methyl-3-biphenylyl methanol was further transformed by biphenyl cleavage to form 4-trifluoromethoxy phenol, 2-chloro-6-fluoro benzylalcohol, and 3,5-dimethoxy phenol, resulting in its detoxification. Eventually, no persistent accumulative product was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis. This is the first report of a novel pathway of degradation of bifenthrin by hydrolysis of ester linkage and cleavage of biphenyl in a microorganism. Furthermore, strain ZS-02 degraded a variety of pyrethroids including bifenthrin, cyfluthrin, deltamethrin, fenvalerate, cypermethrin, and fenpropathrin. In different contaminated soils introduced with strain ZS-02, 65-75% of the 50 mg · kg(-1) bifenthrin was eliminated within 10 days, suggesting the yeast could be a promising candidate for remediation of environments affected by

  8. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    Science.gov (United States)

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  9. Investigation of soil potentially contaminated by monazite processing by-products: case study and suggestion for protocol

    International Nuclear Information System (INIS)

    Briquet, Claudia

    2006-01-01

    This work describes a characterization of soil potentially contaminated by monazite chemical processing residues. For case study it was selected a country area of Sao Paulo State, containing a monazite processing by-product depository. The main objective was to evaluate the soil contamination in an area of approximately 18,000 m 2 and esteem the total effective dose equivalent. During the development of this work, it was verified necessity of an investigation protocol, in order to standardize actions of regulatory authorities. A survey of the applicable legislation was carried out, as a tool to support decision making process. The methodology was based on the 'Manual de Gerenciamento de Areas Contaminadas' of CETESB (2001 a), a national document to guide studies of contaminated areas. It was also considered the 'Multi Agency Radiation Survey and Site Manual Investigation - MARSSIM' (2000), a U.S. government document that provides a nationally consensus approach to conduct investigations at potentially contaminated sites. The developed activities had been divided in three general stages: data-collecting and information on the place, identification of soil contamination and its distribution until the depth of 3 meters and evaluation of the associated dose. The evaluation of the radiological impact was carried out considering the worst-case use scenario (most restrictive future use), standing out that the final decision fits to the Brazilian National Nuclear Energy Commission - CNEN. CNEN's scope of responsibility includes determining the site release criteria and the cleanup necessity. (author)

  10. An approach for assessing potential sediment-bound contaminant threats near the intake of a drinking water treatment plant.

    Science.gov (United States)

    Chen, Fei; Anderson, William B; Huck, Peter M

    2013-01-01

    To assist in assessing a potential contaminated sediment threat near a drinking water intake in a large lake, a technique known as the fingerprint analysis of leachate contaminants (FALCON), was investigated and enhanced to help draw more statistically significant definitive conclusions. This represents the first application of this approach, originally developed by the USEPA to characterize and track leachate penetration in groundwater and contaminant migration from waste and landfill sites, in a large lake from the point-of-view of source water protection. FALCON provided valuable information regarding contaminated sediment characterization, source attribution, and transport within a surface water context without the need for knowledge of local hydrodynamic conditions, potentially reducing reliance on complicated hydrodynamic analysis. A t-test to evaluate the significance of correlations was shown to further enhance the FALCON procedure. In this study, the sensitivity of FALCON was found to be improved by using concentration data from both conserved organics and heavy metals in combination. Furthermore, data analysis indicated that it may be possible to indirectly assess the success of remediation efforts (and the corresponding need to plan for a treatment upgrade in the event of escalating contaminant concentrations) by examining the temporal change in correlation between the source and intake sediment fingerprints over time. This method has potential for widespread application in situations where conserved contaminants such as heavy metals and higher molecular weight polycyclic aromatic hydrocarbons (PAHs), are being or have previously been deposited in sediment somewhere in, or within range of, an intake protection zone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Assessment of potential risk of environmental radioactive contamination in northern Europe from terrestrial nuclear units in north-west Russia

    International Nuclear Information System (INIS)

    Lisovsky, I.; Baklanov, A.; Jacovlev, V.; Prutskov, V.; Bergman, R.

    1999-05-01

    This Technical Report, being part of the INTAS project 96-1802, constitutes a comprehensive presentation - covering basic results from separate contributions as specified below - of work performed during the first period (February 1998- February 1999). The aim of the INTAS project 96-1802: 'Assessment of potential risk of environmental radioactive contamination in northern Europe from terrestrial nuclear units in north-west Russia' is to assess the potential risk of environmental radioactive contamination from nuclear units in north-west Russia and resulting impacts on population and terrestrial ecosystems in the north. The work focuses mainly on airborne radioactive contamination, but some case studies also deal with accidental leakage from terrestrial nuclear sites to soil and coastal waters. The present material comprises in more detail the contributions from participants no.4 and no.5 based on the four internal reports referred to below: (1) Assessment of potential risk of environmental radioactive contamination in Northern Europe from terrestrial nuclear units in north-west Russia: 'Determination of the list of typical sources of danger emergency radioactive releases in an environment in connection with military activity in the North of Russia.' Technical report no.1 of the team no.5. St.-Petersburg State Technical University, St.-Petersburg. July 1998. 43 p.; (2) Assessment of potential risk of environmental radioactive contamination in Northern Europe from terrestrial nuclear units in North-west Russia: 'Analysis and description of source-term characteristics for accident linked with airborne radioactive releases from Kola Nuclear Power Plant. Establishing a network facility at INEP for communication among the INTAS Project participants.' Technical report no.1 of the team no.4. Kola Science Centre, Apatity. August 1998. 56 p.; (3) Assessment of potential risk of environmental radioactive contamination in Northern Europe from terrestrial nuclear units in

  12. Assessment of potential risk of environmental radioactive contamination in northern Europe from terrestrial nuclear units in north-west Russia

    Energy Technology Data Exchange (ETDEWEB)

    Lisovsky, I. [St. Petersburg State Technical Univ. (Russian Federation); Baklanov, A. [Inst. of the Northern Ecology Problems (INEP) (Russian Federation); Jacovlev, V. [St. Petersburg State Technical Univ. (Russian Federation); Prutskov, V. [Ministry of Defence (Russian Federation). First Central Research Inst. of Naval Shipbuilding; Tarasov, I. [Ministry of Defence (Russian Federation). 23 State Marine Project Inst.; Blecher, A. [State Unitary Enterprise (Russian Federation). Research Inst. of Industrial and Marine Medicine; Zvonariev, B.; Kuchin, N.; Rubanov, S.; Sergeiev, I. [State Scientific Centre (Russian Federation). Central Research Inst. of A. Krylov; Morozov, S.; Koshkin, V.; Fedorenko, Yu.; Rigina, O. [Inst. of the Northern Ecology Problems (INEP) (Russian Federation); Bergman, R. [ed.] [Defence Research Establishment, Umeaa (Sweden). Div. of NBC Defence

    1999-05-01

    This Technical Report, being part of the INTAS project 96-1802, constitutes a comprehensive presentation - covering basic results from separate contributions as specified below - of work performed during the first period (February 1998- February 1999). The aim of the INTAS project 96-1802: `Assessment of potential risk of environmental radioactive contamination in northern Europe from terrestrial nuclear units in north-west Russia` is to assess the potential risk of environmental radioactive contamination from nuclear units in north-west Russia and resulting impacts on population and terrestrial ecosystems in the north. The work focuses mainly on airborne radioactive contamination, but some case studies also deal with accidental leakage from terrestrial nuclear sites to soil and coastal waters. The present material comprises in more detail the contributions from participants no.4 and no.5 based on the four internal reports referred to below: (1) Assessment of potential risk of environmental radioactive contamination in Northern Europe from terrestrial nuclear units in north-west Russia: `Determination of the list of typical sources of danger emergency radioactive releases in an environment in connection with military activity in the North of Russia.` Technical report no.1 of the team no.5. St.-Petersburg State Technical University, St.-Petersburg. July 1998. 43 p.; (2) Assessment of potential risk of environmental radioactive contamination in Northern Europe from terrestrial nuclear units in North-west Russia: `Analysis and description of source-term characteristics for accident linked with airborne radioactive releases from Kola Nuclear Power Plant. Establishing a network facility at INEP for communication among the INTAS Project participants.` Technical report no.1 of the team no.4. Kola Science Centre, Apatity. August 1998. 56 p.; (3) Assessment of potential risk of environmental radioactive contamination in Northern Europe from terrestrial nuclear units in

  13. THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.; Fakra, Sirine C.; Beny, Jean Michel; Foster, Andrea L.

    2010-07-16

    trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.

  14. Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals

    OpenAIRE

    Violina R. Angelova; Mariana N. Perifanova-Nemska; Galina P. Uzunova; Krasimir I. Ivanov; Huu Q. Lee

    2016-01-01

    A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals...

  15. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  16. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  17. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    Pickering, D.A.; Laase, A.D.; Locke, D.A.

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  18. Phytoextractor Potential of Cultivated Species in Industrial Area Contaminated by Lead

    Directory of Open Access Journals (Sweden)

    Silvânia Maria de Souza Gomes Nascimento

    Full Text Available ABSTRACT: High growth rate is one of the criteria used for the selection of species to be used in metal phytoextraction programs. This study was carried out to characterize the growth characteristics of sunflower (Helianthus annuus L., castor bean (Ricinus communis L., corn (Zea mays L, and vetiver [Vetiveria zizanioides (L. Nash] grown on a soil contaminated with lead (Pb, with and without pH correction, to improve agronomic practices regarding phytoremediation programs. The experiment was designed as a randomized block with four replications; treatments were arranged in a split-plot arrangement, with the main plot representing the species (sunflower, castor bean, corn, and vetiver, with or without pH correction and soil fertilization, and the split-plot representing harvest periods (60, 90, and 120 days after planting. After variance analysis and mean comparison analysis of the data by the Tukey test (p≤0.05, a significant effect was observed from soil pH correction for vetiver in all of the growth variables evaluated, except for the leaf area index at 120 days after planting (DAP. Castor bean and sunflower plants in soil with high acidity conditions, without pH correction (pH˂4.0, were affected by soil Pb levels. Corn plants benefited from soil pH correction and had improved results for the plant height, diameter, and leaf area variables at 60 and 90 DAP, as well as leaf area index at 60 DAP. There was no increase in these variables between the harvest periods evaluated. Regarding phytoextraction potential, corn and vetiver had the highest Pb translocation to the plant shoots at 90 DAP and were therefore considered the most suitable species for phytoremediation of the area under study. Overall, liming was essential for improving species biomass production for all the species studied in soils with high Pb availability in solution.

  19. Coliform Contamination of Peri-urban Grown Vegetables and Potential Public Health Risks: Evidence from Kumasi, Ghana.

    Science.gov (United States)

    Abass, Kabila; Ganle, John Kuumuori; Adaborna, Eric

    2016-04-01

    Peri-urban vegetable farming in Ghana is an important livelihood activity for an increasing number of people. However, increasing quality and public health concerns have been raised, partly because freshwater availability for irrigation purposes is a major constraint. This paper investigated on-farm vegetable contamination and potential health risks using samples of lettuce, spring onions and cabbage randomly selected from 18 vegetable farms in peri-urban Kumasi, Ghana. Vegetable samples were tested for total coliform, fecal coliform, Escherichia coli and Salmonella spp. bacteria contamination using the Most Probable Number method. Results show high contamination levels of total and fecal coliforms, and Escherichia coli bacteria in all 18 vegetable samples. The mean total coliform/100 ml concentration for spring onions, lettuce and cabbage were 9.15 × 10(9), 4.7 × 10(7) and 8.3 × 10(7) respectively. The mean fecal coliform concentration for spring onions, lettuce and cabbage were also 1.5 × 10(8), 4.15 × 10(7) and 2.15 × 10(7) respectively, while the mean Escherichia coli bacteria contamination for spring onions, lettuce and cabbage were 1.4 × 10(8), 2.2 × 10(7) and 3.2 × 10(7) respectively. The level of total coliform, fecal coliform and Escherichia coli bacteria contamination in all the vegetable samples however declined as the distance between the main water source (Wiwi River) and farms increases. Nonetheless, all contamination levels were well above acceptable standards, and could therefore pose serious public health risks to consumers. Increased education and supervision of farmers, as well as public health and food hygiene education of consumers, are critical to reducing on-farm vegetable contamination and the health risks associated with consumption of such vegetables.

  20. Evaluation and communication of potential risk of radionuclide contamination of foods after Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    Sekizawa, Jun; Nakamura, Yumiko

    2011-01-01

    A large scale nuclear power plant accident happened after the great earthquake with a huge tsunami in the Eastern part of Japan in March 2011. Potential risk from radionuclide contamination in foods after the nuclear power plant accident was estimated using data of radiological food contamination from the Ministry of Health, Labour and Welfare. Data analyzed by combining nuclide, food, level of radiation detection, period, age-classified population, were compared to provisional index levels of radionuclides, and existing contamination levels in food by natural radioactive potassium. Health risk was shown to be very low or negligible considering presence of background radiological exposure from foods and the environment. Appropriate explanation of risk to various stakeholders of the society is imperative and results of trials were reported. (author)

  1. Environmental surveillance of commonly-grown vegetables for investigating potential lead and chromium contamination intensification in Bangladesh.

    Science.gov (United States)

    Hossain, A M M Maruf; Islam, M Shahidul; Mamun, M Mustafa; Al-Jonaed, H M; Imran, M; Rahman, M Hasibur; Kazi, M Azizul Islam; Elahi, Syed Fazle

    2016-01-01

    With regard to previously reported Lead (Pb) and Chromium (Cr) contamination in egg, a semi-quantitative assessment of the general environment of Bangladesh is carried out through nation-wide sampling of commonly grown and consumed vegetables. Five vegetables, namely, White Potato ( Solanum tuberosum ), Green Cabbage ( Brassica oleracea capitata var. alba L.), Red Spinach ( Amaranthus dubius ), White Radish ( Raphanus sativus var. longipinnatus ), and Green Bean ( Phaseolus vulgaris ) were selected for sampling from all 64 Districts of the country as per their availability during the sampling season. This results in a collection of 292 samples. Due to the necessity of incorporating a wide spectrum of vegetable types (e.g. tuber, brassica, leafy, root, and fruiting vegetables) as well as the need for including the geographic expanse of the whole country, replicates were not accommodated in the study, hence, the study being semi-quantitative in nature. The results do not substantiate evidence of public health risk due to Cr yet, with only 0.69 % of the samples found contaminated with Cr. Pb contamination (concentrations above a health-based guidance value) is found in 29.47 % of the samples; and together with the insight of such contamination likely being non-point origin, communicates on potential public health risk due to Pb as residual effects of extensive ambient atmospheric Pb pollution in recent history of the country. For the purpose of comparison, Cadmium (Cd) contents of the samples are also analyzed. Although there is no extensive Cd pollution history/source in the country, the likely point-source nature of Cd contamination found in 17.83 % of the samples indicates the scope of managing any existing contamination source by directing efforts into the potential point-sources.

  2. Metal and Isotope Analysis of Bird Feathers in a Contaminated Estuary Reveals Bioaccumulation, Biomagnification, and Potential Toxic Effects.

    Science.gov (United States)

    Einoder, L D; MacLeod, C K; Coughanowr, C

    2018-07-01

    The Derwent estuary, in south east Tasmania, is highly contaminated with heavy metals, mainly due to past industrial pollution. This study sought to determine the extent of contamination, bioaccumulation, and biomagnification in the resident bird community and therefore to infer the potential for adverse effects in birds. Thirteen metals were measured from breast feathers (n = 51 individuals) of eight sympatric species of aquatic bird. Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes were used to identify dietary sources of contaminants, trophic level, and potential biomagnification through food chains. Generalised linear models revealed that metal burdens were often poorly correlated with δ 13 C, indicating their uptake from a range of freshwater, brackish, and marine carbon sources-not surprising due to widespread contamination across the tidal estuary. Feather mercury increased significantly with trophic level (inferred from δ 15 N). White-bellied Sea-eagle Haliaeetus leucogaster samples contained 240 times more mercury than feral Goose Anser cygnoides. Feather arsenic and copper concentrations were significantly higher in birds feeding lower in the food chain. For several piscivorous species, both chick and adults were sampled revealing significantly higher feather mercury, zinc, and selenium in adults. Feathers from birds found dead along the banks of the estuary had significantly higher lead loads than from live birds, and numerous individuals had levels of mercury, zinc, and lead above toxic thresholds reported in other studies. These results highlight the need to include biota from higher trophic levels in contaminant monitoring programs to understand fully the fate and broader implications of contaminants in the environment.

  3. Molecular identification and potential of an isolate of white rot fungi in bioremediation of petroleum contaminated soils

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadi-sichani

    2017-06-01

    Full Text Available Introduction:Elimination or reduction of petroleum hydrocarbons from natural resources such as water and soil is a serious problem of countries, particularly oil-rich countries of the world. Using white rotting fungi compost for bioremediation of soils contaminated by petroleum hydrocarbons is effective. The aim of this study is molecular identification and potential of anisolate of white rot fungi in bioremediation of petroleum contaminated soils. Materials and methods: Spent compost of white rotting fungi was inoculated with petroleum contaminated soil into 3%, 5% and 10% (w/w. Treatments were incubated at 25-23 °C for 3 months. Reduction of petroleum hydrocarbons in treated soil was determined by gas chromatography. Ecotoxicity of soil was evaluated by seed germination test. Results: Based on the genome sequence of 18s rRNA, it is revealed that this isolate is Ganoderma lucidum and this isolate is deposited as accession KX525204 in the Gene Bank database. Reduction of petroleum hydrocarbons in soil treated with compost (3, 5 and 10% ranged from 42% to 71%. The germination index (% in ecotoxicity tests ranged from 20.8% to 70.8%. Gas chromatography results also showed a decrease in soil Hydrocarbons compounds. Discussion and conclusion: The compost of Ganoderma lucidum, a white rot fungus, has a potential ability to remove petroleum hydrocarbons in contaminated soil. Removal of hydrocarbons was increased with increase in compost mixed with contaminated soil. Petroleum contaminated soil amended with spent compost of G.lucidum 10% during three months is appropriate to remove this pollutant.

  4. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    presence of the ionizer. The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.

  6. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    acrylonitrile, did however develop a positive charge in the presence of the ionizer. Conclusion The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.

  7. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments

    Science.gov (United States)

    Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.

    2015-11-01

    Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity

  8. Potential of near-infrared hyperspectral reflectance imaging for screening of farm feed contamination

    Science.gov (United States)

    Wang, Wenbo; Paliwal, Jitendra

    2005-09-01

    With the outbreak of Bovine Spongiform Encephalopathy (BSE) (commonly known as mad cow disease) in 1987 in the United Kingdom and a recent case discovered in Alberta, more and more emphasis is placed on food and farm feed quality and safety issues internationally. The disease is believed to be spread through farm feed contamination by animal byproducts in the form of meat-and-bone-meal (MBM). The paper reviewed the available techniques necessary to the enforcement of legislation concerning the feed safety issues. The standard microscopy method, although highly sensitive, is laborious and costly. A method to routinely screen farm feed contamination certainly helps to reduce the complexity of safety inspection. A hyperspectral imaging system working in the near-infrared wavelength region of 1100-1600 nm was used to study the possibility of detection of ground broiler feed contamination by ground pork. Hyperspectral images of raw broiler feed, ground broiler feed, ground pork, and contaminated feed samples were acquired. Raw broiler feed samples were found to possess comparatively large spectral variations due to light scattering effect. Ground feed adulterated with 1%, 3%, 5%, and 10% of ground pork was tested to identify feed contamination. Discriminant analysis using Mahalanobis distance showed that the model trained using pure ground feed samples and pure ground pork samples resulted in 100% false negative errors for all test replicates of contaminated samples. A discriminant model trained with pure ground feed samples and 10% contamination level samples resulted in 12.5% false positive error and 0% false negative error.

  9. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil.

    Science.gov (United States)

    Schneider, Jerusa; Bundschuh, Jochen; Rangel, Wesley de Melo; Guilherme, Luiz Roberto Guimarães

    2017-05-01

    Arbuscular mycorrhizal (AM) fungi inoculation is considered a potential biotechnological tool for an eco-friendly remediation of hazardous contaminants. However, the mechanisms explaining how AM fungi attenuate the phytotoxicity of metal(oid)s, in particular arsenic (As), are still not fully understood. The influence of As on plant growth and the antioxidant system was studied in Leucaena leucocephala plants inoculated with different isolates of AM fungi and exposed to increasing concentrations of As (0, 35, and 75 mg dm -3 ) in a Typic Quartzipsamment soil. The study was conducted under greenhouse conditions using isolates of AM fungi selected from uncontaminated soils (Acaulospora morrowiae, Rhizophagus clarus, Gigaspora albida; and a mixed inoculum derived from combining these isolates, named AMF Mix) as well as a mix of three isolates from an As-contaminated soil (A. morrowiae, R. clarus, and Paraglomus occultum). After 21 weeks, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were determined in the shoots in addition to measuring plant height and mineral contents. In general, AM fungi have shown multiple beneficial effects on L. leucocephala growth. Although the activity of most of the stress-related enzymes increased in plants associated with AM fungi, the percentage increase caused by adding As to the soil was even greater for non-mycorrhizal plants when compared to AM-fungi inoculated ones, which highlights the phytoprotective effect provided by the AM symbiosis. The highest P/As ratio observed in AM-fungi plants, compared to non-mycorrhizal ones, can be considered a good indicator that the AM fungi alter the pattern of As(V) uptake from As-contaminated soil. Our results underline the role of AM fungi in increasing the tolerance of L. leucocephala to As stress and emphasize the potential of the symbiosis L. leucocephala-R. clarus for As-phytostabilization at moderately As-contaminated

  10. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    Science.gov (United States)

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  11. Ranking harbours in the maritime provinces of Canada for potential to contaminate American lobster (Homarus americanus) with polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Prouse, N.J.

    1994-01-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise a suite of contaminants that enter the marine environment through a variety of natural and anthropogenic sources. PAHs, including carcinogenic compounds, bioaccumulate in the tissues of exposed American lobsters (Homarus americanus). High PAH concentrations in lobster tissues necessitated the closure of the lobster fishery in the South Arm of Sydney Harbour, Nova Scotia, in 1982. A study was conducted to assess harbors in Nova Scotia, New Brunswick, and Prince Edward Island to determine if there might be a reason for concern about PAH contamination of lobsters. Adjacent commercial and industrial activity, harbor uses, the surrounding population, and PAH point sources were evaluated for each harbor selected for study. Areas of lobster fishing and the number of permanent lobster holding facilities within each harbor were also determined. Harbors were then ranked according to their potential for PAH contamination. Point sources for PAHs within these harbors included petroleum and coal products plants, oil refineries, chemical plants, coal-fired generating stations, and fuel combustion in land vehicles and ships. After Sydney, the harbors with the highest potential for PAH contamination were determined to be Halifax, Saint John, Pictou, and Port Hawkesbury Ship Harbour. 60 refs., 15 figs., 7 tabs.

  12. A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences.

    Directory of Open Access Journals (Sweden)

    David Caramelli

    Full Text Available BACKGROUND: DNA sequences from ancient specimens may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal and early modern (Cro-Magnoid Europeans. METHODOLOGY/PRINCIPAL FINDINGS: We typed the mitochondrial DNA (mtDNA hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23 and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. CONCLUSIONS/SIGNIFICANCE: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.

  13. Status of metal levels and their potential sources of contamination in Southeast Asian rivers.

    Science.gov (United States)

    Chanpiwat, Penradee; Sthiannopkao, Suthipong

    2014-01-01

    To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.

  14. Self-potential monitoring of a crude oil contaminated site (Trecate, Italy): first results of the modelling.

    Science.gov (United States)

    Giampaolo, V.; Rizzo, E.; Titov, K.; Maineult, A.; Lapenna, V.

    2012-04-01

    The contamination of soils and groundwater by hydrocarbon, due to blow out, leakage from tank or pipe and oil spill, is a heavy environmental problem because infiltrated oil can persist in the ground for a long time. The existing methods used for the remediation of these contaminated sites are invasive, time consuming and expensive. Therefore, in the last years, there was a growing interest in the use of geophysical methods for environmental monitoring (Atekwana et al., 2000; Chambers et al., 2004; Song et al., 2005; French et al., 2009). A particular attention is given to the self-potential (SP) method because SP is sensitive to the contaminant chemistry and redox processes generated by bacteria during the biodegradation (Atekwana et al., 2004; Naudet and Revil, 2005; Revil et al., 2010). Here we show the results of SP investigations carried out at Trecate site (Italy). This site was affected by a crude oil contamination from a well blowout in 1994. Four SP surveys (October 2009, March 2010, October 2010, and March 2011) were conducted at the site, both in the contaminated and uncontaminated regions. Significant changes are observed between SP data collected at different times. In particular, we found mostly negative electrical potential in October surveys and positive electrical potential in March surveys. The SP distributions can be interpreted as the superposition of many components, including a horizontal water-flow in the saturated shallow aquifer toward South-East, the infiltration movement of water in the unsaturated zone and, possibly, the oxidation-reduction phenomena due to bacterial activity. As the groundwater flow usually produces SP linear trends, the data were detrended by linear regression, taking into account the measured piezometric heads in the aquifer. The detrended SP data show that the SP distribution within the contaminated zone is generally bipolar in October: the southern part of the contaminated area is characterized by negative values

  15. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.

    Science.gov (United States)

    Lum, A Fontem; Ngwa, E S A; Chikoye, D; Suh, C E

    2014-01-01

    Phytoremediation is a promising option for reclaiming soils contaminated with toxic metals, using plants with high potentials for extraction, stabilization and hyperaccumulation. This study was conducted in Cameroon, at the Bassa Industrial Zone of Douala in 2011, to assess the total content of 19 heavy metals and 5 other elements in soils and phytoremediation potential of 12 weeds. Partial extraction was carried out in soil, plant root and shoot samples. Phytoremediation potential was evaluated in terms of the Biological Concentration Factor, Translocation Factor and Biological Accumulation Coefficient. The detectable content of the heavy metals in soils was Cu:70-179, Pb:8-130, Zn:200-971, Ni:74-296, Co:31-90, Mn:1983-4139, V:165-383, Cr:42-1054, Ba:26-239, Sc:21-56, Al:6.11-9.84, Th:7-22, Sr:30-190, La:52-115, Zr:111-341, Y:10-49, Nb:90-172 in mg kg(-1), and Ti:2.73-4.09 and Fe:12-16.24 in wt%. The contamination index revealed that the soils were slightly to heavily contaminated while the geoaccumulation index showed that the soils ranged from unpolluted to highly polluted. The concentration of heavy metals was ranked as Zn > Ni > Cu > V > Mn > Sc > Co > Pb and Cr in the roots and Mn > Zn > Ni > Cu > Sc > Co > V > Pb > Cr > Fe in the shoots. Dissotis rotundifolia and Kyllinga erecta had phytoextraction potentials for Pb and Paspalum orbicularefor Fe. Eleusine indica and K. erecta had phytostabilisation potential for soils contaminated with Cu and Pb, respectively.

  16. Potential of glycerol and soybean oil for bioremediation of weathered oily-sludge contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, T.C.F.; Franca, F.P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica], E-mail: fpfranca@eq.ufrj.br; Oliveira, F.J.S. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-04-15

    The bioremediation of petroleum-contaminated soil was investigated on laboratory scale. This work evaluated the effect of co-substrate addition in tropical climate soil highly contaminated with oily residue. Glycerol and soybean oil were used as auxiliary co-substrates for contaminant degradation. Three different concentrations of co-substrate were tested, and the experiments were carried out over 60 days. The following parameters were monitored: humidity, pH, total heterotrophic bacteria, total fungi, total petroleum hydrocarbons (TPH), and the concentrations of benzo[a]pyrene and chrysene. The soil supplementation with renewable co-substrates improved the efficiency of the biodegradation TPH, with removals of 85% and 83% for glycerol and soybean oil, respectively, compared to a 55% removal yielded by the biodegradation process without supplementation. The use of glycerol increased Chrysene and Benzo[a]pyrene biodegradation by 50%, while soybean oil supplementation increased their removal by 36%. (author)

  17. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    Science.gov (United States)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Investigations on potential bacteria for the bioremediation treatment of environments contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, I.; Voicu, A.; Dobrota, S.; Stefanescu, M. [Institute of Biology of Romanian Academy, Bucharest (Romania)] [and others

    1995-12-31

    In Romania after more than 135 years of oil production and processing, some severe environmental pollution problems have accumulated. In this context a joint research group from Institute of Biology Bucharest and S.C. Petrostar S.A. Ploiesti became involved in a research project on bioremediation of an environment contaminated with hydrocarbon waste. In the first stage of this project, investigations on microbial communities occurring in environments contaminated with oil were carried out. In the second stage, the hundreds of bacterial strains and populations isolated from soils, slops, and water sites contaminated with waste oil and water waste oil mix were submitted to a screening program, to select a naturally occurring mixed culture with a high ability to degrade hydrocarbons.

  19. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.

    Science.gov (United States)

    Chen, Zhifan; Zhao, Ye; Fan, Lidong; Xing, Liteng; Yang, Yujie

    2015-12-01

    Phytoremediation using economically valuable, large biomass, non-edible plants is a promising method for metal-contaminated soils. This study investigated cotton's tolerance for Cd and remediation potential through analyzing Cd bioaccumulation and localization in plant organs under different soil Cd levels. Results showed cotton presents good tolerance when soil Cd concentration ≤20.26 mg kg(-1). Cotton had good Cd accumulation ability under low soil Cd levels (soil Cd, while roots and stems were the main compartments of Cd storage. Cd complexation to other organic constituents in root and stem cell sap could be a primary detoxifying strategy. Therefore, cotton is a potential candidate for phytoremediation of Cd-contaminated soils.

  20. Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China.

    Science.gov (United States)

    Kang, Wei; Bao, Jianguo; Zheng, Jin; Xu, Fen; Wang, Liuming

    2018-01-02

    Fast-growing metal-accumulating woody plants are considered potential candidates for phytoremediation of metals. Tonglushan mining, one of the biggest Cu production bases in China, presents an important source of the pollution of environment. The sample was collected at Tonglushan ancient copper spoil heap. The aims were to measure the content of heavy metal in the soil and woody plants and to elucidate the phytoremediation potential of the plants. The result showed that soil Cu, Cd and Pb were the main contamination, the mean contents of which were 3166.73 mg/kg, 3.66 mg/kg and 137.06 mg/kg respectively, which belonged to severe contamination. Fourteen species from 14 genera of 13 families were collected and investigated; except for Ligutrum lucidum, the other 13 woody plants species were newly recorded in this area. In addition, to assess the ability of metal accumulation of these trees, we proposed accumulation index. Data suggested that Platanus × acerilolia, Broussonetia papyrifera, Ligutrum lucidum, Viburnum awabuki, Firmiana simplex, Robina pseudoacacia, Melia azedarach and Osmanthus fragrans exhibited high accumulated capacity and strong tolerance to heavy metals. Therefore, Platanus × acerilolia and Broussonetia papyrifera can be planted in Pb contaminated areas; Viburnum awabuki, Firmiana simplex, Robina pseudoacacia and Melia azedarach are the suitable trees for Cd contaminated areas; Viburnum awabuki, Melia azedarach, Ligutrum lucidum, Firmiana simplex, Osmanthus fragrans and Robina pseudoacacia are appropriate to Cu, Pb and Cd multi-metal contaminated areas.

  1. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments.

    Science.gov (United States)

    Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat

    2016-10-01

    Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values 1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.

  2. Organization A Comprehensive System Of Insurance Coverage In The Potential Chemical And Biological Contamination Zone In Regions

    Directory of Open Access Journals (Sweden)

    Nina Vladimirovna Zaytseva

    2014-12-01

    Full Text Available The article provides a scientific rationale for an integrated approach to the provision of insurance coverage in the potential chemical and biological contamination zone. The following modern forms of chemical safety in the Russian Federation were considered: state reserve’s system, target program financing, state social insurance. The separate issue tackles the obligatory civil liability insurance for owners of dangerous objects. For improvement of the existing insurance protection system against emergency situations, risks were analyzed (shared on exogenous and endogenous. Among the exogenous risks including natural and climatic conditions of a region, its geographical arrangement, economic specialization, the seismic and terrorist risks were chosen and approaches to its solution were suggested. In endogenous risks’ group, the special focus is on wear and tear and obsolescence of hazardous chemical and biological object’s fixed assets. In case of high risk of an incident, it is suggested to increase in extent of insurance protection through self-insurance, a mutual insurance in the form of the organization of societies of a mutual insurance or the self-regulating organizations, and also development of voluntary insurance of a civil liability, both the owner of hazardous object, and regions of the Russian Federation and municipalities. The model of insurance coverage in the potential chemical and biological contamination zone is based on a differentiated approach to the danger level of the area. A matrix of adequate forms and types of insurance (required for insurance coverage of the population in the potential chemical and biological contamination zone was constructed. Proposed health risk management toolkit in the potential chemical and biological contamination zone will allow to use financial resources for chemical and biological safety in the regions more efficiently.

  3. ENVIRONMENTAL CONTAMINANTS AND POTENTIAL HUMAN RISK ASSOCIATED WITH SELECTED BOTANICAL DIETARY SUPPLEMENTS

    Science.gov (United States)

    Botanical dietary supplements have a long history of use in Europe and China and they are becoming increasingly popular in the United States. However, little data is available regarding environmental contaminants in botanical dietary supplements and the risk posed to those ingest...

  4. Assessing diversity and phytoremediation potential of mangroves for copper contaminated sediments in Subic Bay, Philippines

    Science.gov (United States)

    Toxic metal pollution of water and soil is a major environmental problem and most conventional remediation approaches may not provide adequate solutions. An alternative way of reducing copper (Cu) concentration from contaminated sediments is through phytoremediation. Presently, there are few researc...

  5. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium.

    Science.gov (United States)

    Zeng, Peng; Guo, Zhaohui; Cao, Xia; Xiao, Xiyuan; Liu, Yanan; Shi, Lei

    2018-03-21

    In a greenhouse experiment, five ornamental plants, Osmanthus fragrans (OF), Ligustrum vicaryi L. (LV), Cinnamomum camphora (CC), Loropetalum chinense var. rubrum (LC), and Euonymus japonicas cv. Aureo-mar (EJ), were studied for the ability to phytostabilization for Cd-contaminated soil. The results showed that these five ornamental plants can grow normally when the soil Cd content is less than 24.6 mg·kg -1 . Cd was mainly deposited in the roots of OF, LV, LC and EJ which have grown in Cd-contaminated soils, and the maximum Cd contents reached 15.76, 19.09, 20.59 and 32.91 mg·kg -1 , respectively. For CC, Cd was mainly distributed in the shoots and the maximum Cd content in stems and leaves were 12.5 and 10.71 mg·kg -1 , however, the total amount of Cd in stems and leaves was similar with the other ornamental plants. The enzymatic activities in Cd-contaminated soil were benefited from the five tested ornamental plants remediation. Soil urease and sucrase activities were improved, while dehydrogenase activity was depressed. Meanwhile, the soil microbial community was slightly influenced when soil Cd content is less than 24.6 mg·kg -1 under five ornamental plants remediation. The results further suggested that ornamental plants could be promising candidates for phytostabilization of Cd-contaminated soil.

  6. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network

    Science.gov (United States)

    The arsenic (As) contamination of groundwater has increasingly been recognized as a major global issue of concern. As groundwater resources are one of most important freshwater sources for water supplies in Southeast Asian countries, it is important to investigate the spatial distribution of As cont...

  7. POTENTIAL REUSE OF PETROLEUM-CONTAMINATED SOIL: A DIRECTORY OF PERMITTED RECYCLING FACILITIES

    Science.gov (United States)

    Soil contaminated by virgin petroleum products leaking from underground storage tanks Is a pervasive problem in the United States. Economically feasible disposal of such soil concerns the responsible party (RP), whether the RP is one individual small business owner, a group o...

  8. Microbial activity in an acid resin deposit: Biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination

    International Nuclear Information System (INIS)

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-01-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. - Acidity is the major toxic factor of the extremely hydrophobic and acidic mixed contamination found in an acid resin deposit

  9. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification.

    Science.gov (United States)

    Rajapaksha, Anushka Upamali; Chen, Season S; Tsang, Daniel C W; Zhang, Ming; Vithanage, Meththika; Mandal, Sanchita; Gao, Bin; Bolan, Nanthi S; Ok, Yong Sik

    2016-04-01

    The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain).

    Science.gov (United States)

    Hanebuth, Till J J; King, Mary Lee; Mendes, Isabel; Lebreiro, Susana; Lobo, Francisco J; Oberle, Ferdinand K; Antón, Laura; Ferreira, Paulo Alves; Reguera, Maria Isabel

    2018-05-10

    Natural and human-induced seabed sediment disturbances affect wide areas of the global coastal ocean. These recurrent to chronic disturbances mobilize significant amounts of material, including substances that have the potential to significantly harm the environment once re-released. This very challenging issue is difficult to deal with if sub-surface contaminant concentrations are unknown. Based on the analysis of 11 new, up to 5-m long sediment cores taken offshore in the Gulf of Cadiz, the contamination history (using the trace elements lead and zinc) is well documented over major parts of the gulf. Ore mining and metal processing industries on the southwestern Iberian Peninsula started five thousand years ago and experienced a first peak during the Roman Period, which can be detected over the entire gulf. The Industrial Era added a massive, shelf-wide heavy metal excursion of unprecedented dimension. This metal contamination to the coastal ocean decreased in the 1990s and appears to be today limited to larger areas off the Tinto/Odiel and Guadiana River mouths. The unforeseen, significant finding of this study is that the gulf-wide, peak heavy metal concentration, stemming from the Industrial Era, is widely overlain by a modern sediment veneer just thick enough to cover the contaminant horizon, but thin enough to have this layer within the reach of natural or human-induced sediment mobilization events. Published by Elsevier B.V.

  11. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants.

    Science.gov (United States)

    Fernandez, M E; Ledesma, B; Román, S; Bonelli, P R; Cukierman, A L

    2015-05-01

    Activated hydrochars obtained from the hydrothermal carbonization of orange peels (Citrus sinensis) followed by various thermochemical processing were assessed as adsorbents for emerging contaminants in water. Thermal activation under flows of CO2 or air as well as chemical activation with phosphoric acid were applied to the hydrochars. Their characteristics were analyzed and related to their ability to uptake three pharmaceuticals (diclofenac sodium, salicylic acid and flurbiprofen) considered as emerging contaminants. The hydrothermal carbonization and subsequent activations promoted substantial chemical transformations which affected the surface properties of the activated hydrochars; they exhibited specific surface areas ranging from 300 to ∼620 m(2)/g. Morphological characterization showed the development of coral-like microspheres dominating the surface of most hydrochars. Their ability to adsorb the three pharmaceuticals selected was found largely dependent on whether the molecules were ionized or in their neutral form and on the porosity developed by the new adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluation of tolerance to soils contaminated with diesel oil in plant species with bioremediation potential

    International Nuclear Information System (INIS)

    Petenello, Maria Cristina; Feldman, Susana Raquel.

    2012-01-01

    Soils contaminated with hydrocarbons or their derivate can be remediated by different methods. Many of them use live organisms such as plants that are able to mineralize these compounds, turning them into more simple molecules, similar to natural molecules. When the use of plants is decided, it is important to employ native plants because they are already adapted to the particular ecological conditions of the site. The response of spartina argentinensis, paspalum atratum, paspalum guenoarun and melilotus albus to the presence of diesel oil was evaluated considering seed germination, plant emergence and biomass production of plants growing on soils experimentally contaminated with different concentrations of diesel oil (1 and 2 %). Although all the parameters evaluated showed the negative impact of the presence of diesel-oil, the plants continued growing; therefore they can be considered useful management options for soil phytoremediation.

  13. Potential airborne release from soil-working operations in a contaminated area

    International Nuclear Information System (INIS)

    Sutter, S.L.

    1980-08-01

    Experiments were performed to provide an indication of how much material could be made airborne during soil-working operations in a contaminated area. Approximately 50 kg of contaminated soil were collected, dried, and mixed, and particle size distribution and 137 Cs content were characterized. In four experiments performed in a 2 ft x 2 ft wind tunnel at the Radioactive Aerosol Release Test Facility, soil was pumped into an airstream moving at 3.2, 10.4, 15.2, and 20 mph. These experiments were designed to maximize airborne releases by fluidizing the soil as it was pumped into the wind tunnel. Thus the airborne releases should represent upper limit values for soil-working operations. Airborne concentration and particle size samples were collected and all of the material deposited downstream was collected to calculate a mass balance. The fraction airborne was calculated using these measurements

  14. Potential Ecological Effects of Contaminants in the Exposed Par Pond Sediments

    International Nuclear Information System (INIS)

    Paller, M.H.; Wike, L.D.

    1996-08-01

    Sediment and small mammal samples were collected from the exposed sediments of Par Pond in early 1995, shortly before the reservoir was refilled after a 4-year drawdown. Sampling was confined to elevations between 58 and 61 meters (190 and 200 feet) above mean sea level, which includes the sediments likely to be exposed if the Par Pond water level is permitted to fluctuate naturally. Both soil and small mammal samples were analyzed for a number of radionuclides and metals. Some of the soil samples were also analyzed for organic contaminants. The objective of the study was to determine if contaminant levels in the Par Pond sediments were high enough to cause deleterious ecological effects

  15. Heavy metal contamination in the muscle of Aegean chub (Squalius fellowesii) and potential risk assessment.

    Science.gov (United States)

    Şaşi, Hüseyin; Yozukmaz, Aykut; Yabanli, Murat

    2018-03-01

    Especially after the industrial revolution, the amount of contaminants released in aquatic ecosystems has considerably increased. For this reason, the necessity to carry on research on the existence of contaminants, specifically heavy metals, has emerged. In this study, heavy metal concentrations in muscle tissues of Aegean chub, which was an endemic species of south western part of Turkey, gathered from Tersakan River were examined. Heavy metal concentrations of the samples were analyzed with ICP-MS. Estimated daily intakes (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) of elements were calculated. The heavy metals detected in muscle tissues were Zn > Cu > Cr > Mn > Pb > Cd, consecutively. According to the results of the applied health risk assessment (EDI, THQ and CR) for heavy metal exposure from fish consumption in children and adults, it was determined that there was no any significant threat to human health.

  16. Potential of sunflower (helianthus annuus L.) for phytoremediation of nickle (Ni) and lead (Pb) contaminated water

    International Nuclear Information System (INIS)

    Mukhtar, S.M.; HAQ Bhatti, H.N.; Khalid, M.; Haq, M.A; Shahzad, S.M.

    2010-01-01

    Heavy metals are contaminants of much environmental apprehension, as they are hazardous to human being and other biota. Buildup of heavy metals in crop plants is of great concern due to the probability of food contamination through the soil-root interface. For this purpose, a hydroponic study was conducted to evaluate the efficacy of sunflower plant to phytoremediate Pb and Ni contaminated water in the absence and presence of synthetic chelator. Results showed that application of Ni and Pb reduced the dry weights of shoot and root (up to 55.1 and 38.3%; 50.5 and 33.6%), shoot and root length (up to 64.5 and 58.1%; 64.1 and 55.8%), chlorophyll content (up to 63.8 and 54.4%), and photosynthetic activity (up to 66.1 and 62.7%), respectively with EDTA as compared to control. While, maximum concentration of Ni and Pb in shoot and root (up to 18.43 and 20.73 mg kg/sup -1/; 12.82 and 18.67 mg kg/sup -1/), total accumulation (up to 55.82 and 72.28 mg kg/sup -1/), and proline content (up to 128.2 and 98.3%) were recorded in the presence of EDTA respectively as compared to control. Generally, it was observed that concentration and total accumulation of Pb was more than Ni in sunflower plant. The study concludes that the use of synthetic chelator increased the uptake and translocation of heavy metals in plant biomass that could enhance the phytoremediation of Ni and Pb from contaminated water. (author)

  17. Characterization of Contaminant Migration Potential Through In-Place Sediment Caps

    Science.gov (United States)

    2011-06-01

    grab. Extraction and analysis of sediment/cap material used pesticide -grade organic solvents obtained from Fisher Scientific (Pittsburgh, PA). The 16...34Controlled Field Release of a Bioluminescent Genetically Engineered  Microorganism  for  Bioremediation  Process Monitoring and Control." Environmental Science...role of sorbent amendments in enhancing cap performance. Laboratory column experiments were performed using contaminated sediments and capping

  18. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R. [Washington River Protection Solutions, P.O. Box 850, Richland, WA, 99352 (United States)

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  19. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm-13235

    International Nuclear Information System (INIS)

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit

  20. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  1. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    International Nuclear Information System (INIS)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M.

    2011-01-01

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L −1 and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L −1 , on average). The estimated concentration of micropollutants in crops ranged from −1 , with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  2. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Gomez-Eyles, Jose L.; Harris, Eva; Robinson, Brett; Sizmur, Tom

    2011-01-01

    Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability. - Highlights: → Biochars can reduce mobilities of some organic and inorganic pollutants in soil. → Source material and production conditions influence pollutant retention. → Highly alkaline pH and water soluble carbon can undesirably mobilise some elements. → Large surface area may be toxic to soil fauna but create microbial niches. → Efficacy of biochar may depend on other organic materials applied in combination. - Biochars can reduce the mobility and impact of some soil pollutants but, if applied alone, may fail to support soil restoration, revegetation and hence ecologically circumspect remediation.

  3. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, Michael, E-mail: komarek@af.czu.c [Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 (Czech Republic); Vanek, Ales [Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 (Czech Republic); Mrnka, Libor; Sudova, Radka [Department of Mycorrhizal Symbioses, Institute of Botany, Academy of Sciences of the Czech Republic, Lesni 322, 252 43 Pruhonice (Czech Republic); Szakova, Jirina [Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 (Czech Republic); Tejnecky, Vaclav [Department of Soil Science and Soil Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 (Czech Republic); Chrastny, Vladislav [Czech Geological Survey, Geologicka 6, 152 00 Prague 5 (Czech Republic); Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic)

    2010-07-15

    Incubation and pot experiments using poplar (Populus nigra L. cv. Wolterson) were performed in order to evaluate the questionable efficiency of EDDS-enhanced phytoextraction of Cu from contaminated soils. Despite the promising conditions of the experiment (low contamination of soils with a single metal with a high affinity for EDDS, metal tolerant poplar species capable of producing high biomass yields, root colonization by mycorrhizal fungi), the phytoextraction efficiency was not sufficient. The EDDS concentrations used in this study (3 and 6 mmol kg{sup -1}) enhanced the mobility (up to a 100-fold increase) and plant uptake of Cu (up to a 65-fold increase). However, despite EDDS degradation and the competition of Fe and Al for the chelant, Cu leaching cannot be omitted during the process. Due to the low efficiency, further research should be focused on other environment-friendly methods of soil remediation. - Research focused on EDDS-enhanced phytoextraction of metals from contaminated soils has probably reached a dead-end.

  4. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: victor.matamoros@udg.edu [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  5. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils

    International Nuclear Information System (INIS)

    Komarek, Michael; Vanek, Ales; Mrnka, Libor; Sudova, Radka; Szakova, Jirina; Tejnecky, Vaclav; Chrastny, Vladislav

    2010-01-01

    Incubation and pot experiments using poplar (Populus nigra L. cv. Wolterson) were performed in order to evaluate the questionable efficiency of EDDS-enhanced phytoextraction of Cu from contaminated soils. Despite the promising conditions of the experiment (low contamination of soils with a single metal with a high affinity for EDDS, metal tolerant poplar species capable of producing high biomass yields, root colonization by mycorrhizal fungi), the phytoextraction efficiency was not sufficient. The EDDS concentrations used in this study (3 and 6 mmol kg -1 ) enhanced the mobility (up to a 100-fold increase) and plant uptake of Cu (up to a 65-fold increase). However, despite EDDS degradation and the competition of Fe and Al for the chelant, Cu leaching cannot be omitted during the process. Due to the low efficiency, further research should be focused on other environment-friendly methods of soil remediation. - Research focused on EDDS-enhanced phytoextraction of metals from contaminated soils has probably reached a dead-end.

  6. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  7. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil

    International Nuclear Information System (INIS)

    Tilston, Emma L.; Collins, Chris D.; Mitchell, Geoffrey R.; Princivalle, Jessica; Shaw, Liz J.

    2013-01-01

    Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg −1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation. Highlights: ► Impact of nano-sized zerovalent iron on microbes was investigated in soil microcosms. ► Zerovalent iron had short-lived effects on redox potential and Aroclor dechlorination. ► Microbial populations also showed short-lived perturbations in their size. ► The activity of chloroaromatic degrading microbes did not recover within 28 days. ► Zerovalent iron application inhibits ensuing PCB bioremediative microbial functions. - nZVI inhibits microbial functions of potential importance for remediation strategies combining nZVI treatment and biodegradation.

  8. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1996 revision

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.S.; Suter, G.W. II [Oak Ridge National Lab., TN (United States); Hull, R.N. [Beak Consultants Ltd., Brampton, ON (Canada)

    1996-06-01

    A hazardous waste site may contain hundred of chemicals; therefore, it is important to screen contaminants of potential concern of the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. |Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark, more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test results, and field survey data. A fourth integrative approach incorporates all three types of data.

  9. Functional genes reveal the intrinsic PAH biodegradation potential in creosote-contaminated groundwater following in situ biostimulation.

    Science.gov (United States)

    Nyyssönen, Mari; Kapanen, Anu; Piskonen, Reetta; Lukkari, Tuomas; Itävaara, Merja

    2009-08-01

    A small-scale functional gene array containing 15 functional gene probes targeting aliphatic and aromatic hydrocarbon biodegradation pathways was used to investigate the effect of a pilot-scale air sparging and nutrient infiltration treatment on hydrocarbon biodegradation in creosote-contaminated groundwater. Genes involved in the different phases of polycyclic aromatic hydrocarbon (PAH) biodegradation were detected with the functional gene array in the contaminant plume, thus indicating the presence of intrinsic biodegradation potential. However, the low aerobic fluorescein diacetate hydrolysis, the polymerase chain reaction (PCR) amplification of 16S rRNA genes closely similar to sulphate-reducing and denitrifying bacteria and the negligible decrease in contaminant concentrations showed that aerobic PAH biodegradation was limited in the anoxic groundwater. Increased abundance of PAH biodegradation genes was detected by functional gene array in the monitoring well located at the rear end of the biostimulated area, which indicated that air sparging and nutrient infiltration enhanced the intrinsic, aerobic PAH biodegradation. Furthermore, ten times higher naphthalene dioxygenase gene copy numbers were detected by real-time PCR in the biostimulated area, which was in good agreement with the functional gene array data. As a result, functional gene array analysis was demonstrated to provide a potential tool for evaluating the efficiency of the bioremediation treatment for enhancing hydrocarbon biodegradation in field-scale applications.

  10. Suspected ectopic pregnancy.

    Science.gov (United States)

    Seeber, Beata E; Barnhart, Kurt T

    2006-02-01

    Women who present with pain and bleeding in the first trimester are at risk for ectopic pregnancy, a life-threatening condition. Conditions that predispose a woman to ectopic pregnancy are damaged fallopian tubes from prior tubal surgery or previous pelvic infection, smoking, and conception using assisted reproduction. Many women without risk factors can develop an ectopic pregnancy. A diagnostic algorithm that includes the use of transvaginal ultrasonography, human chorionic gonadotropin (hCG) concentrations, and, sometimes, uterine curettage can definitively diagnose women at risk in a timely manner. The absence of an intrauterine pregnancy above an established cut point of hCG is consistent with an abnormal pregnancy but does not distinguish a miscarriage from an ectopic pregnancy. When the initial hCG value is low, serial hCG values can be used to determine whether a gestation is potentially viable or spontaneously resolving. The minimal rise in hCG for a viable pregnancy is 53% in 2 days. The minimal decline of a spontaneous abortion is 21-35% in 2 days, depending on the initial level. A rise or fall in serial hCG values that is slower than this is suggestive of an ectopic pregnancy. Women diagnosed with an unruptured ectopic pregnancy are potential candidates for medical management with methotrexate. Intramuscular injection with methotrexate can be used to safely treat an ectopic pregnancy with success rates, tubal patency rates, and future fertility that are similar to those obtained with conservative surgery. Success rates using methotrexate are inversely rated to baseline hCG values and are higher using "multidose" compared with "single-dose" regimens. Surgical treatment may be conservative or definitive and should be attempted in most cases via laparoscopy.

  11. An alternative proposal for the disposal of potentially contaminated railroad crossties at the Savannah River Site. Revision 1

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1996-06-01

    The Savannah River Site (SRS) has accumulated approximately 300,000 crossties that have been replaced over a 40-year period of maintaining the site's 62 miles of railroad track. The ties reside in a pile on an open area of 2.3 acres near the site's F-Area facilities. A small fraction of the ties are potentially contaminated with radioactivity as a result of past site practices and service. Contamination was possible from occasional leaks in transport-casks moved by rail from the site's five nuclear materials production reactors to its two reprocessing facilities. Casks typically were filled with spent fuel, targets, and water from the reactor disassembly basins, which contained small amounts of fission and neutron activation product radioactivity normal to the operation of nuclear reactors

  12. Toxicological benchmarks for potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.; Suter, G.W. II

    1995-09-01

    An important step in ecological risk assessments is screening the chemicals occur-ring on a site for contaminants of potential concern. Screening may be accomplished by comparing reported ambient concentrations to a set of toxicological benchmarks. Multiple endpoints for assessing risks posed by soil-borne contaminants to organisms directly impacted by them have been established. This report presents benchmarks for soil invertebrates and microbial processes and addresses only chemicals found at United States Department of Energy (DOE) sites. No benchmarks for pesticides are presented. After discussing methods, this report presents the results of the literature review and benchmark derivation for toxicity to earthworms (Sect. 3), heterotrophic microbes and their processes (Sect. 4), and other invertebrates (Sect. 5). The final sections compare the benchmarks to other criteria and background and draw conclusions concerning the utility of the benchmarks.

  13. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example.

    Science.gov (United States)

    Milley, Shawn A; Koch, Iris; Fortin, Patricia; Archer, Jeremy; Reynolds, David; Weber, Kela P

    2018-09-15

    Assessing the extent to which emerging contaminants (ECs) such as perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been released into the environment is one of the foundations for developing effective management and remediation strategies for impacted sites. PFAS are known to have caused the contamination of soil, groundwater, and surface water as a result of aqueous film forming foam (AFFF) being accidentally or intentionally released into the environment. To date, the scope of the issue has not been evaluated in Canada. In this study we developed a framework, in the form of a decision tree, to estimate the number of potentially PFAS impacted airport sites in Canada as a result of AFFF releases. The screening process was completed using publicly available resources including airport websites, the Canadian Owners and Pilots Association website, Sky Vector, Transport Safety Board of Canada aviation investigation reports, the Aviation Safety Network website, and Google maps. The methodology presented in this study could be used to identify additional PFAS impacted sites in Canada or other jurisdictions worldwide. 2071 airport/heliport sites in Canada were investigated with indications that 152 (7%) of these sites likely have PFAS contamination as a result of the use of AFFF at firefighter training areas (FFTAs) and/or accidents where fires occurred. In addition, another 268 sites (13%) were identified as possibly impacted with PFASs primarily as a result of the location having the ability to store and dispense petroleum products, and therefore having AFFF systems onsite. Surficial geology was also identified for all sites determined to likely have PFAS contamination. An estimated 42.8% had surficial geology composed of sand, 27% had clay, 19.7% organic-based, with the remaining sites found on cryosols or rock. Methodological validation was also completed. The procedure used in this study successfully predicted occurrences of PFAS contamination at 25 sites

  14. GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium

    International Nuclear Information System (INIS)

    Schreurs, Eloi; Voets, Thomas; Thewys, Theo

    2011-01-01

    Dedicated energy crop cultivation is expected to be the prevalent form of biomass production for reaching renewable energy targets set by the European Union. However, there are some concerns with regard to its sustainability. This study demonstrates how this problem can be evaded by applying phytoremediation, i.e. the use of plants to remove pollutants from moderately contaminated soils. By selecting the appropriate plants a considerable biomass flow is produced without taking in scarce agricultural land, while simultaneously remediating the soil to levels of contamination below threshold values. Since phytoremediation is only applicable within a limited range of soil pollutant concentrations, the outer values of this range have to be determined at first. Subsequently, a Geographic Information System (GIS) is needed to perform further analyses. The contamination in the region is predicted using GIS, after which the agricultural area is determined that can be committed to energy crop cultivation. This way, the biomass potential and the resulting bioenergy potential from phytoremediation can be assessed. In this paper the Campine region in Belgium, a region diffusely contaminated with heavy metals like cadmium (Cd), is examined. It is illustrated that more than 2000 ha of agricultural land hold Cd concentrations exceeding guide values set by the Flemish Government. However, a large majority of these soils can be remediated by phytoremediation within a reasonable time span of 42 years. Concurrently, a significant amount of biomass is supplied for renewable energy production. -- Highlights: → More than 2000 ha of agricultural land have elevated Cd concentrations. → 87% can be remediated within 42 years by phytoremediation. → Annual biomass flow of 19 067 Mg for 21 years.

  15. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1994 Revision. Environmental Restoration Program

    International Nuclear Information System (INIS)

    Hull, R.N.; Suter, G.W. II

    1994-06-01

    Because a hazardous waste site may contain hundreds of chemicals, it is important to screen contaminants of potential concern for the ecological risk assessment. Often this screening is done as part of a Screening Assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. If a chemical concentration or the reported detection limit exceeds a proposed lower benchmark, more analysis is needed to determine the hazards posed by that chemical. If, however, the chemical concentration falls below the lower benchmark value, the chemical may be eliminated from further study. This report briefly describes three categories of approaches to the development of sediment quality benchmarks. These approaches are based on analytical chemistry, toxicity test and field survey data. A fourth integrative approach incorporates all three types of data. The equilibrium partitioning approach is recommended for screening nonpolar organic contaminants of concern in sediments. For inorganics, the National Oceanic and Atmospheric Administration has developed benchmarks that may be used for screening. There are supplemental benchmarks from the province of Ontario, the state of Wisconsin, and US Environmental Protection Agency Region V. Pore water analysis is recommended for polar organic compounds; comparisons are then made against water quality benchmarks. This report is an update of a prior report. It contains revised ER-L and ER-M values, the five EPA proposed sediment quality criteria, and benchmarks calculated for several nonionic organic chemicals using equilibrium partitioning

  16. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  17. Seasonally and regionally determined indication potential of bioassays in contaminated river sediments.

    Science.gov (United States)

    Hilscherová, Klára; Dusek, Ladislav; Sídlová, Tereza; Jálová, Veronika; Cupr, Pavel; Giesy, John P; Nehyba, Slavomír; Jarkovský, Jirí; Klánová, Jana; Holoubek, Ivan

    2010-03-01

    River sediments are a dynamic system, especially in areas where floods occur frequently. In the present study, an integrative approach is used to investigate the seasonal and spatial dynamics of contamination of sediments from a regularly flooded industrial area in the Czech Republic, which presents a suitable model ecosystem for pollutant distribution research at a regional level. Surface sediments were sampled repeatedly to represent two different hydrological situations: spring (after the peak of high flow) and autumn (after longer period of low flow). Samples were characterized for abiotic parameters and concentrations of priority organic pollutants. Toxicity was assessed by Microtox test; genotoxicity by SOS-chromotest and green fluorescent protein (GFP)-yeast test; and the presence of compounds with specific mode of action by in vitro bioassays for dioxin-like activity, anti-/androgenicity, and anti-/estrogenicity. Distribution of organic contaminants varied among regions and seasonally. Although the results of Microtox and genotoxicity tests were relatively inconclusive, all other specific bioassays led to statistically significant regional and seasonal differences in profiles and allowed clear separation of upstream and downstream regions. The outcomes of these bioassays indicated an association with concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as master variables. There were significant interrelations among dioxin-like activity, antiandrogenicity and content of organic carbon, clay, and concentration of PAHs and PCBs, which documents the significance of abiotic factors in accumulation of pollutants. The study demonstrates the strength of the specific bioassays in indicating the changes in contamination and emphasizes the crucial role of a well-designed sampling plan, in which both spatial and temporal dynamics should be taken into account, for the correct interpretations of information in risk assessments.

  18. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  19. Analysis of the potential contamination risk of groundwater resources circulating in areas with anthropogenic activities

    Directory of Open Access Journals (Sweden)

    M. Spizzico

    2005-01-01

    Full Text Available The area investigated is located in the province of Brindisi (Italy. It is a generally flat area separated from the nearby carbonatic plateau of the Murgia by quite indistinct and high fault scarps. As regards the geological features, carbonatic basement rocks and post-cretaceous terrains made up of calabrian calcarenites and middle-upper Pleistocenic marine terraced deposits can be distinguished. In the examined area there are two different hydrogeological environments. The first is represented by deep groundwater, the main groundwater resource in Apulia. The second hydrogeological environment, now of lesser importance than the deep aquifer in terms of size and use, is made up of some small shallow groundwater systems situated in post-calabrian sands and located in the eastern area. During some sampling cycles carried out in the studied area, water was withdrawn from both the deep aquifer and from the shallow groundwater. For every sample, the necessary parameters were determined for the physical and chemical characterisation of two different hydrogeological environments. Moreover, some chemical parameters indicating anthropogenic activities were determined. Analysis of the aerial distribution of the measured parameters has shown some main areas subject to different conditions of contamination risk, in accordance with the hydrogeological and geological features of the investigated area. In the south-eastern part of the investigated area, the important action performed by the surface aquifer for protecting the deep groundwater from contamination of anthropogenic origin is clear. On the other hand, in the shallow groundwater, areas of nitrate and nitrite contamination have been identified, which result from the extensive use of fertilizers.

  20. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  1. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    Science.gov (United States)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light

  2. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms

    International Nuclear Information System (INIS)

    McLoughlin, Emma; Rhodes, Angela H.; Owen, Susan M.; Semple, Kirk T.

    2009-01-01

    The effects of monoterpenes on the degradation of 14 C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14 C-2,4-DCP to 14 CO 2 , after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg -1 ). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg -1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants. - A amendment of soils with monoterpenes may induce organic contaminant degradation by indigenous soil microorganisms

  3. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.

    Science.gov (United States)

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdennaceur, Hassen; Jedidi, Naceur

    2013-01-01

    The ubiquitous coexistence of heavy metals and organic contaminants was increased in the polluted soil and phytoremediation as a remedial technology and management option is recommended to solve the problems of co-contamination. Growth of Zea mays L and pollutant removal ability may be influenced by interactions among mixed pollutants. Pot-culture experiments were conduced to investigate the single and interactive effect of cadmium (Cd) and pentachlorophenol (PCP) on growth of Zea mays L, PCP, and Cd removal from soil. Growth response of Zea mays L is considerably influenced by interaction of Cd and PCP, significantly declining with either Cd or PCP additions. The dissipation of PCP in soils was notably affected by interactions of Cd, PCP, and plant presence or absence. At the Pentachlorophenol in both planted and non-planted soil was greatly decreased at the end of the 10-week culture, accounting for 16-20% of initial extractable concentrations in non-planted soil and 9-14% in planted soil. With the increment of Cd level, residual pentachlorophenol in the planted soil tended to increase. The pentachlorophenol residual in the presence of high concentration of Cd was even higher in the planted soil than that in the non-planted soil.

  4. CyanoHAB occurrence and water irrigation cyanotoxin contamination: ecological impacts and potential health risks.

    Science.gov (United States)

    Saqrane, Sana; Oudra, Brahim

    2009-12-01

    The world-wide occurrence of harmful cyanobacteria blooms "CyanoHAB" in fresh and brackish waters creates problems for all life forms. During CyanoHAB events, toxic cyanobacteria produce cyanotoxins at high levels that can cause chronic and sub-chronic toxicities to animals, plants and humans. Cyanotoxicity in eukaryotes has been mainly focused on animals, but during these last years, data, related to cyanotoxin (mainly microcystins, MCs) impact on both aquatic and terrestrials crop plants irrigated by water containing these toxins, have become more and more available. This last cited fact is gaining importance since plants could in a direct or indirect manner contribute to cyanotoxin transfer through the food chain, and thus constitute a potent health risk source. The use of this contaminated irrigation water can also have an economical impact which appears by a reduction of the germination rate of seeds, and alteration of the quality and the productivity of crop plants. The main objective of this work was to discuss the eventual phytotoxicity of cyanotoxins (microcystins) as the major agricultural impacts induced by the use of contaminated water for plant irrigation. These investigations confirm the harmful effects (ecological, eco-physiological, socio-economical and sanitary risk) of dissolved MCs on agricultural plants. Thus, cyanotoxin phytotoxicity strongly suggests a need for the surveillance of CyanoHAB and the monitoring of water irrigation quality as well as for drinking water.

  5. Compressed-air power tools in orthopaedic surgery: exhaust air is a potential source of contamination.

    Science.gov (United States)

    Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi

    2002-01-01

    To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.

  6. CyanoHAB Occurrence and Water Irrigation Cyanotoxin Contamination: Ecological Impacts and Potential Health Risks

    Science.gov (United States)

    Saqrane, Sana; Oudra, Brahim

    2009-01-01

    The world-wide occurrence of harmful cyanobacteria blooms “CyanoHAB” in fresh and brackish waters creates problems for all life forms. During CyanoHAB events, toxic cyanobacteria produce cyanotoxins at high levels that can cause chronic and sub-chronic toxicities to animals, plants and humans. Cyanotoxicity in eukaryotes has been mainly focused on animals, but during these last years, data, related to cyanotoxin (mainly microcystins, MCs) impact on both aquatic and terrestrials crop plants irrigated by water containing these toxins, have become more and more available. This last cited fact is gaining importance since plants could in a direct or indirect manner contribute to cyanotoxin transfer through the food chain, and thus constitute a potent health risk source. The use of this contaminated irrigation water can also have an economical impact which appears by a reduction of the germination rate of seeds, and alteration of the quality and the productivity of crop plants. The main objective of this work was to discuss the eventual phytotoxicity of cyanotoxins (microcystins) as the major agricultural impacts induced by the use of contaminated water for plant irrigation. These investigations confirm the harmful effects (ecological, eco-physiological, socio-economical and sanitary risk) of dissolved MCs on agricultural plants. Thus, cyanotoxin phytotoxicity strongly suggests a need for the surveillance of CyanoHAB and the monitoring of water irrigation quality as well as for drinking water. PMID:22069535

  7. Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils.

    Science.gov (United States)

    Teng, Ying; Wang, Xiaomi; Zhu, Ye; Chen, Wei; Christie, Peter; Li, Zhengao; Luo, Yongming

    2017-04-01

    Pentachloronitrobenzene (PCNB) is a toxic chlorinated nitroaromatic compound. However, only a few bacteria have been reported to be able to utilize PCNB. In the present study, one pentachloronitrobenzene (PCNB)-degrading bacterium, Cupriavidus sp. YNS-85, was isolated from a contaminated Panax notoginseng plantation. The strain co-metabolized 200 mg L -1 PCNB in aqueous solution with a removal rate of 73.8% after 5 days. The bacterium also degraded PCNB effectively under acid conditions (pH 4-6) and showed resistance to toxic trace elements (arsenic, copper, and cadmium). Its ability to utilize proposed PCNB intermediates as sole carbon sources was also confirmed. The soil microcosm experiment further demonstrated that bacterial bioaugmentation enhanced the removal of PCNB (37.8%) from soil and the accumulation of pentachloroaniline (89.3%) after 30 days. Soil enzyme activity and microbial community functional diversity were positively influenced after bioremediation. These findings indicate that Cupriavidus sp. YNS-85 may be a suitable inoculant for in situ bioremediation of PCNB-polluted sites, especially those with acid soils co-contaminated with heavy metal(loid)s.

  8. Potential external contamination of pneumatic seed drills during sowing of dressed maize seeds.

    Science.gov (United States)

    Manzone, Marco; Balsari, Paolo; Marucco, Paolo; Tamagnone, Mario

    2016-07-01

    The use of pneumatic drills in maize cultivation causes dispersion in the atmosphere of some harmful substances normally used for dressing maize seeds. Some of the dust particles may be deposited on the machine's body, becoming dangerous for the environment and for operators. The aim of the present study was to analyse the amount of dust deposited on the frame of drills during maize sowing operations. Tests were performed with different drills and in different operating conditions. Data analysis showed that a significant amount (up to 30%) of the tracer can be deposited on the drill body. When wind was not present, higher quantities of tracer were collected and the forward speed did not influence significantly the tracer deposit on the seed drills. The use of different devices designed to prevent dust dispersion was able to limit up to 95% but was not able to eliminate the external contamination of the drill. The particles present on drills could become a problem for the operator during the filling of the drill. Additionally, the environment can be contaminated if pesticide remains on the drill, generating point-source pollution when the drill is parked outside. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Arsenic-contaminated soils. Genetically modified Pseudomonas spp. and their arsenic-phytoremediation potential

    Energy Technology Data Exchange (ETDEWEB)

    Sizova, O.I.; Kochetkov, V.V.; Validov, S.Z.; Boronin, A.M. [Inst. of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow (Russian Federation); Kosterin, P.V.; Lyubun, Y.V. [Inst. of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation)

    2002-07-01

    Sorghum was inoculated with Pseudomonas bacteria, including strains harboring an As-resistance plasmid, pBS3031, to enhance As-extraction by the plants. Pseudomonas strains (P. fluorescens 38a, P. putida 53a, and P. aureofaciens BS1393) were chosen because they are antagonistic to a wide range of phytopathogenic fungi and bacteria, and they can stimulate plant growth. The resistance of natural rhizospheric pseudomonads to sodium arsenite was assessed. Genetically modified Pseudomonas strains resistant to As(III)/As(V) were obtained via conjugation or transformation. The effects of the strains on the growth of sorghum on sodium-arsenite-containing soils were assessed. The conclusions from this study are: (1) It is possible to increase the survivability of sorghum growing in sodium-arsenite-containing soil by using rhizosphere pseudomonads. (2) The presence of pBS3031 offers the strains a certain selective advantage in arsenite-contaminated soil. (3) The presence of pBS3031 impairs plant growth, due to the As-resistance mechanism determined by this plasmid: the transformation of the less toxic arsenate into the more toxic, plant-root-available arsenite by arsenate reductase and the active removal of arsenite from bacterial cells. (4) Such a mechanism makes it possible to develop a bacteria-assisted phytoremediation technology for the cleanup of As-contaminated soils and is the only possible way of removing the soil-sorbed arsenates from the environment. (orig.)

  10. The contaminant legacy from historic coastal landfills and their potential as sources of diffuse pollution.

    Science.gov (United States)

    O'Shea, Francis T; Cundy, Andrew B; Spencer, Kate L

    2018-03-01

    Prior to modern environmental regulation landfills in low-lying coastal environments were frequently constructed without leachate control, relying on natural attenuation within inter-tidal sediments to dilute and disperse contaminants reducing environmental impact. With sea level rise and coastal erosion these sites may now pose a pollution risk, yet have received little investigation. This work examines the extent of metal contamination in saltmarsh sediments surrounding a historic landfill in the UK. Patterns of sediment metal data suggest typical anthropogenic pollution chronologies for saltmarsh sediments in industrialised nations. However, many metals were also enriched at depth in close proximity to the landfill boundary and are indicative of a historical leachate plume. Though this total metal load is low, e.g., c. 1200 and 1650kg Pb and Zn respectively, with >1000 historic landfills on flood risk or eroding coastlines in the UK this could represent a significant, yet under-investigated, source of diffuse pollution. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Contaminated tooth brushes-potential threat to oral and general health

    Directory of Open Access Journals (Sweden)

    Rashmi Naik

    2015-01-01

    Full Text Available Background: Tooth brushing is most common method of maintaining oral hygiene. In removing plaque and other soft debris from the teeth, tooth brushes become contaminated with bacteria, blood, saliva and oral debris. These contaminated tooth brushes can be a source of infection. Aims and objectives: The aim of the present study was to evaluate the presence of microorganisms in the tooth brushes and to investigate the effect of disinfectants such as chlorhexidine gluconate, sodium hypochlorite and water to decontaminate them. Materials and Methods: Twenty-one children were asked to brush their teeth for 5 days with a tooth brush. The tooth brushes were put in Robertson′s Cooked Meat broth and were observed for growth of Streptococcal microorganisms. These tooth brushes were then placed in disinfectants such as 0.2% chlorhexidine gluconate (Group I, 1% sodium hypochlorite (Group II and water (Group III for 24 hrs and then cultured again. Reduction of growth of microorganisms was seen in Group I, Group II and remnants of growth seen in Group III. Conclusion: We conclude that the use of disinfectant for a tooth brush is a must for every individual at least at regular intervals.

  12. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  13. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.

    Science.gov (United States)

    Chigbo, Chibuike

    2015-06-01

    This study compared the phytoremediation potential of Zea mays in soil either aged or freshly amended with chromium (Cr) and benzo[a]pyrene (B[a]P). Z. mays showed increased shoot biomass in aged soils than in freshly spiked soils. The shoot biomass in contaminated soils increased by over 50% in aged soil when compared to freshly amended soils, and over 29% more Cr was accumulated in the shoot of Z. mays in aged soil than in freshly amended soil. Planting Z. mays in aged soil helped in the dissipation of more than 31% B[a]P than in freshly spiked soil, but in the absence of plants, there seemed to be no difference between the dissipation rates of B[a]P in freshly and aged co-contaminated soil. Z. mays seemed to enhance the simultaneous removal of Cr and B[a]P in aged soil than in freshly spiked soil and hence can be a good plant choice for phytoremediation of co-contaminated soils.

  14. Key decisions in a generic process for disposition of buildings that have actual or potential radiological contamination

    International Nuclear Information System (INIS)

    Spesard, A.; Donavan, K.; Bowden, B.; Crane, L.; Jensen, G.; Fox, K.L.; Goodwin, R.; Vandegrift, R.

    1997-01-01

    The Cleanup Standards Committee, formed within the Ohio Federal Facilities Forum, focuses on addressing issues related to cleanup levels and standards. To facilitate decision-making for the disposition of buildings that have potential or actual radiological contamination, the Cleanup Standards Committee developed a process to support building disposition decisions. This process is needed for two reasons: (1) due to changing missions, an increasing number of buildings on federal properties require disposition, and (2) current federal initiatives encourage the transfer of buildings and land for reuse and economic redevelopment. Since the committee developed this process using a teaming effort, the process reflects the experience, expertise, and opinions of committee members and other individuals with a broad range of experience and knowledge. The Generic Process for the Disposition of Buildings that have Potential or Actual Radiological Contamination is intended for use by Federal Facilities responsible for the cleanup of buildings at sites that have radiological process history. This process provides (1) a framework and supporting implementation guidelines for evaluating buildings that have actual or potential radiological contamination, and (2) a process for making building disposition decisions. This paper outlines on the key decision points and the associated data requirements of the process. Specifically, this paper focuses on the following decisions: Which decision-makers are appropriate to involve in the building disposition process; What is the preferred disposition of a building; What criteria are applicable for unconditional release; Is there sufficient existing information to proceed with disposition of a building; What level of survey is appropriate to determine and/or implement a preferred disposition of a building; and how are uncertainties addressed when implementing a building disposition

  15. Vertical distribution of dehalogenating bacteria in mangrove sediment and their potential to remove polybrominated diphenyl ether contamination.

    Science.gov (United States)

    Pan, Ying; Chen, Juan; Zhou, Haichao; Farzana, Shazia; Tam, Nora F Y

    2017-11-30

    The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Potentially toxic contamination of sediments, water and two animal species in Lake Kalimanci, FYR Macedonia: Relevance to human health

    International Nuclear Information System (INIS)

    Vrhovnik, Petra; Arrebola, Juan P.; Serafimovski, Todor; Dolenec, Tadej; Šmuc, Nastja Rogan; Dolenec, Matej; Mutch, Elaine

    2013-01-01

    The objectives of the research were: (1) to examine the concentrations of metals in Vimba melanops and Rana temporaria and (2) to evaluate the potential risks of the contaminated organisms to human health in Makedonska Kamenica region. Analyses identified high levels of Cr, Hg, Ni and Pb in studied animals, which also exceeded their permissible levels in food. In sediment and soil samples, levels of Cd, Cu, Cr, Pb, Zn and As were perceived, while Cd, Cu, Ni, Pb, Se and As were increased in water samples. Results of transfer factor revealed that the examined animals had higher bioaccumulation rate from surrounding waters than from sediments or soils. The accomplished Health Risk Index disclosed that studied animals can have considerably high health risks for inhabitants. Conclusively, they could be considered as highly contaminated with metals and can consequently harm human health, especially children in their early development stages. -- Highlights: •The study merges the accumulation of PTE in animal species, sediments, soils and water. •Correlation between different media and their impact to living organisms'. •Considerably high health risks for inhabitants. -- In the Makedonska Kamenica region had been described several potential sources of exposure therefore exists the potential threat to human health

  17. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    KAUST Repository

    Amer, Ranya A.

    2015-02-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  18. Evaluation of trace organic contaminants in ultra-pure water production processes by measuring total organic halogen formation potential

    International Nuclear Information System (INIS)

    Urano, Kohei; Iwase, Yoko

    1984-01-01

    A new procedure for the determination of organic substances in water with high accuracy and high sensitivity was proposed, in which a hypochlorite is added to water, and the resultant total amount of organic halogen compounds (TOX formation potential) was measured, and it was applied to the evaluation of trace organic contaminants in ultra-pure water production process. In this investigation, the TOX formation potential of the raw water which was to be used for the ultra-pure water production process, intermediately treated water and ultra-pure water was measured to clarify the behavior of organic substances in the ultra-pure water production process and to demonstrate the usefulness of this procedure to evaluate trace organic contaminants in water. The measurement of TOX formation potential requires no specific technical skill, and only a short time, and gives accurate results, therefore, it is expected that the water quality control in the ultra-pure water production process can be performed more exactly by applying this procedure. (Yoshitake, I.)

  19. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Ranya A. Amer

    2015-01-01

    Full Text Available Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt. Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed.

  20. Atrazine Contamination and Potential Health Effects on Freshwater Mussel Uniandra contradens Living in Agricultural Catchment at Nan Province, Thailand

    Directory of Open Access Journals (Sweden)

    Tongchai Thitiphuree

    2013-01-01

    Full Text Available Seasonal cultivation in northern part of Thailand leads to widely uses of agrochemicals especially atrazine herbicide. To examine whether an intensive use of atrazine could lead to contamination in aquatic environment, sediment and water were collected from an agricultural catchment in Nan Province during 2010-2011 and subjected to analysis for atrazine by GC-MS. The results showed that detectable levels of atrazine were found in water (0.16 µg/ml and sediment (0.23 µg/g of the catchment. To monitor potential effects of atrazine on aquatic animals, a freshwater mussel Uniandra contradens was used as a sentinel species for bioaccumulation and potential health effects. Mussels collected from the catchment during 2010-2011 were subjected to analysis for atrazine residue in tissue and condition factor based on body weight and shell length. The results showed that detectable levels of atrazine were found in mussel tissue with the highest level (8.40  2.06 ng/g in late wet season when runoff from heavy rain was evidenced. Condition factor, an indicative of overall health, showed a significant negative correlation with atrazine residue in the tissue. This information could be used as part of the monitoring program for herbicide contamination and potential health effects in agricultural environment.

  1. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    Science.gov (United States)

    Amer, Ranya A.; El Gendi, Hamada M.; Goda, Doaa A.; Corsini, Anna; Cavalca, Lucia; Fusi, Marco; Daffonchio, Daniele; Abdel-Fattah, Yasser R.

    2015-01-01

    Coastal environments worldwide are threatened by the effects of pollution, a risk particularly high in semienclosed basins like the Mediterranean Sea that is poorly studied from bioremediation potential perspective especially in the Southern coast. Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment-dwelling bacterial communities showed correlations between the composition of bacterial assemblages and the associated environmental parameters. Fifty strains were isolated on mineral media supplemented by 1% crude oil and identified as a diverse range of hydrocarbon-degrading bacteria involved in different successional stages of biodegradation. We screened the collection for biotechnological potential studying biosurfactant production, biofilm formation, and the capability to utilize different hydrocarbons. Some strains were able to grow on multiple hydrocarbons as unique carbon source and presented biosurfactant-like activities and/or capacity to form biofilm and owned genes involved in different detoxification/degradation processes. El-Max sediments represent a promising reservoir of novel bacterial strains adapted to high hydrocarbon contamination loads. The potential of the strains for exploitation for in situ intervention to combat pollution in coastal areas is discussed. PMID:26273661

  2. Evaluation the Growth Potential of Artichoke (Synara scolymus L. and Milk thistle (Sylibum marianum L. in Petroleum-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Sahar Zamani

    2018-04-01

    Full Text Available Petroleum hydrocarbons are one of the most common pollutants groups in the environment and threaten the human, animals and plants health. Phytoremediation is a method for cleaning the contaminated areas. Medicinal plants because of their defense mechanisms able to resist and thwart destructive effect of stressors. Some plants have better resistance, including Artichoke (Cynara scolymus L. and Milk Thistle (Silybum marianum L.; from Asteraceae family that has polyphenolic compounds with antioxidant properties and hepatoprotectors. To evaluation the growth potential of Artichoke and Milk Thistle in petroleum-contaminated soil, an experiment in a completely randomized design was done with 6 levels of gas oil and 3 replications in Gorgan University of Agricultural Sciences and Natural Resources. The results showed that, gas oil hydrocarbon had a significant effect at %1 on germination percent of seed and indexes involved in seedling growth including plant height, length, and width, fresh and dry weight of artichoke leaf. In Milk Thistle, gas oil had no significant effect on germination percent. Opposite to that, significant effect at %1 on growth indexes was observed. The maximum germination percent in Artichoke and Milk Thistle seeds was observed in 20 and 10 g/kg gas oil, respectively and the minimum of germination percent was observed in seeds samples that treated with 80 g gas oil per kg soil. Artichoke seedlings were more tolerance than Milk Thistle to the contaminated soil as better growth was observed in this condition. Generally, it seems that these two valuable medicinal plants had relatively resistance to the gas oli pollution and are suggestible to use in oil contaminated soil for cleaning purpose

  3. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils.

    Science.gov (United States)

    Chen, Shaohua; Chang, Changqing; Deng, Yinyue; An, Shuwen; Dong, Yi Hu; Zhou, Jianuan; Hu, Meiying; Zhong, Guohua; Zhang, Lian-Hui

    2014-03-12

    The widely used insecticide fenpropathrin in agriculture has become a public concern because of its heavy environmental contamination and toxic effects on mammals, yet little is known about the kinetic and metabolic behaviors of this pesticide. This study reports the degradation kinetics and metabolic pathway of fenpropathrin in Bacillus sp. DG-02, previously isolated from the pyrethroid-manufacturing wastewater treatment system. Up to 93.3% of 50 mg L(-1) fenpropathrin was degraded by Bacillus sp. DG-02 within 72 h, and the degradation rate parameters qmax, Ks, and Ki were determined to be 0.05 h(-1), 9.0 mg L(-1), and 694.8 mg L(-1), respectively. Analysis of the degradation products by gas chromatography-mass spectrometry led to identification of seven metabolites of fenpropathrin, which suggest that fenpropathrin could be degraded first by cleavage of its carboxylester linkage and diaryl bond, followed by degradation of the aromatic ring and subsequent metabolism. In addition to degradation of fenpropathrin, this strain was also found to be capable of degrading a wide range of synthetic pyrethroids including deltamethrin, λ-cyhalothrin, β-cypermethrin, β-cyfluthrin, bifenthrin, and permethrin, which are also widely used insecticides with environmental contamination problems with the degradation process following the first-order kinetic model. Bioaugmentation of fenpropathrin-contaminated soils with strain DG-02 significantly enhanced the disappearance rate of fenpropathrin, and its half-life was sharply reduced in the soils. Taken together, these results depict the biodegradation mechanisms of fenpropathrin and also highlight the promising potentials of Bacillus sp. DG-02 in bioremediation of pyrethroid-contaminated soils.

  4. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process

    Energy Technology Data Exchange (ETDEWEB)

    Will, M.E.

    1994-01-01

    This report presents a standard method for deriving benchmarks for the purpose of ''contaminant screening,'' performed by comparing measured ambient concentrations of chemicals. The work was performed under Work Breakdown Structure 1.4.12.2.3.04.07.02 (Activity Data Sheet 8304). In addition, this report presents sets of data concerning the effects of chemicals in soil on invertebrates and soil microbial processes, benchmarks for chemicals potentially associated with United States Department of Energy sites, and literature describing the experiments from which data were drawn for benchmark derivation.

  5. Present and potential contamination of the river system at Mayak PA

    International Nuclear Information System (INIS)

    Amundsen, I.; Strand, P.; Malyshev, S.V.

    1999-01-01

    Studies of mobility of radionuclides in environmental samples at Mayak show that strontium-90 is the most mobile of the relevant radionuclides and hence can be transported by river water. Cesium-137, although less mobile, can also be transported over large distances. The main source of river contamination today is the remobilization of strontium-90 from the boggy area at the upper reaches of Techa River (Asanov Swamp). Regular Russian monitoring programmes show that levels of strontium-90 leaving the swamp are three times higher than levels entering the swamp. The net outflow from the Swamp is now estimated to 2-3% of the 37 TBq of strontium-90 located in the swamp, 1992 levels

  6. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    Science.gov (United States)

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.

  7. Prime Suspect, Second Row Center

    Science.gov (United States)

    Laird, Ellen A.

    2011-01-01

    His father had been hacked to death in his own bed with an ax the previous November. His mother was similarly brutalized and left for dead with her husband but survived. On the last Monday of that August, after several months and many investigative twists, turns, and fumbles, there sat the son--the prime suspect--in Ellen Laird's literature class,…

  8. Phytoremedial Potential of Typha latifolia, Eichornia crassipes and Monochoria hastata found in Contaminated Water Bodies Across Ranchi City (India).

    Science.gov (United States)

    Hazra, Moushumi; Avishek, Kirti; Pathak, Gopal

    2015-01-01

    Phytoremediation is an emerging technology that uses green plants (living machines) for removal of contaminants of concern (COC). These plant species have the potential to remove the COC, thereby restoring the original condition of soil or water environment. The present study focuses on assessing the heavy metals (COC) present in the contaminated water bodies of Ranchi city, Jharkhand, India. Phytoremedial potential of three plant species: Typha latifolia, Eichornia crassipes and Monochoria hastata were assessed in the present study. Heterogenous accumulation of metals was found in the three plant species. It was observed that the ratio of heavy metal concentration was different in different parts, i.e., shoots and roots. Positive results were also obtained for translocation factor of all species with minimum of 0.10 and maximum of 1. It was found experimentally that M. hastata has the maximum BFC for root as 4.32 and shoot as 2.70 (for Manganese). For T. latifolia, BCF of maximum was observed for root (163.5) and respective shoot 86.46 (for Iron), followed by 7.3 and 5.8 for root and shoot (for Manganese) respectively. E. crassipes was found to possess a maximum BCF of 278.6 (for Manganese and 151 (for Iron) and shoot as 142 (for Manganese) and 36.13 (for Iron).

  9. Preliminary description of hydrologic characteristics and contaminant transport potential of rocks in the Pasco Basin, south-central Washington

    International Nuclear Information System (INIS)

    Deju, R.A.; Fecht, K.R.

    1979-03-01

    This report aims at consolidating existing data useful in defining the hydrologic characteristics of the Pasco Basin within south-central Washington. It also aims at compiling the properties required to evaluate contaminant transport potential within individual subsurface strata in this basin. The Pasco Basin itself is a tract of semi-arid land covering about 2,000 square miles in south-central Washington. The regional geology of this basin is dominated by tholeiitic flood basalts of the Columbia Plateau. The surface hydrology of the basin is dominated by the Yakima, Snake, and Columbia rivers. Short-lived ephemeral streams may flow for a short period of time after a heavy rainfall or snowmelt. The subsurface hydrology of the Pasco Basin is characterized by an unconfined aquifer carrying the bulk of the water discharged within the basin. This aquifer overlies a series of confined aquifers carrying progressively smaller amounts of groundwater as a function of depth. The hydraulic properties of the various aquifers and non-water-bearing strata are characterized and reported. A summary of the basic properties is tabulated. The hydrochemical data obtained are summarized. The contaminant transport properties of the rocks in the Pasco Basin are analyzed with emphasis on the dispersion and sorption coefficients and the characteristics of the potential reactions between emplaced waste and the surrounding medium. Some basic modeling considerations of the hydrogeologic systems in the basin with a brief discussion of model input requirements and their relationship to available data are presented

  10. Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land

    International Nuclear Information System (INIS)

    Zhang Chaosheng; Tang Ya; Luo Lin; Xu Weilin

    2009-01-01

    Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with. - Outliers in urban geochemical databases can be detected to provide guidance for identification of potential contaminated land.

  11. Potential accumulation of contaminated sediments in a reservoir of a high-Andean watershed: Morphodynamic connections with geochemical processes

    Science.gov (United States)

    Contreras, María. Teresa; Müllendorff, Daniel; Pastén, Pablo; Pizarro, Gonzalo E.; Paola, Chris; Escauriaza, Cristián.

    2015-05-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and geochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long term. The future construction of a reservoir in the Lluta River, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation, we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. This article was corrected on 15 JUNE 2015. See the end of the full text for details.

  12. Outlier identification and visualization for Pb concentrations in urban soils and its implications for identification of potential contaminated land

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chaosheng, E-mail: chaosheng.zhang@nuigalway.i [School of Geography and Archaeology, National University of Ireland, Galway (Ireland); Tang Ya [Department of Environmental Sciences, Sichuan University, Chengdu, Sichuan 610065 (China); Luo Lin; Xu Weilin [State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2009-11-15

    Outliers in urban soil geochemical databases may imply potential contaminated land. Different methodologies which can be easily implemented for the identification of global and spatial outliers were applied for Pb concentrations in urban soils of Galway City in Ireland. Due to its strongly skewed probability feature, a Box-Cox transformation was performed prior to further analyses. The graphic methods of histogram and box-and-whisker plot were effective in identification of global outliers at the original scale of the dataset. Spatial outliers could be identified by a local indicator of spatial association of local Moran's I, cross-validation of kriging, and a geographically weighted regression. The spatial locations of outliers were visualised using a geographical information system. Different methods showed generally consistent results, but differences existed. It is suggested that outliers identified by statistical methods should be confirmed and justified using scientific knowledge before they are properly dealt with. - Outliers in urban geochemical databases can be detected to provide guidance for identification of potential contaminated land.

  13. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  14. Environmental dioxin contamination in Chapaevsk, Russia: an evaluation of potential human health risks

    Energy Technology Data Exchange (ETDEWEB)

    Revich, B. [Center for Demography and Human Ecology of Inst. for Forecasting, Russian Academy of Sciences, Moscow (Russian Federation); Sergeyev, O. [Chapaevsk Medical Association, Chapaevsk (Russian Federation); Zeilert, V. [Central Medical Hospital, Chapaevsk (Russian Federation); Hauser, R. [Dept. of Environmental Health, Harvard School of Public Health, Boston (United States)

    2004-09-15

    The town of Chapaevsk (population 80 thousand) is located in Middle Volga region. During 1967- 1987 a chemical plant there produced hexachlorcyclohexan (lindan) and its derivatives. Later it produced crop protection chemicals (liquid chlorine, acids, methyl chloroform, vinyl chloride, and some other chemicals). Previously it was considered that hexachlorane production was responsible for dioxin contamination in the city's environment. Tests seemed to confirm it. But after the production was stopped in 1987, a continued output of dioxin was still observed. At present the plant stands practically idle; the main contamination source is represented by the old technological equipment, the plant's territory and industrial wastes. In 1994 an average concentration of dioxins in the air was 0.116 pg/m{sup 3}. The calculations were made when the plant worked at 20% capacity, so one can extrapolate that dioxin air emissions had been higher previously. Moving away from the plant one can see the decrease in dioxin levels down to 36.8 ng/kg in downtown (2.7 km from the plant); down to 3.9 ng/kg in the southern part of the city; down to 0.9 ng/kg at 10 - 15 km from the plant. Private house owners (18,000 in Chapaevsk) grow essentially all their vegetables and fruits for their own use, thus receiving an additional dioxin load. The results received in Chapaevsk boys study show a high proportion of the boys consumed locally grown or raised foods during their lifetime: over 70% consumed locally produced dairy products, over 50% consumed locally raised chickens or eggs, and over 80% consumed locally caught fish during their lifetime. In 1994 we began studies of dioxins impact on human health with the following aims: (1) to estimate dioxin levels in human blood and milk; (2) to estimate incidence and mortality rates, and specifically describe reproductive health in the population according to official statistical data; (3) to estimate dioxin exposure as a risk factor for

  15. Traditional herbal medicines: potential degradation of sterols and sterolins by microbial contaminants

    Directory of Open Access Journals (Sweden)

    S. Govender

    2010-01-01

    Full Text Available Medicinal plants with a high content of sterols and sterolins, such as Bulbine natalensis (rooiwortel and Hypoxis hemerocallidea (African potato, are commonly and inappropriately used in South Africa for the treatment of HIV/AIDS due to the inaccessibility of antiretroviral drugs. This study investigated the presence of active compounds, such as sterols and sterolins, in the herbal medicines. The research was carried out in the Nelson Mandela Metropole area. The effect of microbial contaminants isolated from the medicines on sterols and sterolins of rooiwortel extracts was assessed. Sterols and sterolins were detected in rooiwortel, raw African potatoes and one ready-made mixture. Co-incubation of rooiwortel with bacteria (Bacillus spp. and Pseudomonas putida and fungi (Aspergillus spp., Penicillium spp. and Mucor spp. that were isolated from these samples increased the rate of degradation of sterols and sterolins over time, with slower degradation at 4°C than at 28°C.

  16. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    Science.gov (United States)

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  17. Mercury contamination, a potential threat to the globally endangered aquatic warbler Acrocephalus paludicola.

    Science.gov (United States)

    Pacyna, Aneta Dorota; Martínez, Carlos Zumalacárregui; Miguélez, David; Jiguet, Frédéric; Polkowska, Żaneta; Wojczulanis-Jakubas, Katarzyna

    2017-12-01

    Mercury (Hg) contamination is considered a global concern for humans and wildlife, and although the number of studies dealing with that issue continues to increase, some taxonomic groups such as small passerine birds are largely understudied. In this paper, concentration of mercury in the aquatic warbler (Acrocephalus paludicola) feathers, a globally threatened passerine species, was examined. The concentration differences between two ages and sexes were investigated. The comparison of feathers taken on autumn migrants of two age categories act as a comparison of the species' exposure within the two different areas (European breeding or African wintering grounds). The average Hg concentration for all sampled individuals [2.32 μg/g dw (range 0.38-12.76)] is relatively high, compared with values found in other passerine species. An age difference was found, with first-year individuals displaying higher mercury concentrations than adults. This indicates that birds are exposed to mercury pollution during the breeding season, i.e., in the continental floodplains of eastern Europe. The average Hg concentration in feathers grown on the breeding grounds was 3.88 ± 2.59 μg/g dw, closer to the critical value of 5 μg/g dw, which is considered to impair the health of individuals. The findings suggest that mercury pollution may constitute a threat so far neglected for the endangered aquatic warbler.

  18. Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution.

    Science.gov (United States)

    Gonçalves, Maraisa; Guerreiro, Mário César; Ramos, Paulize Honorato; de Oliveira, Luiz Carlos Alves; Sapag, Karim

    2013-01-01

    The processing of coffee beans generates large amounts of solid and liquid residues. The solid residues (pulp, husk and parchment) represent a serious environmental problem and do not have an adequate disposal mechanism. In this work, activated carbons (ACs) for adsorption of organic compounds were prepared from coffee pulp by controlled temperature at different pulp/Na2HPO4 ratios (4:1, 2:1, 5:4 and 1:1). The N2 adsorption/desorption isotherms showed ACs with high quantities of mesopores and micropores and specific surface areas of 140, 150, 450 and 440 m(2)g(-1) for AC 4:1, AC 2:1, AC 5:4 and AC 1:1, respectively. The prepared material AC 5:4 showed a higher removal capacity of the organic contaminants methylene blue (MB), direct red (DR) and phenol than did a Merck AC. The maximum capacities for this AC are approximately 150, 120 and 120 mg g(-1) for MB, DR and phenol, respectively. Thus, a good adsorbent was obtained from coffee pulp, an abundant Brazilian residue.

  19. Doses from potential inhalation by people living near plutonium contaminated areas

    International Nuclear Information System (INIS)

    Iranzo Gonzales, E.; Salvador Ruiz, S.

    1983-09-01

    An aviation accident above the town of Palomares, Spain resulted in four thermonuclear bombs carried by one of the planes falling. The nuclear fuel in two of them ignited and formed an aerosol which contaminated a 226-hectare area of underbrush, farmland and an urban center. The magnitude of risk to people living in the area who may have inhaled the plutonium aerosol or dusts during the fifteen-year period since the time the accident is addressed in this report. In addition the internal radiation doses that people may have received during this period and during a fifty-year period commencing with the accident is estimated. In brief summary, the lungs received the greatest dose equivalent (1966 to 1980). Over the fifty year period (to 2015) the bones are projected to receive the greatest dose. For the remaining organs - liver-intestines-kidneys, - the relationships or between the doses that will be accumulated up to the year 2015 and the corresponding annual dose equivalent limits are less than those for the bones and lungs

  20. Oil and gas development and the potential for contamination of moose (Alces alces) in northeast BC

    International Nuclear Information System (INIS)

    Maundrell, C.; Roe, N.

    2007-01-01

    Traditional sources of food for meat, berries, and fish are relied upon by First Nations of northern Canada. Hunting and trapping in traditional areas are the primary sources of protein consumption by First Nations. In the Northwest Territories and northeast British Columbia (BC), moose meat (Alces alces) is one of the most sought after meats. Therefore, an important consideration needing documentation was to determine if animals in areas of high oil and gas development were unhealthy compared to animals living in areas of low or no oil and gas activity. This paper presented the results of a study that documented the presence of contaminants in harvested moose. The main purpose of the study was to analyze moose tissue samples for extractable petroleum hydrocarbons, heavy metals and polycyclic hydrocarbons. The paper also discussed the methodology used in harvesting the moose which involved shooting them with a high powered rifle to collect tissue samples. Levels of concentration in tissues between two areas with noticeably different levels of oil and gas activity were then compared. Significantly higher levels of heavy metal concentrations were found in tissues sampled from the treatment area. It was therefore concluded that oil and gas activity may have negative impacts on the health of moose in northeast BC. 8 refs., 2 tabs

  1. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    Science.gov (United States)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  2. Bioaccumulation of radionuclides and metals by microorganisms: Potential role in the separation of inorganic contaminants and for the in situ treatment of the subsurface

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Wildung, R.E.

    1993-01-01

    Radionuclide, metal and organic contaminants are present in relatively inaccessible subsurface environments at many U.S Department of Energy (DOE) sites. Subsurface contamination is of concern to DOE because the migration of these contaminants into relatively deep subsurface zones indicates that they exist in a mobile chemical form and thus could potentially enter domestic groundwater supplies. Currently, economic approaches to stabilize or remediate these deep contaminated zones are limited, because these systems are not well characterized and there is a lack of understanding of how geochemical, microbial, and hydrological processes interact to influence contaminant behavior. Microorganisms offer a potential means for radionuclide and metal immobilization or mobilization for subsequent surface treatment. Bioaccumulation is a specific microbial sequestering mechanism wherein mobile radionuclides and metals become associated with the microbial biomass by both intra- and extracellular sequestering ligands. Since most of the microorganism in the subsurface are associated with the stationary strata, bioaccumulation of mobile radionuclides and metals would initially result in a decrease in the transport of inorganic contaminants. How long the inorganic contaminants would remain immobilized, the selectivity of the bioaccumulation process for specific inorganic contaminants, the mechanism involved, and how the geochemistry and growth conditions of the subsurface environment influence bioaccumulation are not currently known. This presentation focuses on the microbial process of immobilizing radionuclides and metals and using this process to reduce inorganic contaminant migration at DOE sites. Background research with near-surface microorganisms will be presented to demonstrate this process and show its potential to reduce inorganic contaminant migration. Future research needs and approaches in this relatively new research area will also be discussed

  3. Potential of MuS1 Transgenic Tobacco for Phytoremediation of the Urban Soils Contaminated with Cadmium

    Science.gov (United States)

    Kim, K. H.; Kim, Y. N.; Kim, S. H.

    2010-05-01

    Urban soils are prone to contamination by trace elements such as Cd, Cu, Pb and Zn. Phytoremediation is one of the attractive remediation methods for soils contaminated with trace elements due to its non-destructive and environmentally-friendly characteristic. Scientists have tried to find hyper-accumulator plants in nature or to develop transgenic plant through genetic engineering. This study was carried out to identify a potential of MuS1 transgenic tobacco for phytoremediation of the urban soils contaminated with Cd. MuS1 is known as a multiple stress related gene with several lines. The previous study using RT-PCR showed that the expression of MuS1 gene in tobacco plant induced tolerance to Cd stress. For this study, MuS1 transgenic tobacco and wild-type tobacco (control) were cultivated in a hydroponic system treated with Cd (0, 50, 100 and 200μM Cd) for 3 weeks. At harvest, both tobacco and nutrient solution were collected and were analyzed for Cd. Effect of Cd treatment on morphological change of the tobacco leaves was also observed by variable-pressure scanning electron microscopy (VP-SEM). The tolerance of MuS1 transgenic tobacco to Cd stress was better than that of wild-type tobacco at all Cd levels. Especially, wild-type tobacco showed chlorosis and withering with 200μM Cd treatment, whereas MuS1 transgenic tobacco gradually recovered from Cd damage. Wild-type tobacco accumulated more Cd (4.65mg per plant) than MuS1 transgenic tobacco (2.37mg per plant) with 200μM Cd treatment. Cd translocation rate from root to leaves was 81.8 % for wild-type tobacco compared to 37.1 % for MuS1 transgenic tobacco. Result of VP-SEM showed that the number of trichome in the leaves for wild-type tobacco increased in comparison with that for untreated samples after 3 weeks, while that for MuS1 transgenic tobacco was not changed by Cd treatment. Results showed that the mechanism of the recovery of the MuS1 tobacco plant was not by high level of Cd uptake and accumulation

  4. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination

    International Nuclear Information System (INIS)

    Vandebroek, Louis; Van Hees, May; Delvaux, Bruno; Spaargaren, Otto; Thiry, Yves

    2012-01-01

    The extent of radiocaesium retention in soil is important to quantify the risk of further foodchain contamination. The Radiocaesium Interception Potential (RIP –, Nature 335, 247–249) is an intrinsic soil parameter which can be used to categorize soils or minerals in terms of their capacity to selectively adsorb radiocaesium. In this study, we measured RIP for a large soil collection (88 soil samples) representative of major FAO soil reference groups on a worldwide scale and tested the possibility to predict the RIP on the basis of other easily accessible or measurable soil data. We also compared RIP values with those obtained from separate chemical extraction experiments. The range of measured RIP values (1.8–13300 mmol kg −1 ) was shown to include nearly all possible cases of agricultural soil contamination. Only Podzols, Andosols and Ferralsols were clearly characterized by a very low RIP ( −1 ). On a worldwide scale, RIP was in fact slightly related to soil reference type or other simple major physicochemical parameters such as clay percentage or organic matter. Conversely our results indicated a link between the RIP and radiocaesium extractability across very different soils. We showed that, with the proposed scale of RIP values, a simple acid extraction method can provide an operational result highly predictive of potential RIP despite very contrasting soil properties. The RIP could be estimated from the empirical equation: RIP = (−31.701 ∗ log(AER) + 58.886) 2 where AER is the fraction of acid-extractable radiocaesium. - Highlights: ► The Radiocaesium Interception Potential (RIP) is an intrinsic soil parameter. ► We measured RIP of 88 different soils representative of major FAO reference groups. ► The range of RIP (1.8–13 343 μmol g −1 ) extended over four orders of magnitude. ► Nearly all possible cases of agricultural soils contamination were represented. ► A simple acid extraction method could be used to predict potential RIP.

  5. Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea

    Science.gov (United States)

    Kim, Youn Jong; Hamm, Se-Yeong

    Groundwater contamination is becoming a major environmental problem in South Korea with the marked expansion of the industrial base and the explosive growth of the population. Even in rural areas, the increased use of fertilizers and pesticides, the presence of acid-mine drainage, and increase of volumes of domestic wastewaters are adding to groundwater pollution. The DRASTIC/EGIS model was used to evaluate the potential for groundwater contamination in the Cheongju city area, the first of several pilot studies. The model allows the designation of hydrogeologic settings within the study area, based on a composite description of all the major geologic and hydrogeologic factors for each setting. Then, a scheme for relative ranking of the hydrogeologic factors is applied to evaluate the relative vulnerability to groundwater contamination of each hydrogeologic setting. DRASTIC/EGIS can serve as a tool to evaluate pollution potential and so facilitate programs to protect groundwater resources. Résumé La contamination de l'eau souterraine devient un problème environnemental majeur en Corée du Sud, en relation avec le développement industriel bien marqué et l'explosion démographique. Meme dans les zones rurales, l'utilisation accrue d'engrais et de pesticides, le drainage acide de mines et les rejets croissants d'eaux usées contribuent à la pollution des nappes. Le modèle DRASTIC/EGIS a été utilisé pour évaluer le potentiel de contamination des eaux souterraines dans la région de la ville de Cheongju, la première de plusieurs régions pilotes. Le modèle permet de définir des ensembles hydrogéologiques dans la région étudiée, à partir de la description composite de tous les facteurs géologiques et hydrogéologiques essentiels pour chaque ensemble. Ensuite, un schéma pour le classement des facteurs hydrogéologiques est mis en oeuvre pour évaluer la vulnérabilité relative à la contamination des eaux souterraines pour chaque ensemble. DRASTIC

  6. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    Directory of Open Access Journals (Sweden)

    Andrade Luiza L

    2012-08-01

    Full Text Available Abstract Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil, which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm being greater than in both deeper sediment layers (15–20 and 35–40 cm, which were similar to each other.

  7. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Science.gov (United States)

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2016-01-01

    Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs), their applications significantly increased when the use of OPs was banned or limited. Although, pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate, and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces, and the fungal strains from the genera Aspergillus, Candida, Cladosporium, and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the cleavage of

  8. [Potential influence of nutrition with supplements on healthy and arthritic joints. II. Nutritional quantity, supplements, contamination].

    Science.gov (United States)

    Wilhelmi, G

    1993-01-01

    A short period of fasting leads, in the mouse, to usually reversible damage to chondrocytes and in patients with rheumatoid arthritis often to a temporary improvement. Slight hypo-alimentation and a low-caloric diet reduce the spontaneous development of osteo-arthritis in the mouse, whereas a high-caloric diet promotes the disease. In man, mice, and, in particular, fattened animals, obesity is often associated with forms of osteo-arthritis. In such cases, it may be assumed that metabolic damage to cartilage is involved as well as damage due to weight-bearing forces. Elderly people, i.e., persons with a predisposition to osteo-arthritis, often suffer from a generalized vitamin deficiency. Vitamins E, B2, and C have been shown to exert an inhibitory effect on osteo-arthritis in animals, and it has been found that supplementation therapy, particularly with vitamin E and the combination of vitamins B1, B6, and B12, can exert a beneficial effect on the symptomatology of human degenerative joint disease. Mineral deficits in calcium, zinc and selenium (Kashin-Beck disease; endemic osteo-arthritis deformans) can provoke skeletal damage in humans and animals. On the other hand, calcium, iron, and copper have been reported to give rise to storage diseases, in some cases with involvement of articular cartilage. There have been indications that chondrotoxic damage may result from food contaminants. So far very little is known about the influence of phytopharmacodynamic substances (other than derivatives of rutin and rhein) on osteo-arthritis. The large gaps in our knowledge of the chondrotropic properties of the constituents of food and common stimulants underline the need for further investigations.

  9. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review

    Directory of Open Access Journals (Sweden)

    Mariusz Sebastian Cycoń

    2016-09-01

    Full Text Available Pyrethroid insecticides have been used to control pests in agriculture, forestry, horticulture, public health and for indoor home use for more than 20 years. Because pyrethroids were considered to be a safer alternative to organophosphate pesticides (OPs, their applications significantly increased when the use of OPs was banned or limited. Although pyrethroids have agricultural benefits, their widespread and continuous use is a major problem as they pollute the terrestrial and aquatic environments and affect non-target organisms. Since pyrethroids are not degraded immediately after application and because their residues are detected in soils, there is an urgent need to remediate pyrethroid-polluted environments. Various remediation technologies have been developed for this purpose; however, bioremediation, which involves bioaugmentation and/or biostimulation and is a cost-effective and eco-friendly approach, has emerged as the most advantageous method for cleaning-up pesticide-contaminated soils. This review presents an overview of the microorganisms that have been isolated from pyrethroid-polluted sites, characterized and applied for the degradation of pyrethroids in liquid and soil media. The paper is focused on the microbial degradation of the pyrethroids that have been most commonly used for many years such as allethrin, bifenthrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, fenpropathrin, fenvalerate and permethrin. Special attention is given to the bacterial strains from the genera Achromobacter, Acidomonas, Bacillus, Brevibacterium, Catellibacterium, Clostridium, Lysinibacillus, Micrococcus, Ochrobactrum, Pseudomonas, Serratia, Sphingobium, Streptomyces and the fungal strains from the genera Aspergillus, Candida, Cladosporium and Trichoderma, which are characterized by their ability to degrade various pyrethroids. Moreover, the current knowledge on the degradation pathways of pyrethroids, the enzymes that are involved in the

  10. Implications of an assessment of potential organic contamination of ground water at an inactive uranium mill

    International Nuclear Information System (INIS)

    Price, J.B.

    1986-01-01

    Laws and regulations concerning remedial actions at inactive uranium mills explicitly recognize radiological and nonradiological hazards and may implicitly recognize the potential presence of hazardous wastes at these mill sites. Ground-water studies at the sites have placed an increasing emphasis on screening for priority pollutants. The Grand Junction, Colorado, mill site was deemed to have a high potential for the presence of organic compounds in ground water, and was chosen as a prototype for assessing the presence of organic compounds in ground water at inactive sites. Lessons learned from the assessment of organics at the Grand Junction site were used to develop a screening procedure for other inactive mill sites

  11. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils.

    Science.gov (United States)

    Yang, Zhihui; Shi, Wei; Yang, Weichun; Liang, Lifen; Yao, Wenbin; Chai, Liyuan; Gao, Shikang; Liao, Qi

    2018-09-01

    Combining bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 and flocculation by poly aluminium chloride (PAC) was proposed to develop a potential environment-friendly and cost-effective technique to remediate the severely contaminated soils by heavy metals. The factors affecting soil bioleaching by the gross biosurfactants of Burkholderia sp. Z-90 were optimized. The results showed the optimal removing efficiencies of Zn, Pb, Mn, Cd, Cu, and As by the Burkholderia sp. Z-90 leachate were 44.0, 32.5, 52.2, 37.7, 24.1 and 31.6%, respectively at soil liquid ratio of 1:20 (w/v) for 5 d, which were more efficient than that by 0.1% of rhamnolipid. The amounts of the bioleached heavy metals by the Burkholderia sp. Z-90 leachate were higher than that by other biosurfactants in the previous studies, although the removal efficiencies of the metals by the leachate were relatively lower. It was suggested that more heavy metals caused more competitive to chelate with function groups of the gross biosurfactants and the metal removal efficiencies by biosurfactants in natural soils were lower than in the artificially contaminated soils. Moreover, the Burkholderia sp. Z-90 leachate facilitated the metals to be transformed to the easily migrating speciation fractions. Additional, the results showed that PAC was efficient in the following flocculation to remove heavy metals in the waste bio-leachates. Our study will provide support for developing a bioleaching technique model to remediate the soils extremely contaminated by heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The potential of compost-based biobarriers for Cr(VI) removal from contaminated groundwater: Column test

    International Nuclear Information System (INIS)

    Boni, Maria Rosaria; Sbaffoni, Silvia

    2009-01-01

    This paper presents the results of a column reactor test, aiming at evaluating the performance of a biological permeable barrier made of low-cost waste materials, for Cr(VI) removal from contaminated groundwater. A 1:1 by volume mixture of green compost and siliceous gravel was tested as reactive medium in the experimental activity. A 10 mg/l Cr(VI) contaminated solution was used and the residual Cr(VI) concentration along the column height and in the outlet was determined in the water samples collected daily. Also pH, redox potential and COD were analyzed. At the end of the test, the reactive medium was characterized in terms of Cr(VI) and total chromium. The Cr(VI) removal efficiency was higher than 99% during the entire experimental activity. The influence of the biological activity on Cr(VI) removal efficiency was evaluated by varying the organic carbon and nitrogen dosages in the contaminated solution fed to the system; a removal decrease was observed when the organic carbon was not enough to sustain the microbial metabolism. The Cr(VI) removal was strictly linked to the biological activity of the native biomass of compost. No Cr(III) was detected in the outlet: the Cr(III) produced was entrapped in the solid matrix. Two main processes involved were: adsorption on the organic-based matrix and reduction into Cr(III) mediated by the anaerobic microbial metabolism of the bacteria residing in green compost. Siliceous gravel was used as the structure matrix, since its contribution to the removal was almost negligible. Thanks to the proven efficiency and to the low-cost, the reactive medium used can represent a valid alternative to conventional approaches to chromium remediation.

  13. Determination of the potential implementation impact of 2016 ministry of environmental protection generic assessment criteria for potentially contaminated sites in China.

    Science.gov (United States)

    Cheng, Yuanyuan; Tang, Yu-Ting; Nathanail, C Paul

    2017-04-12

    The Ministry of Environmental Protection of China issued a 3rd draft edition of risk-based Generic Assessment Criteria (the MEP-GAC) in March 2016. Since these will be the first authoritative GAC in China, their implementation is likely to have a significant impact on China's growing contaminated land management sector. This study aims to determine the potential implementation impact of the MEP-GAC through an in-depth analysis of the management context, land use scenarios, health criteria values adopted and exposure pathways considered. The MEP-GAC have been proposed for two broad categories of land use scenarios for contaminated land risk assessment, and these two categories of land use scenarios need to be further delved, and a MEP-GAC for Chinese cultivated land scenario ought to be developed, to ensure human health protection of Chinese farmers. The MEP-GAC have adopted 10 -6 as the acceptable lifetime cancer risk, given the widespread extent and severe level of land contamination in China, consideration should be given to the decision on excess lifetime cancer risk of 10 -5 . During risk assessment process in practice, it is better to review the 20% TDI against local circumstances to determine their suitability before adopting it. The MEP-GAC are based on a SOM value of 1%, for regions with particularly high SOM, it might be necessary to develop regional GAC, due to SOM's significant impact on the GAC developed. An authoritative risk assessment model developed based on HJ25.3-2014 would help facilitate the DQRA process in practice. The MEP-GAC could better reflect the likely exposures of China's citizens due to vapour inhalation by using characteristics of Chinese exposure scenarios, including China-generic building stock, as inputs into the Johnson and Ettinger model as opposed to adoption of the US EPA parameters. The MEP-GAC once implemented will set the trajectory for the development of the investigation, assessment and remediation of land contamination

  14. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate

    NARCIS (Netherlands)

    Trujillo-González, Juan Manuel; Mahecha-Pulido, Juan D.; Torres-Mora, Marco Aurelio; Brevik, Eric C.; Keesstra, Saskia D.; Jiménez-Ballesta, Raimundo

    2017-01-01

    Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their

  15. Iron cycling potentials of arsenic-contaminated groundwater in Bangladesh as revealed by enrichment cultivation.

    NARCIS (Netherlands)

    Hassan, Z.; Sultana, M.; Westerhoff, H.V.; Khan, S.I.; Roling, W.F.M.

    2015-01-01

    The activities of iron-oxidizing and reducing microorganisms impact the fate of arsenic in groundwater. Phylogenetic information cannot exclusively be used to infer the potential for iron oxidation or reduction in aquifers. Therefore, we complemented a previous cultivation-independent microbial

  16. Methods for evaluating potential impacts to aquatic receptors at a metal-contaminated superfund site

    International Nuclear Information System (INIS)

    Hattemer-Frey, H.A.; Quinlan, R.E.; Krieger, G.R.

    1994-01-01

    An ecological risk assessment (ERA) was conducted for a metals mining site in the midwestern United States. Chemicals of potential concern were shown to be heavy metals associated with mine wastes and with base metal ore deposits that are characteristic of this area. Environmental receptors were identified by considering the relevant exposure pathways and the potential or known occurrence of species exposed via those pathways. Selection of key receptor species was designed to minimize the possibility that other species would be more exposed than the key species themselves and to include representation of sensitive organisms present at the subsites. In addition, an EPA-approved method was use to developed site-specific ambient water quality criteria. Ecological impacts were assessed using two complimentary approaches. First, potential chronic impacts were assessed by applying the toxicity quotient approach (i.e., a comparison of the measured concentration of site-related metals in surface water with available health-based criteria). Secondly, semi-quantitative comparative ecology data were used to obtain to provide a direct measure of impacts to key species. Results from these two approaches were used to provide a direct measure of impacts to key species. Results from these two approaches were used to obtain a realistic picture of actual and potential risks associated with exposure by key species to mining-related metals. This paper discusses the uncertainties associated with both methods and presents a method for interpreting disparate and sometimes confusing ecological data using the results from a case study

  17. Contamination of community water sources by potentially pathogenic vibrios following sea water inundation.

    Science.gov (United States)

    Kanungo, Reba; Shashikala; Karunasagar, I; Srinivasan, S; Sheela, Devi; Venkatesh, K; Anitha, P

    2007-12-01

    Potentially pathogenic members of the Vibrionaceae family including Vibrio cholerae and Vibrio parahemolyticus were isolated from domestic sources of drinking water in coastal villages following sea water inundation during the tsunami in Southern India. Phenotypic and genotypic studies were done to confirm the identity and detection of toxins. Vibrio-gyr (gyrase B gene) was detected in all sixteen vibrio isolates. Toxin regulating genes i.e.: ctx gene, tdh gene, and trh gene, however were not detected in any of the strains, thereby ruling out presence of toxins which could endanger human life. Other potentially pathogenic bacteria Aeromonas and Plesiomonas were also isolated from hand pumps and wells, in a few localities. There was no immediate danger in the form of an outbreak or sporadic gastroenteritis at the time of the study. Timely chlorination and restoration of potable water supply to the flood affected population by governmental and nongovernmental agencies averted waterborne gastroenteritis. Assessment of quality of water and detection of potential virulent organisms is an important public health activity following natural disasters. This work highlights the importance of screening water sources for potentially pathogenic microorganisms after natural disasters to avert outbreaks of gastroenteritis and other infectious diseases.

  18. Characterization of Lipase from Bacillus subtilisI-4 and Its Potential Use in Oil Contaminated Wastewater

    Directory of Open Access Journals (Sweden)

    Syeda Abeer Iqbal

    2015-10-01

    Full Text Available ABSTRACTA lipase producing bacterium was isolated from oil contaminated effluents of various industries from Sheikhupura Road, Pakistan, and, on the basis of biochemical and 16S rRNA ribotyping, was identified asBacillus subtilis. The optimum temperature and pH for the growth of the culture were 37ºC and 7.0, respectively.B. subtilis I-4 had a lag phase of 4 h in LB medium while this phase prolonged to 6 h in oil containing medium. The optimum temperature and pH for the enzyme activity were 50ºC and 7.0, respectively. Maximum lipase activity was found in the presence of Ca ions. Olive oil and Tween 80 induced lipase gene in the bacterium while concentration of oil greater than 2% retarded the growth of the organism. In addition to lipaseB. subtilis I-4 also produced alkane hydroxylase and biosurfactant which could make this bacterium potential candidate for lipase production as well as bioremediation of oil-contaminated wastewater.

  19. Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India

    International Nuclear Information System (INIS)

    D'Souza, Rohan J.; Varun, Mayank; Masih, Jamson; Paul, Manoj S.

    2010-01-01

    Lead and cadmium levels were monitored in soil at fifteen urban (riverbank, roadside, industrial and residential) sites in the north central part of India. Calotropis procera, a hardy xerophytic plant was identified and selected for remedial potential as it was seen growing well at all sites. Root and leaf samples were collected simultaneously with soil samples to assess the characteristics of accumulation and tolerance of Pb and Cd in C. procera. Chlorophyll and phenological studies were undertaken to investigate the health of plants. The overall trend of Pb and Cd content in soil and plant samples was in the order Industrial > Roadside > Riverbank > Residential. The highest uptake of both the metals was observed in plants from industrial sites. Sites with more anthropogenic disturbance like vehicular and machinery exhausts exhibited reduced chlorophyll levels, stunted growth as well as a delayed, shortened reproductive phase. The ratios of Pb in leaves to Pb in soil were in the range of 0.60-1.37; while similar ratios of Cd were in the range of 1.25-1.83. Highly significant correlation coefficients were determined between concentrations of Pb and Cd in the samples with R 2 values 0.839 for soil, 0.802 for leaf and 0.819 for root samples. The strong correlation between the degree of contamination and concentrations of Pb and Cd in plant samples identifies C. procera as an effective heavy metal remediator of contaminated lands coupled with environmental stress.

  20. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang

    2014-01-01

    To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.

  1. Relating the ability of mallards to ingest high levels of sediment to potential contaminant exposure in waterfowl

    Science.gov (United States)

    Heinz, Gary H.; Beyer, W. Nelson; Hoffman, David J.; Audet, Daniel J.

    2010-01-01

    When waterfowl feed from the bottom of bodies of water, they sometimes ingest sediments along with their food, and this sediment can be a major source of contaminants. Learning how much sediment waterfowl can consume in their diet and still maintain their health would be helpful in assessing potential threats from contaminants in sediment. In a controlled laboratory study the maximum tolerated percentage of sediment in the diet of mallards (Anas platyrhynchos) was measured. When fed a well-balanced commercial avian diet, 50, 60, or 70% sediment in the diet on a dry-weight basis did not cause weight loss over a two-week period. Ducks fed this same commercial diet, but containing 80 or 90% sediment, lost 8.6 and 15.6% of their body weight, respectively, in the first week on those diets. After factoring in the ability of the mallards to sieve out some of the sediment from their diet before swallowing it, we concluded that the mallards could maintain their health even when approximately half of what they swallowed, on a dry-weight basis, was sediment.

  2. Final work plan : investigation of potential contamination at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-19

    Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Seven technical objectives have been proposed for the Hanover investigation. They are as follows: (1) Identify the sources and extent of soil contamination beneath the former CCC/USDA facility; (2) Characterize groundwater contamination beneath the former CCC/USDA facility; (3) Determine groundwater flow patterns; (4) Define the vertical and lateral extent of the groundwater plume outside the former CCC/USDA facility; (5) Evaluate the aquifer and monitor the groundwater system; (6) Identify any other potential sources of contamination that are not related to activities of the CCC/USDA; and (7) Determine whether there is a vapor intrusion problem at the site attributable to the former CCC/USDA facility. The technical objectives will be accomplished in a phased approached. Data collected during each phase will be evaluated to determine whether the subsequent phase is necessary. The KDHE project manager and the CCC/USDA will be contacted during each phase and kept apprised of the results. Whether implementation of each phase of work is necessary will be discussed and mutually agreed upon by the CCC/USDA and KDHE project managers.

  3. Evaluation of the potential of Pistia stratiotes L. (water lettuce for bioindication and phytoremediation of aquatic environments contaminated with arsenic

    Directory of Open Access Journals (Sweden)

    FS Farnese

    Full Text Available Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As for seven days. Growth, As absorption, malondialdehyde (MDA content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.

  4. Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic.

    Science.gov (United States)

    Farnese, F S; Oliveira, J A; Lima, F S; Leão, G A; Gusman, G S; Silva, L C

    2014-08-01

    Specimens of Pistia stratiotes were subjected to five concentrations of arsenic (As) for seven days. Growth, As absorption, malondialdehyde (MDA) content, photosynthetic pigments, enzymatic activities, amino acids content and anatomical changes were assessed. Plant arsenic accumulation increased with increasing metalloid in the solution, while growth rate and photosynthetic pigment content decreased. The MDA content increased, indicating oxidative stress. Enzymatic activity and amino acids content increased at the lower doses of As, subsequently declining in the higher concentrations. Chlorosis and necrosis were observed in the leaves. Leaves showed starch accumulation and increased thickness of the mesophyll. In the root system, there was a loss and darkening of roots. Cell layers formed at the insertion points on the root stems may have been responsible for the loss of roots. These results indicate that water lettuce shows potential for bioindication and phytoremediation of As-contaminated aquatic environments.

  5. Evaluation of the fertilizer and contamination potential of different broiler litter types subjected to various use cycles

    Directory of Open Access Journals (Sweden)

    Olga Lucía Zapata Marín

    2015-06-01

    Full Text Available The aim of this study was to evaluate two types of poultry bedding litter (wood shavings and coffee husks with increasing use cycles, the best time to proceed with composting based on the carbon/nitrogen ratio and the ability to generate ammonia. The results obtained with the present experiment conditions indicated that the litter with wood shavings in the first cycle and the litter with coffee husks in the first and second cycles presented the best behavior in terms of the C/N ratio needed for later use as compost. In regards to the contamination potential, it was found that increasing the number of reutilizations for both the wood-shaving and coffee-husk litters resulted in a greater ammonia emission.

  6. Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential.

    Science.gov (United States)

    Mahjoubi, Mouna; Jaouani, Atef; Guesmi, Amel; Ben Amor, Sonia; Jouini, Ahlem; Cherif, Hanen; Najjari, Afef; Boudabous, Abdellatif; Koubaa, Nedra; Cherif, Ameur

    2013-09-25

    Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, a collection of 125 strains, adapted to grow on minimal medium supplemented with crude oil, was obtained from contaminated sediments and seawater from a refinery harbor of the Bizerte coast in the North of Tunisia. The diversity of the bacterial collection was analyzed by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. A total of 36 distinct ITS haplotypes were detected on agarose matrix. Partial 16S rRNA gene sequencing performed on 50 isolates showed high level of identity with known sequences. Strains were affiliated to Ochrabactrum, Sphingobium, Acinetobacter, Gordonia, Microbacterium, Brevundimonas, Novosphingobium, Stenotrophomonas, Luteibacter, Rhodococcus, Agrobacterium, Achromobacter, Bacilllus, Kocuria and Pseudomonas genera. Acinetobacter and Stenotrophomons were found to be the most abundant species characterized by a marked microdiversity as shown through ITS typing. Culture-independent approach (DGGE) showed high diversity in the microbial community in all the studied samples with a clear correlation with the hydrocarbon pollution rate. Sequencing of the DGGE bands revealed a high proportion of Proteobacteria represented by the Alpha and Gamma subclasses. The predominant bacterial detected by both dependent and independent approaches were the Proteobacteria. The biotechnological potential of the isolates revealed a significant production of biosurfactants with important emulsification activities useful in bioremediation

  7. Enrichment and Characterization of PCB-Degrading Bacteria as Potential Seed Cultures for Bioremediation of Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Dubravka Hršak

    2007-01-01

    Full Text Available The main objective of our study was to obtain seed cultures for enhancing the transformation of polychlorinated biphenyls (PCBs in contaminated soil of the transformer station in Zadar, Croatia, damaged during warfare activities in 1991. For enrichment, six soil samples were collected from different polluted areas and microcosm approach, stimulating the growth of biphenyl-degrading bacteria, was employed. Enrichment experiments resulted in the selection of two fast growing mixed cultures TSZ7 and AIR1, originating from the soil of the transformer station and the airport area, respectively. Both cultures showed significant PCB-degrading activity (56 to 60 % of PCB50 mixture was reduced after a two-week cultivation. Furthermore, the cultures displayed similar PCB-degrading competence and reduced di-to tetrachlorobiphenyls more effectively than penta- to hepta-chlorobiphenyls. Strain Z6, identified as Rhodococcus erythropolis, was found to be the only culture member showing PCB-transformation potential similar to that of the mixed culture TSZ7, from which it was isolated. Based on the metabolites identified in the assay with the single congener 2,4,4’-chlorobiphenyl, we proposed that the strain Z6 was able to use both the 2,3-and 3,4-dioxygenase pathways. Furthermore, the identified metabolites suggested that beside these pathways another unidentified pathway might also be active in strain Z6. Based on the obtained results, the culture TSZ7 and the strain Z6 were designated as potential seed cultures for bioremediation of the contaminated soil.

  8. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  9. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Johnsen, Anders R.; Christensen, Jan H.

    2015-01-01

    and either hydroxylated or oxidized to carboxylic acids at the methyl group. The metabolism of the sulfur-containing heterocyclic PAC resulted in sulfate conjugates. The sorption of the PAC metabolites to three soils was determined using a batch equilibrium method, and partition coefficients (Kd's) were......-methylphenanthrene, 1-methylpyrene), and one sulfur-containing heterocyclic PAC (dibenzothiophene). Fifty-eight metabolites were tentatively identified; metabolites from the un-substituted PACs were hydroxylated and sulfate conjugated, whereas metabolites from alkyl-substituted PACs were sulfate conjugated...... calculated for fourteen representative metabolites. Sulfate conjugated metabolites displayed Kd's below 70 whereas the metabolites with both a sulfate and a carboxylic acid group had Kd's below 2.8. The low Kd's of water-soluble PAC metabolites indicate high mobility in soil and a potential for leaching...

  10. Identification of suspected hazardous chemical contaminants in recycled pastry packaging.

    Science.gov (United States)

    Ahmadkhaniha, Reza; Rastkari, Noushin

    2017-01-01

    The safe use of recycled paper and cardboard material for food packaging applications is     an important area of investigation. Therefore, the aim of this study was to determine which hazardous chemi- cal pollutants were found in paper and cardboard samples used for pastry packaging, and to measure the migration of pollutants over time into the pastries. In this study, the presence of some organic pollutants in common confectionery packaging, and the effects of storage time and type of pastry on pollutant migration, were investigated. The results of the study indicate that harmful compounds such as benzophenone, pentachlorophenol, bis(2-ethylhexyl) phthalate and dibutyl phthalate are present at high concentrations in most recycled boxes used for pastry packaging. Since the migration of some of the hazardous compounds from the packaging materials into the pastries under normal conditions was indicated, it is recommended that the procedure for preparing pastry packaging materials should be reconsidered and improved.

  11. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    Science.gov (United States)

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Morphological analysis of three wound-cleaning processes on potentially contamined wounds in rats

    Directory of Open Access Journals (Sweden)

    d'Acampora Armando José

    2006-01-01

    Full Text Available PURPOSE: To evaluate the inflammatory response of potentially infected wounds treated with isotonic saline solution, chlorhexidine and PVP-I, seven days after surgery. METHODS: Thirty-two male rats were used, divided into 4 groups. All animals had their surgical wounds infected with a standard bacterial inoculum. Control group (A: animals had their surgical wounds sutured without any kind of cleaning. Saline solution group (B: animals had their wounds cleaned with saline solution. Chlorhexidine group (C: animals had their wounds cleaned with chlorhexidine. PVP-I group (D: animals had their wounds cleaned with PVP-I. Seven days after surgery, all the animals had their skin submitted to microscopic and macroscopic evaluation. RESULTS: Edema was found on all histological slices analyzed, as well as vascular proliferation and congestion. Groups A and D showed presence of mild neutrophilic infiltrate, and moderate lymphocytic and macrophage infiltrate. Group B showed severe neutrophilic, macrophage, and lymphocytic infiltrate. Group C showed moderate neutrophilic, macrophage, and lymphocytic infiltrate. CONCLUSION: Group D was the group which showed inflammatory infiltrate most similar to the group that was not submitted to treatment.

  13. White Paper on Potential Hazards Associated with Contaminated Cheesecloth Exposed to Nitric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hypes, Philip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    This white paper addresses the potential hazards associated with waste cheesecloth that has been exposed to nitric acid solutions. This issue was highlighted by the cleanup of a 100 ml leak of aqueous nitric acid solution containing Heat Source (HS) plutonium on 21 June 2016. Nitration of cellulosic material is a well-understood process due to industrial/military applications of the resulting material. Within the Department of Energy complex, nitric acids have been used extensively, as have cellulosic wipes. If cellulosic materials are nitrated, the cellulosic material can become ignitable and in extreme cases, reactive. We have chemistry knowledge and operating experience to support the conclusion that all current wastes are safe and compliant. There are technical questions worthy of further experimental evaluation. An extent of condition evaluation has been conducted back to 2004. During this time period there have been interruptions in the authorization to use cellulosic wipes in PF-4. Limited use has been authorized since 2007 (for purposes other than spill cleanup), so our extent of condition includes the entire current span of use. Our evaluation shows that there is no indication that process spills involving high molarity nitric acid were cleaned up with cheesecloth since 2007. The materials generated in the 21 June leak will be managed in a safe manner compliant with all applicable requirements.

  14. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    Science.gov (United States)

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  15. Hiding in Plain Sight: Contaminated Ice Machines Are a Potential Source for Dissemination of Gram-Negative Bacteria and Candida Species in Healthcare Facilities.

    Science.gov (United States)

    Kanwar, Anubhav; Cadnum, Jennifer L; Xu, Dongyan; Jencson, Annette L; Donskey, Curtis J

    2018-03-01

    BACKGROUND Contaminated ice machines have been linked to transmission of pathogens in healthcare facilities. OBJECTIVE To determine the frequency and sites of contamination of ice machines in multiple healthcare facilities and to investigate potential mechanisms of microorganism dispersal from contaminated ice machines to patients. DESIGN Multicenter culture survey and simulation study. SETTING The study took place in 5 hospitals and 2 nursing homes in northeastern Ohio. METHODS We cultured multiple sites on ice machines from patient care areas. To investigate potential mechanisms of microbial dispersal from contaminated ice machines, we observed the use of ice machines and conducted simulations using a fluorescent tracer and cultures. RESULTS Samples from 64 ice machines in the 5 hospitals and 2 nursing homes (range, 3-16 per facility) were cultured. Gram-negative bacilli and/or Candida spp were recovered from 100% of drain pans, 52% of ice and/or water chutes, and 72% of drain-pan grilles. During the operation of ice machines, ice often fell through the grille, resulting in splattering, with dispersal of contaminated water from the drain pan to the drain-pan grille, cups, and the hands of those using the ice machine. Contamination of the inner surface of the ice chute resulted in contamination of ice cubes exiting the chute. CONCLUSIONS Our findings demonstrate that ice machines in healthcare facilities are often contaminated with gram-negative bacilli and Candida species, and provide a potential mechanism by which these organisms may be dispersed. Effective interventions are needed to reduce the risk of dissemination of pathogenic organisms from ice machines. Infect Control Hosp Epidemiol 2018;39:253-258.

  16. The potential for spills and leaks of contaminated liquids from shale gas developments.

    Science.gov (United States)

    Clancy, S A; Worrall, F; Davies, R J; Gluyas, J G

    2018-06-01

    Rapid growth of hydraulic fracturing for shale gas within the USA and the possibility of shale developments within Europe has created public concern about the risks of spills and leaks associated with the industry. Reports from the Texas Railroad Commission (1999 to 2015) and the Colorado Oil and Gas Commission (2009 to 2015) were used to examine spill rates from oil and gas well pads. Pollution incident records for England and road transport incident data for the UK were examined as an analogue for potential offsite spills associated with transport for a developing shale industry. The Texas and Colorado spill data shows that the spill rate on the well pads has increased over the recorded time period. The most common spill cause was equipment failure. Within Colorado 33% of the spills recorded were found during well pad remediation and random site inspections. Based on data from the Texas Railroad Commission, a UK shale industry developing well pads with 10 lateral wells would likely experience a spill for every 16 well pads developed. The same well pad development scenario is estimated to require at least 2856 tanker movements over two years per well pad. Considering this tanker movement estimate with incident and spill frequency data from UK milk tankers, a UK shale industry would likely experience an incident on the road for every 12 well pads developed and a road spill for every 19 well pads developed. Consequently, should a UK shale industry be developed it is important that appropriate mitigation strategies are in place to minimise the risk of spills associated with well pad activities and fluid transportation movements. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    Science.gov (United States)

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  18. Redox potential and mobility of contaminant oxyanions (As, Sb, Cr) in argillaceous rock subjected to oxic and anoxic cycles

    International Nuclear Information System (INIS)

    Markelova, Ekaterina

    2016-01-01

    Electron transfer (redox) reactions are key processes in the biogeochemical functioning of natural systems. Redox reactions control the speciation and mobility of major elements (e.g., carbon, nitrogen, iron, and manganese) and environmentally important contaminants such as arsenic (As), antimony (Sb), and chromium (Cr). Nonetheless, the characterization of redox conditions and their effects on biogeochemical cycling and contaminant fate remain incompletely understood. The first part of this thesis focused on the interpretation of redox potential (EH) measurements using results obtained in synthetic biogeochemical systems of increasing complexity under dynamic, redox-oscillating conditions. By progressively combining inorganic solutes, an organic electron donor (lactate), an aqueous electron acceptor (nitrate), a metabolically versatile heterotrophic bacterium (Shewanella oneidensis), and a solid-state electron acceptor (goethite), a full redox cascade from +500 to -350 mV (pH ∼7.4) was reproduced in the laboratory. The experimental results revealed that a conventional Pt redox electrode responds to a variety of physical, chemical, and microbial factors. In particular, the presence of the bacteria always led to lower EH readings. In contrast, measurements of EH in argillaceous suspensions were insensitive to changes in chemical ratios of the redox-sensitive, but non-electro-active, couples, including O 2 /H 2 O, CrO 4 2- /Cr(OH) 3 , NO 3 - /NO 2 - /NH 4 + , HAsO 4 2- /H3AsO 3 , and Sb(OH) 6 - /Sb 2 O 3 . Therefore, EH measurements are shown to have limited usefulness in the natural systems depleted in electro-active redox couples, such as α-FeOOH(s)/Fe 2+ (aq). The second part of the thesis focused on the behavior of oxy-anion contaminants under redox-oscillating conditions in the argillaceous subsoil suspensions. Successive cycles of oxic and anoxic conditions were imposed on the argillaceous suspensions amended with a mixture of oxidized Cr(VI), As(V), Sb

  19. Natural organics in groundwaters and their potential effect on contaminant transport in granitic rock

    International Nuclear Information System (INIS)

    Vilks, P.; Bachinski, D.B.; Richer, D.

    1996-07-01

    Naturally occurring organics in groundwaters of the Whiteshell Research Area (WRA) of southern Manitoba and of the Atikokan Research Area of northwestern Ontario were investigated to assess their potential role in radionuclide transport within granite fractures of the Canadian Shield. A survey of dissolved organic carbon (DOC) concentrations, carried out to determine the variability in the organic content of these groundwaters, showed average concentrations in WRA deep groundwaters of 0.8 ± 0.1 mg/L for Fracture Zone 2, 0.8 ± 0.4 mg/L for near-vertical fractures, and 2.3 ± 0.8 mg/L for deeper saline groundwater. Surface waters and near-surface groundwaters had significantly higher DOC with 29.2 ± 0.6 mg/L in streams from the East Swamp. The DOC consisted mainly of hydrophilic neutral compounds 60 to 75%, and hydrophobic and hydrophilic acids 23 to 39%, along with very small amounts of hydrophobic bases and neutrals, and hydrophilic bases. The average complexing capacity of natural organics in WRA deep groundwaters was calculated to be 6.7 x 10 -6 eq/L. The ability of these organics to complex radionuclides was tested using conditional stability constants from the literature for humic complex formation with trivalent, tetravalent, pentavalent and hexavalent actinides. The chemistries of Np(V) and U(VI) were predicted to be dominated by inorganic complexes and not significantly affected by organics. Accurate predictions for AM(III) and Th(IV) could not be made since the literature contains a wide range in values of stability constants for humic complexes with these elements. Surface waters and near-surface groundwaters in many areas of the Canadian Shield contain enough humics to complex a significant fraction of dissolved actinides. Radiocarbon ages of humics from WRA groundwater varied between 3600 and 6200 years before present, indicating that a component of humic substances in deep groundwaters must originate from near-surface waters. 54 refs., 15 tabs., 5

  20. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Potential Air Contamination During CO2 Angiography Using a Hand-Held Syringe: Theoretical Considerations and Gas Chromatography

    International Nuclear Information System (INIS)

    Cho, David R.; Cho, Kyung J.; Hawkins, Irvin F.

    2006-01-01

    Purpose. To assess air contamination in the hand-held syringes currently used for CO 2 delivery and to determine whether there is an association between their position and the rate of air contamination. Methods. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO 2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. Results. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO 2 at 0.1599 cm 2 /sec (9.594 cm 2 /min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Conclusion. Air contamination occurs in hand-held syringes filled with CO 2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions

  2. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography.

    Science.gov (United States)

    Cho, David R; Cho, Kyung J; Hawkins, Irvin F

    2006-01-01

    To assess air contamination in the hand-held syringes currently used for CO2 delivery and to determine whether there is an association between their position and the rate of air contamination. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO2 at 0.1599 cm2/sec (9.594 cm2/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Air contamination occurs in hand-held syringes filled with CO2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

  3. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures

    International Nuclear Information System (INIS)

    Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.U.; Schirmer, M.

    2007-01-01

    The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60 m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272 μg m -2 d -1 MCB and 71 μg m -2 d -1 DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream. - We provide a new methodology to quantify the potential contaminant mass flux from an aquifer to a stream

  4. Single and combined metal contamination in coastal environments in China: current status and potential ecological risk evaluation.

    Science.gov (United States)

    Manzoor, Romana; Zhang, Tingwan; Zhang, Xuejiao; Wang, Min; Pan, Jin-Fen; Wang, Zhumei; Zhang, Bo

    2018-01-01

    With the development of industrialization and urbanization, metal and metalloid pollution is one of the most serious environmental problems in China. Current contamination status of metals and metalloid and their potential ecological risks along China's coasts were reviewed in the present paper by a comprehensive study on metal contents in marine waters and sediments in the past few decades. The priority metals/metalloid cadmium (Cd), mercury (Hg), chromium (Cr), lead (Pb), and arsenic (As), which were the target elements of the designated project "Comprehensive Prevention and Control of Heavy Metal Pollution" issued by the Chinese government in 2011, were selected considering their high toxicity, persistence, and prevalent existence in coastal environment. Commonly used environmental quality evaluation methods for single and combined metals were compared, and we accordingly suggest the comprehensive approach of joint utilization of the Enrichment Factor and Effect Range Median combined with Pollution Load Index and Mean Effect Range Median Quotient (EEPME); this battery of guidelines may provide consistent, internationally comparable, and accurate understanding of the environment pollution status of combined metals/metalloid and their potential ecological risk.

  5. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  6. Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK Model in Sydney, Australia.

    Science.gov (United States)

    Laidlaw, Mark A S; Mohmmad, Shaike M; Gulson, Brian L; Taylor, Mark P; Kristensen, Louise J; Birch, Gavin

    2017-07-01

    Surface soils in portions of the Sydney (New South Wales, Australia) urban area are contaminated with lead (Pb) primarily from past use of Pb in gasoline, the deterioration of exterior lead-based paints, and industrial activities. Surface soil samples (n=341) were collected from a depth of 0-2.5cm at a density of approximately one sample per square kilometre within the Sydney estuary catchment and analysed for lead. The bioaccessibility of soil Pb was analysed in 18 samples. The blood lead level (BLL) of a hypothetical 24 month old child was predicted at soil sampling sites in residential and open land use using the United States Environmental Protection Agency (US EPA) Integrated Exposure Uptake and Biokinetic (IEUBK) model. Other environmental exposures used the Australian National Environmental Protection Measure (NEPM) default values. The IEUBK model predicted a geometric mean BLL of 2.0±2.1µg/dL using measured soil lead bioavailability measurements (bioavailability =34%) and 2.4±2.8µg/dL using the Australian NEPM default assumption (bioavailability =50%). Assuming children were present and residing at the sampling locations, the IEUBK model incorporating soil Pb bioavailability predicted that 5.6% of the children at the sampling locations could potentially have BLLs exceeding 5µg/dL and 2.1% potentially could have BLLs exceeding 10µg/dL. These estimations are consistent with BLLs previously measured in children in Sydney. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya.

    Science.gov (United States)

    Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S

    2014-09-01

    The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of

  8. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    Energy Technology Data Exchange (ETDEWEB)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  9. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination

    Science.gov (United States)

    Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S.

    2013-11-01

    Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and

  10. Methods for Characterisation of unknown Suspect Radioactive Samples

    International Nuclear Information System (INIS)

    Sahagia, M.; Grigorescu, E.L.; Luca, A.; Razdolescu, A.C.; Ivan, C.

    2001-01-01

    Full text: The paper presents various identification and measurement methods, used for the expertise of a wide variety of suspect radioactive materials, whose circulation was not legally stated. The main types of examined samples were: radioactive sources, illegally trafficked; suspect radioactive materials or radioactively contaminated devices; uranium tablets; fire detectors containing 241 Am sources; osmium samples containing radioactive 185 Os or enriched 187 Os. The types of analyses and determination methods were as follows: the chemical composition was determined by using identification reagents or by neutron activation analysis; the radionuclide composition was determined by using gamma-ray spectrometry; the activity and particle emission rates were determined by using calibrated radiometric equipment; the absorbed dose rate at the wall of all types of containers and samples was determined by using calibrated dose ratemeters. The radiation exposure risk for population, due to these radioactive materials, was evaluated for every case. (author)

  11. Risk assessment of historical soil contamination with cyanides; origin, potential human exposure and evaluation of Intervention Values

    NARCIS (Netherlands)

    Koster HW; LBG

    2001-01-01

    To evaluate, and indicate possible adjustment of, the current Dutch Intervention Values for cyanides (CN) a review has been made of sources of CN soil contamination, behaviour of CN species and present environmental concentrations related to soils contaminated before 1987. Knowledge on

  12. Interaction of organic contaminant with natural clay type geo sorbents: potential use as geologic barrier in urban landfill

    International Nuclear Information System (INIS)

    Sanchez Jimenez, N.; Procopio, J. R.; Sevilla, T.; Cuevas, J.; Rodirguez, M.

    2009-01-01

    The great amount of municipal solid wastes generated by the cities can be processed in different ways such as incineration, derivation to composting plants or, simply, deposition in controlled landfills. One of the landfill characteristics is possess and adequate geological barrier for contaminant contention. The most important chemical processes an adequate geological battier for contaminant contention. (Author)

  13. A novel approach for the detection of potentially hazardous pepsin stable hazelnut proteins as contaminants in chocolate-based food.

    Science.gov (United States)

    Akkerdaas, Jaap H; Wensing, Marjolein; Knulst, André C; Stephan, Oliver; Hefle, Susan L; Aalberse, Rob C; van Ree, Ronald

    2004-12-15

    Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and detecting rabbit antibodies were raised against pepsin-digested hazelnut and untreated hazelnut protein, respectively. The assay showed a detection limit of 0.7 ng/mL hazelnut protein or food matrix and a maximum of 0.034% cross-reactivity (peanut). Chocolate samples spiked with 0.5-100 microg hazelnut/g chocolate showed a mean recovery of 97.3%. In 9/12 food products labeled "may contain nuts", hazelnut was detected between 1.2 and 417 microg hazelnut/g food. It can be concluded that the application of antibodies directed to pepsin-digested food extracts in ELISA can facilitate specific detection of stable proteins that have the highest potential of inducing severe food anaphylaxis.

  14. Phytoremediation potential of Pityrogramma calomelanos var. austroamericana and Pteris vittata L. grown at a highly variable arsenic contaminated site.

    Science.gov (United States)

    Niazi, Nabeel Khan; Singh, Balwant; Van Zwieten, Lukas; Kachenko, Anthony George

    2011-10-01

    This study examined the phytoextraction potential of two arsenic (As) hyperaccumulators, Pteris vittata L. and Pityrogramma calomelanos var. austroamericana at a historical As-contaminated cattle dip site in northern New South Wales (NSW), Australia. Total As concentration in the surface soil (0-20 cm) showed a better spatial structure than phosphate-extractable As in the surface and sub-surface soil at this site. P. calomelanos var. austroamericana produced greater frond dry biomass (mean = 130 g plant(-1)) than P. vittata (mean = 81 g plant(-1)) after 10 months of growth. Arsenic concentration and uptake in fronds were also significantly higher in P. calomelanos var. austroamericana (means = 887 mg kg(-1) and 124 mg plant(-1)) than in P. vittata (means = 674 mg kg(-1) and 57 mg plant(-1)). Our results showed that under the field conditions and highly variable soil As at the site, P. calomelanos var. austroamericana performed better than P. vittata. We predict that P. calomelanos var. austroamericana would take approximately 100 years to reduce the total As to below 20 mg kg(-1) at the site compared to > or =200 years estimated for P. vittata. However, long-term data are required to confirm these observations under field conditions.

  15. Comparison of the phytoremediation potentials of Medicago falcata L. And Medicago sativa L. in aged oil-sludge-contaminated soil.

    Science.gov (United States)

    Panchenko, Leonid; Muratova, Anna; Turkovskaya, Olga

    2017-01-01

    Thirteen-year monitoring of the vegetation growing in the industrial and adjacent areas of an oil refinery showed the prevalence of yellow medick (Medicago falcata L.) over other plant species, including alfalfa (Medicago sativa L.). A comparative field study of the two Medicago species established that yellow medick and alfalfa exhibited similar resistance to soil petroleum hydrocarbons and that the pollutant concentration in their rhizosphere was 30% lower than that in the surrounding bulk soil. In laboratory pot experiments, yellow medick reduced the contaminant content by 18% owing to the degradation of the major heavy oil fractions, such as paraffins, naphthenes, and alcohol and benzene tars; and it was more successful than alfalfa. Both species were equally effective in stimulating the total number of soil microorganisms, but the number of hydrocarbon-oxidizing microorganisms, including polycyclic aromatic hydrocarbon degraders, was larger in the root zone of alfalfa. In turn, yellow medick provided a favorable balance of available nitrogen. Both Medicago species equally stimulated the dehydrogenase and peroxidase activities of the soil, and yellow medick increased the activity of soil polyphenol oxidase but reduced the activity of catalase. The root tissue activity of catalase, ascorbate oxidase, and tyrosinase was grater in alfalfa than in yellow medick. The peroxidase activity of plant roots was similar in both species, but nondenaturing polyacrylamide gel electrophoresis showed some differences in the peroxidase profiles of the root extracts of alfalfa and yellow medick. Overall, this study suggests that the phytoremediation potentials of yellow medick and alfalfa are similar, with some differences.

  16. Screening-level exposure-based prioritization to identify potential POPs, vPvBs and planetary boundary threats among Arctic contaminants

    Directory of Open Access Journals (Sweden)

    Efstathios Reppas-Chrysovitsinos

    2017-06-01

    Full Text Available A report that reviews Arctic contaminants that are not currently regulated as persistent organic pollutants (POPs under international treaties was recently published by the Arctic Monitoring and Assessment Programme (AMAP. We evaluated 464 individual chemicals mentioned in the AMAP report according to hazard profiles for POPs, very persistent and very bioaccumulative (vPvB chemicals, and two novel and distinct hazard profiles we derived from the planetary boundary threat framework. The two planetary boundary threat profiles assign high priority to chemicals that will be mobile and poorly reversible environmental contaminants. Utilizing persistence as a proxy for poor reversibility, we defined two exposure-based hazard profiles; airborne persistent contaminants (APCs and waterborne persistent contaminants (WPCs that are potential planetary boundary threats. We used in silico estimates of physicochemical properties and multimedia models to calculate hazard metrics for persistence, bioaccumulation and long-range transport potential, then we synthesized this information into four exposure-based hazard scores of the potential of each AMAP chemical to fit each of the POP, vPvB, APC and WPC exposure-based hazard profiles. As an alternative to adopting a “bright line” score that represented cause for concern, we scored the AMAP chemicals by benchmarking against a reference set of 148 known and relatively well-studied contaminants and expressed their exposure-based hazard scores as percentile ranks against the scores of the reference set chemicals. Our results show that scores in the four exposure-based hazard profiles provide complementary information about the potential environmental exposure-based hazards of the AMAP chemicals. Our POP, vPvB, APC and WPC exposure-based hazard scores identify high priority chemicals for further study from among the AMAP contaminants.

  17. Evaluating a 5-year metal contamination remediation and the biomonitoring potential of a freshwater gastropod along the Xiangjiang River, China.

    Science.gov (United States)

    Li, Deliang; Pi, Jie; Zhang, Ting; Tan, Xiang; Fraser, Dylan J

    2018-05-16

    Effective remediation of heavy metal pollution in aquatic systems is desired in many regions, but it requires integrative assessments of sediments, water, and biota that can serve as robust biomonitors. We assessed the effects of a 5-year metal contamination remediation along the Xiangjiang River, China, by comparing concentrations of trace metals in water and surface sediments between 2010-2011 and 2016. We also explored the trace metal biomonitoring potential of a freshwater gastropod (Bellamya aeruginosa). Metal concentrations in water (means and ranges) dropped over time to within permissible limits of drinking water guidelines set by China, USEPA, and WHO in 2016. Although sediment means and ranges of Cd, Pb, Zn, and Mn also diminished with remediation, those for Cr and Cu slightly increased, and all six metals retained concentrations higher than standards set by China. All metals in sediments could also be associated with anthropogenic inputs using a hierarchical clustering analysis, and they generate high potential ecological risks based on several indices, especially for Cd and As. The bio-sediment accumulation factors of all measured trace metals in gastropod soft tissues and shells were lower than 1.0, except for Ca. Trace metal contents in gastropods were positively correlated with those in water and surface sediments for As (soft tissues) and Cr (shells). Collectively, our results do not yet highlight strong beneficial effects of 5-year remediation and clearly illustrate the heavy metal pollution remaining in Xiangjiang River sediment. Additional physical, chemical, and biological measurements should be implemented to improve sediment quality. We further conclude that gastropod soft tissues and shells can be suitable biomonitors of spatial differences in some heavy metals found within river sediments (e.g., As, Cr).

  18. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.

    Science.gov (United States)

    Nie, Jian; Liu, Yunguo; Zeng, Guangming; Zheng, Bohong; Tan, Xiaofei; Liu, Huan; Xie, Jieli; Gan, Chao; Liu, Wei

    2016-05-01

    Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation.

  19. Bacteria as Potential Indicators of Heavy Metal Contamination in a Tropical Mangrove and the Implications on Environmental and Human Health

    Directory of Open Access Journals (Sweden)

    Melanie De La Rosa-Acosta

    2015-09-01

    Full Text Available Heavy metal (HM exposure has been associated with human health diseases like cancer, kidney and liver damage, neurological disorders, motor skills, low bone density and learning problems. With the beginning of the industrialization, the heavy metals in high concentration contribute to putting on the risk the humans in the vicinity. Our study site is located in Cataño, Puerto Rico. This is a highly industrialized area. It is surrounded by a recreational park, a rum distillery, two thermoelectric factories, and was impacted by CAPECO (oil refinery explosion in 2009. Las Cucharillas marsh is part of The San Juan Bay Estuary System, considered as a critical wildlife area. The mangrove marsh has three of the four mangrove species found in PR Laguncularia racemosa, Avicennia germinans and Rhizophora mangle . This study was aimed at seven different heavy metals: Arsenic (As, Cadmium (Cd, Chromium (Cr, Lead (Pb, Zinc (Zn, Mercury (Hg and Copper (Cu. These metals at high concentrations are of human health concern due to their toxicity, persistence, bioaccumulative and bio magnification potentials. Contamination of surface sediments with HM affects the food chain, starting with marine organisms up to humans. The people who live near the contaminated area and the local fishermen are at high risk of exposure. Studies reveal that certain microorganisms can resist the toxicity of heavy metals even at high concentrations. Our study pretends to exploit the sensitive nature of some bacteria to HM and use them as bioindicators. The objective of this research is to assess the bacterial community on the mangrove marsh, identify these bacteria and correlate bacterial species with the type and concentration of the metals found on the site. Our preliminary results with the BIOLOG® identification were five bacteria that are: Carnobacterium inhibens , Cupriavidus gilardii, Enterococcus maloduratus , Microbacterium flavescens and Ralstonia pickettii . This study will

  20. Bacterial colonization of the ovarian bursa in dogs with clinically suspected pyometra and in controls.

    Science.gov (United States)

    Rubio, Alejandro; Boyen, Filip; Tas, Olaf; Kitshoff, Adriaan; Polis, Ingeborgh; Van Goethem, Bart; de Rooster, Hilde

    2014-10-15

    Septic peritonitis occurs relatively commonly in dogs. Secondary septic peritonitis is usually associated with perforation of intestines or infected viscera, such as the uterus in pyometra cases. The aim of this study was to evaluate the bacterial flora in the ovarian bursae of intact bitches as a potential source of contamination. One hundred forty dogs, clinically suspected of pyometra, were prospectively enrolled. The control group consisted of 26 dogs that underwent elective ovariohysterectomies and 18 dogs with mammary gland tumors that were neutered at the time of mastectomy. Bacteriology samples were taken aseptically at the time of surgery from the bursae and the uterus in all dogs. Twenty-two dogs that were clinically suspected of pyometra had sterile uterine content ("mucometra" cases); the remaining 118 had positive uterine cultures ("pyometra" cases) and septic peritoneal fluid was present in 10% of these cases. Of the 118 pyometra cases, 9 had unilateral and 15 had bilateral bacterial colonization of their ovarian bursae. However, the bacteria from the ovarian bursa were similar to those recovered from the uterine pus in only half of the cases. Furthermore, positive bursae were also seen in one mucometra dog (unilateral) and in four control dogs (two unilateral and two bilateral). The data illustrate that the canine ovarian bursa can harbor bacteria. The biological importance of these isolations remains unclear. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Radiological benchmarks for screening contaminants of potential concern for effects on aquatic biota at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    A hazardous waste site may contain hundreds of contaminants; therefore, it is important to screen contaminants of potential concern for the ecological risk assessment. Often this screening is done as part of a screening assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. Unlike exposures to chemicals, which are expressed as the concentration in water or sediment, exposures to radionuclides are expressed as the dose rate received by the organism. The recommended acceptable dose rate to natural populations of aquatic biota is 1 rad d{sup {minus}1}. Blaylock, Frank, and O`Neal provide formulas and exposure factors for estimating the dose rates to representative aquatic organisms. Those formulas were used herein to calculate the water and sediment concentrations that result in a total dose rate of 1 rad d{sup {minus}1} to fish for selected radionuclides. These radiological benchmarks are intended for use at the US Department of Energy`s (DOE`s) Oak Ridge Reservation and at the Portsmouth and Paducah gaseous diffusion plants as screening values only to show the nature and extent of contamination and identify the need for additional site-specific investigation.

  2. Radiological benchmarks for screening contaminants of potential concern for effects on aquatic biota at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-07-01

    A hazardous waste site may contain hundreds of contaminants; therefore, it is important to screen contaminants of potential concern for the ecological risk assessment. Often this screening is done as part of a screening assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. Unlike exposures to chemicals, which are expressed as the concentration in water or sediment, exposures to radionuclides are expressed as the dose rate received by the organism. The recommended acceptable dose rate to natural populations of aquatic biota is 1 rad d -1 . Blaylock, Frank, and O'Neal provide formulas and exposure factors for estimating the dose rates to representative aquatic organisms. Those formulas were used herein to calculate the water and sediment concentrations that result in a total dose rate of 1 rad d -1 to fish for selected radionuclides. These radiological benchmarks are intended for use at the US Department of Energy's (DOE's) Oak Ridge Reservation and at the Portsmouth and Paducah gaseous diffusion plants as screening values only to show the nature and extent of contamination and identify the need for additional site-specific investigation

  3. Potential effect of diaper and cotton ball contamination on NMR- and LC/MS-based metabonomics studies of urine from newborn babies.

    Science.gov (United States)

    Goodpaster, Aaron M; Ramadas, Eshwar H; Kennedy, Michael A

    2011-02-01

    Nuclear magnetic resonance (NMR) and liquid chromatography/mass spectrometry (LC/MS) based metabonomics screening of urine has great potential for discovery of biomarkers for diseases that afflict newborn and preterm infants. However, urine collection from newborn infants presents a potential confounding problem due to the possibility that contaminants might leach from materials used for urine collection and influence statistical analysis of metabonomics data. In this manuscript, we have analyzed diaper and cotton ball contamination using synthetic urine to assess its potential to influence the outcome of NMR- and LC/MS-based metabonomics studies of human infant urine. Eight diaper brands were examined using the "diaper plus cotton ball" technique. Data were analyzed using conventional principal components analysis, as well as a statistical significance algorithm developed for, and applied to, NMR data. Results showed most diaper brands had distinct contaminant profiles that could potentially influence NMR- and LC/MS-based metabonomics studies. On the basis of this study, it is recommended that diaper and cotton ball brands be characterized using metabonomics methodologies prior to initiating a metabonomics study to ensure that contaminant profiles are minimal or manageable and that the same diaper and cotton ball brands be used throughout a study to minimize variation.

  4. Presentation of suspected pediatric uveitis.

    Science.gov (United States)

    Saeed, Muhammad Usman; Raza, Syed Hamid; Goyal, Sudeshna; Cleary, Gavin; Newman, William David; Chandna, Arvind

    2014-01-01

    Presentation of suspected pediatric uveitis: Pediatric uveitis is usually managed in specialized ophthalmic centers in the UK. Meaningful data acquisition in these clinics may be helpful in clinical governance, and healthcare planning in a specialty that is gradually changing due to changes in treatment choices. Retrospective analysis of prospectively acquired data in the Liverpool pediatric uveitis database was performed. Analysis of our data, based on 147 patients, with a mean age of 10 years, indicated a female to male ratio of 2:1. 99% of patients were Caucasian. Our data indicates 86% of all patients attending the uveitis clinic were diagnosed with juvenile idiopathic arthritis, followed by intermediate uveitis 5% and idiopathic uveitis 4%. 46% of patients required treatment. Systemic treatment included methotrexate (34%), prednisolone (14%), etanercept (6%), ciclosporin (6%), mycophenolate (3%), and infliximab (1%). Severe visual loss (defined by counting fingers or below vision) was seen in 10 eyes despite appropriately treated chronic uveitis. Our data shows uveitis-related ocular morbidity in a predominantly pediatric Caucasian population. Patients with severe and chronic uveitis may experience significant uveitis-related complications and subsequent visual loss despite aggressive treatment.

  5. Exome Sequencing in Suspected Monogenic Dyslipidemias

    Science.gov (United States)

    Stitziel, Nathan O.; Peloso, Gina M.; Abifadel, Marianne; Cefalu, Angelo B.; Fouchier, Sigrid; Motazacker, M. Mahdi; Tada, Hayato; Larach, Daniel B.; Awan, Zuhier; Haller, Jorge F.; Pullinger, Clive R.; Varret, Mathilde; Rabès, Jean-Pierre; Noto, Davide; Tarugi, Patrizia; Kawashiri, Masa-aki; Nohara, Atsushi; Yamagishi, Masakazu; Risman, Marjorie; Deo, Rahul; Ruel, Isabelle; Shendure, Jay; Nickerson, Deborah A.; Wilson, James G.; Rich, Stephen S.; Gupta, Namrata; Farlow, Deborah N.; Neale, Benjamin M.; Daly, Mark J.; Kane, John P.; Freeman, Mason W.; Genest, Jacques; Rader, Daniel J.; Mabuchi, Hiroshi; Kastelein, John J.P.; Hovingh, G. Kees; Averna, Maurizio R.; Gabriel, Stacey; Boileau, Catherine; Kathiresan, Sekar

    2015-01-01

    Background Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We utilized this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. Methods and Results We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual in order to account for their burden of common genetic variants known to influence lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. Conclusions We identified the genetic basis of disease in nine of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies. PMID:25632026

  6. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea)

    KAUST Repository

    Amer, Ranya A.; Mapelli, Francesca; El Gendi, Hamada M.; Barbato, Marta; Goda, Doaa A.; Corsini, Anna; Cavalca, Lucia; Fusi, Marco; Borin, Sara; Daffonchio, Daniele; Abdel-Fattah, Yasser R.

    2015-01-01

    . Here, we investigated the physical, chemical, and microbiological features of hydrocarbon and heavy metals contaminated sediments collected at El-Max bay (Egypt). Molecular and statistical approaches assessing the structure of the sediment

  7. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    Science.gov (United States)

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  8. Influence of Land Use and Watershed Characteristics on Protozoa Contamination in a Potential Drinking Water Resources Reservoir

    Science.gov (United States)

    Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The waters...

  9. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.

    Science.gov (United States)

    Yang, Zhihui; Wu, Zijian; Liao, Yingping; Liao, Qi; Yang, Weichun; Chai, Liyuan

    2017-08-01

    Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO 3 -extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO 3 -extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Health care workers' mobile phones: a potential cause of microbial cross-contamination between hospitals and community.

    Science.gov (United States)

    Ustun, Cemal; Cihangiroglu, Mustafa

    2012-01-01

    This study evaluated the microbial contamination of health care workers' (HCWs) mobile phones. The study was conducted at a secondary referral hospital in July 2010. Samples were taken from all surfaces of the mobile phones using a sterile swab, and incubated on Brain Heart Infusion agar at 37.5°C for 24 hr. Any isolated microorganisms were grown aerobically on 5% sheep blood agar and eosin methylene-blue agar medium at 37.5°C for 24-48 hr. The Sceptor microdilution system was used to identify the microorganisms, together with conventional methods. The oxacillin disc diffusion test and double-disc synergy test were used to identify methicillin-resistant Staphylococcus aureus (MRSA) and expanded-spectrum beta-lactamase (ESBL)-producing Gram-negative bacilli, respectively. The mobile phones were also categorized according to whether the HCWs used them in the intensive care unit (ICU). Overall, 183 mobile phones were screened: 94 (51.4%) from nurses, 32 (17.5%) from laboratory workers, and 57 (31.1%) from health care staff. In total, 179 (97.8%) culture-positive specimens were isolated from the 183 mobile phones, including 17 (9.5%) MRSA and 20 (11.2%) ESBL-producing Escherichia coli, which can cause nosocomial infections. No statistical difference was observed in the recovery of MRSA (p = 0.3) and ESBL-producing E. coli (p = 0.6) between the HCW groups. Forty-four (24.6%) of the 179 specimens were isolated from mobile phones of ICU workers, including two MRSA and nine ESBL-producing E. coli. A significant (p = 0.02) difference was detected in the isolation of ESBL-producing E. coli between ICU workers and non-ICU workers. HCWs' mobile phones are potential vectors for transferring nosocomial pathogens between HCWs, patients, and the community.

  11. Health risk assessment of citrus contaminated with heavy metals in Hamedan city, potential risk of Al and Cu

    Directory of Open Access Journals (Sweden)

    Oshin Rezaei Raja

    2016-08-01

    Full Text Available Background: Fruits especially citrus species are an integral part of human diet. Contamination of foodstuffs by heavy and toxic metals via environmental pollution has become an inevitable challenge these days. Therefore, the effect of pollutants on food safety for human consumption is a global public concern. In this regards, this study was conducted for Al and Cu health risk assessment through the consumption of citrus species (orange, grapefruit, sweet lime and tangerine in Hamedan city in 2015. Methods: After collecting and preparing 4 samples from each citrus species with acid digestion method, the concentrations of Al and Cu were determined using inductively coupled plasma optical emission spectrometry (ICP–OES with three replications. In addition, SPSS was employed to compare the mean concentrations of metals with maximum permissible limits (MPL of the World Health Organization (WHO. Results: The results showed that the mean concentrations of Al in citrus samples were 3.25±0.35 mg/kg and higher than WHO maximum permissible limits. The mean concentrations of Cu in citrus samples with 0.16±0.05 mg/kg are lower than WHO maximum permissible limits. Also, the computed health risk assessment revealed that there was no potential risk for children and adult by consuming the studied citrus. Conclusion: Based on the results, consumption of citrus species has no adverse effect on the consumers’ health, but as a result of the increased utilization of agricultural inputs (metal based fertilizers and pesticides, sewage sludge and wastewater by farmers and orchardists, regular periodic monitoring of chemical pollutants content in foodstuffs are recommended for food safety.

  12. Improvement in phytoremediation potential of Solanum nigrum under cadmium contamination through endophytic-assisted Serratia sp. RSC-14 inoculation.

    Science.gov (United States)

    Khan, Abdur Rahim; Ullah, Ihsan; Khan, Abdul Latif; Park, Gun-Seok; Waqas, Muhammad; Hong, Sung-Jun; Jung, Byung Kwon; Kwak, Yunyoung; Lee, In-Jung; Shin, Jae-Ho

    2015-09-01

    The growth of hyperaccumulator plants is often compromised by increased toxicity of metals like cadmium (Cd). However, extraction of such metals from the soil can be enhanced by endophytic microbial association. Present study was aimed to elucidate the potential of microbe-assisted Cd phytoextraction in hyperaccumulator Solanum nigrum plants and their interactions under varied Cd concentrations. An endophytic bacteria Serratia sp. RSC-14 was isolated from the roots of S. nigrum. In addition to Cd tolerance up to 4 mM, the RSC-14 exhibited phosphate solubilization and secreted plant growth-promoting phytohormones such as indole-3-acetic acid (54 μg/mL). S. nigrum plants were inoculated with RSC-14 and were grown in different concentrations of Cd (0, 10, and 30 mg Cd kg(-1) sand). Results revealed that Cd treatment caused significant cessation in plant growth, biomass, and chlorophyll content, whereas significantly higher malondialdehyde (MDA) and electrolyte production in leaves were observed in a dose-dependent manner. Conversely, RSC-14 inoculation relived the toxic effects of Cd-induced stress by significantly increasing root/shoot growth, biomass production, and chlorophyll content and decreasing MDA and electrolytes contents. Ameliorative effects on host growth were also observed by the regulation of metal-induced oxidative stress enzymes such as catalase, peroxidase, and polyphenol peroxidase. Activities of these enzymes were significantly reduced in RSC-14 inoculated plants as compared to control plants under Cd treatments. The lower activities of stress responsive enzymes suggest modulation of Cd stress by RSC-14. The current findings support the beneficial uses of Serratia sp. RSC-14 in improving the phytoextraction abilities of S. nigrum plants in Cd contamination.

  13. Evaluation of Cr in ophiolite and groundwater and its potential to contaminate the environment in SE of Birjand

    Directory of Open Access Journals (Sweden)

    Zahra Khaledi

    2012-10-01

    Full Text Available The presence of Cr(VI in groundwater resources is governed by pH and Eh of water and its compounds are generally soluble and have more toxicicity and mobility in oxidizing environments. In this article, the Cr concentration in ophiolite units, in sediments, and in groundwater resources, and also its potential to contaminate the environment have been investigated in southeast of Birjand. During sampling, 17 water samples (2 rain water samples and 15 groundwater samples, and 8 sediment samples were collected. The concentrations of cations (major cations and Cr and anions in water samples were measured at Ottawa University, Canada using IC and ICP-AES methods, respectively. Cr concentrations of sediments were measured using XRF, and concentrations of Cr in collected Selective Sequential Extraction (SSE fractions were measured using Atomic Absorption (AA at Ferdowsi University of Mashhad, Iran. The average Cr concentrations in sediments and water resources are 627 and 0.026 ppm, respectively. According to the pH of sediments and Eh-pH of water samples, the Cr in water resources is as Cr(VI. Furthermore, the results of SSE show that the majority of Cr was found with residual matter, attached to the iron and manganese oxides, bound to carbonates, organic matter, and the soluble fractions, respectively. The hydrogeochemical properties of water resources show that the average values of EC, TDS and pH are 509 mg/l, 1045 µs/cm and 8.1, respectively, and the concentrations of Cl-, Na+, Mg2+ and SO42- ions are higher than the levels of WHO and Iran National Standard (1053. According to the WQI classification, while 20 percent of the water resources have excellent quality, 53 percent show good quality and 20 percent of water resources are poor in quality.

  14. Guidelines for identifying suspect/counterfeit material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    These guidelines are intended to assist users of products in identifying: substandard, misrepresented, or fraudulently marked items. The guidelines provide information about such topics as: precautions, inspection and testing, dispositioning identified items, installed inspection and reporting suspect/counterfeit materials. These guidelines apply to users who are developing procurement documents, product acceptance/verification methods, company procedures, work instructions, etc. The intent of these SM guidelines in relation to the Quality Assurance Program Description (QAPD) and implementing company Management Control Procedures is not to substitute or replace existing requirements, as defined in either the QAPD or company implementing instructions (Management Control Procedures). Instead, the guidelines are intended to provide a consolidated source of information addressing the issue of Suspect/Counterfeit materials. These guidelines provide an extensive suspect component listing and suspect indications listing. Users can quickly check their suspect items against the list of manufacturers products (i.e., type, LD. number, and nameplate information) by consulting either of these listings.

  15. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  16. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-01-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants. PMID:24665344

  17. Additive vs non-additive genetic components in lethal cadmium tolerance of Gammarus (Crustacea): Novel light on the assessment of the potential for adaptation to contamination

    International Nuclear Information System (INIS)

    Chaumot, Arnaud; Gos, Pierre; Garric, Jeanne; Geffard, Olivier

    2009-01-01

    Questioning the likelihood that populations adapt to contamination is critical for ecotoxicological risk assessment. The appraisal of genetic variance in chemical sensitivities within populations is currently used to evaluate a priori this evolutionary potential. Nevertheless, conclusions from this approach are questionable since non-additive genetic components in chemical tolerance could limit the response of such complex phenotypic traits to selection. Coupling quantitative genetics with ecotoxicology, this study illustrates how the comparison between cadmium sensitivities among Gammarus siblings enabled discrimination between genetic variance components in chemical tolerance. The results revealed that, whereas genetically determined differences in lethal tolerance exist within the studied population, such differences were not significantly heritable since genetic variance mainly relied on non-additive components. Therefore the potential for genetic adaptation to acute Cd stress appeared to be weak. These outcomes are discussed in regard to previous findings for asexual daphnids, which suggest a strong potency of genetic adaptation to environmental contamination, but which contrast with compiled field observations where adaptation is not the rule. Hereafter, we formulate the reconciling hypothesis of a widespread weakness of additive components in tolerance to contaminants, which needs to be further tested to gain insight into the question of the likelihood of adaptation to contamination.

  18. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    Science.gov (United States)

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  19. Assessment of metal contamination in the Hun River, China, and evaluation of the fish Zacco platypus and the snail Radix swinhoei as potential biomonitors.

    Science.gov (United States)

    Wu, Xing; Wang, Shaofeng; Chen, Hongxing; Jiang, Zhiqiang; Chen, Hongwei; Gao, Mi; Bi, Ran; Klerks, Paul L; Wang, He; Luo, Yongju; Xie, Lingtian

    2017-03-01

    The Hun River is a major tributary of the Liao River in the northeast area of China and provides drinking water for 23 million local residents. This study was designed to assess the severity of metal contamination in the Hun River and the potential use of indigenous organisms (the fish Zacco platypus and the snail Radix swinhoei) as biomonitors of metal contamination. Water, sediment, and the native fish and snails were collected at four sampling sites that differed in their physicochemical characteristics and their contamination levels. The samples were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn by ICP-MS. The results showed that although the overall potential ecological risks of the metals were low at our sampling sites, Cd posed a noteworthy ecological risk. Strong correlations were obtained between Cd concentrations in the organisms and in the environment. The results indicated that Z. platypus and R. swinhoei can be useful biomonitoring species for assessing Cd contamination. Biomonitoring with the snail may be most effective when focused on the gonad/digestive tissue (because of the high metal accumulation there), but further work is needed to confirm this.

  20. Hg-contaminated terrestrial spiders pose a potential risk to songbirds at Caddo Lake (Texas/Louisiana, USA).

    Science.gov (United States)

    Gann, Gretchen L; Powell, Cleveland H; Chumchal, Matthew M; Drenner, Ray W

    2015-02-01

    Methylmercury (MeHg) is an environmental contaminant that can have adverse effects on wildlife. Because MeHg is produced by bacteria in aquatic ecosystems, studies of MeHg contamination of food webs historically have focused on aquatic organisms. However, recent studies have shown that terrestrial organisms such as songbirds can be contaminated with MeHg by feeding on MeHg-contaminated spiders. In the present study, the authors examined the risk that MeHg-contaminated terrestrial long-jawed orb weaver spiders (Tetragnatha sp.) pose to songbirds at Caddo Lake (Texas/Louisiana, USA). Methylmercury concentrations in spiders were significantly different in river, wetland, and open-water habitats. The authors calculated spider-based wildlife values (the minimum spider MeHg concentrations causing physiologically significant doses in consumers) to assess exposure risks for arachnivorous birds. Methylmercury concentrations in spiders exceeded wildlife values for Carolina chickadee (Poecile carolinensis) nestlings, with the highest risk in the river habitat. The present study indicates that MeHg concentrations in terrestrial spiders vary with habitat and can pose a threat to small-bodied nestling birds that consume large amounts of spiders at Caddo Lake. This MeHg threat to songbirds may not be unique to Caddo Lake and may extend throughout the southeastern United States. © 2014 SETAC.

  1. Interventions for suspected placenta praevia.

    Science.gov (United States)

    Neilson, J P

    2003-01-01

    . Available data should, however, encourage further work to address the safety of more conservative policies of hospitalisation for women with suspected placenta praevia, and the possible value of insertion of a cervical suture.

  2. Experiments to determine the migration potential for water and contaminants in shallow land burial facilities design, emplacement, and preliminary results

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Abeele, W.V.; Burton, B.W.

    1982-01-01

    Leaching and transport of radionuclides by water has been a primary mode of radioactive contamination from low-level radioactive waste disposal facilities. Similarly, the infiltration of water into nonradioactive hazardous waste disposal facilities has resulted in the movement of contaminants out of these disposal facilities. Although there have been many laboratory studies on water movement and contaminant transport, there is a need for more large scale field experiments. Large scale field experiments are necessary to (1) measure hydraulic conductivities on a scale typical of actual shallow land burial facilities and hazardous waste disposal facilities, (2) allow comparisons to be made between full scale and laboratory measurements, (3) verify the applicability of calculational methods for determining unsaturated hydraulic conductivities from water retention curves, and (4) for model validation. Experiments that will provide the information to do this are described in this paper

  3. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.

    Science.gov (United States)

    Datta, Rupali; Quispe, Mario A; Sarkar, Dibyendu

    2011-01-01

    The purpose of this greenhouse study was to assess the capacity of vetiver grass to accumulate arsenic from pesticide-contaminated soils of varying physico-chemical properties. Results indicate that vetiver is capable of tolerating moderate levels of arsenic up to 225 mg/kg. Plant growth and arsenic removal efficiency was strongly influenced by soil properties. Arsenic removal was highest (10.6%) in Millhopper soil contaminated with 45 mg/kg arsenic, which decreased to 4.5 and 0.6% at 225 and 450 mg/kg, respectively. High biomass, widespread root system and environmental tolerance make this plant an attractive choice for the remediation of soils contaminated with moderate levels of arsenic.

  4. Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening

    International Nuclear Information System (INIS)

    Hug, Christine; Ulrich, Nadin; Schulze, Tobias; Brack, Werner; Krauss, Martin

    2014-01-01

    To detect site-specific, suspected and formerly unknown contaminants in a wastewater treatment plant effluent, we established a screening procedure based on liquid chromatography–high resolution mass spectrometry (LC–HRMS) with stepwise identification schemes. Based on automated substructure searches a list of 2160 suspected site-specific and documented water contaminants was reduced to those amenable to LC–HRMS. After searching chromatograms for exact masses of suspects, presumably false positive detections were stepwise excluded by retention time prediction, the evaluation of isotope patterns, ionization behavior, and HRMS/MS spectra. In nontarget analysis, peaks for identification were selected based on distinctive isotope patterns and intensity. The stepwise identification of nontarget compounds was automated by a plausibility check of molecular formulas using the Seven Golden Rules, an exclusion of compounds with presumably low commercial importance and an automated HRMS/MS evaluation. Six suspected and five nontarget chemicals were identified, of which two have not been previously reported as environmental pollutants. -- Highlights: • A LC–HRMS-based suspect and nontarget screening was applied to wastewater. • Manual data processing to identify candidate structures was accelerated by automated software-based procedure. • Identification was supported by sophisticated analytical methods such as deuterium exchange. • Eleven site-specific and formerly unknown compounds were identified. • We provide a framework to extend analytical procedures from target to suspect and nontarget compounds. -- A screening procedure based on liquid chromatography–high resolution mass spectrometry (LC–HRMS) with a systematic data evaluation was established, which allowed detecting suspected and formerly unknown contaminants in wastewater

  5. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  6. Comparison of keypads and touch-screen mobile phones/devices as potential risk for microbial contamination.

    Science.gov (United States)

    Koroglu, Mehmet; Gunal, Selami; Yildiz, Fatma; Savas, Mehtap; Ozer, Ali; Altindis, Mustafa

    2015-12-30

    Touch-screen mobile phones/devices (TMPs/Ds) are increasingly used in hospitals. They may act as a mobile reservoir for microbial pathogens. The rates of microbial contamination of TMPs/Ds and keypad mobile phones (KMPs) with respect to different variables including use by healthcare workers (HCWs)/non-HCWs and the demographic characteristics of users were investigated. A total of 205 mobile phones/devices were screened for microbial contamination: 76 devices belonged to HCWs and 129 devices belonged to the non-HCW group. By rubbing swabs to front screen, back, keypad, and metallic surfaces of devices, 444 samples were collected. Of 205 mobile phones/devices, 143 (97.9%) of the TMPs/Ds and 58 (98.3%) of the KMPs were positive for microbial contamination, and there were no significant differences in contamination rates between these groups, although TMPs/Ds had significantly higher microbial load than KMPs (p mobile phones ≥ 5". Microbial contamination rates increased significantly as phone size increased (p <0.05). Higher numbers of coagulase-negative Staphylococci (CNS) were isolated from KMPs than TMPs/Ds (p = 0.049). The incidence of Enterococcus spp. was higher on the KMPs of HCWs, and methicillin resistant CNS was higher from the TMPs/Ds of non-HCWs (p <0.05). Isolation of CNS, Streptococcus spp. and Escherichia coli was higher from the TMPs/Ds of HCWs (p <0.05). We found no significant difference between TMP/Ds and KMPs in terms of microbial contamination, but TMP/Ds harboured more colonies and total microbial counts increased with screen size.

  7. Laboratory evaluation of the potential for in situ treatment of chromate-contaminated groundwater by chemical precipitation

    International Nuclear Information System (INIS)

    Thornton, E.C.; Beck, M.A.; Jurgensmeier, C.A.

    1995-03-01

    The objective of this paper is to present the results of a series of small-scale batch tests performed to assess the effectiveness of chemical precipitation in the remediation of chromate-contaminated groundwater. These tests involved treatment of chromate solutions with ferrous and sulfide ions. In addition, tests were conducted that involved treatment of mixtures of chromate-contaminated groundwater and uncontaminated soil with the ferrous ion. A combination of ferrous sulfate and sodium sulfide was also tested in the groundwater treatment tests, since this approach has been shown to be an efficient method for treating electroplating wastewaters

  8. Potential contamination issues arising from the use of biofuel and food industry by-products in animal feed

    DEFF Research Database (Denmark)

    Granby, Kit; Mortensen, Alicja; Broesboel-Jensen, B.

    2012-01-01

    By-products are secondary or discarded products from manufacturing. Contamination of by-products used for feed may result in carryover to animal food products and hence have impact on either animal health or food safety. Feed by-products from bioethanol production include, for example, 'dried...... distillers grain' (DDG) and 'dried distillers grain with solubles' (DDGS) from generation bioethanol production, C5-molasses from generation bioethanol production and glycerol from biodiesel production. By-products from food industry may comprise discarded or downgraded food and food surplus or secondary...... products such as peels, pulpettes, molasses, whey, mask, oil cakes, etc. Contamination of by-products and possible impacts are presented....

  9. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review.

    Science.gov (United States)

    Shahi, Aiyoub; Ince, Bahar; Aydin, Sevcan; Ince, Orhan

    2017-06-01

    Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.

  10. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils.

    Science.gov (United States)

    Hussain Lahori, Altaf; Zhang, Zengqiang; Guo, Zhanyu; Mahar, Amanullah; Li, Ronghua; Kumar Awasthi, Mukesh; Ali Sial, Tanveer; Kumbhar, Farhana; Wang, Ping; Shen, Feng; Zhao, Junchao; Huang, Hui

    2017-11-01

    This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (plime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop. Copyright © 2017. Published by Elsevier Inc.

  11. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  12. Bioaccumulation Potential of Contaminants from Bedded and Suspended Oakland Harbor Deepening Project Sediments to San Francisco Bay Flatfish and Bivalve Mollusks

    Science.gov (United States)

    1994-08-01

    potential TBT tributyltin TCDD tetrachlorod ibenzo-p-dioxin TeBT tetrabutyltin TEF toxicity equivalency factor TOC total organic carbon TSS total...these sediments and in the four experiments to be discussed below include 15 PAHs; the metals Cd, Cr, and Hg; tributyltin ( TBT ) and dibutyltin (DBT); and...4,4’DDT. b. Aroclor 1254 ................ B6 Figure B 11. Contaminant concentrations in sediments. a. Dibutyltin. b. Tributyltin

  13. Environmental contamination in an Australian mining community and potential influences on early childhood health and behavioural outcomes.

    Science.gov (United States)

    Dong, Chenyin; Taylor, Mark Patrick; Kristensen, Louise Jane; Zahran, Sammy

    2015-12-01

    Arsenic, cadmium and lead in aerosols, dusts and surface soils from Australia's oldest continuous lead mining town of Broken Hill were compared to standardised national childhood developmental (year 1) and education performance measures (years 3,5,7,9). Contaminants close to mining operations were elevated with maximum lead levels in soil: 8900 mg/kg; dust wipe: 86,061 μg/m(2); dust deposition: 2950 μg/m(2)/day; aerosols: 0.707 μg/m(3). The proportion of children from Broken Hill central, the area with the highest environmental contamination, presented with vulnerabilities in two or more developmental areas at 2.6 times the national average. Compared with other school catchments of Broken Hill, children in years 3 and 5 from the most contaminated school catchment returned consistently the lowest educational scores. By contrast, children living and attending schools associated with lower environmental contamination levels recorded higher school scores and lower developmental vulnerabilities. Similar results were identified in Australia's two other major lead mining and smelting cities of Port Pirie and Mount Isa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The health risk of the agricultural production in potentially contaminated sites: an environmental-health risk analysis

    Directory of Open Access Journals (Sweden)

    Giovanni Russo

    2012-12-01

    Full Text Available Rural areas are often interested by pollution phenomena generated by agricultural activities with a high use of pesticides and/or by anthropic activities, such as industrial plants or illegal waste disposal sites, which may cause even long-range contamination. The risk for human health from the pollutants present in the environment can be quantitatively evaluated by the environmental health risk analysis set out in the Italian Legislative Decree no. 152/2006 (Italian Regulation, 2006. This analysis is the best technical-normative tool to estimate the health risks linked to the pollutants present in the environment but it does not consider the specificity of agricultural soils or the contamination of agricultural products. This study aims to provide this missing technical-normative data by identifying and applying a suitable methodology to evaluate the health risk caused by the ingestion of agricultural products grown in contaminated soils. The risk analysis was applied to two contaminated areas in southern Italy using an innovative methodology based on widely accepted parameters for the determination of polycyclic aromatic hydrocarbons (PAHs soil-plant bio-transfer factor in the case of horticultural crops. In addition, some concentration limits of PAHs in agricultural soils are proposed that may be of help to the competent authorities (health agencies, local authorities in delineating the areas requiring strict health surveillance of the food products cultivated.

  15. Potential of aerobic bacteria use for remediation of groundwater of Pavlodar outskirt contaminated with soluble mercury compounds

    Science.gov (United States)

    In the Republic of Kazakhstan there are some regions contaminated with mercury as a result of technogenic releases from industrial enterprises. The mercury ingress into the environment has resulted in significant pollution of groundwater and surface water with soluble mercury com...

  16. A novel approach for the detection of potentially hazardous pepsin stable hazelnut proteins as contaminants in chocolate-based food

    NARCIS (Netherlands)

    Akkerdaas, Jaap H.; Wensing, Marjolein; Knulst, André C.; Stephan, Oliver; Hefle, Susan L.; Aalberse, Rob C.; van Ree, Ronald

    2004-01-01

    Contamination of food products with pepsin resistant allergens is generally believed to be a serious threat to patients with severe food allergy. A sandwich type enzyme-linked immunosorbent assay (ELISA) was developed to measure pepsin resistant hazelnut protein in food products. Capturing and

  17. Study of the C-14-contamination potential of C-impurities in CuO and Fe

    NARCIS (Netherlands)

    Vandeputte, K; Moens, L; Dams, R; van der Plicht, Johannes

    1998-01-01

    The carbon concentration in CuO and iron was determined by isolating C. The values were in agreement with results reported in other studies. Contaminating carbon from CuO and Fe was transformed to AMS targets and measured for C-14. C-traces in CuO were shown to be the major contribution to the C-14

  18. Redox systems are a potential link between drought stress susceptibility and the exacerbation of aflatoxin contamination in crops

    Science.gov (United States)

    Drought stress aggravates Aspergillus flavus infection and aflatoxin contamination in oilseed crops such as peanut and maize. Reactive oxygen species (ROS) are produced in plants in response to abiotic and biotic stresses as a means of defense. In the host plant-A. flavus interaction under drought c...

  19. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    Science.gov (United States)

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  20. Molecular characterization and potential sources of aqueous humor bacterial contamination during phacoemulsification with intraocular lens implantation in dogs.

    Science.gov (United States)

    Lacerda, Luciana C C; de Souza-Pollo, Andressa; Padua, Ivan Ricardo M; Conceição, Luciano F; da Silveira, Camila P Balthazar; Silva, Germana A; Maluta, Renato P; Laus, José L

    2018-01-01

    Bacterial contamination of the anterior chamber during cataract surgery is one of the main responsible for endophthalmitis postoperative. Phacoemulsification is a less invasive technique for cataract treatment, although it does not exclude the possibility of contamination. In this study, bacterial contaminants of aqueous humor collected pre- and post-phacoemulsification with intraocular lens implantation (IOL) of twenty dogs were identified. As the conjunctival microbiota constitute a significant source of anterior chamber contamination, bacterial isolates from aqueous humor were genetically compared with those present in the conjunctival surface of the patients. Three dogs presented bacterial growth in both aqueous humor and conjunctival surface samples. Bacterial isolates from these samples were grouped according to their genetic profiles by repetitive-element PCR (rep-PCR) and their representatives were identified by 16S rRNA sequencing. Isolates from conjunctival surface were identified as Enterobacter spp., Staphylococcus spp. and S. aureus; and from aqueous humor samples as Enterobacter spp., Pantoea spp., Streptococcus spp. and Staphylococcus spp., respectively in decreasing order of prevalence. According to the rep-PCR analysis, 16.6% of Enterobacter spp. isolates from conjunctival surface were genetically similar to those from aqueous humor. The rest of isolates encountered in aqueous humor were genetically distinct from those of conjunctival surface. The significant genetic diversity of bacterial isolates found in the aqueous humor samples after surgery denoted the possibility of anterior chamber contamination during phacoemulsification by bacteria not only from conjunctival surface but also from different sources related to surgical environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recovery and growth potential of Listeria monocytogenes in temperature abused milkshakes prepared from naturally contaminated ice cream linked to a listeriosis outbreak

    Directory of Open Access Journals (Sweden)

    Yi eChen

    2016-05-01

    Full Text Available The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 hours. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average level increase per sample at 14 h was 1.15 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h was significantly longer (P 3 CFU/g (8.60 h. The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case-study.

  2. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    Science.gov (United States)

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  3. Recovery and Growth Potential of Listeria monocytogenes in Temperature Abused Milkshakes Prepared from Naturally Contaminated Ice Cream Linked to a Listeriosis Outbreak.

    Science.gov (United States)

    Chen, Yi; Allard, Emma; Wooten, Anna; Hur, Minji; Sheth, Ishani; Laasri, Anna; Hammack, Thomas S; Macarisin, Dumitru

    2016-01-01

    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Milkshake flavors did not significantly affect these parameters. The average lag phase duration of L. monocytogenes in milkshakes with initial contamination levels ≤ 3 CFU/g (9.50 h) was significantly longer (P 3 CFU/g (8.60 h). The results highlight the value of using samples that are contaminated with very low levels of L. monocytogenes for recovery and growth evaluations. The behavior of L. monocytogenes populations in milkshakes prepared from naturally contaminated ice cream linked to the listeriosis outbreak should be taken into account when performing risk based analysis using this outbreak as a case study.

  4. Handbook for Response to Suspect Radioactive Materials

    International Nuclear Information System (INIS)

    Cliff, William C.; Pappas, Richard A.; Arthur, Richard J.

    2005-01-01

    This document provides response actions to be performed following the initial port, airport, or border crossing discovery of material that is suspected of being radioactive. The purpose of this guide is to provide actions appropriate for handling radioactive material

  5. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    Science.gov (United States)

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  7. Modeling the potential role of a forest ecosystem in phytostabilization and phytoextraction of 90Sr at a contaminated watershed

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1999-01-01

    The behavior of 90 Sr at forest sites in the White Oak Creek watershed, near Oak Ridge, Tennessee, was simulated with a simple, site-specific, multicompartment model that linked biomass and element cycling dynamics. The model was used to predict the role of forest cover in mitigating hydrologic losses of 90 Sr from contaminated soils (i.e. phytostabilization) under conditions where contaminant transport is governed mainly by shallow subsurface flow. The model was also used to predict the removal of 90 Sr from soil (i.e. phytoextraction) through the growth and harvest of short rotation woody crops over a period of 30 years. Simulations with the model indicated that (1) forest preservation on the watershed is a form of phytostabilization because forest cover helps to minimize hydrologic losses of 90 Sr and (2) an attempt to significantly reduce amounts of 90 Sr in soil through phytoextraction would be unsuccessful. Over a period of 30 years, and under various management strategies, the model predicted that 90 Sr initially present in soil at a contaminated site was lost through hydrologic transport and <53% was lost by radioactive decay. Phytostabilization may be important in the management of radioactive land when issues like waste minimization and pollution prevention affect the selection of technologies to be used in environmental restoration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beesley, Luke, E-mail: luke.beesley@hutton.ac.uk [James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Moreno-Jimenez, Eduardo [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Gomez-Eyles, Jose L. [Department of Civil and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Harris, Eva; Robinson, Brett [Department of Soil and Physical Sciences, Lincoln University, Lincoln 7647 (New Zealand); Sizmur, Tom [Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom)

    2011-12-15

    Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability. - Highlights: > Biochars can reduce mobilities of some organic and inorganic pollutants in soil. > Source material and production conditions influence pollutant retention. > Highly alkaline pH and water soluble carbon can undesirably mobilise some elements. > Large surface area may be toxic to soil fauna but create microbial niches. > Efficacy of biochar may depend on other organic materials applied in combination. - Biochars can reduce the mobility and impact of some soil pollutants but, if applied alone, may fail to support soil restoration, revegetation and hence ecologically circumspect remediation.

  9. Seasonal variation and potential sources of Cryptosporidium contamination in surface waters of Chao Phraya River and Bang Pu Nature Reserve pier, Thailand.

    Science.gov (United States)

    Koompapong, Khuanchai; Sukthana, Yaowalark

    2012-07-01

    Using molecular techniques, a longitudinal study was conducted with the aims at identifying the seasonal difference of Cryptosporidium contamination in surface water as well as analyzing the potential sources based on species information. One hundred forty-four water samples were collected, 72 samples from the Chao Phraya River, Thailand, collected in the summer, rainy and cool seasons and 72 samples from sea water at Bang Pu Nature Reserve pier, collected before, during and after the presence of migratory seagulls. Total prevalence of Cryptosporidium contamination in river and sea water locations was 11% and 6%, respectively. The highest prevalence was observed at the end of rainy season continuing into the cool season in river water (29%) and in sea water (12%). During the rainy season, prevalence of Cryptosporidium was 4% in river and sea water samples, but none in summer season. All positive samples from the river was C. parvum, while C. meleagridis (1), and C. serpentis (1) were obtained from sea water. To the best of our knowledge, this is the first genetic study in Thailand of Cryptosporidium spp contamination in river and sea water locations and the first report of C. serpentis, suggesting that humans, household pets, farm animals, wildlife and migratory birds may be the potential sources of the parasites. The findings are of use for implementing preventive measures to reduce the transmission of cryptosporidiosis to both humans and animals.

  10. Toxicological benchmark for screening of potential contaminants of concern for effects on aquatic biota on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Suter, G.W. II; Futrell, M.A.; Kerchner, G.A.

    1992-09-01

    One of the initial stages in ecological risk assessment of hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration. This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented here. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks, and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility

  11. Toxicological benchmark for screening of potential contaminants of concern for effects on aquatic biota on the Oak Ridge Reservation, Oak Ridge, Tennessee; Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Suter, G.W. II; Futrell, M.A.; Kerchner, G.A.

    1992-09-01

    One of the initial stages in ecological risk assessment of hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration. This report presents potential screening benchmarks for protection of aquatic life from contaminants in water. Because there is no guidance for screening benchmarks, a set of alternative benchmarks is presented here. The alternative benchmarks are based on different conceptual approaches to estimating concentrations causing significant effects. To the extent that toxicity data are available, this report presents the alternative benchmarks for chemicals that have been detected on the Oak Ridge Reservation. It also presents the data used to calculate the benchmarks, and the sources of the data. It compares the benchmarks and discusses their relative conservatism and utility.

  12. Potential effects of environmental contaminants on P450 aromatase activity and DNA damage in swallows from the Rio Grande and Somerville, Texas

    Science.gov (United States)

    Sitzlar, M.A.; Mora, M.A.; Fleming, J.G.W.; Bazer, F.W.; Bickham, J.W.; Matson, C.W.

    2009-01-01

    Cliff swallows (Petrochelidon pyrrhonota) and cave swallows (P. fulva) were sampled during the breeding season at several locations in the Rio Grande, Texas, to evaluate the potential effects of environmental contaminants on P450 aromatase activity in brain and gonads and DNA damage in blood cells. The tritiated water-release aromatase assay was used to measure aromatase activity and flow cytometry was used to measure DNA damage in nucleated blood cells. There were no significant differences in brain and gonadal aromatase activities or in estimates of DNA damage (HPCV values) among cave swallow colonies from the Lower Rio Grande Valley (LRGV) and Somerville. However, both brain and gonadal aromatase activities were significantly higher (P male cliff swallows from Laredo than in those from Somerville. Also, DNA damage estimates were significantly higher (P males and females combined) from Laredo than in those from Somerville. Contaminants of current high use in the LRGV, such as atrazine, and some of the highly persistent organochlorines, such as toxaphene and DDE, could be potentially associated with modulation of aromatase activity in avian tissues. Previous studies have indicated possible DNA damage in cliff swallows. We did not observe any differences in aromatase activity or DNA damage in cave swallows that could be associated with contaminant exposure. Also, the differences in aromatase activity and DNA damage between male cliff swallows from Laredo and Somerville could not be explained by contaminants measured at each site in previous studies. Our study provides baseline information on brain and gonadal aromatase activity in swallows that could be useful in future studies. ?? 2008 Springer Science+Business Media, LLC.

  13. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil

    International Nuclear Information System (INIS)

    Qiao, Yuhui; Crowley, David; Wang, Kun; Zhang, Huiqi; Li, Huafen

    2015-01-01

    Biochar pyrolyzed from corn stalks at 300 °C/500 °C and arbuscular mycorrhizae (AMF) were examined independently and in combination as possible treatments for soil remediation contaminated with Cd, Cr, Ni, Cu, Pb, Zn after 35 years following land application of sewage sludge in the 1970s. The results showed that biochar significantly decreased the heavy metal concentrations and their bioavailability for plants, and both biochars had similar such effects. AMF inoculation of corn plants had little effect on heavy metal bioavailability in either control or biochar amended soil, and no interaction between biochar and AMF was observed. Changes in DTPA extractable metals following biochar addition to soil were correlated with metal uptake by plants, whereas pore water metal concentrations were not predictive indicators. This research demonstrates positive benefits from biochar application for contaminated soil remediation, but remain ambiguous with regard to the benefits of simultaneous AMF inoculation on reduction of heavy metal bioavailability. - Highlights: • Biochar pyrolyzed from corn stalks at 300 °C/500 °C can increase the biomass of corn growing in a heavily contaminated soil. • Biochar could significantly decrease bioavailability of heavy metals (Cd, Cr, Ni, Cu, Zn) for plants. • Effects were not augmented by the addition of AMF although the production of glomalin is promoted by biochars. • AMF had not reduced bioavailability of PTEs, no significant interaction between biochar and AMF inoculation was observed. - Biochar could significantly decrease bioavailability of heavy metals (Cd, Cr, Ni, Cu, Zn) for plants, but AMF had little such effects, biochar and AMF interaction is not valid.

  14. Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States.

    Science.gov (United States)

    Wilson, Doyle C

    2018-04-15

    Heavy metal, nutrient, and hydrocarbon levels in and adjacent to Lake Havasu, a regionally significant water supply reservoir with a highly controlled, dynamic flow regime, are assessed in relation to possible stormwater runoff impacts from an arid urban center. Shallow groundwater and sediment analyses from ephemeral drainage (wash) mouths that convey stormwater runoff from Lake Havasu City, Arizona to the reservoir, provided contaminant control points and correlation ties with the reservoir environment. Fine-grain sediments tend to contain higher heavy metal concentrations whereas nutrients are more evenly distributed, except low total organic carbon levels from young wash mouth surfaces devoid of vegetation. Heavy metal and total phosphate sediment concentrations in transects from wash mouths into the reservoir have mixed and decreasing trends, respectively. Both series may indicate chemical depositional influences from urban runoff, yet no statistically significant concentration differences occur between specific wash mouths and corresponding offshore transects. Heavy metal pollution indices of all sediments indicate no discernible to minor contamination, indicating that runoff impacts are minimal. Nevertheless, several heavy metal concentrations from mid-reservoir sediment sites increase southward through the length of the reservoir. Continual significant water flow through the reservoir may help to disperse locally derived runoff particulates, which could mix and settle down gradient with chemical loads from upriver sources and local atmospheric deposition. Incorporating the shoreline environment with the reservoir investigation provides spatial continuity in assessing contaminant sources and distribution patterns. This is particularly acute in the investigation of energetic, flow-through reservoirs in which sources may be overlooked if solely analyzing the reservoir environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Analysis of potential groundwater contamination in the vicinity of the Weldon Spring Raffinate Pits site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Tsai, S.Y.; Peterson, J.M.; Winters, M.C.B.

    1984-08-01

    Results of the analysis of contaminant migration beneath the raffinate pits at the Weldon Spring Raffinate Pits site indicate that during a 10,000-year time period, the maximum concentrations in the water immediately beneath the pit bottoms would be about 4600 pCi/L of radium-226 (Pit 3) and about 12,000 pCi/L of uranium-238 (Pit 1); these concentrations would occur at the centers of the pit bottoms. Based on the assumptions used in this study, the radioactive contaminants in the pits would migrate no more than 2 m (7 ft) below the pit bottoms. Because 6 to 12 m (20 to 40 ft) of silty clays underlie the raffinate pits, the radioactive contaminants would take several tens of thousands of years to reach nearby groundwater supplies. Although the results of these analyses indicate that a high degree of confinement is provided by the four raffinate pits, it should be noted that the validity of such analyses rests on the quality of the parameter values utilized. Due to a lack of current site-specific data for some physical parameters, it has been necessary to use historical and regional data for these values. The values cited are at times inconsistent and contradictory, e.g., the wide range of values indicated for the permeability of clays underlying the pits. However, these were the only data available. The analysis reported herein indicates that within the limitations of the available data, use of the Raffinate Pits site for long-term management of radioactive materials such as those currently being stored in the four pits appears to be feasible. 24 references, 14 figures, 7 tables

  16. Microbial and molecular techniques to evaluate and to implement in-situ biodegradation potential and activity at sites contaminated with aromatic and chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Karg, F.; Henkler, Ch.

    2005-01-01

    Intrinsic bio-remediation harnesses the ability of indigenous microorganisms to degrade contaminants that are present in soil and groundwater. Over the past decade many environmental regulatory agencies especially in Europe have come to recognize the importance of these natural processes in contaminant attenuation. In order to use in-situ bio-remediation to clean up a site successfully it is necessary to investigate the indigenous microbial population and its potential activity to degrade the contaminants of concern (COCs). The evaluation of naturally-occurring degradative activity in initial screening of soil and groundwater samples using recently developed molecular and microbial methods may allow for the implementation of a contaminant reduction and management program without the need for fully engineered remediation intervention. Limited engineering approaches (nutrient delivery etc.) can be implemented to support naturally-occurring bio-restoration processes to achieve a controlled, dynamic attenuation of COCs. Techniques for monitoring pollutant-degrading microorganisms were previously limited to standard culturing techniques. More recently, techniques based upon detection of genetic elements and metabolic activities have been developed in collaboration with university partners Europe, especially in France. The modern techniques are more sensitive for monitoring microbial populations, metabolic activity and the genetic potential to degrade the COCs, and avoid the need for cultivation of microbes under artificial conditions in the laboratory. Especially the application of PCR-Tests (Polymerase Chain Reaction) are able to quantify the Genetic Potential of Pollutant Microbiological Degradation on a contaminated site. This enables to use very economic in-situ site rehabilitation strategies as for example (Dynamic Natural Attenuation). For this modern application of these new strategies PLANREAL created with HPC Envirotec and together with a French University

  17. Phyto-toxicity and Phyto-remediation Potential of Mercury in Indian Mustard and Two Ferns with Mercury Contaminated Water and Oak Ridge Soil

    International Nuclear Information System (INIS)

    Su, Y.; Han, F.X.; Chen, J.; Shiyab, S.; Monts, D.L.; Monts, D.L.

    2009-01-01

    Phyto-remediation is an emerging technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. Certain fern and Indian mustard species have been suggested as candidates for phyto-remediation of heavy metal-contaminated soil and water because of their high efficiency of accumulating metals in shoots and their high biomass production. Currently, no known hyper-accumulator plants for mercury have been found. Here we report the Hg uptake and phyto-toxicity by two varieties of fern and Indian mustard. Their potential for Hg phyto-remediation application was also investigated. Anatomical, histochemical and biochemical approaches were used to study mercury phyto-toxicity as well as anti-oxidative responses in ferns [Chinese brake fern (P. vittata) and Boston fern (N. exaltata)] and Indian mustard (Florida broadleaf and longstanding) (Brassica juncea L.) grown in a hydroponic system. Phyto-remediation potentials of these plant species were estimated based on their Hg uptake performance with contaminated soils from Oak Ridge (TN, USA). Our results show that mercury exposure led to severe phyto-toxicity accompanied by lipid peroxidation and rapid accumulation of hydrogen peroxide (H 2 O 2 ) in P. vittata, but not in N. exaltata. The two cultivars of fern responded differently to mercury exposure in terms of anti-oxidative enzymes (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD; glutathione reductase, GR). Mercury exposure resulted in the accumulation of ascorbic acid (ASA) and glutathione (GSH) in the shoots of both cultivars of fern. On the other hand, Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H 2 O 2 , resulting in lower H 2 O 2 in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. In both varieties of fern and Indian

  18. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Michael J.

    2005-06-01

    Natural selection in highly radioactive waste sites may yield bacteria with favorable bioremediating characteristics. However, until recently the microbial ecology of such environments has remained unexplored because of the high costs and technical complexities associated with extracting and characterizing samples from such sites. We have examined the bacterial ecology within radioactive sediments from a high-level nuclear waste plume in the vadose zone on the DOE?s Hanford Site in south-central Washington state (Fredrickson et al, 2004). Manganese-dependent, radiation resistant bacteria have been isolated from this contaminated site including the highly Mn-dependent Deinococcus and Arthrobacter spp.

  19. Characterization of Lipase from Bacillus subtilisI-4 and Its Potential Use in Oil Contaminated Wastewater

    OpenAIRE

    Iqbal, Syeda Abeer; Rehman, Abdul

    2015-01-01

    ABSTRACTA lipase producing bacterium was isolated from oil contaminated effluents of various industries from Sheikhupura Road, Pakistan, and, on the basis of biochemical and 16S rRNA ribotyping, was identified asBacillus subtilis. The optimum temperature and pH for the growth of the culture were 37ºC and 7.0, respectively.B. subtilis I-4 had a lag phase of 4 h in LB medium while this phase prolonged to 6 h in oil containing medium. The optimum temperature and pH for the enzyme activity were 5...

  20. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  1. Comparison of clinically suspected injuries with injuries detected at whole-body CT in suspected multi-trauma victims

    International Nuclear Information System (INIS)

    Shannon, L.; Peachey, T.; Skipper, N.; Adiotomre, E.; Chopra, A.; Marappan, B.; Kotnis, N.

    2015-01-01

    Aim: To assess the accuracy of the trauma team leader's clinical suspicion of injury in patients who have undergone whole-body computed tomography (WBCT) for suspected polytrauma, and to assess the frequency of unsuspected injuries and specific patterns of injury at WBCT. Materials and methods: Requests for patients who underwent WBCT for suspected polytrauma from April 2011 to March 2014 were reviewed and each body area that was clinically suspected to be injured was recorded. Body areas were divided into the following groups based on anatomical regions covered in each segment of the WBCT examination: head (including facial bones); neck (including cervical spine); chest (including thoracic spine); and abdomen/pelvis (including lumbar spine). The formal radiology report for each study was reviewed and injuries found at CT were grouped into the same body areas. For each patient, the number of clinically suspected injured areas was compared to the number of confirmed injured areas at WBCT. Results: Five hundred and eighty-eight patients were included in the study. Thirty-two percent (186/588) had a normal scan. Ninety-three percent (546/588) had fewer injured body areas at WBCT than suspected. Four percent (27/588) had the equivalent number of injured areas at WBCT as suspected. Three percent (15/588) had more injured areas at WBCT than suspected. Fifty percent (263/527) with clinically suspected chest injuries were confirmed to have chest injuries at WBCT. This was lower for other areas: abdomen/pelvis 31% (165/535); head 29% (155/533); neck 13% (66/513). Four percent of (24/588) patients had unsuspected injuries found at WBCT. Seventy-five percent (18/24) of unsuspected injuries were considered as serious, where failure to treat would have the potential for significant morbidity. Most of these patients had severe injuries to other body areas that were correctly suspected. Of the 165 with abdominal/pelvic region injuries, there were associated injuries in the

  2. Liver proteome response of largemouth bass (Micropterus salmoides) exposed to several environmental contaminants: Potential insights into biomarker development

    International Nuclear Information System (INIS)

    Sanchez, Brian C.; Ralston-Hooper, Kimberly J.; Kowalski, Kevin A.; Dorota Inerowicz, H.; Adamec, Jiri; Sepulveda, Maria S.

    2009-01-01

    Liver proteome response of largemouth bass (Micropterus salmoides) exposed to environmental contaminants was analyzed to identify novel biomarkers of exposure. Adult male bass were exposed to cadmium chloride (CdCl 2 ), atrazine, PCB 126, phenanthrene, or toxaphene via intraperitoneal injection with target body burdens of 0.00067, 3.0, 2.5, 50, and 100 μg/g, respectively. After a 96 h exposure, hepatic proteins were separated with two-dimensional gel electrophoresis and differentially expressed proteins (vs. controls) recognized and identified with MALDI-TOF/TOF mass spectrometry. We identified, 30, 18, eight, 19, and five proteins as differentially expressed within the CdCl 2 , atrazine, PCB 126, phenanthrene, and toxaphene treatments, respectively. Alterations were observed in the expression of proteins associated with cellular ion homeostasis (toxaphene), oxidative stress (phenanthrene, PCB 126), and energy production including glycolysis (CdCl 2 , atrazine) and ATP synthesis (atrazine). This work supports the further evaluation of several of these proteins as biomarkers of contaminant exposure in fish.

  3. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination.

    Science.gov (United States)

    Buss, Wolfram; Mašek, Ondřej

    2014-05-01

    Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation.

    Science.gov (United States)

    Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru

    2008-01-01

    Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.

  6. Development and validation of a stochastic model for potential growth of Listeria monocytogenes in naturally contaminated lightly preserved seafood.

    Science.gov (United States)

    Mejlholm, Ole; Bøknæs, Niels; Dalgaard, Paw

    2015-02-01

    A new stochastic model for the simultaneous growth of Listeria monocytogenes and lactic acid bacteria (LAB) was developed and validated on data from naturally contaminated samples of cold-smoked Greenland halibut (CSGH) and cold-smoked salmon (CSS). During industrial processing these samples were added acetic and/or lactic acids. The stochastic model was developed from an existing deterministic model including the effect of 12 environmental parameters and microbial interaction (O. Mejlholm and P. Dalgaard, Food Microbiology, submitted for publication). Observed maximum population density (MPD) values of L. monocytogenes in naturally contaminated samples of CSGH and CSS were accurately predicted by the stochastic model based on measured variability in product characteristics and storage conditions. Results comparable to those from the stochastic model were obtained, when product characteristics of the least and most preserved sample of CSGH and CSS were used as input for the existing deterministic model. For both modelling approaches, it was shown that lag time and the effect of microbial interaction needs to be included to accurately predict MPD values of L. monocytogenes. Addition of organic acids to CSGH and CSS was confirmed as a suitable mitigation strategy against the risk of growth by L. monocytogenes as both types of products were in compliance with the EU regulation on ready-to-eat foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A General LC-MS/MS Method for Monitoring Potential β-Lactam Contamination in Drugs and Drug-Manufacturing Surfaces.

    Science.gov (United States)

    Qiu, Chen; Zhu, Hongbin; Ruzicka, Connie; Keire, David; Ye, Hongping

    2018-05-15

    Penicillins and some non-penicillin β-lactams may cause potentially life-threatening allergic reactions. Thus, possible cross contamination of β-lactams in food or drugs can put people at risk. Therefore, when there is a reasonable possibility that a non-penicillin product could be contaminated by penicillin, the drug products are tested for penicillin contamination. Here, a sensitive and rapid method for simultaneous determination of multiple β-lactam antibiotics using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Mass spectral acquisition was performed on a Q-Exactive HF mass spectrometer in positive ion mode with parallel reaction monitoring (PRM). The method was validated for seven β-lactam antibiotics including one or two from each class and a synthetic intermediate. The quantification precision and accuracy at 200 ppb were in the range of ± 1.84 to ± 4.56 and - 5.20 to 3.44%, respectively. The limit of detection (LOD) was 0.2 ppb, and the limit of quantitation (LOQ) was 2 ppb with a linear dynamic range (LDR) of 2-2000 ppb for all eight β-lactams. From various drug products, the recoveries of eight β-lactams at 200 and 2 ppb ranged from 93.8 ± 3.2 to 112.1 ± 4.2% and 89.7 ± 4.6 to 110.6 ± 1.9%, respectively. The application of the method for detecting cross contamination of trace β-lactams (0.2 ppb) and for monitoring facility surface cleaning was also investigated. This sensitive and fast method was fit-for-purpose for detecting and quantifying trace amount of β-lactam contamination, monitoring cross contamination in manufacturing processes, and determining potency for regulatory purposes and for quality control.

  8. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany.

    Science.gov (United States)

    Antoniadis, Vasileios; Shaheen, Sabry M; Boersch, Judith; Frohne, Tina; Du Laing, Gijs; Rinklebe, Jörg

    2017-01-15

    Although soil contamination by potentially toxic elements (PTEs) in Europe has a history of many centuries, related problems are often considered as having been dealt with due to the enforcement of tight legislations. However, there are many unsolved issues. We aimed to assess PTE levels in highly contaminated soils and in garden edible vegetables using human health risk indices in order to evaluate the availability and mobilization of arsenic (As), copper (Cu), manganese (Mn), mercury (Hg), lead (Pb), and zinc (Zn). In four gardens in Germany, situated on, or in the vicinity of, a mine dump area, we planted beans (Phaseolus vulgaris ssp. nanus), carrots (Daucus sativus) and lettuce (Lactuca sativa ssp. capitata). We examined soil-to-plant mobilization of elements using transfer coefficient (TC), as well as soil contamination using contamination factor (CF), enrichment factor (EF), and bioaccumulation index (I geo ). In addition, we tested two human health risk assessment indices: Soil-induced hazard quotient (HQ S ) (representing the "direct soil ingestion" pathway), and vegetable-induced hazard quotient (HQ V ) (representing the "vegetable intake" pathway). The studied elements were highly elevated in the soils. The values in garden 2 were especially high (e.g., Pb: 13789.0 and Hg: 36.8 mg kg -1 ) and largely exceeded the reported regulation limits of 50 (for As), 40 (Cu), 400 (Pb), 150 (Zn), and 5 (Hg) mg kg -1 . Similarly, element concentrations were very high in the grown vegetables. The indices of CF, EF and I geo were enhanced even to levels that are rarely reported in the literature. Specifically, garden 2 indicated severe contamination due to multi-element deposition. The contribution of each PTE to the total of measured HQ S revealed that Pb was the single most important element causing health risk (contributing up to 77% to total HQ S ). Lead also posed the highest risk concerning vegetable consumption, contributing up to 77% to total HQ V . The

  9. The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn.

    Science.gov (United States)

    Kocoń, Anna; Jurga, Beata

    2017-02-01

    One of the cheapest, environmentally friendly methods for cleaning an environment polluted by heavy metals is phytoextraction. It builds on the uptake of pollutants from the soil by the plants, which are able to grow under conditions of high concentrations of toxic metals. The aim of this work was to assess the possibility of growing and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita cultivated on two different soils contaminated with five heavy metals simultaneously: Cd, Cu, Ni, Pb, and Zn. A 3-year microplot experiment with two perennial energy crops, M. x giganteus and S. hermaphrodita, was conducted in the experimental station of IUNG-PIB in Poland (5° 25' N, 21° 58 'E), in the years of 2008-2010. Miscanthus was found more tolerant to concomitant soil contamination with heavy metals and produced almost double biomass than Sida in all three tested years, independent of soil type. Miscanthus collected greater amount of heavy metals (except for cadmium) in the biomass than Sida. Both energy crops absorb high levels of zinc, lower levels of lead, copper, and nickel, and absorbed cadmium at least, generally more metals were taken from the sandy soil, where plants also yielded better. Photosynthesis net rate of Miscanthus was on average 40% higher compared to Sida. Obtained results indicate that M. x giganteus and S. hermaphrodita can successfully be grown on moderately contaminated soil with heavy metals.

  10. Elevated contaminants contrasted with potential benefits of ω-3 fatty acids in wild food consumers of two remote first nations communities in northern Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Timothy A Seabert

    Full Text Available Indigenous communities in Boreal environments rely on locally-harvested wild foods for sustenance. These foods provide many nutritional benefits including higher levels of polyunsaturated fatty acids (PUFAs; such as ω-3 than what is commonly found in store-bought foods. However, wild foods can be a route of exposure to dietary mercury and persistent organic pollutants (POPs such as polychlorinated biphenyls (PCBs. Here, we show a strong association between the frequency of wild food consumption in adults (N=72 from two remote First Nations communities of Northern Ontario and environmental contaminants in blood (POPs and hair (mercury. We observed that POPs and mercury were on average 3.5 times higher among those consuming wild foods more often, with many frequent wild food consumers exceeding Canadian and international health guidelines for PCB and mercury exposures. Contaminants in locally-harvested fish and game from these communities were sufficiently high that many participants exceeded the monthly consumption limits for methylmercury and PCBs. Those consuming more wild foods also had higher proportions of potentially beneficial ω-3 fatty acids including eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. These results show that the benefits of traditional dietary choices in Boreal regions of Canada must be weighed against the inherent risks of contaminant exposure from these foods.

  11. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.

    Science.gov (United States)

    Zhang, Rong; Xu, Xingjian; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    A multifunctional Pseudomonas putida X3 strain was successfully engineered by introducing methyl parathion (MP)-degrading gene and enhanced green fluorescent protein (EGFP) gene in P. putida X4 (CCTCC: 209319). In liquid cultures, the engineered X3 strain utilized MP as sole carbon source for growth and degraded 100 mg L(-1) of MP within 24 h; however, this strain did not further metabolize p-nitrophenol (PNP), an intermediate metabolite of MP. No discrepancy in minimum inhibitory concentrations (MICs) to cadmium (Cd), copper (Cu), zinc (Zn), and cobalt (Co) was observed between the engineered X3 strain and its host strain. The inoculated X3 strain accelerated MP degradation in different polluted soil microcosms with 100 mg MP kg(-1) dry soil and/or 5 mg Cd kg(-1) dry soil; MP was completely eliminated within 40 h. However, the presence of Cd in the early stage of remediation slightly delayed MP degradation. The application of X3 strain in Cd-contaminated soil strongly affected the distribution of Cd fractions and immobilized Cd by reducing bioavailable Cd concentrations with lower soluble/exchangeable Cd and organic-bound Cd. The inoculated X3 strain also colonized and proliferated in various contaminated microcosms. Our results suggested that the engineered X3 strain is a potential bioremediation agent showing competitive advantage in complex contaminated environments.

  12. The RAPID-CTCA trial (Rapid Assessment of Potential Ischaemic Heart Disease with CTCA) - a multicentre parallel-group randomised trial to compare early computerised tomography coronary angiography versus standard care in patients presenting with suspected or confirmed acute coronary syndrome: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Gray, Alasdair J; Roobottom, Carl; Smith, Jason E; Goodacre, Steve; Oatey, Katherine; O'Brien, Rachel; Storey, Robert F; Na, Lumine; Lewis, Steff C; Thokala, Praveen; Newby, David E

    2016-12-07

    Potential Ischaemic Heart Disease with CTCA (RAPID-CTCA) trial will recruit 2500 participants across about 35 hospital sites. It will be the first study to investigate the role of CTCA in the early assessment of patients with suspected or confirmed ACS who are at intermediate risk and including patients who have raised troponin measurements during initial assessment. ISRCTN19102565 . Registered on 3 October 2014. ClinicalTrials.gov: NCT02284191.

  13. Contamination of Soil with Pb and Sb at a Lead-Acid Battery Dumpsite and Their Potential Early Uptake by Phragmites australis

    Directory of Open Access Journals (Sweden)

    Abraham Jera

    2017-01-01

    Full Text Available Recycling of spent Lead-Acid Batteries (LABs and disposal of process slag potentially contaminate soil with Pb and Sb. Total and available concentrations of Pb and Sb in three soil treatments and parts of Phragmites australis were determined by atomic absorption spectrophotometry. Soil with nonrecycled slag (NR had higher total metal concentrations than that with recycled slag (RS. Low available fractions of Pb and Sb were found in the soil treatments before planting P. australis. After 16 weeks of growth of P. australis, the available fractions of Pb had no statistical difference from initial values (p>0.05 while available Sb fractions were significantly lower when compared with their initial values (p<0.05. Metal transfer factors showed that P. australis poorly accumulate Pb and Sb in roots and very poorly translocate them to leaves after growing for 8 and 16 weeks. It may be a poor phytoextractor of Pb and Sb in metal-contaminated soil at least for the 16 weeks of its initial growth. However, the plant established itself on the metalliferous site where all vegetation had been destroyed. This could be useful for potential ecological restoration. The long-term phytoextraction potential of P. australis in such environments as LABs may need further investigation.

  14. Methicillin-Resistant Staphylococcus aureus (MRSA Contamination in Bedside Surfaces of a Hospital Ward and the Potential Effectiveness of Enhanced Disinfection with an Antimicrobial Polymer Surfactant

    Directory of Open Access Journals (Sweden)

    John W. M. Yuen

    2015-03-01

    Full Text Available The aim in this study was to assess the effectiveness of a quaternary ammonium chloride (QAC surfactant in reducing surface staphylococcal contamination in a routinely operating medical ward occupied by patients who had tested positive for methicillin-resistant Staphylococcus aureus (MRSA. The QAC being tested is an antibacterial film that is sprayed onto a surface and can remain active for up to 8 h. A field experimental study was designed with the QAC plus daily hypochlorite cleaning as the experimental group and hypochlorite cleaning alone as the control group. The method of swabbing on moistened surfaces was used for sampling. It was found that 83% and 77% of the bedside surfaces of MRSA-positive and MRSA-negative patients respectively were contaminated with staphylococci at 08:00 hours, and that the staphylococcal concentrations increased by 80% at 1200 h over a 4-hour period with routine ward and clinical activities. Irrespective of the MRSA status of the patients, high-touch surfaces around the bed-units within the studied medical ward were heavily contaminated (ranged 1 to 276 cfu/cm2 amongst the sites with positive culture with staphylococcal bacteria including MRSA, despite the implementation of daily hypochlorite wiping. However, the contamination rate dropped significantly from 78% to 11% after the application of the QAC polymer. In the experimental group, the mean staphylococcal concentration of bedside surfaces was significantly (p < 0.0001 reduced from 4.4 ± 8.7 cfu/cm2 at 08:00 hours to 0.07 ± 0.26 cfu/cm2 at 12:00 hours by the QAC polymer. The results of this study support the view that, in addition to hypochlorite wiping, the tested QAC surfactant is a potential environmental decontamination strategy for preventing the transmission of clinically important pathogens in medical wards.

  15. Methicillin-resistant Staphylococcus aureus (MRSA) contamination in bedside surfaces of a hospital ward and the potential effectiveness of enhanced disinfection with an antimicrobial polymer surfactant.

    Science.gov (United States)

    Yuen, John W M; Chung, Terence W K; Loke, Alice Y

    2015-03-11

    The aim in this study was to assess the effectiveness of a quaternary ammonium chloride (QAC) surfactant in reducing surface staphylococcal contamination in a routinely operating medical ward occupied by patients who had tested positive for methicillin-resistant Staphylococcus aureus (MRSA). The QAC being tested is an antibacterial film that is sprayed onto a surface and can remain active for up to 8 h. A field experimental study was designed with the QAC plus daily hypochlorite cleaning as the experimental group and hypochlorite cleaning alone as the control group. The method of swabbing on moistened surfaces was used for sampling. It was found that 83% and 77% of the bedside surfaces of MRSA-positive and MRSA-negative patients respectively were contaminated with staphylococci at 08:00 hours, and that the staphylococcal concentrations increased by 80% at 1200 h over a 4-hour period with routine ward and clinical activities. Irrespective of the MRSA status of the patients, high-touch surfaces around the bed-units within the studied medical ward were heavily contaminated (ranged 1 to 276 cfu/cm2 amongst the sites with positive culture) with staphylococcal bacteria including MRSA, despite the implementation of daily hypochlorite wiping. However, the contamination rate dropped significantly from 78% to 11% after the application of the QAC polymer. In the experimental group, the mean staphylococcal concentration of bedside surfaces was significantly (p<0.0001) reduced from 4.4±8.7 cfu/cm2 at 08:00 hours to 0.07±0.26 cfu/cm2 at 12:00 hours by the QAC polymer. The results of this study support the view that, in addition to hypochlorite wiping, the tested QAC surfactant is a potential environmental decontamination strategy for preventing the transmission of clinically important pathogens in medical wards.

  16. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils.

    Science.gov (United States)

    Wang, Quanzhen; Gu, Muyu; Ma, Xiaomin; Zhang, Hongjuan; Wang, Yafang; Cui, Jian; Gao, Wei; Gui, Jing

    2015-11-01

    Soil pollution with heavy metals is an increasingly serious threat to the environment, food security, and human health. Therefore, it is urgent to develop economic and highly efficient soil restoration technology for environmental improvement; phytoremediation is an option that is safe, has low cost, and is environmentally friendly. However, in selecting hyperaccumulators or tolerant plants, theories and operation technologies for optimal restoration should be satisfied. In this study, the switchgrass growth response and performance of phytoextraction under the coupling effect of Cd and pH were investigated by evaluating seed germination, seedling growth, and the Cd content in the plant to evaluate the potential use of switchgrass as a phytoremediation plant in cadmium contaminated soil. This study conducted three sets of independent experiments with five levels of Cd concentrations, including two orthogonal matrix designs of combining Cd with pH values. The results showed that switchgrass was germinated well under all treatments (Cd concentration of 0-500 μM), but the seedling growth was significantly affected by Cd and pH, as shown by multivariate regression analyses. Hormesis was found during the growth of switchgrass plants exposed to low Cd concentrations under hydroponic conditions, and switchgrass plants were capable of developing with a Cd concentration of 100-175 μM and pH of 4.1-5.9. Mild acidic conditions can enhance the ability of Cd to accumulate in switchgrass. Switchgrass was moderately tolerant to Cd and may be used as a phytoremediation plant for Cd-contaminated soils in the future. Our results also suggest that hormetic effects should be taken into consideration in the phytoremediation of Cd-contaminated soils. We discuss the physiological and biochemical mechanisms contributing to the effective application of the plant for the phytoremediation of Cd-contaminated soils.

  17. Recovery and growth potential of Listeria monocytogenes in temperature abused milkshakes prepared from naturally contaminated ice cream linked to a listeriosis outbreak

    OpenAIRE

    Yi eChen; Emma eAllard; Anna eWooten; Minji eHur; Ishani eSheth; Anna eLassri; Thomas S Hammack; Dumitru eMacarisin

    2016-01-01

    The recovery and growth potential of Listeria monocytogenes was evaluated in three flavors of milkshakes (vanilla, strawberry, and chocolate) that were prepared from naturally contaminated ice cream linked to a listeriosis outbreak in the U.S. in 2015, and were subsequently held at room temperature for 14 h. The average lag phase duration of L. monocytogenes was 9.05 h; the average generation time was 1.67 h; and the average population level increase per sample at 14 h was 1.14 log CFU/g. Mil...

  18. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil.

    Science.gov (United States)

    Xu, Jianling; Cai, Qiongyao; Wang, Hanxi; Liu, Xuejun; Lv, Jing; Yao, Difu; Lu, Yue; Li, Wei; Liu, Yuanyuan

    2017-05-01

    In this study, the microwave digestion method was used to determine total cadmium (Cd) and lead (Pb) concentrations, the BCR method was used to determine different states of Cd and Pb, and atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to determine Cd and Pb concentrations in simulated soil and barnyard grass before and after planting barnyard grass to provide a theoretical basis for the remediation of Cd- and Pb-contaminated soil. The results showed that the bioconcentration factor changes with different Cd concentrations are relatively complex and that the removal rate increases regularly. The 100 mg kg -1 Cd treatment had the highest removal rate, which reached 36.66%. For Pb, the bioconcentration factor decreased and tended to reach equilibrium as the Pb concentration increased. The highest removal rate was 41.72% and occurred in the 500 mg kg -1 Pb treatment; however, this removal rate was generally lower than that of Cd. In addition, the reduction state had the highest change rate, followed by the residual, acid soluble and oxidation states. For Pb, the residual state has the highest change rate, followed by the acid soluble state, reduction state and oxidation state. In addition, a significant correlation was observed between the soil Pb and Cd concentrations and the concentrations of Pb and Cd that accumulated in the belowground biomass of the barnyard grass, but no significant correlation was observed between the soil Pb and Cd concentrations and the amounts of Pb and Cd that accumulated in the aboveground biomass of the barnyard grass. The highest transfer factor of Cd was 0.49, which occurred in the 5 mg kg -1 Cd treatment. The higher transfer factor of Pb was 0.48 in the 100 mg kg -1 Pb treatment. All of these factors indicate that the belowground biomass of barnyard grass plays a more important role in the remediation of Cd- and Pb-contaminated soils than the aboveground

  19. Evaluation of Ice Slurries as a Control for Postharvest Growth of Vibrio spp. in Oysters and Potential for Filth Contamination.

    Science.gov (United States)

    Lydon, Keri Ann; Farrell-Evans, Melissa; Jones, Jessica L

    2015-07-01

    Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P oysters to minimize Vibrio growth.

  20. Assessment of Phytoextraction Potential of Fenugreek (Trigonellafoenum-graecum L. to Remove Heavy Metals (Pb and Ni from Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Leela Kaur

    2015-02-01

    Full Text Available The objective of the present study was to evaluate the effect of metal mobilizing agents, ethelynediaminetetraacetic acid (EDTA and salicylic acid (SA, on the accumulation and translocation of lead (Pb and nickel (Ni by fenugreek (Trigonellafoenum-graecumL. plants in contaminated soil. EDTA and SA were amended at 100 mM and 1.0 mM respectively. Pb and Ni content were estimated using ICP-OES. Plant samples were prepared for scanning electron microscope (SEM analysis to investigate metals distribution in different tissues (root, stem and leaf of plant. The results showed that EDTA increased Pb and Ni uptake as compared to SA. SEM analysis revealed that in the presence of EDTA, the deposition of Pb particles was predominantly in vascular tissues of the stem and leaf.    

  1. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils.

    Science.gov (United States)

    Jia, Weitao; Lv, Sulian; Feng, Juanjuan; Li, Jihong; Li, Yinxin; Li, Shizhong

    2016-09-01

    Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall

  2. Risk element immobilization/stabilization potential of fungal-transformed dry olive residue and arbuscular mycorrhizal fungi application in contaminated soils.

    Science.gov (United States)

    García-Sánchez, Mercedes; Stejskalová, Tereza; García-Romera, Inmaculada; Száková, Jiřina; Tlustoš, Pavel

    2017-10-01

    The use of biotransformed dry olive residue (DOR) as organic soil amendment has recently been proposed due to its high contents of stabilized organic matter and nutrients. The potential of biotransformed DOR to immobilize risk elements in contaminated soils might qualify DOR as a potential risk element stabilization agent for in situ soil reclamation practices. In this experiment, the mobility of risk elements in response to Penicillium chrysogenum-10-transformed DOR, Funalia floccosa-transformed DOR, Bjerkandera adusta-transformed DOR, and Chondrostereum purpureum-transformed DOR as well as arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae, inoculation was investigated. We evaluated the effect of these treatments on risk element uptake by wheat (Triticum aestivum L.) plants in a pot experiment with Cd, Pb, and Zn contaminated soil. The results showed a significant impact of the combined treatment (biotransformed DOR and AMF inoculation) on wheat plant growth and element mobility. The mobile proportions of elements in the treated soils were related to soil pH; with increasing pH levels, Cd, Cu, Fe, Mn, P, Pb, and Zn mobility decreased significantly (r values between -0.36 and -0.46), while Ca and Mg mobility increased (r = 0.63, and r = 0.51, respectively). The application of biotransformed DOR decreased risk element levels (Cd, Zn), and nutrient concentrations (Ca, Cu, Fe, Mg, Mn) in the aboveground biomass, where the elements were retained in the roots. Thus, biotransformed DOR in combination with AMF resulted in a higher capacity of wheat plants to grow under detrimental conditions, being able to accumulate high amounts of risk elements in the roots. However, risk element reduction was insufficient for safe crop production in the extremely contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  4. Suspected Child Maltreatment: Recognize and Respond

    Science.gov (United States)

    Kemple, Kristen Mary; Kim, Hae Kyoung

    2011-01-01

    Early childhood educators spend extensive amounts of time with young children, so they are often the first adults to notice signs that a child may be abused or neglected. All educators are required by law to report suspected maltreatment, and can play an important role in preventing and responding to abuse and neglect of young children. What is…

  5. Suspecting Neurological Dysfunction From E Mail Messages ...

    African Journals Online (AJOL)

    A non medical person suspected and confirmed neurological dysfunction in an individual, based only on e mail messages sent by the individual. With email communication becoming rampant “peculiar” email messages may raise the suspicion of neurological dysfunction. Organic pathology explaining the abnormal email ...

  6. Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-β-cyclodextrins

    International Nuclear Information System (INIS)

    Shen Chaofeng; Tang Xianjin; Cheema, Sardar Alam; Zhang Congkai; Khan, Muhammad Imran; Liang Fang; Chen Xincai; Zhu Youfeng; Lin Qi; Chen, Yingxu

    2009-01-01

    The crude recycling of electronic and electric waste (e-waste) is now creating soil pollution problems with organic compounds such as polychlorinated biphenyls (PCBs). The present study aimed to compare the phytoremediation potential of four plant species (rice, alfalfa, ryegrass and tall fescue) for PCBs contaminated soil from Taizhou city, one of the largest e-waste recycling centers in China. In addition, the enhanced effects of randomly methylated-β-cyclodextrins (RAMEB) on PCBs phytoremediation potential were evaluated. Higher PCBs removal percentages of 25.6-28.5% in rhizosphere soil were observed after 120 days, compared with those of the non-rhizosphere (10.4-16.9%) and unplanted controls (7.3%). The average PCBs removal percentages of four plant species increased from 26.9% to 37.1% in the rhizosphere soil with addition of RAMEB. Meanwhile, relatively high microbial counts and dehydrogenase activity were detected in planted soils and a stimulatory effect by RAMEB addition was found. The present study indicated that all the plant candidates were feasible for phytoremediation of PCBs contaminated soil from the e-waste recycling area, and tall fescue with RAMEB amendment seemed as a promising remediation strategy. High PCBs removal percentage was due to the increased PCBs bioavailability as well as biostimulation of microbial communities after plantation and RAMEB addition.

  7. Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-{beta}-cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chaofeng [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310029 (China); Tang Xianjin; Cheema, Sardar Alam; Zhang Congkai; Khan, Muhammad Imran; Liang Fang; Chen Xincai; Zhu Youfeng [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Lin Qi, E-mail: linqi@zju.edu.cn [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen, Yingxu [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China)

    2009-12-30

    The crude recycling of electronic and electric waste (e-waste) is now creating soil pollution problems with organic compounds such as polychlorinated biphenyls (PCBs). The present study aimed to compare the phytoremediation potential of four plant species (rice, alfalfa, ryegrass and tall fescue) for PCBs contaminated soil from Taizhou city, one of the largest e-waste recycling centers in China. In addition, the enhanced effects of randomly methylated-{beta}-cyclodextrins (RAMEB) on PCBs phytoremediation potential were evaluated. Higher PCBs removal percentages of 25.6-28.5% in rhizosphere soil were observed after 120 days, compared with those of the non-rhizosphere (10.4-16.9%) and unplanted controls (7.3%). The average PCBs removal percentages of four plant species increased from 26.9% to 37.1% in the rhizosphere soil with addition of RAMEB. Meanwhile, relatively high microbial counts and dehydrogenase activity were detected in planted soils and a stimulatory effect by RAMEB addition was found. The present study indicated that all the plant candidates were feasible for phytoremediation of PCBs contaminated soil from the e-waste recycling area, and tall fescue with RAMEB amendment seemed as a promising remediation strategy. High PCBs removal percentage was due to the increased PCBs bioavailability as well as biostimulation of microbial communities after plantation and RAMEB addition.

  8. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers

    International Nuclear Information System (INIS)

    Fuhrimann, Samuel; Pham-Duc, Phuc; Cissé, Guéladio; Tram, Nguyen Thuy; Thu Ha, Hoang; Dung, Do Trung; Ngoc, Pham; Nguyen-Viet, Hung; Anh Vuong, Tuan; Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S.

    2016-01-01

    The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for > 500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3 × 10"7 colony forming unit (CFU)/100 mL), E. coli (1.1 × 10"6 CFU/100 mL) and Salmonella spp. (108 most probable number (MPN)/100 mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (< 1 egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally. - Highlights: • We

  9. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrimann, Samuel, E-mail: samuel.fuhrimann@unibas.ch [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland); Pham-Duc, Phuc [Center for Public Health and Ecosystem Research, Hanoi School of Public Health, Hanoi (Viet Nam); Cissé, Guéladio [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland); Tram, Nguyen Thuy; Thu Ha, Hoang [Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi (Viet Nam); Dung, Do Trung [Department of Parasitology, National Institute of Malaria, Parasitology, and Entomology, Hanoi (Viet Nam); Ngoc, Pham [Department of Animal Hygiene, National Institute for Veterinary Research, Hanoi (Viet Nam); Nguyen-Viet, Hung [Center for Public Health and Ecosystem Research, Hanoi School of Public Health, Hanoi (Viet Nam); International Livestock Research Institute, Hanoi (Viet Nam); Anh Vuong, Tuan [Department of Microbiology, National Institute of Hygiene and Epidemiology, Hanoi (Viet Nam); Utzinger, Jürg; Schindler, Christian; Winkler, Mirko S. [Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel (Switzerland); University of Basel, Basel (Switzerland)

    2016-10-01

    The use of wastewater in agriculture and aquaculture has a long tradition throughout Asia. For example, in Hanoi, it creates important livelihood opportunities for > 500,000 farmers in peri-urban communities. Discharge of domestic effluents pollute the water streams with potential pathogenic organisms posing a public health threat to farmers and consumers of wastewater-fed foodstuff. We determined the effectiveness of Hanoi's wastewater conveyance system, placing particular emphasis on the quality of wastewater used in agriculture and aquaculture. Between April and June 2014, a total of 216 water samples were obtained from 24 sampling points and the concentrations of total coliforms (TC), Escherichia coli, Salmonella spp. and helminth eggs determined. Despite applied wastewater treatment, agricultural field irrigation water was heavily contaminated with TC (1.3 × 10{sup 7} colony forming unit (CFU)/100 mL), E. coli (1.1 × 10{sup 6} CFU/100 mL) and Salmonella spp. (108 most probable number (MPN)/100 mL). These values are 110-fold above Vietnamese discharge limits for restricted agriculture and 260-fold above the World Health Organization (WHO)'s tolerable safety limits for unrestricted agriculture. Mean helminth egg concentrations were below WHO tolerable levels in all study systems (< 1 egg/L). Hence, elevated levels of bacterial contamination, but not helminth infections, pose a major health risk for farmers and consumers of wastewater fed-products. We propose a set of control measures that might protect the health of exposed population groups without compromising current urban farming activities. This study presents an important example for sanitation safety planning in a rapidly expanding Asian city and can guide public and private entities working towards Sustainable Development Goal target 6.3, that is to improve water quality by reducing pollution, halving the proportion of untreated wastewater and increasing recycling and safe reuse globally

  10. Multiple Stressors in a Top Predator Seabird: Potential Ecological Consequences of Environmental Contaminants, Population Health and Breeding Conditions.

    Directory of Open Access Journals (Sweden)

    Jan O Bustnes

    Full Text Available Environmental contaminants may have impacts on reproduction and survival in wildlife populations suffering from multiple stressors. This study examined whether adverse effects of persistent organic pollutants (POPs increased with poor population health and breeding conditions in three colonies (60-74°N of great skua (Stercorarius skua in the north-eastern Atlantic (Shetland, Iceland and Bjørnøya [Bear Island]. POPs (organochlorines [OCs] and polybrominated diphenyl ethers [BDEs] were measured in plasma of incubating birds (n = 222, concentrations differing nearly tenfold among colonies: Bjørnøya (2009 > Bjørnøya (2010 > Iceland (2009 > Shetland (2009. Reproductive success (hatching success and chick survival showed that breeding conditions were favourable in Shetland and at Bjørnøya (2010, but were very poor in Iceland and at Bjørnøya (2009. Biomarkers indicated that health was poor in the Shetland population compared to the other populations. Females whose chicks hatched late had high POP concentrations in all colonies except at Bjørnøya (2010, and females losing their eggs at Bjørnøya (2009 tended to have higher concentrations than those hatching. Moreover, there was a negative relationship between female POP concentrations and chick body condition at hatching in Iceland and at Bjørnøya (2010. Supplementary feeding experiments were conducted, and in Iceland where feeding conditions were poor, significant negative relationships were found between female POP concentrations and daily growth-rate in first-hatched chicks of control nests, but not in food supplemented nests. This suggests that negative impacts of POPs were mitigated by improved feeding conditions. For second-chicks, there was a strong negative relationship between the female POP concentrations and growth-rate, but no effects of supplementary feeding. Lowered adult return-rate between breeding seasons with increasing POP loads were found both at Bjørnøya (2009 and

  11. Helichrysum italicum growing on metalliferous areas as a potential tool in phytostabilization of metal-contaminated soils.

    Science.gov (United States)

    Bini, Claudio; Maleci, Laura; Giuliani, Claudia

    2015-04-01

    Plants that colonize metalliferous soils have developed physiological mechanisms that allow to tolerate high metal concentrations. Generally, metal uptake by these plants is not suppressed, but a detoxification process occurs, as a response to different strategies: some plants (accumulators) concentrate metals in the aerial parts, while others (excluders) present low metal concentrations in the aerial parts, since metals are arrested in their roots. In several regions of Italy (e.g. Veneto, Sardinia, Tuscany), numerous abandoned mine sites are present; On these metal-contaminated soils grow both metalliferous (e.g. Silene paradoxa) and non-metalliferous plants (e.g. Taraxacum officinale). Among them, Helichrysum italicum deserved attention since it is known as essential oil producer and is also used as a medicinal plant for its anti-inflammatory properties; for this reason, it must undergo the Drug Master File certifying the absence of chemical impurities and heavy metals. Samples of the whole plant (roots, leaves and flowers) of H. italicum have been collected at various sites, both mined and not mined, in order to ascertain its ability to uptake and translocate metals from roots to the aerial parts. Fresh and embedded material was examined by Light microscopy and Electron Microscopy (Scanning and Transmission) to ascertain possible damages in plant morphology. Dried samples were crushed, digested with HNO3 and analysed by ICP-OE technique for heavy metal (Cu, Fe, Mn, Zn) concentrations. Preliminary observations on the morphology of the different samples do not show significant differences in the leaf structure. The inorganic chemical composition of H. italicum was characterized by high metal content. Preliminary results of our analyses show that H. italicum accumulate metals (Mn, Zn) in roots, but do not translocate metals to the aerial parts; therefore, it may be considered an excluder plant. On the basis of our results, the aerial parts (leaves, flowers) of

  12. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.

    Science.gov (United States)

    Lorestani, B; Yousefi, N; Cheraghi, M; Farmany, A

    2013-12-01

    With the development of urbanization and industrialization, soils have become increasingly polluted by heavy metals. Phytoremediation, an emerging cost-effective, nonintrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements, can be potentially used to remediate metal-contaminated sites. In this research, two processes of phytoremediation (phytoextraction and phytostabilization) were surveyed in some plant species around an industrial town in the Hamedan Province in the central-western part of Iran. To this purpose, shoots and roots of the seven plant species and the associated soil samples were collected and analyzed by measuring Pb, Fe, Mn, Cu, and Zn concentrations using ICP-AES and then calculating the biological absorption coefficient, bioconcentration factor, and translocation factor parameters for each element. The obtained results showed that among the collected plants, Salsola soda is the most effective species for phytoextraction and phytostabilization and Cirsium arvense has the potential for phytostabilization of the measured heavy metals.