WorldWideScience

Sample records for susceptible natural host

  1. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available BACKGROUND: Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. RESULTS: The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. CONCLUSION: The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.

  2. Host susceptibility hypothesis for shell disease in American lobsters.

    Science.gov (United States)

    Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E

    2007-12-01

    Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.

  3. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  4. Do parasitic trematode cercariae demonstrate a preference for susceptible host species?

    Directory of Open Access Journals (Sweden)

    Brittany F Sears

    Full Text Available Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo terrestris (southern toad, Hyla squirella (squirrel tree frog, Lithobates ( = Rana sphenocephala (southern leopard frog, and Osteopilus septentrionalis (Cuban tree frog. These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen "arms race" between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.

  5. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2009-01-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays...

  6. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  7. [The susceptibility of different animal species to synanthropic and natural populations of Trichinella].

    Science.gov (United States)

    Artemenko, Iu G; Artemenko, L P

    1997-01-01

    Pigs have been found to be highly susceptible to the synanthropic (domestic) population of Trichinella [correction of Trachina] and weakly susceptible to the natural (native) one. Fur-bearing animals (polar foxes and foxes) are more susceptible to the natural population of Trichinella [correction of Trachina], but minks are equally sensible to the two variants of T. spiralis. In the host's body, synanthropic Trichinella [correction of Trachinas] form capsules of lemon-like, less frequently, oval shape, but the native population do round capsules. There is larval adaptation when Trichinella [correction of Trachina] larvae enter the nonspecific host's body after their prepassage through the organism of domestic carnivorous animals (cats, dogs). The pig is successfully infected with T. spiralis nativa via the cat or dog; the infection rate is approximately close to that observed during control infection of pigs with synanthropic Trichinella [correction of Trachina].

  8. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    Science.gov (United States)

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  9. The role of host genetics in susceptibility to influenza: a systematic review.

    Directory of Open Access Journals (Sweden)

    Peter Horby

    Full Text Available The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380.PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven.The fundamental question "Is susceptibility to severe influenza in humans heritable?" remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.

  10. Host Phenology and Leaf Effects on Susceptibility of California Bay Laurel to Phytophthora ramorum.

    Science.gov (United States)

    Johnston, Steven F; Cohen, Michael F; Torok, Tamas; Meentemeyer, Ross K; Rank, Nathan E

    2016-01-01

    Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to P. ramorum infection were investigated with multiple P. ramorum isolates and leaves collected from multiple trees in leaf-droplet assays. We examined whether susceptibility varies with season, leaf age, or inoculum position. Bay laurel susceptibility was highest during spring and summer and lowest in winter. Older leaves (>1 year) were more susceptible than younger ones (8 to 11 months). Susceptibility was greater at leaf tips and edges than the middle of the leaf. Leaf surfaces wiped with 70% ethanol were more susceptible to P. ramorum infection than untreated leaf surfaces. Our results indicate that seasonal changes in susceptibility of U. californica significantly influence P. ramorum infection levels. Thus, in addition to environmental variables such as temperature and moisture, variability in host plant susceptibility contributes to disease establishment of P. ramorum.

  11. Transcriptome profiling during a natural host-parasite interaction.

    Science.gov (United States)

    McTaggart, Seanna J; Cézard, Timothée; Garbutt, Jennie S; Wilson, Phil J; Little, Tom J

    2015-08-28

    Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.

  12. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Directory of Open Access Journals (Sweden)

    Xiaocui He

    Full Text Available Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr, tonsil (MmTo, peritoneal cavity (MmPca, nasal epithelium (MmNep and nervus olfactorius (MmNol after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS. Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable

  13. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  14. Establishment of Myotis myotis Cell Lines - Model for Investigation of Host-Pathogen Interaction in a Natural Host for Emerging Viruses

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  15. Blood Groups in Infection and Host Susceptibility.

    Science.gov (United States)

    Cooling, Laura

    2015-07-01

    Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Blood Groups in Infection and Host Susceptibility

    Science.gov (United States)

    2015-01-01

    SUMMARY Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. PMID:26085552

  17. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease.

    Science.gov (United States)

    Biemans, Floor; de Jong, Mart C M; Bijma, Piter

    2017-06-30

    Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of (genetic) traits: host susceptibility and host infectivity. Quantitative genetic studies on infectious diseases generally connect an individual's disease status to its own genotype, and therefore capture genetic effects on susceptibility only. However, they usually ignore variation in exposure to infectious herd mates, which may limit the accuracy of estimates of genetic effects on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to design optimal breeding strategies, it is essential that genetic effects on infectivity are quantified. Given the potential importance of genetic effects on infectivity, we set out to develop a model to estimate the effect of single nucleotide polymorphisms (SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 individuals, and recorded time-series data on individual disease status. We quantified bias and precision of the estimates for different sizes of SNP effects, and identified the optimum recording interval when the number of records is limited. We present a generalized linear mixed model to estimate the effect of SNPs on both host susceptibility and host infectivity. SNP effects were on average slightly underestimated, i.e. estimates were conservative. Estimates were less precise for infectivity than for susceptibility. Given our sample size, the power to estimate SNP effects for susceptibility was 100% for differences between genotypes of a factor 1.56 or more, and was higher than 60% for infectivity for differences between genotypes of a factor 4 or more. When disease status was recorded 11 times on each

  18. Toxicogenetics: In Search of Host Susceptibility to Environmental Toxicants

    Directory of Open Access Journals (Sweden)

    Gelareh eAlam

    2014-09-01

    Full Text Available Heavy metals, various pesticide and herbicides are implicated as risk factors for human health. Paraquat, maneb, and rotenone, carbamate and organophospherous insecticides are examples of toxicants for which acute and chronic exposure are associated with multiple neurological disorders including Parkinson’s disease (PD. Nevertheless, the role of pesticide exposure in neurodegenerative diseases is not clear-cut, as there are inconsistencies in both the epidemiological and preclinical research. The aim of this short review is to show that the inconsistencies are related to individual differences in susceptibility to the effects of neurotoxicants, individual differences that can be traced to the genetic constitution of the individuals and animals studies, i.e., host-based susceptibility.

  19. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans.

    Science.gov (United States)

    Davy, Christina M; Donaldson, Michael E; Willis, Craig K R; Saville, Barry J; McGuire, Liam P; Mayberry, Heather; Wilcox, Alana; Wibbelt, Gudrun; Misra, Vikram; Bollinger, Trent; Kyle, Christopher J

    2017-09-01

    Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse-eared bat, Myotis myotis ). We compared body condition, disease outcomes and gene expression in control (sham-exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the "white-nose syndrome transcriptome." Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat-WNS system, and robust

  20. Wild rodents as a model to discover genes and pathways underlying natural variation in infectious disease susceptibility.

    Science.gov (United States)

    Turner, A K; Paterson, S

    2013-11-01

    Individuals vary in their susceptibility to infectious disease, and it is now well established that host genetic factors form a major component of this variation. The discovery of genes underlying susceptibility has the potential to lead to improved disease control, through the identification and management of vulnerable individuals and the discovery of novel therapeutic targets. Laboratory rodents have proved invaluable for ascertaining the function of genes involved in immunity to infection. However, these captive animals experience conditions very different to the natural environment, lacking the genetic diversity and environmental pressures characteristic of natural populations, including those of humans. It has therefore often proved difficult to translate basic laboratory research to the real world. In order to further our understanding of the genetic basis of infectious disease resistance, and the evolutionary forces that drive variation in susceptibility, we propose that genetic research traditionally conducted on laboratory animals is expanded to the more ecologically valid arena of natural populations. In this article, we highlight the potential of using wild rodents as a new resource for biomedical research, to link the functional genetic knowledge gained from laboratory rodents with the variation in infectious disease susceptibility observed in humans and other natural populations. © 2013 John Wiley & Sons Ltd.

  1. Fast Decline of Pythium zingiberum in Soil and Its Recolonization by Cultivating Susceptible Host Plants

    OpenAIRE

    ICHITANI, Takio; SHIMIZU, Tokiya

    1984-01-01

    This experiment demonstrates the fast decline of Pythium zingiberum in soil and its recolonization by cultivating mioga, susceptible host plant, and discusses growth and survival of the pathogen in the host rhizosphere in cultivated fields.

  2. Host phenology and leaf effects on susceptibility of California bay laurel to Phytophthora ramorum

    Science.gov (United States)

    Steven F. Johnston; Michael F. Cohen; Tamas Torok; Ross K. Meentemeyer; Nathan E. Rank

    2016-01-01

    Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to

  3. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  4. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium.

    Directory of Open Access Journals (Sweden)

    Elena Kondratieva

    2010-05-01

    Full Text Available Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i characteristics of susceptibility to two infections in vivo; (ii architecture of lung granulomata assessed by immune staining; and (iii expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.

  5. [Susceptibility of enterococci to natural and synthetic iron chelators].

    Science.gov (United States)

    Lisiecki, Paweł; Mikucki, Jerzy

    2002-01-01

    A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.

  6. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  7. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    Science.gov (United States)

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  8. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1.

    Science.gov (United States)

    Segarra, Amélie; Mauduit, Florian; Faury, Nicole; Trancart, Suzanne; Dégremont, Lionel; Tourbiez, Delphine; Haffner, Philippe; Barbosa-Solomieu, Valérie; Pépin, Jean-François; Travers, Marie-Agnès; Renault, Tristan

    2014-07-09

    Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.

  9. Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.

    Science.gov (United States)

    Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L

    2015-05-01

    Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC). Copyright © 2015. Published by Elsevier Inc.

  10. Effects of Non-Susceptible Hosts on the Infection with Trypanosoma cruzi of the Vector Triatoma infestans: an Experimental Model

    Directory of Open Access Journals (Sweden)

    Vázquez Diego P

    1999-01-01

    Full Text Available We tested experimentally the effects of the presence of non-susceptible hosts on the infection with Trypanosoma cruzi of the vector Triatoma infestans. The experiment consisted in two treatments: with chickens, including two chickens (non-susceptible hosts and two infected guinea pigs (susceptible hosts, and without chickens, including only two infected guinea pigs. The hosts were held unrestrained in individual metal cages inside a closed tulle chamber. A total of 200 uninfected T. infestans third instar nymphs were liberated in each replica, collected on day 14, and examined for infection and blood meal sources on day 32-36. The additional presence of chickens relative to infected guinea pigs: (a significantly modified the spatial distribution of bugs; (b increased significantly the likelihoods of having a detectable blood meal on any host and molting to the next instar; (c did not affect the bugs' probability of death by predation; and (d decreased significantly the overall percentage of T. infestans infected with T. cruzi. The bugs collected from inside or close to the guinea pigs' cages showed a higher infection rate (71-88% than those collected from the chickens' cages (22-32%. Mixed blood meals on chickens and guinea pigs were detected in 12-21% of bugs. Although the presence of chickens would decrease the overall percentage of infected bugs in short term experiments, the high rate of host change of T. infestans would make this difference fade out if longer exposure times had been provided.

  11. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis

    Science.gov (United States)

    Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596

  12. Colonization, Pathogenicity, Host Susceptibility and Therapeutics for Staphylococcus aureus: What is the Clinical Relevance?1

    Science.gov (United States)

    Tong, Steven Y.C.; Chen, Luke F.; Fowler, Vance G.

    2011-01-01

    Staphylococcus aureus is a human commensal that can also cause a broad spectrum of clinical disease. Factors associated with clinical disease are myriad and dynamic and include pathogen virulence, antimicrobial resistance and host susceptibility. Additionally, infection control measures aimed at the environmental niches of S. aureus and therapeutic advances continue to impact upon the incidence and outcomes of staphylococcal infections. This review article focuses on the clinical relevance of advances in our understanding of staphylococcal colonization, virulence, host susceptibility and therapeutics. Over the past decade key developments have arisen. First, rates of nosocomial methicillin-resistant S. aureus (MRSA) infections have significantly declined in many countries. Second, we have made great strides in our understanding of the molecular pathogenesis of S. aureus in general and community-associated MRSA in particular. Third, host risk factors for invasive staphylococcal infections, such as advancing age, increasing numbers of invasive medical interventions, and a growing proportion of patients with healthcare contact, remain dynamic. Finally, several new antimicrobial agents active against MRSA have become available for clinical use. Humans and S. aureus co-exist and the dynamic interface between host, pathogen and our attempts to influence these interactions will continue to rapidly change. Although progress has been made in the past decade, we are likely to face further surprises such as the recent waves of community-associated MRSA. PMID:22160374

  13. Influenza virus in a natural host, the mallard: experimental infection data.

    Directory of Open Access Journals (Sweden)

    Elsa Jourdain

    Full Text Available Wild waterfowl, particularly dabbling ducks such as mallards (Anas platyrhynchos, are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs. They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0, the same H7N7 isolate again (day 21 and an H5N2 LPAI isolate (day 35. After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both re-inoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.

  14. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. II. Features of genetic variation in susceptibility to organophosphate insecticides within natural populations of D. melanogaster.

    Science.gov (United States)

    Miyo, Takahiro; Oguma, Yuzuru; Charlesworth, Brian

    2006-08-01

    To elucidate genetic variation in susceptibility to organophosphate insecticides within natural populations of Drosophila melanogaster, we conducted an analysis of variance for mortality data sets of isofemale lines (10-286 lines) used in the previous studies. Susceptibility of isofemale lines to the three organophosphate insecticides was continuously distributed within each natural population, ranging from susceptible to resistant. Analysis of variance showed highly significant variation among isofemale lines in susceptibility to each insecticide for each natural population. Significant genetic variances in susceptibility to the three chemicals were estimated for the Katsunuma population; 0.0529-0.2722 for malathion, 0.0492-0.1603 for prothiophos, and 0.0469-0.1696 for fenitrothion. Contrary to the consistent seasonal tendency towards an increase in mean susceptibility in the fall, reported in the previous study, genetic variances in susceptibility to the three organophosphates did not change significantly in 1997 but tended to increase by 2- to 5-times in 1998. We tested whether both the observed situations, maintenance and increase in genetic variance in organophosphate resistance, can be generated under circumstances in which the levels of resistance to the three organophosphates tended to decrease, by conducting a simulation analysis, based on the hypothesis that resistant genotypes have lower fitnesses than susceptible ones under the density-independent condition. The simulation analysis generally explained the pattern in the mean susceptibility and genetic variances in susceptibility to the three organophosphates, observed in the Katsunuma population of D. melanogaster. It was suggested that the differences in the frequencies of resistance genes in the summer population could affect the patterns in genetic variance in organophosphate resistance in the fall population.

  15. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  16. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    Directory of Open Access Journals (Sweden)

    Bettina eKaiser

    2015-02-01

    Full Text Available By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialogue between Cuscuta spp. and its host plants focuses on the incompatible interaction of Cuscuta reflexa with tomato.

  17. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants.

    Science.gov (United States)

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus

    2015-01-01

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.

  18. Nature of the magnetic susceptibility of dysprosium. Paramagnetic susceptibility of dysprosium - yttrium alloys

    International Nuclear Information System (INIS)

    Demidov, V.G.; Levitin, R.Z.; Chistyakov, O.D.

    1976-01-01

    The paramagnetic susceptibility of single crystals of dysprosium-yttirum alloys is measured in the basal plane and along the hexagonal axis. It is shown that the susceptibility of the alloys obeys the Curie-Weiss law, the effective magnetic moments allong the different directions being the same and the paramagnetic Curie temperatures being different. The difference between the paramagnetic Curie temperatures in the basal plane and along the hexagonal axis is independent of the dysprosium concentration in the alloy. As a comparison with the theoretical models of magnetic anisotropy shows, this is an indication that the magnetic anisotropy of dysprosium - yttrium alloys is of a single-ion nature

  19. MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts.

    Science.gov (United States)

    Waring, Barbara M; Sjaastad, Louisa E; Fiege, Jessica K; Fay, Elizabeth J; Reyes, Ismarc; Moriarity, Branden; Langlois, Ryan A

    2018-01-15

    Influenza A virus drives significant morbidity and mortality in humans and livestock. Annual circulation of the virus in livestock and waterfowl contributes to severe economic disruption and increases the risk of zoonotic transmission of novel strains into the human population, where there is no preexisting immunity. Seasonal vaccinations in humans help prevent infection and can reduce symptoms when infection does occur. However, current vaccination regimens available for livestock are limited in part due to safety concerns regarding reassortment/recombination with circulating strains. Therefore, inactivated vaccines are used instead of the more immunostimulatory live attenuated vaccines. MicroRNAs (miRNAs) have been used previously to generate attenuated influenza A viruses for use as a vaccine. Here, we systematically targeted individual influenza gene mRNAs using the same miRNA to determine the segment(s) that yields maximal attenuation potential. This analysis demonstrated that targeting of NP mRNA most efficiently ablates replication. We further increased the plasticity of miRNA-mediated attenuation of influenza A virus by exploiting a miRNA, miR-21, that is ubiquitously expressed across influenza-susceptible hosts. In order to construct this targeted virus, we used CRISPR/Cas9 to eliminate the universally expressed miR-21 from MDCK cells. miR-21-targeted viruses were attenuated in human, mouse, canine, and avian cells and drove protective immunity in mice. This strategy has the potential to enhance the safety of live attenuated vaccines in humans and zoonotic reservoirs. IMPORTANCE Influenza A virus circulates annually in both avian and human populations, causing significant morbidity, mortality, and economic burden. High incidence of zoonotic infections greatly increases the potential for transmission to humans, where no preexisting immunity or vaccine exists. There is a critical need for new vaccine strategies to combat emerging influenza outbreaks. Micro

  20. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    Science.gov (United States)

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted.

  1. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  2. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  3. [The role of natural environment in spreading of hantavirus--model of the correlation between host, pathogen and human infections].

    Science.gov (United States)

    Baumann, Anna; Dudek, Dorota; Sadkowska-Todys, Małgorzata

    2007-01-01

    The environmental changes caused by humans influence ecosystem and thus have significant impact on occurrence of emerging and re-emerging diseases. The hantavirus infection belong to the one of them. The aim of this paper was to present current knowledge about relationship between hantavirus, their natural host and the spread of the infection to people. Rodents constitute both the natural host of the hantaviruses and the reservoir of hantavirus for environment. Circulation of the virus in the rodent population is crucial to maintain the virus in the environment. The individual characteristics of rodents influence on risk of infection with hantavirus. However, this relationship is still unexplained. Risk of pathogen exposure often increases with age and behavioral differences associated with the sex of the susceptible individual. Mating behaviors seem to play an important role in the spread of the virus among rodents. Human incidence of hantavirus infection has in general been found to correlate to the population size of rodent host especially in the model of nephropathia epidemica (NE; a mild form of HFRS), Puumala virus (PUU) and bank voles. The occurrence of hantavirus infections in humans is assumed to rise as a secondary effect from altered population sizes of rodents in a changing environment due to e.g. mast years, forest fragmentation, global warming.

  4. Second intermediate host land snails and definitive host animals of Brachylaima cribbi in southern Australia

    Directory of Open Access Journals (Sweden)

    Butcher A.R.

    2005-03-01

    Full Text Available This study of infection of southern Australian land snails with Brachylaima cribbi metacercariae has shown that all commonly encountered native and introduced snails are susceptible second intermediate hosts. The range of infected snails is extensive with metacercariae-infected snails being present in all districts across southern Australia. C. virgata has the highest average natural metacercarial infection intensity of 6.1 metacercariae per infected snail. The susceptibility of birds, mammals and reptiles to B. cribbi infection was studied in South Australia by capturing, dissecting and examining the intestinal tract contents of animals which commonly eat land snails as a food source. Indigenous Australian little ravens (Corvus mellori, which are a common scavenger bird, and two other passeriform birds, the black bird (Turdus merula and the starling (Sturnus vulgaris, which are both introduced European birds, were found to have the highest infection rates of all animals examined. Other birds found infected with B. cribbi were an emu (Dromaius novaehollandiae, chickens (Gallus gallus and a pigeon (Columba livia. Natural infections were also detected in field mice (Mus domesticus and shingleback lizards (Tiliqua rugosa although the intensity of infection was lower than that observed in birds. Susceptibility studies of laboratory mice, rats and ducks showed that mice developed patent infections which persisted for several weeks, rats developed a short-lived infection of three weeks’ duration and ducks did not support infection. This study has shown for the first time that a brachylaimid can infect a wide host range of birds, mammals and reptiles in nature.

  5. [Susceptibility of natural populations of dengue vector to insecticides in Colombia].

    Science.gov (United States)

    Santacoloma, Liliana; Chaves, Bernardo; Brochero, Helena Luisa

    2012-09-01

    Physiological resistance of natural population of Aedes aegypti to insecticides contribute to the decreased efficacy of chemical control as a main control strategy during dengue outbreaks. The susceptibility status of Ae. aegypti was assessed for the carbamate propoxur, the adulticide malathion and the larvicide temephos on 13 natural populations of Ae. aegypti immature forms were taken from 8 Colombian localities. These included the following: Bucaramanga (1), Sabana de Torres (2), Girardot (2), La Mesa (2), Villavicencio (2), Puerto López (2), San José del Guaviare (1) and Florencia (1). Susceptibility tests mainly consisted of the standardized bioassay outlined by WHO (1981) and CDC bottles (1998). Colorimetric tests were undertaken to determine enzyme levels possibly responsible for the reduction of susceptibility to organophosphate and carbamate insecticides. All specimens demonstrated susceptibility to malathion and propoxur insecticides. Four of the 13 populations revealed susceptibility to the temephos larvicide. Seven of 11 populations showed a limited increase in values for nonspecific esterase enzymes. The Bucaramanga population was the only one which showed an increase in the cytochrome P450 monooxygenases enzymes. Neither population was found with modified acetilcolinesterase. The widespread susceptibility to organophosphates used as adulticides indicated that malathion, the most used insecticide in Colombia, remains effective in interrupting the transmission of dengue. Physiological resistance to insecticides occurring in communities of a single township proved to be a localized phenomenon.

  6. Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods

    Science.gov (United States)

    Jenkins, William G.; Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2018-01-01

    The importance of the role that parasites play in ecological communities is becoming increasingly apparent. However much about their impact on hosts and thus populations and communities remains poorly understood. A common observation in wild populations is high variation in levels of parasite infestation among hosts. While high variation could be due to chance encounter, there is increasing evidence to suggest that such patterns are due to a combination of environmental, host, and parasite factors. In order to examine the role of host condition on parasite infection, rates of Gnathia marleyi infestation were compared between experimentally injured and uninjured fish hosts. Experimental injuries were similar to the minor wounds commonly observed in nature. The presence of the injury significantly increased the probability of infestation by gnathiids. However, the level of infestation (i.e., total number of gnathiid parasites) for individual hosts, appeared to be unaffected by the treatment. The results from this study indicate that injuries obtained by fish in nature may carry the additional cost of increased parasite burden along with the costs typically associated with physical injury. These results suggest that host condition may be an important factor in determining the likelihood of infestation by a common coral reef fish ectoparasite, G. marleyi.

  7. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone

    2017-12-20

    In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether-and to what extent-ecological interactions can mediate species\\' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.

  8. Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection

    NARCIS (Netherlands)

    Anche, M.T.

    2016-01-01

    Mahlet Teka Anche. (2016). Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection. PhD thesis, Wageningen University, the Netherlands

    Genetic approaches aiming to reduce the prevalence of an infection in a

  9. Role of NETs in the difference in host susceptibility to Toxoplasma gondii between sheep and cattle.

    Science.gov (United States)

    Yildiz, Kader; Gokpinar, Sami; Gazyagci, Aycan Nuriye; Babur, Cahit; Sursal, Neslihan; Azkur, Ahmet Kursat

    2017-07-01

    The main aim of this study was to compare extracellular traps (NETs) formation by polymorphonuclear neutrophils (PMNs) of cattle and sheep when exposed to T. gondii tachyzoites in vitro. The effects of parasite concentrations and different incubation periods on NETs development in cattle and sheep PMNs were studied. The effect of NET structures on host cell invasion by tachyzoites was also studied. This is the first report of NETs development by sheep and cattle PMNs against T. gondii in vitro. T. gondii-induced extracellular DNA production from PMNs was dependent on tachyzoite concentrations and incubation time in both sheep and cattle. Many nuclear and cytoplasmic changes were observed in sheep and cattle PMNs after exposure to T. gondii tachyzoites. The typical appearance of NETs, with MPO, NE and histone (H3) attached to extracellular DNA, was observed. Tachyzoites were entrapped within this structure. Myeloperoxidase (MPO) activity was higher in the cattle PMN-tachyzoite co-cultures than sheep. NETs structures released from sheep PMNs caused mechanical immobilisation of T. gondii tachyzoites, however, NET structures released from cattle PMNs may be lethal to tachyzoites. Bovine MPO may have a lethal effect on T. gondii tachyzoites in vitro during a 3h incubation. Besides other mechanisms that effect on host susceptibility to T. gondii in sheep and cattle, extracellular traps formation as a part of immunological reactions may be play a role in host susceptibility to T. gondii. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio

    2014-01-01

    in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme...... analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were...... examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates...

  11. Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts.

    Directory of Open Access Journals (Sweden)

    Luciana de Lima Ferreira

    Full Text Available Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts.

  12. Myxoma virus in the European rabbit: interactions between the virus and its susceptible host.

    Science.gov (United States)

    Stanford, Marianne M; Werden, Steven J; McFadden, Grant

    2007-01-01

    Myxoma virus (MV) is a poxvirus that evolved in Sylvilagus lagomorphs, and is the causative agent of myxomatosis in European rabbits (Oryctolagus cuniculus). This virus is not a natural pathogen of O. cuniculus, yet is able to subvert the host rabbit immune system defenses and cause a highly lethal systemic infection. The interaction of MV proteins and the rabbit immune system has been an ideal model to help elucidate host/poxvirus interactions, and has led to a greater understanding of how other poxvirus pathogens are able to cause disease in their respective hosts. This review will examine how MV causes myxomatosis, by examining a selection of the identified immunomodulatory proteins that this virus expresses to subvert the immune and inflammatory pathways of infected rabbit hosts.

  13. Host-parasite interactions in sympatric and allopatric populations of European bitterling.

    Science.gov (United States)

    Francová, Kateřina; Ondračková, Markéta

    2011-09-01

    Susceptibility to parasite infection was examined in a field experiment for four populations of 0+ juvenile European bitterling (Rhodeus amarus): one sympatric to local parasite fauna, one allopatric, and two hybrid populations. Significantly higher parasite abundance was recorded in the allopatric bitterling population, suggesting a maladaptation of parasites to their sympatric host. Type of parasite life cycle played an important role in host-parasite interactions. While the abundance of allogenic species between populations was comparable, a significant difference was found in abundance of autogenic parasite species between fish populations, with the allopatric population more infected. These results correspond with a prediction of higher dispersion probability and higher gene flow among geographically distant populations of allogenic species as compared to autogenic species. Increased susceptibility to parasites that do not occur within the natural host's geographical distribution was found in the allopatric host, but only for autogenic species. A difference in infection susceptibility was detected among populations of early-hatched bitterling exposed to infection during a period of high parasite abundance and richness in the environment. Differences in parasite abundance and species diversity among populations diminished, however, with increasing time of exposure. No difference was found within late-hatched populations, probably due to a lower probability of infection in late-hatched cohorts.

  14. Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals.

    Science.gov (United States)

    Suzuki, Taichi A

    2017-10-01

    Recent studies in model organisms have shown that compositional variation in the microbiome can affect a variety of host phenotypes including those related to digestion, development, immunity, and behavior. Natural variation in the microbiome within and between natural populations and species may also affect host phenotypes and thus fitness in the wild. Here, I review recent evidence that compositional variation in the microbiome may affect host phenotypes and fitness in wild mammals. Studies over the last decade indicate that natural variation in the mammalian microbiome may be important in the assistance of energy uptake from different diet types, detoxification of plant secondary compounds, protection from pathogens, chemical communication, and behavior. I discuss the importance of combining both field observations and manipulative experiments in a single system to fully characterize the functions and fitness effects of the microbiome. Finally, I discuss the evolutionary consequences of mammal-microbiome associations by proposing a framework to test how natural selection on hosts is mediated by the microbiome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation of susceptible dog hosts is reduced by slow release of semiochemicals from a less susceptible host.

    Science.gov (United States)

    de Oliveira Filho, Jaires Gomes; Ferreira, Lorena Lopes; Sarria, André Lucio Franceschini; Pickett, John A; Birkett, Michael A; Mascarin, Gabriel Moura; de León, Adalberto A Pérez; Borges, Lígia Miranda Ferreira

    2017-01-01

    Domestic dog breeds are hosts for the brown dog tick, Rhipicephalus sanguineus sensu lato, but infestation levels vary among breeds. Beagles are less susceptible to tick infestations than English cocker spaniels due to enhanced production of 2-hexanone and benzaldehyde that act as volatile tick repellents. We report the use of prototype slow-release formulations of these compounds to reduce the burden of R. sanguineus s. l. on English cocker spaniel dogs. Twelve dogs were randomly assigned to two groups with six dogs each. The treated group received collars with slow-release formulations of the compounds attached, while the control group received collars with clean formulations attached. Five environmental infestations were performed, with the number of ticks (at all stages) on the dogs being counted twice a day for 45days. The counts on the number of tick stages found per dog were individually fitted to linear mixed effects models with repeated measures and normal distribution for errors. The mean tick infestation in the treated group was significantly lower than in the control group. For larvae and nymphs, a decrease in tick infestation was observed at the fifth count, and for adults, lower average counts were observed in all counts. The compounds did not interfere with the distribution of the ticks on the body of the dogs, as a similar percentage of ticks was found on the anterior half of the dogs (54.5% for the control group and 56.2% for the treated group). The biological and reproductive parameters of the ticks were not affected by the repellents. This study highlights for the first time the potential use of a novel allomone (repellent)-based formulation for reduction of tick infestation on susceptible dogs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. [Validation of the modified algorithm for predicting host susceptibility to viruses taking into account susceptibility parameters of primary target cell cultures and natural immunity factors].

    Science.gov (United States)

    Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A

    2010-01-01

    The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.

  17. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases.

    Science.gov (United States)

    Antonissen, Gunther; Martel, An; Pasmans, Frank; Ducatelle, Richard; Verbrugghe, Elin; Vandenbroucke, Virginie; Li, Shaoji; Haesebrouck, Freddy; Van Immerseel, Filip; Croubels, Siska

    2014-01-28

    Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well.

  18. Natural invertebrate hosts of iridoviruses (Iridoviridae)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Trevor [Instituto de Ecologia A.C., Veracruz (Mexico)]. E-mail: trevor.williams@inecol.edu.mx

    2008-11-15

    Invertebrate iridescent viruses (IIVs) are icosahedral DNA viruses that infect invertebrates, mainly insects and terrestrial isopods, in damp and aquatic habitats. Exhaustive searches of databases resulted in the identification of 79 articles reporting 108 invertebrate species naturally infected by confirmed or putative iridoviruses. Of these, 103 (95%) were arthropods and the remainder were molluscs, an annelid worm and a nematode. Nine species were from marine habitats. Of the 99 non-marine species, 49 were from terrestrial habitats and 50 were aquatic, especially the aquatic stages of Diptera (44 species). The abundance of records from species of Aedes, Ochlerotatus and Psorophora contrasts markedly with a paucity of records from species of Anopheles, Culex and Culiseta. Records from terrestrial isopods are numerous (19 species), although the diversity of IIVs that infect them is mostly unstudied. IIV infections have been reported from every continent, except Antarctica, but there are few records from Africa, southern Asia and Latin America. Most reports describe patent IIV infections as rare whereas inapparent (covert) infection may be common in certain species. The relationship between particle size and iridescent colour of the host is found to be consistent with optical theory in the great majority of cases. Only 24 reported IIVs from insect hosts have partial characterization data and only two have been subjected to complete genome sequencing. I show that the rate of publication on IIVs has slowed from 1990 to the present, and I draw a number of conclusions and suggestions from the host list and make recommendations for future research efforts. (author)

  19. Natural invertebrate hosts of iridoviruses (Iridoviridae)

    International Nuclear Information System (INIS)

    Williams, Trevor

    2008-01-01

    Invertebrate iridescent viruses (IIVs) are icosahedral DNA viruses that infect invertebrates, mainly insects and terrestrial isopods, in damp and aquatic habitats. Exhaustive searches of databases resulted in the identification of 79 articles reporting 108 invertebrate species naturally infected by confirmed or putative iridoviruses. Of these, 103 (95%) were arthropods and the remainder were molluscs, an annelid worm and a nematode. Nine species were from marine habitats. Of the 99 non-marine species, 49 were from terrestrial habitats and 50 were aquatic, especially the aquatic stages of Diptera (44 species). The abundance of records from species of Aedes, Ochlerotatus and Psorophora contrasts markedly with a paucity of records from species of Anopheles, Culex and Culiseta. Records from terrestrial isopods are numerous (19 species), although the diversity of IIVs that infect them is mostly unstudied. IIV infections have been reported from every continent, except Antarctica, but there are few records from Africa, southern Asia and Latin America. Most reports describe patent IIV infections as rare whereas inapparent (covert) infection may be common in certain species. The relationship between particle size and iridescent colour of the host is found to be consistent with optical theory in the great majority of cases. Only 24 reported IIVs from insect hosts have partial characterization data and only two have been subjected to complete genome sequencing. I show that the rate of publication on IIVs has slowed from 1990 to the present, and I draw a number of conclusions and suggestions from the host list and make recommendations for future research efforts. (author)

  20. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  1. Relationships between host viremia and vector susceptibility for arboviruses.

    Science.gov (United States)

    Lord, Cynthia C; Rutledge, C Roxanne; Tabachnick, Walter J

    2006-05-01

    Using a threshold model where a minimum level of host viremia is necessary to infect vectors affects our assessment of the relative importance of different host species in the transmission and spread of these pathogens. Other models may be more accurate descriptions of the relationship between host viremia and vector infection. Under the threshold model, the intensity and duration of the viremia above the threshold level is critical in determining the potential numbers of infected mosquitoes. A probabilistic model relating host viremia to the probability distribution of virions in the mosquito bloodmeal shows that the threshold model will underestimate the significance of hosts with low viremias. A probabilistic model that includes avian mortality shows that the maximum number of mosquitoes is infected by feeding on hosts whose viremia peaks just below the lethal level. The relationship between host viremia and vector infection is complex, and there is little experimental information to determine the most accurate model for different arthropod-vector-host systems. Until there is more information, the ability to distinguish the relative importance of different hosts in infecting vectors will remain problematic. Relying on assumptions with little support may result in erroneous conclusions about the importance of different hosts.

  2. Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)?

    Science.gov (United States)

    Půza, Vladimír; Mrácek, Zdenĕk

    2010-05-01

    Living and freeze-killed natural and laboratory hosts, with different susceptibility to entomopathogenic nematodes, were exposed to the larvae of Steinernema affine and Steinernema kraussei in two different experimental arenas (Eppendorf tubes, Petri dishes), and the success of the colonisation and eventual progeny production were observed. Both nematodes were able to colonise both living and dead larvae of Galleria mellonella (Lepidoptera) and adult Blatella germanica (Blattodea) even though the progeny production in dead hosts was lower on average. Living carabid beetles, Poecilus cupreus, and elaterid larvae (Coleoptera) were resistant to the infection, however, both nematodes were able to colonise and multiply in several dead P. cupreus and in a majority of dead elaterid larvae. By scavenging, EPNs can utilise cadavers of insects that are naturally resistant to EPN infection, and so broaden their host range. (c) 2010 Elsevier Inc. All rights reserved.

  3. Moellerella wisconsensis: identification, natural antibiotic susceptibility and its dependency on the medium applied.

    Science.gov (United States)

    Stock, Ingo; Falsen, Enevold; Wiedemann, Bernd

    2003-01-01

    The present study establishes a data compilation on biochemical features and natural antibiotic susceptibilities of Moellerella wisconsensis strains. 17 moellerellae isolated from humans (n = 11), food (n = 5) and water (n = 1) were tested. Identification was carried out using two commercially available systems and conventional tests. MIC determinations of 74 antibiotics were performed applying a microdilution procedure in Cation-adjusted Mueller Hinton broth and IsoSensitest broth. M. wisconsensis was naturally sensitive to doxycycline, minocycline, all tested aminoglycosides, numerous beta-lactams, all fluoroquinolones, folate-pathway inhibitors, chloramphenicol and nitrofurantoin. Natural resistance was found with oxacillin, penicillin G, all tested macrolides, lincomycin, streptogramins, ketolides, glycopeptides, fusidic acid, linezolid and rifampicin. Medium-dependent differences in susceptibility affecting clinical assessment criteria were seen with tetracycline, clindamycin and fosfomycin. From the data of the present study it is possible that some moellerellae are misidentified as Klebsiella pneumoniae subsp. ozaenae.

  4. The impact of expert knowledge on natural hazard susceptibility assessment using spatial multi-criteria analysis

    Science.gov (United States)

    Karlsson, Caroline; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve

    2016-04-01

    Road and railway networks are one of the key factors to a country's economic growth. Inadequate infrastructural networks could be detrimental to a society if the transport between locations are hindered or delayed. Logistical hindrances can often be avoided whereas natural hindrances are more difficult to control. One natural hindrance that can have a severe adverse effect on both infrastructure and society is flooding. Intense and heavy rainfall events can trigger other natural hazards such as landslides and debris flow. Disruptions caused by landslides are similar to that of floods and increase the maintenance cost considerably. The effect on society by natural disasters is likely to increase due to a changed climate with increasing precipitation. Therefore, there is a need for risk prevention and mitigation of natural hazards. Determining susceptible areas and incorporating them in the decision process may reduce the infrastructural harm. Spatial multi-criteria analysis (SMCA) is a part of decision analysis, which provides a set of procedures for analysing complex decision problems through a Geographic Information System (GIS). The objective and aim of this study was to evaluate the usefulness of expert judgements for inundation, landslide and debris flow susceptibility assessments through a SMCA approach using hydrological, geological and land use factors. The sensitivity of the SMCA model was tested in relation to each perspective and impact on the resulting susceptibility. A least cost path function was used to compare new alternative road lines with the existing ones. This comparison was undertaken to identify the resulting differences in the susceptibility assessments using expert judgements as well as historic incidences of flooding and landslides in order to discuss the usefulness of the model in road planning.

  5. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Gastrointestinal helminths may affect host susceptibility to anthrax through seasonal immune trade-offs.

    Science.gov (United States)

    Cizauskas, Carrie A; Turner, Wendy C; Wagner, Bettina; Küsters, Martina; Vance, Russell E; Getz, Wayne M

    2014-11-12

    Most vertebrates experience coinfections, and many pathogen-pathogen interactions occur indirectly through the host immune system. These interactions are particularly strong in mixed micro-macroparasite infections because of immunomodulatory effects of helminth parasites. While these trade-offs have been examined extensively in laboratory animals, few studies have examined them in natural systems. Additionally, many wildlife pathogens fluctuate seasonally, at least partly due to seasonal host immune changes. We therefore examined seasonality of immune resource allocation, pathogen abundance and exposure, and interactions between infections and immunity in plains zebra (Equus quagga) in Etosha National Park (ENP), Namibia, a system with strongly seasonal patterns of gastrointestinal (GI) helminth infection intensity and concurrent anthrax outbreaks. Both pathogens are environmentally transmitted, and helminth seasonality is driven by environmental pressures on free living life stages. The reasons behind anthrax seasonality are currently not understood, though anthrax is less likely directly driven by environmental factors. We measured a complex, interacting set of variables and found evidence that GI helminth infection intensities, eosinophil counts, IgE and IgGb antibody titers, and possibly IL-4 cytokine signaling were increased in wetter seasons, and that ectoparasite infestations and possibly IFN-γ cytokine signaling were increased in drier seasons. Monocyte counts and anti-anthrax antibody titers were negatively associated with wet season eosinophilia, and monocytes were negatively correlated with IgGb and IgE titers. Taken together, this supports the hypothesis that ENP wet seasons are characterized by immune resource allocation toward Th-2 type responses, while Th1-type immunity may prevail in drier seasons, and that hosts may experience Th1-Th2 trade-offs. We found evidence that this Th2-type resource allocation is likely driven by GI parasite infections

  7. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  8. Admittance, Conductance, Reactance and Susceptance of New Natural Fabric Grewia Tilifolia

    Directory of Open Access Journals (Sweden)

    V. V. RAMANA C. H.

    2010-08-01

    Full Text Available This article deals with the admittance, conductance, reactance and susceptance of new natural fabric Grewia tilifolia. Grewia tilifolia is a tree found in India, Sri Lanka, Tropical Africa, Burma and Nepal. The fabric samples of Grewia tilifolia were extracted from the bark of the tree. The admittance, conductance, reactance and susceptance were measured as a function of frequency in the range from 1 kHz to 500 kHz, temperature in the range from 30 °C to 210 °C. Using an LCR Meter (HIOKI 3532-50 LCR Hi Tester, Koizumi, Japan the above parameters were measured. Grewia tilifolia is a subtropical medicinal tree; the stem bark is widely used in traditional Indian medicines to cure pneumonia, bronchitis and urinary infectious disorders.

  9. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Science.gov (United States)

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  10. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  11. OAS1 polymorphisms are associated with susceptibility to West Nile encephalitis in horses.

    Directory of Open Access Journals (Sweden)

    Jonathan J Rios

    Full Text Available West Nile virus, first identified within the United States in 1999, has since spread across the continental states and infected birds, humans and domestic animals, resulting in numerous deaths. Previous studies in mice identified the Oas1b gene, a member of the OAS/RNASEL innate immune system, as a determining factor for resistance to West Nile virus (WNV infection. A recent case-control association study described mutations of human OAS1 associated with clinical susceptibility to WNV infection. Similar studies in horses, a particularly susceptible species, have been lacking, in part, because of the difficulty in collecting populations sufficiently homogenous in their infection and disease states. The equine OAS gene cluster most closely resembles the human cluster, with single copies of OAS1, OAS3 and OAS2 in the same orientation. With naturally occurring susceptible and resistant sub-populations to lethal West Nile encephalitis, we undertook a case-control association study to investigate whether, similar to humans (OAS1 and mice (Oas1b, equine OAS1 plays a role in resistance to severe WNV infection. We identified naturally occurring single nucleotide mutations in equine (Equus caballus OAS1 and RNASEL genes and, using Fisher's Exact test, we provide evidence that mutations in equine OAS1 contribute to host susceptibility. Virtually all of the associated OAS1 polymorphisms were located within the interferon-inducible promoter, suggesting that differences in OAS1 gene expression may determine the host's ability to resist clinical manifestations associated with WNV infection.

  12. A multidirectional non-cell autonomous control and a genetic interaction restricting tobacco etch virus susceptibility in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suresh Gopalan

    2007-10-01

    Full Text Available Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery.An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV, a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement.The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.

  13. Natural losses in tuber weight during storage as a predictor of susceptibility to post-wounding blackspot in advanced potato breeding materials.

    Science.gov (United States)

    Grudzińska, Magdalena; Barbaś, Piotr

    2017-08-01

    In potatoes, mechanical damage and the formation of black spots in the tuber flesh cause substantial economic losses and degradation of quality. The aim of this study was to determine the susceptibility of new potato genotypes (178 elite breeding lines) to blackspot damage after 7 months' storage at 5 and 8 °C, and to examine whether this susceptibility correlated with natural losses. The lowest index of blackspot damage after harvest was found in genotypes from the mid-late group of earliness and low-susceptibility group, and after storage in genotypes from the early group of earliness and low-susceptibility group. After storage at 5 °C tubers were characterized by a lower susceptibility to bruising compared with tubers stored at 8 °C. The storage temperature significantly affected the natural losses in advanced potato breeding materials after storage in the case of all earliness and susceptibility groups. The highest susceptibility to blackspot damage and natural losses occurred in potatoes stored at 8 °C (r = 0.85-0.91). Such a relationship was not observed in potatoes stored at 5 °C. For potato tubers susceptible to the formation of after-wounding blackspot, the natural losses arising as a result of storage at 8 °C can be used as a subjective method to evaluate the susceptibility of potatoes to the formation of black spots in the flesh. However, this observation needs further studies and stronger proof of this theory. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    Science.gov (United States)

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  15. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    Directory of Open Access Journals (Sweden)

    Jim Nygren

    Full Text Available We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp. and domesticated wheat (Triticum spp. and Wheat dwarf virus (WDV. The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i continuous reduction in growth over time, ii weak response at an early stage of plant development but a much stronger response at a later stage, and iii remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in

  16. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion.

    Science.gov (United States)

    Haley, Nicholas J; Rielinger, Rachel; Davenport, Kristen A; O'Rourke, Katherine; Mitchell, Gordon; Richt, Jürgen A

    2017-11-01

    In mammals, susceptibility to prion infection is primarily modulated by the host's cellular prion protein (PrP C ) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrP C amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrP C allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrP C alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrP C substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility - permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted.

  17. Host and Potential Vector Susceptibility to an Emerging Orbivirus in the United States: Epizootic Hemorrhagic Disease Virus Serotype 6.

    Science.gov (United States)

    Ruder, M G; Stallknecht, D E; Allison, A B; Mead, D G; Carter, D L; Howerth, E W

    2016-05-01

    Epizootic hemorrhagic disease viruses (EHDVs) are orbiviruses transmitted by Culicoides biting midges to domestic and wild ruminants. EHDV-1 and EHDV-2 are endemic in the United States, where epizootic hemorrhagic disease is the most significant viral disease of white-tailed deer (WTD;Odocoileus virginianus) and reports of epizootic hemorrhagic disease in cattle are increasing. In 2006, a reassortant EHDV-6 was isolated from dead WTD in Indiana and has been detected each subsequent year over a wide geographic region. Since EHDV-6 is not a historically endemic serotype in the United States, it is important to understand infection outcome in potential hosts. Specifically, we aimed to evaluate the pathogenicity of the virus in 2 primary US ruminant hosts (WTD and cattle) and the susceptibility of a confirmed US vector (Culicoides sonorensis). Five WTD and 4 cattle were inoculated with >10(6)TCID50EHDV-6 by intradermal and subcutaneous injection. All 5 WTD exhibited moderate to severe disease, and 3 died. Viremia was first detected 3 to 5 days postinfection (dpi) with surviving animals seroconverting by 10 dpi. Two of 4 inoculated cattle had detectable viremia, 5 to 10 dpi and 7 to 24 dpi, respectively. No clinical, hematologic, or pathologic abnormalities were observed. Antibodies were detected by 10 dpi in 3 of 4 cows.C. sonorensis were fed on WTD blood spiked with EHDV-6 and held for 4 to 14 days postfeeding at 25°C. From 4 to 14 days postfeeding, 19 of 171 midges were virus isolation positive and 6 of 171 had ≥10(2.7)TCID50EHDV-6. Although outcomes varied, these studies demonstrate the susceptibility of ruminant and vector hosts in the United States for this recently emerged EHDV serotype. © The Author(s) 2015.

  18. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Sandra D Melman

    2009-08-01

    Full Text Available The near exclusive use of praziquantel (PZQ for treatment of human schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes.We measured susceptibility to PZQ of isolates of Schistosoma mansoni obtained from patients from Kisumu, Kenya continuously exposed to infection as a consequence of their occupations as car washers or sand harvesters. We used a an in vitro assay with miracidia, b an in vivo assay targeting adult worms in mice and c an in vitro assay targeting adult schistosomes perfused from mice. In the miracidia assay, in which miracidia from human patients were exposed to PZQ in vitro, reduced susceptibility was associated with previous treatment of the patient with PZQ. One isolate ("KCW" that was less susceptible to PZQ and had been derived from a patient who had never fully cured despite multiple treatments was studied further. In an in vivo assay of adult worms, the KCW isolate was significantly less susceptible to PZQ than two other isolates from natural infections in Kenya and two lab-reared strains of S. mansoni. The in vitro adult assay, based on measuring length changes of adults following exposure to and recovery from PZQ, confirmed that the KCW isolate was less susceptible to PZQ than the other isolates tested. A sub-isolate of KCW maintained separately and tested after three years was susceptible to PZQ, indicative that the trait of reduced sensitivity could be lost if selection was not maintained.Isolates of S. mansoni from some patients in Kisumu have lower susceptibility to PZQ, including one from a patient who was never fully cured after repeated rounds of treatment administered over several years. As use of PZQ continues, continued selection for worms with diminished susceptibility is possible, and the probability of emergence of resistance will increase as large reservoirs of untreated worms diminish. The potential for rapid emergence of resistance should be an important

  19. A pox on thee! Manipulation of the host immune system by myxoma virus and implications for viral-host co-adaptation.

    Science.gov (United States)

    Zúñiga, Martha C

    2002-09-01

    The poxviruses have evolved a diverse array of proteins which serve to subvert innate and adaptive host responses that abort or at least limit viral infections. Myxoma virus and its rabbit host are considered to represent an ideal poxvirus-host system in which to study the effects of these immunomodulatory proteins. Studies of laboratory rabbits (Oryctolagus cuniculus) infected with gene knockout variants of myxoma virus have provided compelling evidence that several myxoma virus gene products contribute to the pathogenic condition known as myxomatosis. However, myxomatosis, which is characterized by skin lesions, systemic immunosuppression, and a high mortality rate, does not occur in the virus' natural South American host, Sylvilogus brasiliensis. Moreover, in Australia where myxoma virus was willfully introduced to control populations of O. cuniculus, myxomatosis-resistant rabbits emerged within a year of myxoma virus introduction into the field. In this review I discuss the characterized immunomodulatory proteins of myxoma virus, their biochemical properties, their pathogenic effects in laboratory rabbits, the role of the host immune system in the susceptibility or resistance to myxomatosis, and the evidence that immunomodulatory genes may have been attenuated during the co-adaptation of myxoma virus and O. cuniculus in Australia.

  20. Host specific glycans are correlated with susceptibility to infection by lagoviruses, but not with their virulence.

    Science.gov (United States)

    Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques

    2017-11-29

    The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host

  1. Host age modulates parasite infectivity, virulence and reproduction.

    Science.gov (United States)

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  2. Host specificity in bat ectoparasites: a natural experiment.

    Science.gov (United States)

    Seneviratne, Sampath S; Fernando, H Chandrika; Udagama-Randeniya, Preethi V

    2009-07-15

    We undertook a field study to determine patterns of specialisation of ectoparasites in cave-dwelling bats in Sri Lanka. The hypothesis tested was that strict host specificity (monoxeny) could evolve through the development of differential species preferences through association with the different host groups. Three species of cave-dwelling bats were chosen to represent a wide range of host-parasite associations (monoxeny to polyxeny), and both sympatric and allopatric roosting assemblages. Of the eight caves selected, six caves were "allopatric" roosts where two of each housed only one of the three host species examined: Rousettus leschenaulti (Pteropodidae), Rhinolophus rouxi and Hipposideros speoris (Rhinolophidae). The remaining two caves were "sympatric" roosts and housed all three host species. Thirty bats of each species were examined for ectoparasites in each cave, which resulted in a collection of nycteribiid and streblid flies, an ischnopsyllid bat flea, argasid and ixodid ticks, and mites belonging to three families. The host specificity of bat parasites showed a trend to monoxeny in which 70% of the 30 species reported were monoxenous. Odds ratios derived from chi(2)-tests revealed two levels of host preferences in less-specific parasites (i) the parasite was found on two host species under conditions of both host sympatry and host allopatry, with a preference for a single host in the case of host sympatry and (ii) the preference for a single host was very high, hence under conditions of host sympatry, it was confined to the preferred host only. However, under conditions of host allopatry, it utilized both hosts. There appears to be an increasing prevalence in host preferences of the parasites toward confinement to a single host species. The ecological isolation of the bat hosts and a long history of host-parasite co-existence could have contributed to an overall tendency of bat ectoparasites to become specialists, here reflected in the high percentage

  3. Genetic variation for maternal effects on parasite susceptibility.

    Science.gov (United States)

    Stjernman, M; Little, T J

    2011-11-01

    The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low-food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  4. A precipitation-induced landslide susceptibility model for natural gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Jason P. [Fugro William Lettis and Associates, Inc., Valencia, California (United States); Slayter, David L.; Hitchcock, Chris S. [Fugro William Lettis and Associates, Inc., Walnut Creek, California (United States); Lee, Chih-Hung [Pacific Gas and Electric Company, Gas Systems Integrity Management, Walnut Creek, California (United States)

    2010-07-01

    Landslides related to heavy rainfall can cause extensive damage to natural gas transmission pipelines. Fugro William Lettis and Associates Inc. have developed and implemented a geographic information system (GIS) model that evaluates near real-time precipitation-induced landslide susceptibility. The model incorporates state-wide precipitation data and geologically-based landslide classifications to produce rapid landslide risk evaluation for Pacific Gas and Electric Company's (PGandE) gas transmission system during winter rain storms in California. The precipitation data include pre-storm event quantitative precipitation forecasts (QPF) and post-storm event quantitative precipitation estimate (QPE) from the United States National Oceanic and Atmospheric Administration (NOAA). The geologic classifications are based on slope, susceptible geologic formations, and the locations of historic or known landslide occurrences. Currently the model is calibrated using qualitative measures. This paper describes the development of the model algorithm and input data, model results, calibration efforts, and the on-going research and landslide collection warranted for continued refinement of the model.

  5. On the definition and utilization of heritable variation among hosts in reproduction ratio R0 for infectious diseases.

    Science.gov (United States)

    Anche, M T; de Jong, M C M; Bijma, P

    2014-10-01

    Infectious diseases have a major role in evolution by natural selection and pose a worldwide concern in livestock. Understanding quantitative genetics of infectious diseases, therefore, is essential both for understanding the consequences of natural selection and for designing artificial selection schemes in agriculture. The basic reproduction ratio, R0, is the key parameter determining risk and severity of infectious diseases. Genetic improvement for control of infectious diseases in host populations should therefore aim at reducing R0. This requires definitions of breeding value and heritable variation for R0, and understanding of mechanisms determining response to selection. This is challenging, as R0 is an emergent trait arising from interactions among individuals in the population. Here we show how to define breeding value and heritable variation for R0 for genetically heterogeneous host populations. Furthermore, we identify mechanisms determining utilization of heritable variation for R0. Using indirect genetic effects, next-generation matrices and a SIR (Susceptible, Infected and Recovered) model, we show that an individual's breeding value for R0 is a function of its own allele frequencies for susceptibility and infectivity and of population average susceptibility and infectivity. When interacting individuals are unrelated, selection for individual disease status captures heritable variation in susceptibility only, yielding limited response in R0. With related individuals, however, there is a secondary selection process, which also captures heritable variation in infectivity and additional variation in susceptibility, yielding substantially greater response. This shows that genetic variation in susceptibility represents an indirect genetic effect. As a consequence, response in R0 increased substantially when interacting individuals were genetically related.

  6. Sporadic Creutzfeldt-Jakob Disease: Prion Pathology in Medulla Oblongata-Possible Routes of Infection and Host Susceptibility.

    Science.gov (United States)

    Iacono, Diego; Ferrari, Sergio; Gelati, Matteo; Zanusso, Gianluigi; Mariotto, Sara; Monaco, Salvatore

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disorder, is characterized by remarkable phenotypic variability, which is influenced by the conformation of the pathologic prion protein and the methionine/valine polymorphic codon 129 of the prion protein gene. While the etiology of sCJD remains unknown, it has been hypothesized that environmental exposure to prions might occur through conjunctival/mucosal contact, oral ingestion, inhalation, or simultaneous involvement of the olfactory and enteric systems. We studied 21 subjects with definite sCJD to assess neuropathological involvement of the dorsal motor nucleus of the vagus and other medullary nuclei and to evaluate possible associations with codon 129 genotype and prion protein conformation. The present data show that prion protein deposition was detected in medullary nuclei of distinct sCJD subtypes, either valine homozygous or heterozygous at codon 129. These findings suggest that an "environmental exposure" might occur, supporting the hypothesis that external sources of contamination could contribute to sCJD in susceptible hosts. Furthermore, these novel data could shed the light on possible causes of sCJD through a "triple match" hypothesis that identify environmental exposure, host genotype, and direct exposure of specific anatomical regions as possible pathogenetic factors.

  7. Repeated Schistosoma japonicum infection following treatment in two cohorts: evidence for host susceptibility to helminthiasis?

    Directory of Open Access Journals (Sweden)

    Elizabeth J Carlton

    Full Text Available In light of multinational efforts to reduce helminthiasis, we evaluated whether there exist high-risk subpopulations for helminth infection. Such individuals are not only at risk of morbidity, but may be important parasite reservoirs and appropriate targets for disease control interventions.We followed two longitudinal cohorts in Sichuan, China to determine whether there exist persistent human reservoirs for the water-borne helminth, Schistosoma japonicum, in areas where treatment is ongoing. Participants were tested for S. japonicum infection at enrollment and two follow-up points. All infections were promptly treated with praziquantel. We estimated the ratio of the observed to expected proportion of the population with two consecutive infections at follow-up. The expected proportion was estimated using a prevalence-based model and, as highly exposed individuals may be most likely to be repeatedly infected, a second model that accounted for exposure using a data adaptive, machine learning algorithm. Using the prevalence-based model, there were 1.5 and 5.8 times more individuals with two consecutive infections than expected in cohorts 1 and 2, respectively (p<0.001 in both cohorts. When we accounted for exposure, the ratio was 1.3 (p = 0.013 and 2.1 (p<0.001 in cohorts 1 and 2, respectively.We found clustering of infections within a limited number of hosts that was not fully explained by host exposure. This suggests some hosts may be particularly susceptible to S. japonicum infection, or that uncured infections persist despite treatment. We propose an explanatory model that suggests that as cercarial exposure declines, so too does the size of the vulnerable subpopulation. In low-prevalence settings, interventions targeting individuals with a history of S. japonicum infection may efficiently advance disease control efforts.

  8. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  9. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-01-01

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  10. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li

    2015-03-15

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  11. Gray wolf (Canis lupus) is a natural definitive host for Neospora caninum

    Science.gov (United States)

    The gray wolf (Canis lupus) was found to be a new natural definitive host for Neospora caninum. This finding is based on the recovery of Neospora-like oocysts from the feces of 3 of 73 wolves from Minnesota examined at necropsy, and on successful amplification of N. caninum-specific sequences from ...

  12. Comparative evidence for a link between Peyer's patch development and susceptibility to transmissible spongiform encephalopathies

    Directory of Open Access Journals (Sweden)

    Rhind Susan M

    2006-01-01

    Full Text Available Abstract Background Epidemiological analyses indicate that the age distribution of natural cases of transmissible spongiform encephalopathies (TSEs reflect age-related risk of infection, however, the underlying mechanisms remain poorly understood. Using a comparative approach, we tested the hypothesis that, there is a significant correlation between risk of infection for scrapie, bovine spongiform encephalopathy (BSE and variant CJD (vCJD, and the development of lymphoid tissue in the gut. Methods Using anatomical data and estimates of risk of infection in mathematical models (which included results from previously published studies for sheep, cattle and humans, we calculated the Spearman's rank correlation coefficient, rs, between available measures of Peyer's patch (PP development and the estimated risk of infection for an individual of the corresponding age. Results There was a significant correlation between the measures of PP development and the estimated risk of TSE infection; the two age-related distributions peaked in the same age groups. This result was obtained for each of the three host species: for sheep, surface area of ileal PP tissue vs risk of infection, rs = 0.913 (n = 19, P s = 0.933 (n = 19, P s = 0.693 (n = 94, P s = 0.384 (n = 46, P = 0.008. In addition, when changes in exposure associated with BSE-contaminated meat were accounted for, the two age-related patterns for humans remained concordant: rs = 0.360 (n = 46, P = 0.014. Conclusion Our findings suggest that, for sheep, cattle and humans alike there is an association between PP development (or a correlate of PP development and susceptibility to natural TSE infection. This association may explain changes in susceptibility with host age, and differences in the age-susceptibility relationship between host species.

  13. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex

    NARCIS (Netherlands)

    Taherzadeh, Zhila; VanBavel, Ed; de Vos, Judith; Matlung, Hanke L.; van Montfrans, Gert; Brewster, Lizzy M.; Seghers, Leonard; Quax, Paul H. A.; Bakker, Erik N. T. P.

    2010-01-01

    Taherzadeh Z, VanBavel E, de Vos J, Matlung HL, van Montfrans G, Brewster LM, Seghers L, Quax PH, Bakker EN. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex. Am J Physiol Heart Circ Physiol 298: H1273-H1282, 2010. First published February 12, 2010;

  14. Susceptibility of larvae of nun moth, Lymantria monacha (Linnaeus 1758) (Lepidoptera), to the entomopathogenic fungus, Entomophaga maimaiga Humber, Shimazu and Soper (Entomophthorales) under laboratory and field conditions

    Science.gov (United States)

    Daniela Pilarska; Ann E. Hajek; Melody Keena; Andreas Linde; Manana Kereselidze; Georgi Georgiev; Margarita Georgieva; Plamen Mirchev; Danail Takov; Slavimira. Draganova

    2016-01-01

    Susceptibility of Lymantria monacha larvae to Entomophaga maimaiga was investigated under laboratory and field conditions, using larvae of the natural host, Lymantria dispar, as positive controls. In laboratory bioassays, L. monacha and L. dispar were injected with...

  15. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  16. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice

    Directory of Open Access Journals (Sweden)

    Allison R. Rogala

    2018-02-01

    Full Text Available Crohn's disease (CD represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM is an established risk allele in CD. We have shown previously that conventionally raised (CV mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1−/− mice were rederived into specific pathogen-free (SPF and germ-free (GF conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1−/− mice. Remarkably, in contrast to CV mice, SPF Irgm1−/− mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1−/− mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1−/− mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1−/− mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1−/− mice as a model to elucidate host

  17. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  20. Marek’s disease herpesvirus vaccines integrate into chicken host chromosomes yet lack a virus-host phenotype associated with oncogenic transformation

    Science.gov (United States)

    Marek's disease (MD) is a lymphotrophic and oncogenic disease of chickens that can lead to death in susceptible and unimmunized host birds. The causative pathogen, Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus, integrates into host genome near the telomeres during viral latency an...

  1. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    Full Text Available Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS, providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  2. Host natural suppressor activity regulates hemopoietic engraftment kinetics in antibody-conditioned recipient mice

    International Nuclear Information System (INIS)

    Sadelain, M.W.; Green, D.R.; Wegmann, T.G.

    1990-01-01

    Resistance to semi-allogeneic or syngeneic hemopoietic stem cell engraftment can be reduced by treating the unirradiated host with anti-class I MHC antibody. In our previous studies we showed a direct correlation between such resistance and the level of natural suppressor (NS) activity in the host. Thus newborn mice that have high NS activity are very resistant to marrow engraftment, as are adults pretreated with CFA that increases NS activity in the bone marrow. We have now devised a method that allows us to follow hemopoietic engraftment kinetics within the marrow cavity itself by assaying individual CFU-granulocyte/macrophage progenitor cells for their host or donor origin over the immediate post-transplant period. By using this method, we find a close correlation between the rate of marrow engraftment and reduction in host NS activity. Marrow engraftment does not correlate with the reduction of either total host bone marrow cellular content or CFU-granulocyte/macrophage progenitor cell levels. NS activity is mediated by Thy-1-, partially radiosensitive, nylon wool nonadherent cells without NK activity. Adoptively transferred Thy-1-, irradiated spleen cells containing NS activity induced by pretreatment with CFA delayed engraftment kinetics in the marrow cavity. Thus hemopoietic engraftment in the marrow cavity appears to be controlled by an inhibitory regulatory activity that is reflected in the in vitro NS assay. These studies suggest new regulatory targets for selective host conditioning to eliminate resistance to marrow transplantation

  3. Are hybrids between Atlantic salmon and brown trout suitable long-term hosts of Gyrodactylus salaris during winter?

    Science.gov (United States)

    Knudsen, R; Henriksen, E H; Gjelland, K Ø; Hansen, H; Hendrichsen, D K; Kristoffersen, R; Olstad, K

    2017-10-01

    The monogenean parasite Gyrodactylus salaris poses serious threats to many Atlantic salmon populations and presents many conservation and management questions/foci and challenges. It is therefore critical to identify potential vectors for infection. To test whether hybrids of native Atlantic salmon (Salmo salar) × brown trout (Salmo trutta) are suitable as reservoir hosts for G. salaris during winter, infected hybrid parr were released into a natural subarctic brook in the autumn. Six months later, 23.9% of the pit-tagged fish were recaptured. During the experimental period, the hybrids had a sixfold increase in mean intensity of G. salaris, while the prevalence decreased from 81% to 35%. There was high interindividual hybrid variability in susceptibility to infections. The maximum infrapopulation growth rate (0.018 day -1 ) of G. salaris throughout the winter was comparable to earlier laboratory experiments at similar temperatures. The results confirm that infrapopulations of G. salaris may reproduce on a hybrid population for several generations at low water temperatures (~1 °C). Wild salmon-trout hybrids are undoubtedly susceptible to G. salaris and represent an important reservoir host for the parasite independent of other co-occurring susceptible hosts. Consequently, these hybrids may pose a serious risk for G. salaris transmission to nearby, uninfected rivers by migratory individuals. © 2017 John Wiley & Sons Ltd.

  4. Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts

    DEFF Research Database (Denmark)

    Röhrich, Christian René; Iversen, Anita; Jaklitsch, Walter Michael

    2012-01-01

    In order to investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened specimens of the polyporicolous fungus Hypocrea pulvinata growing on its natural hosts Piptoporus betulinus and Fomitopsis pinicola. Results showed that a particular group...

  5. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics

    NARCIS (Netherlands)

    van Manen, Daniëlle; van 't Wout, Angélique B.; Schuitemaker, Hanneke

    2012-01-01

    Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication

  6. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  7. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2018-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  8. Evidence to support horses as natural intermediate hosts for Sarcocystis neurona.

    Science.gov (United States)

    Mullaney, Thomas; Murphy, Alice J; Kiupel, Matti; Bell, Julia A; Rossano, Mary G; Mansfield, Linda S

    2005-10-10

    Opossums (Didelphis spp.) are the definitive host for the protozoan parasite Sarcocystis neurona, the causative agent of equine protozoal myeloencephalitis (EPM). Opossums shed sporocysts in feces that can be ingested by true intermediate hosts (cats, raccoons, skunks, armadillos and sea otters). Horses acquire the parasite by ingestion of feed or water contaminated by opossum feces. However, horses have been classified as aberrant intermediate hosts because the terminal asexual sarcocyst stage that is required for transmission to the definitive host has not been found in their tissues despite extensive efforts to search for them [Dubey, J.P., Lindsay, D.S., Saville, W.J., Reed, S.M., Granstrom, D.E., Speer, C.A., 2001b. A review of Sarcocystis neurona and equine protozoal myeloencephalitis (EPM). Vet. Parasitol. 95, 89-131]. In a 4-month-old filly with neurological disease consistent with EPM, we demonstrate schizonts in the brain and spinal cord and mature sarcocysts in the tongue and skeletal muscle, both with genetic and morphological characteristics of S. neurona. The histological and electron microscopic morphology of the schizonts and sarcocysts were identical to published features of S. neurona [Stanek, J.F., Dubey, J.P., Oglesbee, M.J., Reed, S.M., Lindsay, D.S., Capitini, L.A., Njoku, C.J., Vittitow, K.L., Saville, W.J., 2002. Life cycle of Sarcocystis neurona in its natural intermediate host, the raccoon, Procyon lotor. J. Parasitol. 88, 1151-1158]. DNA from schizonts and sarcocysts from this horse produced Sarcocystis specific 334bp PCR products [Tanhauser, S.M., Yowell, C.A., Cutler, T.J., Greiner, E.C., MacKay, R.J., Dame, J.B., 1999. Multiple DNA markers differentiate Sarcocystis neurona and Sarcocystis falcatula. J. Parasitol. 85, 221-228]. Restriction fragment length polymorphism (RFLP) analysis of these PCR products showed banding patterns characteristic of S. neurona. Sequencing, alignment and comparison of both schizont and sarcocyst DNA

  9. Acquired Antibody Responses against Plasmodium vivax Infection Vary with Host Genotype for Duffy Antigen Receptor for Chemokines (DARC)

    Science.gov (United States)

    Maestre, Amanda; Muskus, Carlos; Duque, Victoria; Agudelo, Olga; Liu, Pu; Takagi, Akihide; Ntumngia, Francis B.; Adams, John H.; Sim, Kim Lee; Hoffman, Stephen L.; Corradin, Giampietro; Velez, Ivan D.; Wang, Ruobing

    2010-01-01

    Background Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are ‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. Methodology/Findings We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. Conclusion/Significance Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the

  10. Acquired antibody responses against Plasmodium vivax infection vary with host genotype for duffy antigen receptor for chemokines (DARC.

    Directory of Open Access Journals (Sweden)

    Amanda Maestre

    2010-07-01

    Full Text Available Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1 and Duffy binding protein (PvDBP varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B. The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades

  11. Rhesus macaques (Macaca mulatta are natural hosts of specific Staphylococcus aureus lineages.

    Directory of Open Access Journals (Sweden)

    Sanne van den Berg

    Full Text Available Currently, there is no animal model known that mimics natural nasal colonization by Staphylococcus aureus in humans. We investigated whether rhesus macaques are natural nasal carriers of S. aureus. Nasal swabs were taken from 731 macaques. S. aureus isolates were typed by pulsed-field gel electrophoresis (PFGE, spa repeat sequencing and multi-locus sequence typing (MLST, and compared with human strains. Furthermore, the isolates were characterized by several PCRs. Thirty-nine percent of 731 macaques were positive for S. aureus. In general, the macaque S. aureus isolates differed from human strains as they formed separate PFGE clusters, 50% of the isolates were untypeable by agr genotyping, 17 new spa types were identified, which all belonged to new sequence types (STs. Furthermore, 66% of macaque isolates were negative for all superantigen genes. To determine S. aureus nasal colonization, three nasal swabs from 48 duo-housed macaques were taken during a 5 month period. In addition, sera were analyzed for immunoglobulin G and A levels directed against 40 staphylococcal proteins using a bead-based flow cytometry technique. Nineteen percent of the animals were negative for S. aureus, and 17% were three times positive. S. aureus strains were easily exchanged between macaques. The antibody response was less pronounced in macaques compared to humans, and nasal carrier status was not associated with differences in serum anti-staphylococcal antibody levels. In conclusion, rhesus macaques are natural hosts of S. aureus, carrying host-specific lineages. Our data indicate that rhesus macaques are useful as an autologous model for studying S. aureus nasal colonization and infection prevention.

  12. The path to host extinction can lead to loss of generalist parasites.

    Science.gov (United States)

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  13. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    Science.gov (United States)

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  14. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis.

    Science.gov (United States)

    Martinez-Gutierrez, Marlen; Ruiz-Saenz, Julian

    2016-05-12

    Canine distemper virus (CDV) is the etiological agent of one of the most infectious diseases of domestic dogs, also known as a highly prevalent viral infectious disease of carnivores and posing a conservation threat to endangered species around the world. To get a better panorama of CDV infection in different Orders, a retrospective and documental systematic review of the role of CDV in different non-dog hosts was conducted. The bibliographical data were collected from MedLine/PubMed and Scopus databases. Data related to Order, Family, Genus and Species of the infected animals, the presence or absence of clinical signs, mortality, serological, molecular or antigenic confirmation of CDV infection, geographic location, were collected and summarized. Two hundred seventeen scientific articles were considered eligible which includes reports of serological evaluation, and antigenic or genomic confirmation of CDV infection in non-dog hosts. CDV infects naturally and experimentally different members of the Orders Carnivora (in 12 Families), Rodentia (four Families), Primates (two Families), Artiodactyla (three Families) and Proboscidea (one Family). The Order Carnivora (excluding domestic dogs) accounts for the vast majority (87.5%) of the records. Clinical disease associated with CDV infection was reported in 51.8% of the records and serological evidence of CDV infection in apparently healthy animals was found in 49.5% of the records. High mortality rate was showed in some of the recorded infections in Orders different to Carnivora. In non-dog hosts, CDV has been reported all continents with the exception of Australasia and in 43 different countries. The results of this systematic review demonstrate that CDV is able to infect a very wide range of host species from many different Orders and emphasizes the potential threat of infection for endangered wild species as well as raising concerns about potential zoonotic threats following the cessation of large-scale measles

  15. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions.

    Directory of Open Access Journals (Sweden)

    Juliane Bremer

    Full Text Available The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease.

  16. Host-bacterial interplay in periodontal disease

    Directory of Open Access Journals (Sweden)

    Rudrakshi Chickanna

    2015-01-01

    Full Text Available A literature search was performed using MEDLINE (PubMed and other electronic basis from 1991 to 2014. Search included books and journals based on the systematic and critical reviews, in vitro and in vivo clinical studies on molecular basis of host microbial interactions. Clearly, an understanding of the host susceptibility factor in addition to microbial factors by elucidating the molecular basis offers opportunity for therapeutic manipulation of advancing periodontal destruction. One of the hallmarks of pathogenesis is the ability of pathogenic organisms to invade surrounding tissues and to evade the host defence. This paper focuses the general overview of molecular mechanisms involved in the microbiota and host response to bacterial inimical behavior in periodontics.

  17. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    Science.gov (United States)

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  18. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

    NARCIS (Netherlands)

    Baarlen, van P.; Woltering, E.J.; Staats, M.; Kan, van J.A.L.

    2007-01-01

    Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea.

  19. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.

    Directory of Open Access Journals (Sweden)

    Raina K Plowright

    2016-08-01

    Full Text Available Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.

  20. The relationship between host lifespan and pathogen reservoir potential: an analysis in the system Arabidopsis thaliana--cucumber mosaic virus.

    Directory of Open Access Journals (Sweden)

    Jean Michel Hily

    2014-11-01

    Full Text Available Identification of the determinants of pathogen reservoir potential is central to understand disease emergence. It has been proposed that host lifespan is one such determinant: short-lived hosts will invest less in costly defenses against pathogens, so that they will be more susceptible to infection, more competent as sources of infection and/or will sustain larger vector populations, thus being effective reservoirs for the infection of long-lived hosts. This hypothesis is sustained by analyses of different hosts of multihost pathogens, but not of different genotypes of the same host species. Here we examined this hypothesis by comparing two genotypes of the plant Arabidopsis thaliana that differ largely both in life-span and in tolerance to its natural pathogen Cucumber mosaic virus (CMV. Experiments with the aphid vector Myzus persicae showed that both genotypes were similarly competent as sources for virus transmission, but the short-lived genotype was more susceptible to infection and was able to sustain larger vector populations. To explore how differences in defense against CMV and its vector relate to reservoir potential, we developed a model that was run for a set of experimentally-determined parameters, and for a realistic range of host plant and vector population densities. Model simulations showed that the less efficient defenses of the short-lived genotype resulted in higher reservoir potential, which in heterogeneous host populations may be balanced by the longer infectious period of the long-lived genotype. This balance was modulated by the demography of both host and vector populations, and by the genetic composition of the host population. Thus, within-species genetic diversity for lifespan and defenses against pathogens will result in polymorphisms for pathogen reservoir potential, which will condition within-population infection dynamics. These results are relevant for a better understanding of host-pathogen co-evolution, and of

  1. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Bathrellos, G. D.; Kalivas, D. P.; Skilodimou, H. D.

    2009-07-01

    Landslide susceptibility mapping is a practical tool in natural and urban planning; it can be applied for determining land use zones, in construction design and planning of a variety of projects. In this study, two different GIS based landslide susceptibility maps were generated in the mountainous part of the Trikala Prefecture in Thessaly, Central Greece. This was accomplished by using different methods for correlating factors, which have an effect on landslide occurrences. The instability factors taken into account were: lithology, tectonic features, slope gradients, road network, drainage network, land use and rainfall. A frequency distribution of the half number of the landslide events of the study area in each class of the instability factors was performed in order to rate the classes. Two models have been used to combine the instability factors and assess the overall landslide susceptibility, namely: the Weight Factor Model (WeF), which is a statistical method, and the Multiple Factor Model (MuF) that is a logical method. The produced maps were classified into four zones: Low, Moderate, High and Very High susceptible zones and validated using the other half number of the landslide events of the area. Evaluation of the results is optimized through a Landslide Models Indicator (La.M.I.). (Author) 36 refs.

  2. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    Science.gov (United States)

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  4. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Science.gov (United States)

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  5. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  6. Lime sulfur toxicity to broad mite, to its host plants and to natural enemies.

    Science.gov (United States)

    Venzon, Madelaine; Oliveira, Rafael M; Perez, André L; Rodríguez-Cruz, Fredy A; Martins Filho, Sebastião

    2013-06-01

    An acaricidal effect of lime sulfur has not been demonstrated for Polyphagotarsonemus latus. However, lime sulfur can cause toxicity to natural enemies and to host plants. In this study, the toxicity of different concentrations of lime sulfur to P. latus, to the predatory mite Amblyseius herbicolus and to the predatory insect Chrysoperla externa was evaluated. Additionally, the phytotoxicity of lime sulfur to two P. latus hosts, chili pepper and physic nut plants, was determined. Lime sulfur at a concentration of 9.5 mL L(-1) restrained P. latus population growth. However, this concentration was deleterious to natural enemies. The predatory mite A. herbicolus showed a negative value of instantaneous growth rate, and only 50% of the tested larvae of C. externa reached adulthood when exposed to 10 mL L(-1) . Physic nut had severe injury symptoms when sprayed with all tested lime sulfur concentrations. For chili pepper plants, no phytoxicity was observed at any tested concentration. Lime sulfur might be used for P. latus control on chili pepper but not on physic nut owing to phytotoxicity. Care should be taken when using lime sulfur in view of negative effects on natural enemies. Selective lime sulfur concentration integrated with other management tactics may provide an effective and sustainable P. latus control on chili pepper. © 2012 Society of Chemical Industry.

  7. Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species

    Science.gov (United States)

    Allison, Andrew B.; Kohler, Dennis J.; Ortega, Alicia; Hoover, Elizabeth A.; Grove, Daniel M.; Holmes, Edward C.; Parrish, Colin R.

    2014-01-01

    Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. PMID:25375184

  8. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species.

    Directory of Open Access Journals (Sweden)

    Andrew B Allison

    2014-11-01

    Full Text Available Canine parvovirus (CPV emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV, a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR, the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.

  9. Reservoir-host amplification of disease impact in an endangered amphibian.

    Science.gov (United States)

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  10. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila-associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.

  11. Avoid, attack or do both? Behavioral and physiological adaptations in natural enemies faced with novel hosts

    Directory of Open Access Journals (Sweden)

    Brown Sam P

    2005-11-01

    Full Text Available Abstract Background Confronted with well-defended, novel hosts, should an enemy invest in avoidance of these hosts (behavioral adaptation, neutralization of the defensive innovation (physiological adaptation or both? Although simultaneous investment in both adaptations may first appear to be redundant, several empirical studies have suggested a reinforcement of physiological resistance to host defenses with additional avoidance behaviors. To explain this paradox, we develop a mathematical model describing the joint evolution of behavioral and physiological adaptations on the part of natural enemies to their host defenses. Our specific goals are (i to derive the conditions that may favor the simultaneous investment in avoidance and physiological resistance and (ii to study the factors that govern the relative investment in each adaptation mode. Results Our results show that (i a simultaneous investment may be optimal if the fitness costs of the adaptive traits are accelerating and the probability of encountering defended hosts is low. When (i holds, we find that (ii the more that defended hosts are rare and/or spatially aggregated, the more behavioral adaptation is favored. Conclusion Despite their interference, physiological resistance to host defensive innovations and avoidance of these same defenses are two strategies in which it may be optimal for an enemy to invest in simultaneously. The relative allocation to each strategy greatly depends on host spatial structure. We discuss the implications of our findings for the management of invasive plant species and the management of pest resistance to new crop protectants or varieties.

  12. Crown sheath rot of rice: host-range and varietal resistance to Gaeumannomyces graminis var. graminis

    Directory of Open Access Journals (Sweden)

    Cecília do Nascimento Peixoto

    2014-09-01

    Full Text Available Several gramineous plants occurring in rice fields show symptoms of crown sheath rot of rice, caused by Gaeumannomyces graminis var. graminis (Ggg, under natural conditions of infection. The pathogenicity of the Ggg-a 01 isolate, collected from rice, was tested on seven grass species and eight cereals, under greenhouse conditions, in order to get information on host-range and resistance of rice genotypes to crown sheath rot. The inoculation tests showed that the rice isolate was pathogenic to weeds such as Echinochloa crusgalli, Pennisetum setosum, Brachiaria sp., Digitaria horizontalis, Brachiaria plantaginea, Eleusine indica and Cenchrus echinatus, and that these species are potential hosts to the pathogen. Winter cereals such as wheat, oat, rye, barley and triticale, as well as sorghum, maize and millet, presented different degrees of susceptibility to the Ggg-a isolate. Significant differences were observed in relation to lesion height and production of hyphopodia and perithecia on culms. Perithecia were not observed on millet, sorghum, southern sandbur and maize. The resistance of 58 upland rice genotypes was tested, and the SCIA16 and SCIA08 genotypes presented lesion height significantly smaller, being considered resistant, when compared to the highly susceptible CNAS10351 genotype.

  13. Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread

    Science.gov (United States)

    Severns, Paul M.; Estep, Laura K.; Sackett, Kathryn E.; Mundt, Christopher C.

    2014-01-01

    Summary Disease epidemics typically begin as an outbreak of a relatively small, spatially explicit population of infected individuals (focus), in which disease prevalence increases and rapidly spreads into the uninfected, at-risk population. Studies of epidemic spread typically address factors influencing disease spread through the at-risk population, but the initial outbreak may strongly influence spread of the subsequent epidemic.We initiated wheat stripe rust Puccinia striiformis f. sp. tritici epidemics to assess the influence of the focus on final disease prevalence when the degree of disease susceptibility differed between the at-risk and focus populations.When the focus/at-risk plantings consisted of partially genetic resistant and susceptible cultivars, final disease prevalence was statistically indistinguishable from epidemics produced by the focus cultivar in monoculture. In these experimental epidemics, disease prevalence was not influenced by the transition into an at-risk population that differed in disease susceptibility. Instead, the focus appeared to exert a dominant influence on the subsequent epidemic.Final disease prevalence was not consistently attributable to either the focus or the at-risk population when focus/at-risk populations were planted in a factorial set-up with a mixture (~28% susceptible and 72% resistant) and susceptible individuals. In these experimental epidemics, spatial heterogeneity in disease susceptibility within the at-risk population appeared to counter the dominant influence of the focus.Cessation of spore production from the focus (through fungicide/glyphosate application) after 1.3 generations of stripe rust spread did not reduce final disease prevalence, indicating that the focus influence on disease spread is established early in the epidemic.Synthesis and applications. Our experiments indicated that outbreak conditions can be highly influential on epidemic spread, even when disease resistance in the at-risk population

  14. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    Science.gov (United States)

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small

  15. Single Mutations in the VP2 300 Loop Region of the Three-Fold Spike of the Carnivore Parvovirus Capsid Can Determine Host Range

    Science.gov (United States)

    Organtini, Lindsey J.; Zhang, Sheng; Hafenstein, Susan L.; Holmes, Edward C.

    2015-01-01

    ABSTRACT Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300

  16. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Science.gov (United States)

    Ramirez-Carvajal, Lisbeth; Pauszek, Steven J; Ahmed, Zaheer; Farooq, Umer; Naeem, Khalid; Shabman, Reed S; Stockwell, Timothy B; Rodriguez, Luis L

    2018-01-01

    Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  17. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    Directory of Open Access Journals (Sweden)

    Lisbeth Ramirez-Carvajal

    Full Text Available Foot-and-mouth disease (FMD is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  18. Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates

    Science.gov (United States)

    Wu, Yixiang; Zou, Xingfu

    2018-04-01

    In this paper, we investigate a diffusive host-pathogen model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts. We first prove that the solution of the model exists globally and the model system possesses a global attractor. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable; if R0 > 1, the solution of the model is uniformly persistent and there exists a positive (pathogen persistent) steady state. Finally, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Our result suggests that the infected hosts concentrate at certain points which can be characterized as the pathogen's most favoured sites when the mobility of the infected host is limited.

  19. Emerging prion disease drives host selection in a wildlife population

    Science.gov (United States)

    Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.

    2012-01-01

    Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an

  20. Studies on avian malaria in vectors and hosts of encephalitis in Kern County, California. I. Infections in avian hosts

    Science.gov (United States)

    Herman, C.M.; Reeves, W.C.; McClure, H.E.; French, E.M.; Hammon, W.M.

    1954-01-01

    An epizoological study of Plasmodium infections in wild birds of Kern County, California, in the years 1946 through 1951 greatly extended knowledge of the occurrence of these parasites and their behavior in nature. Examination of 10,459 blood smears from 8,674 birds representing 73 species resulted in the observation of Plasmodium spp. in 1,094 smears representing 888 individual birds of 27 species. Seven species of Plasmodium were found: relictum, elongatum, hexamerium, nucleophilum, polare, rouxi and vaughani. Plasmodium relictum was by far the most frequently observed species, occurring in at least 79 per cent of the infected birds. Twelve new host species are recorded for this parasite. Sufficient morphological variation was observed to indicate that two strains of this species probably exist in nature. Numerous new host records were made of plasmodia with elongate gametocytes. The finding of parasites believed to be P. rouxi in two new host species represents the first record of the occurrence of this Plasmodium outside of Algeria. Multiple smears were obtained from a number of individual birds over varying time periods. Evidence of prolonged parasitemia was unusual, but some individuals had parasitemia on consecutive months and even for three successive years. In most individuals, parasitemias were of short duration. The inoculation of blood from wild birds into canaries led to the demonstration of many infections not observed on blood smear examination of donors. Use of these two complementary techniques led to more complete host records and a truer picture of the prevalence of infection. Three age classes of birds were studied--nestling, immature (less than 1 year of age) and adult. Parasites were observed in all three groups but infections in the younger individuals were most susceptible to interpretation. As to time of onset, numerous records were obtained of infection in nestling birds. Prevalence rates in immature birds after a single season's exposure

  1. Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility.

    Science.gov (United States)

    Richard Cobb; Ross Meentemeyer; David Rizzo

    2010-01-01

    Epidemiological theory predicts that asymmetric transmission, susceptibility, and mortality within a community will drive pathogen and disease dynamics. These epidemiological asymmetries can result in apparent competition, where a highly infectious host reduces the abundance of less infectious or more susceptible members in a community via a shared pathogen. We show...

  2. Host-to-host variation of ecological interactions in polymicrobial infections

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  3. Host-to-host variation of ecological interactions in polymicrobial infections.

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-12-04

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  4. Natural selection and infectious disease in human populations

    Science.gov (United States)

    Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.

    2015-01-01

    The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769

  5. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  6. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Fengping Chen

    2017-06-01

    Full Text Available Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen’s abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.

  7. Fulminant transfusion-associated graft-versus-host disease in a premature infant

    International Nuclear Information System (INIS)

    Berger, R.S.; Dixon, S.L.

    1989-01-01

    A fatal case of transfusion-associated graft-versus-host disease developed in a premature infant after receiving several blood products, including nonirradiated white blood cells. Transfusion-associated graft-versus-host disease can be prevented. Irradiation of blood products is the least controversial and most effective method. Treatment was unsuccessful in most reported cases of transfusion-associated graft-versus-host disease. Therefore irradiation of blood products before transfusing to patients susceptible to transfusion-associated graft-versus-host disease is strongly recommended

  8. Host-to-host variation of ecological interactions in polymicrobial infections

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Das, Jayajit; Weimer, Kristin E; Swords, W Edward

    2015-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host–microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. (paper)

  9. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  10. Studies on the infection process by Erysiphe polygoni in resistant and susceptible peas

    International Nuclear Information System (INIS)

    Cirulli, M.; Montemurro, G.; Ciccarese, F.; Smilari, F.

    1976-01-01

    The infection of pea by Erysiphe polygoni was investigated. The susceptible cultivar ''Sprinter'' and the resistant varieties ''Stratagem Resistant'' (er 1 er 1 Er 2 Er 2 ) and ''Mexique-4'' (er 1 er 1 er 2 er 2 ) were used. Observations of germination of conidia, formation of primary appressoria, differentiation of secondary hyphae, number of secondary hyphae per conidium, and number of branches on the longest hyphae per conidium were made at different times from inoculation. The rate of conidial germination was not affected by the host genotypes. The formation of short germ tubes with primary appressoria were found to be similar on the susceptible ''Sprinter'' as well as on the ''Stratagem Resistant'' and ''Mexique-4''. No statistical difference in the growth of germ tubes with appressorium between susceptible and resistant peas was observed at 2, 4, 6, 10 and 12 hrs after inoculation. In resistant peas formation of primary appressoria was not followed by further mycelial growth. Conversely, in the susceptible pea, germinating conidia produced multiple germ tubes and branching hyphae. The establishment of a compatible relationship between host and pathogen appears to occur at or near the stage of formation of the primary appressorium. Most conidia on the leaves formed primary appressoria as early as 2 hrs after inoculation. The Course of the host/pathogen relationship is apparently decided at a very early stage after pathogen contact with the host, such as the length of the longest hyphae, number of germ tubes per conidium and branching of the longest, and the difference in the macroscopic fungal fructification. E. polygoni activity in susceptible pea is evidently influenced by temperature whereas the gene action of the genetic factors remains unaffected in resistant pea

  11. Experimental evolution of an RNA virus in wild birds: evidence for host-dependent impacts on population structure and competitive fitness.

    Directory of Open Access Journals (Sweden)

    Nathan D Grubaugh

    2015-05-01

    Full Text Available Within hosts, RNA viruses form populations that are genetically and phenotypically complex. Heterogeneity in RNA virus genomes arises due to error-prone replication and is reduced by stochastic and selective mechanisms that are incompletely understood. Defining how natural selection shapes RNA virus populations is critical because it can inform treatment paradigms and enhance control efforts. We allowed West Nile virus (WNV to replicate in wild-caught American crows, house sparrows and American robins to assess how natural selection shapes RNA virus populations in ecologically relevant hosts that differ in susceptibility to virus-induced mortality. After five sequential passages in each bird species, we examined the phenotype and population diversity of WNV through fitness competition assays and next generation sequencing. We demonstrate that fitness gains occur in a species-specific manner, with the greatest replicative fitness gains in robin-passaged WNV and the least in WNV passaged in crows. Sequencing data revealed that intrahost WNV populations were strongly influenced by purifying selection and the overall complexity of the viral populations was similar among passaged hosts. However, the selective pressures that control WNV populations seem to be bird species-dependent. Specifically, crow-passaged WNV populations contained the most unique mutations (~1.7× more than sparrows, ~3.4× more than robins and defective genomes (~1.4× greater than sparrows, ~2.7× greater than robins, but the lowest average mutation frequency (about equal to sparrows, ~2.6× lower than robins. Therefore, our data suggest that WNV replication in the most disease-susceptible bird species is positively associated with virus mutational tolerance, likely via complementation, and negatively associated with the strength of selection. These differences in genetic composition most likely have distinct phenotypic consequences for the virus populations. Taken together

  12. Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host

    OpenAIRE

    Frost, P. C.; Ebert, D.; Smith, V. H.

    2008-01-01

    Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of i...

  13. Tools to study pathogen-host interactions in bats.

    Science.gov (United States)

    Banerjee, Arinjay; Misra, Vikram; Schountz, Tony; Baker, Michelle L

    2018-03-15

    Bats are natural reservoirs for a variety of emerging viruses that cause significant disease in humans and domestic animals yet rarely cause clinical disease in bats. The co-evolutionary history of bats with viruses has been hypothesized to have shaped the bat-virus relationship, allowing both to exist in equilibrium. Progress in understanding bat-virus interactions and the isolation of bat-borne viruses has been accelerated in recent years by the development of susceptible bat cell lines. Viral sequences similar to severe acute respiratory syndrome corona virus (SARS-CoV) have been detected in bats, and filoviruses such as Marburg virus have been isolated from bats, providing definitive evidence for the role of bats as the natural host reservoir. Although viruses can be readily detected in bats using molecular approaches, virus isolation is far more challenging. One of the limitations in using traditional culture systems from non-reservoir species is that cell types and culture conditions may not be compatible for isolation of bat-borne viruses. There is, therefore, a need to develop additional bat cell lines that correspond to different cell types, including less represented cell types such as immune cells, and culture them under more physiologically relevant conditions to study virus host interactions and for virus isolation. In this review, we highlight the current progress in understanding bat-virus interactions in bat cell line systems and some of the challenges and limitations associated with cell lines. Future directions to address some of these challenges to better understand host-pathogen interactions in these intriguing mammals are also discussed, not only in relation to viruses but also other pathogens carried by bats including bacteria and fungi. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E.

    Science.gov (United States)

    Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei

    2018-04-15

    The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced

  15. Coral host transcriptomic states are correlated with Symbiodinium genotypes

    KAUST Repository

    DeSalvo, Michael K.; Sunagawa, Shinichi; Fisher, Paul L.; Voolstra, Christian R.; Iglesias Prieto, Roberto; Medina, Mó nica

    2010-01-01

    susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene

  16. Changes in host-mycorrhiza relationships revealed by stable isotopes after naturally-induced thinning of the stand: case study on Tuber aestivum.

    Science.gov (United States)

    Gavrichkova, Olga; Lauteri, Marco; Ciolfi, Marco; Chiocchini, Francesca; Paris, Pierluigi; Pisanelli, Andrea; Portarena, Silvia; Brugnoli, Enrico

    2016-04-01

    Terrestrial plants overcome nutrients and water limitations by forming mutualistic associations with mycorrhizal fungi. Fungi, in return, take advantage from the carbohydrates supplied by the host. Some mycorrhizal fruit bodies, like that of Tuber spp., have a peculiar gastronomic value with many efforts being undertaken to predict and enhance their productivity. However, many issues of truffle-producing mycorrhizal ecology are still poorly understood, in particular optimal conditions favoring fruit formation, potential host plants and host-mycorrhiza relationships. In this study, we tested the applicability of stable isotope measurements under natural abundance to identify the plants which likely host the mycorrhiza of Tuber aestivum and to characterize host-mycorrhizal nutrient, water and carbohydrate exchange under plant natural growing conditions and with the change of the forest cover after naturally occurred thinning. For these purposes, sampling of the fruit bodies of T. aestivum was performed during the growing season 2011 in a mixed broadleaved-coniferous forest in central Italy (initially the site was a manmade pine plantation). Nine truffle-producing parcels were identified with five being composed of the original Pinus pinaster -dominated vegetation and four in which pine was replaced by broadleaf species after both wind-induced thinning and natural dieback of pine trees. Seasonal variation of δ13C, δ15N and δ18O were analyzed in the fungal material, in the surrounding soil and in the plant material of the potential host species (xylem water in the trunk, branches and leaves, recently assimilated carbohydrates in phloem and leaves). The results showed a possibility of the identification of the mycorrhizal host species applying isotope analyses, with mycorrhiza receiving most part of the carbohydrates from the pine in pine-dominated parcels. Interestingly, in thinned parcels, the truffle bodies maintained isotope composition similar to bodies gathered

  17. Host resistance, population structure and the long-term persistence of bubonic plague: contributions of a modelling approach in the Malagasy focus.

    Directory of Open Access Journals (Sweden)

    Fanny Gascuel

    Full Text Available Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i endemicity is favoured by intermediate host population sizes, (ii in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar.

  18. Host Resistance, Population Structure and the Long-Term Persistence of Bubonic Plague: Contributions of a Modelling Approach in the Malagasy Focus

    Science.gov (United States)

    Gascuel, Fanny; Choisy, Marc; Duplantier, Jean-Marc; Débarre, Florence; Brouat, Carine

    2013-01-01

    Although bubonic plague is an endemic zoonosis in many countries around the world, the factors responsible for the persistence of this highly virulent disease remain poorly known. Classically, the endemic persistence of plague is suspected to be due to the coexistence of plague resistant and plague susceptible rodents in natural foci, and/or to a metapopulation structure of reservoirs. Here, we test separately the effect of each of these factors on the long-term persistence of plague. We analyse the dynamics and equilibria of a model of plague propagation, consistent with plague ecology in Madagascar, a major focus where this disease is endemic since the 1920s in central highlands. By combining deterministic and stochastic analyses of this model, and including sensitivity analyses, we show that (i) endemicity is favoured by intermediate host population sizes, (ii) in large host populations, the presence of resistant rats is sufficient to explain long-term persistence of plague, and (iii) the metapopulation structure of susceptible host populations alone can also account for plague endemicity, thanks to both subdivision and the subsequent reduction in the size of subpopulations, and extinction-recolonization dynamics of the disease. In the light of these results, we suggest scenarios to explain the localized presence of plague in Madagascar. PMID:23675291

  19. Downhole logs of natural gamma radiation and magnetic susceptibility and their use in interpreting lithostratigraphy in AND-1B, Antarctica

    Science.gov (United States)

    Williams, T.; Morin, R. H.; Jarrard, R. D.; Jackolski, C. L.; Henrys, S. A.; Niessen, F.; Magens, D.; Kuhn, G.; Monien, D.; Powell, R. D.

    2010-12-01

    The ANDRILL McMurdo Ice Shelf (MIS) project drilled 1285 metres of sediment representing the last 14 million years of glacial history. Downhole geophysical logs were acquired to a depth of 1018 metres, and are complementary to data acquired from the core itself. We describe here the natural gamma radiation (NGR) and magnetic susceptibility logs, and their application to understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. Natural gamma radiation logs cover the whole interval from the sea floor to 1018 metres, and magnetic susceptibility and other logs covered the open-hole intervals between 692-1018 and 237-342 metres. NGR logs were stacked and corrected for signal attenuation through the drill pipe, and magnetic susceptibility logs were corrected for drift. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamict (containing K-bearing clays, K-feldspar, and heavy minerals). In the lower open-hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamicts (relatively high in magnetite), while sandstones generally have high resistivity log values at AND-1B. On the basis of these three downhole logs, three sets of facies can be predicted correctly for 74% of the 692-1018m interval. The logs were then used to predict facies for the 7% of this interval that was unrecovered by coring. Similarly, the NGR log provides the best information on the lithology of the poorly recovered top 25m of AND-1B. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties, and help refine parts of the lithostratigraphy (for example, the varying terrigenous content of diatomites).

  20. Relative Susceptibility of Quince, Pear, and Apple Cultivars to Fire Blight Following Greenhouse Inoculation

    Science.gov (United States)

    Fire blight caused by Erwinia amylovora (EA) is one of the most serious diseases of plants in the family Rosaceae, and Quince (Cydonia oblonga Mill.) is considered one of the most susceptible host genera. Apple (Malus sp.) and pear (Pyrus sp.) cultivars ranging from most susceptible to most resistan...

  1. Interplay between parasitism and host ontogenic resistance in the epidemiology of the soil-borne plant pathogen Rhizoctonia solani.

    Directory of Open Access Journals (Sweden)

    Thomas E Simon

    Full Text Available Spread of soil-borne fungal plant pathogens is mainly driven by the amount of resources the pathogen is able to capture and exploit should it behave either as a saprotroph or a parasite. Despite their importance in understanding the fungal spread in agricultural ecosystems, experimental data related to exploitation of infected host plants by the pathogen remain scarce. Using Rhizoctonia solani / Raphanus sativus as a model pathosystem, we have obtained evidence on the link between ontogenic resistance of a tuberizing host and (i its susceptibility to the pathogen and (ii after infection, the ability of the fungus to spread in soil. Based on a highly replicable experimental system, we first show that infection success strongly depends on the host phenological stage. The nature of the disease symptoms abruptly changes depending on whether infection occurred before or after host tuberization, switching from damping-off to necrosis respectively. Our investigations also demonstrate that fungal spread in soil still depends on the host phenological stage at the moment of infection. High, medium, or low spread occurred when infection was respectively before, during, or after the tuberization process. Implications for crop protection are discussed.

  2. Host Recognition Responses of Western (Family: Chrysomelidae) Corn Rootworm Larvae to RNA Interference and Bt Corn.

    Science.gov (United States)

    Zukoff, Sarah N; Zukoff, Anthony L

    2017-01-01

    Western corn rootworm Diabrotica virgifera virgifera LeConte is an important pest of corn whose larvae exhibit particular quantifiable patterns of locomotion after exposure to, and removal from, host roots and nonhost roots. Using EthoVision software, the behavior and locomotion of the western corn rootworm larvae was analyzed to determine the level of host recognition to germinated roots of differing corn hybrids containing either rootworm targeted Bt genes, RNA interference (RNAi) technology, the stack of both Bt and RNAi, or the isoline of these. The behavior of the rootworm larvae indicated a significant host preference response to all corn hybrids (with or without insecticidal traits) compared to the filter paper and oat roots. A weaker host response to the RNAi corn roots was observed in the susceptible larvae when compared to the resistant larvae, but not for the Bt + RNAi vector stack. Additionally, the resistant larvae demonstrated a weaker host response to the isoline corn roots when compared to the susceptible larvae. Although weaker, these host responses were significantly different from those observed in the negative controls, indicating that all hybrids tested do contain the contact cues necessary to elicit a host preference response by both Cry3Bb1-resistant and Cry3Bb1-susceptible larvae that would work to hinder resistance development in refuge in a bag fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  3. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    Science.gov (United States)

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  4. Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses.

    Science.gov (United States)

    Hoverman, Jason T; Gray, Matthew J; Haislip, Nathan A; Miller, Debra L

    2011-09-01

    Research that identifies the potential host range of generalist pathogens as well as variation in host susceptibility is critical for understanding and predicting the dynamics of infectious diseases within ecological communities. Ranaviruses have been linked to amphibian die-off events worldwide with the greatest number of reported mortality events occurring in the United States. While reports of ranavirus-associated mortality events continue to accumulate, few data exist comparing the relative susceptibility of different species. Using a series of laboratory exposure experiments and comparative phylogenetics, we compared the susceptibilities of 19 amphibian species from two salamander families and five anurans families for two ranavirus isolates: frog virus 3 (FV3) and an FV3-like isolate from an American bullfrog culture facility. We discovered that ranaviruses were capable of infecting 17 of the 19 larval amphibian species tested with mortality ranging from 0 to 100%. Phylogenetic comparative methods demonstrated that species within the anuran family Ranidae were generally more susceptible to ranavirus infection compared to species from the other five families. We also found that susceptibility to infection was associated with species that breed in semi-permanent ponds, develop rapidly as larvae, and have limited range sizes. Collectively, these results suggest that phylogeny, life history characteristics, and habitat associations of amphibians have the potential to impact susceptibility to ranaviruses.

  5. Accumulation and dissemination of prion protein in experimental sheep scrapie in the natural host

    Directory of Open Access Journals (Sweden)

    Warner Richard

    2009-02-01

    Full Text Available Abstract Background In order to study the sites of uptake and mechanisms of dissemination of scrapie prions in the natural host under controlled conditions, lambs aged 14 days and homozygous for the VRQ allele of the PrP gene were infected by the oral route. Infection occurred in all lambs with a remarkably short and highly consistent incubation period of approximately 6 months. Challenge of lambs at approximately eight months of age resulted in disease in all animals, but with more variable incubation periods averaging significantly longer than those challenged at 14 days. This model provides an excellent system in which to study the disease in the natural host by virtue of the relatively short incubation period and close resemblance to natural infection. Results Multiple sites of prion uptake were identified, of which the most important was the Peyer's patch of the distal ileum. Neuroinvasion was detected initially in the enteric nervous system prior to infection of the central nervous system. At end stage disease prion accumulation was widespread throughout the entire neuraxis, but vacuolar pathology was absent in most animals that developed disease at 6–7 months of age. Conclusion Initial spread of detectable PrP was consistent with drainage in afferent lymph to dependent lymph nodes. Subsequent accumulation of prions in lymphoid tissue not associated with the gut is consistent with haematogenous spread. In addition to macrophages and follicular dendritic cells, prion containing cells consistent with afferent lymph dendritic cells were identified and are suggested as a likely vehicle for carriage of prions from initial site of uptake to the lymphoreticular system, and as potential carriers of prion protein in blood. It is apparent that spongiform change, the characteristic lesion of scrapie and other prion diseases, is not responsible for the clinical signs in sheep, but may develop in an age dependent manner.

  6. Host pathogen interactions in Helicobacter pylori related gastric cancer

    Science.gov (United States)

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  7. Genetic variation between susceptible and non-susceptible snails to Schistosoma infection using random amplified polymorphic DNA analysis (RAPDs Variação genética entre moluscos susceptíveis e não susceptíveis à infecção pelo Schistosoma através da análise do DNA polimórfico amplificado aleatóriamente (RAPDs

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Zaki ABDEL-HAMID

    1999-09-01

    Full Text Available Susceptibility of snails to infection by certain trematodes and their suitability as hosts for continued development has been a bewildering problem in host-parasite relationships. The present work emphasizes our interest in snail genetics to determine what genes or gene products are specifically responsible for susceptibility of snails to infection. High molecular weight DNA was extracted from both susceptible and non-susceptible snails within the same species Biomphalaria tenagophila. RAPD was undertaken to distinguish between the two types of snails. Random primers (10 mers were used to amplify the extracted DNA by the polymerase chain reaction (PCR followed by polyacrylamide gel electrophoresis (PAGE and silver staining. The results suggest that RAPD represents an efficient means of genome comparison, since many molecular markers were detected as genetic variations between susceptible and non-susceptible snails.A susceptibilidade de moluscos à infecção por certos trematódeos e a sua capacidade como hospedeiro para o contínuo desenvolvimento é o problema mais deslumbrante nas relações parasita hospedeiro. O presente trabalho, focaliza nosso interesse na genética dos moluscos para determinar quais genes ou produtos gênicos são especificamente responsáveis pela susceptibilidade do molusco à infecção. DNA de alto peso molecular, foi extraído de ambos moluscos susceptíveis e não susceptíveis da espécie Biomphalaria tenagophila. Iniciadores aleatórios com 10 pares de bases foram usados na amplificação aleatória (RAPD de ambos os DNAs e análise por eletroforese em gel de poliacrilamida e coloração com prata. Os resultados mostram que a amplificação aleatória do DNA representa um eficiente caminho para a comparação dos genomas desde que marcadores moleculares foram detectados como variantes genéticos entre os moluscos susceptíveis e não susceptíveis.

  8. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone; Fattorini, Simone; Parravicini, Valeriano; Berumen, Michael L.; Galli, Paolo; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Strona, Giovanni

    2017-01-01

    for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced

  9. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts.

    Science.gov (United States)

    Wareth, Gamal; Eravci, Murat; Weise, Christoph; Roesler, Uwe; Melzer, Falk; Sprague, Lisa D; Neubauer, Heinrich; Murugaiyan, Jayaseelan

    2016-04-30

    Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B.) species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies.

  10. Host social behavior and parasitic infection: A multifactorial approach

    Science.gov (United States)

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  11. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  12. CISH and Susceptibility to Infectious Diseases

    OpenAIRE

    Khor, CC; Vannberg, FO; Chapman, SJ; Guo, H; Wong, SH; Walley, AJ; Vukcevic, D; Rautanen, A; Mills, TC; Chang, K-C; Kam, K-M; Crampin, AC; Ngwira, B; Leung, C-C; Tam, C-M

    2010-01-01

    BACKGROUND The interleukin-2-mediated immune response is critical for host defense against infectious pathogens. Cytokine-inducible SRC homology 2 (SH2) domain protein (CISH), a suppressor of cytokine signaling, controls interleukin-2 signaling. METHODS Using a case-control design, we tested for an association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis, and severe malaria) in blood samples from 8402 persons in Gambia, Hong Kong, Kenya,...

  13. Bovine aortic endothelial cells are susceptible to Hantaan virus infection

    International Nuclear Information System (INIS)

    Bahr, U.; Muranyi, W.; Mueller, S.; Kehm, R.; Handermann, M.; Darai, G.; Zeier, M.

    2004-01-01

    Hantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing α V β 3 -integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man

  14. Susceptibility of the tomato mutant high pigment-2dg (hp-2dg) to Orobanche spp. infection.

    Science.gov (United States)

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Mulder, Patrick; Kohlen, Wouter; Bino, Raoul; Levin, Ilan; Bouwmeester, Harro

    2008-08-13

    The consumption of natural products with potential health benefits has been continuously growing, and enhanced pigmentation is of major economic importance in fruits and vegetables. The tomato hp-2 ( dg ) is an important mutant line that has been introgressed into commercial tomato cultivars marketed as lycopene rich tomatoes (LRT) because of their enhanced fruit pigmentation, attributed to higher levels of carotenoids, including lycopene. Strigolactones are signaling compounds that mediate host finding in root parasitic plants and are biosynthetically derived from carotenoids. Considering the high carotenoid content of the hp-2 ( dg ) mutant, we studied its susceptibility to the root parasite Orobanche. In a field experiment, the average number of Orobanche aegyptiaca plants growing on hp-2 ( dg ) was surprisingly significantly reduced compared with its isogenic wild-type counterpart. In vitro assays and LC-MS/MS analysis showed that this reduction was associated with a lower production of strigolactones, which apparently renders the high-carotenoid hp-2 ( dg ) mutant less susceptible to Orobanche.

  15. Natural Variation in Resistance to Virus Infection in Dipteran Insects

    Directory of Open Access Journals (Sweden)

    William H. Palmer

    2018-03-01

    Full Text Available The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus–host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus–host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.

  16. Characteristics of the larval Echinococcus vogeli Rausch and Bernstein, 1972 in the natural intermediate host, the paca, Cuniculus paca L. (Rodentia: Dasyproctidae).

    Science.gov (United States)

    Rausch, R L; D'Alessandro, A; Rausch, V R

    1981-09-01

    In Colombia, the natural intermediate host of Echinococcus vogeli Rausch and Bernstein, 1972 is the paca, Cuniculus paca L. (Rodentia: Dasyproctidae). The larval cestode develops in the liver of the host, where it usually is situated superficially, partly exposed beneath Glisson's capsule. The infective larva consists of a subspherical to asymmetrical, fluid-filled vesicle, up to 30 mm in diameter, enclosed by a thick laminated membrane. It typically contains numerous chambers, often interconnected, produced by endogenous proliferation of germinal and laminated tissue, within which brood capsules arise in an irregular pattern from the germinal layer. Invasive growth by means of exogenous proliferation, typical of infections in man, was not observed in the natural intermediate host. The development of the larval cestode is described on the basis of material from pacas, supplemented by observations on early-stage lesions in experimentally infected nutrias, Myocastor coypus (Molina) (Rodentia: Capromyidae). The tissue response is characterized for early-stage, mature (infective), and degenerating larvae in the comparatively long-lived intermediate host. In addition to previously reported differences in size and form of rostellar hooks, other morphologic characteristics are defined by which the larval stage of E. vogeli is distinguished from that of E. oligarthrus (Diesing, 1863). Pathogenesis by the larval E. vogeli in man, like that by the larval E. multilocularis Leuckart, 1863, is the consequence of atypical proliferation of vesicles attributable to parasite-host incompatibility.

  17. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Tecle, Tesfaldet

    2007-01-01

    BACKGROUND: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr...... on the CRD of SP-D were found to have differing effects on antiviral activity. Using an mAb that did not interfere with antiviral activity of SP-D, we confirm that natural SP-D trimers had reduced ability to bind to IAV. In addition, the trimers had reduced ability to neutralize IAV as compared to natural...... indicate that a common human polymorphic form of SP-D may modulate host defense against IAV and give impetus to clinical studies correlating this genotype with risk for IAV infection in susceptible groups. We also show that mAbs directed against different areas on the carbohydrate recognition domain of SP...

  18. Susceptibility of Argentinean Biomphalaria tenagophila and Biomphalaria straminea to infection by Schistosoma mansoni and the possibility of geographic expansion of mansoni schistosomiasis

    Directory of Open Access Journals (Sweden)

    Luciana Franceschi Simoes

    2013-10-01

    Full Text Available Introduction Human migration and the presence of natural vectors (mollusks of Schistosoma mansoni are the primary causes of the expansion of mansoni schistosomiasis into southern areas of South America. Water conditions are favorable for the expansion of this disease because of the extensive hydrographic network, which includes the basins of the Paraná and Uruguay rivers and favors mollusk reproduction. These rivers also aid agriculture and tourism in the area. Despite these favorable conditions, natural infection by S. mansoni has not yet been reported in Argentina, Uruguay, or Paraguay. Methods Two species of planorbid from Argentina, Biomphalaria straminea and B. tenagophila, were exposed to the miracidia of five Brazilian strains of S. mansoni. Results Biomphalaria tenagophila (Atalaya, Buenos Aires province was infected with the SJS strain (infection rate 3.3%, confirming the experimental susceptibility of this Argentinian species. Biomphalaria straminea (Rio Santa Lucía, Corrientes province was susceptible to two Brazilian strains: SJS (infection rate 6.7% and Sergipe (infection rate 6.7%. Conclusions These results demonstrate that species from Argentina have the potential to be natural hosts of S. mansoni and that the appearance of foci of mansoni schistosomiasis in Argentina is possible.

  19. Comprehensive Identification of Immunodominant Proteins of Brucella abortus and Brucella melitensis Using Antibodies in the Sera from Naturally Infected Hosts

    Directory of Open Access Journals (Sweden)

    Gamal Wareth

    2016-04-01

    Full Text Available Brucellosis is a debilitating zoonotic disease that affects humans and animals. The diagnosis of brucellosis is challenging, as accurate species level identification is not possible with any of the currently available serology-based diagnostic methods. The present study aimed at identifying Brucella (B. species-specific proteins from the closely related species B. abortus and B. melitensis using sera collected from naturally infected host species. Unlike earlier reported investigations with either laboratory-grown species or vaccine strains, in the present study, field strains were utilized for analysis. The label-free quantitative proteomic analysis of the naturally isolated strains of these two closely related species revealed 402 differentially expressed proteins, among which 63 and 103 proteins were found exclusively in the whole cell extracts of B. abortus and B. melitensis field strains, respectively. The sera from four different naturally infected host species, i.e., cattle, buffalo, sheep, and goat were applied to identify the immune-binding protein spots present in the whole protein extracts from the isolated B. abortus and B. melitensis field strains and resolved on two-dimensional gel electrophoresis. Comprehensive analysis revealed that 25 proteins of B. abortus and 20 proteins of B. melitensis were distinctly immunoreactive. Dihydrodipicolinate synthase, glyceraldehyde-3-phosphate dehydrogenase and lactate/malate dehydrogenase from B. abortus, amino acid ABC transporter substrate-binding protein from B. melitensis and fumarylacetoacetate hydrolase from both species were reactive with the sera of all the tested naturally infected host species. The identified proteins could be used for the design of serological assays capable of detecting pan-Brucella, B. abortus- and B. melitensis-specific antibodies.

  20. Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents

    Science.gov (United States)

    Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.

    1999-01-01

    plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure. PMID:10427022

  1. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq.

    Directory of Open Access Journals (Sweden)

    Michael E Taveirne

    Full Text Available Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5' untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host.

  2. Neotropical echinococcosis: second report of Echinococcus vogeli natural infection in its main definitive host, the bush dog (Speothos venaticus).

    Science.gov (United States)

    do Carmo Pereira Soares, Manoel; Souza de Souza, Alex Junior; Pinheiro Malheiros, Andreza; Nunes, Heloisa Marceliano; Almeida Carneiro, Liliane; Alves, Max Moreira; Farias da Conceição, Bernardo; Gomes-Gouvêa, Michele Soares; Marins Póvoa, Marinete

    2014-04-01

    The bush dog (Speothos venaticus) acts as the natural definitive host in the life cycle of Echinococcus vogeli, the causative agent of polycystic hydatid disease, a zoonotic neglected disease in the South America. We report a case of natural infection by Echinococcus vogeli in a bush dog from the Brazilian Amazon, confirmed by the morphological and morphometric examination of adult parasites and their hooks obtained from the small intestine of the canid. Additionally, mitochondrial DNA sequence analysis corroborated these findings. This is the second report of natural infection by E. vogeli in a bush dog. © 2013.

  3. Susceptibility to antibiotics of Vibrio sp. AO1 growing in pure culture or in association with its hydroid host Aglaophenia octodonta (Cnidaria, Hydrozoa).

    Science.gov (United States)

    Stabili, Loredana; Gravili, Cinzia; Boero, Ferdinando; Tredici, Salvatore M; Alifano, Pietro

    2010-04-01

    Vibrio harveyi is the major causal organism of vibriosis, causing potential devastation to diverse ranges of marine invertebrates over a wide geographical area. These microorganisms, however, are phenotypically diverse, and many of the isolates are also resistant to multiple antibiotics. In a previous study, we described a previously unknown association between Vibrio sp. AO1, a luminous bacterium related to the species V. harveyi, and the benthic hydrozoan Aglaophenia octodonta. In this study, we analyzed the susceptibility to antibiotics (ampicillin, streptomycin, tetracycline, or co-trimoxazole = mix of sulfamethoxazole and trimetoprim) of Vibrio sp. AO1 growing in pure culture or in association with its hydroid host by using microcosm experiments. The results of minimum inhibitory concentration (MIC) experiments demonstrated that Vibrio sp. AO1 was highly resistant to ampicillin and streptomycin in pure culture. Nevertheless, these antibiotics, when used at sub-MIC values, significantly reduced the hydroid fluorescence. Co-trimoxazole showed the highest inhibitory effect on fluorescence of A. octodonta. However, in all treatments, the fluorescence was reduced after 48 h, but never disappeared completely around the folds along the hydrocaulus and at the base of the hydrothecae of A. octodonta when the antibiotic was used at concentration completely inhibiting growth in vitro. The apparent discrepancy between the MIC data and the fluorescence patterns may be due to either heterogeneity of the bacterial population in terms of antibiotic susceptibility or specific chemical-physical conditions of the hydroid microenvironment that may decrease the antibiotic susceptibility of the whole population. The latter hypothesis is supported by scanning electron microscope evidence for development of bacterial biofilm on the hydroid surface. On the basis of the results obtained, we infer that A. octodonta might behave as a reservoir of antibiotic multiresistant bacteria

  4. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China

    Science.gov (United States)

    Yao, X.; Tham, L. G.; Dai, F. C.

    2008-11-01

    The Support Vector Machine (SVM) is an increasingly popular learning procedure based on statistical learning theory, and involves a training phase in which the model is trained by a training dataset of associated input and target output values. The trained model is then used to evaluate a separate set of testing data. There are two main ideas underlying the SVM for discriminant-type problems. The first is an optimum linear separating hyperplane that separates the data patterns. The second is the use of kernel functions to convert the original non-linear data patterns into the format that is linearly separable in a high-dimensional feature space. In this paper, an overview of the SVM, both one-class and two-class SVM methods, is first presented followed by its use in landslide susceptibility mapping. A study area was selected from the natural terrain of Hong Kong, and slope angle, slope aspect, elevation, profile curvature of slope, lithology, vegetation cover and topographic wetness index (TWI) were used as environmental parameters which influence the occurrence of landslides. One-class and two-class SVM models were trained and then used to map landslide susceptibility respectively. The resulting susceptibility maps obtained by the methods were compared to that obtained by the logistic regression (LR) method. It is concluded that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, which only requires failed cases, has an advantage over the other two methods as only "failed" case information is usually available in landslide susceptibility mapping.

  5. Epizootic to enzootic transition of a fungal disease in tropical Andean frogs: Are surviving species still susceptible?

    Directory of Open Access Journals (Sweden)

    Alessandro Catenazzi

    Full Text Available The fungal pathogen Batrachochytrium dendrobatidis (Bd, which causes the disease chytridiomycosis, has been linked to catastrophic amphibian declines throughout the world. Amphibians differ in their vulnerability to chytridiomycosis; some species experience epizootics followed by collapse while others exhibit stable host/pathogen dynamics where most amphibian hosts survive in the presence of Bd (e.g., in the enzootic state. Little is known about the factors that drive the transition between the two disease states within a community, or whether populations of species that survived the initial epizootic are stable, yet this information is essential for conservation and theory. Our study focuses on a diverse Peruvian amphibian community that experienced a Bd-caused collapse. We explore host/Bd dynamics of eight surviving species a decade after the mass extinction by using population level disease metrics and Bd-susceptibility trials. We found that three of the eight species continue to be susceptible to Bd, and that their populations are declining. Only one species is growing in numbers and it was non-susceptible in our trials. Our study suggests that some species remain vulnerable to Bd and exhibit ongoing population declines in enzootic systems where Bd-host dynamics are assumed to be stable.

  6. Infection's Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility.

    Science.gov (United States)

    Taylor, Steven L; McGuckin, Michael A; Wesselingh, Steve; Rogers, Geraint B

    2018-02-01

    Glycans form a highly variable constituent of our mucosal surfaces and profoundly affect our susceptibility to infection and disease. The diversity and importance of these surface glycans can be seen in individuals who lack a functional copy of the fucosyltransferase gene, FUT2. Representing around one-fifth of the population, these individuals have an altered susceptibility to many bacterial and viral infections and diseases. The mediation of host-pathogen interactions by mucosal glycans, such as those added by FUT2, is poorly understood. We highlight, with specific examples, important mechanisms by which host glycans influence infection dynamics, including by: acting as pathogen receptors (or receptor-decoys), promoting microbial stability, altering the physical characteristics of mucus, and acting as immunological markers. We argue that the effect glycans have on infection dynamics has profound implications for many aspects of healthcare and policy, including clinical management, outbreak control, and vaccination policy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  8. Hologenomics: Systems-Level Host Biology.

    Science.gov (United States)

    Theis, Kevin R

    2018-01-01

    The hologenome concept of evolution is a hypothesis explaining host evolution in the context of the host microbiomes. As a hypothesis, it needs to be evaluated, especially with respect to the extent of fidelity of transgenerational coassociation of host and microbial lineages and the relative fitness consequences of repeated associations within natural holobiont populations. Behavioral ecologists are in a prime position to test these predictions because they typically focus on animal phenotypes that are quantifiable, conduct studies over multiple generations within natural animal populations, and collect metadata on genetic relatedness and relative reproductive success within these populations. Regardless of the conclusion on the hologenome concept as an evolutionary hypothesis, a hologenomic perspective has applied value as a systems-level framework for host biology, including in medicine. Specifically, it emphasizes investigating the multivarious and dynamic interactions between patient genomes and the genomes of their diverse microbiota when attempting to elucidate etiologies of complex, noninfectious diseases.

  9. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens

    OpenAIRE

    Taylor, Andrew; Clarkson, John; Raffaele, Sylvain; Navaud, Olivier; Barbacci, Adelin

    2017-01-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae , a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events, and host range variation dur...

  10. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge

    Science.gov (United States)

    Plant pests including insects must manipulate plants in order to utilize the nutrition and environment of the host. Here, we show that the heat-shock protein gene Mayetiola destructor susceptibility gene-1 (Mds-1) is a major susceptibility gene in wheat that allows the gall midge M. destructor, com...

  11. Mustelidae are natural hosts of Staphylococcus delphini group A

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Schmidt, Kristina Runge; Petersen, Tina Steiner

    2012-01-01

    158 SIG isolates from less studied animal species belonging to the order Carnivora, including mink (n=118), fox (n=33), badger (n=6) and ferret (n=1). Species identification was performed by nuc PCR in combination with sodA sequence analysis and pta PCR restriction fragment length polymorphism (RFLP......). The results showed a consistent association between host and bacterial species. All isolates from minks, ferret and badgers belonged to S. delphini group A, whereas all fox isolates except one were identified as S. pseudintermedius. The remaining fox isolate belonged to S. delphini group A. The results...... through host adaptation....

  12. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells.

    Science.gov (United States)

    Zhang, Zhong; Ye, Gong-Yin; Cai, Jun; Hu, Cui

    2005-09-01

    Crude venoms from two parasitoid species, Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) were assayed for biological activities toward hemocytes from two species of their natural hosts and eight species of their non-natural hosts as well as two lines of cultured Lepidoptera cells, respectively. By inhibiting the spreading and viability of insect hemocytes, the venom from P. puparum displayed significantly higher activities toward plasmatocytes and granular cells from both larvae and pupae of two natural hosts, Pieris rapae and Papilio xuthus, and lower activity toward those from Spodoptera litura, Musca domestica and Sarcophaga peregrina. However, no effect was found towards any type of hemocytes from other five insects tested, namely, Ectropis oblique, Galleria mellonella, Sesamia inferens, Bombyx mori and Parnara guttata. In contrast, the venom from N. vitripennis showed a narrower range of targeted insects. It appeared to have highly adverse effects on the spreading and viability of plasmatocytes and granular cells only from the natural hosts, M. domestica and S. peregrina, little toxicity to cells from P. rapae and P. xuthus, and no effect on any of the other insects tested. Pteromalus puparum venom also apparently presented a high ability to block the spreading of Tn-5B1-4 cells derived from Trichoplusia ni, and high cytotoxicity to the cells and Ha cells derived from Helicoverpa armigera. Nasonia vitripennis venom, however, only had a marked lethal effect to Ha cells. In addition, the possibility that the host range of a defined parasitoid could be assessed using our method of treating hemocytes from candidate insects with venom in vitro, and the potential of our venoms tested in the development of bio-insecticides, insect-resistant transgenic plants, are discussed.

  13. Endobiont viruses sensed by the human host - beyond conventional antiparasitic therapy.

    Directory of Open Access Journals (Sweden)

    Raina N Fichorova

    Full Text Available Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth, HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae.

  14. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor.

    Science.gov (United States)

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By

  15. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor

    Directory of Open Access Journals (Sweden)

    Roi Ben-David

    2018-02-01

    Full Text Available The biotroph wheat powdery mildew, Blumeria graminis (DC. E.O. Speer, f. sp. tritici Em. Marchal (Bgt, has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant. Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host. Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance. By

  16. Molecular crosstalks in Leishmania-sandfly-host relationships

    Directory of Open Access Journals (Sweden)

    Volf P.

    2008-09-01

    Full Text Available Sandflies (Diptera: Phlebotominae are vectors of Leishmania parasites, causative agents of important human and animal diseases with diverse manifestations. This review summarizes present knowledge about the vectorial part of Leishmania life cycle and parasite transmission to the vertebrate host. Particularly, it focuses on molecules that determine the establishment of parasite infection in sandfly midgut. It describes the concept of specific versus permissive sandfly vectors, explains the epidemiological consequences of broad susceptibility of permissive sandflies and demonstrates that genetic exchange may positively affect Leishmania fitness in the vector. Last but not least, the review describes recent knowledge about circulating antibodies produced by hosts in response to sandfly bites. Studies on specificity and kinetics of antibody response revealed that anti-saliva IgG could be used as a marker of host exposure to sandflies, i.e. as a useful tool for evaluation of vector control.

  17. Magnetic properties of natural pyrrhotite Part I : Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework

    NARCIS (Netherlands)

    Dekkers, M.J.

    1988-01-01

    The grain-size dependence of the initial susceptibility, saturation magnetization, saturation remanence , coercive force, remanent coercive force and remanent acquisition coercive force, is reported for four natural pyrrhotites in a grain-size range from 250 µm down to <5 µm.

  18. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics

    Directory of Open Access Journals (Sweden)

    van Manen Daniëlle

    2012-08-01

    Full Text Available Abstract Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication and pathogenesis. Recently, genome-wide association studies (GWAS were utilized for unbiased searches at a genome-wide level to discover novel genetic factors and pathways involved in HIV-1 infection. This review gives an overview of findings from the GWAS performed on HIV infection, within different cohorts, with variable patient and phenotype selection. Furthermore, novel techniques and strategies in research that might contribute to the complete understanding of virus-host interactions and its role on the pathogenesis of HIV infection are discussed.

  19. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution.

    Science.gov (United States)

    Nasrullah, Izza; Butt, Azeem M; Tahir, Shifa; Idrees, Muhammad; Tong, Yigang

    2015-08-26

    The Marburg virus (MARV) has a negative-sense single-stranded RNA genome, belongs to the family Filoviridae, and is responsible for several outbreaks of highly fatal hemorrhagic fever. Codon usage patterns of viruses reflect a series of evolutionary changes that enable viruses to shape their survival rates and fitness toward the external environment and, most importantly, their hosts. To understand the evolution of MARV at the codon level, we report a comprehensive analysis of synonymous codon usage patterns in MARV genomes. Multiple codon analysis approaches and statistical methods were performed to determine overall codon usage patterns, biases in codon usage, and influence of various factors, including mutation pressure, natural selection, and its two hosts, Homo sapiens and Rousettus aegyptiacus. Nucleotide composition and relative synonymous codon usage (RSCU) analysis revealed that MARV shows mutation bias and prefers U- and A-ended codons to code amino acids. Effective number of codons analysis indicated that overall codon usage among MARV genomes is slightly biased. The Parity Rule 2 plot analysis showed that GC and AU nucleotides were not used proportionally which accounts for the presence of natural selection. Codon usage patterns of MARV were also found to be influenced by its hosts. This indicates that MARV have evolved codon usage patterns that are specific to both of its hosts. Moreover, selection pressure from R. aegyptiacus on the MARV RSCU patterns was found to be dominant compared with that from H. sapiens. Overall, mutation pressure was found to be the most important and dominant force that shapes codon usage patterns in MARV. To our knowledge, this is the first detailed codon usage analysis of MARV and extends our understanding of the mechanisms that contribute to codon usage and evolution of MARV.

  20. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy

    Science.gov (United States)

    Davidson, Linda; Netea, Mihai G.; Kullberg, Bart Jan

    2018-01-01

    Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30–50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy. PMID:29371502

  1. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy

    Directory of Open Access Journals (Sweden)

    Linda Davidson

    2018-01-01

    Full Text Available Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30–50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy.

  2. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    Science.gov (United States)

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  3. Comparison of worm development and host immune responses in natural hosts of schistosoma japonicum, yellow cattle and water buffalo

    Directory of Open Access Journals (Sweden)

    Yang Jianmei

    2012-03-01

    Full Text Available Abstract Background Yellow cattle and water buffalo are two of the most important natural hosts for Schistosoma japonicum in China. Previous observation has revealed that yellow cattle are more suited to the development of S. japonicum than water buffalo. Understanding more about the molecular mechanisms involved in worm development, as well as the pathological and immunological differences between yellow cattle and water buffalo post infection with S japonicum will provide useful information for the vaccine design and its delivery procedure. Results The worm length (p p p + T cells was higher in yellow cattle, while the percentage of CD8+ T cells was higher in water buffalo from pre-infection to 7 w post infection. The CD4/CD8 ratios were decreased in both species after challenge with schistosomes. Comparing with water buffalo, the IFN-γ level was higher and decreased significantly, while the IL-4 level was lower and increased gradually in yellow cattle from pre-infection to 7 w post infection. Conclusions In this study, we confirmed that yellow cattle were more suited to the development of S. japonicum than water buffalo, and more serious pathological damage was observed in infected yellow cattle. Immunological analysis suggested that CD4+ T cells might be an integral component of the immune response and might associate with worm development in yellow cattle. A shift from Th1 to Th2 type polarized immunity was only shown clearly in schistosome-infected yellow cattle, but no shift in water buffalo. The results provide valuable information for increased understanding of host-schistosome interactions, and for control of schistosomiasis.

  4. Detection of PrPres in genetically susceptible fetuses from sheep with natural scrapie.

    Directory of Open Access Journals (Sweden)

    María Carmen Garza

    Full Text Available Scrapie is a transmissible spongiform encephalopathy with a wide PrPres dissemination in many non-neural tissues and with high levels of transmissibility within susceptible populations. Mechanisms of transmission are incompletely understood. It is generally assumed that it is horizontally transmitted by direct contact between animals or indirectly through the environment, where scrapie can remain infectious for years. In contrast, in utero vertical transmission has never been demonstrated and has rarely been studied. Recently, the use of the protein misfolding cyclic amplification technique (PMCA has allowed prion detection in various tissues and excretions in which PrPres levels have been undetectable by traditional assays. The main goal of this study was to detect PrPres in fetal tissues and the amniotic fluid from natural scrapie infected ewes using the PMCA technique. Six fetuses from three infected pregnant ewes in an advanced clinical stage of the disease were included in the study. From each fetus, amniotic fluid, brain, spleen, ileo-cecal valve and retropharyngeal lymph node samples were collected and analyzed using Western blotting and PMCA. Although all samples were negative using Western blotting, PrPres was detected after in vitro amplification. Our results represent the first time the biochemical detection of prions in fetal tissues, suggesting that the in utero transmission of scrapie in natural infected sheep might be possible.

  5. How do PrPSc Prions Spread between Host Species, and within Hosts?

    Directory of Open Access Journals (Sweden)

    Neil A. Mabbott

    2017-11-01

    Full Text Available Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.

  6. Characterization of the Sulfolobus host-SSV2 virus interaction

    DEFF Research Database (Denmark)

    Contursi, P.; Jensen, S.; Aucelli, T.

    2006-01-01

    The Sulfolobus spindle virus, SSV2, encodes a tyrosine integrase which furthers provirus formation in host chromosomes. Consistently with the prediction made during sequence analysis, integration was found to occur in the downstream half of the tRNAGly (CCC) gene. In this paper we report the find......The Sulfolobus spindle virus, SSV2, encodes a tyrosine integrase which furthers provirus formation in host chromosomes. Consistently with the prediction made during sequence analysis, integration was found to occur in the downstream half of the tRNAGly (CCC) gene. In this paper we report...... during the growth of the natural host REY15/4, the cellular content of SSV2 DNA remains fairly low throughout the incubation of the foreign host. The accumulation of episomal DNA in the former case cannot be traced to decreased packaging activity because of a simultaneous increase in the virus titre...... in the medium. In addition, the interaction between SSV2 and its natural host is characterized by the concurrence of host growth inhibition and the induction of viral DNA replication. When this virus-host interaction was investigated using S. islandicus REY15A, a strain which is closely related to the natural...

  7. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  8. LANDSLIDE SUSCEPTIBILITY ASSESSMENT THROUGH FUZZY LOGIC INFERENCE SYSTEM (FLIS

    Directory of Open Access Journals (Sweden)

    T. Bibi

    2016-09-01

    Full Text Available Landslide is among one of the most important natural hazards that lead to modification of the environment. It is a regular feature of a rapidly growing district Mansehra, Pakistan. This caused extensive loss of life and property in the district located at the foothills of Himalaya. Keeping in view the situation it is concluded that besides structural approaches the non-structural approaches such as hazard and risk assessment maps are effective tools to reduce the intensity of damage. A landslide susceptibility map is base for engineering geologists and geomorphologists. However, it is not easy to produce a reliable susceptibility map due to complex nature of landslides. Since 1980s, several mathematical models have been developed to map landslide susceptibility and hazard. Among various models this paper is discussing the effectiveness of fuzzy logic approach for landslide susceptibility mapping in District Mansehra, Pakistan. The factor maps were modified as landslide susceptibility and fuzzy membership functions were assessed for each class. Likelihood ratios are obtained for each class of contributing factors by considering the expert opinion. The fuzzy operators are applied to generate landslide susceptibility maps. According to this map, 17% of the study area is classified as high susceptibility, 32% as moderate susceptibility, 51% as low susceptibility and areas. From the results it is found that the fuzzy model can integrate effectively with various spatial data for landslide hazard mapping, suggestions in this study are hope to be helpful to improve the applications including interpretation, and integration phases in order to obtain an accurate decision supporting layer.

  9. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  10. The suitability of several aquatic snails as intermediate hosts for Angiostrongylus cantonensis.

    Science.gov (United States)

    Yousif, F; Lämmler, G

    1975-10-16

    Sixteen species of aquatic snails of four families were tested by quantitative technique under standardized conditions for their suitability as intermediate hosts for Angiostrongylus cantonensis. These species were the planorbid snails Biomphalaria glabrata, Biomphalaria alexandrina, Planorbis planorbis, Planorbis intermixtus, Bulinus truncatus, Bulinus contortus, Bulinus africanus, Bulinus tropicus and Helisoma sp.; the lymnaeid snails Lymnaea natalensis, Lymnaea tomentosa, Lymnaea stagnalis, and Stagnicola elodes; the physid snail Physa acuta (an Egyptian and a German strain) and the ampullariid snails Marisa cornuarietis and Lanistes carinatus. All these snail species proved to be susceptible to infection with A. cantonensis, and first stage larvae reached the infective third stage in all of them. However, the rate and intensity of infection varied with different species. B. glabrata was the most susceptible snail species with a 100% infection rate and an average percentage recovery of third stage larvae of 26.1. This was followed by S. elodes and B. africanus, with a 100% infection rate and an average percentage recovery of third stage larvae of 15.6 and 14.6 respectively. The rest of snail species proved to be less susceptible. For comparative evaluation of the suitability of the various snail species as intermediate hosts of A. cantonensis a "Capacity Index" was determined. This index should provide a useful method for the evaluation of the suitability of various snails as intermediate hosts of nematode parasites under standardized conditions in the laboratory.

  11. Mutants in the host-pathogen system barley-powdery mildew

    International Nuclear Information System (INIS)

    Joergensen, J.H.

    1989-10-01

    Mutation induction was used to analyse the host/pathogen interaction of barley and Erysiphe graminis. By irradiation or chemical mutagens, a number of similar mutations were induced in the ml-o gene (locus) of barley. The mutants had non-specific and durable resistance, which is rather uncommon. Studies revealed, that in spite of their similarity (the same mutated locus, monogenic recessive inheritance), the mutants were not identical and represent unique sources of disease resistant germ plasm. To study more fundamentally the interference of induced mutations in host/pathogen interactions, barley carrying the dominant resistance gene M1-a 12 was irradiated to mutate this gene. Instead of the expected ''monogenic recessive susceptibility'', several different mutational events inside and outside the locus were found to modify the resistance towards a more or less susceptible reaction. A third interesting approach was to induce mutations in the pathogen and thus create new virulence genes. The result, that no true mutation towards virulence was obtained in extremely large populations, deserves attention and further study to be sure about its implication. 13 refs

  12. Chemokines and Chemokine Receptors in Susceptibility to HIV-1 Infection and Progression to AIDS

    Directory of Open Access Journals (Sweden)

    Animesh Chatterjee

    2012-01-01

    Full Text Available A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  13. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    Science.gov (United States)

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Influence of the host contact sequence on the outcome of competition among aspergillus flavus isolates during host tissue invasion.

    Science.gov (United States)

    Mehl, H L; Cotty, P J

    2011-03-01

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion.

  15. Blood protein turnover in parasitized ruminants. The influence of host nutrition

    International Nuclear Information System (INIS)

    Dargie, J.D.

    1981-01-01

    Ruminants infected with helminth or protozoal parasites generally become anaemic and hypoalbuminaemic, as well as losing their appetite. Since feed intake plays an important part in determining blood protein levels, it is necessary, when attempting to determine the mechanisms by which parasites cause anaemia and hypoalbuminaemia, to differentiate between the effects of feed intake per se and the specific effects of the parasite on blood protein turnover. This can be done by a variety of radioisotope techniques using infected and pair-fed control animals. Additionally, animals on a poor plane of nutrition suffer more from parasitism than those which are well fed. To understand the reason for this, it is necessary to determine whether diet influences susceptibility to parasite establishment or survival, and/or susceptibility to the metabolic consequences of parasitism. Described here is the current state of knowledge on the interaction between host nutrition and susceptibility to parasitic infection and parasitic disease processes, with particular reference to anaemia and hypoalbuminaemia. It is concluded that there is little evidence that nutrition has a significant bearing on resistance or susceptibility to infection, but that it does not have a profound influence on the ability of animals to withstand the pathogenic effects of parasites. The reasons for this are discussed in detail, but the principal benefit of a good plane of nutrition is that it enables the synthetic machinery of the host to keep pace with the concurrent parasite-induced hypercatabolism of blood proteins. (author)

  16. Topological congruence between phylogenies of Anacanthorus spp. (Monogenea: Dactylogyridae) and their Characiformes (Actinopterygii) hosts: A case of host-parasite cospeciation.

    Science.gov (United States)

    da Graça, Rodrigo J; Fabrin, Thomaz M C; Gasques, Luciano S; Prioli, Sônia M A P; Balbuena, Juan A; Prioli, Alberto J; Takemoto, Ricardo M

    2018-01-01

    Cophylogenetic studies aim at testing specific hypotheses to understand the nature of coevolving associations between sets of organisms, such as host and parasites. Monogeneans and their hosts provide and interesting platform for these studies due to their high host specificity. In this context, the objective of the present study was to establish whether the relationship between Anacanthorus spp. with their hosts from the upper Paraná River and its tributaries can be explained by means of cospeciation processes. Nine fish species and 14 monogenean species, most of them host specific, were studied. Partial DNA sequences of the genes RAG1, 16S and COI of the fish hosts and of the genes ITS2, COI and 5.8S of the parasite species were used for phylogenetic reconstruction. Maximum likelihood phylogenetic trees of the host and parasite species were built and used for analyses of topological congruence with PACo and ParaFit. The program Jane was used to estimate the nature of cospeciation events. The comparison of the two phylogenies revealed high topological congruence between them. Both PACo and ParaFit supported the hypothesis of global cospeciation. Results from Jane pointed to duplications as the most frequent coevolutionary event, followed by cospeciation, whereas duplications followed by host-switching were the least common event in Anacanthorus spp. studied. Host-sharing (spreading) was also identified but only between congeneric host species.

  17. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  18. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  19. Bunias orientalis L. as a natural overwintering host OF Turnip mosaic virus

    Directory of Open Access Journals (Sweden)

    Tadeusz Kobyłko

    2012-12-01

    Full Text Available A virus was isolated, using mechanical inoculation, from hill mustard (Bunias orientalis L. plants exhibiting yellow mottling and blistering on leaves, which were frequently accompanied by asymmetric leaf narrowing. It systemically infected certain plants from the family Brassicaceae (Brassica rapa, Bunias orientalis, Hesperis matronalis, Sinapis alba as well as Cleome spinosa and Nicotiana clevelandii, and locally Atriplex hortensis, Chenopodium quinoa, Ch. amaranticolor, N. tabacum. In the sap, it maintained infectivity for 3-4 days and lost it after heating for 10 min. at a temperature of 55 - 60oC or when diluted with water at 10-3. Virus particles were thread- like with a length of 675 - 710 nm. Based on an analysis of biological properties of the pathogen, serological response, particle morphology and data from field observations, it was identified as an isolate of Turnip mosaic virus (TuMV, and hill mustard was recognised as a natural overwintering host for this pathogen.

  20. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat.

    Science.gov (United States)

    Liu, Zhaohui; Zurn, Jason D; Kariyawasam, Gayan; Faris, Justin D; Shi, Gongjun; Hansen, Jana; Rasmussen, Jack B; Acevedo, Maricelis

    2017-06-01

    Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.

  1. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    Science.gov (United States)

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  2. The host defense peptide beta-defensin 1 confers protection against Bordetella pertussis in newborn piglets.

    Science.gov (United States)

    Elahi, Shokrollah; Buchanan, Rachelle M; Attah-Poku, Sam; Townsend, Hugh G G; Babiuk, Lorne A; Gerdts, Volker

    2006-04-01

    Innate immunity plays an important role in protection against respiratory infections in humans and animals. Host defense peptides such as beta-defensins represent major components of innate immunity. We recently developed a novel porcine model of pertussis, an important respiratory disease of young children and infants worldwide. Here, we investigated the role of porcine beta-defensin 1 (pBD-1), a porcine defensin homologue of human beta-defensin 2, in conferring protection against respiratory infection with Bordetella pertussis. In this model, newborn piglets were fully susceptible to infection and developed severe bronchopneumonia. In contrast, piglets older than 4 weeks of age were protected against infection with B. pertussis. Protection was associated with the expression of pBD-1 in the upper respiratory tract. In fact, pBD-1 expression was developmentally regulated, and the absence of pBD-1 was thought to contribute to the increased susceptibility of newborn piglets to infection with B. pertussis. Bronchoalveolar lavage specimens collected from older animals as well as chemically synthesized pBD-1 displayed strong antimicrobial activity against B. pertussis in vitro. Furthermore, in vivo treatment of newborn piglets with only 500 mug pBD-1 at the time of challenge conferred protection against infection with B. pertussis. Interestingly, pBD-1 displayed no bactericidal activity in vitro against Bordetella bronchiseptica, a closely related natural pathogen of pigs. Our results demonstrate that host defense peptides play an important role in protection against pertussis and are essential in modulating innate immune responses against respiratory infections.

  3. Intraspecies differences in natural susceptibility to amphotericine B of clinical isolates of Leishmania subgenus Viannia.

    Directory of Open Access Journals (Sweden)

    Carlos Franco-Muñoz

    Full Text Available Amphotericin B (AmB is a recommended medication for the treatment of cutaneous and mucosal leishmaniasis in cases of therapeutic failure with first-line medications; however, little is known about the in vitro susceptibility to AmB of clinical isolates of the subgenus Viannia, which is most prevalent in South America. This work aimed to determine the in vitro susceptibility profiles to AmB of clinical isolates of the species L. (V. panamensis, L. (V. guyanensis and L. (V. braziliensis. In vitro susceptibility to AmB was evaluated for 65 isolates. Macrophages derived from the U937 cell line were infected with promastigotes and exposed to different AmB concentrations. After 96 hours, the number of intracellular amastigotes was quantified by qPCR, and median effective concentration (EC50 was determined using the PROBIT model. The controls included sensitive strains and experimentally derived less sensitive strains generated in vitro, which presented EC50 values up to 7.57-fold higher than the values of the sensitive strains. The isolates were classified into groups according to their in vitro susceptibility profiles using Ward's hierarchical method. The susceptibility to AmB differed in an intraspecies-specific manner as follows: 28.21% (11/39 of L. (V. panamensis strains, 50% (3/6 of L. (V. guyanensis strains and 34.61% (9/26 of L. (V. braziliensis strains were classified as less sensitive. The latter subset featured three susceptibility groups. We identified Colombian isolates with different AmB susceptibility profiles. In addition, the capacity of species of subgenus Viannia to develop lower susceptibility to AmB was demonstrated in vitro. These new findings should be considered in the pharmacovigilance of AmB in Colombia and South America.

  4. Identification and molecular characterization of a naturally occurring RNA virus mutant defective in the initiation of host recovery

    International Nuclear Information System (INIS)

    Xin Hongwu; Ding Shouwei

    2003-01-01

    The host recovery response is characterized by the disappearance of disease symptoms and activation of the RNA silencing virus resistance in the new growth following an initial symptomatic infection. However, it is not clear what triggers the initiation of recovery, which occurs naturally only in some virus-host interactions. Here we report the identification and characterization of a spontaneous mutant of Tobacco streak virus (TSV) that became defective in triggering recovery in tobacco plants. Infectious full-length cDNA clones corresponding to the tripartite RNA genome were constructed from both the wild-type and the nonrecovery mutant of TSV (TSVnr), the first sets of infectious cDNA clones from an Ilarvirus. Genetic and molecular analyses identified an A → G mutation in the TSVnr genome that was sufficient to confer nonrecovery when introduced into TSV. The mutation was located in the intergenic region of RNA 3 upstream of the mapped transcriptional start site of the coat protein mRNA. Intriguingly, induction of recovery by TSV was not accompanied by virus clearance and TSV consistently accumulated to significantly higher levels than TSVnr did even though TSVnr-infected plants displayed severe symptoms throughout the course of infection. Thus, our findings indicate that recovery of host can be initiated by minimal genetic changes in a viral genome and may occur in the absence of virus clearance. Mechanisms possibly involved in the initiation of host recovery are discussed

  5. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    Science.gov (United States)

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Short distance movement of genomic negative strands in a host and nonhost for Sugarcane mosaic virus (SCMV

    Directory of Open Access Journals (Sweden)

    Hernández-Vela Juan

    2011-01-01

    Full Text Available Abstract Background In order to obtain an initial and preliminary understanding of host and nonhost resistance in the initial step of potyvirus replication, both positive and negative Sugarcane mosaic virus (SCMV strands where traced in inoculated and systemic leaves in host and nonhost resistant maize and sugarcane for one Mexican potyviral isolate (SCMV-VER1. Intermediary replication forms, such as the negative viral strand, seem to only move a short distance as surveyed by RT-PCR analysis and ELISA in different leaves. Virus purification was also done in leaves and stems. Results Susceptible maize plants allowed for viral SCMV replication, cell-to-cell, and long distance movement, as indicated by the presence of the coat protein along the plant. In the host resistant maize plants for the SCMV-VER1 isolate, the virus was able to establish the disease though the initial steps of virus replication, as detected by the presence of negative strands, in the basal area of the inoculated leaves at six and twelve days post inoculation. The nonhost sugarcane for SCMV-VER1 and the host sugarcane for SCMV-CAM6 also allowed the initial steps of viral replication for the VER1 isolate in the local inoculated leaf. SCMV-VER1 virions could be extracted from stems of susceptible maize with higher titers than leaves. Conclusion Nonhost and host resistance allow the initial steps of potyvirus SCMV replication, as shown by the negative strands' presence. Furthermore, both hosts allow the negative viral strands' local movement, but not their systemic spread through the stem. The presence of larger amounts of extractable virions from the stem (as compared to the leaves in susceptible maize lines suggests their long distance movement as assembled particles. This will be the first report suggesting the long distance movement of a monocot potyvirus as a virion.

  7. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Derrick R Samuelson

    2017-06-01

    Full Text Available Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis. To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein

  8. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  9. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    Science.gov (United States)

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-07-29

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.

  10. Contrasting amino acid profiles among permissive and non-permissive hosts of Candidatus Liberibacter asiaticus, putative causal agent of Huanglongbing.

    Directory of Open Access Journals (Sweden)

    Mamoudou Sétamou

    Full Text Available Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA in four permissive host plants of Candidatus Liberibacter asiaticus (CLas and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs.

  11. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response

    OpenAIRE

    Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé

    2018-01-01

    Cassava brown streak viruses (CBSVs) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs we inoculated CBSV-susceptible and -resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time-point of full infection (28 days after grafting) in the susceptible scions. The expression of genes enco...

  12. Susceptibility and antibody response of Vesper Sparrows (Pooecetes gramineus) to West Nile virus: A potential amplification host in sagebrush-grassland habitat

    Science.gov (United States)

    Hofmeister, Erik K.; Dusek, Robert J.; Fassbinder-Orth, Carol; Owen, Benjamin; Franson, J. Christian

    2016-01-01

    West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.

  13. Structural studies on the development of soybean rust (Phakopsora pachyrhizi Syd.) in susceptible soybean leaves

    International Nuclear Information System (INIS)

    Koch, E.; Ebrahim-Nesbat, F.; Hoppe, H.H.

    1983-01-01

    Where soybeans are cultivated in the tropics, soybean rust may cause heavy crop losses. Resistance found so far was only of local and temporary value. More substantial breeding efforts are needed, but these may require a better understanding of the pathogen's biology and evolutionary capacity, the infection process and the host-pathogen relationships. The report deals with the infection process and the development of the fungus in a susceptible host variety. (author)

  14. Susceptibility to Phytophthora ramorum in California bay laurel, a key foliar host of sudden oak death

    Science.gov (United States)

    Brian L. Anacker; Nathan E. Rank; Daniel Hüberli; Matteo Garbelotto; Sarah Gordon; Rich Whitkus; Tami Harnik; Matthew Meshriy; Lori Miles; Ross K. Meentemeyer

    2008-01-01

    Sudden oak death, caused by the water mold Phytophthora ramorum, is a plant disease responsible for the death of hundreds of thousands of oak and tanoak trees. Some foliar hosts play a major role in the epidemiology of this disease. Upon infection by P. ramorum, these foliar hosts express non-fatal leaf lesions from which large...

  15. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Directory of Open Access Journals (Sweden)

    Philipp Rausch

    2015-07-01

    Full Text Available Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2 are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  16. Effects of host nutrition on virulence and fitness of entomopathogenic nematodes: Lipid- and protein-based supplements in Tenebrio molitor diets

    Science.gov (United States)

    Shapiro-Ilan, David; Rojas, M. Guadalupe; Morales-Ramos, Juan A.; Lewis, Edwin E.; Tedders, W. Louis

    2008-01-01

    Entomopathogenic nematodes, Heterorhabditis indica and Steinernema riobrave, were tested for virulence and reproductive yield in Tenebrio molitor that were fed wheat bran diets with varying lipid- and protein-based supplements. Lipid supplements were based on 20% canola oil, peanut, pork or salmon, or a low lipid control (5% canola). Protein treatments consisted of basic supplement ingredients plus 0, 10, or 20% egg white; a bran-only control was also included. Some diet supplements had positive effects on nematode quality, whereas others had negative or neutral effects. All supplements with 20% lipids except canola oil caused increased T. molitor susceptibility to H. indica, whereas susceptibility to S. riobrave was not affected. Protein supplements did not affect host susceptibility, and neither lipid nor protein diet supplements affected reproductive capacity of either nematode species. Subsequently, we determined the pest control efficacy of progeny of nematodes that had been reared through T. molitor from different diets against Diaprepes abbreviatus and Otiorhynchus sulcatus. All nematode treatments reduced insect survival relative to the control (water only). Nematodes originating from T. molitor diets with the 0% or 20% protein exhibited lower efficacy versus D. abbreviatus than the intermediate level of protein (10%) or bran-only treatments. Nematodes originating from T. molitor lipid or control diets did not differ in virulence. Our research indicates that nutritional content of an insect host diet can affect host susceptibility to entomopathogenic nematodes and nematode fitness; therefore, host media could conceivably be optimized to increase in vivo nematode production efficiency. PMID:19259513

  17. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  18. A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment.

    Science.gov (United States)

    Garira, Winston; Mathebula, Dephney; Netshikweta, Rendani

    2014-10-01

    In this study we develop a mathematical modelling framework for linking the within-host and between-host dynamics of infections with free-living pathogens in the environment. The resulting linked models are sometimes called immuno-epidemiological models. However, there is still no generalised framework for linking the within-host and between-host dynamics of infectious diseases. Furthermore, for infections with free-living pathogens in the environment, there is an additional stumbling block in that there is a gap in knowledge on how environmental factors (through water, air, soil, food, fomites, etc.) alter many aspects of such infections including susceptibility to infective dose, persistence of infection, pathogen shedding and severity of the disease. In this work, we link the two subsystems (within-host and between-host models) by identifying the within-host and between-host variables and parameters associated with the environmental dynamics of the pathogen and then design a feedback of the variables and parameters across the within-host and between-host models using human schistosomiasis as a case study. We study the mathematical properties of the linked model and show that the model is epidemiologically well-posed. Using results from the analysis of the endemic equilibrium expression, the disease reproductive number R0, and numerical simulations of the full model, we adequately account for the reciprocal influence of the linked within-host and between-host models. In particular, we illustrate that for human schistosomiasis, the outcome of infection at the individual level determines if, when and how much the individual host will further transmit the infectious agent into the environment, eventually affecting the spread of the infection in the host population. We expect the conceptual modelling framework developed here to be applicable to many infectious disease with free-living pathogens in the environment beyond the specific disease system of human

  19. Mapping the genes for susceptibility and response to Leishmania tropica in mouse

    Czech Academy of Sciences Publication Activity Database

    Sohrabi, Yahya; Havelková, Helena; Kobets, Tetyana; Šíma, Matyáš; Volkova, Valeriya; Grekov, Igor; Jarošíková, T.; Kurey, Irina; Vojtíšková, Jarmila; Svobodová, M.; Demant, P.; Lipoldová, Marie

    2013-01-01

    Roč. 7, č. 7 (2013), s. 1-17 ISSN 1935-2735 R&D Projects: GA ČR GA310/08/1697; GA MŠk LH12049 Institutional support: RVO:68378050 Keywords : Leishmania tropica * gene controlling susceptibility * host-parasite interactions * leishmaniasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.489, year: 2013

  20. Differences in the gene expression profiles of haemocytes from schistosome-susceptible and -resistant biomphalaria glabrata exposed to Schistosoma mansoni excretory-secretory products.

    Directory of Open Access Journals (Sweden)

    Zahida Zahoor

    Full Text Available During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host.

  1. Mini-review: Can non-human leucocyte antigen genes determine susceptibility to severe dengue syndromes?

    Science.gov (United States)

    Ng, Dorothy; Ghosh, Aparna; Jit, Mark; Seneviratne, Suranjith L

    2017-09-01

    Dengue viral infections are endemic or epidemic in virtually all tropical countries. Among individuals infected with the dengue virus, severe dengue syndromes (i.e., dengue haemorrhagic fever and dengue shock syndromes) tend to affect only some and this may be due to a combination of host genetic susceptibility and viral factors. In this review article we analyse and discuss the present knowledge of non-human leucocyte antigen host genetic susceptibility to severe dengue syndromes. The relevance of genetic polymorphisms in the pathways of antigen recognition, uptake, processing and presentation, activation of interferon α responses, mast cell and complement activation and T cell activation and dengue disease severity has been reviewed and analysed. © The Author(s) 2018. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Patterns of early gut colonization shape future immune responses of the host

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Nielsen, Dennis Sandris; Kverka, Miloslav

    2012-01-01

    The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut...... production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system....

  3. Reproductive biology of Palmistichus elaeisis (Hymenoptera: Eulophidae with alternative and natural hosts

    Directory of Open Access Journals (Sweden)

    Fabricio F. Pereira

    2010-01-01

    Full Text Available Mass rearing of parasitoids depends on choosing appropriate alternative hosts. The objective of this study was to select alternative hosts to rear the parasitoid Palmistichus elaeisis Delvare & LaSalle, 1993 (Hymenoptera: Eulophidae. Pupae of the lepidopterans Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae, Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae and Thyrinteina arnobia (Stoll, 1782 (Lepidoptera: Geometridae were exposed to parasitism by females of P. elaeisis. The duration of the life cycle of P. elaeisis was 21.60 ± 0.16 and 24.15 ± 0.65 days on pupae of A. gemmatalis and B. mori, respectively, with 100.0% parasitism of the pupae and 71.4 and 100.0% emergence of parasitoids from the first and second hosts, respectively. The offspring number of P. elaeisis was 511.00 ± 49.70 and 110.20 ± 19.37 individuals per pupa of B. mori and A. gemmatalis, respectively. The reproduction of P. elaeisis from pupae of T. arnobia after six generations was similar to the other hosts.

  4. Does Animal Behavior Underlie Covariation Between Hosts' Exposure to Infectious Agents and Susceptibility to Infection? Implications for Disease Dynamics

    NARCIS (Netherlands)

    Hawley, Dana M.; Etienne, Rampal S.; Ezenwa, Vanessa O.; Jolles, Anna E.

    2011-01-01

    Animal behavior is unique in influencing both components of the process of transmission of disease: exposure to infectious agents, and susceptibility to infection once exposed. To date, the influence of behavior on exposure versus susceptibility has largely been considered separately. Here, we ask

  5. The role of host traits, season and group size on parasite burdens in a cooperative mammal.

    Directory of Open Access Journals (Sweden)

    Hermien Viljoen

    Full Text Available The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae. This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp. and cestodes (Mathevotaenia sp. being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted.

  6. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    Science.gov (United States)

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  7. The giant African snail Achatina fulica as natural intermediate host of Angiostrongylus cantonensis in Pernambuco, northeast Brazil.

    Science.gov (United States)

    Thiengo, S C; Maldonado, A; Mota, E M; Torres, E J L; Caldeira, R; Carvalho, O S; Oliveira, A P M; Simões, R O; Fernandez, M A; Lanfredi, R M

    2010-09-01

    The human cases of eosinophilic meningitis recently reported from Brazil have focused the attention of the public health agencies on the role the introduced snail Achatina fulica plays as hosts of the metastrongylid nematodes. Determining the potential of this snail to host and develop infective larval stages of metastrongylids in the wild and identify the species harbored by them is crucial for designing effective control measures. Here we assess if A. fulica may act as intermediate host of A. cantonensis at the peridomiciliary areas of a patient's house from state of Pernambuco (PE), who was diagnosed with eosinophilic meningitis and a history of ingesting raw molluscs. Larvae obtained from naturally infected A. fulica were orally administered to Rattus norvegicus. The worms were collected from the pulmonary artery and brain, and were morphologically characterized and compared to the Japan isolate of A. cantonensis. Adult worms and infective L(3) larvae (PE isolate) recovered from A. fulica specimens were also analyzed by polymerase chain reaction and restriction fragment length polymorphism of ITS2 region from rDNA and compared to A. cantonensis (ES isolate), A. vasorum (MG isolate) and A. costaricensis (RS isolate). The large size of the spicules (greater than those observed in other species of Angiostrongylus) and the pattern of the bursal rays agree with the original species description by Chen (1935). Furthermore, the morphology of the PE isolate was similar to that of Japan isolate. The PCR-RFLP profiles obtained were distinctive among species and no variation in patterns was detected among adult individuals from A. cantonensis isolates from PE and ES. The importance of A. fulica as an intermediate host of eosinophilic menigoencepahlitis in Brazil is emphasized. 2010 Elsevier B.V. All rights reserved.

  8. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus.

    Science.gov (United States)

    Suu-Ire, Richard; Begeman, Lineke; Banyard, Ashley C; Breed, Andrew C; Drosten, Christian; Eggerbauer, Elisa; Freuling, Conrad M; Gibson, Louise; Goharriz, Hooman; Horton, Daniel L; Jennings, Daisy; Kuzmin, Ivan V; Marston, Denise; Ntiamoa-Baidu, Yaa; Riesle Sbarbaro, Silke; Selden, David; Wise, Emma L; Kuiken, Thijs; Fooks, Anthony R; Müller, Thomas; Wood, James L N; Cunningham, Andrew A

    2018-03-01

    Rabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no experimental model that mimics natural lyssavirus infection in the reservoir bat species. Lagos bat virus is a lyssavirus that is endemic in straw-colored fruit bats (Eidolon helvum) in Africa. Here we compared the susceptibility of these bats to three strains of Lagos bat virus (from Senegal, Nigeria, and Ghana) by intracranial inoculation. To allow comparison between strains, we ensured the same titer of virus was inoculated in the same location of the brain of each bat. All bats (n = 3 per strain) were infected, and developed neurological signs, and fatal meningoencephalitis with lyssavirus antigen expression in neurons. There were three main differences among the groups. First, time to death was substantially shorter in the Senegal and Ghana groups (4 to 6 days) than in the Nigeria group (8 days). Second, each virus strain produced a distinct clinical syndrome. Third, the spread of virus to peripheral tissues, tested by hemi-nested reverse transcriptase PCR, was frequent (3 of 3 bats) and widespread (8 to 10 tissues positive of 11 tissues examined) in the Ghana group, was frequent and less widespread in the Senegal group (3/3 bats, 3 to 6 tissues positive), and was rare and restricted in the Nigeria group (1/3 bats, 2 tissues positive). Centrifugal spread of virus from brain to tissue of excretion in the oral cavity is required to enable lyssavirus transmission. Therefore, the Senegal and Ghana strains seem most suitable for further pathogenesis, and for transmission, studies in the straw-colored fruit bat.

  9. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  10. Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants.

    Science.gov (United States)

    Thorogood, C J; Rumsey, F J; Hiscock, S J

    2009-05-01

    Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided. A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host-parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host-parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts. Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity. It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates.

  11. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    Science.gov (United States)

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  12. Host contact and shedding patterns clarify variation in pathogen exposure and transmission in threatened tortoise Gopherus agassizii: implications for disease modelling and management

    Science.gov (United States)

    Aiello, Christina M.; Nussear, Kenneth E.; Esque, Todd C.; Emblidge, Patrick G.; Sah, Pratha; Bansal, Shweta; Hudson, Peter J.

    2016-01-01

    Summary Most directly transmitted infections require some form of close contact between infectious and susceptible hosts to spread. Often disease models assume contacts are equal and use mean field estimates of transmission probability for all interactions with infectious hosts.

  13. Mannose-binding lectin genotypes: lack of association with susceptibility to thoracic empyema

    Directory of Open Access Journals (Sweden)

    Moore Catrin E

    2010-01-01

    Full Text Available Abstract Background The role of the innate immune protein mannose-binding lectin (MBL in host defence against severe respiratory infection remains controversial. Thoracic empyema is a suppurative lung infection that arises as a major complication of pneumonia and is associated with a significant mortality. Although the pathogenesis of thoracic empyema is poorly understood, genetic susceptibility loci for this condition have recently been identified. The possible role of MBL genotypic deficiency in susceptibility to thoracic empyema has not previously been reported. Methods To investigate this further we compared the frequencies of the six functional MBL polymorphisms in 170 European individuals with thoracic empyema and 225 healthy control individuals. Results No overall association was observed between MBL genotypic deficiency and susceptibility to thoracic empyema (2 × 2 Chi square = 0.02, P = 0.87. Furthermore, no association was seen between MBL deficiency and susceptibility to the Gram-positive or pneumococcal empyema subgroups. MBL genotypic deficiency did not associate with progression to death or requirement for surgery. Conclusions Our results suggest that MBL genotypic deficiency does not associate with susceptibility to thoracic empyema in humans.

  14. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.

    Science.gov (United States)

    Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan

    2015-10-01

    The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  15. The alpaca (Vicugna pacos) as a natural intermediate host of Taenia omissa (Cestoda: Taeniidae).

    Science.gov (United States)

    Gomez-Puerta, Luis A; Yucra, Dora; Lopez-Urbina, Maria T; Gonzalez, Armando E

    2017-11-15

    Three metacestodes were collected from the mesentery and the surface of the liver of three adult alpacas (Vicugna pacos) in a slaughterhouse located in Puno, Peru. Various features of the metacestodes were observed for morphological identification. A molecular diagnosis was performed by PCR-based sequencing of mitochondrial genes of cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (nad1). All metacestodes were identified as Taenia omissa by morphology and molecular methods The isolates from alpacas showed significant sequence similarity with previously reported isolates of T. omissa (95.7-98.1% in cox1 and 94.6-95.1% in nad1). Our report is the first to detect T. omissa metacestodes in alpacas and to reveal that alpacas are natural intermediate hosts for this parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. CISH and susceptibility to infectious diseases.

    Science.gov (United States)

    Khor, Chiea C; Vannberg, Fredrik O; Chapman, Stephen J; Guo, Haiyan; Wong, Sunny H; Walley, Andrew J; Vukcevic, Damjan; Rautanen, Anna; Mills, Tara C; Chang, Kwok-Chiu; Kam, Kai-Man; Crampin, Amelia C; Ngwira, Bagrey; Leung, Chi-Chiu; Tam, Cheuk-Ming; Chan, Chiu-Yeung; Sung, Joseph J Y; Yew, Wing-Wai; Toh, Kai-Yee; Tay, Stacey K H; Kwiatkowski, Dominic; Lienhardt, Christian; Hien, Tran-Tinh; Day, Nicholas P; Peshu, Nobert; Marsh, Kevin; Maitland, Kathryn; Scott, J Anthony; Williams, Thomas N; Berkley, James A; Floyd, Sian; Tang, Nelson L S; Fine, Paul E M; Goh, Denise L M; Hill, Adrian V S

    2010-06-03

    The interleukin-2-mediated immune response is critical for host defense against infectious pathogens. Cytokine-inducible SRC homology 2 (SH2) domain protein (CISH), a suppressor of cytokine signaling, controls interleukin-2 signaling. Using a case-control design, we tested for an association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis, and severe malaria) in blood samples from 8402 persons in Gambia, Hong Kong, Kenya, Malawi, and Vietnam. We had previously tested 20 other immune-related genes in one or more of these sample collections. We observed associations between variant alleles of multiple CISH polymorphisms and increased susceptibility to each infectious disease in each of the study populations. When all five single-nucleotide polymorphisms (SNPs) (at positions -639, -292, -163, +1320, and +3415 [all relative to CISH]) within the CISH-associated locus were considered together in a multiple-SNP score, we found an association between CISH genetic variants and susceptibility to bacteremia, malaria, and tuberculosis (P=3.8x10(-11) for all comparisons), with -292 accounting for most of the association signal (P=4.58x10(-7)). Peripheral-blood mononuclear cells obtained from adult subjects carrying the -292 variant, as compared with wild-type cells, showed a muted response to the stimulation of interleukin-2 production--that is, 25 to 40% less CISH expression. Variants of CISH are associated with susceptibility to diseases caused by diverse infectious pathogens, suggesting that negative regulators of cytokine signaling have a role in immunity against various infectious diseases. The overall risk of one of these infectious diseases was increased by at least 18% among persons carrying the variant CISH alleles. 2010 Massachusetts Medical Society

  17. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  18. Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host.

    Directory of Open Access Journals (Sweden)

    Maite Echeverz

    2017-05-01

    Full Text Available Many bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-β-1,6-N-acetyl-D-glucosamine. Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host.

  19. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    Science.gov (United States)

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.

  20. The vaginal microbiota, host defence and reproductive physiology.

    Science.gov (United States)

    Smith, Steven B; Ravel, Jacques

    2017-01-15

    The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine-tuned interaction is key to maintaining women's reproductive health. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. The vaginal microbiota, host defence and reproductive physiology

    Science.gov (United States)

    Smith, Steven B

    2016-01-01

    Abstract The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture‐independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive‐aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic‐acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non‐Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine‐tuned interaction is key to maintaining women's reproductive health. PMID:27373840

  2. Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility

    Science.gov (United States)

    Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.

    2017-11-01

    Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples 〈 χ 〉 with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility 〈 χ 〉 of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = 〈 χ 〉 /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).

  3. Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host.

    Science.gov (United States)

    Núñez, José I; Molina, Nicolas; Baranowski, Eric; Domingo, Esteban; Clark, Stuart; Burman, Alison; Berryman, Stephen; Jackson, Terry; Sobrino, Francisco

    2007-08-01

    We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.

  4. Coral host transcriptomic states are correlated with Symbiodinium genotypes

    KAUST Repository

    DeSalvo, Michael K.

    2010-03-01

    A mutualistic relationship between reef-building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host-genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-Symbiodinium partnerships. © 2010 Blackwell Publishing Ltd.

  5. Intrahepatic growth and maturation of Gnathostoma turgidum in the natural definitive opossum host, Didelphis virginiana.

    Science.gov (United States)

    Díaz-Camacho, Sylvia Páz; Delgado-Vargas, Francisco; Willms, Kaethe; de la Cruz-Otero, María del Carmen; Guadalupe Rendón-Maldonado, José; Robert, Lilia; Antuna, Silvia; Nawa, Yukifumi

    2010-09-01

    Gnathostoma turgidum is a gastric nematode parasite of opossums found in the Americas. We recently found that G. turgidum juveniles appear in the liver of the opossums where they become mature adults and almost synchronously move to the stomach during certain months of the year, suggesting the importance of the liver for the growth and maturation of this species in the final hosts. In this study we attempted to detect G. turgidum larvae in the liver of opossums, Didelphis virginiana that are the natural final hosts. The results show that tiny (<3mm in length) third stage larvae (L3) appeared in the liver of opossums around November and December. Also in the liver, we found large L3 of up to about 10mm in length together with juveniles and mature adults from February to March. In spite of their length, large L3 have 4 rows of hooklets, and their gonads remained undeveloped. Morphological features of the small and large L3 of G. turgidum are described including scanning electron microscope images. The seasonal switching of the several growth stages of G. turgidum from small L3 to adult worms in the liver and eventual migration to the stomach in opossums suggests the unique feature of G. turgidum utilizing the liver as the maturation site.

  6. Invasion of Eukaryotic Cells by Legionella Pneumophila: A Common Strategy for all Hosts?

    Directory of Open Access Journals (Sweden)

    Paul S Hoffman

    1997-01-01

    Full Text Available Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.

  7. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    Science.gov (United States)

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  8. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  9. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    Science.gov (United States)

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  10. Continuous Influx of Genetic Material from Host to Virus Populations.

    Directory of Open Access Journals (Sweden)

    Clément Gilbert

    2016-02-01

    Full Text Available Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86 can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69 belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.

  11. Lipooligosaccharide structure is an important determinant in the resistance of Neisseria gonorrhoeae to antimicrobial agents of innate host defense

    Directory of Open Access Journals (Sweden)

    Jacqueline T Balthazar

    2011-02-01

    Full Text Available The strict human pathogen Neisseria gonorrhoeae has caused the sexually transmitted infection termed gonorrhea for thousands of years. Over the millennia, the gonococcus has likely evolved mechanisms to evade host defense systems that operate on the genital mucosal surfaces in both males and females. Past research has shown that the presence or modification of certain cell envelope structures can significantly impact levels of gonococcal susceptibility to host-derived antimicrobial compounds that bathe genital mucosal surfaces and participate in innate host defense against invading pathogens. In order to facilitate the identification of gonococcal genes that are important in determining levels of bacterial susceptibility to mediators of innate host defense, we used the Himar I mariner in vitro mutagenesis system to construct a transposon insertion library in strain F62. As proof of principle that this strategy would be suitable for this purpose, we screened the library for mutants expressing decreased susceptibility to the bacteriolytic action of normal human serum (NHS. We found that a transposon insertion in the lgtD gene, which encodes an N-acetylgalactosamine transferase involved in the extension of the α-chain of lipooligosaccharide (LOS, could confer decreased susceptibility of strain F62 to complement-mediated killing by NHS. By complementation and chemical analyses, we demonstrated both linkage of the transposon insertion to the NHS-resistance phenotype and chemical changes in LOS structure that resulted from loss of LgtD production. Further truncation of the LOS α-chain or loss of phosphoethanolamine (PEA from the lipid A region of LOS also impacted levels of NHS-resistance. PEA decoration of lipid A also increased gonococcal resistance to the model cationic antimicrobial polymyxin B. Taken together, we conclude that the Himar I mariner in vitro mutagenesis procedure can facilitate studies on structures involved in gonococcal

  12. Sarcocystis pantherophis, n. sp. from eastern rat snakes (Pantherophis alleghaniensis) definitive hosts and interferongamma gene knockout mice as experimental intermediate hosts

    Science.gov (United States)

    Here we report a new species, Sarcocystis pantherophisi with the Eastern rat snake (Pantherophis alleghaniensis) as natural definitive host and the interferon gamma gene knockout (KO) mouse as the experimental intermediate host. Sporocysts (n=15) from intestinal contents of the snake were 17.3 x 10....

  13. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    Directory of Open Access Journals (Sweden)

    Sara M. Rodríguez

    2017-08-01

    Full Text Available Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm than large molecrabs (<15 mm. Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host

  14. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding

    Directory of Open Access Journals (Sweden)

    Samuels Richard I

    2011-05-01

    Full Text Available Abstract Background The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Methods Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818 using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Results Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding, host susceptibility to infection returned to pre-blood fed (sucrose fed levels. Conclusions Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged

  15. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding.

    Science.gov (United States)

    Paula, Adriano R; Carolino, Aline T; Silva, Carlos P; Samuels, Richard I

    2011-05-26

    The mosquito Aedes aegypti, vector of dengue fever, is a target for control by entomopathogenic fungi. Recent studies by our group have shown the susceptibility of adult A. aegypti to fungal infection by Metarhizium anisopliae. This fungus is currently being tested under field conditions. However, it is unknown whether blood-fed A. aegypti females are equally susceptible to infection by entomopathogenic fungi as sucrose fed females. Insect populations will be composed of females in a range of nutritional states. The fungus should be equally efficient at reducing survival of insects that rest on fungus impregnated surfaces following a blood meal as those coming into contact with fungi before host feeding. This could be an important factor when considering the behavior of A. aegypti females that can blood feed on multiple hosts over a short time period. Female A. aegypti of the Rockefeller strain and a wild strain were infected with two isolates of the entomopathogenic fungus M. anisopliae (LPP 133 and ESALQ 818) using an indirect contact bioassay at different times following blood feeding. Survival rates were monitored on a daily basis and one-way analysis of variance combined with Duncan's post-hoc test or Log-rank survival curve analysis were used for statistical comparisons of susceptibility to infection. Blood feeding rapidly reduced susceptibility to infection, determined by the difference in survival rates and survival curves, when females were exposed to either of the two M. anisopliae isolates. Following a time lag which probably coincided with digestion of the blood meal (96-120 h post-feeding), host susceptibility to infection returned to pre-blood fed (sucrose fed) levels. Reduced susceptibility of A. aegypti to fungi following a blood meal is of concern. Furthermore, engorged females seeking out intra-domicile resting places post-blood feeding, would be predicted to rest for prolonged periods on fungus impregnated black cloths, thus optimizing infection

  16. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations*

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; de Souza, Mair Pedro; Orti-Raduan, Érica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease. PMID:25054751

  17. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations.

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; Souza, Mair Pedro de; Orti-Raduan, Erica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease.

  18. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  19. Autolysis of methicillin-resistant and -susceptible Staphylococcus aureus.

    Science.gov (United States)

    Gustafson, J E; Berger-Bächi, B; Strässle, A; Wilkinson, B J

    1992-01-01

    The autolytic activities, including unstimulated, Triton X-100-stimulated, and daptomycin-induced, of various sets of methicillin-resistant and related methicillin-susceptible strains were compared. Faster rates of autolysis were noted in two heterogeneous methicillin-resistant transductants than in their methicillin-susceptible parental recipients, in a heterogeneous resistant strain than in a susceptible derivative created by chemical mutagenesis, and in a homogeneous resistant strain than in a derivative that had decreased methicillin resistance and was created by transposon Tn551 mutagenesis. These results suggest that the presence of the methicillin resistance region, mec, either directly or indirectly through an interaction with other host genes, confers a faster rate of autolysis on strains. Various auxilliary genes are known to affect methicillin resistance expression, and one of these genes, femA, was necessary for the expression of this faster rate of autolysis. These differences in autolytic activities were not observed in isolated crude cell walls retaining autolytic activities, suggesting different modes of regulation of autolysins in intact cells and isolated walls. In contrast, one homogeneous, highly resistant strain, DU4916, had a lower autolytic activity than did derived heterogeneous resistant and susceptible strains created by chemical mutagenesis and a strain that had decreased resistance and was created by transposon mutagenesis. Our observations suggest that methicillin resistance expression is associated with an enhanced rate of autolysis, in heterogeneous resistant strains at least. Images PMID:1320363

  20. Responses of Nasonovia ribisnigri (Homoptera: Aphididae) to susceptible and resistant lettuce.

    Science.gov (United States)

    Liu, Yong-Biao; McCreight, James D

    2006-06-01

    Nymphs and alates of aphid Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae) were tested on 10 lettuce cultivars with N. ribisnigri resistance gene Nr and 18 cultivars without the resistance gene in various bioassays. Bioassays used whole plants, leaf discs, or leaf cages to determine susceptibility of commercial lettuce cultivars to N. ribisnigri infestation and to evaluate screening methods for breeding lettuce resistance to N. ribisnigri. Resistant and susceptible plants were separated in 3 d when using whole plant bioassays. Long-term (> or =7 d) no-choice tests using leaf cages or whole plants resulted in no survival of N. ribisnigri on resistant plants, indicating great promise of the Nr gene for management of N. ribisnigri. Effective screening was achieved in both no-choice tests where resistant or susceptible intact plants were tested separately in groups or individually and in choice tests where susceptible and resistant plants were intermixed. Leaf discs bioassays were not suitable for resistance screening. All lettuce cultivars without the resistance gene were suitable hosts for N. ribisnigri, indicating the great importance of this pest to lettuce production and the urgency in developing resistant lettuce cultivars to manage N. ribisnigri.

  1. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  2. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens.

    Science.gov (United States)

    Navaud, Olivier; Barbacci, Adelin; Taylor, Andrew; Clarkson, John P; Raffaele, Sylvain

    2018-03-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  4. Pathogenesis of bat rabies in a natural reservoir: Comparative susceptibility of the straw-colored fruit bat (Eidolon helvum) to three strains of Lagos bat virus

    NARCIS (Netherlands)

    Suu-Ire, R. (Richard); L. Begeman (Lineke); A. Banyard (Ashley); A.C. Breed; C. Drosten (Christian); Eggerbauer, E. (Elisa); Freuling, C.M. (Conrad M.); Gibson, L. (Louise); Goharriz, H. (Hooman); D.L. Horton; Jennings, D. (Daisy); I.V. Kuzmin (Ivan); D.A. Marston (Denise); Ntiamoa-Baidu, Y. (Yaa); Riesle Sbarbaro, S. (Silke); Selden, D. (David); Wise, E.L. (Emma L.); Kuiken, T. (Thijs); A.R. Fooks (Anthony); T. Müller (Thomas); Wood, J.L.N. (James L. N.); A.A. Cunningham

    2018-01-01

    textabstractRabies is a fatal neurologic disease caused by lyssavirus infection. People are infected through contact with infected animals. The relative increase of human rabies acquired from bats calls for a better understanding of lyssavirus infections in their natural hosts. So far, there is no

  5. Host range expansion and increased damage potential of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Florida

    Science.gov (United States)

    Ambrosia beetles in the Euwallacea nr. fornicatus complex (Coleoptera: Curculionidae) vector Fusarium spp. fungi pathogenic to susceptible hosts, including avocado. The Florida avocado production area in Miami-Dade County was surveyed for E. nr. fornicatus upon observations of initial damage in 2016...

  6. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    Directory of Open Access Journals (Sweden)

    Jessica Z. Kubicek-Sutherland

    2015-09-01

    Full Text Available Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  7. CISH and Susceptibility to Infectious Diseases

    Science.gov (United States)

    Khor, Chiea C.; Vannberg, Fredrik O.; Chapman, Stephen J.; Guo, Haiyan; Wong, Sunny H.; Walley, Andrew J.; Vukcevic, Damjan; Rautanen, Anna; Mills, Tara C.; Chang, Kwok-Chiu; Kam, Kai-Man; Crampin, Amelia C.; Ngwira, Bagrey; Leung, Chi-Chiu; Tam, Cheuk-Ming; Chan, Chiu-Yeung; Sung, Joseph J.Y.; Yew, Wing-Wai; Toh, Kai-Yee; Tay, Stacey K.H.; Kwiatkowski, Dominic; Lienhardt, Christian; Hien, Tran-Tinh; Day, Nicholas P.; Peshu, Nobert; Marsh, Kevin; Maitland, Kathryn; Scott, J. Anthony; Williams, Thomas N.; Berkley, James A.; Floyd, Sian; Tang, Nelson L.S.; Fine, Paul E.M.; Goh, Denise L.M.; Hill, Adrian V.S.

    2013-01-01

    Background The interleukin-2 (IL2)-mediated immune response is critical for host defence against infectious pathogens. CISH, a suppressor of cytokine signalling, controls IL2 signalling. Methods We tested for association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis and severe malaria) in 8402 persons from the Gambia, Hong Kong, Kenya, Malawi, and Vietnam using a case-control design. We have previously tested twenty other immune-related genes in one or more of these sample collections. Results We observed associations between variant alleles of multiple CISH polymorphisms and increased susceptibility to each infectious disease in each of the study populations. When all five SNPs (CISH −639, −292, −163, +1320 and +3415) within the CISH-associated locus were considered together in a multi-SNP score, we found substantial support for an effect of CISH genetic variants on susceptibility to bacteremia, malaria, and tuberculosis (overall P=3.8 × 10−11) with CISH −292 being “responsible” for the majority of the association signal (P=4.58×10−7). Peripheral blood mononuclear cells of adult volunteers carrying the CISH −292 variant showed a muted response to IL2 stimulation — in the form of 25-40% less CISH — when compared with “control” cells lacking the −292 variant. Conclusions Variants of CISH are associated with susceptibility to diseases caused by diverse infectious pathogens, suggesting that negative regulators of cytokine signalling may play a major role in immunity against various infectious diseases. The overall risk of having one of these infectious diseases was found to be increased by at least 18 percent in individuals carrying the variant CISH alleles. PMID:20484391

  8. Effects of TMEM154 haplotypes 1 and 3 on susceptibility to ovine progressive pneumonia virus following natural exposure in sheep.

    Science.gov (United States)

    Leymaster, K A; Chitko-McKown, C G; Clawson, M L; Harhay, G P; Heaton, M P

    2013-11-01

    Small ruminant lentiviruses (SRLV) adversely affect production and well-being of sheep and goats throughout much of the world. The SRLV, including ovine progressive pneumonia virus (OPPV) in North America, cause lifetime infections, and management procedures to eradicate or reduce disease prevalence are costly. Variants of ovine transmembrane protein 154 gene (TMEM154) affect susceptibility to OPPV. The primary experimental objective was to estimate additive and dominance effects of TMEM154 haplotypes 1 and 3 on susceptibility to OPPV infection following natural exposure. A group of 187 trial lambs was born and raised by mature, infected ewes to ensure natural exposure to OPPV. Parents of trial lambs were heterozygous for haplotypes 1 and 3, producing lambs with diplotypes "1 1," "1 3," and "3 3." A group of 20 sentinel lambs was born and raised by mature, uninfected ewes that were diplotype "1 1." Sentinel lambs had diplotypes "1 1" and "1 3," being sired by the same set of rams as trial lambs. Trial and sentinel lambs were comingled during the experiment. Lambs were weaned at 60 d of age, bled 1 wk after weaning, and thereafter at intervals of 4 or 5 wk until 9 mo of age when OPPV infection status was determined by use of a competitive enzyme-linked immunosorbent assay. Only 1 sentinel lamb became infected. Infection status of trial lambs was analyzed using logistic regression procedures to account for the binary nature of infection status and random effects of sires. Effects of sex, type of birth, type of rearing, age of dam, breed type of dam, and sires were not detected (P>0.20). Infection status was affected by diplotype of lamb (P=0.005), with additive (P=0.002) and dominance (P=0.052) effects identified. Predicted probabilities of infection for lambs with diplotypes "1 1," "1 3," and "3 3" were 0.094, 0.323, and 0.346, respectively. Confidence intervals for probabilities of infection for diplotypes "1 3" and "3 3" were similar, but distinct from diplotype

  9. Susceptible-infected-susceptible epidemics on networks with general infection and cure times

    Science.gov (United States)

    Cator, E.; van de Bovenkamp, R.; Van Mieghem, P.

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  10. Dual RNA-sequencing of Eucalyptus nitens during Phytophthora cinnamomi challenge reveals pathogen and host factors influencing compatibility

    Directory of Open Access Journals (Sweden)

    Febe Elizabeth Meyer

    2016-03-01

    Full Text Available Damage caused by Phytophthora cinnamomi Rands remains an important concern on forest tree species. The pathogen causes root and collar rot, stem cankers and dieback of various economically important Eucalyptus spp. In South Africa, susceptible cold tolerant Eucalyptus plantations have been affected by various Phytophthora spp. with P. cinnamomi considered one of the most virulent. The molecular basis of this compatible interaction is poorly understood. In this study, susceptible Eucalyptus nitens plants were stem inoculated with P. cinnamomi and tissue was harvested five days post inoculation. Dual RNA-sequencing, a technique which allows the concurrent detection of both pathogen and host transcripts during infection, was performed. Approximately 1% of the reads mapped to the draft genome of P. cinnamomi while 78% of the reads mapped to the Eucalyptus grandis genome. The highest expressed P. cinnamomi gene in planta was a putative crinkler effector (CRN1. Phylogenetic analysis indicated the high similarity of this P. cinnamomi CRN1 to that of Phytophthora infestans. Some CRN effectors are known to target host nuclei to suppress defense. In the host, over 1400 genes were significantly differentially expressed in comparison to mock inoculated trees, including suites of pathogenesis related (PR genes. In particular, a PR-9 peroxidase gene with a high similarity to a Carica papaya PR-9 ortholog previously shown to be suppressed upon infection by Phytophthora palmivora was down-regulated two-fold. This PR-9 gene may represent a cross-species effector target during P. cinnamomi infection. This study identified pathogenicity factors, potential manipulation targets and attempted host defense mechanisms activated by E. nitens that contributed to the susceptible outcome of the interaction.

  11. Susceptibility of Some Stone and Pome Fruit Rootstocks to Crown Gall

    Directory of Open Access Journals (Sweden)

    A. Rhouma

    2005-12-01

    Full Text Available The susceptibility of different fruit rootstocks to crown gall disease was investigated in greenhouse and field experiments with numerous strains of Agrobacterium tumefaciens over three years. Plants were inoculated in the roots and shoots for pot experiments. Field experiments were performed in a naturally contaminated nursery plot. The genotypes Prunus dulcis and P. persica showed a high level of susceptibility to A. tumefaciens. Among the stone rootstocks, bitter almond was highly susceptible in all experiments. Apricot and Cadaman rootstocks displayed low susceptibility but larger galls, showing that there was no relation between rootstock susceptibility and gall size. Among pome rootstocks, quince BA29 was resistant to the disease, while MM106 was susceptible in potted trials; however, in the field essays, pome rootstocks did not become galled, possibly because the strains had selected for and adapted to stone rootstocks.

  12. Susceptibility of Several Northeastern Conifers to Fusarium circinatum and Strategies for Biocontrol

    Directory of Open Access Journals (Sweden)

    Jorge Martín-García

    2017-08-01

    Full Text Available Fusarium circinatum, the causal of pine pitch canker disease (PPC, is now considered among the most important pathogens of Pinaceae in the world. Although in Europe PPC is only established in the Iberian Peninsula, the potential endangered areas cover over 10 million hectares under the current host distribution and climatic conditions. It is therefore a priority to test the susceptibility of those species and their provenances, within Central and Northern Europe and find biological control agents (BCAs against the disease. In this study, the susceptibility of Pinus sylvestris, P. mugo and Picea abies Romanian provenances to F. circinatum was tested using three inoculum doses. In parallel, the potential use of Trichoderma atroviride and Trichoderma viride as BCAs against F. circinatum was also tested. This study has demonstrated, for the first time, the susceptibility of P. mugo to F. circinatum. Likewise, the susceptibility of P. abies was also confirmed. The fact that the Romanian provenance of P. sylvestris has not been susceptible to F. circinatum suggests genetic resistance as a potential tool to manage the disease. This, together with the apparent effectiveness of Trichoderma species as BCAs, seems to indicate that an integrated management of the disease might be feasible.

  13. Re-evaluating Open Source for Sustaining Competitive Advantage for Hosted Applications

    Directory of Open Access Journals (Sweden)

    Daniel Crenna

    2010-03-01

    Full Text Available The use of open source in hosted solutions is undoubtedly widespread. However, it is seldom considered important in its own right, nor do the majority of hosted solutions providers contribute to or create open source as natural artifacts of doing good business. In this exploration of the nature of hosted solutions and their developers, it is suggested that not only consuming open source, but creating and disseminating it to collaborators and competitors alike, is essential to success. By establishing an open source ecosystem where hosted solutions compete on differentiation rather than lose time and money to concerns that are expected by users, do not add value, and benefit from public scrutiny, hosted solution providers can reduce the cost of their solution, the time it takes to deliver new ones, and improve their quality without additional resources.

  14. Insights from human studies into the host defense against candidiasis.

    Science.gov (United States)

    Filler, Scott G

    2012-04-01

    Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility.

    Science.gov (United States)

    Barrera, Maria Claudia; Rojas, Laura Jimena; Weiss, Austin; Fernandez, Olga; McMahon-Pratt, Diane; Saravia, Nancy G; Gomez, Maria Adelaida

    2017-12-01

    The mechanisms of Leishmania resistance to antimonials have been primarily determined in experimentally derived Leishmania strains. However, their participation in the susceptibility phenotype in field isolates has not been conclusively established. Being an intracellular parasite, the activity of antileishmanials is dependent on internalization of drugs into host cells and effective delivery to the intracellular compartments inhabited by the parasite. In this study we quantified and comparatively analyzed the gene expression of nine molecules involved in mechanisms of xenobiotic detoxification and Leishmania resistance to antimonial drugs in resistant and susceptible laboratory derived and clinical L.(Viannia) panamensis strains(n=19). In addition, we explored the impact of Leishmania susceptibility to antimonials on the expression of macrophage gene products having putative functions in transport, accumulation and metabolism of antimonials. As previously shown for other Leishmania species, a trend of increased abcc3 and lower aqp-1 expression was observed in the laboratory derived Sb-resistant L.(V.) panamensis line. However, this was not found in clinical strains, in which the expression of abca2 was significantly higher in resistant strains as both, promastigotes and intracellular amastigotes. The effect of drug susceptibility on host cell gene expression was evaluated on primary human macrophages from patients with cutaneous leishmaniasis (n=17) infected ex-vivo with the matched L.(V.) panamensis strains isolated at diagnosis, and in THP-1 cells infected with clinical strains (n=6) and laboratory adapted L.(V.) panamensis lines. Four molecules, abcb1 (p-gp), abcb6, aqp-9 and mt2a were differentially modulated by drug resistant and susceptible parasites, and among these, a consistent and significantly increased expression of the xenobiotic scavenging molecule mt2a was observed in macrophages infected with Sb-susceptible L. (V.) panamensis. Our results

  16. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    Science.gov (United States)

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  17. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals.

    Science.gov (United States)

    Kanda, Takehiro; Ozawa, Makoto; Tsukiyama-Kohara, Kyoko

    2016-03-31

    Foot-and-mouth disease virus (FMDV) possess a positive sense, single stranded RNA genome. Internal ribosomal entry site (IRES) element exists within its 5' untranslated region (5'UTR) of the viral RNA. Translation of the viral RNA is initiated by internal entry of the 40S ribosome within the IRES element. This process is facilitated by cellular factors known as IRES trans-acting factors (ITAFs). Foot-and-mouth disease (FMD) is host-restricted disease for cloven-hoofed animals such as cattle and pigs, but the factors determining the host range have not been identified yet. Although, ITAFs are known to promote IRES-mediated translation, these findings were confirmed only in cells derived from FMDV-insusceptible animals so far. We evaluated and compared the IRES-mediated translation activities among cell lines derived from four different animal species using bicistronic luciferase reporter plasmid, which possesses an FMDV-IRES element between Renilla and Firefly luciferase genes. Furthermore, we analyzed the effect of the cellular factors on IRES-mediated translation by silencing the cellular factors using siRNA in both FMDV-susceptible and -insusceptible animal cells. Our data indicated that IRES-mediated translational activity was not linked to FMDV host range. ITAF45 promoted IRES-mediated translation in all cell lines, and the effects of poly-pyrimidine tract binding protein (PTB) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) were observed only in FMDV-susceptible cells. Thus, PTB and 4E-BP1 may influence the host range of FMDV. IRES-mediated translation activity of FMDV was not predictive of its host range. ITAF45 promoted IRES-mediated translation in all cells, and the effects of PTB and 4E-BP1 were observed only in FMDV-susceptible cells.

  18. A Polymorphism in the Processing Body Component Ge-1 Controls Resistance to a Naturally Occurring Rhabdovirus in Drosophila.

    Directory of Open Access Journals (Sweden)

    Chuan Cao

    2016-01-01

    Full Text Available Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV. By modifying the sequence of the gene in transgenic flies, we identified a 26 amino acid deletion in the serine-rich linker region of Ge-1 that is causing the resistance. Knocking down the expression of the susceptible allele leads to a decrease in viral titre in infected flies, indicating that Ge-1 is an existing restriction factor whose antiviral effects have been increased by the deletion. Ge-1 plays a central role in RNA degradation and the formation of processing bodies (P bodies. A key effector in antiviral immunity, the RNAi induced silencing complex (RISC, localises to P bodies, but we found that Ge-1-based resistance is not dependent on the small interfering RNA (siRNA pathway. However, we found that Decapping protein 1 (DCP1 protects flies against sigma virus. This protein interacts with Ge-1 and commits mRNA for degradation by removing the 5' cap, suggesting that resistance may rely on this RNA degradation pathway. The serine-rich linker domain of Ge-1 has experienced strong selection during the evolution of Drosophila, suggesting that this gene may be under long-term selection by viruses. These findings demonstrate that studying naturally occurring polymorphisms that increase resistance to infections enables us to identify novel forms of antiviral defence, and support a pattern of major effect polymorphisms controlling resistance to viruses in Drosophila.

  19. Rice Yellow Mottle Virus stress responsive genes from susceptible and tolerant rice genotypes

    Directory of Open Access Journals (Sweden)

    Siré Christelle

    2008-03-01

    Full Text Available Abstract Background The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification. Results The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (Oryza sativa indica, and partially resistant Azucena (O. s. japonica. This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters were regulated throughout the kinetics of infection and differentiated susceptible and

  20. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  1. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection.

    Science.gov (United States)

    Oddie, Melissa A Y; Dahle, Bjørn; Neumann, Peter

    2017-01-01

    Managed, feral and wild populations of European honey bee subspecies, Apis mellifera , are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor , that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera , is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH): adult workers specifically detecting and removing mite-infested brood. Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor , we suggest learning more from nature, i.e., identifying the obviously

  2. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection

    Directory of Open Access Journals (Sweden)

    Melissa A.Y. Oddie

    2017-10-01

    Full Text Available Background Managed, feral and wild populations of European honey bee subspecies, Apis mellifera, are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite Varroa destructor, that switched hosts from the Eastern honey bee Apis cerana to the Western honey bee A. mellifera, is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control. However, at least three populations of European honey bees have developed this ability by means of natural selection and have been surviving for >10 years without mite treatments. Reduced mite reproductive success has been suggested as a key factor explaining this natural survival. Here, we report a managed A. mellifera population in Norway, that has been naturally surviving consistent V. destructor infestations for >17 years. Methods Surviving colonies and local susceptible controls were evaluated for mite infestation levels, mite reproductive success and two potential mechanisms explaining colony survival: grooming of adult worker bees and Varroa Sensitive Hygiene (VSH: adult workers specifically detecting and removing mite-infested brood. Results Mite infestation levels were significantly lower in surviving colonies and mite reproductive success was reduced by 30% when compared to the controls. No significant differences were found between surviving and control colonies for either grooming or VSH. Discussion Our data confirm that reduced mite reproductive success seems to be a key factor for natural survival of infested A. mellifera colonies. However, neither grooming nor VSH seem to explain colony survival. Instead, other behaviors of the adult bees seem to be sufficient to hinder mite reproductive success, because brood for this experiment was taken from susceptible donor colonies only. To mitigate the global impact of V. destructor, we suggest learning

  3. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility.

    Science.gov (United States)

    Escalante, Nichole K; Lemire, Paul; Cruz Tleugabulova, Mayra; Prescott, David; Mortha, Arthur; Streutker, Catherine J; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry

    2016-12-12

    The mammalian gastrointestinal tract hosts a diverse community of microbes including bacteria, fungi, protozoa, helminths, and viruses. Through coevolution, mammals and these microbes have developed a symbiosis that is sustained through the host's continuous sensing of microbial factors and the generation of a tolerant or pro-inflammatory response. While analyzing T cell-driven colitis in nonlittermate mouse strains, we serendipitously identified that a nongenetic transmissible factor dramatically increased disease susceptibility. We identified the protozoan Tritrichomonas muris as the disease-exacerbating element. Furthermore, experimental colonization with T. muris induced an elevated Th1 response in the cecum of naive wild-type mice and accelerated colitis in Rag1 -/- mice after T cell transfer. Overall, we describe a novel cross-kingdom interaction within the murine gut that alters immune cell homeostasis and disease susceptibility. This example of unpredicted microbial priming of the immune response highlights the importance of studying trans-kingdom interactions and serves as a stark reminder of the importance of using littermate controls in all mouse research. © 2016 Escalante et al.

  4. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  5. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts

    NARCIS (Netherlands)

    Gerla, D.J.; Gsell, A.S.; Kooi, B.W.; Ibelings, B.W.; Donk, van E.; Mooij, W.M.

    2013-01-01

    1. Despite the strong impact parasites can have, only few models of phytoplankton ecology or aquatic food webs have specifically included parasitism. 2. Here, we provide a susceptible-infected model for a diatom-chytrid hostparasite system that explicitly includes nutrients, infected and uninfected

  6. Host Competence: An Organismal Trait to Integrate Immunology and Epidemiology.

    Science.gov (United States)

    Martin, Lynn B; Burgan, S C; Adelman, James S; Gervasi, Stephanie S

    2016-12-01

    The new fields of ecological immunology and disease ecology have begun to merge, and the classic fields of immunology and epidemiology are beginning to blend with them. This merger is occurring because the integrative study of host-parasite interactions is providing insights into disease in ways that traditional methods have not. With the advent of new tools, mathematical and technological, we could be on the verge of developing a unified theory of infectious disease, one that supersedes the barriers of jargon and tradition. Here we argue that a cornerstone of any such synthesis will be host competence, the propensity of an individual host to generate new infections in other susceptible hosts. In the last few years, the emergence of systems immunology has led to novel insight into how hosts control or eliminate pathogens. Most such efforts have stopped short of considering transmission and the requisite behaviors of infected individuals that mediate it, and few have explicitly incorporated ecological and evolutionary principles. Ultimately though, we expect that the use of a systems immunology perspective will help link suborganismal processes (i.e., health of hosts and selection on genes) to superorganismal outcomes (i.e., community-level disease dynamics and host-parasite coevolution). Recently, physiological regulatory networks (PRNs) were cast as whole-organism regulatory systems that mediate homeostasis and hence link suborganismal processes with the fitness of individuals. Here, we use the PRN construct to develop a roadmap for studying host competence, taking guidance from systems immunology and evolutionary ecology research. We argue that PRN variation underlies heterogeneity in individual host competence and hence host-parasite dynamics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  8. Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status

    NARCIS (Netherlands)

    Mnyone, L.L.; Kirby, M.J.; Mpingwa, M.W.; Lwetoijera, D.W.; Knols, B.G.J.; Takken, W.; Koenraadt, C.J.M.; Russell, T.L.

    2011-01-01

    Physiological characteristics of insects can influence their susceptibility to fungal infection of which age and nutritional status are among the most important. An understanding of host–pathogen interaction with respect to these physiological characteristics of the host is essential if we are to

  9. Basic investigation and analysis for preferred host rocks and natural analogue study area with reference to high level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Ryul; Park, J. K.; Hwang, D. H.; Lee, J. H.; Yun, H. S.; Kim, D. Y.; Park, H. S.; Koo, S. B.; Cho, J. D.; Kim, K. E. [Korea Inst. of Geology, Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The purpose of this study is basic investigation and analysis for preferred host rocks and natural analogue study area to develope underground disposal technique of high level radioactive waste in future. The study has been done for the crystalline rocks(especially granitic rocks) with emphasis of abandoned metallic mines and uranium ore deposits, and for the geological structure study by using gravity and aeromagnetic data. 138 refs., 54 tabs., 130 figs. (author)

  10. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts

    NARCIS (Netherlands)

    Gerla, D.J.; Gsell, A.S.; Kooi, B.W.; Ibelings, B.W.; Van Donk, E.; Mooij, W.M.

    2013-01-01

    1. Despite the strong impact parasites can have, only few models of phytoplankton ecology or aquatic food webs have specifically included parasitism. 2. Here, we provide a susceptible-infected model for a diatom-chytrid host–parasite system that explicitly includes nutrients, infected and uninfected

  11. Susceptibility of female Anopheles mosquito to pyrethroid ...

    African Journals Online (AJOL)

    The detection of insecticides resistance status in a natural population of Anopheles vectors is a vital tool for malaria control intervention strategy against Anopheles gambiae sensu lato, which is the main malaria vector in Nigeria. This study was conducted to determine the susceptibility status of the female Anopheles ...

  12. Dual RNA-seq of the plant pathogen phytophthora ramorum and its tanoak host

    Science.gov (United States)

    Katherine J. Hayden; Matteo Garbelotto; Brian J. Knaus; Richard C. Cronn; Hardeep Rai; Jessica W. Wright

    2014-01-01

    Emergent diseases are an ever-increasing threat to forests and forest ecosystems and necessitate the development of research tools for species that often may have few preexisting resources. We sequenced the mRNA expressed by the sudden oak death pathogen Phytophthora ramorum and its most susceptible forest host, tanoak, within the same tissue at two time points after...

  13. Antibiotic susceptibility profile of bacteria isolated from natural sources of water from rural areas of East Sikkim

    Directory of Open Access Journals (Sweden)

    Shubra Poonia

    2014-01-01

    Full Text Available Background: Contamination of water, food, and environment with antibiotic-resistant bacteria poses a serious public health issue. Objective: The objective was to study the bacterial pollution of the natural sources of water in east Sikkim and to determine the antimicrobial profile of the bacterial isolates. Materials and Methods: A total of 225 samples, 75 each during winter, summer, and monsoon season were collected from the same source in every season for bacteriological analysis by membrane filtration method. Antibiotic susceptibility test was performed using standard disc diffusion method. Results: A total of 19 bacterial species of the genera Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Enterobacter, Citrobacter, Morganella, Pseudomonas, Acinetobacter, Flavobacterium, and Serratia were isolated and their antimicrobial sensitivity tested. Generally, most bacterial isolates except Salmonella and Shigella species were found resistant to commonly used antibiotics such as ampicillin (57.5%, trimethoprim/sulfamethoxaole (39.1%, amoxicillin/clavulanic acid (37.4%, cefixime (34.5%, tetracycline (29.1%, ceftazidime (26.3%, ofloxacin (25.9%, amikacin (8.7%, and gentamicin (2.7% but sensitive to imipenem and piperacillin/tazobactam. Conclusion: Natural sources of water in east Sikkim are grossly contaminated with bacteria including enteropathogens. The consumption of untreated water from these sources might pose health risk to consumers.

  14. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette V; Hasman, Henrik

    2018-01-01

    strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene...... family enrichment. We show that our models are robust and capture the data's underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis...... on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host...

  15. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy...

  16. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.

    Science.gov (United States)

    Duneau, David F; Kondolf, Hannah C; Im, Joo Hyun; Ortiz, Gerardo A; Chow, Christopher; Fox, Michael A; Eugénio, Ana T; Revah, J; Buchon, Nicolas; Lazzaro, Brian P

    2017-12-21

    Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll

  17. Differential susceptibility of RAE-1 isoforms to mouse cytomegalovirus.

    Science.gov (United States)

    Arapovic, Jurica; Lenac, Tihana; Antulov, Ronald; Polic, Bojan; Ruzsics, Zsolt; Carayannopoulos, Leonidas N; Koszinowski, Ulrich H; Krmpotic, Astrid; Jonjic, Stipan

    2009-08-01

    The NKG2D receptor is one of the most potent activating natural killer cell receptors involved in antiviral responses. The mouse NKG2D ligands MULT-1, RAE-1, and H60 are regulated by murine cytomegalovirus (MCMV) proteins m145, m152, and m155, respectively. In addition, the m138 protein interferes with the expression of both MULT-1 and H60. We show here that one of five RAE-1 isoforms, RAE-1delta, is resistant to downregulation by MCMV and that this escape has functional importance in vivo. Although m152 retained newly synthesized RAE-1delta and RAE-1gamma in the endoplasmic reticulum, no viral regulator was able to affect the mature RAE-1delta form which remains expressed on the surfaces of infected cells. This differential susceptibility to downregulation by MCMV is not a consequence of faster maturation of RAE-1delta compared to RAE-1gamma but rather an intrinsic property of the mature surface-resident protein. This difference can be attributed to the absence of a PLWY motif from RAE-1delta. Altogether, these findings provide evidence for a novel mechanism of host escape from viral immunoevasion of NKG2D-dependent control.

  18. Infectious disease risks from dead bodies following natural disasters Riesgo de transmisión de enfermedades infecciosas por contacto con cadáveres después de desastres naturales

    OpenAIRE

    Oliver Morgan

    2004-01-01

    OBJECTIVE: To review existing literature to assess the risks of infection from dead bodies after a natural disaster occurs, including who is most at risk, what precautions should be taken, and how to safely dispose of the bodies. METHODS: Disease transmission requires the presence of an infectious agent, exposure to that agent, and a susceptible host. These elements were considered to characterize the infectious disease risk from dead bodies. Using the PubMed on-line databases of the National...

  19. Magnetic susceptibility: a proxy method of estimating increased pollution

    International Nuclear Information System (INIS)

    Kluciarova, D.; Gregorova, D.; Tunyi, I.

    2004-01-01

    A need for rapid and inexpensive (proxy) methods of outlining areas exposed to increased pollution by atmospheric particulates of industrial origin caused scientists in various fields to use and validate different non-traditional (or non-chemical) techniques. Among them, soil magnetometry seems to be a suitable tool. This method is based on the knowledge that ferrimagnetic particles, namely magnetite, are produced from pyrite during combustion of fossil fuel. Besides the combustion processes, magnetic particles can also originate from road traffic, for example, or can be included in various waste-water outlets. In our study we examine the magnetic susceptibility as a convenient measure of determining the concentration of (ferri) magnetic minerals by rapid and non-destructive means. We used for measure KLY-2 Kappabridge. Concentration of ferrimagnetic minerals in different soils is linked to pollution sources. Higher χ values were observed in soils on the territory in Istebne (47383x10 -6 SI ). The susceptibility anomaly may be caused by particular geological circumstances and can be related to high content of ferromagnetic minerals in the host rocks. Positive correlation of magnetic susceptibility are conditioned by industrial contamination mainly by metal working factories and by traffic. The proposed method can be successfully applied in determining heavy metal pollution of soils on the city territories. (authors)

  20. AC susceptibility and NQR measurements on CeCu6 below 5 mK

    International Nuclear Information System (INIS)

    Jin, C.; Lee, D.M.; Pollack, L.; Smith, E.N.; Markert, J.T.; Maple, M.B.; Hinks, D.G.

    1994-01-01

    We have measured the zero field ac magnetic susceptibility of single and polycrystalline CeCu 6 samples down to 100 μK. For the single crystal sample, the susceptibility shows pronounced anisotropic behavior with respect to the crystal orientation. At ∼3 mK the susceptibility along two different crystal orientations shows a broad peak, and at 500 μK the susceptibility shows a second peak along one orientation and a plateau along the other. The susceptibility of the polycrystalline sample has a similar peak at 3 mK. NQR measurements are under way to study the Cu nuclear spin system in this compound in order to gain additional information about the nature of the peaks. (orig.)

  1. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    Directory of Open Access Journals (Sweden)

    Gilberto Bento

    2017-02-01

    Full Text Available Negative frequency-dependent selection (NFDS is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR- locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into

  2. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    Science.gov (United States)

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  3. The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis.

    Science.gov (United States)

    Ifrim, Daniela C; Quintin, Jessica; Courjol, Flavie; Verschueren, Ineke; van Krieken, J Han; Koentgen, Frank; Fradin, Chantal; Gow, Neil A R; Joosten, Leo A B; van der Meer, Jos W M; van de Veerdonk, Frank; Netea, Mihai G

    2016-04-01

    Despite the fact that Candida albicans is an important human fungal pathogen and Dectin-2 is a major pattern recognition receptor for fungi, our knowledge regarding the role of Dectin-2 for the host defense against disseminated candidiasis is limited. Dectin-2 deficient (Dectin-2(-/-)) mice were more susceptible to systemic candidiasis, and the susceptibility was mirrored by an elevated fungal load in the kidneys that correlated with the presence of large inflammatory foci. Phagocytosis of Candida by the macrophages lacking the Dectin-2 receptor was moderately decreased, while production of most of the macrophage-derived cytokines from Dectin-2(-/-) mice with systemic candidiasis was decreased. No striking differences among several Candida mutants defective in mannans could be detected between naïve wild-type and Dectin-2(-/-) mice, apart from the β-mannan-deficient bmt1Δ/bmt2Δ/bmt5Δ triple mutant, suggesting that β-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2. Deciphering the mechanisms responsible for host defense against the majority of C. albicans strains represents an important step in understanding the pathophysiology of systemic candidiasis, which might lead to the development of novel immunotherapeutic strategies.

  4. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    Directory of Open Access Journals (Sweden)

    Das Pralay

    2011-05-01

    Full Text Available Abstract Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide, respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.

  5. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    Science.gov (United States)

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    LENUS (Irish Health Repository)

    O'Shea, Donal

    2012-02-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  7. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    LENUS (Irish Health Repository)

    O'Shea, Donal

    2010-01-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  8. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    Directory of Open Access Journals (Sweden)

    Donal O'Shea

    Full Text Available BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg/m(2 and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008. NK function was also significantly compromised in obese patients (30% +/- 13% vs 42% +/-12%, p = 0.04. Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001. NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01. Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002 and lean controls (p = 0.01. CONCLUSIONS/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  9. Effects of Population Density and Host Availability on The Migration Process of Brown Planthopper Fed Using Susceptible and Resistant Rice Varieties

    Directory of Open Access Journals (Sweden)

    Imam Habibi

    2016-12-01

    Full Text Available Brown planthopper, Nilaparvata lugens Stal. (Hemiptera: Delphacidae, is an important pest of rice. This pest can cause hopperburn and field failure. This research aimed to determine the effects of population density and host availability on migration of N. lugens. The criteria used to justify the effects of host availability and population density on migration of N. lugens were based the hardness and tannin tests of the rice stems, fecundity of N. lugens, and the life cycle of N. lugens. The research was conducted under the temperature of 29.42°C with relative humidity of 61% and Light 12: Dark 12 times, using ten pairs of N. lugens brachypterous (F0 constant and then was added with five male adults on fifth days after the first infestation (F0 changed. The varieties used were IR64, as a resistant variety, and Ketan Lusi, as a susceptible variety. The results showed that the adding of the macropterous males did not affect the number of macropterous, because of that has been preplanned by the F0. Therefore, the percentage of existing macropterous was 51−52%.   INTISARI   Wereng Batang Cokelat (WBC merupakan salah satu hama tanaman padi yang sangat penting. Kerusakan parah dapat menyebabkan hopperburn dan puso (gagal panen. Tujuan penelitian ini adalah mengetahui pengaruh kepadatan populasi dan tanaman inang sebagai tempat migrasi WBC. Parameter yang dikaji untuk mengetahui pengaruh kepadatan populasi WBC dan tanaman inang tempat migrasi WBC berdasarkan tingkat kekerasan dan kandungan tanin batang tanaman padi, fekunditas WBC, dan siklus hidup WBC. Penelitian ini dilakukan pada temperatur 29.42˚C dengan kelembapan relatif 61% dan durasi siang hari 12 jam: durasi malam hari 12 jam. Metode yang dilakukan adalah dengan menggunakan 10 pasang imago WBC brakhiptera (F0 konstan, kemudian dilakukan penambahan 5 ekor imago jantan pada hari kelima setelah infestasi awal (F0 diubah. Varietas padi yang digunakan yaitu padi varietas IR64 sebagai varietas

  10. Role of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster.

    Science.gov (United States)

    Piontkivska, Helen; Matos, Luis F; Paul, Sinu; Scharfenberg, Brian; Farmerie, William G; Miyamoto, Michael M; Wayne, Marta L

    2016-10-05

    Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiD TM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be "resistant" if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Role of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster

    Science.gov (United States)

    Piontkivska, Helen; Matos, Luis F.; Paul, Sinu; Scharfenberg, Brian; Farmerie, William G.; Miyamoto, Michael M.; Wayne, Marta L.

    2016-01-01

    Abstract Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiDTM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be “resistant” if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts. PMID:27614234

  12. Histopathological changes in the kidneys of vertebrate hosts infected naturally and experimentally withParatanaisia bragai (Trematoda, Digenea

    Directory of Open Access Journals (Sweden)

    Vanessa Barreto Xavier

    Full Text Available Paratanaisia bragai is a trematode parasite that reaches sexual maturity in the kidney collecting ducts of domesticated and wild fowl and whose intermediate hosts are the snails Subulina octona and Leptinaria unilamellata. There are some discrepancies in descriptions of the pathology of this parasite in bird kidneys. Therefore, the purpose of this study was to analyze the kidneys of rock pigeons (Columba livia naturally infected and of chickens (Gallus gallus experimentally infected with Paratanaisia bragai, by means of macroscopic observation and by light and scanning electron microscopy. Both bird species showed significantly dilated collecting ducts. In addition, lymphocyte infiltration was observed in the kidneys of C. livia and metaplasia in the epithelial lining of the kidney collecting ducts of G. gallus.

  13. Dynamical System and Nonlinear Regression for Estimate Host-Parasitoid Relationship

    Directory of Open Access Journals (Sweden)

    Ileana Miranda Cabrera

    2010-01-01

    Full Text Available The complex relationships of a crop with the pest, its natural enemies, and the climate factors exist in all the ecosystems, but the mathematic models has studied only some components to know the relation cause-effect. The most studied system has been concerned with the relationship pest-natural enemies such as prey-predator or host-parasitoid. The present paper shows a dynamical system for studying the relationship host-parasitoid (Diaphorina citri, Tamarixia radiata and shows that a nonlinear model permits the estimation of the parasite nymphs using nymphs healthy as the known variable. The model showed the functional answer of the parasitoid, in which a point arrives that its density is not augmented although the number host increases, and it becomes necessary to intervene in the ecosystem. A simple algorithm is used to estimate the parasitoids level using the priori relationship between the host and the climate factors and then the nonlinear model.

  14. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  15. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  16. Manifestation of a neuro-fuzzy model to produce landslide susceptibility map using remote sensing data derived parameters

    Science.gov (United States)

    Pradhan, Biswajeet; Lee, Saro; Buchroithner, Manfred

    Landslides are the most common natural hazards in Malaysia. Preparation of landslide suscep-tibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. In this study, a new attempt is tried to produce landslide susceptibility map of a part of Cameron Valley of Malaysia. This paper develops an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment for landslide susceptibility mapping. To ob-tain the neuro-fuzzy relations for producing the landslide susceptibility map, landslide locations were identified from interpretation of aerial photographs and high resolution satellite images, field surveys and historical inventory reports. Landslide conditioning factors such as slope, plan curvature, distance to drainage lines, soil texture, lithology, and distance to lineament were extracted from topographic, soil, and lineament maps. Landslide susceptible areas were analyzed by the ANFIS model and mapped using the conditioning factors. Furthermore, we applied various membership functions (MFs) and fuzzy relations to produce landslide suscep-tibility maps. The prediction performance of the susceptibility map is checked by considering actual landslides in the study area. Results show that, triangular, trapezoidal, and polynomial MFs were the best individual MFs for modelling landslide susceptibility maps (86

  17. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials

    International Nuclear Information System (INIS)

    Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A.

    2016-01-01

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. - Highlights: • To define susceptible populations is important for risk assessment and management; • Genetic susceptibility may influence the individual response to nanomaterial exposure; • Susceptibility factors in workplace settings have both scientific and ethical issues.

  18. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iavicoli, Ivo, E-mail: ivo.iavicoli@unina.it [Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples (Italy); Leso, Veruscka, E-mail: veruscka@email.it [Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome (Italy); Schulte, Paul A., E-mail: pas4@cdc.gov [National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 4676 Columbia Parkway, MS C-14, Cincinnati, OH 45226 (United States)

    2016-05-15

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. - Highlights: • To define susceptible populations is important for risk assessment and management; • Genetic susceptibility may influence the individual response to nanomaterial exposure; • Susceptibility factors in workplace settings have both scientific and ethical issues.

  19. The South-American distribution and southernmost record of Biomphalaria peregrina—a potential intermediate host of schistosomiasis

    Directory of Open Access Journals (Sweden)

    Alejandra Rumi

    2017-05-01

    Full Text Available Schistosomiasis remains a major parasitic disease, endemic in large parts of South America. Five neotropical species of Biomphalaria have been found to act as intermediate hosts of Schistosoma mansoni in natural populations, while others have been shown to be susceptible in experimental infections, although not found infected in the field. Among these potential intermediate hosts, Biomphalaria peregrina represents the most widespread species in South America, with confirmed occurrence records from Venezuela to northern Patagonia. In this study, we report the southernmost record for the species at the Pinturas River, in southern Patagonia, which finding implies a southward reassessment of the limit for the known species of this genus. The identities of the individuals from this population were confirmed through morphological examination, and by means of two mitochondrial genes, cytochrome oxidase subunit I (COI and 16S-rRNA. With both markers, phylogenetic analyses were conducted in order to compare the genetic background of individuals from the Pinturas River with previously genetically characterized strains of B. peregrina from various South-American locations. In addition, we produced a potential distribution model of B. peregrina in South America and identified the environmental variables that best predict that distribution. The model was estimated through a maximum entropy algorithm and run with occurrence points obtained from several sources, including the scientific literature and international databases, along with climatic and hydrographic variables. Different phylogenetic analyses with either the COI or 16S-rRNA sequences did not conflict, but rather gave very similar topological organizations. Two major groups were identified, with sequences from the Pinturas River grouping together with haplotypes from subtropical and temperate regions. The model developed had a satisfactory performance for the study area. We observed that the areas

  20. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Directory of Open Access Journals (Sweden)

    Adeline M Hajjar

    Full Text Available Although lipopolysaccharide (LPS stimulation through the Toll-like receptor (TLR-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  1. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    Science.gov (United States)

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  2. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz-Montoya

    Full Text Available Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size on B. campestris, and on PC1 and PC2 (body length relative to body size on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  3. Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region

    Science.gov (United States)

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A.; Arnemo, Jon M.; Tryland, Morten; Girling, Simon; Miller, Michael W.; Tranulis, Michael A.; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter. PMID:23236380

  4. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    Directory of Open Access Journals (Sweden)

    Paula Stewart

    Full Text Available Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE during the bovine spongiform encephalopathy (BSE epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD remains an open question. Variation in the host-encoded prion protein (PrP(C largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo and pine marten (Martes martes were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus and mountain lion (Puma concolor from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  5. Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans.

    Science.gov (United States)

    Vandeputte, Patrick; Pradervand, Sylvain; Ischer, Françoise; Coste, Alix T; Ferrari, Sélène; Harshman, Keith; Sanglard, Dominique

    2012-07-01

    The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

  6. Host suitability of soybean and corn genotypes to the root lesion caused by nematode under natural infestation conditions

    Directory of Open Access Journals (Sweden)

    Anderli Divina Ferreira Rios

    2016-04-01

    Full Text Available ABSTRACT: Among the nematode management strategies, genetic resistance is one of the most appropriate and desirable. However, resistant soybean and corn genotypes resistant to Pratylenchus brachyurus are not available up to the moment. The objective of this study was to evaluate the host suitability of 50 soybean and 38 corn genotypes to P. brachyurus under natural infestation. Soybean genotypes BRSGO Chapadões, BRSGO Paraíso, M-Soy 7211 RR, M-Soy 8008 RR, Emgopa 313 RR, M-Soy 8411, BRSGO Juliana RR, Emgopa 316 RR, BRSGO Luziânia RR and TMG 103 RR, and corn genotype Agromem 30A06 reduced the nematode population during the evaluation period.

  7. Reindeer as hosts for nematode parasites of sheep and cattle.

    Science.gov (United States)

    Hrabok, J T; Oksanen, A; Nieminen, M; Rydzik, A; Uggla, A; Waller, P J

    2006-03-31

    The reindeer husbandry range of Scandinavia overlaps with sheep, goat, and cattle pastures. The aim of this study was to determine whether reindeer are suitable hosts for ovine or bovine nematode parasites, and thus may spread these parasites into the reindeer husbandry regions. To render worm-free, twelve 4-month-old male reindeer calves, six lambs, and six bovine calves were given ivermectin at 200 microg/kg body weight. Five weeks post-treatment, six reindeer calves were each artificially dosed with 10,000 third-stage larvae (L3) of gastrointestinal nematodes derived from sheep, and an additional six reindeer with L3 derived from cattle. Lambs and bovine calves received the same dose of ovine and bovine larvae as reindeer, from the same larval source, respectively. Faecal samples collected on five occasions after the larval dosing revealed that by the fourth week, all reindeer calves, lambs, and bovine calves were infected. Animals were slaughtered on days 40 (reindeer) or 47 (lambs and bovine calves) after the larval dosing. Reindeer calves were most susceptible to L3 derived from sheep. The overall mean intensity of Haemochus contortus, Trichostrongylus axei, and Teladorsagia circumcincta, did not differ between reindeer and sheep; however, early fourth-stage larvae of H. contortus were more abundant in reindeer (p = 0.002). The establishment of bovine-derived Ostertagia ostertagi was similar in reindeer (62%) and bovine calves (57%), but larval inhibition was much higher in reindeer (91%, p bovine derived Cooperia oncophora was recorded in reindeer calves (2%) compared with bovine calves (59%). These results show that young reindeer are susceptible hosts to the important gastrointestinal parasites of sheep (T. circumcincta, H. contortus) and cattle (O. ostertagi), as well as being a suitable host for T. axei.

  8. Codivergence of mycoviruses with their hosts.

    Directory of Open Access Journals (Sweden)

    Markus Göker

    Full Text Available BACKGROUND: The associations between pathogens and their hosts are complex and can result from any combination of evolutionary events such as codivergence, switching, and duplication of the pathogen. Mycoviruses are RNA viruses which infect fungi and for which natural vectors are so far unknown. Thus, lateral transfer might be improbable and codivergence their dominant mode of evolution. Accordingly, mycoviruses are a suitable target for statistical tests of virus-host codivergence, but inference of mycovirus phylogenies might be difficult because of low sequence similarity even within families. METHODOLOGY: We analyzed here the evolutionary dynamics of all mycovirus families by comparing virus and host phylogenies. Additionally, we assessed the sensitivity of the co-phylogenetic tests to the settings for inferring virus trees from their genome sequences and approximate, taxonomy-based host trees. CONCLUSIONS: While sequence alignment filtering modes affected branch support, the overall results of the co-phylogenetic tests were significantly influenced only by the number of viruses sampled per family. The trees of the two largest families, Partitiviridae and Totiviridae, were significantly more similar to those of their hosts than expected by chance, and most individual host-virus links had a significant positive impact on the global fit, indicating that codivergence is the dominant mode of virus diversification. However, in this regard mycoviruses did not differ from closely related viruses sampled from non-fungus hosts. The remaining virus families were either dominated by other evolutionary modes or lacked an apparent overall pattern. As this negative result might be caused by insufficient taxon sampling, the most parsimonious hypothesis still is that host-parasite evolution is basically the same in all mycovirus families. This is the first study of mycovirus-host codivergence, and the results shed light not only on how mycovirus biology

  9. The double edge to parasite escape: invasive host is less infected but more infectable.

    Science.gov (United States)

    Keogh, Carolyn L; Miura, Osamu; Nishimura, Tomohiro; Byers, James E

    2017-09-01

    Nonnative species that escape their native-range parasites may benefit not only from reduced infection pathology, but also from relaxed selection on costly immune defenses, promoting reallocation of resources toward growth or reproduction. However, benefits accruing from a reduction in defense could come at the cost of increased infection susceptibility. We conducted common garden studies of the shore crab Hemigrapsus sanguineus from highly parasitized native (Japan) populations and largely parasite-free invasive (USA) populations to test for differences in susceptibility to infection by native-range rhizocephalan parasites, and to explore differences in host resource allocation. Nonnative individuals showed at least 1.8 times greater susceptibility to infection than their native counterparts, and had reduced standing metabolic rates, suggesting that less of their energy was spent on physiological self-maintenance. Our results support an indirect advantage to parasite escape via the relaxation of costly physiological defenses. However, this advantage comes at the cost of heightened susceptibility, a trade-off of parasite escape that is seldom considered. © 2017 by the Ecological Society of America.

  10. Seasonal forcing in a host-macroparasite system.

    Science.gov (United States)

    Taylor, Rachel A; White, Andrew; Sherratt, Jonathan A

    2015-01-21

    Seasonal forcing represents a pervasive source of environmental variability in natural systems. Whilst it is reasonably well understood in interacting populations and host-microparasite systems, it has not been studied in detail for host-macroparasite systems. In this paper we analyse the effect of seasonal forcing in a general host-macroparasite system with explicit inclusion of the parasite larval stage and seasonal forcing applied to the birth rate of the host. We emphasise the importance of the period of the limit cycles in the unforced system on the resulting dynamics in the forced system. In particular, when subject to seasonal forcing host-macroparasite systems are capable of multi-year cycles, multiple solution behaviour, quasi-periodicity and chaos. The host-macroparasite systems show a larger potential for multiple solution behaviour and a wider range of periodic solutions compared to similar interacting population and microparasite systems. By examining the system for parameters that represent red grouse and the macroparasite nematode Trichostrongylus tenuis we highlight how seasonality could be an important factor in explaining the wide range of seemingly uncorrelated cycle periods observed in grouse abundance in England and Scotland. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Host-based identification is not supported by morphometrics in natural populations of Gyrodactylus salaris and G. thymalli (Platyhelminthes, Monogenea).

    Science.gov (United States)

    Olstad, K; Shinn, A P; Bachmann, L; Bakke, T A

    2007-12-01

    Gyrodactylus salaris is a serious pest of wild pre-smolt Atlantic salmon (Salmo salar) in Norway. The closely related G. thymalli, originally described from grayling (Thymallus thymallus), is assumed harmless to both grayling and salmon. The 2 species are difficult to distinguish using traditional, morphometric methods or molecular approaches. The aim of this study was to explore whether there is a consistent pattern of morphometrical variation between G. salaris and G. thymalli and to analyse the morphometric variation in the context of 'diagnostic realism' (in natural populations). Specimens from the type-material for the 2 species are also included. In total, 27 point-to-point measurements from the opisthaptoral hard parts were used and analysed by digital image processing and uni- and multivariate morphometry. All populations most closely resembled its respective type material, as expected from host species, with the exception of G. thymalli from the Norwegian river Trysilelva. We, therefore, did not find clear support in the morphometrical variation among G. salaris and G. thymalli for an a priori species delineation based on host. The present study also indicates an urgent need for more detailed knowledge on the influence of environmental factors on the phenotype of gyrodactylid populations.

  12. Association of the solute carrier family 11 member 1 gene polymorphisms with susceptibility to leprosy in a Brazilian sample

    Directory of Open Access Journals (Sweden)

    Maria José Franco Brochado

    2016-02-01

    Full Text Available Natural resistance-associated macrophage protein 1/solute carrier family 11 member 1 gene (Nramp1/Slc11a1 is a gene that controls the susceptibility of inbred mice to intracellular pathogens. Polymorphisms in the human Slc11a1/Nramp1 gene have been associated with host susceptibility to leprosy. This study has evaluated nine polymorphisms of the Slc11a1/Nramp1 gene [(GTn, 274C/T, 469+14G/C, 577-18G/A, 823C/T, 1029 C/T, 1465-85G/A, 1703G/A, and 1729+55del4] in 86 leprosy patients (67 and 19 patients had the multibacillary and the paucibacillary clinical forms of the disease, respectively, and 239 healthy controls matched by age, gender, and ethnicity. The frequency of allele 2 of the (GTn polymorphism was higher in leprosy patients [p = 0.04, odds ratio (OR = 1.49], whereas the frequency of allele 3 was higher in the control group (p = 0.03; OR = 0.66. Patients carrying the 274T allele (p = 0.04; OR = 1.49 and TT homozygosis (p = 0.02; OR = 2.46, such as the 469+14C allele (p = 0.03; OR = 1.53 of the 274C/T and 469+14G/C polymorphisms, respectively, were more frequent in the leprosy group. The leprosy and control groups had similar frequency of the 577-18G/A, 823C/T, 1029C/T, 1465-85G/A, 1703G/A, and 1729+55del4 polymorphisms. The 274C/T polymorphism in exon 3 and the 469+14G/C polymorphism in intron 4 were associated with susceptibility to leprosy, while the allele 2 and 3 of the (GTn polymorphism in the promoter region were associated with susceptibility and protection to leprosy, respectively.

  13. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In

  14. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens.

    Science.gov (United States)

    Ferguson, Laura V; Kirk Hillier, N; Smith, Todd G

    2013-12-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites.

  15. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens☆

    Science.gov (United States)

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  16. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  17. Low susceptibility of invasive red lionfish (Pterois volitans) to a generalist ectoparasite in both its introduced and native ranges.

    Science.gov (United States)

    Sikkel, Paul C; Tuttle, Lillian J; Cure, Katherine; Coile, Ann Marie; Hixon, Mark A

    2014-01-01

    Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.

  18. Pistachio (Pistacia vera L.) is a new natural host of Hop stunt viroid.

    Science.gov (United States)

    Elleuch, Amine; Hamdi, Imen; Ellouze, Olfa; Ghrab, Mohamed; Fkahfakh, Hatem; Drira, Noureddine

    2013-10-01

    Besides hop, Hop stunt viroid (HpSVd) infects many woody species including grapevine, citrus, peach, plum, apricot, almond, pomegranate, mulberry and jujube. Here, we report the first detection of HpSVd in pistachio (Pistacia vera L.). Samples corresponding to 16 pistachio cultivars were obtained from a nearby almond collection. From these samples, low molecular weight RNAs were extracted for double polyacrylamide gel electrophoresis, northern-blot analysis and reverse transcription polymerase chain reaction assays. HpSVd was detected in 4 of the 16 pistachio cultivars in the first year and in 6 in the second, being also detected in the almond collection. Examination of the nucleotide sequences of pistachio and almond isolates revealed 13 new sequence variants. Sequences from pistachio shared 92-96 % similarity with the first reported HpSVd sequence (GenBank X00009), and multiple alignment and phylogenetic analyses showed that one pistachio isolate (HpSVdPis67Jabari) clustered with the plum group, whereas all the others clustered with the hop, and the recombinants plum-citrus and plum-Hop/cit3 groups. By identifying pistachio as a new natural host, we confirm that HpSVd is an ubiquitous and genetically variable viroid that infects many different fruit trees cultivated worldwide.

  19. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  20. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion

    Science.gov (United States)

    B. M. Connolly; D. E. Pearson; R. N. Mack

    2014-01-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food...

  1. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece

    Directory of Open Access Journals (Sweden)

    Skilodimou, H. D.

    2009-06-01

    Full Text Available Landslide susceptibility mapping is a practical tool in natural and urban planning; it can be applied for determining land use zones, in construction design and planning of a variety of projects. In this study, two different GIS based landslide susceptibility maps were generated in the mountainous part of the Trikala Prefecture in Thessaly, Central Greece. This was accomplished by using different methods for correlating factors, which have an effect on landslide occurrences. The instability factors taken into account were: lithology, tectonic features, slope gradients, road network, drainage network, land use and rainfall. A frequency distribution of the half number of the landslide events of the study area in each class of the instability factors was performed in order to rate the classes. Two models have been used to combine the instability factors and assess the overall landslide susceptibility, namely: the Weight Factor Model (WeF, which is a statistical method, and the Multiple Factor Model (MuF that is a logical method. The produced maps were classified into four zones: Low, Moderate, High and Very High susceptible zones and validated using the other half number of the landslide events of the area. Evaluation of the results is optimized through a Landslide Models Indicator (La.M.I..Los mapas de susceptibilidad de deslizamientos representan una práctica herramienta en la planificación urbana y de espacios naturales. Así, puede aplicarse a la determinación de los usos de terrenos, en el diseño de construcción civil y para la planificación de gran variedad de actividades. En este estudio se generaron dos tipos diferentes de mapas de susceptibilidad basados en GIS para la parte montañosa de la prefectura de Trikala en Tesalia (Grecia Central. Estos se llevaron a cabo usando dos métodos de correlación de los factores que pueden tener un efecto en la generación de deslizamientos. Los factores de desestabilización tenidos en cuenta

  2. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A.

    2016-01-01

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. PMID:26724381

  3. Review of experimental and natural invertebrate hosts of sealworm (Pseudoterranova decipiens and its distribution and abundance in macroinvertebrates in eastern Canada

    Directory of Open Access Journals (Sweden)

    David J Marcogliese

    2001-11-01

    Full Text Available Experimental and natural invertebrate intermediate hosts of sealworm (Pseudoterranova decipiens as well as transmission experiments of sealworm from invertebrates to fish are reviewed and summarized. Experimental hosts include copepods, mysids, cumaceans, isopods, amphipods, decapods, annelids, and molluscs. Invertebrates collected from eastern Canada between 1989 and 1995 were checked for nematode infections by microscopic examination of dissected animals or enzymatic digestion of bulk samples. Third-stage larval sealworm were found in mysids (Neomysis americana, Mysis stenolepis from Passamaquoddy Bay, the Bras d’Or Lakes, inshore Cape Breton, Sable Island and Sable Island Bank. Infected amphipods (Amphiporeia virginiana, Americorchestia megalophthalma, Gammarus spp. were found only on Sable Island. Typical infection rates in macroinvertebrates were 1-4/1000. No sealworm infections were found in approximately 18,000 amphipods examined from Sable Island Bank, the site of the most heavily infected fishes in eastern Canada. In Wallace Lake, a brackish pond on Sable Island, infection rates were much higher in mysids than in amphipods. Estimates of rates of transmission of sealworm from invertebrates to fish were derived from infection levels in Wallace Lake and feeding experiments involving sticklebacks and invertebrate prey. It is concluded that mysids may be much more important than amphipods in transmitting sealworm to fish hosts.

  4. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    International Nuclear Information System (INIS)

    Khatiwada, R; Kendrick, R; Khosravi, M; Peters, M; Smith, E; Snow, W M; Dennis, L

    2016-01-01

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium–indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10 −9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within experimental error. These results verify the well-known Wiedemann additivity law for the magnetic susceptibility of inert mixtures of materials and thereby realize the ability to produce materials with small but tunable magnetic susceptibility. For our particular scientific application, we are also looking for materials with the largest possible number of neutrons and protons per unit volume. The gallium–indium alloys fabricated and measured in this work possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature liquid, and the tungsten-bismuth pressed powder mixtures possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature solid. This ratio is a figure of merit for a certain class of precision experiments that search for possible exotic spin-dependent forces of Nature. (paper)

  5. Defense response of susceptible and resistant Biomphalaria alexandrina snails against Schistosoma mansoni infection

    Directory of Open Access Journals (Sweden)

    Iman F. Abou-El-Naga

    2012-09-01

    Full Text Available In Egypt, Biomphalaria alexandrina is the intermediate host for Schistosoma mansoni. The fates of Schistosoma miracidia in the snails varies between different species of Biomphalaria. The internal defense system is one of the factors that influence the susceptibility pattern of the snails. The interaction between Biomphalaria snails and S. mansoni needs to be identified for each species, and even between the members of the same species with different degrees of susceptibility. In the present study, the first generation of susceptible and resistant parents of B. alexandrina was examined histologically at the 30th day post exposure. The study includes the characterization of the immune response, as expressed by tissue reactions, of susceptible and resistant B. alexandrina snails against S. mansoni. It was also designed to determine the impact of the resistance increase in parent snails, on the mechanisms of interaction of their offspring against infection. The results showed that the infection rate of the offspring from the susceptible parents was 92%. No susceptible offspring was produced from the resistant parents. When the parents were of equal number of susceptible and resistant snails, they gave an offspring with an infection rate of 20%. Susceptible snails that had susceptible parents showed a higher degree of susceptibility than those that had both susceptible and resistant parents. A common feature of the resistant snails was the absence of any viable parasites. The tissue reactions of the resistant snails having only resistant parents occurred at the site of miracidial penetration. In resistant snails for which susceptible ones were included in their parents, the reactions occurred in the deep tissues. These results characterized the immune response of B. alexandrina snails against Schistosoma infection which was found to occur by two different mechanisms. One type of defense occurs in highly resistant snails, and employs direct

  6. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  7. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  8. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes.

    Science.gov (United States)

    Palomares-Rius, Juan E; Hedley, Pete E; Cock, Peter J A; Morris, Jenny A; Jones, John T; Vovlas, Nikos; Blok, Vivian

    2012-12-01

    The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  9. Genetic structure and natural variation associated with host of origin in Penicillium expansum strains causing blue mould.

    Science.gov (United States)

    Sanzani, S M; Montemurro, C; Di Rienzo, V; Solfrizzo, M; Ippolito, A

    2013-07-15

    Blue mould, caused by Penicillium expansum, is one of the most economically damaging postharvest diseases of pome fruits, although it may affect a wider host range, including sweet cherries and table grapes. Several reports on the role of mycotoxins in plant pathogenesis have been published, but few focussed on the influence of mycotoxins on the variation in host preference amongst producing fungi. In the present study the influence of the host on P. expansum pathogenicity/virulence was investigated, focussing mainly on the relationship with patulin production. Three P. expansum strain groups, originating from apples, sweet cherries, and table grapes (7 strains per host) were grown on their hosts of isolation and on artificial media derived from them. Strains within each P. expansum group proved to be more aggressive and produced more patulin than the other two groups under evaluation when grown on the host from which they originated. Table grape strains were the most aggressive (81% disease incidence) and strongest patulin producers (up to 554μg/g). The difference in aggressiveness amongst strains was appreciable only in the presence of a living host, suggesting that the complex pathogen-host interaction significantly influenced the ability of P. expansum to cause the disease. Incidence/severity of the disease and patulin production proved to be positively correlated, supporting the role of patulin as virulence/pathogenicity factor. The existence of genetic variation amongst isolates was confirmed by the High Resolution Melting method that was set up herein, which permitted discrimination of P. expansum from other species (P. chrysogenum and P. crustosum) and, within the same species, amongst the host of origin. Host effect on toxin production appeared to be exerted at a transcriptional level. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Patogenicidade de isolados de Corynespora cassiicola a diferentes espécies de plantas Pathogenicity of Corynespora cassiicola isolates on different host plants

    Directory of Open Access Journals (Sweden)

    Ricardo Ribeiro Oliveira

    2007-09-01

    Full Text Available Corynespora cassiicola, relatado como um patógeno com ampla gama de espécies hospedeiras, tem causado danos em várias culturas de interesse comercial. Neste trabalho avaliou-se, em ambiente de casa-de-vegetação, a patogenicidade de 15 isolados de C. cassiicola originados de diferentes espécies hospedeiras, quando inoculados em 12 diferentes espécies vegetais. Os isolados de pepino foram os mais patogênicos. Além dos híbridos de pepino, estes infectaram outras seis espécies vegetais testadas. Já os isolados de trapoeraba e de alface foram os que apresentaram menor patogenicidade, pois além dos hospedeiros originais infectaram somente uma espécie hospedeira. A maioria dos isolados apresentou elevada inespecificidade. As espécies vegetais testadas reagiram de formas diferentes quando inoculadas com diferentes isolados. O mamoeiro apresentou maior suscetibilidade, sendo infectado por 12 dos 15 isolados. Contrariamente, a trapoeraba e o assa-peixe foram suscetíveis a três e dois isolados, respectivamente.Corynespora cassiicola, causes target leaf spot on a wide host range, including several economically important crops. This study investigated the pathogenicity of 15 C. cassiicola isolates on several hosts, in greenhouse. The fungal isolates were collected from several hosts. These isolates were inoculated on 12 different plant species. The isolates from cucumber showed the widest host range, infecting also six other hosts. The isolates from C. benghalensis and lettuce showed the narrowest host range, since they infected their host of origin and only another host plant. Most of the isolates lacked host specificity. Papaya plant, which showed the greatest susceptibility to the C. cassiicola isolates, were colonized by 12 of the 15 isolates tested. On the opposite, Vernonia sp. and C benghalensis were susceptible to only two and three C. cassiicola isolates, respectively.

  11. A tortoise-infecting picornavirus expands the host range of the family Picornaviridae.

    Science.gov (United States)

    Ng, Terry Fei Fan; Wellehan, James F X; Coleman, James K; Kondov, Nikola O; Deng, Xutao; Waltzek, Thomas B; Reuter, Gábor; Knowles, Nick J; Delwart, Eric

    2015-05-01

    While picornaviruses can cause diseases in many mammals, little is known of their host range for replication in non-mammalian vertebrates. Here, a picornavirus in liver and kidney tissues from diseased Sulawesi tortoises (Indotestudo forsteni) was genetically characterized. Tortoise rafivirus A (ToRaV-A, KJ415177) represents a potential new genus in the family Picornaviridae, for which we propose the name "Rafivirus". Our finding confirms the susceptibility of reptiles to picornaviruses.

  12. Activation of Host IRE1α-Dependent Signaling Axis Contributes the Intracellular Parasitism of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Aseem Pandey

    2018-04-01

    Full Text Available Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR sensor IRE1α (inositol-requiring enzyme 1 and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1 conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.

  13. Host-parasite coevolution can promote the evolution of seed banking as a bet-hedging strategy.

    Science.gov (United States)

    Verin, Mélissa; Tellier, Aurélien

    2018-04-20

    Seed (egg) banking is a common bet-hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene-for-gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching-allele interaction, both hosts' genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host-parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet-hedging strategy. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  14. High virulence of Wolbachia after host switching: when autophagy hurts.

    Directory of Open Access Journals (Sweden)

    Winka Le Clec'h

    Full Text Available Wolbachia are widespread endosymbionts found in a large variety of arthropods. While these bacteria are generally transmitted vertically and exhibit weak virulence in their native hosts, a growing number of studies suggests that horizontal transfers of Wolbachia to new host species also occur frequently in nature. In transfer situations, virulence variations can be predicted since hosts and symbionts are not adapted to each other. Here, we describe a situation where a Wolbachia strain (wVulC becomes a pathogen when transfected from its native terrestrial isopod host species (Armadillidium vulgare to another species (Porcellio d. dilatatus. Such transfer of wVulC kills all recipient animals within 75 days. Before death, animals suffer symptoms such as growth slowdown and nervous system disorders. Neither those symptoms nor mortalities were observed after injection of wVulC into its native host A. vulgare. Analyses of wVulC's densities in main organs including Central Nervous System (CNS of both naturally infected A. vulgare and transfected P. d. dilatatus and A. vulgare individuals revealed a similar pattern of host colonization suggesting an overall similar resistance of both host species towards this bacterium. However, for only P. d. dilatatus, we observed drastic accumulations of autophagic vesicles and vacuoles in the nerve cells and adipocytes of the CNS from individuals infected by wVulC. The symptoms and mortalities could therefore be explained by this huge autophagic response against wVulC in P. d. dilatatus cells that is not triggered in A. vulgare. Our results show that Wolbachia (wVulC can lead to a pathogenic interaction when transferred horizontally into species that are phylogenetically close to their native hosts. This change in virulence likely results from the autophagic response of the host, strongly altering its tolerance to the symbiont and turning it into a deadly pathogen.

  15. Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa.

    Science.gov (United States)

    Rogers, Elizabeth E

    2012-06-01

    The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.

  16. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes.

    Science.gov (United States)

    Purohit, Sharad; Sharma, Ashok; She, Jin-Xiong

    2015-01-01

    Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.

  17. Landslide susceptibility mapping in the coastal region in the State of São Paulo, Brazil

    Science.gov (United States)

    Alvala, R. C.; Camarinha, P. I.; Canavesi, V.

    2013-05-01

    The exposure of populations in risk areas is a matter of global concern, because it is a determining factor for the natural disasters occurrences. Furthermore, it has also been observed an intensification of extreme hydrometeorological events that has triggered disasters in various parts of the globe, further increasing the need for monitoring and alerting for natural disasters, aiming the safeguarding of life and minimize economic losses. Accordingly, different methodologies for risk assessment have been proposed, focusing on the specific natural hazards. Particularly for Brazil, which has economic axis of development in the regions near the coast, it is common to observe the process of urbanization advancing on steep slopes of the mountain regions. This characteristic causes the population exposure to the natural hazards related to the mass movements, which the landslides stood out as the cause of many deaths and economic losses every year. Thus, prior to risk analysis (when human occupation intersect with natural hazard), it is essential to analyze the susceptibility, which reflects the physical and environmental conditions that trigger for such phenomena. However, this task becomes a major challenge due to the difficulty of finding databases with good quality. In this context, this paper presents a methodology based only on spatial information in the public domain, integrated into a Geographic Information System free, in order to analyze the landslides susceptibility. In a first effort, we evaluated four counties of Southeastern Brazil - Santos, Cubatão, Caraguatatuba and Ubatuba - located in a region that includes the rugged reliefs of Serra do Mar and the transition to the coastal region, that have historic of disasters related. It is noteworthy that the methodology takes into account many variables that was weighted and crossed by Fuzzy Gamma technique, such as: topography (horizontal and vertical curvature of the slopes), geology, geomorphology, slope

  18. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici.

    Science.gov (United States)

    Reeves, Gregory; Monroy-Barbosa, Ariadna; Bosland, Paul W

    2013-05-01

    A novel disease resistance inhibitor gene (inhibitor of P. capsici resistance [Ipcr]), found in the chile pepper (Capsicum annuum) variety 'New Mexico Capsicum Accession 10399' (NMCA10399), inhibits resistance to Phytophthora capsici but not to other species of Phytophthora. When a highly P. capsici-resistant variety was hybridized with NMCA10399, the resultant F1 populations, when screened, were completely susceptible to P. capsici for root rot and foliar blight disease syndromes, despite the dominance inheritance of P. capsici resistance in chile pepper. The F2 population displayed a 3:13 resistant-to-susceptible (R:S) ratio. The testcross population displayed a 1:1 R:S ratio, and a backcross population to NMCA10399 displayed complete susceptibility. These results demonstrate the presence of a single dominant inhibitor gene affecting P. capsici resistance in chile pepper. Moreover, when lines carrying the Ipcr gene were challenged against six Phytophthora spp., the nonhost resistance was not overcome. Therefore, the Ipcr gene is interfering with host-specific resistance but not the pathogen- or microbe-associated molecular pattern nonhost responses.

  19. Targeted and Untargeted Lipidomics of Emiliania huxleyi Viral Infection and Life Cycle Phases Highlights Molecular Biomarkers of Infection, Susceptibility, and Ploidy

    Directory of Open Access Journals (Sweden)

    Jonathan Eliott Hunter

    2015-10-01

    Full Text Available Marine viruses that infect phytoplankton strongly influence the ecology and evolution of their hosts. Emiliania huxleyi is characterized by a biphasic life cycle composed of a diploid (2N and haploid (1N phase; diploid cells are susceptible to infection by specific coccolithoviruses, yet haploid cells are resistant. Glycosphingolipids (GSLs play a role during infection, but their molecular distribution in haploid cells is unknown. We present mass spectrometric analyses of lipids from cultures of uninfected diploid, infected diploid, and uninfected haploid E. huxleyi. Known viral GSLs were present in the infected diploid cultures as expected, but surprisingly, trace amounts of viral GSLs were also detected in the uninfected haploid cells. Sialic-acid GSLs have been linked to viral susceptibility in diploid cells, but were found to be absent in the haploid cultures, suggesting a mechanism of haploid resistance to infection. Additional untargeted high-resolution mass spectrometry data processed via multivariate analysis unveiled a number of novel biomarkers of infected, non-infected, and haploid cells. These data expand our understanding on the dynamics of lipid metabolism during E. huxleyi host/virus interactions and highlight potential novel biomarkers for infection, susceptibility, and ploidy.

  20. [Susceptibility and resistence of Pseudomonas aeruginosa to antimicrobial agents].

    Science.gov (United States)

    Gamero Delgado, M C; García-Mayorgas, A D; Rodríguez, F; Ibarra, A; Casal, M

    2007-06-01

    Pseudomonas aeruginosa is an opportunistic microorganism that is frequently the cause of nosocomial infections. Multiple mechanisms are involved in its natural and acquired resistance to many of the antimicrobial agents commonly used in clinical practice. The objective of this study was to assess the susceptibility and resistance patterns of P. aeruginosa strains isolated in Hospital Reina Sofia between 2000 and 2005, as well as to analyze the differences between intrahospital and extrahospital isolates in 2005 and to compare the results with those obtained in other studies. A total of 3,019 strains of P. aeruginosa from different hospitals and nonhospital settings were evaluated, taking into consideration their degree of sensitivity to different antibiotics. The MICs were determined by means of the Wider I automated system (Soria Melguizo), taking into consideration the criteria of susceptibility and resistance recommended by MENSURA. Results of the analysis showed that P. aeruginosa maintained similar levels of antimicrobial susceptibility during the period 2000-2005, with increased susceptibility to amikacin, gentamicin and tobramycin. There were also important differences in the degree of susceptibility between intrahospital and extrahospital strains, except for imipenem and fosfomycin. The intrahospital difference in susceptibility was also evaluated, emphasizing the importance of periodically studying susceptibility and resistance patterns of P. aeruginosa in each setting in order to evaluate different therapeutic guidelines, as it is not always advisable to extrapolate data from different regions. These differences can be explained by the different use of antibiotics in each center and the geographic variations of the resistance mechanisms of P. aeruginosa.

  1. Low-temperature susceptibility of concentrated magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander F.; Lebedev, Alexander V.

    2004-09-01

    The initial susceptibility of concentrated magnetic fluids (ferrocolloids) has been experimentally investigated at low temperatures. The results obtained indicate that the interparticle dipole-dipole interactions can increase the susceptibility by several times as compared to the Langevin value. It is shown that good agreement between recent theoretical models and experimental observations can be achieved by introducing a correction for coefficients in the series expansion of susceptibility in powers of density and aggregation parameter. A modified equation for equilibrium susceptibility is offered to sum over corrections made by Kalikmanov (Statistical Physics of Fluids, Springer-Verlag, Berlin, 2001) and by B. Huke and M. Lücke (Phys. Rev. E 67, 051403, 2003). The equation gives good quantitative agreement with the experimental data in the wide range of temperature and magnetic particles concentration. It has been found that in some cases the magnetic fluid solidification occurs at temperature several tens of kelvins higher than the crystallization temperature of the carrier liquid. The solidification temperature of magnetic fluids is independent of particle concentration (i.e., magneto-dipole interparticle interactions) and dependent on the surfactant type and carrier liquid. This finding allows us to suggest that molecular interactions and generation of some large-scale structure from colloidal particles in magnetic fluids are responsible for magnetic fluid solidification. If the magnetic fluid contains the particles with the Brownian relaxation mechanism of the magnetic moment, the solidification manifests itself as the peak on the "susceptibility-temperature" curve. This fact proves the dynamic nature of the observed peak: it arises from blocking the Brownian mechanism of the magnetization relaxation.

  2. Assessing landslide susceptibility by applying fuzzy sets, possibility evidence-based theories

    Directory of Open Access Journals (Sweden)

    Ibsen Chivatá Cárdenas

    2008-01-01

    Full Text Available A landslide susceptibility model was developed for the city of Manizales, Colombia; landslides have been the city’s main environmental problem. Fuzzy sets and possibility and evidence-based theories were used to construct the mo-del due to the set of circumstances and uncertainty involved in the modelling; uncertainty particularly concerned the lack of representative data and the need for systematically coordinating subjective information. Susceptibility and the uncertainty were estimated via data processing; the model contained data concerning mass vulnerability and uncer-tainty. Output data was expressed on a map defined by linguistic categories or uncertain labels as having low, me-dium, high and very high susceptibility; this was considered appropriate for representing susceptibility. A fuzzy spec-trum was developed for classifying susceptibility levels according to perception and expert opinion. The model sho-wed levels of susceptibility in the study area, ranging from low to high susceptibility (medium susceptibility being mo-re frequent. This article shows the details concerning systematic data processing by presenting theories and tools regarding uncertainty. The concept of fuzzy parameters is introduced; this is useful in modelling phenomena regar-ding uncertainty, complexity and nonlinear performance, showing that susceptibility modelling can be feasible. The paper also shows the great convenience of incorporating uncertainty into modelling and decision-making. However, quantifying susceptibility is not suitable when modelling identified uncertainty because incorporating model output information cannot be reduced into exact or real numerical quantities when the nature of the variables is particularly uncertain. The latter concept is applicable to risk assessment.

  3. The effects of simulated acid rain on growth and susceptibility to predation of Phratora polaris (Col., Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Palokangas, P.; Neuvonen, S.; Haapala, S. [University of Turku, Ivalo (Finland). Kevo Subarctic Research Inst.

    1995-12-31

    The effects of long-term simulated acid rain on tritrophic interactions between mountain birch, a leaf beetle (Phratora polaris) and its predators were studied. Leaf beetle larvae were fed on foliage treated during 6-7 years with simulated acid rain of pH 3 (both H{sub 2}SO{sub 4} and HNO{sub 3}) or with spring water of pH 6 (irrigated controls). There were significant differences between treatments in the susceptibility of P. polaris to predators. Generally, beetles reared on acid treated birches were more susceptible to predators than those reared on irrigated control trees. This effect was present over several stages in the life cycle of the beetle and for several types of predators: ants preying on larvae, carabids attacking pupae and birds feeding on adult beetles. However, host plant treatment did not have consistent effects on the growth of larvae. This suggests that the defensive ability of leaf beetles is more sensitive to pollution induced variation in host foliage than larval growth. 32 refs., 1 fig., 4 tabs.

  4. Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.

    Directory of Open Access Journals (Sweden)

    Steven R Parratt

    2016-06-01

    Full Text Available Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections.

  5. Candidal colonization, strain diversity, and antifungal susceptibility among adult diabetic patients.

    Science.gov (United States)

    Al-Attas, Safia A; Amro, Soliman O

    2010-01-01

    Candidal colonization in diabetics is a matter of debate. The aim of this study is to investigate oral candidal colonization, strain diversity, antifungal susceptibility, and the influence of local and systemic host factors on candidal colonization in adult diabetics. We conducted a case-control study that compared 150 diabetics (49 type 1, 101 type 2) with 50 healthy controls. Two salivary samples were collected, using the oral rinse sampling method: one for salivary flow rate and pH determination, and the other for candidal colonization assessment. The candidal isolates were identified and tested in vitro for antifungal susceptibility using the commercial kit, Candifast. The relationship between specific host factors and candidal colonization was also investigated. Diabetics had a higher candidal carriage rate compared to controls, but not density. Candida albicans was the most frequently isolated species, but diabetics had a variety of other candidal species present. None of the control samples were resistant to any tested antifungal, while the diabetic samples had differing resistances to azole antifungals. Although there was a significant positive correlation between glycemic control and candidal colonization in type 2 diabetics, there was a negative correlation between salivary pH and candidal carriage in the controls versus density in type 2 diabetics. Diabetic patients not only had a higher candidal carriage rate, but also a variety of candidal species that were resistant to azole antifungals. Oral candidal colonization was significantly associated with glycemic control, type of diabetes, and salivary pH.

  6. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

    Science.gov (United States)

    Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry

    2016-03-01

    In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions.

  7. Inter- and intra-specific host discrimination in gregarious and solitary endoparasitoid wasps

    NARCIS (Netherlands)

    Magdaraog, P.M.; Tanaka, T.; Harvey, J.A.

    2013-01-01

    In nature, most species of Lepidoptera are attacked by parasitoids, and some species may be hosts for several parasitoid species. When hosts are parasitized by more than one female of the same species (=superparasitism) or females of different species (=multiparasitism), then intrinsic competition

  8. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease.

    Science.gov (United States)

    Nicolet, K J; Chong-Seng, K M; Pratchett, M S; Willis, B L; Hoogenboom, M O

    2018-03-27

    Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.

  9. TGF-b2 induction regulates invasiveness of Theileria-transformed leukocytes and disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Marie Chaussepied

    2010-11-01

    Full Text Available Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva, or tropical theileriosis (T. annulata. Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK. We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.

  10. Host Defense Mechanisms against Bark Beetle Attack Differ between Ponderosa and Lodgepole Pines

    Directory of Open Access Journals (Sweden)

    Daniel R. West

    2016-10-01

    Full Text Available Conifer defenses against bark beetle attack include, but are not limited to, quantitative and qualitative defenses produced prior to attack. Our objective was to assess host defenses of lodgepole pine and ponderosa pine from ecotone stands. These stands provide a transition of host species for mountain pine beetle (Dendroctonus ponderosae; MPB. We asked two questions: (1 do the preformed quantitative host defenses (amount of resin and (2 the preformed qualitative host defenses (monoterpene constituents differ between lodgepole and ponderosa pines. We collected oleoresins at three locations in the Southern Rocky Mountains from 56 pairs of the pine species of similar size and growing conditions. The amount of preformed-ponderosa pine oleoresins exuded in 24 h (mg was almost four times that of lodgepole pine. Total qualitative preformed monoterpenes did not differ between the two hosts, though we found differences in all but three monoterpenes. No differences were detected in α-pinene, γ-terpinene, and bornyl acetate. We found greater concentrations of limonene, β-phellandrene, and cymene in lodgepole pines, whereas β-pinene, 3-carene, myrcene, and terpinolene were greater in ponderosa pine. Although we found differences both in quantitative and qualitative preformed oleoresin defenses, the ecological relevance of these differences to bark beetle susceptibility have not been fully tested.

  11. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    Science.gov (United States)

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Variation in the susceptibility of Drosophila to different entomopathogenic nematodes.

    Science.gov (United States)

    Peña, Jennifer M; Carrillo, Mayra A; Hallem, Elissa A

    2015-03-01

    Entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema are lethal parasites of insects that are of interest as models for understanding parasite-host interactions and as biocontrol agents for insect pests. EPNs harbor a bacterial endosymbiont in their gut that assists in insect killing. EPNs are capable of infecting and killing a wide range of insects, yet how the nematodes and their bacterial endosymbionts interact with the insect immune system is poorly understood. Here, we develop a versatile model system for understanding the insect immune response to parasitic nematode infection that consists of seven species of EPNs as model parasites and five species of Drosophila fruit flies as model hosts. We show that the EPN Steinernema carpocapsae, which is widely used for insect control, is capable of infecting and killing D. melanogaster larvae. S. carpocapsae is associated with the bacterium Xenorhabdus nematophila, and we show that X. nematophila induces expression of a subset of antimicrobial peptide genes and suppresses the melanization response to the nematode. We further show that EPNs vary in their virulence toward D. melanogaster and that Drosophila species vary in their susceptibilities to EPN infection. Differences in virulence among different EPN-host combinations result from differences in both rates of infection and rates of postinfection survival. Our results establish a powerful model system for understanding mechanisms of host-parasite interactions and the insect immune response to parasitic nematode infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Murine respiratory mycoplasmosis (MRM) in C57BL/6N and C3H/HeN mice: strain differences in early host responses and exacerbation by nitrogen dioxide

    International Nuclear Information System (INIS)

    Parker, R.F.

    1987-01-01

    The studies reported here used genetic differences in susceptibility of C57BL/6N and C3H/HeN mice and exacerbation of the disease by nitrogen dioxide (NO 2 ) as tools in assessing the role of early host responses in the pathogenesis of MRM. The two strains did not differ in susceptibility to infection, but C3H/HeN mice were more susceptible to and had increased severity of lung lesions 14 days after intranasal inoculation as determined by 50% biological endpoints and morphometric analysis of tissues. Exposure to NO 2 for 4 hours prior to exposure to infectious aerosols exacerbated murine respiratory mycoplasmosis (MRM) by 7 days after exposure in both mouse strains. NO 2 appeared to affect host lung defense mechanisms responsible for limiting mycoplasmal growth in the lungs. The NO 2 exposure concentration required for this effect varied with the genetic background of the host, the dose of mycoplasmas administered, and the endpoint measured. Pulmonary clearance of radiolabeled M. pulmonis was determined in both mouse strains, and in C57BL/6N mice exposed to NO 2

  14. Comparative Susceptibility of Plants Native to the Appalachian Range of the United States to Inoculation With Phytophthora ramorum

    Science.gov (United States)

    R.G. Linderman; Patricia B. de Sá; E.A. Davis

    2008-01-01

    Phytophthora ramorum, cause of sudden oak death of trees or ramorum blight of other plant species, has many hosts. Some geographic regions, such as the Appalachian range of the eastern United States, are considered high risk of becoming infested with the pathogen because known susceptible plants occur there and climatic characteristics appear...

  15. Integration of landslide susceptibility products in the environmental plans

    Science.gov (United States)

    Fiorucci, Federica; Reichenbach, Paola; Rossi, Mauro; Cardinali, Mauro; Guzzetti, Fausto

    2015-04-01

    Landslides are one of the most destructive natural hazard that causes damages to urban area worldwide. The knowledge of where a landslide could occur is essential for the strategic management of the territory and for a good urban planning . In this contest landslide susceptibility zoning (LSZ) is crucial to provide information on the degree to which an area can be affected by future slope movements. Despite landslide susceptibility maps have been prepared extensively during the last decades, there are few examples of application is in the environmental plans (EP). In this work we present a proposal for the integration of the landslide inventory map with the following landslide susceptibility products: (i) landslide susceptibility zonation , (ii) the associated error map and (iii) the susceptibility uncertainty map. Moreover we proposed to incorporate detailed morphological studies for the evaluation of landslide risk associated to local parceling plan. The integration of all this information is crucial for the management of landslide risk in urban expansions forecasts. Municipality, province and regional administration are often not able to support the costs of landslide risk evaluation for extensive areas but should concentrate their financial resources to specific hazardous and unsafe situations defined by the result of the integration of landslide susceptibility products. Zonation and detail morphological analysis should be performed taking into account the existing laws and regulations, and could become a starting point to discuss new regulations for the landslide risk management.

  16. Genotype-specific interactions and the trade-off between host and parasite fitness

    Directory of Open Access Journals (Sweden)

    Shykoff Jacqui A

    2007-10-01

    Full Text Available Abstract Background Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica, a natural pathogen of the Brassicaceae Arabidopsis thaliana. Results We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb, although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. Conclusion These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions

  17. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage.

    Directory of Open Access Journals (Sweden)

    Parul Mehrotra

    2014-07-01

    Full Text Available The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case. Subsequent analysis identified the core subset of host reactions that were targeted. It also elucidated that the goal of regulation was to integrate pathways facilitating macrophage survival, with those promoting mycobacterial sustenance. Intriguingly, this synthesis then provided an axis where both host- and pathogen-derived factors converged to define determinants of pathogenicity. Consequently, whereas the requirement for macrophage survival sensitized TB susceptibility to the glycemic status of the individual, mediation by pathogen ensured that the virulence properties of the infecting strain also contributed towards the resulting pathology.

  18. A parasitic selfish gene that affects host promiscuity.

    Science.gov (United States)

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  19. Essential Role of Invasin for Colonization and Persistence of Yersinia enterocolitica in Its Natural Reservoir Host, the Pig

    Science.gov (United States)

    Schaake, Julia; Drees, Anna; Grüning, Petra; Uliczka, Frank; Pisano, Fabio; Thiermann, Tanja; von Altrock, Alexandra; Seehusen, Frauke

    2014-01-01

    In this study, an oral minipig infection model was established to investigate the pathogenicity of Yersinia enterocolitica bioserotype 4/O:3. O:3 strains are highly prevalent in pigs, which are usually symptomless carriers, and they represent the most common cause of human yersiniosis. To assess the pathogenic potential of the O:3 serotype, we compared the colonization properties of Y. enterocolitica O:3 with O:8, a highly mouse-virulent Y. enterocolitica serotype, in minipigs and mice. We found that O:3 is a significantly better colonizer of swine than is O:8. Coinfection studies with O:3 mutant strains demonstrated that small variations within the O:3 genome leading to higher amounts of the primary adhesion factor invasin (InvA) improved colonization and/or survival of this serotype in swine but had only a minor effect on the colonization of mice. We further demonstrated that a deletion of the invA gene abolished long-term colonization in the pigs. Our results indicate a primary role for invasin in naturally occurring Y. enterocolitica O:3 infections in pigs and reveal a higher adaptation of O:3 than O:8 strains to their natural pig reservoir host. PMID:24343656

  20. ASSESSING THE ROLE OF CASPASE ACTIVITY AND METACASPASE EXPRESSION ON VIRAL SUSCEPTIBILITY OF THE COCCOLITHOPHORE, EMILIANIA HUXLEYI (HAPTOPHYTA).

    Science.gov (United States)

    Bidle, Kay D; Kwityn, Clifford J

    2012-10-01

    As part of their strategy to infect the globally important coccolithophore, Emiliania huxleyi (Lohmann) W.W. Hay & H.P. Mohler, Coccolithoviruses trigger and regulate the host's programmed cell death (PCD) machinery during lytic infection. The induction and recruitment of host metacaspases, specialized, ancestral death proteases that facilitate viral lysis, suggests they may be important subcellular determinants to infection. We examined the "basal" levels and patterns of caspase activity and metacaspase expression in exponentially growing resistant and sensitive E. huxleyi strains and linked them with susceptibility to E. huxleyi virus 1 (EhV1). Resistant E. huxleyi strains were consistently characterized by low caspase specific activity and a relatively simple metacaspase expression profile. In contrast, sensitive E. huxleyi strains had markedly elevated caspase specific activity and consistently expressed more diverse metacaspase proteins. Using pooled data sets from triplicate experiments, we observed statistically significant linear correlations between infectivity, caspase activity, and metacaspase expression, with each strain forming distinct clusters, within a gradient in viral susceptibility. At the same time, we observed positive correlations between the expression of a subset of metacaspase proteins and lower susceptibility, suggestive of potential protective roles. Our findings implicate the importance of subtle differences in the basal physiological regulation of the PCD machinery to viral resistance or sensitivity and cell fate. © 2012 Phycological Society of America.

  1. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    Science.gov (United States)

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  2. Infections by Pasteuria do not protect its natural host Daphnia magna from subsequent infections.

    Science.gov (United States)

    Duneau, David; Ebert, Dieter; Du Pasquier, Louis

    2016-04-01

    The existence of immunological memory in invertebrates remains a contentious topic. Exposure of Daphnia magna crustaceans to a noninfectious dose of the bacterium Pasteuria ramosa has been reported to reduce the chance of future infection upon exposure to higher doses. Using clonal hosts and parasites, we tested whether initial exposure of the host to the parasite (priming), followed by clearing of the parasite with antibiotic, protects the host from a second exposure (challenge). Our experiments included three treatments: priming and challenge with the same or with a different parasite clone, or no priming. Two independent experiments showed that both the likelihood of infection and the degree of parasite proliferation did not differ between treatments, supporting the conclusion that there is no immunological memory in this system. We discuss the possibility that previous discordant reports could result from immune or stress responses that did not fade following initial priming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Efficacy of some natural hosts on the development of chrysoperla carnea (stephens) (neuroptera: chrysopidae) - a laboratory investigation

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Tofique, M.; Salam, A.

    2011-01-01

    Biology and feeding potential of the predator, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) were studied on different hosts with particular reference to cotton crop. Various hosts viz., aphids (nymphs/ adults) and the eggs of cotton bollworms were used for the rearing of C. carnea and compared with the factitious host, Angoumois grain moth (Sitotroga cerealella) eggs on which the culture of the predator is maintained for the last many generations at the laboratory. The studies indicated that larval and pupal durations of the predator were significantly affected by the change of the hosts and the total developmental period was significantly shorter when the predator was offered with aphids for feeding. The fecundity, fertility, pupation, hatch ability and longevity of the predator were also higher on aphids followed by pink bollworm, spotted bollworm, Angoumois grain moth and American bollworm eggs. However, the sex ratio was not affected due to change in the type of hosts. An identical trend in all the observed parameters was recorded in parental and first filial generations on all the tested hosts. Based on the studies, aphids appeared to be the most promising host for mass rearing of the predator. Further, successful predation on the cotton bollworm eggs manifested the potential of C. carnea for the management of cotton bollworms in the field. (author)

  4. Alteration of a second putative fusion peptide of structural glycoprotein E2 of Classical Swine Fever Virus alters virus replication and virulence in swine

    Science.gov (United States)

    E2, the major envelope glycoprotein of Classical Swine Fever Virus (CSFV), is involved in several critical virus functions including cell attachment, host range susceptibility, and virulence in natural hosts. Functional structural analysis of E2 based on Wimley-White interfacial hydrophobicity dis...

  5. Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment.

    Science.gov (United States)

    Doeschl-Wilson, Andrea B; Davidson, R; Conington, J; Roughsedge, T; Hutchings, M R; Villanueva, B

    2011-07-01

    Previous studies have shown that host genetic heterogeneity in the response to infectious challenge can affect the emergence risk and the severity of diseases transmitted through direct contact between individuals. However, there is substantial uncertainty about the degree and direction of influence owing to different definitions of genetic variation, most of which are not in line with the current understanding of the genetic architecture of disease traits. Also, the relevance of previous results for diseases transmitted through environmental sources is unclear. In this article a compartmental genetic-epidemiological model was developed to quantify the impact of host genetic diversity on epidemiological characteristics of diseases transmitted through a contaminated environment. The model was parameterized for footrot in sheep. Genetic variation was defined through continuous distributions with varying shape and degree of dispersion for different disease traits. The model predicts a strong impact of genetic heterogeneity on the disease risk and its progression and severity, as well as on observable host phenotypes, when dispersion in key epidemiological parameters is high. The impact of host variation depends on the disease trait for which variation occurs and on environmental conditions affecting pathogen survival. In particular, compared to homogeneous populations with the same average susceptibility, disease risk and severity are substantially higher in populations containing a large proportion of highly susceptible individuals, and the differences are strongest when environmental contamination is low. The implications of our results for the recording and analysis of disease data and for predicting response to selection are discussed.

  6. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A

    2016-05-15

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Low susceptibility of invasive red lionfish (Pterois volitans to a generalist ectoparasite in both its introduced and native ranges.

    Directory of Open Access Journals (Sweden)

    Paul C Sikkel

    Full Text Available Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.

  8. Assessing the antibiotic susceptibility of freshwater cyanobacteria spp.

    Directory of Open Access Journals (Sweden)

    Elsa eDias

    2015-08-01

    Full Text Available Freshwater is a vehicle for the emergence and dissemination of antibiotic resistance. Cyanobacteria are ubiquitous in freshwater, where they are exposed to antibiotics and resistant organisms, but their role on water resistome was never evaluated. Data concerning the effects of antibiotics on cyanobacteria, obtained by distinct methodologies, is often contradictory. This emphasizes the importance of developing procedures to understand the trends of antibiotic susceptibility in cyanobacteria. In this study we aimed to evaluate the susceptibility of four cyanobacterial isolates from different genera (Microcystis aeruginosa, Aphanizomenon gracile, Chrisosporum bergii, Planktothix agradhii, and among them nine isolates from the same specie (M. aeruginosa to distinct antibiotics (amoxicillin, ceftazidime, ceftriaxone, kanamycine, gentamicine, tetracycline, trimethoprim, nalidixic acid, norfloxacin. We used a method adapted from the bacteria standard broth microdilution. Cyanobacteria were exposed to serial dilution of each antibiotic (0.0015-1.6 mg/L in Z8 medium (20 ± 1 ºC; 14/10 h L/D cycle; light intensity 16 ± 4 µEm-2 s-1. Cell growth was followed overtime (OD450nm/microscopic examination and the minimum inhibitory concentrations (MICs were calculated for each antibiotic/isolate. We found that -lactams exhibited the lower MICs, aminoglycosides, tetracycline and norfloxacine presented intermediate MICs; none of the isolates were susceptible to trimethoprim and nalidixic acid. The reduced susceptibility of all tested cyanobacteria to some antibiotics suggests that they might be naturally non-susceptible to these compounds, or that that they might became non-susceptible due to antibiotic contamination pressure, or to the transfer of genes from resistant bacteria present in the environment.

  9. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication.

    Science.gov (United States)

    Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G

    2017-12-19

    Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.

  10. Mannose-binding lectin gene, MBL2, polymorphisms are not associated with susceptibility to invasive pneumococcal disease in children

    DEFF Research Database (Denmark)

    Lundbo, Lene Fogt; Harboe, Zitta Barrella; Clausen, Louise Nygaard

    2014-01-01

    BACKGROUND: Most children are transiently colonized with Streptococcus pneumoniae, but very few develop invasive pneumococcal disease (IPD). Host genetic variation of innate immunity may predispose to IPD. We investigated the effect of genetic variation in the mannose-binding lectin gene, MBL2......, on susceptibility and disease severity of IPD in previously healthy children aged

  11. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  12. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host

  13. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species

    Energy Technology Data Exchange (ETDEWEB)

    Haque, M. M.; Diez, J. J.

    2012-11-01

    Phytophthora alni is a highly destructive host specific pathogen to alders (Alnus spp.) spreading all over Europe. Recently this pathogen has been reported to cause diseases in common alder (Alnus glutinosa) in Spain. Seeds and seedlings of A. glutinosa were tested in vitro for their susceptibility to alder Phytophthora and other Phytophthora species. Isolates of P. alni ssp. alni, P. cinnamomi, P. citrophthora, P. nicotianae and P. palmivora were used in the experiments. Seeds and seedlings were inoculated with a zoospore suspension and uniform mycelial blocks of agar of the Phytophthora species. Susceptibility was calculated in terms of pathogen virulence on seed germination and seedling mortality 42 and 67 days after inoculation respectively. Seed germination and seedling mortality rates varied differently among the isolates used. Results implied that common alder and its seeds and seedlings are at risk to be infected by P. alni. In addition, other Phytophthora species are able to infect this kind of material showing their relative host non-specificity. This is one important finding concerning alder regeneration in infected areas, and the possibility of disease spread on this plant material. (Author) 42 refs.

  14. Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.).

    Science.gov (United States)

    Barriga, Paola A; Sternberg, Eleanore D; Lefèvre, Thierry; de Roode, Jacobus C; Altizer, Sonia

    2016-10-01

    Throughout their global range, wild monarch butterflies (Danaus plexippus) are infected with the protozoan Ophryocystis elektroscirrha (OE). In monarchs, OE infection reduces pupal eclosion, adult lifespan, adult body size and flight ability. Infection of other butterfly hosts with OE is rare or unknown, and the only previously published records of OE infection were on monarch and queen butterflies (D. gilippus). Here we explored the occurrence and specificity of OE and OE-like parasites in four Danaus butterfly species. We surveyed wild D. eresimus (soldier), D. gilippus (queen), D. petilia (lesser wanderer), and D. plexippus (monarch) from five countries to determine the presence of infection. We conducted five cross-infection experiments, on monarchs and queen butterflies and their OE and OE-like parasites, to determine infection probability and the impact of infection on their hosts. Our field survey showed that OE-like parasites were present in D. gilippus, D. petilia, and D. plexippus, but were absent in D. eresimus. Infection probability varied geographically such that D. gilippus and D. plexippus populations in Puerto Rico and Trinidad were not infected or had low prevalence of infection, whereas D. plexippus from S. Florida and Australia had high prevalence. Cross-infection experiments showed evidence for host specificity, in that OE strains from monarchs were more effective at infecting monarchs than queens, and monarchs were less likely to be infected by OE-like strains from queens and lesser wanderers relative to their own natal strains. Our study showed that queens are less susceptible to OE and OE-like infection than monarchs, and that the reduction in adult lifespan following infection is more severe in monarchs than in queens. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    Science.gov (United States)

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  16. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

    Science.gov (United States)

    Zhao, Shanshan; Hong, Wei; Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong; Li, Yi

    2017-10-10

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1 , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1- knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

  17. COMPARISON OF IN VITRO-CULTURED AND WILD-TYPE PERKINSUS MARINUS. II: DOSING METHODS AND HOST RESPONSE

    Science.gov (United States)

    Endoparasites must breach host barriers to establish infection and then must survive host internal defenses to cause disease. Such barriers may frustrate attempts to experimentally transmit parasites by ?natural' methods. In addition, the host's condition may affect a study's out...

  18. Host cells and methods for producing diacid compounds

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.; Keasling, Jay D.

    2018-04-24

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  19. [Parahaemoproteus desseri n. sp.; gametogony and schizogony in the natural host: Psittacula roseata from Thailand, experimental sporogony in Culicoides nubeculosus (author's transl)].

    Science.gov (United States)

    Miltgen, F; Landau, I; Ratanaworabhan, N; Yenbutra, S

    1981-01-01

    The gametogony and the tissue schizogony of Parahaemoproteus desseri are described in the natural host: Psittacula roseata; the schizonts develop in muscle fibres; they are large (up to 900 micrometer) and often sausage shaped with pseudo-septa. Experimental sporogony was studied in laboratory bred Culicoides nubeculosus (Ceratopogonidae). Oocysts are small and give rise to a small number of sporozoites. The morphological characteristics of the schizonts of our Parahaemoproteus are very similar to those of schizonts of Arthrocystis galli and therefore it is possible that the two genera are synonymous.

  20. The nitrate reductase activity of some root and stem parasites and their hosts

    International Nuclear Information System (INIS)

    Hunter, J.J.

    1984-12-01

    This investigation surveyed the nitrate reductase activity (NRA) of some South African root and stem parasites, as well as their hosts. Fourteen species - five stem and nine root parasites, representative of seven families - and eleven different hosts from eight families, were studied. Two methods were applied in the determination of the NRA of parasite and host, namely the in vivo and in vitro methods. Because of the limited literature on the NRA of parasitic flowering plants both the in vivo and in vitro methods were developed for the host species and subsequently applied to that specific species of parasite as well. Parasites and hosts were also investigated in their natural habitat. The NRA of the roots could, however, only be increased providing phorsynthetic products as a source of NADH, were available. By using [U- 14 C]-Sucrose it was confirmed that the parasite could have fulfilled this need. Generally, the investigation showed that the parasites that were studied, have not altogether lost their ability to reduce nitrate. However, it would appear that the host is used as a source of reduced nitrogen, rather than nitrate, under natural conditions

  1. Flexible host choice and common host switches in the evolution of generalist and specialist cuckoo bees (Anthophila: Sphecodes.

    Directory of Open Access Journals (Sweden)

    Jana Habermannová

    Full Text Available Specialization makes resource use more efficient and should therefore be a common process in animal evolution. However, this process is not as universal in nature as one might expect. Our study shows that Sphecodes (Halictidae cuckoo bees frequently change their host over the course of their evolution. To test the evolutionary scenario of host specialization in cuckoo bees, we constructed well-supported phylogenetic trees based on partial sequences of five genes for subtribe Sphecodina (Halictini. We detected up to 17 host switches during Sphecodes evolution based on 37 ingroup species subject to mapping analysis of the hosts associated with the cuckoo bee species. We also examine the direction of evolution of host specialization in Sphecodes using the likelihood ratio test and obtain results to support the bidirectional evolutionary scenario in which specialists can arise from generalists, and vice versa. We explain the existence of generalist species in Sphecodes based on their specialization at the individual level, which is recently known in two species. Our findings suggest flexible host choice and frequent host switches in the evolution of Sphecodes cuckoo bees. This scenario leads us to propose an individual choice constancy hypothesis based on the individual specialization strategy in cuckoo bees. Choice constancy has a close relationship to flower constancy in bees and might be an extension of the latter. Our analysis also shows relationships among the genera Microsphecodes, Eupetersia, Sphecodes and Austrosphecodes, a formerly proposed Sphecodes subgenus. Austrosphecodes species form a basal lineage of the subtribe, and Microsphecodes makes it paraphyletic.

  2. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    Science.gov (United States)

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  3. Control strategies for a stochastic model of host-parasite interaction in a seasonal environment.

    Science.gov (United States)

    Gómez-Corral, A; López García, M

    2014-08-07

    We examine a nonlinear stochastic model for the parasite load of a single host over a predetermined time interval. We use nonhomogeneous Poisson processes to model the acquisition of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality, and the reproduction and death of parasites within the host. Algebraic results are first obtained on the age-dependent distribution of the number of parasites infesting the host at an arbitrary time t. The interest is in control strategies based on isolation of the host and the use of an anthelmintic at a certain intervention instant t0. This means that the host is free living in a seasonal environment, and it is transferred to a uninfected area at age t0. In the uninfected area, the host does not acquire new parasites, undergoes a treatment to decrease the parasite load, and its natural and parasite-induced mortality are altered. For a suitable selection of t0, we present two control criteria that appropriately balance effectiveness and cost of intervention. Our approach is based on simple probabilistic principles, and it allows us to examine seasonal fluctuations of gastrointestinal nematode burden in growing lambs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Bárbara M. Schultz

    2018-05-01

    Full Text Available Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS and interleukin (IL-10−/− mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10−/− mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2. Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10−/− mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.

  5. Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics

    International Nuclear Information System (INIS)

    Xu Shu-Sheng; Shi Yuan-Mei; Yang You-Chang; Cui Zhu-Fang; Zong Hong-Shi

    2015-01-01

    It is commonly accepted that the system undergoes a crossover at high temperature and low chemical potential beyond the chiral limit case, and the properties of the crossover region are important for researchers to understand the nature of strong interacting matters of quantum chromodynamics (QCD). Since at present there is no exact order of parameters of the phase transitions beyond the chiral limit, QCD susceptibilities are widely used as indicators. In this work various susceptibilities are discussed in the framework of Dyson–Schwinger equations. The results show that different kinds of susceptibilities give the same critical end point, which is the bifurcation point of the crossover region and the first order phase transition line of QCD. Nevertheless, different pseudocritical points are found in the temperature axis. We think that defining a critical band is more suitable in the crossover region. (paper)

  6. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    Science.gov (United States)

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  7. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  8. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Science.gov (United States)

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murin...

  9. Intraspecific competition: the role of lags between attack and death in host-parasitoid interactions.

    Science.gov (United States)

    Cameron, T C; Metcalfe, D; Beckerman, A P; Sait, S M

    2007-05-01

    Many natural enemies do not immediately kill their host, and the lag this creates between attack and host death results in mixed populations of uninfected and infected hosts. Both competition and parasitism are known to be major structuring forces in ecological communities; however, surprisingly little is known about how the competitive nature of infected hosts could affect the survival and dynamics of remaining uninfected host populations. Using a laboratory system comprising the Indian meal moth, Plodia interpunctella, and a solitary koinobiont parasitoid, Venturia canescens, we address this question by conducting replicated competition experiments between the unparasitized and parasitized classes of host larvae. For varying proportions of parasitized host larvae and competitor densities, we consider the effects of competition within (intraclass) and between (interclass) unparasitized and parasitized larvae on the survival, development time, and size of adult moths and parasitoid wasps. The greatest effects were on survival: increased competitor densities reduced survival of both parasitized and unparasitized larvae. However, unparasitized larvae survival, but not parasitized larvae survival, was reduced by increasing interclass competition. To our knowledge, this is the first experimental demonstration of the competitive superiority of parasitized over unparasitized hosts for limiting resources. We discuss possible mechanisms for this phenomenon, why it may have evolved, and its possible influence on the stability of host-parasite dynamics.

  10. Yersinia pestis intracellular parasitism of macrophages from hosts exhibiting high and low severity of plague.

    Directory of Open Access Journals (Sweden)

    Duraisamy Ponnusamy

    Full Text Available BACKGROUND: Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV, and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not. CONCLUSION/SIGNIFICANCE: Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.

  11. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments

    Directory of Open Access Journals (Sweden)

    Johannes Holert

    2018-01-01

    Full Text Available Steroids are abundant growth substrates for bacteria in natural, engineered, and host-associated environments. This study analyzed the distribution of the aerobic 9,10-seco steroid degradation pathway in 346 publically available metagenomes from diverse environments. Our results show that steroid-degrading bacteria are globally distributed and prevalent in particular environments, such as wastewater treatment plants, soil, plant rhizospheres, and the marine environment, including marine sponges. Genomic signature-based sequence binning recovered 45 metagenome-assembled genomes containing a majority of 9,10-seco pathway genes. Only Actinobacteria and Proteobacteria were identified as steroid degraders, but we identified several alpha- and gammaproteobacterial lineages not previously known to degrade steroids. Actino- and proteobacterial steroid degraders coexisted in wastewater, while soil and rhizosphere samples contained mostly actinobacterial ones. Actinobacterial steroid degraders were found in deep ocean samples, while mostly alpha- and gammaproteobacterial ones were found in other marine samples, including sponges. Isolation of steroid-degrading bacteria from sponges confirmed their presence. Phylogenetic analysis of key steroid degradation proteins suggested their biochemical novelty in genomes from sponges and other environments. This study shows that the ecological significance as well as taxonomic and biochemical diversity of bacterial steroid degradation has so far been largely underestimated, especially in the marine environment.

  12. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2014-06-01

    Full Text Available Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite and aluminum (gibbsite oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas.

  13. Leaching studies of natural and synthetic titanite, a potential host for wastes from the reprocessing of Canadian nuclear fuel

    International Nuclear Information System (INIS)

    Hayward, P.J.; Doern, F.E.; Cecchetto, E.V.; Mitchell, S.L.

    1983-01-01

    Glass ceramics (i.e., glasses subjected to controlled crystallization) with synthetic titanite as the major crystalline phase are being considered as potential hosts for the radioactive wastes arising from possible future reprocessing of nuclear fuel in Canada. In order to assess the stability of titanite in the anticipated environment of a disposal vault sited 500-1000 m deep within a granitic pluton in the Canadian Shield, leaching experiments have been performed with natural and synthetic titanite, using a synthetic groundwater whose composition is based on findings from a recent borehole-survey. The results are in qualitative agreement with calculations of solution equilibria for titanite and its main alteration products, and indicate that titanite should be stable and suffer no net leaching under anticipated conditions in the vault

  14. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination

    International Nuclear Information System (INIS)

    Delrive, C.

    1993-01-01

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10 -5 SI units and can generate magnetic susceptibility maps with 4 x 4 mm 2 pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends

  15. Is Host-Based Anomaly Detection + Temporal Correlation = Worm Causality

    National Research Council Canada - National Science Library

    Sekar, Vyas; Xie, Yinglian; Reiter, Michael K; Zhang, Hui

    2007-01-01

    Epidemic-spreading attacks (e.g., worm and botnet propagation) have a natural notion of attack causality - a single network flow causes a victim host to get infected and subsequently spread the attack...

  16. Host genetics of Epstein-Barr virus infection, latency and disease.

    Science.gov (United States)

    Houldcroft, Charlotte J; Kellam, Paul

    2015-03-01

    Epstein-Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host-EBV interaction. © 2014 The Authors Reviews in Medical Virology published by John Wiley & Sons Ltd.

  17. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles.

    Science.gov (United States)

    Reddy, G V P; Holopainen, J K; Guerrero, A

    2002-01-01

    cabbage, may be used by these natural enemies to locate their diamondback moth host.

  18. Polyphyletic Nature of Salmonella enterica Serotype Derby and Lineage-Specific Host-Association Revealed by Genome-Wide Analysis

    Science.gov (United States)

    Sévellec, Yann; Vignaud, Marie-Léone; Granier, Sophie A.; Lailler, Renaud; Feurer, Carole; Le Hello, Simon; Mistou, Michel-Yves; Cadel-Six, Sabrina

    2018-01-01

    In France, Salmonella Derby is one of the most prevalent serotypes in pork and poultry meat. Since 2006, it has ranked among the 10 most frequent Salmonella serotypes isolated in humans. In previous publications, Salmonella Derby isolates have been characterized by pulsed field gel electrophoresis (PFGE) and antimicrobial resistance (AMR) profiles revealing the existence of different pulsotypes and AMR phenotypic groups. However, these results suffer from the low discriminatory power of these typing methods. In the present study, we built a collection of 140 strains of S. Derby collected in France from 2014 to 2015 representative of the pork and poultry food sectors. The whole collection was characterized using whole genome sequencing (WGS), providing a significant contribution to the knowledge of this underrepresented serotype, with few genomes available in public databases. The genetic diversity of the S. Derby strains was analyzed by single-nucleotide polymorphism (SNP). We also investigated AMR by both genome and phenotype, the main Salmonella pathogenicity island (SPI) and the fimH gene sequences. Our results show that this S. Derby collection is spread across four different lineages genetically distant by an average of 15k SNPs. These lineages correspond to four multilocus sequence typing (MLST) types (ST39, ST40, ST71, and ST682), which were found to be associated with specific animal hosts: pork and poultry. While the ST71 and ST682 strains are pansusceptible, ST40 isolates are characterized by the multidrug resistant profile STR-SSS-TET. Considering virulence determinants, only ST39 and ST40 present the SPI-23, which has previously been associated with pork enterocyte invasion. Furthermore, the pork ST682 isolates were found to carry mutations in the fimH sequence that could participate in the host tropism of this group. Our phylogenetic analysis demonstrates the polyphyletic nature of the Salmonella serotype Derby and provides an opportunity to identify

  19. Polyphyletic Nature of Salmonella enterica Serotype Derby and Lineage-Specific Host-Association Revealed by Genome-Wide Analysis

    Directory of Open Access Journals (Sweden)

    Yann Sévellec

    2018-05-01

    Full Text Available In France, Salmonella Derby is one of the most prevalent serotypes in pork and poultry meat. Since 2006, it has ranked among the 10 most frequent Salmonella serotypes isolated in humans. In previous publications, Salmonella Derby isolates have been characterized by pulsed field gel electrophoresis (PFGE and antimicrobial resistance (AMR profiles revealing the existence of different pulsotypes and AMR phenotypic groups. However, these results suffer from the low discriminatory power of these typing methods. In the present study, we built a collection of 140 strains of S. Derby collected in France from 2014 to 2015 representative of the pork and poultry food sectors. The whole collection was characterized using whole genome sequencing (WGS, providing a significant contribution to the knowledge of this underrepresented serotype, with few genomes available in public databases. The genetic diversity of the S. Derby strains was analyzed by single-nucleotide polymorphism (SNP. We also investigated AMR by both genome and phenotype, the main Salmonella pathogenicity island (SPI and the fimH gene sequences. Our results show that this S. Derby collection is spread across four different lineages genetically distant by an average of 15k SNPs. These lineages correspond to four multilocus sequence typing (MLST types (ST39, ST40, ST71, and ST682, which were found to be associated with specific animal hosts: pork and poultry. While the ST71 and ST682 strains are pansusceptible, ST40 isolates are characterized by the multidrug resistant profile STR-SSS-TET. Considering virulence determinants, only ST39 and ST40 present the SPI-23, which has previously been associated with pork enterocyte invasion. Furthermore, the pork ST682 isolates were found to carry mutations in the fimH sequence that could participate in the host tropism of this group. Our phylogenetic analysis demonstrates the polyphyletic nature of the Salmonella serotype Derby and provides an opportunity

  20. Susceptibility of Aeromonas Hydophila Isolates to Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Igor Stojanov

    2010-05-01

    Full Text Available Aeromonas hydrophila is a microorganism widely distributed in nature: in water, soil, food. It is also part of the normal bacterial flora of many animals. As an opportune microorganism it is a secondary biological agent that contributes to the occurrence of a fish disease and its deterioration. Frequently, its presence is an indication of bad zoohygiene and zootechnical conditions in fish ponds. Reduced quality and quantity of feed, mechanical injuries, parasitosis, seasonal oscillation in temperature present some of the factors that produce favorable conditions for bacterial proliferation of aeromonas in fish ponds, so clinical symptoms of the disease occur. Aeromonas is almost always present in clinical isolates and may be unjustly accused for bad health of fish. Antibiotic therapy is applied even when the clinical findings are clear, what certainly effects the susceptibility to chemotherapeutics. The subject of our work was bacteriological examination of the material obtained from the carps with the observed skin changes and the carps without these changes. Also, antimicrobial susceptibility of Aeromonas hydrophila was tested. The aim of this research was to determined the presence of Aeromonas hydrophilia in the carp ponds and to test antibiotic susceptibility. The material consisted of the samples from the fish ponds where the carps were with and without changed skin. The method the isolation of Aeromonas hydrophila was used. The diffusion disk technique was used for testing antibiotic susceptibility. The isolates were tested for their susceptibility to Florephenikol, Flumequine, Olaqindox and Oxitetracycline. The obtained results point that antimicrobial susceptibility was the same regardless of the origin of the samples, i.e. the resistance was the same for both groups of samples (the strains isolated from the fish with skin changes and the strains from fish without changes on skin. The strains were highly resistant: 35% were resistant to

  1. Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species.

    Science.gov (United States)

    Duar, Rebbeca M; Frese, Steven A; Lin, Xiaoxi B; Fernando, Samodha C; Burkey, Thomas E; Tasseva, Guergana; Peterson, Daniel A; Blom, Jochen; Wenzel, Cory Q; Szymanski, Christine M; Walter, Jens

    2017-06-15

    The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs. IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We

  2. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici . Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici . VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1 , also enhanced susceptibility to P. capsici in N. edwardsonii , as well as in the susceptible plants N. benthamiana and N. clevelandii . The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  3. Diabetes susceptibility of BALB/cBOM mice treated with streptozotocin. Inhibition by lethal irradiation and restoration by splenic lymphocytes

    International Nuclear Information System (INIS)

    Paik, S.G.; Blue, M.L.; Fleischer, N.; Shin, S.

    1982-01-01

    In genetically susceptible strains of mice, repeated injections of a subdiabetogenic dose of streptozotocin induces the development of progressive insulin-dependent hyperglycemia. We showed previously that host T-cell functions play an obligatory etiologic role in this experimental disease by demonstrating that the athymic nude mouse is resistant to diabetes induction unless its T-cell functions are reconstituted by thymus graft. Here we show that lethal irradiation of euthymic (+/nu) mice of BALB/cBOM background causes selective resistance of the mice to the diabetogenic effects of the multiple low doses of streptozotocin without affecting their sensitivity to a high pharmacologic dose of the toxin. We also show that reconstitution of the irradiated mice with splenic lymphocytes causes the restoration of diabetes susceptibility. Lethally irradiated mice thus represent a useful experimental model for analyzing the host functions involved in the development of this disease. These results provide an additional support for the hypothesis that the induction of diabetes in this model system is mediated by an autoimmune amplification mechanism

  4. Elizabethkingia meningoseptica bacteremia in immunocompromised hosts: The first case series from India

    Directory of Open Access Journals (Sweden)

    Abdul Ghafur

    2013-01-01

    Full Text Available Background: Although Elizabethkingia meningoseptica (Chryseobacterium meningosepticum infections in immunocompromised hosts have been recognised, clinical data detailing these infections remain limited, especially from India. Antimicrobial susceptibility data on E. meningoseptica remain very limited, with no established breakpoints by Clinical and Laboratory Standards Institute (CLSI. The organism is usually multidrug resistant to antibiotics usually prescribed for treating Gram-negative bacterial infections, a serious challenge to the patient and the treating clinicians. Materials and Methods: The analysis was done in a tertiary care oncology and stem cell transplant center. Susceptibility testing and identification of E. meningoseptica was done using Vitek auto analyzer. Records of immunocompromised patients with E. meningoseptica bacteremia were analysed from January 2009 to March 2012. Results: A total of 29 E. meningoseptica bacteremia cases were documented between 2009 and 2012. Eleven patients were immunocompromised. Three were post stem cell transplant and one was post cord blood transplant. The mean age of the patients was 48.4 years. Mean Charlson′s comorbidity index was 5.7. Four had solid organ malignancies, five had hematological malignancies, and two had lymphoreticular malignancy. Eight patients had received chemotherapy. Mean Apache II score was 18. Mean Pitts score for bacteremia was 4.7. Two were neutropenic (one post SCT, one MDS post chemo with a mean white blood cell (WBC count of 450/mm 3 . Ten had a line at the time of bacteremia. Mean duration of the line prior to bacteremia was 8 days. Eight had line-related bacteremia. Three had pneumonia with secondary bacteremia. All received combination therapy with two or more antibiotics which included cotrimoxazole, rifampicin, piperacillin-tazobactam, tigecycline, or cefepime-tazobactam. All the isolates showed in vitro resistance to ciprofloxacin. Five patients died, but a

  5. Mixed infections reveal virulence differences between host-specific bee pathogens.

    Science.gov (United States)

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  6. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease

    NARCIS (Netherlands)

    Biemans, Floor; Jong, de Mart C.M.; Bijma, Piter

    2017-01-01

    Background: Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of

  7. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot"

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Chen, Xiaoqing

    2010-01-01

    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes...

  8. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  9. Dissemination of Aleurocanthus woglumi in citrus plants, its natural enemies and new host plants in the state of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Garcia Alvim

    Full Text Available ABSTRACT: Aleurocanthus woglumi is an exotic pest, widely disseminated in Brazil, with a high preference for citrus plants, but with a polyphagous feeding habit. The contribution of the state of Rio de Janeiro in the Brazilian production of citrus fruits is small; however, there are still public policies that encourage citrus production in the state. In 2010, the appearance of this pest in Rio de Janeiro was confirmed in the municipality of Cachoeiras de Macacu. The objectives of this research were to evaluate the dissemination of A. woglumi in this state, conduct a survey of new species of host plants, identify and evaluate the population of natural enemies present at two orchards that grow 'Tahiti' limes ( Citrus latifolia infested by the pest in Cachoeiras de Macacu, RJ, Brazil. In 19 municipalities, leaves of citrus and other species of plants presenting aleyrodid nymphs were collected, and yellow sticky traps were installed to capture adults for subsequent identification. At the 'Tahiti' lime orchards, the leaf collections were done to confirm the species of Aleyrodidae , and regarding A. woglumi , the natural enemies associated with this pest were collected directly from the infested plants. The results showed that A. woglumi is wide-spread in 12 municipalities. Three new host plants for A. woglumi were identified: Artocarpus heterophyllus ( Moraceae , Pouteria caimito ( Sapotaceae and Struthanthus flexicaulis ( Loranthaceae . In Cachoeiras de Macacu, a new species of parasitoid of A. woglumi nymphs was named: Encarsia pergandiella (Hymenoptera: Aphelinidae , while the insects in the Coccinellidae (Coleoptera family have stood out as predators of this pest.

  10. Macroeconomic susceptibility, inflation, and aggregate supply

    Science.gov (United States)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  11. Use of habitat odour by host-seeking insects.

    Science.gov (United States)

    Webster, Ben; Cardé, Ring T

    2017-05-01

    Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.

  12. Susceptibility of eastern water dragons Intellagama lesueurii lesueurii to Bohle iridovirus.

    Science.gov (United States)

    Maclaine, A; Mashkour, N; Scott, J; Ariel, E

    2018-01-31

    Ranaviruses infect and have been associated with mass mortality events in fish, amphibians and reptiles and are capable of interclass transmission. Eastern water dragons (EWDs), a semi-aquatic squamate, have an overlapping distribution with several species shown to be susceptible to Bohle iridovirus (BIV). However, this species has not been previously investigated, and no known mass mortalities have occurred in wild populations. Here we report the experimental infection of juvenile EWDs with BIV to investigate a water-dwelling lizards' susceptibility to a ranaviral strain present in northern Queensland, Australia. Lizards were exposed via oral inoculation, intramuscular injection, or cohabitation with orally infected lizards. All exposure methods were effective in establishing an infection as demonstrated by skin lesions and pathological changes in the internal organs. Necrosis, haemorrhage and inflammation were observed histologically in the pancreas, liver, spleen, kidney and submucosa of the gastrointestinal tract of BIV-exposed lizards. Variably sized basophilic intracytoplasmic inclusion bodies were observed in the liver of 6/14 BIV-exposed lizards. Virus was isolated from the liver and kidney of all BIV-infected lizards and confirmed with quantitative PCR (qPCR). The outcome of this study demonstrates that juvenile EWDs are susceptible to BIV, thereby adding Australian lizards to the broad host range of ranaviruses. Furthermore, this study provides additional evidence of BIV's ability to infect different classes of ecothermic vertebrates.

  13. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot"

    DEFF Research Database (Denmark)

    Johnatty, Sharon E; Beesley, Jonathan; Chen, Xiaoqing

    2010-01-01

    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes in...

  14. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  15. Comparative study of genetic influence on the susceptibility of exotic ...

    African Journals Online (AJOL)

    This study investigated comparatively the genetic influence on the susceptibility of exotic cockerels, pullets and broilers to natural infection with infectious bursal disease (IBD) virus in a flock of 150 seven-week-old exotic breed of chickens comprising of 50 Black Harco cockerels, 50 Black Harco pullets and 50 White ...

  16. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    Science.gov (United States)

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  17. Cloning of the unculturable parasite Pasteuria ramosa and its Daphnia host reveals extreme genotype-genotype interactions.

    Science.gov (United States)

    Luijckx, Pepijn; Ben-Ami, Frida; Mouton, Laurence; Du Pasquier, Louis; Ebert, Dieter

    2011-02-01

    The degree of specificity in host-parasite interactions has important implications for ecology and evolution. Unfortunately, specificity can be difficult to determine when parasites cannot be cultured. In such cases, studies often use isolates of unknown genetic composition, which may lead to an underestimation of specificity. We obtained the first clones of the unculturable bacterium Pasteuria ramosa, a parasite of Daphnia magna. Clonal genotypes of the parasite exhibited much more specific interactions with host genotypes than previous studies using isolates. Clones of P. ramosa infected fewer D. magna genotypes than isolates and host clones were either fully susceptible or fully resistant to the parasite. Our finding enhances our understanding of the evolution of virulence and coevolutionary dynamics in this system. We recommend caution when using P. ramosa isolates as the presence of multiple genotypes may influence the outcome and interpretation of some experiments. © 2010 Blackwell Publishing Ltd/CNRS.

  18. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Directory of Open Access Journals (Sweden)

    M. E. Gettings

    2005-01-01

    Full Text Available Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same

  19. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Science.gov (United States)

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  20. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Proteolytic activation transforms heparin cofactor II into a host defense molecule.

    Science.gov (United States)

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

    2013-06-15

    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity.

  2. Host heterogeneity influences the impact of a non-native disease invasion on populations of a foundation tree species

    Science.gov (United States)

    Jules, Erik S.; Carroll, Allyson L.; Garcia, Andrea M.; Steenbock, Christopher M.; Kauffman, Matthew J.

    2014-01-01

    Invasive pathogens are becoming increasingly important in forested ecosystems, yet they are often difficult to study because of their rapid transmission. The rate and extent of pathogen spread are thought to be partially controlled by variation in host characteristics, such as when host size and location influence susceptibility. Few host-pathogen systems, however, have been used to test this prediction. We used Port Orford cedar (Chamaecyparis lawsoniana), a foundation tree species in riparian areas of California and Oregon (USA), and the invasive oomycete Phytophthora lateralis to assess pathogen impacts and the role of host characteristics on invasion. Across three streams that had been infected for 13–18 years by P. lateralis, we mapped 2241 trees and determined whether they had been infected using dendrochronology. The infection probability of trees was governed by host size (diameter at breast height [DBH]) and geomorphic position (e.g., active channel, stream bank, floodplain, etc.) similarly across streams. For instance, only 23% of trees <20 cm DBH were infected, while 69% of trees ≥20 cm DBH were infected. Presumably, because spores of P. lateralis are transported downstream in water, they are more likely to encounter well-developed root systems of larger trees. Also because of this water-transport of spores, differences in infection probability were found across the geomorphic positions: 59% of cedar in the active channel and the stream bank (combined) were infected, while 23% of trees found on higher geomorphic types were infected. Overall, 32% of cedar had been infected across the three streams. However, 63% of the total cedar basal area had been killed, because the greatest number of trees, and the largest trees, were found in the most susceptible positions. In the active channel and stream bank, 91% of the basal area was infected, while 46% was infected across higher geomorphic positions. The invasion of Port Orford cedar populations by

  3. Fluorescence-Based Comparative Binding Studies of the Supramolecular Host Properties of PAMAM Dendrimers Using Anilinonaphthalene Sulfonates: Unusual Host-Dependent Fluorescence Titration Behavior

    Directory of Open Access Journals (Sweden)

    Natasa Stojanovic

    2010-04-01

    Full Text Available This work describes the fluorescence enhancement of the anilinonaphthalene sulfonate probes 1,8-ANS, 2,6-ANS, and 2,6-TNS via complexation with PAMAM dendrimer hosts of Generation 4, 5 and 6. The use of this set of three very closely related probes allows for comparative binding studies, with specific pairs of probes differing only in shape (1,8-ANS and 2,6-ANS, or in the presence of a methyl substituent (2,6-TNS vs. 2,6-ANS. The fluorescence of all three probes was significantly enhanced upon binding with PAMAM dendrimers, however in all cases except one, a very unusual spike was consistently observed in the host fluorescence titration plots (fluorescence enhancement vs. host concentration at low dendrimer concentration. This unprecedented fluorescence titration curve shape makes fitting the data to a simple model such as 1:1 or 2:1 host: guest complexation very difficult; thus only qualitative comparisons of the relative binding of the three guests could be made based on host titrations. In the case of G4 and G5 dendrimers, the order of binding strength was qualitatively determined to be 1,8-ANS < 2,6-ANS indicating that the more streamlined 2,6-substituted probes are a better match for the dendrimer cavity shape than the bulkier 1,8-substituted probe. This order of binding strength was also indicated by double fluorometric titration experiments, involving both host and guest titrations. Further double fluorometric titration experiments on 2,6-ANS in G4 dendrimer revealed a host concentration-dependent change in the nature of the host: guest complexation, with multiple guests complexed per host molecule at very low host concentrations, but less than one guest per host at higher concentrations.

  4. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.

    Science.gov (United States)

    Xin, Z-J; Li, X-W; Bian, L; Sun, X-L

    2017-02-01

    Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.

  5. FLOOD SUSCEPTIBILITY ASSESSMENT IN THE NIRAJ BASIN

    Directory of Open Access Journals (Sweden)

    SANDA ROŞCA

    2012-03-01

    Full Text Available Flood susceptibility assessment in the Niraj basin. In the context of global warming and the increasing frequency of extreme weather events, it becomes evident that we have to face natural hazards, such as floods. In the area of Niraj basin this phenomenon is specific both in the spring, because of the snow melting and of the precipitations which come along with the season, and then in the summer because of the torrential precipitations but rarely in autumn and winter. The aim of this paper is to determinate the susceptibility of the zone and obtain a map which will take into consideration the possibility of a flooding. Defining vulnerability can help us understand this type of natural disasters and find the best ways to reduce it. For this purpose we use thematic layers, morphological characteristics (slope and depth fragmentation, hydrological characteristics, geology, pedology (permeability and soil texture, landuse, precipitation data, and human interventions because in this way we have the possibility to use data mining for this purpose. Data mining will allow us to extract new information based on the existing sets of data.The final result will be a thematic map that highlights the areas which are exposed to the flood. Therefore, this map can be used as a support decision for local government or business purposes.

  6. The Bacterial Symbiont Phaeobacter inhibens Shapes the Life History of Its Algal Host Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    Anna R. Bramucci

    2018-05-01

    Full Text Available Marine microbes form host-associated biofilm communities that are shaped by complex interactions between bacteria and their host. The roseobacter Phaeobacter inhibens exploits both symbiotic and pathogenic niches while interacting with its microalgal host Emiliania huxleyi. During co-cultivation over extended periods with E. huxleyi, we show that P. inhibens selectively kills two host cell types, the diploid calcifying strain and the haploid flagellated strain. Meanwhile, various non-calcifying diploid strains are resistant to this pathogen or the pathogen is avirulent to this cell type. This differential pathogenesis has the potential of dramatically altering the composition of E. huxleyi blooms, which are typically dominated by the roseobacter-susceptible calcifying strain. This cell type makes calcite plates, which are an important sink in the marine carbon cycle and forms part of the marine paleobotanic record. P. inhibens kills the haploid cells, which have been proposed as critical to the survival of the algae, as they readily escape both eukaryotic predation and viral infection. Consequently, bacteria such as P. inhibens could influence E. huxleyi's life history by selective pathogenesis, thereby altering the composition of cell types within E. huxleyi populations and its bloom-bust lifestyle.

  7. No difference in in vitro susceptibility to HIV type 1 between high-risk HIV-negative Ethiopian commercial sex workers and low-risk control subjects

    NARCIS (Netherlands)

    Messele, T.; Rinke de Wit, T. F.; Brouwer, M.; Aklilu, M.; Birru, T.; Fontanet, A. L.; Schuitemaker, H.; Hamann, D.

    2001-01-01

    Host factors such as increased beta-chemokine production, HIV-1 coreceptor expression level, and HIV-1 coreceptor polymorphism have been thought to influence susceptibility to HIV-1 infection. To determine the protective role of these factors in Ethiopians who remained HIV-1 uninfected, despite

  8. This could be the start of something big—20 years since the identification of bats as the natural host of Hendra virus

    Directory of Open Access Journals (Sweden)

    Peter Black

    2015-12-01

    Full Text Available Hendra virus was first described in 1994 in Australia, causally associated with a cluster of fatal equine and human cases at a thoroughbred racing stable in the Brisbane suburb of Hendra. This year marks the twentieth anniversary of the identification of pteropid bats (flying-foxes as the natural host of the virus, and it is timely to reflect on a pivotal meeting of an eclectic group of scientists in that process. They included animal and public health experts, environmental scientists, veterinary and horse industry representatives, and wildlife experts. The task was to review and prioritise wildlife surveillance seeking the origin of the previously unknown virus. The group determined that the likely reservoir must occur in disparate locations, and be capable of moving between locations, or exist in continuous, overlapping populations spanning multiple locations. Flying-foxes were considered to be a more probable source of the novel virus than birds. Within weeks, antibodies were detected in several species of flying-fox, and the virus was subsequently isolated. While the identification of the natural host of Hendra virus within 18 months of its description was remarkable in itself, a broader legacy followed. In the subsequent years, a suite of zoonotic viruses including Australian bat lyssavirus, Nipah virus, SARS coronavirus, and Ebola and Marburg viruses have been detected in bats. Bats are now the “go to” taxa for novel viruses. History has repeatedly demonstrated that knowledge begets knowledge. This simple notion of bringing a diverse group of people together in an environment of mutual respect reinforced this principle and proves that the sum is often so much more powerful than the parts.

  9. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP with reverse transcriptase (RT and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  10. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense

    Directory of Open Access Journals (Sweden)

    Shuiqing Hu

    2015-12-01

    Full Text Available Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2−/− mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2−/− mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2−/− mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2−/− mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.

  11. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Mapping Landslides Susceptibility in a Traditional Northern Nigerian City

    Science.gov (United States)

    Oluwafemi, Olawale A.; Yakubu, Tahir A.; Muhammad, Mahmud U.; Shitta, Nyofo; Akinwumiju, Akinola S.

    2018-05-01

    As a result of dearth of relevant information about Landslides Susceptibility in Nigeria, the monitoring and assessment appears intractable. Hence, the study developed a Remote Sensing approach to mapping landslides susceptibility, landuse and landcover analysis in Jos South LGA, Plateau State, Nigeria. Field Observation, SPOT 5 2009 and 2012, ASTER DEM 2009, Geological Map 2006, Topographical Map 1966 were used to map Landslide Susceptibility and Landuse /Lancover Analysis in the study area. Geospatial Analytical Operations employed using ArcGIS 10.3 and Erdas Imagine 2014 include Spatial Modeling, Vectorization, Pre-lineament Extraction, Image Processing among others. Result showed that 72.38 % of the study area is underlain by granitic rocks. The landuse/cover types delineated for the study area include floodplain (29.27 %), farmland (23.96 %), sparsely vegetated land (15.43 %), built up area (13.65 %), vegetated outcrop (8.48 %), light vegetation (5.37 %), thick vegetation (2.39 %), water body (0.58 %), plantation (0.50 %) and mining pond (0.37 %). Landslide Susceptibility Analysis also revealed that 87 % of the study area is relatively at low to very low risk of landslide event. While only 13 % of the study area is at high to very high risk of landslide event. The study revealed that the susceptibility of landslide event is very low in the study area. However, possible landslide event in the hot spots could be pronounced and could destabilize the natural and man-made environmental systems of the study area.

  13. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii.

    Science.gov (United States)

    Lee, Kwang-Zin; Vilcinskas, Andreas

    2017-09-01

    The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010

    OpenAIRE

    Pringle Märit; Landén Annica; Unnerstad Helle; Molander Benedicta; Bengtsson Björn

    2012-01-01

    Abstract Background The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both spe...

  15. First Record of Transversotrema Witenberg, 1944 (Digenea) from the Americas, with Comments on the Taxonomy of Transversotrema patialense (Soparkar, 1924) Crusz and Sathananthan, 1960, and an Updated List of Its Hosts and Geographic Distribution.

    Science.gov (United States)

    Womble, Matthew R; Cox-Gardiner, Stephanie J; Cribb, Thomas H; Bullard, Stephen A

    2015-12-01

    Specimens of Transversotrema patialense (sensu lato) ( Soparkar, 1924 ) Crusz and Sathananthan, 1960 (Digenea: Transversotrematidae) infected the skin (epidermal spaces beneath scales near pectoral fins) of 4 of 126 (prevalence 3%; mean intensity 1.8) zebrafish ( Danio rerio (Hamilton, 1822) [Cypriniformes: Cyprinidae]) purchased in 2009 and cultured by a California (USA) fish supplier. These fish were sold as "laboratory-reared" and "specific pathogen free," purportedly raised in a recirculating aquaculture system that included zebrafish only. We herein describe the morphological features of this transversotrematid using light and scanning electron microscopy, provide a comprehensive list of hosts (snails and fishes) and geographic locality records for specimens reported as T. patialense, which is perhaps a species complex, and provide a brief historical synopsis of the taxonomic and life history research that has been conducted on this fluke. No species of Transversotrema previously had been reported from the Americas; however, this discovery is not surprising given that: (1) a suitable intermediate host (red-rimmed melania, Melanoides tuberculata (Müller, 1774) [Cerithioidea: Thiaridae]) has been established in California and elsewhere in North America, (2) the zebrafish is a susceptible definitive host, and (3) T. patialense reportedly matures on a broad ecological and phylogenetic spectrum of freshwater fishes. To our knowledge, this is the northern-most geographic locality record for a species of this genus. We suspect this case study represents an example of a parasite that may now be established in North America by the fortuitous co-occurrence of a susceptible, exotic snail host (the red-rimmed melania) and a susceptible, widely distributed, exotic fish host (the zebrafish).

  16. DNA vaccine encoding nucleocapsid and surface proteins of wild type canine distemper virus protects its natural host against distemper.

    Science.gov (United States)

    Cherpillod, P; Tipold, A; Griot-Wenk, M; Cardozo, C; Schmid, I; Fatzer, R; Schobesberger, M; Zurbriggen, R; Bruckner, L; Roch, F; Vandevelde, M; Wittek, R; Zurbriggen, A

    2000-07-01

    Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.

  17. Associate host in single-layer co-host polymer electrophosphorescent devices

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Feng Bin; Wang Yongsheng; Xu Xurong

    2006-01-01

    The definition and role of 'host' in polymer LED materials are studied in the present work. 'Primary host' and 'associate host' have been proposed and the rules of how to select an associate host are reported. Based on our experiments and the analysis of the energy scheme of the devices, we suggest that the values of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) are critical determinant in selecting a suitable associate host. On one hand, the associate host should be a hole-blocking material. This can confine the excitons in the active layer. On the other hand, the associate host should have a suitable LUMO that is convenient for electrons to transport

  18. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species.

    NARCIS (Netherlands)

    Silvie, O.; Greco, C.; Franetich, J.F.; Dubart-Kupperschmitt, A.; Hannoun, L.; Gemert, G.J.A. van; Sauerwein, R.W.; Levy, S.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic

  19. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity.

    Science.gov (United States)

    Lee, Seung Ah; Jang, Seong Han; Kim, Byung Hyun; Shibata, Toshio; Yoo, Jinwook; Jung, Yunjin; Kawabata, Shun-Ichiro; Lee, Bok Luel

    2018-04-01

    The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Correcting a Fundamental Flaw in the Paradigm for Antimicrobial Susceptibility Testing

    Directory of Open Access Journals (Sweden)

    Selvi C. Ersoy

    2017-06-01

    Full Text Available The emergence and prevalence of antibiotic-resistant bacteria are an increasing cause of death worldwide, resulting in a global ‘call to action’ to avoid receding into an era lacking effective antibiotics. Despite the urgency, the healthcare industry still relies on a single in vitro bioassay to determine antibiotic efficacy. This assay fails to incorporate environmental factors normally present during host-pathogen interactions in vivo that significantly impact antibiotic efficacy. Here we report that standard antimicrobial susceptibility testing (AST failed to detect antibiotics that are in fact effective in vivo; and frequently identified antibiotics that were instead ineffective as further confirmed in mouse models of infection and sepsis. Notably, AST performed in media mimicking host environments succeeded in identifying specific antibiotics that were effective in bacterial clearance and host survival, even though these same antibiotics failed in results using standard test media. Similarly, our revised media further identified antibiotics that were ineffective in vivo despite passing the AST standard for clinical use. Supplementation of AST medium with sodium bicarbonate, an abundant in vivo molecule that stimulates global changes in bacterial structure and gene expression, was found to be an important factor improving the predictive value of AST in the assignment of appropriate therapy. These findings have the potential to improve the means by which antibiotics are developed, tested, and prescribed.

  1. Shigella flexneri infection in Caenorhabditis elegans: cytopathological examination and identification of host responses.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.

  2. Resident alveolar macrophages are susceptible to and permissive of Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Matthew Calverley

    Full Text Available Coxiella burnetii, the causative agent of Q fever, is a zoonotic disease with potentially life-threatening complications in humans. Inhalation of low doses of Coxiella bacteria can result in infection of the host alveolar macrophage (AM. However, it is not known whether a subset of AMs within the heterogeneous population of macrophages in the infected lung is particularly susceptible to infection. We have found that lower doses of both phase I and phase II Nine Mile C. burnetii multiply and are less readily cleared from the lungs of mice compared to higher infectious doses. We have additionally identified AM resident within the lung prior to and shortly following infection, opposed to newly recruited monocytes entering the lung during infection, as being most susceptible to infection. These resident cells remain infected up to twelve days after the onset of infection, serving as a permissive niche for the maintenance of bacterial infection. A subset of infected resident AMs undergo a distinguishing phenotypic change during the progression of infection exhibiting an increase in surface integrin CD11b expression and continued expression of the surface integrin CD11c. The low rate of phase I and II Nine Mile C. burnetii growth in murine lungs may be a direct result of the limited size of the susceptible resident AM cell population.

  3. Genomic Diversification of Enterococci in Hosts: the role of the mobilome

    OpenAIRE

    Maria eSantagati; Floriana eCampanile; Stefania eStefani

    2012-01-01

    Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: (i) the taxonomy of this complex group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity traits; and (iv) some markers related to the character of host-specificity, but the reasons of such incredible success of adapta...

  4. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  5. AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Gabriel T., E-mail: gtlandi@gmail.com [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Arantes, Fabiana R. [Universidade Federal do ABC, 09210-580 Santo André (Brazil); Cornejo, Daniel R. [Instituto de Física da Universidade de São Paulo, São Paulo 05508-090 (Brazil); Bakuzis, Andris F. [Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia-GO (Brazil); Andreu, Irene; Natividad, Eva [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Zaragoza 50018 (Spain)

    2017-01-01

    The dipolar interaction is known to substantially affect the properties of magnetic nanoparticles. This is particularly important when the particles are kept in a fluid suspension or packed within nano-carriers. In addition to its usual long-range nature, in these cases the dipolar interaction may also induce the formation of clusters of particles, thereby strongly modifying their magnetic anisotropies. In this paper we show how AC susceptibility may be used to obtain information regarding the influence of the dipolar interaction in a sample. We develop a model which includes both aspects of the dipolar interaction and may be fitted directly to the susceptibility data. The usual long-range nature of the interaction is implemented using a mean-field approximation, whereas the particle-particle aggregation is modeled using a distribution of anisotropy constants. The model is then applied to two samples studied at different concentrations. One consists of spherical magnetite nanoparticles dispersed in oil and the other of cubic magnetite nanoparticles embedded on polymeric nanospheres. We also introduce a simple technique to address the presence of the dipolar interaction in a given sample, based on the height of the AC susceptibility peaks for different driving frequencies. - Highlights: We discuss the importance of the dipolar interaction in magnetic nanoparticle samples. It is shown that AC susceptibility may be used to estimate the extent of this interaction. We develop a model that accounts for particle aggregation. The theoretical model is then fitted to distinct magnetite samples.

  6. Perturbation of host-cell membrane is a primary mechanism of HIV cytopathology.

    Science.gov (United States)

    Cloyd, M W; Lynn, W S

    1991-04-01

    Cytopathic viruses injure cells by a number of different mechanisms. The mechanism by which HIV-1 injures T cells was studied by temporally examining host-cell macromolecular syntheses, stages of the cell cycle, and membrane permeability following acute infection. T cells cytopathically infected at an m.o.i. of 1-5 grew normally for 24-72 hr, depending on the cell line, followed by the first manifestation of cell injury, slowing of cell division. At that time significant amounts of unintegrated HIV DNA and p24 core protein became detectable, and acridine orange flow cytometric cell cycle studies demonstrated the presence of fewer cells in the G2/M stage of the cell cycle. There was no change in the frequency of cells in the S-stage, and metabolic pulsing with radioactive precursors demonstrated that host-cell DNA, RNA, and protein syntheses were normal at that time and normal up to the time cells started to die (approximately 24 hr later), when all three decreased. Cellular lipid synthesis, however, was perturbed when cell multiplication slowed, with phospholipid synthesis reduced and neutral lipid synthesis enhanced. Permeability of the host-cell membrane to small molecules, such as Ca2+ and sucrose, was slightly enhanced early postinfection, and by the time of slowing of cell division, host membrane permeability was greatly increased to both Ca2+ and sucrose (Stokes radius 5.2 A) but not to inulin (Stokes radium 20 A). These changes in host-cell membrane permeability and phospholipid synthesis were not observed in acutely infected H9 cells, which are not susceptible to HIV cytopathology. Thus, HIV-1 appeared to predominantly injure T cells by perturbing host-cell membrane permeability and lipid synthesis, which is similar to the cytopathic mechanisms of paramyxoviruses.

  7. Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions

    Science.gov (United States)

    Sprengel, Andreas; Lill, Pascal; Stegemann, Pierre; Bravo-Rodriguez, Kenny; Schöneweiß, Elisa-C.; Merdanovic, Melisa; Gudnason, Daniel; Aznauryan, Mikayel; Gamrad, Lisa; Barcikowski, Stephan; Sanchez-Garcia, Elsa; Birkedal, Victoria; Gatsogiannis, Christos; Ehrmann, Michael; Saccà, Barbara

    2017-02-01

    The self-organizational properties of DNA have been used to realize synthetic hosts for protein encapsulation. However, current strategies of DNA-protein conjugation still limit true emulation of natural host-guest systems, whose formation relies on non-covalent bonds between geometrically matching interfaces. Here we report one of the largest DNA-protein complexes of semisynthetic origin held in place exclusively by spatially defined supramolecular interactions. Our approach is based on the decoration of the inner surface of a DNA origami hollow structure with multiple ligands converging to their corresponding binding sites on the protein surface with programmable symmetry and range-of-action. Our results demonstrate specific host-guest recognition in a 1:1 stoichiometry and selectivity for the guest whose size guarantees sufficient molecular diffusion preserving short intermolecular distances. DNA nanocontainers can be thus rationally designed to trap single guest molecules in their native form, mimicking natural strategies of molecular recognition and anticipating a new method of protein caging.

  8. A Caenorhabditis elegans Host Model Correlates with Invasive Disease Caused by Staphylococcus aureus Recovered during an Outbreak in Neonatal Intensive Care

    Directory of Open Access Journals (Sweden)

    Kaiyu Wu

    2012-01-01

    Full Text Available BACKGROUND: Caenorhabditis elegans has previously been used as a host model to determine the virulence of clinical methicillin-resistant Staphylococcus aureus isolates. In the present study, methicillin-susceptible S aureus (MSSA strains associated with an outbreak in a neonatal intensive care unit (NICU were investigated using the C elegans model.

  9. Introduced pathogens follow the invasion front of a spreading alien host

    Science.gov (United States)

    Ann E. Hajek; Patrick C. Tobin

    2011-01-01

    When an invasive species first colonizes an area, there is an interval before any host-specific natural enemies arrive at the new location. Population densities of newly invading species are low, and the spatial and temporal interactions between spreading invasive species and specific natural enemies that follow are poorly understood. We measured infection rates of two...

  10. The VNTR Polymorphism of the DC-SIGNR Gene and Susceptibility to HIV-1 Infection: A Meta-Analysis

    OpenAIRE

    Li, Hui; Yu, Xiao-Min; Wang, Jia-Xin; Hong, Ze-Hui; Tang, Nelson Leung-Sang

    2012-01-01

    BACKGROUND: Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin related (DC-SIGNR) can bind to the human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein and is thus important for the host-pathogen interaction in HIV-1 infection. Studies of the association between the variable number tandem repeat (VNTR) polymorphism of the DC-SIGNR gene and HIV-1 susceptibility have produced controversial results. METHODS AND FINDINGS: We conducted a meta-analysis of th...

  11. Comparison of antimicrobial susceptibilities of Corynebacterium species by broth microdilution and disk diffusion methods.

    Science.gov (United States)

    Weiss, K; Laverdière, M; Rivest, R

    1996-01-01

    Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity. PMID:8849254

  12. Studies on the Identification of Constituents in Ethanol Extract of Radix Glycyrrhizae and Their Anti-Primary Hepatoma Cell Susceptibility

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The objective of this paper is to study the chemical constituents of Radix Glycyrrhizae and to apply the resulting natural products in the study of drug susceptibility of hepatoma cells so as to provide a scientific basis for quality standards and clinical application of medicinal Radix Glycyrrhizae. Chromatographic materials were used for isolation and purification; structural identification was performed based on physicochemical properties and spectral data. MTT colorimetry was used to detect the proliferation inhibition rate against primary hepatoma cells by natural products, and flow cytometry was used to detect the changes in cell cycle progression. Five compounds were isolated and identified, namely, liquiritigenin (1, liquiritin (2, isoliquiritigenin (3, betulinic acid (4, and oleanolic acid (5. In the study, 5-FU (5-fluorouracil is used as a positive control to the hepatoma cells. Primary hepatoma cells were highly susceptible to 5-FU and liquiritigenin, both of which markedly inhibited the proliferation of hepatoma cells; flow cytometry results showed an increase in G0/G1 phase cells, a decrease in S phase cells, and a relative increase in G2/M phase cells. Primary hepatoma cells are highly susceptible to liquiritigenin, a natural product; the testing of tumor cell susceptibility is of important significance to the improvement of therapeutic effect of cancer.

  13. Study of GRBs Hosts Galaxies Vicinity Properties

    Science.gov (United States)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  14. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts.

    Science.gov (United States)

    Petit, Elsa; Silver, Casey; Cornille, Amandine; Gladieux, Pierre; Rosenthal, Lisa; Bruns, Emily; Yee, Sarah; Antonovics, Janis; Giraud, Tatiana; Hood, Michael E

    2017-04-01

    Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen interactions, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. In contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes suffered significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages. © 2017 John Wiley & Sons Ltd.

  15. Sex-specific effects of a parasite evolving in a female-biased host population.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  16. Sex-specific effects of a parasite evolving in a female-biased host population

    Directory of Open Access Journals (Sweden)

    Duneau David

    2012-12-01

    Full Text Available Abstract Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration, which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  17. Sex-specific effects of a parasite evolving in a female-biased host population

    Science.gov (United States)

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  18. The calcitonin receptor gene is a candidate for regulation of susceptibility to herpes simplex type 1 neuronal infection leading to encephalitis in rat.

    Directory of Open Access Journals (Sweden)

    Nada Abdelmagid

    Full Text Available Herpes simplex encephalitis (HSE is a fatal infection of the central nervous system (CNS predominantly caused by Herpes simplex virus type 1. Factors regulating the susceptibility to HSE are still largely unknown. To identify host gene(s regulating HSE susceptibility we performed a genome-wide linkage scan in an intercross between the susceptible DA and the resistant PVG rat. We found one major quantitative trait locus (QTL, Hse1, on rat chromosome 4 (confidence interval 24.3-31 Mb; LOD score 29.5 governing disease susceptibility. Fine mapping of Hse1 using recombinants, haplotype mapping and sequencing, as well as expression analysis of all genes in the interval identified the calcitonin receptor gene (Calcr as the main candidate, which also is supported by functional studies. Thus, using unbiased genetic approach variability in Calcr was identified as potentially critical for infection and viral spread to the CNS and subsequent HSE development.

  19. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.

    Science.gov (United States)

    Kegel, Jessica U; John, Uwe; Valentin, Klaus; Frickenhaus, Stephan

    2013-01-01

    Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.

  20. Inter- and intra-host viral diversity in a large seasonal DENV2 outbreak.

    Directory of Open Access Journals (Sweden)

    Camila Malta Romano

    Full Text Available BACKGROUND: High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. METHODS AND PRINCIPAL FINDINGS: We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively. Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. CONCLUSIONS AND SIGNIFICANCE: Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.