WorldWideScience

Sample records for susceptible host species

  1. Do parasitic trematode cercariae demonstrate a preference for susceptible host species?

    Directory of Open Access Journals (Sweden)

    Brittany F Sears

    Full Text Available Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo terrestris (southern toad, Hyla squirella (squirrel tree frog, Lithobates ( = Rana sphenocephala (southern leopard frog, and Osteopilus septentrionalis (Cuban tree frog. These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen "arms race" between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.

  2. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  3. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species.

    NARCIS (Netherlands)

    Silvie, O.; Greco, C.; Franetich, J.F.; Dubart-Kupperschmitt, A.; Hannoun, L.; Gemert, G.J.A. van; Sauerwein, R.W.; Levy, S.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic

  4. Blood Groups in Infection and Host Susceptibility.

    Science.gov (United States)

    Cooling, Laura

    2015-07-01

    Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Blood Groups in Infection and Host Susceptibility

    Science.gov (United States)

    2015-01-01

    SUMMARY Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. PMID:26085552

  6. antimicrobial susceptibility pattern of Salmonella species

    African Journals Online (AJOL)

    user

    ABSTRACT. Treatment of enteric fever is increasingly becoming very challenging due to the increasing wave of antibiotic resistance. This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. The antimicrobial susceptibility pattern of Salmonella species to a wide range of.

  7. antimicrobial susceptibility pattern of Salmonella species

    African Journals Online (AJOL)

    user

    GLOBAL JOURNAL OF COMMUNITY MEDICINE VOL. 2 NO. 1 & 2 2009: 5 - ... This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. ... south-east Asia, parts of Latin America, the. Caribbean, and ...

  8. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  9. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    Science.gov (United States)

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  10. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Science.gov (United States)

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  11. Relationships between host viremia and vector susceptibility for arboviruses.

    Science.gov (United States)

    Lord, Cynthia C; Rutledge, C Roxanne; Tabachnick, Walter J

    2006-05-01

    Using a threshold model where a minimum level of host viremia is necessary to infect vectors affects our assessment of the relative importance of different host species in the transmission and spread of these pathogens. Other models may be more accurate descriptions of the relationship between host viremia and vector infection. Under the threshold model, the intensity and duration of the viremia above the threshold level is critical in determining the potential numbers of infected mosquitoes. A probabilistic model relating host viremia to the probability distribution of virions in the mosquito bloodmeal shows that the threshold model will underestimate the significance of hosts with low viremias. A probabilistic model that includes avian mortality shows that the maximum number of mosquitoes is infected by feeding on hosts whose viremia peaks just below the lethal level. The relationship between host viremia and vector infection is complex, and there is little experimental information to determine the most accurate model for different arthropod-vector-host systems. Until there is more information, the ability to distinguish the relative importance of different hosts in infecting vectors will remain problematic. Relying on assumptions with little support may result in erroneous conclusions about the importance of different hosts.

  12. Anaerobic bacteraemia revisited: species and susceptibilities.

    Science.gov (United States)

    Ng, Lily S Y; Kwang, Lee Ling; Rao, Suma; Tan, Thean Yen

    2015-01-01

    This retrospective study was performed to evaluate the frequency of anaerobic bacteraemia over a 10-year period, and to provide updated antibiotic susceptibilities for the more clinically relevant anaerobes causing blood stream infection. Data were retrieved from the laboratory information system for the period 2003 to 2012. During this time, blood cultures were inoculated in Bactec™ Plus vials (BD, USA) and continuously monitored in the Bactec™ 9000 blood culture system (BD, USA). Anaerobic organisms were identified using commercial identification kits, predominantly API 20 A (bioMérieux, France) supplemented with Vitek ANC cards (bioMérieux, France) and AN-Ident discs (Oxoid, United Kingdom). A representative subset of isolates were retrieved from 2009 to 2011 and antimicrobial susceptibilities to penicillin, amoxicillin-clavulanate, clindamycin, imipenem, moxifloxacin, piperacillin-tazobactam and metronidazole were determined using the Etest method. Anaerobes comprised 4.1% of all positive blood culture with 727 obligate anaerobes recovered over the 10-year period, representing a positivity rate of 0.35%. The only significant change in anaerobe positivity rates occurred between 2003 and 2004, with an increase of 0.2%. The Bacteroides fragilis group (45%) were the predominant anaerobic pathogens, followed by Clostridium species (12%), Propioniobacterium species (11%) and Fusobacterium species (6%). The most active in vitro antibiotics were imipenem, piperacillin-tazobactam, amoxicillin-clavulanate and metronidazole, with susceptibilities of 95.0%, 93.3%, 90.8% and 90.8% respectively. Resistance was high to penicillin, clindamycin and moxifl oxacin. However, there were apparent differences for antibiotic susceptibilities between species. This study indicates that the anaerobes comprise a small but constant proportion of bloodstream isolates. Antibiotic resistance was high to some antibiotics, but metronidazole, the beta-lactam/beta-lactamase inhibitors and

  13. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    Directory of Open Access Journals (Sweden)

    Bettina eKaiser

    2015-02-01

    Full Text Available By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialogue between Cuscuta spp. and its host plants focuses on the incompatible interaction of Cuscuta reflexa with tomato.

  14. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants.

    Science.gov (United States)

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus

    2015-01-01

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.

  15. Host susceptibility hypothesis for shell disease in American lobsters.

    Science.gov (United States)

    Tlusty, Michael F; Smolowitz, Roxanna M; Halvorson, Harlyn O; DeVito, Simone E

    2007-12-01

    Epizootic shell disease (ESD) in American lobsters Homarus americanus is the bacterial degradation of the carapace resulting in extensive irregular, deep erosions. The disease is having a major impact on the health and mortality of some American lobster populations, and its effects are being transferred to the economics of the fishery. While the onset and progression of ESD in American lobsters is undoubtedly multifactorial, there is little understanding of the direct causality of this disease. The host susceptibility hypothesis developed here states that although numerous environmental and pathological factors may vary around a lobster, it is eventually the lobster's internal state that is permissive to or shields it from the final onset of the diseased state. To support the host susceptibility hypothesis, we conceptualized a model of shell disease onset and severity to allow further research on shell disease to progress from a structured model. The model states that shell disease onset will occur when the net cuticle degradation (bacterial degradation, decrease of host immune response to bacteria, natural wear, and resorption) is greater than the net deposition (growth, maintenance, and inflammatory response) of the shell. Furthermore, lesion severity depends on the extent to which cuticle degradation exceeds deposition. This model is consistent with natural observations of shell disease in American lobster.

  16. Toxicogenetics: In Search of Host Susceptibility to Environmental Toxicants

    Directory of Open Access Journals (Sweden)

    Gelareh eAlam

    2014-09-01

    Full Text Available Heavy metals, various pesticide and herbicides are implicated as risk factors for human health. Paraquat, maneb, and rotenone, carbamate and organophospherous insecticides are examples of toxicants for which acute and chronic exposure are associated with multiple neurological disorders including Parkinson’s disease (PD. Nevertheless, the role of pesticide exposure in neurodegenerative diseases is not clear-cut, as there are inconsistencies in both the epidemiological and preclinical research. The aim of this short review is to show that the inconsistencies are related to individual differences in susceptibility to the effects of neurotoxicants, individual differences that can be traced to the genetic constitution of the individuals and animals studies, i.e., host-based susceptibility.

  17. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

    NARCIS (Netherlands)

    Baarlen, van P.; Woltering, E.J.; Staats, M.; Kan, van J.A.L.

    2007-01-01

    Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea.

  18. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  19. Antimicrobial Susceptibility Patterns Of Salmonella Species In ...

    African Journals Online (AJOL)

    % susceptible to cefepime and carbapenem, 91% to azithromycin, 82.1% to cefixime and 73% to quinolones. Also susceptibility to chloramphenicol, erythromycin, streptomycin, ampicillin, gentamicin, co-trimoxazole, augmentin and amikacin ...

  20. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  1. Fast Decline of Pythium zingiberum in Soil and Its Recolonization by Cultivating Susceptible Host Plants

    OpenAIRE

    ICHITANI, Takio; SHIMIZU, Tokiya

    1984-01-01

    This experiment demonstrates the fast decline of Pythium zingiberum in soil and its recolonization by cultivating mioga, susceptible host plant, and discusses growth and survival of the pathogen in the host rhizosphere in cultivated fields.

  2. Colonization and infection with Trichosporon species in the immunosuppressed host.

    Science.gov (United States)

    Haupt, H M; Merz, W G; Beschorner, W E; Vaughan, W P; Saral, R

    1983-02-01

    Trichosporon beigelii and Trichosporon capitatum have recently been recognized as systemic pathogens in the immunosuppressed host. We studied the incidence of colonization and systemic infection with these organisms in 353 highly immunocompromised patients over a 37-month period. Thirteen patients (3.7%) had positive surveillance cultures for Trichosporon species in stool, skin, or urine. Three of the 13 patients developed systemic infections after having positive surveillance cultures. In two of these three patients, urine cultures were positive near the time of systemic infection. The route of entry appeared to have been enteric in two patients and cutaneous in one patient. Both colonizing and infecting organisms showed in vitro susceptibility to amphotericin B and nystatin. This study suggests that positive surveillance cultures for Trichosporon species may correlate with systemic infection in the severely immunocompromised patient and that repeated positive urine cultures may indicate dissemination.

  3. Host specific glycans are correlated with susceptibility to infection by lagoviruses, but not with their virulence.

    Science.gov (United States)

    Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques

    2017-11-29

    The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host

  4. Bacteremia caused by Achromobacter species in an immunocompromised host.

    Science.gov (United States)

    Kish, M A; Buggy, B P; Forbes, B A

    1984-01-01

    A case of bacteremia caused by Achromobacter species in an immunocompromised patient is described. The patient responded to antibiotic therapy. Detailed antibiotic susceptibility data are presented. PMID:6332118

  5. Susceptibility of Staphylococcus species and subspecies to teicoplanin.

    Science.gov (United States)

    Bannerman, T L; Wadiak, D L; Kloos, W E

    1991-01-01

    Twenty-four Staphylococcus species and their subspecies were examined for their susceptibilities to teicoplanin by disk diffusion (30-micrograms disk) and agar dilution for the determination of MICs. Moderately susceptible and resistant clinical strains were further tested for their susceptibilities to oxacillin and vancomycin. Teicoplanin resistance was not observed in the reference strains of the various Staphylococcus species isolated from healthy volunteers or animals. However, the novobiocin-resistant species Staphylococcus saprophyticus, Staphylococcus cohnii, Staphylococcus xylosus, Staphylococcus arlettae, Staphylococcus kloosii, and Staphylococcus gallinarum were less susceptible to teicoplanin (MIC, 2 to 8 micrograms/ml) than most of the novobiocin-susceptible species were (MIC, 0.5 to 4 micrograms/ml). Clinical isolates of coagulase-negative species were generally less susceptible to teicoplanin than were reference strains. Seven percent of the Staphylococcus epidermidis clinical strains were moderately susceptible (MIC, 16 micrograms/ml) to teicoplanin. Of these strains, 70% were oxacillin resistant. For Staphylococcus haemolyticus strains, 11% were resistant (MIC, greater than 16 micrograms/ml) and 21% were moderately susceptible to teicoplanin. Of these strains, 95% were oxacillin resistant, No strains of S. epidermidis or S. haemolyticus were intermediate or resistant to vancomycin. Teicoplanin appears to be less active in vitro against oxacillin-resistant S. haemolyticus. However, teicoplanin is an effective antimicrobial agent against many Staphylococcus species. PMID:1835340

  6. Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts.

    Directory of Open Access Journals (Sweden)

    Luciana de Lima Ferreira

    Full Text Available Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts.

  7. Caspofungin Etest susceptibility testing of Candida species

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Pfaller, Michael A; Schønheyder, Henrik Carl

    2012-01-01

    The purpose of this study was to evaluate the performance of caspofungin Etest and the recently revised CLSI breakpoints. A total of 497 blood isolates, of which 496 were wild-type isolates, were included. A total of 65/496 susceptible isolates (13.1%) were misclassified as intermediate (I) or re...

  8. Antimicrobial susceptibility profile of Listeria species isolated from ...

    African Journals Online (AJOL)

    The antimicrobial susceptibility profile of L. monocytogenes and other Listeria species isolated from some ready-to-eat (RTE) foods sold in Kano metropolis, north-western Nigeria was carried out using disc-diffusion method. The results obtained showed that L. monocytogenes was moderately susceptible to all the ...

  9. Antibiotic susceptibilities of Salmonella species prevalent among ...

    African Journals Online (AJOL)

    This study was conducted to assess the prevalence of Salmonella species among children having diarrhea in Katsina State, Nigeria. A total of 220 diarrhea stool samples of children aged five years and below (0-5 years) were collected and screened for Salmonella species using culture technique. Presumptively positive ...

  10. Susceptibility of Staphylococcus species and subspecies to fleroxacin.

    Science.gov (United States)

    Bannerman, T L; Wadiak, D L; Kloos, W E

    1991-01-01

    Twenty-four Staphylococcus species or subspecies were examined for their susceptibilities to the fluoroquinolone fleroxacin (Ro 23-6240) by disk diffusion (5-micrograms disk) and by agar dilution for the determination of MICs. Resistant strains were further tested for their susceptibilities to oxacillin and the fluoroquinolone ciprofloxacin. Reference strains of the novobiocin-resistant species (Staphylococcus saprophyticus, Staphylococcus cohnii, Staphylococcus xylosus, Staphylococcus arlettae, and Staphylococcus gallinarum) had an intrinsic intermediate susceptibility (MIC, 4 micrograms/ml) to fleroxacin. Fleroxacin resistance was not observed in the reference strains of the novobiocin-susceptible species (MIC, 0.5 to 2.0 micrograms/ml). Clinical isolates of coagulase-negative species were generally less susceptible to fleroxacin than were reference strains. Seven percent of the Staphylococcus epidermidis clinical strains were resistant (MIC, greater than or equal to 8 micrograms/ml) to fleroxacin. Of these strains, 77% were resistant to oxacillin and 50% were resistant to ciprofloxacin. Thirty-four percent of the Staphylococcus haemolyticus clinical strains were resistant to fleroxacin, and 9% had intermediate susceptibility. Of the resistant strains, 95% were resistant to oxacillin and 77% were resistant to ciprofloxacin, while 23% had intermediate susceptibility to ciprofloxacin. Fleroxacin is an effective antimicrobial agent against most staphylococci. PMID:1759838

  11. The other white-nose syndrome transcriptome: Tolerant and susceptible hosts respond differently to the pathogen Pseudogymnoascus destructans.

    Science.gov (United States)

    Davy, Christina M; Donaldson, Michael E; Willis, Craig K R; Saville, Barry J; McGuire, Liam P; Mayberry, Heather; Wilcox, Alana; Wibbelt, Gudrun; Misra, Vikram; Bollinger, Trent; Kyle, Christopher J

    2017-09-01

    Mitigation of emerging infectious diseases that threaten global biodiversity requires an understanding of critical host and pathogen responses to infection. For multihost pathogens where pathogen virulence or host susceptibility is variable, host-pathogen interactions in tolerant species may identify potential avenues for adaptive evolution in recently exposed, susceptible hosts. For example, the fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats and is responsible for catastrophic declines in some species in North America, where it was recently introduced. Bats in Europe and Asia, where the pathogen is endemic, are only mildly affected. Different environmental conditions among Nearctic and Palearctic hibernacula have been proposed as an explanation for variable disease outcomes, but this hypothesis has not been experimentally tested. We report the first controlled, experimental investigation of response to P. destructans in a tolerant, European species of bat (the greater mouse-eared bat, Myotis myotis ). We compared body condition, disease outcomes and gene expression in control (sham-exposed) and exposed M. myotis that hibernated under controlled environmental conditions following treatment. Tolerant M. myotis experienced extremely limited fungal growth and did not exhibit symptoms of WNS. However, we detected no differential expression of genes associated with immune response in exposed bats, indicating that immune response does not drive tolerance of P. destructans in late hibernation. Variable responses to P. destructans among bat species cannot be attributed solely to environmental or ecological factors. Instead, our results implicate coevolution with the pathogen, and highlight the dynamic nature of the "white-nose syndrome transcriptome." Interspecific variation in response to exposure by the host (and possibly pathogen) emphasizes the importance of context in studies of the bat-WNS system, and robust

  12. Fish, fans and hydroids: host species of pygmy seahorses

    Directory of Open Access Journals (Sweden)

    Bastian Reijnen

    2011-06-01

    Full Text Available An overview of the octocoral and hydrozoa host species of pygmy seahorses is provided, based on recently collected data for H. bargibanti, H. denise and H. pontohi and literature records. Seven new interspecific host-species associations are recognized, and an overview of the so far documented number of host species is given. Detailed re-examination of octocoral type material and a review of the taxonomic history are included, as a baseline for further studies. The host-specificity and colour morphs of pygmy seahorses are discussed, as well as the validity of (previous identifications and conservations issues.

  13. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases.

    Science.gov (United States)

    Antonissen, Gunther; Martel, An; Pasmans, Frank; Ducatelle, Richard; Verbrugghe, Elin; Vandenbroucke, Virginie; Li, Shaoji; Haesebrouck, Freddy; Van Immerseel, Filip; Croubels, Siska

    2014-01-28

    Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well.

  14. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone

    2017-12-20

    In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether-and to what extent-ecological interactions can mediate species\\' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.

  15. Host phenology and leaf effects on susceptibility of California bay laurel to Phytophthora ramorum

    Science.gov (United States)

    Steven F. Johnston; Michael F. Cohen; Tamas Torok; Ross K. Meentemeyer; Nathan E. Rank

    2016-01-01

    Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to

  16. Host Phenology and Leaf Effects on Susceptibility of California Bay Laurel to Phytophthora ramorum.

    Science.gov (United States)

    Johnston, Steven F; Cohen, Michael F; Torok, Tamas; Meentemeyer, Ross K; Rank, Nathan E

    2016-01-01

    Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to P. ramorum infection were investigated with multiple P. ramorum isolates and leaves collected from multiple trees in leaf-droplet assays. We examined whether susceptibility varies with season, leaf age, or inoculum position. Bay laurel susceptibility was highest during spring and summer and lowest in winter. Older leaves (>1 year) were more susceptible than younger ones (8 to 11 months). Susceptibility was greater at leaf tips and edges than the middle of the leaf. Leaf surfaces wiped with 70% ethanol were more susceptible to P. ramorum infection than untreated leaf surfaces. Our results indicate that seasonal changes in susceptibility of U. californica significantly influence P. ramorum infection levels. Thus, in addition to environmental variables such as temperature and moisture, variability in host plant susceptibility contributes to disease establishment of P. ramorum.

  17. Comparison of antimicrobial susceptibilities of Corynebacterium species by broth microdilution and disk diffusion methods.

    Science.gov (United States)

    Weiss, K; Laverdière, M; Rivest, R

    1996-01-01

    Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity. PMID:8849254

  18. Host location by ichneumonid parasitoids is associated with nest dimensions of the host bee species.

    Science.gov (United States)

    Flores-Prado, L; Niemeyer, H M

    2012-08-01

    Parasitoid fitness depends on the ability of females to locate a host. In some species of Ichneumonoidea, female parasitoids detect potential hosts through vibratory cues emanating from them or through vibrational sounding produced by antennal tapping on the substrate. In this study, we (1) describe host location behaviors in Grotea gayi Spinola (Hymenoptera: Ichneumonidae) and Labena sp. on nests of Manuelia postica Spinola (Hymenoptera: Apidae), (2) compare nest dimensions between parasitized and unparasitized nests, (3) correlate the length of M. postica nests with the number of immature individuals developing, and (4) establish the relative proportion of parasitized nests along the breeding period of M. postica. Based on our results, we propose that these parasitoids use vibrational sounding as a host location mechanism and that they are able to assess host nest dimensions and choose those which may provide them with a higher fitness. Finally, we discuss an ancestral host-parasitoid relationship between Manuelia and ichneumonid species.

  19. Species associations among larval helminths in an amphipod intermediate host.

    Science.gov (United States)

    Dezfuli, B S; Giari, L; Poulin, R

    2000-10-01

    Larval helminths that share the same intermediate host may or may not also share the same definitive hosts. If one or more of these helminth species can manipulate the phenotype of the intermediate host, there can be great advantages or severe costs for other helminths resulting from co-occurring with a manipulator, depending on whether they have the same definitive host or not. Among 2372 specimens of the amphipod Echinogammarus stammeri collected from the river Brenta, northern Italy, there was a positive association between two acanthocephalan species with the same fish definitive hosts, the relatively common Pomphorhynchus laevis and the much less prevalent Acanthocephalus clavula. The number of cystacanths of P. laevis per infected amphipod, which ranged from one to five, did not influence the likelihood that the amphipod would also host A. clavula. A third acanthocephalan species, Polymorphus minutus,which matures in birds, showed no association with either of the two other species. These results show that associations among helminth species in intermediate hosts are not random, and are instead the product of selection favouring certain pathways of transmission.

  20. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available BACKGROUND: Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. RESULTS: The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. CONCLUSION: The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.

  1. Fish, fans and hydroids: host species of pygmy seahorses.

    Science.gov (United States)

    Reijnen, Bastian T; van der Meij, Sancia E T; van Ofwegen, Leen P

    2011-01-01

    An overview of the octocoral and hydrozoan host species of pygmy seahorses is provided based on literature records and recently collected field data for Hippocampus bargibanti, Hippocampus denise and Hippocampus pontohi. Seven new associations are recognized and an overview of the so far documented host species is given. A detailed re-examination of octocoral type material and a review of the taxonomic history of the alcyonacean genera Annella (Subergorgiidae) and Muricella (Acanthogorgiidae) are included as baseline for future revisions. The host specificity and colour morphs of pygmy seahorses are discussed, as well as the reliability of (previous) identifications and conservation issues.

  2. Taxonomy and antifungal susceptibility of clinically important Rasamsonia species

    DEFF Research Database (Denmark)

    Houbraken, J.; Giraud, S.; Meijer, M.

    2013-01-01

    In recent years, Geosmithia argillacea has been increasingly reported in humans and animals and can be considered an emerging pathogen. The taxonomy of Geosmithia was recently studied, and Geosmithia argillacea and related species were transferred to the new genus Rasamsonia. The diversity among...... reported clinical isolates from animal or human patients. Susceptibility tests showed that the antifungal susceptibility profiles of the four members of the R. argillacea complex are similar, and caspofungin showed significant activity in vitro, followed by amphotericin B and posaconazole. Voriconazole...

  3. MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts.

    Science.gov (United States)

    Waring, Barbara M; Sjaastad, Louisa E; Fiege, Jessica K; Fay, Elizabeth J; Reyes, Ismarc; Moriarity, Branden; Langlois, Ryan A

    2018-01-15

    RNAs were used previously to attenuate influenza A viruses. We propose the development of a novel platform to produce live attenuated vaccines that are highly customizable, efficacious across a broad species range, and exhibit enhanced safety over traditional vaccination methods. This strategy exploits a microRNA that is expressed abundantly in influenza virus-susceptible hosts. By eliminating this ubiquitous microRNA from a cell line, targeted viruses that are attenuated across susceptible strains can be generated. This approach greatly increases the plasticity of the microRNA targeting approach and enhances vaccine safety. Copyright © 2018 American Society for Microbiology.

  4. The role of host genetics in susceptibility to influenza: a systematic review.

    Directory of Open Access Journals (Sweden)

    Peter Horby

    Full Text Available The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380.PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven.The fundamental question "Is susceptibility to severe influenza in humans heritable?" remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.

  5. Epizootic to enzootic transition of a fungal disease in tropical Andean frogs: Are surviving species still susceptible?

    Directory of Open Access Journals (Sweden)

    Alessandro Catenazzi

    Full Text Available The fungal pathogen Batrachochytrium dendrobatidis (Bd, which causes the disease chytridiomycosis, has been linked to catastrophic amphibian declines throughout the world. Amphibians differ in their vulnerability to chytridiomycosis; some species experience epizootics followed by collapse while others exhibit stable host/pathogen dynamics where most amphibian hosts survive in the presence of Bd (e.g., in the enzootic state. Little is known about the factors that drive the transition between the two disease states within a community, or whether populations of species that survived the initial epizootic are stable, yet this information is essential for conservation and theory. Our study focuses on a diverse Peruvian amphibian community that experienced a Bd-caused collapse. We explore host/Bd dynamics of eight surviving species a decade after the mass extinction by using population level disease metrics and Bd-susceptibility trials. We found that three of the eight species continue to be susceptible to Bd, and that their populations are declining. Only one species is growing in numbers and it was non-susceptible in our trials. Our study suggests that some species remain vulnerable to Bd and exhibit ongoing population declines in enzootic systems where Bd-host dynamics are assumed to be stable.

  6. Prevalence & susceptibility to fluconazole of Candida species causing vulvovaginitis.

    Science.gov (United States)

    Mohanty, Srujana; Xess, Immaculata; Hasan, Fahmi; Kapil, Arti; Mittal, Suneeta; Tolosa, Jorge E

    2007-09-01

    Vulvovaginal candidiasis is an important cause of morbidity in women of reproductive age. This study was carried out to determine the species prevalence and susceptibility pattern to fluconazole of yeasts isolated from the vagina of symptomatic women. This prospective study was conducted in a rural primary health care center of north India from May 2003 to April 2004 and included 601 married, sexually active women (18-49 yr) with the self reported symptoms of vaginal discharge and/or genital itching and/or genital burning. Specific aetiology of the genitourinary symptoms including candidal infection were determined. Specimens from the lateral wall of vagina were subjected to direct wet mount microscopy and fungal culture on Sabouraud's dextrose agar. Susceptibility testing to fluconazole was carried out using broth microdilution method. Yeasts were isolated in 111 (18.5%) women and these consisted of Candida glabrata (56, 50.4%), C. albicans (39, 35.1%), C. tropicalis (12, 10.8%), C. krusei (3, 2.7%) and C. parapsilosis (1, 0.9%). Susceptibility testing carried out on 30 representative isolates (15 C. glabrata, 10 C. albicans, 4 C. tropicalis and 1 C. parapsilosis) revealed that 21 isolates (70%) were susceptible (MIC, < or = 8 microg/ml) to fluconazole while 9 (30%) were susceptible-dose dependent (S-DD, MIC 16-32 microg/ml). Our findings suggest a low prevalence of fluconazole resistance in vaginal candida isolates in our population. However, a high prevalence of non-albicans candida species and increased dose-dependent resistance in these isolates necessitates vigilance since this may warrant a change in the optimal therapy of non-albicans candida vaginitis.

  7. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium.

    Directory of Open Access Journals (Sweden)

    Elena Kondratieva

    2010-05-01

    Full Text Available Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i characteristics of susceptibility to two infections in vivo; (ii architecture of lung granulomata assessed by immune staining; and (iii expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.

  8. Patterns of host adaptation in fly infecting Entomophthora species

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Jensen, Annette Bruun; Eilenberg, Jørgen

    Insect pathogenic fungi (IPF) differ widely in their capability to infect different hosts. Some are generalists and will, given a sufficient number of infectious spores are present, infect almost any species of insect (e.g. Hypocrealean Metarhizium and Beauveria). Members of a different main IPF ...

  9. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species

    Energy Technology Data Exchange (ETDEWEB)

    Haque, M. M.; Diez, J. J.

    2012-11-01

    Phytophthora alni is a highly destructive host specific pathogen to alders (Alnus spp.) spreading all over Europe. Recently this pathogen has been reported to cause diseases in common alder (Alnus glutinosa) in Spain. Seeds and seedlings of A. glutinosa were tested in vitro for their susceptibility to alder Phytophthora and other Phytophthora species. Isolates of P. alni ssp. alni, P. cinnamomi, P. citrophthora, P. nicotianae and P. palmivora were used in the experiments. Seeds and seedlings were inoculated with a zoospore suspension and uniform mycelial blocks of agar of the Phytophthora species. Susceptibility was calculated in terms of pathogen virulence on seed germination and seedling mortality 42 and 67 days after inoculation respectively. Seed germination and seedling mortality rates varied differently among the isolates used. Results implied that common alder and its seeds and seedlings are at risk to be infected by P. alni. In addition, other Phytophthora species are able to infect this kind of material showing their relative host non-specificity. This is one important finding concerning alder regeneration in infected areas, and the possibility of disease spread on this plant material. (Author) 42 refs.

  10. Arabidopsis thaliana is a susceptible host plant for the holoparasite Cuscuta spec.

    Science.gov (United States)

    Birschwilks, Mandy; Sauer, Norbert; Scheel, Dierk; Neumann, Stefanie

    2007-10-01

    Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.

  11. Colonization, Pathogenicity, Host Susceptibility and Therapeutics for Staphylococcus aureus: What is the Clinical Relevance?1

    Science.gov (United States)

    Tong, Steven Y.C.; Chen, Luke F.; Fowler, Vance G.

    2011-01-01

    Staphylococcus aureus is a human commensal that can also cause a broad spectrum of clinical disease. Factors associated with clinical disease are myriad and dynamic and include pathogen virulence, antimicrobial resistance and host susceptibility. Additionally, infection control measures aimed at the environmental niches of S. aureus and therapeutic advances continue to impact upon the incidence and outcomes of staphylococcal infections. This review article focuses on the clinical relevance of advances in our understanding of staphylococcal colonization, virulence, host susceptibility and therapeutics. Over the past decade key developments have arisen. First, rates of nosocomial methicillin-resistant S. aureus (MRSA) infections have significantly declined in many countries. Second, we have made great strides in our understanding of the molecular pathogenesis of S. aureus in general and community-associated MRSA in particular. Third, host risk factors for invasive staphylococcal infections, such as advancing age, increasing numbers of invasive medical interventions, and a growing proportion of patients with healthcare contact, remain dynamic. Finally, several new antimicrobial agents active against MRSA have become available for clinical use. Humans and S. aureus co-exist and the dynamic interface between host, pathogen and our attempts to influence these interactions will continue to rapidly change. Although progress has been made in the past decade, we are likely to face further surprises such as the recent waves of community-associated MRSA. PMID:22160374

  12. In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    Science.gov (United States)

    The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...

  13. Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.

    Science.gov (United States)

    Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L

    2015-05-01

    Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC). Copyright © 2015. Published by Elsevier Inc.

  14. Host range, host ecology, and distribution of more than 11800 fish parasite species

    Science.gov (United States)

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  15. Role of NETs in the difference in host susceptibility to Toxoplasma gondii between sheep and cattle.

    Science.gov (United States)

    Yildiz, Kader; Gokpinar, Sami; Gazyagci, Aycan Nuriye; Babur, Cahit; Sursal, Neslihan; Azkur, Ahmet Kursat

    2017-07-01

    The main aim of this study was to compare extracellular traps (NETs) formation by polymorphonuclear neutrophils (PMNs) of cattle and sheep when exposed to T. gondii tachyzoites in vitro. The effects of parasite concentrations and different incubation periods on NETs development in cattle and sheep PMNs were studied. The effect of NET structures on host cell invasion by tachyzoites was also studied. This is the first report of NETs development by sheep and cattle PMNs against T. gondii in vitro. T. gondii-induced extracellular DNA production from PMNs was dependent on tachyzoite concentrations and incubation time in both sheep and cattle. Many nuclear and cytoplasmic changes were observed in sheep and cattle PMNs after exposure to T. gondii tachyzoites. The typical appearance of NETs, with MPO, NE and histone (H3) attached to extracellular DNA, was observed. Tachyzoites were entrapped within this structure. Myeloperoxidase (MPO) activity was higher in the cattle PMN-tachyzoite co-cultures than sheep. NETs structures released from sheep PMNs caused mechanical immobilisation of T. gondii tachyzoites, however, NET structures released from cattle PMNs may be lethal to tachyzoites. Bovine MPO may have a lethal effect on T. gondii tachyzoites in vitro during a 3h incubation. Besides other mechanisms that effect on host susceptibility to T. gondii in sheep and cattle, extracellular traps formation as a part of immunological reactions may be play a role in host susceptibility to T. gondii. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis

    Science.gov (United States)

    Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596

  17. Environment and host species shape the skin microbiome of captive neotropical bats

    Science.gov (United States)

    Tromas, Nicolas; Shapiro, B. Jesse; Lapointe, François-Joseph

    2016-01-01

    Background A wide range of microorganisms inhabit animal skin. This microbial community (microbiome) plays an important role in host defense against pathogens and disease. Bats (Chiroptera: Mammalia) are an ecologically and evolutionarily diversified group with a relatively unexplored skin microbiome. The bat skin microbiome could play a role in disease resistance, for example, to white nose syndrome (WNS), an infection which has been devastating North American bat populations. However, fundamental knowledge of the bat skin microbiome is needed before understanding its role in health and disease resistance. Captive neotropical frugivorous bats Artibeus jamaicensis and Carollia perspicillataprovide a simple controlled system in which to characterize the factors shaping the bat microbiome. Here, we aimed to determine the relative importance of habitat and host species on the bat skin microbiome. Methods We performed high-throughput 16S rRNA gene sequencing of the skin microbiome of two different bat species living in captivity in two different habitats. In the first habitat, A. jamaicensis and C. perspicillata lived together, while the second habitat contained only A. jamaicensis. Results We found that both habitat and host species shape the composition and diversity of the skin microbiome, with habitat having the strongest influence. Cohabitating A. jamaicensis and C. perspicillata shared more similar skin microbiomes than members of the same species (A. jamaicensis) across two habitats. Discussion These results suggest that in captivity, the skin microbial community is homogenised by the shared environments and individual proximities of bats living together in the same habitat, at the expense of the innate host species factors. The predominant influence of habitat suggests that environmental microorganisms or pathogens might colonize bat skin. We also propose that bat populations could differ in pathogen susceptibility depending on their immediate environment and

  18. Environment and host species shape the skin microbiome of captive neotropical bats

    Directory of Open Access Journals (Sweden)

    Virginie Lemieux-Labonté

    2016-09-01

    Full Text Available Background A wide range of microorganisms inhabit animal skin. This microbial community (microbiome plays an important role in host defense against pathogens and disease. Bats (Chiroptera: Mammalia are an ecologically and evolutionarily diversified group with a relatively unexplored skin microbiome. The bat skin microbiome could play a role in disease resistance, for example, to white nose syndrome (WNS, an infection which has been devastating North American bat populations. However, fundamental knowledge of the bat skin microbiome is needed before understanding its role in health and disease resistance. Captive neotropical frugivorous bats Artibeus jamaicensis and Carollia perspicillataprovide a simple controlled system in which to characterize the factors shaping the bat microbiome. Here, we aimed to determine the relative importance of habitat and host species on the bat skin microbiome. Methods We performed high-throughput 16S rRNA gene sequencing of the skin microbiome of two different bat species living in captivity in two different habitats. In the first habitat, A. jamaicensis and C. perspicillata lived together, while the second habitat contained only A. jamaicensis. Results We found that both habitat and host species shape the composition and diversity of the skin microbiome, with habitat having the strongest influence. Cohabitating A. jamaicensis and C. perspicillata shared more similar skin microbiomes than members of the same species (A. jamaicensis across two habitats. Discussion These results suggest that in captivity, the skin microbial community is homogenised by the shared environments and individual proximities of bats living together in the same habitat, at the expense of the innate host species factors. The predominant influence of habitat suggests that environmental microorganisms or pathogens might colonize bat skin. We also propose that bat populations could differ in pathogen susceptibility depending on their immediate

  19. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  20. Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region

    Science.gov (United States)

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A.; Arnemo, Jon M.; Tryland, Morten; Girling, Simon; Miller, Michael W.; Tranulis, Michael A.; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter. PMID:23236380

  1. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    Directory of Open Access Journals (Sweden)

    Paula Stewart

    Full Text Available Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE during the bovine spongiform encephalopathy (BSE epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD remains an open question. Variation in the host-encoded prion protein (PrP(C largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo and pine marten (Martes martes were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus and mountain lion (Puma concolor from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  2. Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation of susceptible dog hosts is reduced by slow release of semiochemicals from a less susceptible host.

    Science.gov (United States)

    de Oliveira Filho, Jaires Gomes; Ferreira, Lorena Lopes; Sarria, André Lucio Franceschini; Pickett, John A; Birkett, Michael A; Mascarin, Gabriel Moura; de León, Adalberto A Pérez; Borges, Lígia Miranda Ferreira

    2017-01-01

    Domestic dog breeds are hosts for the brown dog tick, Rhipicephalus sanguineus sensu lato, but infestation levels vary among breeds. Beagles are less susceptible to tick infestations than English cocker spaniels due to enhanced production of 2-hexanone and benzaldehyde that act as volatile tick repellents. We report the use of prototype slow-release formulations of these compounds to reduce the burden of R. sanguineus s. l. on English cocker spaniel dogs. Twelve dogs were randomly assigned to two groups with six dogs each. The treated group received collars with slow-release formulations of the compounds attached, while the control group received collars with clean formulations attached. Five environmental infestations were performed, with the number of ticks (at all stages) on the dogs being counted twice a day for 45days. The counts on the number of tick stages found per dog were individually fitted to linear mixed effects models with repeated measures and normal distribution for errors. The mean tick infestation in the treated group was significantly lower than in the control group. For larvae and nymphs, a decrease in tick infestation was observed at the fifth count, and for adults, lower average counts were observed in all counts. The compounds did not interfere with the distribution of the ticks on the body of the dogs, as a similar percentage of ticks was found on the anterior half of the dogs (54.5% for the control group and 56.2% for the treated group). The biological and reproductive parameters of the ticks were not affected by the repellents. This study highlights for the first time the potential use of a novel allomone (repellent)-based formulation for reduction of tick infestation on susceptible dogs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  4. Rotaxane and catenane host structures for sensing charged guest species.

    Science.gov (United States)

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an

  5. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  6. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species.

    Science.gov (United States)

    Jones, Thomas S; Bilton, Adam R; Mak, Lorraine; Sait, Steven M

    2015-01-01

    Parasitoids face challenges by switching between host species that influence survival and fitness, determine their role in structuring communities, influence species invasions, and affect their importance as biocontrol agents. In the generalist parasitoid, Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae), we investigated the costs in encapsulation, survival, and body size on juveniles when adult parasitoids switched from their original host, Plodia interpunctella (Hübner) (Lepidotera, Pyralidae) to a novel host, Ephestia kuehniella (Zeller) (Lepidoptera, Pyralidae), over multiple generations. Switching had an initial survival cost for juvenile parasitoids in the novel host, but increased survival occurred within two generations. Conversely, mortality in the original host increased. Body size, a proxy for fecundity, also increased with the number of generations in the novel host species, reflecting adaptation or maternal effects due to the larger size of the novel host, and therefore greater resources available to the developing parasitoid. Switching to a novel host appears to have initial costs for a parasitoid, even when the novel host may be better quality, but the costs rapidly diminish. We predict that the net cost of switching to a novel host for parasitoids will be complex and will depend on the initial reduction in fitness from parasitizing a novel host versus local adaptations against parasitoids in the original host.

  7. Susceptibility of Japanese Cyprininae fish species to cyprinid herpesvirus 2 (CyHV-2).

    Science.gov (United States)

    Ito, Takafumi; Maeno, Yukio

    2014-03-14

    Cyprinid herpesvirus 2 (CyHV-2) is known as the causative agent of herpesviral haematopoietic necrosis (HVHN) of goldfish (Carassius auratus). Recently, the virus has also been detected from Prussian carp (C. gibelio) and crucian carp (C. carassius) from European and Asian countries. To analyze the risk of spreading to new host species, the susceptibility of other fish species to the virus is essential. In this study experimental infections of indigenous Cyprininae species in Japan were performed by immersion in and intraperitoneal injection of a CyHV-2 isolate. Although Edonishiki, a variety of goldfish, immersed with the virus showed a cumulative mortality of 90%, no mortality was observed in ginbuna C. auratus langsdorfii, nagabuna C. auratus buergeri, nigorobuna C. auratus grandoculis and common carp Cyprinus carpio. Cumulative mortality was 100, 20 and 10% in intraperitoneally injected Edonishiki, ginbuna and nagabuna, respectively. Furthermore all Edonishiki immersed with the virus died. However, even after stimuli of sudden temperature changes, the immersed ginbuna and nagabuna did not die. Moreover no mortality was observed in co-reared Ranchu, another variety of goldfish, with immersed ginbuna and nagabuna although all three Ranchu co-reared with immersed Edonishiki died. CyHV-2 DNA was detected and the virus was re-isolated from all dead fish. Moreover CyHV-2 DNA was detected from some of the surviving Carassius spp. These results revealed that susceptibility of Japanese indigenous Cyprininae fish species to CyHV-2 is much lower than for goldfish. In addition, ability of replication of CyHV-2 might be different among Carassius fish species. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Molecular systematics of pinniped hookworms (Nematoda: Uncinaria): species delimitation, host associations and host-induced morphometric variation.

    Science.gov (United States)

    Nadler, Steven A; Lyons, Eugene T; Pagan, Christopher; Hyman, Derek; Lewis, Edwin E; Beckmen, Kimberlee; Bell, Cameron M; Castinel, Aurelie; Delong, Robert L; Duignan, Padraig J; Farinpour, Cher; Huntington, Kathy Burek; Kuiken, Thijs; Morgades, Diana; Naem, Soraya; Norman, Richard; Parker, Corwin; Ramos, Paul; Spraker, Terry R; Berón-Vera, Bárbara

    2013-12-01

    Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the

  9. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  10. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  11. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species?

    Science.gov (United States)

    Dumas, Pascaline; Legeai, Fabrice; Lemaitre, Claire; Scaon, Erwan; Orsucci, Marion; Labadie, Karine; Gimenez, Sylvie; Clamens, Anne-Laure; Henri, Hélène; Vavre, Fabrice; Aury, Jean-Marc; Fournier, Philippe; Kergoat, Gael J; d'Alençon, Emmanuelle

    2015-06-01

    The moth Spodoptera frugiperda is a well-known pest of crops throughout the Americas, which consists of two strains adapted to different host-plants: the first feeds preferentially on corn, cotton and sorghum whereas the second is more associated with rice and several pasture grasses. Though morphologically indistinguishable, they exhibit differences in their mating behavior, pheromone compositions, and show development variability according to the host-plant. Though the latter suggest that both strains are different species, this issue is still highly controversial because hybrids naturally occur in the wild, not to mention the discrepancies among published results concerning mating success between the two strains. In order to clarify the status of the two host-plant strains of S. frugiperda, we analyze features that possibly reflect the level of post-zygotic isolation: (1) first generation (F1) hybrid lethality and sterility; (2) patterns of meiotic segregation of hybrids in reciprocal second generation (F2), as compared to the meiosis of the two parental strains. We found a significant reduction of mating success in F1 in one direction of the cross and a high level of microsatellite markers showing transmission ratio distortion in the F2 progeny. Our results support the existence of post-zygotic reproductive isolation between the two laboratory strains and are in accordance with the marked level of genetic differentiation that was recovered between individuals of the two strains collected from the field. Altogether these results provide additional evidence in favor of a sibling species status for the two strains.

  12. Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis.

    Science.gov (United States)

    Martinez-Gutierrez, Marlen; Ruiz-Saenz, Julian

    2016-05-12

    Canine distemper virus (CDV) is the etiological agent of one of the most infectious diseases of domestic dogs, also known as a highly prevalent viral infectious disease of carnivores and posing a conservation threat to endangered species around the world. To get a better panorama of CDV infection in different Orders, a retrospective and documental systematic review of the role of CDV in different non-dog hosts was conducted. The bibliographical data were collected from MedLine/PubMed and Scopus databases. Data related to Order, Family, Genus and Species of the infected animals, the presence or absence of clinical signs, mortality, serological, molecular or antigenic confirmation of CDV infection, geographic location, were collected and summarized. Two hundred seventeen scientific articles were considered eligible which includes reports of serological evaluation, and antigenic or genomic confirmation of CDV infection in non-dog hosts. CDV infects naturally and experimentally different members of the Orders Carnivora (in 12 Families), Rodentia (four Families), Primates (two Families), Artiodactyla (three Families) and Proboscidea (one Family). The Order Carnivora (excluding domestic dogs) accounts for the vast majority (87.5%) of the records. Clinical disease associated with CDV infection was reported in 51.8% of the records and serological evidence of CDV infection in apparently healthy animals was found in 49.5% of the records. High mortality rate was showed in some of the recorded infections in Orders different to Carnivora. In non-dog hosts, CDV has been reported all continents with the exception of Australasia and in 43 different countries. The results of this systematic review demonstrate that CDV is able to infect a very wide range of host species from many different Orders and emphasizes the potential threat of infection for endangered wild species as well as raising concerns about potential zoonotic threats following the cessation of large-scale measles

  13. SeqAPASS: Predicting chemical susceptibility to threatened/endangered species

    Science.gov (United States)

    Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/) application was devel...

  14. How do PrPSc Prions Spread between Host Species, and within Hosts?

    Directory of Open Access Journals (Sweden)

    Neil A. Mabbott

    2017-11-01

    Full Text Available Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.

  15. Repeated Schistosoma japonicum infection following treatment in two cohorts: evidence for host susceptibility to helminthiasis?

    Directory of Open Access Journals (Sweden)

    Elizabeth J Carlton

    Full Text Available In light of multinational efforts to reduce helminthiasis, we evaluated whether there exist high-risk subpopulations for helminth infection. Such individuals are not only at risk of morbidity, but may be important parasite reservoirs and appropriate targets for disease control interventions.We followed two longitudinal cohorts in Sichuan, China to determine whether there exist persistent human reservoirs for the water-borne helminth, Schistosoma japonicum, in areas where treatment is ongoing. Participants were tested for S. japonicum infection at enrollment and two follow-up points. All infections were promptly treated with praziquantel. We estimated the ratio of the observed to expected proportion of the population with two consecutive infections at follow-up. The expected proportion was estimated using a prevalence-based model and, as highly exposed individuals may be most likely to be repeatedly infected, a second model that accounted for exposure using a data adaptive, machine learning algorithm. Using the prevalence-based model, there were 1.5 and 5.8 times more individuals with two consecutive infections than expected in cohorts 1 and 2, respectively (p<0.001 in both cohorts. When we accounted for exposure, the ratio was 1.3 (p = 0.013 and 2.1 (p<0.001 in cohorts 1 and 2, respectively.We found clustering of infections within a limited number of hosts that was not fully explained by host exposure. This suggests some hosts may be particularly susceptible to S. japonicum infection, or that uncured infections persist despite treatment. We propose an explanatory model that suggests that as cercarial exposure declines, so too does the size of the vulnerable subpopulation. In low-prevalence settings, interventions targeting individuals with a history of S. japonicum infection may efficiently advance disease control efforts.

  16. Host social organization and mating system shape parasite transmission opportunities in three European bat species.

    Science.gov (United States)

    van Schaik, J; Kerth, G

    2017-02-01

    For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.

  17. Effects of Non-Susceptible Hosts on the Infection with Trypanosoma cruzi of the Vector Triatoma infestans: an Experimental Model

    Directory of Open Access Journals (Sweden)

    Vázquez Diego P

    1999-01-01

    Full Text Available We tested experimentally the effects of the presence of non-susceptible hosts on the infection with Trypanosoma cruzi of the vector Triatoma infestans. The experiment consisted in two treatments: with chickens, including two chickens (non-susceptible hosts and two infected guinea pigs (susceptible hosts, and without chickens, including only two infected guinea pigs. The hosts were held unrestrained in individual metal cages inside a closed tulle chamber. A total of 200 uninfected T. infestans third instar nymphs were liberated in each replica, collected on day 14, and examined for infection and blood meal sources on day 32-36. The additional presence of chickens relative to infected guinea pigs: (a significantly modified the spatial distribution of bugs; (b increased significantly the likelihoods of having a detectable blood meal on any host and molting to the next instar; (c did not affect the bugs' probability of death by predation; and (d decreased significantly the overall percentage of T. infestans infected with T. cruzi. The bugs collected from inside or close to the guinea pigs' cages showed a higher infection rate (71-88% than those collected from the chickens' cages (22-32%. Mixed blood meals on chickens and guinea pigs were detected in 12-21% of bugs. Although the presence of chickens would decrease the overall percentage of infected bugs in short term experiments, the high rate of host change of T. infestans would make this difference fade out if longer exposure times had been provided.

  18. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease.

    Science.gov (United States)

    Biemans, Floor; de Jong, Mart C M; Bijma, Piter

    2017-06-30

    Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of (genetic) traits: host susceptibility and host infectivity. Quantitative genetic studies on infectious diseases generally connect an individual's disease status to its own genotype, and therefore capture genetic effects on susceptibility only. However, they usually ignore variation in exposure to infectious herd mates, which may limit the accuracy of estimates of genetic effects on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to design optimal breeding strategies, it is essential that genetic effects on infectivity are quantified. Given the potential importance of genetic effects on infectivity, we set out to develop a model to estimate the effect of single nucleotide polymorphisms (SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 individuals, and recorded time-series data on individual disease status. We quantified bias and precision of the estimates for different sizes of SNP effects, and identified the optimum recording interval when the number of records is limited. We present a generalized linear mixed model to estimate the effect of SNPs on both host susceptibility and host infectivity. SNP effects were on average slightly underestimated, i.e. estimates were conservative. Estimates were less precise for infectivity than for susceptibility. Given our sample size, the power to estimate SNP effects for susceptibility was 100% for differences between genotypes of a factor 1.56 or more, and was higher than 60% for infectivity for differences between genotypes of a factor 4 or more. When disease status was recorded 11 times on each

  19. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees.

    Science.gov (United States)

    McFrederick, Quinn S; Wcislo, William T; Hout, Michael C; Mueller, Ulrich G

    2014-05-01

    Social transmission and host developmental stage are thought to profoundly affect the structure of bacterial communities associated with honey bees and bumble bees, but these ideas have not been explored in other bee species. The halictid bees Megalopta centralis and M. genalis exhibit intrapopulation social polymorphism, which we exploit to test whether bacterial communities differ by host social structure, developmental stage, or host species. We collected social and solitary Megalopta nests and sampled bees and nest contents from all stages of host development. To survey these bacterial communities, we used 16S rRNA gene 454 pyrosequencing. We found no effect of social structure, but found differences by host species and developmental stage. Wolbachia prevalence differed between the two host species. Bacterial communities associated with different developmental stages appeared to be driven by environmentally acquired bacteria. A Lactobacillus kunkeei clade bacterium that is consistently associated with other bee species was dominant in pollen provisions and larval samples, but less abundant in mature larvae and pupae. Foraging adults appeared to often reacquire L. kunkeei clade bacteria, likely while foraging at flowers. Environmental transmission appears to be more important than social transmission for Megalopta bees at the cusp between social and solitary behavior. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    Science.gov (United States)

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  1. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated in Taiwan.

    Science.gov (United States)

    Yeh, Jih-Ching; Lo, Dan-Yuan; Chang, Shao-Kuang; Kuo, Hung-Chih

    2018-03-13

    Some members of the Brachyspira genus cause diseases such as swine dysentery (SD) and porcine intestinal (or colonic) spirochetosis. Severe economic losses are caused by decreased feed intake and increased feed conversion ratio, as well as costs associated with treatment and death. A loss of clinical efficacy of some antimicrobial agents authorized for treating SD has been observed in many countries. The aim of this study was to analyze the antimicrobial susceptibility of Brachyspira isolated from Taiwan and to investigate the mechanism of decreased susceptibility to macrolides. A total of 55 Brachyspira isolates obtained from the grower-finisher period were evaluated in this study. These isolates included B. hyodysenteriae (n = 37), B. murdochii (n = 11), B. pilosicoli (n = 5), B. intermedia (n = 1), and B. innocens (n = 1). Antimicrobial susceptibility testing was performed to examine 12 selected antimicrobial agents. The results showed that the 50% and 90% minimum inhibitory concentration (MIC) values of the tested macrolides were all >256 μg/ml. The MIC 50 of lincomycin, tiamulin, carbadox, olaquindox, ampicillin, amoxicillin, doxycycline, oxytetracycline, and gentamicin were 32, 1, ≤0.125, ≤0.125, 0.5, 0.25, 2, 2, and 2 μg/ml. The genetic basis of the decreased susceptibility to tylosin and lincomycin in Brachyspira spp. was investigated and the results showed a possible connection to the mutations at position A2058 and G2032 of the 23S rRNA gene. These findings demonstrated that, in Taiwan, there may be a decrease in susceptibility of Brachyspira spp. to antimicrobials commonly used for the treatment of SD.

  2. Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1.

    Science.gov (United States)

    Segarra, Amélie; Mauduit, Florian; Faury, Nicole; Trancart, Suzanne; Dégremont, Lionel; Tourbiez, Delphine; Haffner, Philippe; Barbosa-Solomieu, Valérie; Pépin, Jean-François; Travers, Marie-Agnès; Renault, Tristan

    2014-07-09

    Massive mortality outbreaks affecting Pacific oyster (Crassostrea gigas) spat in various countries have been associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). However, few studies have been performed to understand and follow viral gene expression, as it has been done in vertebrate herpesviruses. In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted in order to test the susceptibility of several bi-parental oyster families to this virus and to analyze host-pathogen interactions using in vivo transcriptomic approaches. The divergent response of these oyster families in terms of mortality confirmed that susceptibility to OsHV-1 infection has a significant genetic component. Two families with contrasted survival rates were selected. A total of 39 viral genes and five host genes were monitored by real-time PCR. Initial results provided information on (i) the virus cycle of OsHV-1 based on the kinetics of viral DNA replication and transcription and (ii) host defense mechanisms against the virus. In the two selected families, the detected amounts of viral DNA and RNA were significantly different. This result suggests that Pacific oysters are genetically diverse in terms of their susceptibility to OsHV-1 infection. This contrasted susceptibility was associated with dissimilar host gene expression profiles. Moreover, the present study showed a positive correlation between viral DNA amounts and the level of expression of selected oyster genes.

  3. Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection

    NARCIS (Netherlands)

    Anche, M.T.

    2016-01-01

    Mahlet Teka Anche. (2016). Estimating host genetic effects on susceptibility and infectivity to infectious diseases and their contribution to response to selection. PhD thesis, Wageningen University, the Netherlands

    Genetic approaches aiming to reduce the prevalence of an infection in a

  4. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species.

    Science.gov (United States)

    Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter

    2014-02-01

    A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  5. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2009-01-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays...

  6. Chlamydia infection across host species boundaries promotes distinct sets of transcribed anti-apoptotic factors.

    Directory of Open Access Journals (Sweden)

    Joshua eMessinger

    2015-12-01

    Full Text Available Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis and respiratory associated disease (C. pneumoniae. The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the arms race of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases.

  7. Degree of susceptibility of industrial gases of tree and shrub species

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovoljskii, I A

    1952-01-01

    The trees and shrubs of the iron smelting region of Krivoi Rog, in the Ukraine, were surveyed to determine susceptibility to air pollution damage. Most of the observations were made in parks and green belts in industrial areas. A classification of tree and shrub species is presented; they are separated into three classes according to their susceptibility to air pollutant injury.

  8. Infections caused by Acinetobacter species and their susceptibility to ...

    African Journals Online (AJOL)

    Thirty-seven (63%) and 17 (30%) of the Acinetobacter isolates were from wound infections and UTI respectively. All the infections were nosocomially acquired and were associated with compromised host immunity, defective body defence, surgery or urinary catheterization; with Acinetobacter baumannii being the ...

  9. In vitro susceptibility patterns of clinically important Trichophyton and Epidermophyton species against nine antifungal drugs

    NARCIS (Netherlands)

    Badali, Hamid; Mohammadi, Rasoul; Mashedi, Olga; de Hoog, G Sybren; Meis, Jacques F

    Despite the common, worldwide, occurrence of dermatophytes, little information is available regarding susceptibility profiles against currently available and novel antifungal agents. A collection of sixty-eight clinical Trichophyton species and Epidermophyton floccosum were previously identified and

  10. Codivergence and multiple host species use by fig wasp populations of the Ficus pollination mutualism

    Directory of Open Access Journals (Sweden)

    McLeish Michael J

    2012-01-01

    Full Text Available Abstract Background The interaction between insects and plants takes myriad forms in the generation of spectacular diversity. In this association a species host range is fundamental and often measured using an estimate of phylogenetic concordance between species. Pollinating fig wasps display extreme host species specificity, but the intraspecific variation in empirical accounts of host affiliation has previously been underestimated. In this investigation, lineage delimitation and codiversification tests are used to generate and discuss hypotheses elucidating on pollinating fig wasp associations with Ficus. Results Statistical parsimony and AMOVA revealed deep divergences at the COI locus within several pollinating fig wasp species that persist on the same host Ficus species. Changes in branching patterns estimated using the generalized mixed Yule coalescent test indicated lineage duplication on the same Ficus species. Conversely, Elisabethiella and Alfonsiella fig wasp species are able to reproduce on multiple, but closely related host fig species. Tree reconciliation tests indicate significant codiversification as well as significant incongruence between fig wasp and Ficus phylogenies. Conclusions The findings demonstrate more relaxed pollinating fig wasp host specificity than previously appreciated. Evolutionarily conservative host associations have been tempered by horizontal transfer and lineage duplication among closely related Ficus species. Independent and asynchronistic diversification of pollinating fig wasps is best explained by a combination of both sympatric and allopatric models of speciation. Pollinator host preference constraints permit reproduction on closely related Ficus species, but uncertainty of the frequency and duration of these associations requires better resolution.

  11. Susceptibility of Phelipanche and Orobanche species to AAL-toxin.

    Science.gov (United States)

    de Zélicourt, Axel; Montiel, Grégory; Pouvreau, Jean-Bernard; Thoiron, Séverine; Delgrange, Sabine; Simier, Philippe; Delavault, Philippe

    2009-10-01

    Fusarium and Alternaria spp. are phytopathogenic fungi which are known to be virulent on broomrapes and to produce sphinganine-analog mycotoxins (SAMs). AAL-toxin is a SAM produced by Alternaria alternata which causes the inhibition of sphinganine N-acyltransferase, a key enzyme in sphingolipid biosynthesis, leading to accumulation of sphingoid bases. These long chain bases (LCBs) are determinant in the occurrence of programmed cell death (PCD) in susceptible plants. We showed that broomrapes are sensitive to AAL-toxin, which is not common plant behavior, and that AAL-toxin triggers cell death at the apex of the radicle as well as LCB accumulation and DNA laddering. We also demonstrated that three Lag1 homologs, encoding components of sphinganine N-acyltransferase in yeast, are present in the Orobanche cumana genome and two of them are mutated leading to an enhanced susceptibility to AAL-toxin. We therefore propose a model for the molecular mechanism governing broomrape susceptibility to the fungus Alternaria alternata.

  12. Role of early experience in ant enslavement: a comparative analysis of a host and a non-host species

    Directory of Open Access Journals (Sweden)

    Sermage Claire

    2005-08-01

    Full Text Available Abstract Background Ants use the odour of the colony to discriminate nestmates. In some species, this odour is learned during the first days following emergence, and thus early experience has a strong influence on nestmate discrimination. Slave-making ants are social parasites that capture brood of other ant species to increase the worker force of their colony. After emerging in the slave-maker nest, slave workers work as if they were in their own colony. We tested the hypothesis that early experience allows the deception of commonly enslaved species, while non-host species use a different mechanism, which does not involve learning. Results Pupae of a host species, Temnothorax unifasciatus, and a non-host species, T. parvulus, were allowed to emerge in the presence of workers of one of two slave-maker species, Chalepoxenus muellerianus or Myrmoxenus ravouxi. When T. unifasciatus was exposed to slave-makers for 10 days following emergence, they were more aggressive towards their own sisters and groomed the slave-maker more. T. parvulus gave a less clear result: while workers behaved more aggressively towards their sisters when exposed early to C. muellerianus workers, this was not the case when exposed early to M. ravouxi workers. Moreover, T. parvulus workers allogroomed conspecific nestmates less than T. unifasciatus. Allogrooming activity might be very important for the slave-makers because they are tended by their slaves. Conclusion Our findings show that early experience influences nestmate discrimination in the ant T. unifasciatus and can account for the successful enslavement of this species. However, the non-host species T. parvulus is less influenced by the early environment. This might help to explain why this species is never used by social parasites.

  13. [The susceptibility of different animal species to synanthropic and natural populations of Trichinella].

    Science.gov (United States)

    Artemenko, Iu G; Artemenko, L P

    1997-01-01

    Pigs have been found to be highly susceptible to the synanthropic (domestic) population of Trichinella [correction of Trachina] and weakly susceptible to the natural (native) one. Fur-bearing animals (polar foxes and foxes) are more susceptible to the natural population of Trichinella [correction of Trachina], but minks are equally sensible to the two variants of T. spiralis. In the host's body, synanthropic Trichinella [correction of Trachinas] form capsules of lemon-like, less frequently, oval shape, but the native population do round capsules. There is larval adaptation when Trichinella [correction of Trachina] larvae enter the nonspecific host's body after their prepassage through the organism of domestic carnivorous animals (cats, dogs). The pig is successfully infected with T. spiralis nativa via the cat or dog; the infection rate is approximately close to that observed during control infection of pigs with synanthropic Trichinella [correction of Trachina].

  14. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  15. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States.

    Science.gov (United States)

    Mirajkar, Nandita S; Davies, Peter R; Gebhart, Connie J

    2016-08-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered "Brachyspira hampsonii," have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States

    Science.gov (United States)

    Mirajkar, Nandita S.; Davies, Peter R.

    2016-01-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies. PMID:27252458

  17. Antimicrobial susceptibility pattern of Acinetobacter species isolated from infected wounds at a tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Rosić Ivana

    2013-01-01

    Full Text Available Bacteria of the genus Acinetobacter, especially species Acinetobacter baumanii, is one of the most important causes of infection in immunocompromised patients in hospital. The aim of this study was to determine susceptibility of Acinetobacter species isolated from swabs of inflamed wounds to antibiotics. The study was conducted in several departments of the Clinical Centre 'Kragujevac' through retrospective analysis of 220 Acinetobacter species isolates from surgical wounds in 2011. The isolates of Acinetobaster species were mostly sensitive to ampicillin-sulbactam, colistin and tigecycline in all hospital departments that were surveyed. Only minority of the isolated Acinetobacter species were susceptible to cotrimoxazole, amikacin, imipenem and/or meropenem. Antibiotics with the highest in vitro efficacy against Acinetobacter species were ampicillinsulbactam, colistin and tigecycline. Highly resistant Acinetobacter species were more frequently isolated from patients in Intensive Care Unit.

  18. [Validation of the modified algorithm for predicting host susceptibility to viruses taking into account susceptibility parameters of primary target cell cultures and natural immunity factors].

    Science.gov (United States)

    Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A

    2010-01-01

    The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.

  19. prevalence and antifungal susceptibility of candida species isolated

    African Journals Online (AJOL)

    User

    Candida species isolated from HVS specimens were Candida albicans (n=19, 48.7%), Can- dida glabrata .... C test kits. The isolates were stored ... problem that causes significant morbidity and affects the .... from both urinary and high vaginal specimens followed by ... drugs that are used in the treatment of infec- tions due ...

  20. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  1. Habitat requirements and host selectivity of Thesium species (Santalaceae)

    Czech Academy of Sciences Publication Activity Database

    Dostálek, T.; Münzbergová, Zuzana

    2010-01-01

    Roč. 164, č. 4 (2010), s. 394-408 ISSN 0024-4074 R&D Projects: GA MŠk 2B06178; GA ČR GD206/08/H049 Institutional research plan: CEZ:AV0Z60050516 Keywords : hemiparasites * host range and specifity * Santalales Subject RIV: EF - Botanics Impact factor: 1.931, year: 2010

  2. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    Science.gov (United States)

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  3. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  4. Species distribution & antifungal susceptibility pattern of oropharyngeal Candida isolates from human immunodeficiency virus infected individuals

    Directory of Open Access Journals (Sweden)

    Partha Pratim Das

    2016-01-01

    Results: From the 59 culture positive HIV seropositive cases, 61 Candida isolates were recovered; Candidaalbicans (n=47, 77.0%, C. dubliniensis (n=9, 14.7%, C. parapsilosis (n=2, 3.2%, C. glabrata (n=2, 3.2%, and C. famata (n=1, 1.6%. Candida colonization in HIV-seropositive individuals was significantly higher than that of HIV-seronegative (control group. Antifungal susceptibility testing revealed (n=6, 9.3% C. albicans isolates resistant to voriconazole and fluconazole by disk-diffusion method whereas no resistance was seen by Fungitest method. Interpretation & conclusions: C. albicans was the commonest Candida species infecting or colonizing HIV seropositive individuals. Oropharyngeal Candida isolates had high level susceptibility to all the major antifungals commonly in use. Increased level of immunosuppression in HIV-seropositives and drug resistance of non-albicans Candida species makes identification and susceptibility testing of Candida species necessary in different geographical areas of the country.

  5. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    Science.gov (United States)

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  6. Host-related genetic differentiation in the anther smut fungus Microbotryum violaceum in sympatric, parapatric and allopatric populations of two host species Silene latifolia and S. dioica

    NARCIS (Netherlands)

    Van Putten, W.F.; Biere, A.; Van Damme, J.M.M.

    2005-01-01

    We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus

  7. Host-related genetic differentiation in the anther smut fungus Microbotryum violaceum in sympatric, parapatric and allopatric populations of two host species Silene latifolia and S-dioica

    NARCIS (Netherlands)

    Van Putten, WF; Biere, A; Van Damme, JMM

    We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus

  8. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    Science.gov (United States)

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  9. Frequency and antimicrobial susceptibility of acinetobacter species isolated from blood samples of paediatric patients

    International Nuclear Information System (INIS)

    Javed, A.; Zafar, A.; Ejaz, H.; Zubair, M.

    2012-01-01

    Objective: Acinetobacter species is a major nosocomial pathogen causing serious infections in immuno-compromised and hospitalized patients. The aim of this study was to determine the frequency and antimicrobial susceptibility pattern of Acinetobacter species in blood samples of paediatric patients. Methodology: This cross sectional observational study was conducted during January to October, 2011 at The Children's Hospital and Institute of Child Health, Lahore. A total number of 12,032 blood samples were analysed during the study period. Acinetobacter species were Bauer disc diffusion method. Results: The blood cultures showed growth in 1,141 cultures out of which 46 (4.0%) were Acinetobacter species. The gender distribution of Acinetobacter species was 29 (63.0%) in males and 17 (37.0%) in females. A good antimicrobial susceptibility pattern of Acinetobacter species was seen with sulbactam-cefoperazone (93.0%), imepenem and meropenem (82.6% (30.4%) was poor. Conclusion: The results of the present study shows high rate of resistance of Acinetobacter species with cephalosporins in nosocomial infections. The sulbactam-cefoperazone, carbapenems and piperacillin-tazobactam showed effective antimicrobial susceptibility against Acinetobacter species. (author)

  10. Mapping host-species abundance of three major exotic forest pests

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold; Eugene R. Luzader; Andrew J. Lister; Kurt W. Gottschalk; Daniel B. Twardus

    2005-01-01

    Periodically over the last century, forests of the Eastern United States devastated by invasive pests. We used existing data to predict the geographical extent of future damage from beech bark disease (BBD), hemlock woolly adelgid (HWA), and gypsy moth. The distributions of host species of these alien pests were mapped in 1-km2 cells by interpolating host basal area/ha...

  11. Convergent development of a parasitoid wasp on three host species with differing mass and growth potential

    NARCIS (Netherlands)

    Harvey, J.A.; Molina, A.C.; Bezemer, T.M.; Malcicka, M.

    2015-01-01

    Koinobiont parasitoids develop in hosts that continue feeding and growing during the course of parasitism. Here, we compared development of a solitary koinobiont endoparasitoid, Meteorus pulchricornis Westmael (Hymenoptera: Braconidae), in second (L2) and fourth (L4) instars of three host species

  12. Diversity, distribution and host-species associations of epiphytic orchids in Nepal

    Czech Academy of Sciences Publication Activity Database

    Timsina, B.; Rokaya, Maan Bahadur; Münzbergová, Zuzana; Kindlmann, P.; Shrestha, B.; Bhattarai, B.; Raskoti, B. B.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 2803-2819 ISSN 0960-3115 Institutional support: RVO:67985939 Keywords : species richness * host * Nepal Himalaya Subject RIV: EF - Botanics Impact factor: 2.265, year: 2016

  13. Susceptibility to Phytophthora ramorum in California bay laurel, a key foliar host of sudden oak death

    Science.gov (United States)

    Brian L. Anacker; Nathan E. Rank; Daniel Hüberli; Matteo Garbelotto; Sarah Gordon; Rich Whitkus; Tami Harnik; Matthew Meshriy; Lori Miles; Ross K. Meentemeyer

    2008-01-01

    Sudden oak death, caused by the water mold Phytophthora ramorum, is a plant disease responsible for the death of hundreds of thousands of oak and tanoak trees. Some foliar hosts play a major role in the epidemiology of this disease. Upon infection by P. ramorum, these foliar hosts express non-fatal leaf lesions from which large...

  14. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis.

    Science.gov (United States)

    McTaggart, Lisa R; Doucet, Jennifer; Witkowska, Maria; Richardson, Susan E

    2015-01-01

    Antimicrobial susceptibility patterns of 112 clinical isolates, 28 type strains, and 9 reference strains of Nocardia were determined using the Sensititre Rapmyco microdilution panel (Thermo Fisher, Inc.). Isolates were identified by highly discriminatory multilocus sequence analysis and were chosen to represent the diversity of species recovered from clinical specimens in Ontario, Canada. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 97% of isolates. Linezolid and amikacin were also highly effective; 100% and 99% of all isolates demonstrated a susceptible phenotype. For the remaining antimicrobials, resistance was species specific with isolates of Nocardia otitidiscaviarum, N. brasiliensis, N. abscessus complex, N. nova complex, N. transvalensis complex, N. farcinica, and N. cyriacigeorgica displaying the traditional characteristic drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered species isolated from clinical specimens are reported for the first time and were categorized into four additional drug pattern types. Finally, MICs for the control strains N. nova ATCC BAA-2227, N. asteroides ATCC 19247(T), and N. farcinica ATCC 23826 were robustly determined to demonstrate method reproducibility and suitability of the commercial Sensititre Rapmyco panel for antimicrobial susceptibility testing of Nocardia spp. isolated from clinical specimens. The reported values will facilitate quality control and standardization among laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods

    Science.gov (United States)

    Jenkins, William G.; Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2018-01-01

    The importance of the role that parasites play in ecological communities is becoming increasingly apparent. However much about their impact on hosts and thus populations and communities remains poorly understood. A common observation in wild populations is high variation in levels of parasite infestation among hosts. While high variation could be due to chance encounter, there is increasing evidence to suggest that such patterns are due to a combination of environmental, host, and parasite factors. In order to examine the role of host condition on parasite infection, rates of Gnathia marleyi infestation were compared between experimentally injured and uninjured fish hosts. Experimental injuries were similar to the minor wounds commonly observed in nature. The presence of the injury significantly increased the probability of infestation by gnathiids. However, the level of infestation (i.e., total number of gnathiid parasites) for individual hosts, appeared to be unaffected by the treatment. The results from this study indicate that injuries obtained by fish in nature may carry the additional cost of increased parasite burden along with the costs typically associated with physical injury. These results suggest that host condition may be an important factor in determining the likelihood of infestation by a common coral reef fish ectoparasite, G. marleyi.

  16. Host resistance in potato to three Globodera species

    Science.gov (United States)

    Potato cyst nematodes (PCN) under quarantine in the U.S. and Canada are the pale cyst nematode (Globodera pallida) and the golden cyst nematode (G. rostochiensis). A new species, G. ellingtonae was discovered in Oregon and Idaho in 2008 and is not currently a quarantine pest. In 2006 detection of ...

  17. Susceptibility to Phytophthora ramorum and inoculum production potential of some common eastern forest understory plant species

    Science.gov (United States)

    Paul W. Tooley; Marsha Browning

    2009-01-01

    Twenty-five plant species (21 genera, 14 families), which comprise a portion of the understory in forests of the Eastern United States, were evaluated for susceptibility to infection by Phytophthora ramorum. The degree to which P. ramorum is able to form sporangia and chlamydospores was also assessed on...

  18. Baseline susceptibility to pyrethroid and organophosphate insecticides in two old world sand fly species (diptera: psychodidae)

    Science.gov (United States)

    A study was conducted with support from the Department of Defense’s Deployed Warfighter Protection (DWFP) Program to evaluate the susceptibility of two old world sand fly species, Phlebotomus papatasi and P. duboscqi, to a number of commonly used pyrethroid and organophosphate insecticides. A simpl...

  19. Susceptibility of Seven Termite Species (Isoptera) to the Entomopathogenic Fungus Metarhizium anisopliae

    OpenAIRE

    Chouvenc , Thomas; Su , Nan-Yao; Robert , Alain

    2009-01-01

    Seven termite species (Isoptera) from five families were tested for disease susceptibility against the entomopathogenic fungus Metarhizium anisopliae using a standard protocol: Mastotermes darwiniensis (Mastotermitidae), Hodotermopsis sjoestedti (Termopsidae), Hodotermes mossambicus (Hodotermitidae), Kalotermes flavicollis (Kalotermitidae), Reticulitermes flavipes and Prorhinotermes canalifrons (Rhinotermitidae), and Nasutitermes voeltzkowi (Termitidae). Our results showed a large diversity i...

  20. Morphological variation and host range of two Ganoderma species from Papua New Guinea.

    Science.gov (United States)

    Pilotti, Carmel A; Sanderson, Frank R; Aitken, Elizabeth A B; Armstrong, Wendy

    2004-08-01

    Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Spore morphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.

  1. No Effect of Host Species on Phenoloxidase Activity in a Mycophagous Beetle.

    Directory of Open Access Journals (Sweden)

    Vincent Formica

    Full Text Available Ecological immunology is an interdisciplinary field that helps elucidate interactions between the environment and immune response. The host species individuals experience have profound effects on immune response in many species of insects. However, this conclusion comes from studies of herbivorous insects even though species of mycophagous insects also inhabit many different host species. The goal of this study was to determine if fungal host species as well as individual, sex, body size, and host patch predict one aspect of immune function, phenoloxidase activity (PO. We sampled a metapopulation of Bolitotherus cornutus, a mycophagous beetle in southwestern Virginia. B. cornutus live on three species of fungus that differ in nutritional quality, social environment, and density. A filter paper phenoloxidase assay was used to quantify phenoloxidase activity. Overall, PO activity was significantly repeatable among individuals (0.57 in adult B. cornutus. While there was significant variance among individuals in PO activity, there were surprisingly no significant differences in PO activity among subpopulations, beetles living on different host species, or between the sexes; there was also no effect of body size. Our results suggest that other factors such as age, genotype, disease prevalence, or natal environment may be generating variance among individuals in PO activity.

  2. Myxoma virus in the European rabbit: interactions between the virus and its susceptible host.

    Science.gov (United States)

    Stanford, Marianne M; Werden, Steven J; McFadden, Grant

    2007-01-01

    Myxoma virus (MV) is a poxvirus that evolved in Sylvilagus lagomorphs, and is the causative agent of myxomatosis in European rabbits (Oryctolagus cuniculus). This virus is not a natural pathogen of O. cuniculus, yet is able to subvert the host rabbit immune system defenses and cause a highly lethal systemic infection. The interaction of MV proteins and the rabbit immune system has been an ideal model to help elucidate host/poxvirus interactions, and has led to a greater understanding of how other poxvirus pathogens are able to cause disease in their respective hosts. This review will examine how MV causes myxomatosis, by examining a selection of the identified immunomodulatory proteins that this virus expresses to subvert the immune and inflammatory pathways of infected rabbit hosts.

  3. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone; Fattorini, Simone; Parravicini, Valeriano; Berumen, Michael L.; Galli, Paolo; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Strona, Giovanni

    2017-01-01

    for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced

  4. Do host species evolve a specific response to slave-making ants?

    Directory of Open Access Journals (Sweden)

    Delattre Olivier

    2012-12-01

    Full Text Available Abstract Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections towards parasite

  5. Host heterogeneity influences the impact of a non-native disease invasion on populations of a foundation tree species

    Science.gov (United States)

    Jules, Erik S.; Carroll, Allyson L.; Garcia, Andrea M.; Steenbock, Christopher M.; Kauffman, Matthew J.

    2014-01-01

    Invasive pathogens are becoming increasingly important in forested ecosystems, yet they are often difficult to study because of their rapid transmission. The rate and extent of pathogen spread are thought to be partially controlled by variation in host characteristics, such as when host size and location influence susceptibility. Few host-pathogen systems, however, have been used to test this prediction. We used Port Orford cedar (Chamaecyparis lawsoniana), a foundation tree species in riparian areas of California and Oregon (USA), and the invasive oomycete Phytophthora lateralis to assess pathogen impacts and the role of host characteristics on invasion. Across three streams that had been infected for 13–18 years by P. lateralis, we mapped 2241 trees and determined whether they had been infected using dendrochronology. The infection probability of trees was governed by host size (diameter at breast height [DBH]) and geomorphic position (e.g., active channel, stream bank, floodplain, etc.) similarly across streams. For instance, only 23% of trees <20 cm DBH were infected, while 69% of trees ≥20 cm DBH were infected. Presumably, because spores of P. lateralis are transported downstream in water, they are more likely to encounter well-developed root systems of larger trees. Also because of this water-transport of spores, differences in infection probability were found across the geomorphic positions: 59% of cedar in the active channel and the stream bank (combined) were infected, while 23% of trees found on higher geomorphic types were infected. Overall, 32% of cedar had been infected across the three streams. However, 63% of the total cedar basal area had been killed, because the greatest number of trees, and the largest trees, were found in the most susceptible positions. In the active channel and stream bank, 91% of the basal area was infected, while 46% was infected across higher geomorphic positions. The invasion of Port Orford cedar populations by

  6. Determination of antifungal susceptibility patterns among the clinical isolates of Candida species

    Directory of Open Access Journals (Sweden)

    Kamiar Zomorodian

    2011-01-01

    Full Text Available Context: Candida species are opportunistic yeasts that cause infections ranging from simple dermatosis to potentially life-threatening fungemia. The emergence of resistance to antifungal drugs has been increased in the past two decades. Aim: the present study we determined to find out the susceptibility profiles of clinical isolates of Candida species against four antifungal drugs, including amphotericin B, ketoconazole, fluconazole and itraconazole. Materials and Methods: Antifungal susceptibility testing of the yeasts was done in accordance with the proposed guidelines for antifungal disk diffusion susceptibility testing of yeasts based on the CLSI document M44-A. Results: A total of 206 yeast isolates were assessed. Among the evaluated Candida species, the highest rates of resistance to ketoconazole were seen in Candida glabrata (16.6% and Candida albicans (3.2%. Susceptibility and intermediate response to fluconazole were seen in 96.6% and 3.4% of the Candida isolates, respectively. A total of 19 (9.2% yeast isolates showed petite phenomenon including 11 C. glabrata, 3 C. albicans, 2 Candida dubliniensis and one isolate of each Candida krusei and Candida parapsilosis. Conclusion: The high number of petite mutation in the isolated yeasts should be seriously considered since it may be one of the reasons of antifungal treatment failure.

  7. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease.

    Science.gov (United States)

    Bloom, Seth M; Bijanki, Vinieth N; Nava, Gerardo M; Sun, Lulu; Malvin, Nicole P; Donermeyer, David L; Dunne, W Michael; Allen, Paul M; Stappenbeck, Thaddeus S

    2011-05-19

    The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species.

    Science.gov (United States)

    Duar, Rebbeca M; Frese, Steven A; Lin, Xiaoxi B; Fernando, Samodha C; Burkey, Thomas E; Tasseva, Guergana; Peterson, Daniel A; Blom, Jochen; Wenzel, Cory Q; Szymanski, Christine M; Walter, Jens

    2017-06-15

    The species Lactobacillus reuteri has diversified into host-specific lineages, implying a long-term association with different vertebrates. Strains from rodent lineages show specific adaptations to mice, but the processes underlying the evolution of L. reuteri in other hosts remain unknown. We administered three standardized inocula composed of strains from different host-confined lineages to mice, pigs, chickens, and humans. The ecological performance of each strain in the gastrointestinal tract of each host was determined by typing random colonies recovered from fecal samples collected over five consecutive days postadministration. Results revealed that rodent strains were predominant in mice, confirming previous findings of host adaptation. In chickens, poultry strains of the lineage VI (poultry VI) and human isolates from the same lineage (human VI) were recovered at the highest and second highest rates, respectively. Interestingly, human VI strains were virtually undetected in human feces. These findings, together with ancestral state reconstructions, indicate poultry VI and human VI strains share an evolutionary history with chickens. Genomic analysis revealed that poultry VI strains possess a large and variable accessory genome, whereas human VI strains display low genetic diversity and possess genes encoding antibiotic resistance and capsular polysaccharide synthesis, which might have allowed temporal colonization of humans. Experiments in pigs and humans did not provide evidence of host adaptation of L. reuteri to these hosts. Overall, our findings demonstrate host adaptation of L. reuteri to rodents and chickens, supporting a joint evolution of this bacterial species with several vertebrate hosts, although questions remain about its natural history in humans and pigs. IMPORTANCE Gut microbes are often hypothesized to have coevolved with their vertebrate hosts. However, the evidence is sparse and the evolutionary mechanisms have not been identified. We

  9. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  10. Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread

    Science.gov (United States)

    Severns, Paul M.; Estep, Laura K.; Sackett, Kathryn E.; Mundt, Christopher C.

    2014-01-01

    Summary Disease epidemics typically begin as an outbreak of a relatively small, spatially explicit population of infected individuals (focus), in which disease prevalence increases and rapidly spreads into the uninfected, at-risk population. Studies of epidemic spread typically address factors influencing disease spread through the at-risk population, but the initial outbreak may strongly influence spread of the subsequent epidemic.We initiated wheat stripe rust Puccinia striiformis f. sp. tritici epidemics to assess the influence of the focus on final disease prevalence when the degree of disease susceptibility differed between the at-risk and focus populations.When the focus/at-risk plantings consisted of partially genetic resistant and susceptible cultivars, final disease prevalence was statistically indistinguishable from epidemics produced by the focus cultivar in monoculture. In these experimental epidemics, disease prevalence was not influenced by the transition into an at-risk population that differed in disease susceptibility. Instead, the focus appeared to exert a dominant influence on the subsequent epidemic.Final disease prevalence was not consistently attributable to either the focus or the at-risk population when focus/at-risk populations were planted in a factorial set-up with a mixture (~28% susceptible and 72% resistant) and susceptible individuals. In these experimental epidemics, spatial heterogeneity in disease susceptibility within the at-risk population appeared to counter the dominant influence of the focus.Cessation of spore production from the focus (through fungicide/glyphosate application) after 1.3 generations of stripe rust spread did not reduce final disease prevalence, indicating that the focus influence on disease spread is established early in the epidemic.Synthesis and applications. Our experiments indicated that outbreak conditions can be highly influential on epidemic spread, even when disease resistance in the at-risk population

  11. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    Science.gov (United States)

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  12. Toxocara cati (Nematoda, Ascarididae in different wild feline species in Brazil: new host records

    Directory of Open Access Journals (Sweden)

    Moisés Gallas

    2013-05-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2013v26n3p117 This is the first detailed description of Toxocara cati parasitizing felines in South America. Seventeen run over wild felines (Leopardus colocolo, Leopardus geoffroyi, Leopardus tigrinus, and Puma yagouaroundi were collected from different towns in the State of Rio Grande do Sul, Brazil. The morphometry of males and females allowed the identification of specimens as being T. cati. The helminths were found in the stomach and intestine of hosts with prevalences of 66.6% in L. colocolo, L. geoffroyi, and L. tigrinus; and 60% in P. yagouaroundi. The ecological parameters were calculated for each host and L. colocolo had the highest infection intensity (22.5 helminths/ host. This is the first report of T. cati parasitizing four wild felines species in southern Brazil, besides a new record of this parasite for two host species.

  13. Toxocara cati (Schrank, 1788 (Nematoda, Ascarididae in different wild feline species in Brazil: new host records

    Directory of Open Access Journals (Sweden)

    Moisés Gallas

    2013-09-01

    Full Text Available This is the first detailed description of Toxocara cati parasitizing felines in South America. Seventeen run over wild felines (Leopardus colocolo, Leopardus geoffroyi, Leopardus tigrinus, and Puma yagouaroundi were collected from different towns in the State of Rio Grande do Sul, Brazil. The morphometry of males and females allowed the identification of specimens as being T. cati. The helminths were found in the stomach and intestine of hosts with prevalences of 66.6% in L. colocolo, L. geoffroyi, and L. tigrinus; and 60% in P. yagouaroundi. The ecological parameters were calculated for each host and L. colocolo had the highest infection intensity (22.5 helminths/host. This is the first report of T. cati parasitizing four wild felines species in southern Brazil, besides a new record of this parasite for two host species.

  14. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Colonization and antifungals susceptibility patterns of Candida species isolated from hospitalized patients in ICUs and NICUs.

    Science.gov (United States)

    Zarei Mahmoudabadi, Ali; Rezaei-Matehkolaei, Ali; Navid, Mojgan; Torabizadeh, Mehdi; Mazdarani, Shahnam

    2015-07-01

    Several studies have shown that there are an increasing in invasive candidiasis during 2-3 last decades. Although, Candida albicans is considered as the most common candidiasis agents, other non-albicans such as C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis were raised as infectious agents. Resistance to fluconazole among non-albicans species is an important problem for clinicians during therapy and prophylaxis. The aim of current study was to detect the Candida species from hospitalized neonatal and children in intensive care units (ICUs) and neonatal intensive care units (NICUs). In addition, the susceptibility of isolated agents were also evaluated against three antifungals. In the present study 298 samples including 98 blood samples, 100 urines and 100 swabs from oral cavity were inoculated on CHROMagar Candida. Initial detection was done according to the coloration colonies on CHROMagar Candida . Morphology on cornmeal agar, germ tube formation and growth at 45°C were confirmed isolates. Amphotericin B, fluconazole and terbinafine (Lamisil) were used for the susceptibility tests using microdilution method. In the present study 21% and 34% of urines and swabs from oral cavity were positive for Candida species, respectively. The most common species was C. albicans (62.5%) followed by C. tropicalis (15.6%), C. glabrata (6.3%) and Candida species (15.6%). Our study indicated that the most tested species of Candida, 70.3% were sensitive to fluconazole at the concentration of ≤8 μg/mL. Whereas 9 (14.1%) of isolates were resistant to amphotericine B at ≥8 μg/mL. This study demonstrates the importance of species identification and antifungals susceptibility testing for hospitalized patients in ICUs and NICUs wards.

  16. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil.

    Science.gov (United States)

    Hayasaka, Daisuke; Korenaga, Tomoko; Suzuki, Kazutaka; Sánchez-Bayo, Francisco; Goka, Koichi

    2012-03-01

    Differences in susceptibility of five cladocerans to the neonicotinoid imidacloprid and the phenyl-pyrazole fipronil, which have been dominantly used in rice fields of Japan in recent years, were examined based on short-term (48-h), semi-static acute immobilization exposure tests. Additionally, we compared the species sensitivity distribution (SSD) patterns of both insecticides between two sets of species: the five tested cladocerans and all other aquatic organisms tested so far, using data from the ECOTOX database of U.S. Environmental Protection Agency (USEPA). The sensitivity of the test species to either imidacloprid or fipronil was consistent, spanning similar orders of magnitude (100 times). At the genus level, sensitivities to both insecticides were in the following descending order: Ceriodaphnia > Moina > Daphnia. A positive relationship was found between body lengths of each species and the acute toxicity (EC(50)) of the insecticides, in particular fipronil. Differences in SSD patterns of imidacloprid were found between the species groups compared, indicating that test cladocerans are much less susceptible than other aquatic species including amphibians, crustaceans, fish, insects, mollusks and worms. However, the SSD patterns for fipronil indicate no difference in sensitivity between cladocerans tested and other aquatic organisms despite the greater exposure, which overestimates the results, of our semi-static tests. From these results, Ceriodaphnia sp. should be considered as more sensitive bioindicators (instead of the standard Daphnia magna) for ecotoxicological assessments of aquatic ecosystems. In addition, we propose that ecotoxicity data associated with differences in susceptibility among species should be investigated whenever pesticides have different physicochemical properties and mode of action.

  17. Experimental infection of Aphanomyces invadans and susceptibility in seven species of tropical fish

    Directory of Open Access Journals (Sweden)

    Seyedeh F. Afzali

    2015-09-01

    Full Text Available Aim: Epizootic ulcerative syndrome (EUS causes by aquatic oomycete fungus, Aphanomyces invadans is a dangerous fish disease of a wide range of fresh and brackish water, wild and farmed fish throughout the world. The objective of the present study was to determine the susceptibility of a number of tropical fish species to the EUS and compare the severity of infection between experimental groups. Materials and Methods: Snakehead, Channa striata (Bloch, 1793; snakeskin gourami, Trichopodus pectoralis (Regan, 1910; koi carp, Cyprinus carpio (Linnaeus, 1758; broadhead catfish, Clarias macrocephalus (Günther, 1864; goldfish, Carassius auratus (Linnaeus, 1758; climbing perch, Anabas testudineus (Bloch, 1792; and Nile tilapia, Oreochromis niloticus (Linnaeus, 1758 were challenged by intramuscular injection using zoospores of Aphanomyces invadans (NJM9701. The infected fish skins and muscles were examined for EUS histopathological characteristics, and the results on the severity of lesions and mortality were analyzed using SPSS program. Results: All zoospore-injected fish were shown to be susceptible to the EUS infection except Nile tilapia. Although, the general histopathological pattern was similar in the zoospore-injected group, but there were some variation in granulomatous reaction, that is the presence or absence of giant cells, and time of mortality were detected. The result of statistical analysis showed that there was a significant difference between species, (c2=145.11 and p<0.01. Conclusion: Gourami, koi carp, and catfish were demonstrated to be highly susceptible while goldfish and climbing perch were found to be moderately susceptible to the EUS infection. These findings suggested that the cellular response of fish to mycotic infection and granulomatous reaction varied in different fish species, which could not be an indicator of susceptibility or resistant to the EUS itself, although it was shown that the granulation rate and the level of

  18. Species Distribution and Susceptibility to Azoles of Vaginal Yeasts Isolated Prostitutes

    Directory of Open Access Journals (Sweden)

    Norma T. Gross

    2007-01-01

    Full Text Available Objective. We investigated the use of miconazole among female prostitutes in Costa Rica as well as the distribution of vaginal yeasts and the susceptibility pattern to azoles of strains obtained from this population. Our intention was to relate a frequent use of miconazole to occurrence of vaginal yeasts resistant to azoles. Methods. Vaginal samples were taken from 277 patients that have previously used azoles. Vaginal swabs were obtained for direct microscopy and culture. Yeast isolates were identified by germ tube test and assimilation pattern. Susceptibility testing was determined using a tablet diffusion method. Results. The number of clinical Candida isolates (one from each patient was 57 (20.6%. C. albicans was the predominant species (70%, followed by C. parapsilosis (12%, C. tropicalis (5.3%, C. glabrata and C. famata (3.5% each, C. krusei, C. inconspicua and C. guilliermondii (1.7% each. The majority of vaginal Candida isolates were susceptible to ketoconazole (91%, fluconazole (96.5%, and itraconazole (98%. A lower susceptibility of some isolates to miconazole (63% was observed as compared to the other azoles tested. Moreover, the strains, nonsusceptible to miconazole, were more often obtained from patients that have used this antifungal at least four times within the last year before taking the samples as compared to those with three or less treatments (P<.01. Conclusion. An indiscriminate use of miconazole, such as that observed among female prostitutes in Costa Rica, results in a reduced susceptibility of vaginal yeasts to miconazole but not to other azoles.

  19. Host Status of Seven Weed Species and Their Effects on Ditylenchus destructor Infestation of Peanut

    OpenAIRE

    De Waele, D.; Jordaan, Elizabeth M.; Basson, Selmaré

    1990-01-01

    The host suitability to Ditylenchus destructor of seven common weed species in peanut (Arachis hypogaea) fields in South Africa was determined. Based on the number of nematodes per root unit, white goosefoot (Chenopodium album), feathertop chloris (Chloris virgata), purple nutsedge (Cyperus rotundus), jimson weed (Datura stramonium), goose grass (Eleusine indica), khaki weed (Tagetes minuta), and cocklebur (Xanthium strumarium) were poor hosts. Ditylenchus destructor survived on all weed spec...

  20. Host and Potential Vector Susceptibility to an Emerging Orbivirus in the United States: Epizootic Hemorrhagic Disease Virus Serotype 6.

    Science.gov (United States)

    Ruder, M G; Stallknecht, D E; Allison, A B; Mead, D G; Carter, D L; Howerth, E W

    2016-05-01

    Epizootic hemorrhagic disease viruses (EHDVs) are orbiviruses transmitted by Culicoides biting midges to domestic and wild ruminants. EHDV-1 and EHDV-2 are endemic in the United States, where epizootic hemorrhagic disease is the most significant viral disease of white-tailed deer (WTD;Odocoileus virginianus) and reports of epizootic hemorrhagic disease in cattle are increasing. In 2006, a reassortant EHDV-6 was isolated from dead WTD in Indiana and has been detected each subsequent year over a wide geographic region. Since EHDV-6 is not a historically endemic serotype in the United States, it is important to understand infection outcome in potential hosts. Specifically, we aimed to evaluate the pathogenicity of the virus in 2 primary US ruminant hosts (WTD and cattle) and the susceptibility of a confirmed US vector (Culicoides sonorensis). Five WTD and 4 cattle were inoculated with >10(6)TCID50EHDV-6 by intradermal and subcutaneous injection. All 5 WTD exhibited moderate to severe disease, and 3 died. Viremia was first detected 3 to 5 days postinfection (dpi) with surviving animals seroconverting by 10 dpi. Two of 4 inoculated cattle had detectable viremia, 5 to 10 dpi and 7 to 24 dpi, respectively. No clinical, hematologic, or pathologic abnormalities were observed. Antibodies were detected by 10 dpi in 3 of 4 cows.C. sonorensis were fed on WTD blood spiked with EHDV-6 and held for 4 to 14 days postfeeding at 25°C. From 4 to 14 days postfeeding, 19 of 171 midges were virus isolation positive and 6 of 171 had ≥10(2.7)TCID50EHDV-6. Although outcomes varied, these studies demonstrate the susceptibility of ruminant and vector hosts in the United States for this recently emerged EHDV serotype. © The Author(s) 2015.

  1. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette V; Hasman, Henrik

    2018-01-01

    strains to 12 (nine monovalent) different therapeutic phage preparations and subsequently employed linear regression models to estimate the influence of individual host gene families on resistance to phages. Specifically, we used a two-step regression model setup with a preselection step based on gene...... family enrichment. We show that our models are robust and capture the data's underlying signal by comparing their performance to that of models build on randomized data. In doing so, we have identified 167 gene families that govern phage resistance in our strain set and performed functional analysis...... on them. This revealed genes of possible prophage or mobile genetic element origin, along with genes involved in restriction-modification and transcription regulators, though the majority were genes of unknown function. This study is a step in the direction of understanding the intricate host...

  2. Species distribution and antifungal susceptibility of Candida spp. isolated from superficial candidiasis in outpatients in Iran.

    Science.gov (United States)

    Razzaghi-Abyaneh, M; Sadeghi, G; Zeinali, E; Alirezaee, M; Shams-Ghahfarokhi, M; Amani, A; Mirahmadi, R; Tolouei, R

    2014-06-01

    Candidiasis is the most prevalent fungal infection affecting human and animals all over the world. This study represents the epidemiological aspects of superficial candidiasis in outpatients and in vitro antifungal susceptibility of etiologic Candida species. Clinical samples were taken from 173 patients including skin and nail scrapings (107; 61.8%), vaginal discharge (28; 16.2%), sputum (20; 11.6%), oral swabs (7; 4.0%), bronchoalveolar lavage (6; 3.5%) and 1 specimen (0.6%) of each eye tumor, gastric juice, urine, biopsy and urinary catheter and confirmed as candidiasis by direct microscopy, culture and histopathology. Susceptibility patterns of the isolated Candida species were determined using the disk diffusion and broth microdilution methods. Among 173 Candida isolates, C. albicans (72.3%) was the most prevalent species followed by C. parapsilosis (11.5%). Other identified species were C. glabrata, C. krusei, C. tropicalis, C. guilliermondii, C. intermedia and C. sake. Majority of the Candida isolates were susceptible to fluconazole (95.4%) followed by 5-flucytosine (89.6%), voriconazole (78.6%) itraconazole (48.0%) and ketoconazole (42.8%). Caspofungin was the most potent antifungal drug against C. albicans (MICs; 0.062-1 μg/mL), ketoconazole for C. parapsilosis and C. tropicalis (MICs; 0.031-0.25 μg/mL) and itraconazole for C. krusei, C. glabrata and C. guilliermondii (MICs; 0.031-1 μg/mL). This study reinforces the significance of superficial candidiasis as an important fungal infection with multiple clinical presentations. Our results further indicate that susceptibility testing to commonly used antifungals is crucial in order to select the appropriate therapeutic strategies which minimize complications while improving patients' life. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Antifungal Susceptibilities of Candida Species Causing Vulvovaginitis and Epidemiology of Recurrent Cases

    Science.gov (United States)

    Richter, Sandra S.; Galask, Rudolph P.; Messer, Shawn A.; Hollis, Richard J.; Diekema, Daniel J.; Pfaller, Michael A.

    2005-01-01

    There are limited data regarding the antifungal susceptibility of yeast causing vulvovaginal candidiasis, since cultures are rarely performed. Susceptibility testing was performed on vaginal yeast isolates collected from January 1998 to March 2001 from 429 patients with suspected vulvovaginal candidiasis. The charts of 84 patients with multiple positive cultures were reviewed. The 593 yeast isolates were Candida albicans (n = 420), Candida glabrata (n = 112), Candida parapsilosis (n = 30), Candida krusei (n = 12), Saccharomyces cerevisiae ( n = 9), Candida tropicalis (n = 8), Candida lusitaniae (n = 1), and Trichosporon sp. (n = 1). Multiple species suggesting mixed infection were isolated from 27 cultures. Resistance to fluconazole and flucytosine was observed infrequently (3.7% and 3.0%); 16.2% of isolates were resistant to itraconazole (MIC ≥ 1 μg/ml). The four imidazoles (econazole, clotrimazole, miconazole, and ketoconazole) were active: 94.3 to 98.5% were susceptible at ≤1 μg/ml. Among different species, elevated fluconazole MICs (≥16 μg/ml) were only observed in C. glabrata (15.2% resistant [R], 51.8% susceptible-dose dependent [S-DD]), C. parapsilosis (3.3% S-DD), S. cerevisiae (11.1% S-DD), and C. krusei (50% S-DD, 41.7% R, considered intrinsically fluconazole resistant). Resistance to itraconazole was observed among C. glabrata (74.1%), C. krusei (58.3%), S. cerevisiae (55.6%), and C. parapsilosis (3.4%). Among 84 patients with recurrent episodes, non-albicans species were more common (42% versus 20%). A ≥4-fold rise in fluconazole MIC was observed in only one patient with C. parapsilosis. These results support the use of azoles for empirical therapy of uncomplicated candidal vulvovaginitis. Recurrent episodes are more often caused by non-albicans species, for which azole agents are less likely to be effective. PMID:15872235

  4. Gastrointestinal helminths may affect host susceptibility to anthrax through seasonal immune trade-offs.

    Science.gov (United States)

    Cizauskas, Carrie A; Turner, Wendy C; Wagner, Bettina; Küsters, Martina; Vance, Russell E; Getz, Wayne M

    2014-11-12

    Most vertebrates experience coinfections, and many pathogen-pathogen interactions occur indirectly through the host immune system. These interactions are particularly strong in mixed micro-macroparasite infections because of immunomodulatory effects of helminth parasites. While these trade-offs have been examined extensively in laboratory animals, few studies have examined them in natural systems. Additionally, many wildlife pathogens fluctuate seasonally, at least partly due to seasonal host immune changes. We therefore examined seasonality of immune resource allocation, pathogen abundance and exposure, and interactions between infections and immunity in plains zebra (Equus quagga) in Etosha National Park (ENP), Namibia, a system with strongly seasonal patterns of gastrointestinal (GI) helminth infection intensity and concurrent anthrax outbreaks. Both pathogens are environmentally transmitted, and helminth seasonality is driven by environmental pressures on free living life stages. The reasons behind anthrax seasonality are currently not understood, though anthrax is less likely directly driven by environmental factors. We measured a complex, interacting set of variables and found evidence that GI helminth infection intensities, eosinophil counts, IgE and IgGb antibody titers, and possibly IL-4 cytokine signaling were increased in wetter seasons, and that ectoparasite infestations and possibly IFN-γ cytokine signaling were increased in drier seasons. Monocyte counts and anti-anthrax antibody titers were negatively associated with wet season eosinophilia, and monocytes were negatively correlated with IgGb and IgE titers. Taken together, this supports the hypothesis that ENP wet seasons are characterized by immune resource allocation toward Th-2 type responses, while Th1-type immunity may prevail in drier seasons, and that hosts may experience Th1-Th2 trade-offs. We found evidence that this Th2-type resource allocation is likely driven by GI parasite infections

  5. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  6. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  7. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik

    2004-01-01

    that Danish bacterial isolates from livestock so far have not or have only to a limited degree developed resistance to antimicrobial compounds commonly used for disinfection. Acquired copper resistance was only found in enterococci. There were large differences in the intrinsic susceptibility of the different...... of susceptibilities to the different antimicrobial agents. Large variations were observed in the susceptibility of the different bacterial species to the different compounds. Staphylococci were in general very susceptible to all antimicrobial compounds tested. The Salmonella isolates were in general less susceptible...

  8. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    Science.gov (United States)

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  9. Characterization and susceptibility patterns of clinically important Enterococcus species in eastern Nepal.

    Science.gov (United States)

    Acharya, A; Khanal, A; Kanungo, R; Mohapatra, T

    2007-12-01

    Life threatening infections caused by enterococcus species with multidrug resistance has emerged as a threat to medical care in the present era. This study was conducted to characterize enterococcus species isolated from different clinical samples and to detect the pattern of susceptibility to some of the commonly used antibiotics in B.P Koirala Institute of Health Sciences (BPKIHS), a tertiary care hospital in eastern Nepal. Clinical samples submitted to the microbiology unit of Central Laboratory Service (CLS) for culture and sensitivity during March 2002 - February 2003 was analyzed. Enterococcus species were identified by colony characteristics, gram staining and relevant biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer disc diffusion technique. Of 50 Enterococcus species isolated, E. faecalis was the predominant isolate (48.0%) followed by E. faecium (32.0%) and E. avium (20.0%). Eighty-eight percent of E. faecalis showed sensitivity to cephotaxime and 87.0% to vancomycin. Multiple drug resistance was observed most commonly in E. faecium. Seventeen percent of E. faecium were resistant to vancomycin and 63.0% to ciprofloxacin and 44.0% to ampicillin. On the contrary E. avium rarely showed resistance to the antimicrobials tested including vancomycin. Enterococcal infections are common nowadays specially in hospitalized patients. Inappropriate use of antibiotics in clinical practice and poultry should be discouraged to prevent the emergence of multidrug resistant species.

  10. Antimicrobial susceptibility patterns of Ureaplasma species and Mycoplasma hominis in pregnant women.

    Science.gov (United States)

    Redelinghuys, Mathys J; Ehlers, Marthie M; Dreyer, Andries W; Lombaard, Hennie A; Kock, Marleen M

    2014-03-28

    Genital mycoplasmas colonise up to 80% of sexually mature women and may invade the amniotic cavity during pregnancy and cause complications. Tetracyclines and fluoroquinolones are contraindicated in pregnancy and erythromycin is often used to treat patients. However, increasing resistance to common antimicrobial agents is widely reported. The purpose of this study was to investigate antimicrobial susceptibility patterns of genital mycoplasmas in pregnant women. Self-collected vaginal swabs were obtained from 96 pregnant women attending an antenatal clinic in Gauteng, South Africa. Specimens were screened with the Mycofast Revolution assay for the presence of Ureaplasma species and Mycoplasma hominis. The antimicrobial susceptibility to levofloxacin, moxifloxacin, erythromycin, clindamycin and tetracycline were determined at various breakpoints. A multiplex polymerase chain reaction assay was used to speciate Ureaplasma positive specimens as either U. parvum or U. urealyticum. Seventy-six percent (73/96) of specimens contained Ureaplasma spp., while 39.7% (29/73) of Ureaplasma positive specimens were also positive for M. hominis. Susceptibilities of Ureaplasma spp. to levofloxacin and moxifloxacin were 59% (26/44) and 98% (43/44) respectively. Mixed isolates (Ureaplasma species and M. hominis) were highly resistant to erythromycin and tetracycline (both 97% resistance). Resistance of Ureaplasma spp. to erythromycin was 80% (35/44) and tetracycline resistance was detected in 73% (32/44) of Ureaplasma spp. Speciation indicated that U. parvum was the predominant Ureaplasma spp. conferring antimicrobial resistance. Treatment options for genital mycoplasma infections are becoming limited. More elaborative studies are needed to elucidate the diverse antimicrobial susceptibility patterns found in this study when compared to similar studies. To prevent complications in pregnant women, the foetus and the neonate, routine screening for the presence of genital mycoplasmas is

  11. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts

    Science.gov (United States)

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.; Holmes, Edward C.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species.

  12. Susceptibility to antibiotics of Vibrio sp. AO1 growing in pure culture or in association with its hydroid host Aglaophenia octodonta (Cnidaria, Hydrozoa).

    Science.gov (United States)

    Stabili, Loredana; Gravili, Cinzia; Boero, Ferdinando; Tredici, Salvatore M; Alifano, Pietro

    2010-04-01

    Vibrio harveyi is the major causal organism of vibriosis, causing potential devastation to diverse ranges of marine invertebrates over a wide geographical area. These microorganisms, however, are phenotypically diverse, and many of the isolates are also resistant to multiple antibiotics. In a previous study, we described a previously unknown association between Vibrio sp. AO1, a luminous bacterium related to the species V. harveyi, and the benthic hydrozoan Aglaophenia octodonta. In this study, we analyzed the susceptibility to antibiotics (ampicillin, streptomycin, tetracycline, or co-trimoxazole = mix of sulfamethoxazole and trimetoprim) of Vibrio sp. AO1 growing in pure culture or in association with its hydroid host by using microcosm experiments. The results of minimum inhibitory concentration (MIC) experiments demonstrated that Vibrio sp. AO1 was highly resistant to ampicillin and streptomycin in pure culture. Nevertheless, these antibiotics, when used at sub-MIC values, significantly reduced the hydroid fluorescence. Co-trimoxazole showed the highest inhibitory effect on fluorescence of A. octodonta. However, in all treatments, the fluorescence was reduced after 48 h, but never disappeared completely around the folds along the hydrocaulus and at the base of the hydrothecae of A. octodonta when the antibiotic was used at concentration completely inhibiting growth in vitro. The apparent discrepancy between the MIC data and the fluorescence patterns may be due to either heterogeneity of the bacterial population in terms of antibiotic susceptibility or specific chemical-physical conditions of the hydroid microenvironment that may decrease the antibiotic susceptibility of the whole population. The latter hypothesis is supported by scanning electron microscope evidence for development of bacterial biofilm on the hydroid surface. On the basis of the results obtained, we infer that A. octodonta might behave as a reservoir of antibiotic multiresistant bacteria

  13. Species Identification, Strain Differentiation, and Antifungal Susceptibility of Dermatophyte Species Isolated From Clinically Infected Arabian Horses

    DEFF Research Database (Denmark)

    El Damaty, Hend M; Tartor, Yasmine H; Mahmmod, Yasser Saadeldien Ibrahim

    2017-01-01

    Arabian horses, the eldest equine breeds, have great economic and social significance for its long, unique, and storied history. Molecular characterization of dermatophyte species affecting Arabian horses is a crucial necessity for epidemiologic and therapeutic purposes. The objective of this study...... are more effective against T. mentagrophytes and T. verrucosum. In conclusion, PCR-RFLP technique is a reliable tool for the identification of dermatophyte species from Arabian horses. Internal transcribed spacer sequencing provides a precise and useful technique for the identification and differentiation...

  14. Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability.

    Science.gov (United States)

    Simmonds, Michael J; Meiselman, Herbert J; Marshall-Gradisnik, Sonya M; Pyne, Michael; Kakanis, Michael; Keane, James; Brenu, Ekua; Christy, Rhys; Baskurt, Oguz K

    2011-01-01

    The present study was designed to investigate the oxidant susceptibility of red blood cells (RBC) from four species (echidna, human, koala, Tasmanian devil) based on changes in cellular deformability. These species were specifically chosen based on differences in lifestyle and/or biology associated with varied levels of oxidative stress. The major focus was the influence of superoxide radicals generated within the cell (phenazine methosulfate, PMS, 50 μM) or in the extracellular medium (xanthine oxidase-hypoxanthine, XO-HX, 0.1 U/ml XO) on RBC deformability at various shear stresses (SS). RBC deformability was assessed by laser-diffraction analysis using a "slit-flow ektacytometer". Both superoxide-generating treatments resulted in significant increases of methemoglobin for all species (p koala cells exhibited a similar sigmoid-like response to SS, short-beaked echidna values were markedly lower and only increased slightly with SS, while Tasmanian devil RBC were extremely rigid. The effect of XO-HX on RBC deformability was less when compared with PMS (i.e., smaller increase in rigidity) with the exception of Tasmanian devil RBC which exhibited essentially no deformation even at the highest SS; Tasmanian devil RBC response to XO-HX was thus comparable to that observed with PMS. Our findings indicate that ektacytometry can be used to determine the oxidant susceptibility of RBC from different species which varies significantly among mammals representing diverse lifestyles and evolutionary histories. These differences in susceptibility are consistent with species-specific discrepancies between observed and allometrically-predicted life spans and are compatible with the oxidant theory of aging.

  15. Discrimination of the Social Parasite Ectatomma parasiticum by Its Host Sibling Species (E. tuberculatum

    Directory of Open Access Journals (Sweden)

    Renée Fénéron

    2013-01-01

    Full Text Available Among social parasites, workerless inquilines entirely depend on their host for survival and reproduction. They are usually close phylogenetic relatives of their host, which raises important questions about their evolutionary history and mechanisms of speciation at play. Here we present new findings on Ectatomma parasiticum, the only inquiline ant described in the Ectatomminae subfamily. Field data confirmed its rarity and local distribution in a facultative polygynous population of E. tuberculatum in Mexico. Genetic analyses demonstrated that the parasite is a sibling species of its host, from which it may have diverged recently. Polygyny is suggested to have favored the evolution of social parasite by sympatric speciation. Nevertheless, host workers from this population were able to discriminate parasites from their conspecifics. They treated the parasitic queens either as individuals of interest or as intruders, depending on their colonial origin, probably because of the peculiar chemical profile of the parasites and/or their reproductive status. We suggest that E. parasiticum could have conserved from its host sibling species the queen-specific substances that produce attracting and settling effect on workers, which, in return, would increase the probability to be detected. This hypothesis could explain the imperfect social integration of the parasite into host colonies.

  16. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    Science.gov (United States)

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Wild Cervids Are Host for Tick Vectors of Babesia Species with Zoonotic Capability in Belgium

    OpenAIRE

    Lempereur, Laetitia; Wirtgen, Marc; Nahayo, Adrien; Caron, Yannick; Shiels, Brian; Saegerman, Claude; Losson, Bertrand; Linden, Annick

    2012-01-01

    Babesiosis is a tick-borne disease caused by different species of intraerythrocytic protozoan parasites within the genus Babesia. Different species of Babesia are described as potentially zoonotic and cause a malaria-like disease mainly in immunocompromised humans. Interest in the zoonotic potential of Babesia is growing and babesiosis has been described by some authors as an emergent zoonotic disease. The role of cervids to maintain tick populations and act as a reservoir host for some Babes...

  18. Effect of antiviral treatment and host susceptibility on positive selection in hepatitis C virus (HCV).

    Science.gov (United States)

    Jiménez-Hernández, Nuria; Sentandreu, Vicente; Castro, José A; Torres-Puente, Manuela; Bracho, Alma; García-Robles, Inmaculada; Ortega, Enrique; Del Olmo, Juan; Carnicer, Fernando; González-Candelas, Fernando; Moya, Andrés

    2008-02-01

    We have conducted a large sequence study of the E1-E2 and NS5A regions of the HCV, subtypes 1a and b, both in patients previously treated with interferon, and untreated patients, who later responded, or not, to a combination therapy based on interferon plus ribavirin. We have examined the role played by the number of positively selected sites on disease progression and its relationship with several variables such as patients' age, sex and their risk of acquiring the disease. We have detected three groups of patients that respond or not to combination therapy: responders of intermediate age, older non-responders and young non-responders, they possess an increasing average number of positively selected sites in the E1-E2 region, respectively. We conclude that the host's genetic factors play an important role in whether the disease is contained or becomes chronic.

  19. (macro- Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification

    Directory of Open Access Journals (Sweden)

    Serge Morand

    2015-04-01

    Full Text Available The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology.

  20. Virulence factors and antibiotic susceptibility pattern of Acinetobacter species in a tertiary care hospital in Bangladesh

    Directory of Open Access Journals (Sweden)

    Azizun Nahar

    2012-01-01

    Full Text Available Acinetobacter species are aerobic Gram variable coccobacilli that are now emerging as an important nosocomial pathogen. Infections caused by them are difficult to control due to multidrug resistance. The purpose of this study was to detect virulence factors namely gelatinase production, biofilm formation and antibiotic susceptibility of Acinetobacter species. Two hundred fifty six clinical samples collected from Bangabandhu Sheikh Mujib medical University (BSMMU and from burn unit of Dhaka Medical College Hospital were included in the study. Gelatinase production was seen on Luria Bertani agar media containing gelatin (30 gm/l and biofilm formation was detected in microtiter plate assay. Out of 256 clinical samples, 52 (20.3% were Acinetobacter species. Out of 52 Acinetobacter isolates, none were gelatinase producer but 39 (75% were found biofilm producers. Acinetobacter isolates were 100% resistant to ceftazidime, cefotaxime cefuroxime and ceftriaxone. High level of resistance was also recorded for amoxicillin (98.1%, aztreonam (98.1%, gentamicin (90.4%, ciprofloxacin (73.1%, amikacin (57.6%, netilmicin (53.8% and imipenem (44.2%. Susceptibility to colistin was maximum (96.2%. The present study demonstrated a high propensity of biofilm formation by the clinical isolates of Acinetobacter species and most of the Acinetobacter were multidrug resistant. Ibrahim Med. Coll. J. 2012; 6(1: 27-30

  1. Coagulase-negative Staphylococci in Danish blood cultures: species distribution and antibiotic susceptibility.

    Science.gov (United States)

    Jarløv, J O; Højbjerg, T; Busch-Sørensen, C; Scheibel, J; Møller, J K; Kolmos, H J; Wandall, D A

    1996-03-01

    The distribution and antibiotic susceptibility of coagulase-negative staphylococci (CoNS) isolated from blood cultures was examined in samples from hospitals covering most of Denmark. A total of 499 CoNS isolates were detected in 477 blood cultures from 340 patients and speciated as Staphylococcus epidermidis, 285; Staphylococcus hominis, 61; Staphylococcus haemolyticus, 43; Staphylococcus warneri, 12; Staphylococcus cohnii, 7; Staphylococcus saprophyticus, 4; Staphylococcus capitis, 2 and Staphylococcus lugdunensis, 1. Seventy-eight isolates could not be identified to species level and six were Micrococcus spp. In 108 (22.6%) blood culture sets, more than one CoNS strain were found, as detected by species identification, antibiogram and biotyping. Significantly more blood cultures from patients in university hospitals were drawn from central venous catheters. Comparing university and non-university hospitals, the overall antibiotic susceptibility among CoNS was only slightly different, except for methicillin and amikacin. The prevalence of methicillin-resistant strains was 35.1% in the university hospital strains vs. 25.3% in the non-university hospital strains. The overall prevalence of methicillin resistance was 32%. Great geographic variation in both species distribution and antibiotic resistance was observed. The high prevalence of S. epidermidis makes subtyping of this species important.

  2. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates.

    Science.gov (United States)

    Nunes, Jorge Meneses; Bizerra, Fernando César; Ferreira, Renata Carmona E; Colombo, Arnaldo Lopes

    2013-01-01

    Rhodotorula species are emergent fungal pathogens capable of causing invasive infections, primarily fungemia. They are particularly problematic in immunosuppressed patients when using a central venous catheter. In this study, we evaluated the species distribution of 51 clinical and 8 environmental Rhodotorula species isolates using the ID32C system and internal transcribed spacer (ITS) sequencing. Antifungal susceptibility testing and biofilm formation capability using a crystal violet staining assay were performed. Using ITS sequencing as the gold standard, the clinical isolates were identified as follows: 44 R. mucilaginosa isolates, 2 R. glutinis isolates, 2 R. minuta isolates, 2 R. dairenensis isolates, and 1 Rhodosporidium fluviale isolate. The environmental isolates included 7 R. mucilaginosa isolates and 1 R. slooffiae isolate. Using the ID32C system, along with a nitrate assimilation test, only 90.3% of the isolates tested were correctly identified. In the biofilm formation assay, R. mucilaginosa and R. minuta exhibited greater biofilm formation ability compared to the other Rhodotorula species; the clinical isolates of R. mucilaginosa showed greater biofilm formation compared to the environmental isolates (P = 0.04). Amphotericin B showed good in vitro activity (MIC ≤ 1 μg/ml) against planktonic cells, whereas voriconazole and posaconazole showed poor activity (MIC(50)/MIC(90), 2/4 μg/ml). Caspofungin and fluconazole MICs were consistently high for all isolates tested (≥64 μg/ml and ≥ 4 μg/ml, respectively). In this study, we emphasized the importance of molecular methods to correctly identify Rhodotorula species isolates and non-R. mucilaginosa species in particular. The antifungal susceptibility profile reinforces amphotericin B as the antifungal drug of choice for the treatment of Rhodotorula infections. To our knowledge, this is the first study evaluating putative differences in the ability of biofilm formation among different Rhodotorula

  3. Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain.

    Science.gov (United States)

    Valdezate, Sylvia; Garrido, Noelia; Carrasco, Gema; Medina-Pascual, María J; Villalón, Pilar; Navarro, Ana M; Saéz-Nieto, Juan A

    2017-03-01

    The aims of this study were to explore the clinical distribution, by species, of the genus Nocardia and to assess the antimicrobial susceptibilities of the 10 most prevalent species identified in Spain. Over a 10 year period (2005-14), 1119 Nocardia strains were molecularly identified and subjected to the Etest. The distribution and resistance trends over the sub-periods 2005-09 and 2010-14 were also examined. Of the strains examined, 82.9% belonged to the following species: Nocardia cyriacigeorgica (25.3%), Nocardia nova (15.0%), Nocardia abscessus (12.7%), Nocardia farcinica (11.4%), Nocardia carnea (4.3%), Nocardia brasiliensis (3.5%), Nocardia otitidiscaviarum (3.1%), Nocardia flavorosea (2.6%), Nocardia rhamnosiphila (2.6%) and Nocardia transvalensis (2.4%). Their prevalence values were similar during 2005-09 and 2010-14, except for those of N. abscessus , N. farcinica and N. transvalensis , which fell significantly in the second sub-period ( P ≤  0.05). The major location of isolation was the respiratory tract (∼86%). Half (13/27) of all strains from the CNS were N. farcinica . Significant differences in MIC results were recorded for some species between the two sub-periods. According to the CLSI's breakpoints, low resistance rates (≤15%) were recorded for seven species with respect to cefotaxime, imipenem and tobramycin; five species showed similar rates with respect to trimethoprim/sulfamethoxazole. Linezolid and amikacin were the most frequently active agents. The accurate identification of the infecting species and the determination of its susceptibility to antimicrobial agents, given the large number of strains with atypical patterns, are crucial if patients with nocardiosis are to be successfully treated. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Diversity, distribution and host-species associations of epiphytic orchids in Nepal

    Czech Academy of Sciences Publication Activity Database

    Timsina, Binu; Rokaya, Maan Bahadur; Munzbergová, Z.; Kindlmann, Pavel; Shrestha, B.; Bhattarai, Bishnu Prasad; Raskoti, B. B.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 2803-2819 ISSN 0960-3115 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : vascular epiphytes * vertical stratification * elevational gradients * kathmandu valley * tree utilization * forest * richness * mexico * conservation * abundance * Species richness * Composition * Host * Traits * Nepal Himalaya Subject RIV: EF - Botanics Impact factor: 2.265, year: 2016

  5. Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin.

    Science.gov (United States)

    Monis, Paul T; Andrews, Ross H; Mayrhofer, Graham; Ey, Peter L

    2003-05-01

    A genetic analysis of Giardia intestinalis, a parasitic protozoan species that is ubiquitous in mammals worldwide, was undertaken using organisms derived from a variety of mammalian hosts in different geographical locations. The test panel of 53 Giardia isolates comprised 48 samples of G. intestinalis, including representatives of all known genetic subgroups, plus an isolate of G. ardeae and four isolates of G. muris. The isolates were compared by allozymic analysis of electrophoretic data obtained for 21 cytosolic enzymes, representing 23 gene loci. Neighbour Joining analysis of the allelic profiles supported the monophyly of G. intestinalis but showed that the species encompasses a rich population substructure. Seven major clusters were evident within G. intestinalis, corresponding to lineages designated previously as genetic assemblages A-G. Some genotypes, e.g. those defining assemblage A, are found in divergent host species and may be zoonotic. However other genotypes, e.g. those defining assemblages C-G, appear to be confined to particular hosts or host groups. The findings reinforce other evidence that G. intestinalis, which was defined on the basis of morphological criteria only, is a species complex.

  6. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species.

    Science.gov (United States)

    Pannekoek, Yvonne; Dickx, Veerle; Beeckman, Delphine S A; Jolley, Keith A; Keijzers, Wendy C; Vretou, Evangelia; Maiden, Martin C J; Vanrompay, Daisy; van der Ende, Arie

    2010-12-02

    Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.

  7. Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species.

    Directory of Open Access Journals (Sweden)

    Yvonne Pannekoek

    2010-12-01

    Full Text Available Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogenetic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.

  8. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens.

    Science.gov (United States)

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-10-01

    The Streptococcus species present broad phenotypic variation, making identification difficult using only traditional microbiological methods. Even though Streptococcus suis is the most important species for the worldwide swine industry, other Streptococcus species appear to be able to cause disease in swine and could represent a higher underestimated risk for porcine health. The aim of this study was to identify Streptococcus-like isolates by MALDI-TOF MS and 16S rRNA sequencing and further molecular and antibiotic susceptibility characterization of the atypical Streptococcus species capable of causing disease in swine. Fifty presumptive Streptococcus isolates from diseased pigs isolated from different Brazilian States between 2002 and 2014 were evaluated. Among the studied isolates, 26% were identified as Streptococcus hyovaginalis, 24% as Streptococcus plurianimalium, 12% as Streptococcus alactolyticus, 10% as Streptococcus hyointestinalis, and the remaining isolates belonged to Streptococcus henryi (6%), Streptococcus thoraltensis (6%), Streptococcus gallolyticus (6%), Streptococcus gallinaceus (4%), Streptococcus sanguinis (4%), and Streptococcus mitis (2%). The Streptococcus isolates were successfully identified by spectral cluster analysis and 16S rRNA sequencing with 96% of concordance between the techniques. The SE-AFLP analysis also supported Streptococcus species distinction and enabled further observation of higher genetic heterogeneity intra-species. The identified Streptococcus species presented variable MIC values to β-lactams, enrofloxacin and florfenicol, and high resistance rates to tetracyclines and macrolides, which appear to be directly related to the industry's antimicrobial usage and resistance selection. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sporadic Creutzfeldt-Jakob Disease: Prion Pathology in Medulla Oblongata-Possible Routes of Infection and Host Susceptibility.

    Science.gov (United States)

    Iacono, Diego; Ferrari, Sergio; Gelati, Matteo; Zanusso, Gianluigi; Mariotto, Sara; Monaco, Salvatore

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease (sCJD), the most frequent human prion disorder, is characterized by remarkable phenotypic variability, which is influenced by the conformation of the pathologic prion protein and the methionine/valine polymorphic codon 129 of the prion protein gene. While the etiology of sCJD remains unknown, it has been hypothesized that environmental exposure to prions might occur through conjunctival/mucosal contact, oral ingestion, inhalation, or simultaneous involvement of the olfactory and enteric systems. We studied 21 subjects with definite sCJD to assess neuropathological involvement of the dorsal motor nucleus of the vagus and other medullary nuclei and to evaluate possible associations with codon 129 genotype and prion protein conformation. The present data show that prion protein deposition was detected in medullary nuclei of distinct sCJD subtypes, either valine homozygous or heterozygous at codon 129. These findings suggest that an "environmental exposure" might occur, supporting the hypothesis that external sources of contamination could contribute to sCJD in susceptible hosts. Furthermore, these novel data could shed the light on possible causes of sCJD through a "triple match" hypothesis that identify environmental exposure, host genotype, and direct exposure of specific anatomical regions as possible pathogenetic factors.

  10. Susceptibility and antibody response of Vesper Sparrows (Pooecetes gramineus) to West Nile virus: A potential amplification host in sagebrush-grassland habitat

    Science.gov (United States)

    Hofmeister, Erik K.; Dusek, Robert J.; Fassbinder-Orth, Carol; Owen, Benjamin; Franson, J. Christian

    2016-01-01

    West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.

  11. Phylogeny of the Clinically Relevant Species of the Emerging Fungus Trichoderma and Their Antifungal Susceptibilities

    Science.gov (United States)

    Sandoval-Denis, Marcelo; Sutton, Deanna A.; Cano-Lira, José F.; Fothergill, Annette W.; Wiederhold, Nathan P.; Guarro, Josep

    2014-01-01

    A set of 73 isolates of the emerging fungus Trichoderma isolated from human and animal clinical specimens were characterized morphologically and molecularly using a multilocus sequence analysis that included the internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA and fragments of the translation elongation factor 1 alpha (Tef1), endochitinase CHI18-5 (Chi18-5), and actin 1 (Act1) genes. The most frequent species was Trichoderma longibrachiatum (26%), followed by Trichoderma citrinoviride (18%), the Hypocrea lixii/Trichoderma harzianum species complex (15%), the newly described species Trichoderma bissettii (12%), and Trichoderma orientale (11%). The most common anatomical sites of isolation in human clinical specimens were the respiratory tract (40%), followed by deep tissue (30%) and superficial tissues (26%), while all the animal-associated isolates were obtained from superficial tissue samples. Susceptibilities of the isolates to eight antifungal drugs in vitro showed mostly high MICs, except for voriconazole and the echinocandins. PMID:24719448

  12. Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia.

    Directory of Open Access Journals (Sweden)

    Olga Lucía Fernández

    2014-05-01

    Full Text Available Pentavalent antimonials have been the first line treatment for dermal leishmaniasis in Colombia for over 30 years. Miltefosine is administered as second line treatment since 2005. The susceptibility of circulating populations of Leishmania to these drugs is unknown despite clinical evidence supporting the emergence of resistance.In vitro susceptibility was determined for intracellular amastigotes of 245 clinical strains of the most prevalent Leishmania Viannia species in Colombia to miltefosine (HePC and/or meglumine antimoniate (Sb(V; 163, (80% were evaluated for both drugs. Additionally, susceptibility to Sb(V was examined in two cohorts of 85 L. V. panamensis strains isolated between 1980-1989 and 2000-2009 in the municipality of Tumaco. Susceptibility to each drug differed among strains of the same species and between species. Whereas 68% of L. V. braziliensis strains presented in vitro resistance to HePC, 69% were sensitive to Sb(V. Resistance to HePC and Sb(V occurred respectively, in 20% y 21% of L. panamensis strains. Only 3% of L. V. guyanensis were resistant to HePC, and none to Sb(V. Drug susceptibility differed between geographic regions and time periods. Subpopulations having disparate susceptibility to Sb(V were discerned among L. V. panamensis strains isolated during 1980-1990 in Tumaco where resistant strains belonged to zymodeme 2.3, and sensitive strains to zymodeme 2.2.Large scale evaluation of clinical strains of Leishmania Viannia species demonstrated species, population, geographic, and epidemiologic differences in susceptibility to meglumine antimoniate and miltefosine, and provided baseline information for monitoring susceptibility to these drugs. Sensitive and resistant clinical strains within each species, and zymodeme as a proxy marker of antimony susceptibility for L. V. panamensis, will be useful in deciphering factors involved in susceptibility and the distribution of sensitive and resistant populations.

  13. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran

    NARCIS (Netherlands)

    Badiee, P.; Badali, H.; Boekhout, T.; Diba, K.; Moghadam, A.G.; Hossaini Nasab, A.; Jafarian, H.; Mohammadi, R.; Mirhendi, H.; Najafzadeh, M.J.; Shamsizadeh, A.; Soltani, J.

    2017-01-01

    Background Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to

  14. Ultrastructural characteristics of nurse cell-larva complex of four species of Trichinella in several hosts

    Directory of Open Access Journals (Sweden)

    Sacchi L.

    2001-06-01

    Full Text Available The nurse cell-larva complex of nematodes of the genus Trichinella plays an Important role in the survival of the larva in decaying muscles, frequently favouring the transmission of the parasite in extreme environmental conditions. The ultrastructure of the nurse cell-larva complex in muscles from different hosts infected with T. nativa (a walrus and a polar bear, T. spiralis (horses and humans, T. pseudospiralis (a laboratory mouse and T. papuae (a laboratory mouse were examined. Analysis with transmission electron microscope showed that the typical nurse cell structure was present in all examined samples, irrespective of the species of larva, of the presence of a collagen capsule, of the age of infection and of the host species, suggesting that there exists a molecular mechanism that in the first stage of larva invasion is similar for encapsulated and non-encapsulated species.

  15. Host Status of Seven Weed Species and Their Effects on Ditylenchus destructor Infestation of Peanut.

    Science.gov (United States)

    De Waele, D; Jordaan, E M; Basson, S

    1990-07-01

    The host suitability to Ditylenchus destructor of seven common weed species in peanut (Arachis hypogaea) fields in South Africa was determined. Based on the number of nematodes per root unit, white goosefoot (Chenopodium album), feathertop chloris (Chloris virgata), purple nutsedge (Cyperus rotundus), jimson weed (Datura stramonium), goose grass (Eleusine indica), khaki weed (Tagetes minuta), and cocklebur (Xanthium strumarium) were poor hosts. Ditylenchus destructor survived on all weed species; population densities increased in peanut hulls and caused severe damage to seeds of peanut grown after weeds. Roots of purple nutsedge left in the soil suppressed populations of D. destructor and root and pod development in peanut grown after the weed. However, nematode populations in peanut hulls and seeds were not suppressed. Some weed species, especially purple nutsedge which is common in peanut fields, can be used to indicate the presence of D. destructor in the absence of peanut.

  16. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice

    Directory of Open Access Journals (Sweden)

    Allison R. Rogala

    2018-02-01

    Full Text Available Crohn's disease (CD represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM is an established risk allele in CD. We have shown previously that conventionally raised (CV mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1−/− mice were rederived into specific pathogen-free (SPF and germ-free (GF conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1−/− mice. Remarkably, in contrast to CV mice, SPF Irgm1−/− mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1−/− mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1−/− mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1−/− mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1−/− mice as a model to elucidate host

  17. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.

    Science.gov (United States)

    Conchou, Lucie; Anderson, Peter; Birgersson, Göran

    2017-08-01

    Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.

  18. Candida Species From Eye Infections: Drug Susceptibility, Virulence Factors, and Molecular Characterization.

    Science.gov (United States)

    Ranjith, Konduri; Sontam, Bhavani; Sharma, Savitri; Joseph, Joveeta; Chathoth, Kanchana N; Sama, Kalyana C; Murthy, Somasheila I; Shivaji, Sisinthy

    2017-08-01

    To determine the type of Candida species in ocular infections and to investigate the relationship of antifungal susceptibility profile to virulence factors. Fifty isolates of yeast-like fungi from patients with keratitis, endophthalmitis, and orbital cellulitis were identified by Vitek-2 compact system and DNA sequencing of ITS1-5.8S-ITS2 regions of the rRNA gene, followed by phylogenetic analysis for phenotypic and genotypic identification, respectively. Minimum inhibitory concentration of six antifungal drugs was determined by E test/microbroth dilution methods. Phenotypic and genotypic methods were used to determine the virulence factors. Phylogenetic analysis showed the clustering of all isolates into eight distinct groups with a major cluster formed Candida parapsilosis (n = 21), which was the most common species by both Vitek 2 and DNA sequencing. Using χ2 test no significant difference was noted between the techniques except that Vitek 2 did not identify C. viswanathii, C. orthopsilosis, and two non-Candida genera. Of 43 tested Candida isolates high susceptibility to amphotericin B (39/43, 90.6%) and natamycin (43/43, 100%) was noted. While none of the isolates produced coagulase, all produced esterase and catalase. The potential to form biofilm was detected in 23/43 (53.4%) isolates. Distribution of virulence factors by heat map analysis showed difference in metabolic activity of biofilm producers from nonbiofilm producers. Identified by Vitek 2 and DNA sequencing methods C. parapsilosis was the most common species associated with eye infections. Irrespective of the virulence factors elaborated, the Candida isolates were susceptible to commonly used antifungal drugs such as amphotericin B and natamycin.

  19. Host Status of Five Weed Species and Their Effects on Pratylenchus zeae Infestation of Maize.

    Science.gov (United States)

    Jordaan, E M; De Waele, D

    1988-10-01

    The host suitability of five of the most common weed species occurring in maize (Zea mays L.) fields in South Africa to Pratylenchus zeae was tested. Based on the number of nematodes per root unit, mealie crotalaria (Crotalaria sphaerocarpa) was a good host; goose grass (Eleusine indica), common pigweed (Amaranthus hybridus), and thorn apple (Datura stramonium) were moderate hosts; and khaki weed (Tagetes minuta) was a poor host. Only the root residues of khaki weed suppressed the P. zeae infestation of subsequently grown maize. When goose grass, khaki weed, and mealie crotalaria were grown in association with maize in soil infested with P. zeae, goose grass and khaki weed severely suppressed maize root development; this resulted in a low number of nematodes per maize root system and a high number of nematodes per maize root unit. Mealie crotalaria did not restrict maize root growth and did not affect nematode densities per maize root system or maize root unit. Special attention should be given to the control of mealie crotalaria, which is a good host for P. zeae, and goose grass, which, in addition to its ability to compete with maize, is also a suitable host for P. zeae.

  20. Uncovering the drivers of host-associated microbiota with joint species distribution modelling.

    Science.gov (United States)

    Björk, Johannes R; Hui, Francis K C; O'Hara, Robert B; Montoya, Jose M

    2018-06-01

    In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host-specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model-based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host-specific factors are in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-to-microbe associations. © 2018 John Wiley & Sons Ltd.

  1. Cross-Species Virus-Host Protein-Protein Interactions Inhibiting Innate Immunity

    Science.gov (United States)

    2016-07-01

    diseases are a regular occurrence globally (Figure 1). The Zika virus is the latest example gaining widespread attention. Many of the (re-)emerging...for establishing infection and/or modulating pathogenesis (Figures 2 and 3). 3 Figure 2. Schematic of several virus -host protein interactions within...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-16-79 Cross-species virus -host

  2. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Science.gov (United States)

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murin...

  3. Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India

    Directory of Open Access Journals (Sweden)

    Tyagi Prajesh K

    2008-12-01

    Full Text Available Abstract Background Host adhesion molecules play a significant role in the pathogenesis of Plasmodium falciparum malaria and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study was to investigate the association of SNPs of three adhesion molecule genes, ICAM1, PECAM1 and CD36, with severity of falciparum malaria in a malaria-endemic and a non-endemic region of India. Methods The frequency distribution of seven selected SNPs of ICAM1, PECAM1 and CD36 was determined in 552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD plots were generated using PHASE and Haploview, respectively. Odds-ratio (OR for risk assessment was estimated using EpiInfo™ version 3.4. Results Association of the ICAM1 rs5498 (exon 6 G allele and the CD36 exon 1a A allele with increased risk of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively. The CD36 rs1334512 (-53 T allele as well as the TT genotype associated with protection from severe disease (severe versus control, TT versus GG, OR = 0.37, P = 0.004. Interestingly, a SNP of the PECAM1 gene (rs668, exon 3, C/G with low minor allele frequency in populations of the endemic region compared to the non-endemic region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in the endemic region, but exhibited significant association with protection from disease in the non-endemic region. Conclusion The data highlights the significance of variations in the ICAM1, PECAM1 and CD36 genes in the manifestation of falciparum malaria in India. The PECAM1 exon 3 SNP exhibits altered association with disease in the

  4. Host differentiation and variability of Orobanche crenata populations from legume species in Morocco as revealed by cross-infestation and molecular analysis.

    Science.gov (United States)

    Ennami, Mounia; Briache, Fatima Zahra; Gaboun, Fatima; Abdelwahd, Rabha; Ghaouti, Lamiae; Belqadi, Loubna; Westwood, James; Mentag, Rachid

    2017-08-01

    Orobanche crenata represents a major biotic constraint to production of faba bean and lentil in Morocco. While this parasitic plant attacks both of these crops, the extent to which Orobanche biotypes specialise in parasitising specific crops is unknown. To address this question, we studied O. crenata that grew on different hosts and quantified their host specificity to faba bean and lentil. The virulence of O. crenata populations on each host was investigated through field trials, pot and Petri dishes assays. Genetic diversity of the parasite populations was also assessed through molecular analyses. The two legume species showed distinct patterns of specificity. Faba bean was more susceptible to both O. crenata populations, while the specificity for lentil by lentil-grown O. crenata was evident at the final stage of the parasite life cycle as shown by correspondence factorial analyses. Considerable internal variation (81%) within O. crenata populations parasitising both legume species was observed by molecular analyses, but significant divergence (19%; Ø = 0.189; P = 0.010) among the populations was detected. These results indicate that O. crenata can adapt to specific host species, which is important knowledge when developing integrated pest management practices for parasitic weed control. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Antimicrobial susceptibility pattern of acinetobacter species-one year experience in a tertiary care setting

    International Nuclear Information System (INIS)

    Qureshi, Z.A.; Abbasi, S.A.; Mirza, I.A.; Malik, N.; Sattar, A.

    2012-01-01

    Objective: To find out antimicrobial susceptibility pattern of Acinetobacter species isolated from 1 January 2009 through 31 December 2009 at Department of Microbiology, Armed Forces Institute of Pathology Rawalpindi. Materials and Methods: A total of 276 isolates of Acinetobacter spp yielded from various clinical specimens during the study period were included Routine conventional methods were used to identify various species of Acinetobacter and modified Kirby-Bauer disk diffusion method was used for susceptibility testing. Out of total 276 isolates, 176 (63.8%) turned out to be Acinetobacter baumannii and 100 (36.2%) were Acinetobacter johnsonii. Overall sensitivity of Acinetobacter spp against piperacillin/sulbactam, tigecycline, sulbactam/cefoperazone, piperacillin/tazobactam, imipenem, doxycycline, ceftazidime, ciprofloxacin, chloramphenicol, trimethoprim /sulfamethoxazole, ampicillin, gentamycin, ceftriaxone, amoxicillin/clavulanic acid and ampicillin were 64%,63%, 48%, 47%, 41%,39%,35%, 34%, 32%, 31 %, 29%, 19%, 18% and 5% respectively. Out of 276 isolates, 181 (66 %) were multidrug resistant while 33 (18 %) isolates were pan-drug resistant. (author)

  6. Antibiotic Susceptibility Profile of Aeromonas Species Isolated from Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Isoken H. Igbinosa

    2012-01-01

    Full Text Available This study assessed the prevalence of antibiotic-resistant Aeromonas species isolated from Alice and Fort Beaufort wastewater treatment plant in the Eastern Cape Province of South Africa. Antibiotic susceptibility was determined using the disc diffusion method, and polymerase chain reaction (PCR assay was employed for the detection of antibiotics resistance genes. Variable susceptibilities were observed against ciprofloxacin, chloramphenicol, nalidixic acid, gentamicin, minocycline, among others. Aeromonas isolates from both locations were 100% resistant to penicillin, oxacillin, ampicillin, and vancomycin. Higher phenotypic resistance was observed in isolates from Fort Beaufort compared to isolates from Alice. Class A pse1 β-lactamase was detected in 20.8% of the isolates with a lower detection rate of 8.3% for blaTEM gene. Class 1 integron was present in 20.8% of Aeromonas isolates while class 2 integron and TetC gene were not detected in any isolate. The antibiotic resistance phenotypes observed in the isolates and the presence of β-lactamases genes detected in some isolates are of clinical and public health concern as this has consequences for antimicrobial chemotherapy of infections associated with Aeromonas species. This study further supports wastewater as potential reservoirs of antibiotic resistance determinants in the environment.

  7. The role of web sharing, species recognition and host-plant defence in interspecific competition between two herbivorous mite species.

    Science.gov (United States)

    Sato, Yukie; Alba, Juan M; Egas, Martijn; Sabelis, Maurice W

    2016-11-01

    When competing with indigenous species, invasive species face a problem, because they typically start with a few colonizers. Evidently, some species succeeded, begging an answer to the question how they invade. Here, we investigate how the invasive spider mite Tetranychus evansi interacts with the indigenous species T. urticae when sharing the solanaceous host plant tomato: do they choose to live together or to avoid each other's colonies? Both species spin protective, silken webs on the leaf surfaces, under which they live in groups of con- and possibly heterospecifics. In Spain, T. evansi invaded the non-crop field where native Tetranychus species including T. urticae dominated. Moreover, T. evansi outcompetes T. urticae when released together on a tomato plant. However, molecular plant studies suggest that T. urticae benefits from the local down-regulation of tomato plant defences by T. evansi, whereas T. evansi suffers from the induction of these defences by T. urticae. Therefore, we hypothesize that T. evansi avoids leaves infested with T. urticae whereas T. urticae prefers leaves infested by T. evansi. Using wild-type tomato and a mutant lacking jasmonate-mediated anti-herbivore defences, we tested the hypothesis and found that T. evansi avoided sharing webs with T. urticae in favour of a web with conspecifics, whereas T. urticae more frequently chose to share webs with T. evansi than with conspecifics. Also, T. evansi shows higher aggregation on a tomato plant than T. urticae, irrespective of whether the mites occur on the plant together or not.

  8. Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio

    2014-01-01

    in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme...... analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were...... examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates...

  9. Species boundaries and host range of tortoise mites (Uropodoidea phoretic on bark beetles (Scolytinae, using morphometric and molecular markers.

    Directory of Open Access Journals (Sweden)

    Wayne Knee

    Full Text Available Understanding the ecology and evolutionary history of symbionts and their hosts requires accurate taxonomic knowledge, including clear species boundaries and phylogenies. Tortoise mites (Mesostigmata: Uropodoidea are among the most diverse arthropod associates of bark beetles (Curculionidae: Scolytinae, but their taxonomy and host associations are largely unstudied. We tested the hypotheses that (1 morphologically defined species are supported by molecular data, and that (2 bark beetle uropodoids with a broad host range comprise cryptic species. To do so, we assessed the species boundaries of uropodoid mites collected from 51 host species, across 11 countries and 103 sites, using morphometric data as well as partial cytochrome oxidase I (COI and nuclear large subunit ribosomal DNA (28S. Overall, morphologically defined species were confirmed by molecular datasets, with a few exceptions. Twenty-nine of the 36 uropodoid species (Trichouropoda, Nenteria and Uroobovella collected in this study had narrow host ranges, while seven species had putative broad host ranges. In all but one species, U. orri, our data supported the existence of these host generalists, which contrasts with the typical finding that widespread generalists are actually complexes of cryptic specialists.

  10. New African species of Echinobothrium (Cestoda: Diphyllidea) and implications for the identities of their skate hosts.

    Science.gov (United States)

    Caira, J N; Rodriguez, N; Pickering, M

    2013-10-01

    Two new species of diphyllidean cestodes of the genus Echinobothrium, each hosted by a different skate species in the Raja miraletus complex, are described. Echinobothrium mercedesae n. sp. is described from R. cf. miraletus 2 off Senegal. Echinobothrium yiae n. sp. is described from R. cf. miraletus 1 off South Africa. Both species are small worms that differ from their 29 described congeners in the combination of number of cephalic peduncle spines per column, hook formula, number and arrangement of testes, and arrangement of vitelline follicles. They are easily distinguished from one another in that whereas the vitelline follicles of E. yiae n. sp. are circumcortical, they are lateral in E. mercedesae n. sp., and also in number of cephalic peduncle spines per column (14-17 vs. 10-12). Echinobothrium yiae n. sp. is also unusual in that the cephalic peduncle spines stop short of the anterior margin of the peduncle. In addition, although the paucity of available material precluded their formal description, evidence of 2 additional new species parasitizing R. miraletus also from Senegal is presented. In combination these worms provide support for the interpretation that what is currently recognized as Raja miraletus actually consists of a complex of geographically restricted species, rather than a polymorphic species of multiple parapatric or allopatrically distributed populations. This interpretation is not only supported by previously published molecular data, but also by newly collected morphological data involving differences in the color patterns of disc ocelli among host specimens of the 3 forms available as a result of digital efforts to ensure the accuracy of host identifications, which are also presented here.

  11. New species of Cryptosporidium Tyzzer, 1907 (Apicomplexa) from amphibian host: morphology, biology and phylogeny

    Czech Academy of Sciences Publication Activity Database

    Jirků, Miloslav; Valigurová, A.; Koudela, Břetislav; Křížek, Jaroslav; Modrý, David; Šlapeta, J.

    2008-01-01

    Roč. 55, č. 2 (2008), s. 81-94 ISSN 0015-5683 R&D Projects: GA ČR GD524/03/H133; GA ČR GA524/05/0992; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium fragile * new species * Duttaphrynus melanostictus * Host specificity * ultrastructure * global amphibian decline * hylogeny * quarantine Subject RIV: EG - Zoology Impact factor: 1.307, year: 2008

  12. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events.

    Science.gov (United States)

    Carr, Michael; Gonzalez, Gabriel; Sasaki, Michihito; Dool, Serena E; Ito, Kimihito; Ishii, Akihiro; Hang'ombe, Bernard M; Mweene, Aaron S; Teeling, Emma C; Hall, William W; Orba, Yasuko; Sawa, Hirofumi

    2017-10-06

    Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.

  13. Effects of host species and environment on the skin microbiome of Plethodontid salamanders

    Science.gov (United States)

    Muletz-Wolz, Carly R.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2018-01-01

    The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments.Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease.We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700–1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members.Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd.We conclude that

  14. Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania.

    Science.gov (United States)

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Rubel, Franz; Waldenström, Jonas; Dobler, Gerhard; Chițimia-Dobler, Lidia

    2017-08-01

    Babesia spp., Theileria spp., and Hepatozoon spp. are tick-transmitted apicomplexan parasites that cause several important diseases in animals. To increase current knowledge about the diversity of tick-transmitted pathogens in Romania, we investigated the occurrence of Babesia spp., Theileria spp., and Hepatozoon spp. in a wide range of tick species infesting animal hosts. We collected 852 ticks from 10 different animal species from 20 counties in Romania. The assessment was based on detection of parasite DNA by PCR. Five different apicomplexan parasite species were detected; among them three different species of Babesia: B. canis, B. microti, and B. ovis. Hepatozoon canis was the most frequently detected parasite, found predominately in Ixodes ricinus ticks collected from domestic dogs. It was also detected in I. ricinus collected from goat, fox, and cat. Furthermore, H. canis was found in Haemaphysalis punctata and Haemaphysalis concinna ticks. In addition, Theileria buffeli was detected in Rhipicephalus bursa ticks collected from cattle.

  15. Endoparasite fauna of five Gadiformes fish species from the coast of Chile: host ecology versus phylogeny.

    Science.gov (United States)

    Chávez, R A; González, M T; Oliva, M E; Valdivia, I M

    2012-03-01

    The aims of the present study were to compare, using multivariate analyses, the degree of similarity of the endoparasite fauna of five fish species belonging to the order Gadiformes: Merluccius gayi, Merluccius australis, Macruronus magellanicus (Gadoidei) and Micromesistius australis and Nezumia pulchella (Macrouroidei), from the southern and central Chilean coast, and to evaluate whether the composition of the endoparasite fauna was determined by phylogenetic or ecological relationships. We employed our database of Merluccius australis, M. magellanicus and Micromesistius australis, which was complemented with published information for M. magellanicus, Merluccius australis, Micromesistius australis, M. gayi and N. pulchella. A higher number of endoparasite species was recorded for Merluccius australis, Micromesistius australis and M. magellanicus, namely Anisakis sp. and Hepatoxylon trichiuri, which is the most prevalent parasite among these hosts. Aporocotyle wilhelmi and Hysterothylacium sp. were detected only in M. gayi, whereas Lepidapedon sp. was found exclusively in N. pulchella. These results suggest that fish ecology rather than host phylogeny was the most important factor for the determination of similarity in parasite composition. This result could be explained by the similar trophic patterns of hosts and by the predominance of generalist larval species among these fish parasite communities.

  16. Endophytic Epichloë species and their grass hosts: from evolution to applications.

    Science.gov (United States)

    Saikkonen, Kari; Young, Carolyn A; Helander, Marjo; Schardl, Christopher L

    2016-04-01

    The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.

  17. Oral vaccination of wildlife against rabies: Differences among host species in vaccine uptake efficiency.

    Science.gov (United States)

    Vos, Ad; Freuling, Conrad M; Hundt, Boris; Kaiser, Christiane; Nemitz, Sabine; Neubert, Andreas; Nolden, Tobias; Teifke, Jens P; Te Kamp, Verena; Ulrich, Reiner; Finke, Stefan; Müller, Thomas

    2017-07-13

    Oral vaccination using attenuated and recombinant rabies vaccines has been proven a powerful tool to combat rabies in wildlife. However, clear differences have been observed in vaccine titers needed to induce a protective immune response against rabies after oral vaccination in different reservoir species. The mechanisms contributing to the observed resistance against oral rabies vaccination in some species are not completely understood. Hence, the immunogenicity of the vaccine virus strain, SPBN GASGAS, was investigated in a species considered to be susceptible to oral rabies vaccination (red fox) and a species refractory to this route of administration (striped skunk). Additionally, the dissemination of the vaccine virus in the oral cavity was analyzed for these two species. It was shown that the palatine tonsils play a critical role in vaccine virus uptake. Main differences could be observed in palatine tonsil infection between both species, revealing a locally restricted dissemination of infected cells in foxes. The absence of virus infected cells in palatine tonsils of skunks suggests a less efficient uptake of or infection by vaccine virus which may lead to a reduced response to oral vaccination. Understanding the mechanisms of oral resistance to rabies virus vaccine absorption and primary replication may lead to the development of novel strategies to enhance vaccine efficacy in problematic species like the striped skunk. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Frequency and Antimicrobial Susceptibility Pattern of Acinetobacter Species Isolated from Pus and Pus Swab Specimens

    International Nuclear Information System (INIS)

    Fayyaz, M.; Akbar, N.; Khan, I. U.; Hussain, A.; Ali, S.; Mirza, I. A.

    2015-01-01

    Objective: To evaluate the frequency and antimicrobial susceptibility pattern of Acinetobacter species isolated from pus and pus swab specimens at a tertiary care setting. Study Design: Cross-sectional observational study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from July 2008 to July 2012. Methodology: Data regarding positive culture and antimicrobial sensitivity pattern was retrieved from the pus and pus swab culture records of the Microbiology Department, AFIP, Rawalpindi. Only those pus and pus swab specimens which yielded the growth of Acinetobacter species were included in the study. Results:Out of 2781, 1848 were of pure pus while 933 were pus swab specimens. Out of 2538 culture positive isolates, 276 (10.9 percentage) were identified as Acinetobacterspecies. Among 276 Acinetobacter species, 245 (88.8 percentage) were Acinetobacter baumannii and 31 (11.2 percentage) were Acinetobacter johnsonii. Male/female ratio of the affected patients was 5.6:1. Doxycycline was the most sensitive antibiotic to which 45 percentage of the tested isolates were sensitive. Sensitivity to all other antimicrobials was 15 percentage or less. Conclusion: About 11 percentage of soft tissue and wound infections are caused by Acinetobacter species in our set up particularly in male. Doxycycline was the most sensitive antibiotic. Sensitivity to all other antimicrobials was 15 percentage or less. In vitro sensitivity to carbapenems is very low. (author)

  19. A retrospective analysis of pollen host plant use by stable and declining bumble bee species.

    Science.gov (United States)

    Kleijn, David; Raemakers, Ivo

    2008-07-01

    Understanding population declines has been the objective of a wide range of ecological studies. When species have become rare such studies are complicated because particular behavior or life history traits may be the cause but also the result of the decline of a species. We approached this problem by studying species' characteristics on specimens that were collected before the onset of their decline and preserved in natural history museums. In northwestern Europe, some bumble bee species declined dramatically during the 20th century whereas other, ecologically similar, species maintained stable populations. A long-standing debate focuses on whether this is caused by declining species having stricter host plant preferences. We compared the composition of pollen loads of five bumble bee species with stable populations and five with declining populations using museum specimens collected before 1950 in Belgium, England, and The Netherlands. Prior to 1950, the number of plant taxa in pollen loads of declining species was almost one-third lower than that in stable species even though individuals of stable and declining species generally originated from the same areas. There were no systematic differences in the composition of pollen loads between stable and declining species, but the plant taxa preferred by declining species before 1950 had experienced a stronger decline in the 20th century than those preferred by stable species. In 2004 and 2005, we surveyed the areas where bumble bees had been caught in the past and compared the composition of past and present pollen loads of the stable, but not of the by now locally extinct declining species. The number of collected pollen taxa was similar, but the composition differed significantly between the two periods. Differences in composition reflected the major changes in land use in northwestern Europe but also the spread of the invasive plant species Impatiens glandulifera. The main question now is why declining species

  20. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  1. A 9-year study of shigellosis in Northeast Malaysia: Antimicrobial susceptibility and shifting species dominance.

    Science.gov (United States)

    Banga Singh, Kirnpal-Kaur; Ojha, Suvash Chandra; Deris, Zakuan Zainy; Rahman, Rosliza Abdul

    2011-06-01

    AIMS: In Malaysia, Shigella spp. is the third most common bacterial agent responsible for childhood diarrhoea. This study was conducted to determine the prevalence and antimicrobial susceptibility patterns of Shigella spp. isolated from patients admitted to the Hospital Universiti Sains Malaysia from January 2001 to December 2009. SUBJECTS AND METHODS: A hospital-based retrospective study was used. Stool samples from patients were cultured using a standard culture method. Shigella spp. isolates were identified by biochemical and serological methods, and the antimicrobial susceptibility pattern was evaluated using the Kirby-Bauer disc-diffusion method. RESULTS: A total of 138 Shigella spp. were isolated from a total of 14,830 routine stool specimens, yielding an isolation rate of 0.93% that corresponded to 9.99% of the 1,381 bacterial pathogens isolated. Of these isolates, S. sonnei was the predominant species, followed by S. flexneri and S. boydii. Seasonal variation was noticed, and no significant differences were detected in the demographic data for S. flexneri and S. sonnei. The susceptibility of all isolated Shigella strains was tested against seven antibiotics. Ceftriaxone (99.1%), ciprofloxacin (98.4%), and nalidixic acid (93.8%) were effective against the Shigella strains, whereas tetracycline and trimethoprim-sulfamethoxazole exhibited high frequencies of resistance (58.4% and 53.8%, respectively). CONCLUSION: This study is important for public health education aimed at reducing the morbidity and mortality associated with Shigella spp. infection. Our results also will be helpful for paediatricians and microbiologists in the selection of appropriate antibiotics for the management of diarrhoea.

  2. Susceptibility and molecular characterization of Candida species from patients with vulvovaginitis

    Directory of Open Access Journals (Sweden)

    Gheniffer Fornari

    2016-06-01

    Full Text Available Abstract Vulvovaginal candidiasis affects women of reproductive age, which represents approximately 15–25% of vaginitis cases. The present study aimed to isolate and characterize yeast from the patients irrespective of the presentation of clinical symptoms. The isolates were subjected to in vitro susceptibility profile and characterization by molecular markers, which intended to assess the distribution of species. A total of 40 isolates were obtained and identified through the CHROMagar, API20aux and by ITS and D1/D2 regions sequencing of DNAr gene. Candida albicans strains were genotyped by the ABC system and the isolates were divided into two genotypic groups. The identity of the C. albicans, C. glabrata, C. guilliermondii, C. kefyr and Saccharomyces cerevisiae isolates was confirmed by the multilocus analysis. The strains of Candida, isolated from patients with complications, were found to be resistant to nystatin but sensitive to fluconazole, amphotericin B and ketoconazole, as observed by in vitro sensitivity profile. The isolates from asymptomatic patients, i.e., the colonized group, showed a dose-dependent sensitivity to the anti-fungal agents, fluconazole and amphotericin B. However, the isolates of C. albicans that belong to distinct genotypic groups showed the same in vitro susceptibility profile.

  3. Susceptibility and molecular characterization of Candida species from patients with vulvovaginitis.

    Science.gov (United States)

    Fornari, Gheniffer; Vicente, Vania Aparecida; Gomes, Renata Rodrigues; Muro, Marisol Dominguez; Pinheiro, Rosangela Lameira; Ferrari, Carolina; Herkert, Patricia Fernanda; Takimura, Marcos; Carvalho, Newton Sérgio de; Queiroz-Telles, Flavio

    2016-01-01

    Vulvovaginal candidiasis affects women of reproductive age, which represents approximately 15-25% of vaginitis cases. The present study aimed to isolate and characterize yeast from the patients irrespective of the presentation of clinical symptoms. The isolates were subjected to in vitro susceptibility profile and characterization by molecular markers, which intended to assess the distribution of species. A total of 40 isolates were obtained and identified through the CHROMagar, API20aux and by ITS and D1/D2 regions sequencing of DNAr gene. Candida albicans strains were genotyped by the ABC system and the isolates were divided into two genotypic groups. The identity of the C. albicans, C. glabrata, C. guilliermondii, C. kefyr and Saccharomyces cerevisiae isolates was confirmed by the multilocus analysis. The strains of Candida, isolated from patients with complications, were found to be resistant to nystatin but sensitive to fluconazole, amphotericin B and ketoconazole, as observed by in vitro sensitivity profile. The isolates from asymptomatic patients, i.e., the colonized group, showed a dose-dependent sensitivity to the anti-fungal agents, fluconazole and amphotericin B. However, the isolates of C. albicans that belong to distinct genotypic groups showed the same in vitro susceptibility profile. Copyright © 2016. Published by Elsevier Editora Ltda.

  4. Prevalence and Antibiotic Susceptibility of Campylobacter species Isolated From Chicken and Beef Meat

    Directory of Open Access Journals (Sweden)

    Hossein Dabiri

    2014-05-01

    Full Text Available Background: To study prevalence of Campylobacter spp. in chicken and beef meat, and determine the drug susceptibility of strains, 450 samples in Tehran, Iran were investigated. Objectives: This study aimed to determine the prevalence and the antimicrobial resistance of entropathogenic Campylobacter strains ,especially C. jejuni isolated from raw chicken and beef meat in Tehran- Iran. Materials and Methods: Out of 250 chickens and 200 beef meats, 121(26.8 % contaminated cases with Campylobacter strains were isolated. Campylobacter was isolated from a significantly larger number of chickens (44% than beef meats (5.5 % (P < 0.05. Results: From all isolated Campylobacter organisms, 93 (76.8% species were identified as C. jejuni and 28 cases (23.1% as C. coli. Susceptibilities of 121 strains (93 C. jejuni and 28 C. coli were determined against 12 antimicrobial drugs using the disk agar diffusion method. Resistance to nalidixic acid (75% and ciprofloxacin (50% was an alarming finding, moreover, 32.6% of isolates was resistant to tetracycline, 10.8% to ampicillin, 29.3% to colisitin and 26.1% to amoxicillin. The highest sensitivity was seen to erythromycin (95 % and gentamicin (96%. Conclusions: These results showed that a high proportion of chicken and beef meat in Iran is contaminated with Campylobacter, particularly with Campylobacter jejuni. The high rate of contamination, especially chicken is a significant public health concern. Most of the isolates were resistant; therefore, human infection with Campylobacter spp. via consumption of these products is possible.

  5. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    Science.gov (United States)

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-02-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar.

  6. Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin

    Science.gov (United States)

    Walker, Louise A.; Gow, Neil A. R.

    2013-01-01

    The echinocandin antifungal drugs inhibit synthesis of the major fungal cell wall polysaccharide β(1,3)-glucan. Echinocandins have good efficacy against Candida albicans but reduced activity against other Candida species, in particular Candida parapsilosis and Candida guilliermondii. Treatment of Candida albicans with a sub-MIC level of caspofungin has been reported to cause a compensatory increase in chitin content and to select for sporadic echinocandin-resistant FKS1 point mutants that also have elevated cell wall chitin. Here we show that elevated chitin in response to caspofungin is a common response in various Candida species. Activation of chitin synthesis was observed in isolates of C. albicans, Candida tropicalis, C. parapsilosis, and C. guilliermondii and in some isolates of Candida krusei in response to caspofungin treatment. However, Candida glabrata isolates demonstrated no exposure-induced change in chitin content. Furthermore, isolates of C. albicans, C. krusei, C. parapsilosis, and C. guilliermondii which were stimulated to have higher chitin levels via activation of the calcineurin and protein kinase C (PKC) signaling pathways had reduced susceptibility to caspofungin. Isolates containing point mutations in the FKS1 gene generally had higher chitin levels and did not demonstrate a further compensatory increase in chitin content in response to caspofungin treatment. These results highlight the potential of increased chitin synthesis as a potential mechanism of tolerance to caspofungin for the major pathogenic Candida species. PMID:23089748

  7. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: host plant specialization matters.

    Science.gov (United States)

    Boivin, T; Henri, H; Vavre, F; Gidoin, C; Veber, P; Candau, J-N; Magnoux, E; Roques, A; Auger-Rozenberg, M-A

    2014-05-01

    Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont-mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis-inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission. © 2014 John Wiley & Sons Ltd.

  9. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  10. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk.

    Science.gov (United States)

    Sawant, A A; Gillespie, B E; Oliver, S P

    2009-02-16

    Coagulase-negative Staphylococcus (CNS) isolates (n=168) obtained from milk from heifers and dairy cows were screened for minimum inhibitory concentration (MIC) to antimicrobials used commonly for mastitis therapy. Of the 10 CNS species included in the study, the predominant species were Staphylococcus chromogenes (n=61), Staphylococcus epidermidis (n=37), Staphylococcus hyicus (n=37), and Staphylococcus simulans (n=16). The majority of CNS was susceptible to ampicillin, oxacillin, cephalothin, and ceftiofur. Erythromycin and pirlimycin were also very effective in vitro inhibitors of CNS. The only exception was observed with S. epidermidis. Of 37 S. epidermidis evaluated, 13 (35%) exhibited efflux-based resistance to erythromycin (> or =16 microg/ml) encoded by msrA and one isolate carried ermC encoding ribosomal methylase-based resistance to both erythromycin (> or =64 microg/ml) and pirlimycin (> or =64 microg/ml). A total of 17 S. epidermidis, 11 S. chromogenes, and one S. hyicus exhibited phenotypic resistance to ampicillin (> or =0.5 microg/ml). Constitutive beta-lactamase production was observed in all ampicillin resistant isolates except 4 S. epidermidis that exhibited inducible beta-lactamase production. Induced beta-lactamase production was also observed in 13 S. epidermidis that were phenotypically susceptible to the entire MIC panel. All isolates that produced beta-lactamase either constitutively or by induction carried blaZ. S. epidermidis (n=12, 32%) that were resistant to methicillin (oxacillin > or =0.5 microg/ml) carried low affinity penicillin-binding protein encoded by mecA. Most multi-drug resistant (MDR) S. epidermidis (> or =2 resistance genes) were resistant to ampicillin, erythromycin and methicillin. All except one MDR S. epidermidis had icaAB, which encodes for polysaccharide intercellular adhesion. Based on pulsed field gel electrophoresis, MDR S. epidermidis were closely related genotypically, and were isolated from different cows on the

  11. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    Science.gov (United States)

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted.

  12. Mud crab susceptibility to disease from white spot syndrome virus is species-dependent

    Directory of Open Access Journals (Sweden)

    Sritunyalucksana Kallaya

    2010-11-01

    Full Text Available Abstract Background Based on a report for one species (Scylla serrata, it is widely believed that mud crabs are relatively resistant to disease caused by white spot syndrome virus (WSSV. We tested this hypothesis by determining the degree of susceptibility in two species of mud crabs, Scylla olivacea and Scylla paramamosain, both of which were identified by mitochondrial 16 S ribosomal gene analysis. We compared single-dose and serial-dose WSSV challenges on S. olivacea and S. paramamosain. Findings In a preliminary test using S. olivacea alone, a dose of 1 × 106 WSSV copies/g gave 100% mortality within 7 days. In a subsequent test, 17 S. olivacea and 13 S. paramamosain were divided into test and control groups for challenge with WSSV at 5 incremental, biweekly doses starting from 1 × 104 and ending at 5 × 106 copies/g. For 11 S. olivacea challenged, 3 specimens died at doses between 1 × 105 and 5 × 105 copies/g and none died for 2 weeks after the subsequent dose (1 × 106 copies/g that was lethal within 7 days in the preliminary test. However, after the final challenge on day 56 (5 × 106 copies/g, the remaining 7 of 11 S. olivacea (63.64% died within 2 weeks. There was no mortality in the buffer-injected control crabs. For 9 S. paramamosain challenged in the same way, 5 (55.56% died after challenge doses between 1 × 104 and 5 × 105 copies/g, and none died for 2 weeks after the challenge dose of 1 × 106 copies/g. After the final challenge (5 × 106 copies/g on day 56, no S. paramamosain died during 2 weeks after the challenge, and 2 of 9 WSSV-infected S. paramamosain (22.22% remained alive together with the control crabs until the end of the test on day 106. Viral loads in these survivors were low when compared to those in the moribund crabs. Conclusions S. olivacea and S. paramamosain show wide variation in response to challenge with WSSV. S. olivacea and S. paramamosain are susceptible to white spot disease, and S. olivacea is more

  13. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  14. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  15. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    Science.gov (United States)

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers.

  16. Environmental isolation, biochemical identification, and antifungal drug susceptibility of Cryptococcus species

    Directory of Open Access Journals (Sweden)

    Valter Luis Iost Teodoro

    2013-12-01

    Full Text Available Introduction The incidence of opportunistic fungal infections has increased in recent years and is considered an important public health problem. Among systemic and opportunistic mycoses, cryptococcosis is distinguished by its clinical importance due to the increased risk of infection in individuals infected by human immunodeficiency virus. Methods To determine the occurrence of pathogenic Cryptococcus in pigeon excrement in the City of Araraquara, samples were collected from nine environments, including state and municipal schools, abandoned buildings, parks, and a hospital. The isolates were identified using classical tests, and susceptibility testing for the antifungal drugs (fluconazole, itraconazole, voriconazole, and amphotericin B independently was also performed. After collection, the excrement samples were plated on Niger agar and incubated at room temperature. Results A total of 87 bird dropping samples were collected, and 66.6% were positive for the genus Cryptococcus. The following species were identified: Cryptococcus neoformans (17.2%, Cryptococcus gattii (5.2%, Cryptococcus ater (3.5%, Cryptococcus laurentti (1.7%, and Cryptococcus luteolus (1.7%. A total of 70.7% of the isolates were not identified to the species level and are referred to as Cryptococcus spp. throughout the manuscript. Conclusions Although none of the isolates demonstrated resistance to antifungal drugs, the identification of infested areas, the proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis.

  17. Anastrepha species (Diptera: Tephritidae, their host plants and parasitoids (Hymenoptera in the state of Roraima, Brazil: state of the art

    Directory of Open Access Journals (Sweden)

    Alberto Luiz Marsaro Júnior

    2017-02-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2017v30n1p13 The aim of this review was to update the available information on Anastrepha species in the state of Roraima, Brazil, with emphasis on distribution, host plants and parasitoids. In total, 25 species of Anastrepha and 27 host plant species have been recorded to date in Roraima. Anastrepha striata and A. obliqua are widely distributed in the state. Anastrepha obliqua is the most polyphagous species, where it is associated with 13 hosts. Six species of parasitoids of Anastrepha have been reported in Roraima. Of these, Doryctobracon areolatus is the most abundant and has been associated with the largest number of Anastrepha species.

  18. Is induction ability of seed germination of Phelipanche ramosa phylogenetically structured among hosts? A case study on Fabaceae species.

    Science.gov (United States)

    Perronne, Rémi; Gibot-Leclerc, Stéphanie; Dessaint, Fabrice; Reibel, Carole; Le Corre, Valérie

    2017-12-01

    Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.

  19. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  20. The trend of susceptibilities to amphotericin B and fluconazole of Candida species from 1999 to 2002 in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng Hsiao-Hsu

    2005-11-01

    Full Text Available Abstract Background Candida species have various degrees of susceptibility to common antifungal drugs. The extent of resistance to amphotericin B and fluconazole of Candida glabrata isolates causing candidemia has been reported. Active surveillance may help us to monitor the trend of susceptibility to antifungal drugs and to determine if there is an emerging co-resistance to both drugs of Candida species, specifically, of C. glabrata in Taiwan. Methods The susceptibilities to amphotericin B and fluconazole of Candida species collected in 1999 and 2002 of the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY were determined by the microdilution method. Results The antifungal susceptibilities of 342 and 456 isolates collected from 11 hospitals participating in both TSARY 1999 and TSARY 2002, respectively, have been determined. The resistance rate to amphotericin B has increased from 0.3% in the TSARY1999 to 2.2% in the TSARY 2002. In contrast, the resistance rate to fluconazole has decreased from 8.8% to 2.2%. Nevertheless, significantly more C. glabrata isolates were not susceptible to fluconazole in the TSARY 2002 (47.4% than that in the TSARY 1999 (20.8%. There were 9.8% and 11% of C. glabrata isolates having susceptible-dose dependent and resistant phenotype to fluconazole in the TSARY 1999, verse 45.3% and 2.1% in the TSARY 2002. Conclusion There was an increase of resistance rate to amphotericin B in C. glabrata. On the other hand, although the resistance rate to fluconazole has decreased, almost half of C. glabrata isolates were not susceptible to this drug. Hence, continuous monitoring the emerging of co-resistance to both amphotericin B and fluconazole of Candida species, specifically, of C. glabrata, will be an important early-warning system.

  1. Persistence of functional protein domains in mycoplasma species and their role in host specificity and synthetic minimal life

    NARCIS (Netherlands)

    Kamminga, Tjerko; Koehorst, Jasper J.; Vermeij, Paul; Slagman, Simen Jan; Santos, dos Vitor A.P.M.; Bijlsma, Jetta J.E.; Schaap, Peter J.

    2017-01-01

    Mycoplasmas are the smallest self-replicating organisms and obligate parasites of a specific vertebrate host. An in-depth analysis of the functional capabilities of mycoplasma species is fundamental to understand how some of simplest forms of life on Earth succeeded in subverting complex hosts with

  2. Plant Killing by Mutualistic Ants Increases the Density of Host Species Seedlings in the Dry Forest of Costa Rica

    OpenAIRE

    Amador-Vargas, Sabrina

    2012-01-01

    Some species of plant-mutualistic ants kill the vegetation growing in the vicinities of their host plant, creating an area of bare ground (clearing). The reduced competition in the clearing may facilitate the establishment of host species sprouts (clones and seedlings), which in turn benefits the ants with additional food and shelter (“sprout-establishment hypothesis”). To test this hypothesis, the density and origin of Acacia collinsii sprouts growing inside clearings and in the vicinities o...

  3. Toxocariasis in Carnivora from Argentinean Patagonia: Species molecular identification, hosts, and geographical distribution

    Directory of Open Access Journals (Sweden)

    R.M. Vega

    2018-04-01

    Full Text Available Twenty four specimens of seven species belonging to the families Felidae, Mustelidae, and Canidae were obtained in Lanín and Nahuel Huapi National Parks from March 1996 to April 2016. Specimens were processed by necropsy in order to contribute to the knowledge of toxocariasis in wild carnivores of Argentinean Patagonia. The only Puma concolor and the seven Leopardus geoffroyi were positive for Toxocara cati. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP of the ITS-1 region from larval and adult DNA was carried out to confirm parasite species identification. This is the first molecular determination of T. cati from wild felids in Argentina and the study also fill gaps about the spatial distribution and hosts for Toxocara cati. Keywords: Toxocara cati, Puma concolor, Leopardus geoffroyi, Molecular identification, Argentina

  4. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae.

    Science.gov (United States)

    Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S

    2016-03-01

    Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Hippobosca longipennis - a potential intermediate host of a species of Acanthocheilonema in dogs in northern India

    Directory of Open Access Journals (Sweden)

    Irwin Peter J

    2011-07-01

    Full Text Available Abstract Background Hippobosca longipennis (the 'dog louse fly' is a blood sucking ectoparasite found on wild carnivores such as cheetahs and lions and domesticated and feral dogs in Africa, the Middle East and Asia, including China. Known as an intermediate host for Acanthocheilonema dracunculoides and a transport host for Cheyletiella yasguri, it has also been suggested that H. longipennis may be a vector for other pathogens, including Acanthocheilonema sp.? nov., which was recently reported to infect up to 48% of dogs in northern India where this species of fly is known to commonly infest dogs. To test this hypothesis, hippoboscid flies feeding on dogs in Ladakh in northern India were collected and subjected to microscopic dissection. Results A total of 12 infective larvae were found in 10 out of 65 flies dissected; 9 from the head, 2 from the thorax and 1 from the abdomen. The larvae averaged 2, 900 (± 60 μm in length and 34 (± 5 μm in width and possessed morphological features characteristic of the family Onchocercidae. Genetic analysis and comparison of the 18S, ITS-2, 12S and cox-1 genes confirmed the identity of the larvae as the Acanthocheilonema sp.? nov. reported in dogs in Ladakh. Conclusion This study provides evidence for a potential intermediate host-parasite relationship between H. longipennis and the canine Acanthocheilonema sp.? nov. in northern India.

  6. Effects of intra- and interpatch host density on egg parasitism by three species of Trichogramma.

    Science.gov (United States)

    Grieshop, Matthew J; Flinn, Paul W; Nechols, James R

    2010-01-01

    Host-foraging responses to different intra- and interpatch densities were used to assess three Trichogramma spp. (Hymenoptera: Trichogrammatidae) Trichogramma deion Pinto and Oatman, T. ostriniae Pang and Chen, and T. pretiosum Riley - as potential biological control agents for the Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Single naïve females were allowed 6 h to forage in Plexiglas arenas with four different spatial arrangements of host eggs, nine single-egg patches), nine four-egg patches, 36 single-egg patches, and 36 four-egg patches. No significant differences were found among species in the number of patches parasitized. As expected, all three species parasitized the most eggs in the 36 four-egg patch treatment and the least in the nine single-egg patch treatment. T. deion parasitized significantly more eggs than T. pretiosum on the nine four-egg patches. T. ostriniae parasitized significantly more patches when intrapatch density was greater, regardless of interpatch density. In contrast, T. deion only parasitized more patches at the greater intrapatch density when the interpatch density was low. Patch density had no effect on T. pretiosum. The spatial pattern of parasitism was more aggregated for T. deion and T. ostriniae in the 36 four-egg patches treatment compared to the 36 single-egg patches treatment. Therefore, intrapatch density was more important than interpatch density for T. ostriniae, and potentially for T. deion, but not for T. pretiosum. T. deion may be the best candidate for augmentative biological control because it parasitized either slightly or significantly more eggs than the other two species in all four treatments. Furthermore, the pattern of parasitism by T. deion in the 36 four-egg patches treatment was the most aggregated among the three species, suggesting a more thorough searching pattern. In contrast, T. pretiosum had the least aggregated pattern of parasitism and therefore may have used a more

  7. Comparison of agar dilution and antibiotic gradient strip test with broth microdilution for susceptibility testing of swine Brachyspira species.

    Science.gov (United States)

    Mirajkar, Nandita S; Gebhart, Connie J

    2016-03-01

    Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics. © 2016 The Author(s).

  8. Alloxenic distribution of cystacanths of two Profilicollis species in sympatric crustacean hosts in Chile.

    Science.gov (United States)

    Balboa, L; Hinojosa, A; Riquelme, C; Rodríguez, S; Bustos, J; George-Nascimento, M

    2009-10-01

    The taxonomic status of Profilicollis ( = Falsifilicollis Webster, 1948) species in crustaceans in Chile is examined. Mole crabs, Emerita analoga (Stimpson 1857), living in the splash zone of a sandy beach at Lenga off the coast of central Chile, harbor Polymorphus (Profilicollis) bullocki Mateo, Córdova and Guzmán 1982, while the estuarine crabs, Hemigrapsus crenulatus (Milne-Edwards, 1837), living in an oligohaline inlet at the same site, harbor Profilicollis spp. cystacanths which cannot be distinguished specifically to either Profilicollis antarcticus or P. chasmagnathi Holcman-Spector, Mañé-Garzón and Dei-Cas 1977. We found no morphological data supporting records of P. altmani along the coast of Chile. Therefore, and after examination of both their morphology and the literature, we consider that P. bullocki must be reinstated as a valid species in the genus. There is a widespread distribution of habitats, such as sandy beaches and inlets, as well as a variety of host taxa involved in the life cycle of Profilicollis spp. Consequently, they provide an interesting scenario for testing hypotheses regarding the coevolution and host specificity of these parasites.

  9. Response of brown-headed cowbirds and three host species to thinning treatments in low-elevation ponderosa pine forests along the northern Colorado Front Range

    Science.gov (United States)

    Keeley, W.H.; Germaine, Stephen S.; Stanley, Thomas R.; Spaulding, Sarah A.; Wanner, C.E.

    2013-01-01

    Thinning ponderosa pine (Pinus ponderosa) forests to achieve desired ecological conditions remains a priority in the North American west. In addition to reducing the risk of high-severity wildfires in unwanted areas, stand thinning may increase wildlife and plant diversity and provide increased opportunity for seedling recruitment. We initiated conservative (i.e. minimal removal of trees) ponderosa stand thinning treatments with the goals of reducing fire risk and improving habitat conditions for native wildlife and flora. We then compared site occupancy of brown-headed cowbirds (Molothrus ater), chipping sparrows (Spizella passerina), plumbeous vireos (Vireo plumbeus), and western wood-pewees (Contopus sordidulus) in thinned and unthinned (i.e., control) forest stands from 2007 to 2009. Survey stations located in thinned stands had 64% fewer trees/ha, 25% less canopy cover, and 23% less basal area than stations in control stands. Occupancy by all three host species was negatively associated with tree density, suggesting that these species respond favorably to forest thinning treatments in ponderosa pine forests. We also encountered plumbeous vireos more frequently in plots closer to an ecotonal (forest/grassland) edge, an association that may increase their susceptibility to edge-specialist, brood parasites like brown-headed cowbirds. Occupancy of brown-headed cowbirds was not related to forest metrics but was related to occupancy by plumbeous vireos and the other host species in aggregate, supporting previous reports on the affiliation between these species. Forest management practices that promote heterogeneity in forest stand structure may benefit songbird populations in our area, but these treatments may also confer costs associated with increased cowbird occupancy. Further research is required to understand more on the complex relationships between occupancy of cowbirds and host species, and between cowbird occupancy and realized rates of nest parasitism.

  10. Does Animal Behavior Underlie Covariation Between Hosts' Exposure to Infectious Agents and Susceptibility to Infection? Implications for Disease Dynamics

    NARCIS (Netherlands)

    Hawley, Dana M.; Etienne, Rampal S.; Ezenwa, Vanessa O.; Jolles, Anna E.

    2011-01-01

    Animal behavior is unique in influencing both components of the process of transmission of disease: exposure to infectious agents, and susceptibility to infection once exposed. To date, the influence of behavior on exposure versus susceptibility has largely been considered separately. Here, we ask

  11. Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses.

    Science.gov (United States)

    Slater, Tessa; Eckerle, Isabella; Chang, Kin-Chow

    2018-04-10

    With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.

  12. Molecular Diagnosis of Pathogenic Sporothrix Species

    NARCIS (Netherlands)

    Rodrigues, Anderson Messias; de Hoog, G Sybren; de Camargo, Zoilo Pires

    2015-01-01

    BACKGROUND: Sporotrichosis is a chronic (sub)cutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species

  13. Susceptibility of various tree species to SO/sub 2/, HF and magnesite dust pollutions

    Energy Technology Data Exchange (ETDEWEB)

    Pollanschutz, J

    1969-01-01

    The investigations covered an area polluted with SO/sub 2/ and magnesite, with SO/sub 2/ and HF, and with HF. With the aid of an increment borer, the growth of the trees was measured; in other cases, the power of endurance was estimated. In the environment of a magnesite plant magnesite dust and SO/sub 2/ pollution caused growth reduction (in decreasing order) in Abies alba, Picea abies and Pinus sylvestris. Larix decidua appeared to be by far the most resistant against both pollutants. Fagus sylvatica still showed a growth increase, though leaf burn symptoms were present; this might be due to fertilization with MgSO/sub 4/ through the leaves. When polluted with both SO/sub 2/ and HF, the (increasing) order was: Populus tremula, Fraxinus excelsior, Fagus + Acer, Picea + Pinus, Larix. Though no differences between Pinus and Picea was found here, it was striking that in the latter species the variation in susceptibility was much greater than in Pinus, which may be important for future selection work. In an atmosphere polluted solely with HF, Pinus showed a greater resistance than Picea and Abies, but it seemed that in its youth, Abies was at least as resistant as Picea. Symptoms do not always correspond with growth reduction and yield losses, and an important growth reduction may occur before any clear symptoms can be observed. Breeding for resistance should be encouraged, especially in spruce.

  14. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    Science.gov (United States)

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  15. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  16. A Distinctive and Host-Restricted Gut Microbiota in Populations of a Cactophilic Drosophila Species.

    Science.gov (United States)

    Martinson, Vincent G; Carpinteyro-Ponce, Javier; Moran, Nancy A; Markow, Therese A

    2017-12-01

    Almost all animals possess gut microbial communities, but the nature of these communities varies immensely. For example, in social bees and mammals, the composition is relatively constant within species and is dominated by specialist bacteria that do not live elsewhere; in laboratory studies and field surveys of Drosophila melanogaster , however, gut communities consist of bacteria that are ingested with food and that vary widely among individuals and localities. We addressed whether an ecological specialist in its natural habitat has a microbiota dominated by gut specialists or by environmental bacteria. Drosophila nigrospiracula is a species that is endemic to the Sonoran Desert and is restricted to decaying tissues of two giant columnar cacti, Pachycereus pringlei (cardón cactus) and Carnegiea gigantea (saguaro cactus). We found that the D. nigrospiracula microbiota differs strikingly from that of the cactus tissue on which the flies feed. The most abundant bacteria in the flies are rare or completely absent in the cactus tissue and are consistently abundant in flies from different cacti and localities. Several of these fly-associated bacterial groups, such as the bacterial order Orbales and the genera Serpens and Dysgonomonas , have been identified in prior surveys of insects from the orders Hymenoptera, Coleoptera, Lepidoptera, and Diptera, including several Drosophila species. Although the functions of these bacterial groups are mostly unexplored, Orbales species studied in bees are known to break down plant polysaccharides and use the resulting sugars. Thus, these bacterial groups appear to be specialized to the insect gut environment, where they may colonize through direct host-to-host transmission in natural settings. IMPORTANCE Flies in the genus Drosophila have become laboratory models for microbiota research, yet the bacteria commonly used in these experiments are rarely found in wild-caught flies and instead represent bacteria also present in the food

  17. Profiling of Leptospira interrogans, L. santarosai, L. meyeri and L. borgpetersenii by SE-AFLP, PFGE and susceptibility testing--a continuous attempt at species and serovar differentiation.

    Science.gov (United States)

    Moreno, Luisa Z; Miraglia, Fabiana; Lilenbaum, Walter; Neto, José S F; Freitas, Julio C; Morais, Zenaide M; Hartskeerl, Rudy A; da Costa, Barbara L P; Vasconcellos, Silvio A; Moreno, Andrea M

    2016-03-09

    Leptospirosis is a widespread systemic zoonosis, considered as reemerging in certain developing countries. Although the cross agglutinin absorption test is still considered the standard method for Leptospira identification, it presents several disadvantages. The aim of this study was to characterize Leptospira spp. isolated from various hosts by genotyping and broth microdilution susceptibility testing in an attempt to differentiate Leptospira species, serogroups and serovars. Forty-seven isolates were studied. They were previously serotyped, and species confirmation was performed by 16S rRNA sequencing. Single-enzyme amplified fragment length polymorphism (SE-AFLP) and pulsed-field gel electrophoresis (PFGE) analysis enabled the distinction of L. interrogans from L. santarosai, L. meyeri and L. borgpetersenii in two main clusters. Among L. interrogans, it was possible to differentiate into two new clusters the serogroup Icterohaemorrhagiae from the serogroups Canicola and Pomona. L. santarosai isolates presented higher genetic variation than the other species in both techniques. Interestingly, the minimum inhibitory concentration (MIC) cluster analysis also provided Leptospira serogroup differentiation. Further studies are necessary regarding serovar Bananal isolates, as they presented the highest MIC values for most of the antimicrobials tested. All studied techniques successfully distinguished Leptospira species and serogroups. Despite being library-dependent methods, these approaches are less labor intensive and more economically viable, particularly SE-AFLP, and can be implemented in most reference laboratories worldwide to enable faster Leptospira typing.

  18. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response

    OpenAIRE

    Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé

    2018-01-01

    Cassava brown streak viruses (CBSVs) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs we inoculated CBSV-susceptible and -resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time-point of full infection (28 days after grafting) in the susceptible scions. The expression of genes enco...

  19. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species.

    Science.gov (United States)

    Nagayoshi, Yohsuke; Miyazaki, Taiga; Shimamura, Shintaro; Nakayama, Hironobu; Minematsu, Asuka; Yamauchi, Shunsuke; Takazono, Takahiro; Nakamura, Shigeki; Yanagihara, Katsunori; Kohno, Shigeru; Mukae, Hiroshi; Izumikawa, Koichi

    2017-01-01

    The pathogenic fungus Candida glabrata is often resistant to azole antifungal agents. Drug efflux through azole transporters, such as Cdr1 and Cdr2, is a key mechanism of azole resistance and these genes are under the control of the transcription factor Pdr1. Recently, the monoamine oxidase A (MAO-A) inhibitor clorgyline was shown to inhibit the azole efflux pumps, leading to increased azole susceptibility in C. glabrata. In the present study, we have evaluated the effects of clorgyline on susceptibility of C. glabrata to not only azoles, but also to micafungin and amphotericin B, using wild-type and several mutant strains. The addition of clorgyline to the culture media increased fluconazole susceptibility of a C. glabrata wild-type strain, whereas micafungin and amphotericin B susceptibilities were markedly decreased. These phenomena were also observed in other medically important Candida species, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida krusei. Expression levels of CDR1, CDR2 and PDR1 mRNAs and an amount of Cdr1 protein in the C. glabrata wild-type strain were highly increased in response to the treatment with clorgyline. However, loss of Cdr1, Cdr2, Pdr1, and a putative clorgyline target (Fms1), which is an ortholog of human MAO-A, or overexpression of CDR1 did not affect the decreased susceptibility to micafungin and amphotericin B in the presence of clorgyline. The presence of other azole efflux pump inhibitors including milbemycin A4 oxime and carbonyl cyanide 3-chlorophenylhydrazone also decreased micafungin susceptibility in C. glabrata wild-type, Δcdr1, Δcdr2, and Δpdr1 strains. These findings suggest that azole efflux pump inhibitors increase azole susceptibility but concurrently induce decreased susceptibility to other classes of antifungals independent of azole transporter functions.

  20. Inter-species protein trafficking endows dodder (Cuscuta pentagona) with a host-specific herbicide-tolerant trait.

    Science.gov (United States)

    Jiang, Linjian; Qu, Feng; Li, Zhaohu; Doohan, Douglas

    2013-06-01

    · Besides photosynthates, dodder (Cuscuta spp.) acquires phloem-mobile proteins from host; however, whether this could mediate inter-species phenotype transfer was not demonstrated. Specifically, we test whether phosphinothricin acetyl transferase (PAT) that confers host plant glufosinate herbicide tolerance traffics and functions inter-specifically. · Dodder tendrils excised from hosts can grow in vitro for weeks or resume in vivo by parasitizing new hosts. The level of PAT in in vivo and in vitro dodder tendrils was quantified by enzyme-linked immunosorbent assay. The glufosinate sensitivity was examined by dipping the distal end of in vivo and in vitro tendrils, growing on or excised from LibertyLink (LL; PAT-transgenic and glufosinate tolerant) and conventional (CN; glufosinate sensitive) soybean hosts, into glufosinate solutions for 5 s. After in vitro tendrils excised from LL hosts reparasitized new CN and LL hosts, the PAT level and the glufosinate sensitivity were also examined. · When growing on LL host, dodder tolerated glufosinate and contained PAT at a level of 0.3% of that encountered in LL soybean leaf. After PAT was largely degraded in dodders, they became glufosinate sensitive. PAT mRNA was not detected by reverse transcription PCR in dodders. · In conclusion, the results indicated that PAT inter-species trafficking confers dodder glufosinate tolerance. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Role of multiple hosts in the cross-species transmission and emergence of a pandemic parvovirus.

    Science.gov (United States)

    Allison, Andrew B; Harbison, Carole E; Pagan, Israel; Stucker, Karla M; Kaelber, Jason T; Brown, Justin D; Ruder, Mark G; Keel, M Kevin; Dubovi, Edward J; Holmes, Edward C; Parrish, Colin R

    2012-01-01

    Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.

  2. Role of Multiple Hosts in the Cross-Species Transmission and Emergence of a Pandemic Parvovirus

    Science.gov (United States)

    Allison, Andrew B.; Harbison, Carole E.; Pagan, Israel; Stucker, Karla M.; Kaelber, Jason T.; Brown, Justin D.; Ruder, Mark G.; Keel, M. Kevin; Dubovi, Edward J.; Holmes, Edward C.

    2012-01-01

    Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence. PMID:22072763

  3. New species and host plants of Anastrepha (Diptera: Tephritidae) primarily from Peru and Bolivia.

    Science.gov (United States)

    Norrbom, Allen L; Rodriguez, Erick J; Steck, Gary J; Sutton, Bruce A; Nolazco, Norma

    2015-11-16

    Twenty-eight new species of Anastrepha are described and illustrated: A. acca (Bolivia, Peru), A. adami (Peru), A. amplidentata (Bolivia, Peru), A. annonae (Peru), A. breviapex (Peru), A. caballeroi (Peru), A. camba (Bolivia, Peru), A. cicra (Bolivia, Peru), A. disjuncta (Peru), A. durantae (Peru), A. echaratiensis (Peru), A. eminens (Peru), A. ericki (Peru), A. gonzalezi (Bolivia, Peru), A. guevarai (Peru), A. gusi (Peru), A. kimi (Colombia, Peru), A. korytkowskii (Bolivia, Peru), A. latilanceola (Bolivia, Peru), A. melanoptera (Peru), A. mollyae (Bolivia, Peru), A. perezi (Peru), A. psidivora (Peru), A. robynae (Peru), A. rondoniensis (Brazil, Peru), A. tunariensis (Bolivia, Peru), A. villosa (Bolivia), and A. zacharyi (Peru). The following host plant records are reported: A. amplidentata from Spondias mombin L. (Anacardiaceae); A. caballeroi from Quararibea malacocalyx A. Robyns & S. Nilsson (Malvaceae); A. annonae from Annona mucosa Jacq. and Annona sp. (Annonaceae); A. durantae from Duranta peruviana Moldenke (Verbenaceae); and A. psidivora from Psidium guajava L. (Myrtaceae).

  4. [Achatina fulica Bowdich (1822) a new host of Cryptosporidium (Apicomplexa, Cryptosporidiidae) species].

    Science.gov (United States)

    Schiffler, Cinthia L; Gomes, Francimar F; Ederli, Nicole B; De Oliveira, Francisco Carlos R

    2008-09-01

    With the objective of isolate Cryptosporidium spp. in Achatina fulica s feces, 50 mollusks were collected in nine neighborhoods of the municipal of Campos dos Goytacazes, RJ to the observation of oocysts in feces. The snails were put in individuals containers and fed with water and green vegetables ad libitum until be collected a gram of feces per animal. The samples were conditioned in tubes with formalin 10% and later smear of feces were made and dyed by Ziechl-Neelsen modified technique. Of the 50 samples examined, 26 (52%) were positive for the presence of oocysts of Cryptosporidium spp. The morphology and morphometry of the oocysts showed that are a great morphologic variability. Considering the obtained results, the mollusk Achatina fulica is a host of Cryptosporidium species and can participate in the epidemic chain of the cryptosporidiosis.

  5. Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species

    Science.gov (United States)

    Allison, Andrew B.; Kohler, Dennis J.; Ortega, Alicia; Hoover, Elizabeth A.; Grove, Daniel M.; Holmes, Edward C.; Parrish, Colin R.

    2014-01-01

    Canine parvovirus (CPV) emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV), a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that >95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR), the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range. PMID:25375184

  6. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species.

    Directory of Open Access Journals (Sweden)

    Andrew B Allison

    2014-11-01

    Full Text Available Canine parvovirus (CPV emerged as a new pandemic pathogen of dogs in the 1970s and is closely related to feline panleukopenia virus (FPV, a parvovirus of cats and related carnivores. Although both viruses have wide host ranges, analysis of viral sequences recovered from different wild carnivore species, as shown here, demonstrated that>95% were derived from CPV-like viruses, suggesting that CPV is dominant in sylvatic cycles. Many viral sequences showed host-specific mutations in their capsid proteins, which were often close to sites known to control binding to the transferrin receptor (TfR, the host receptor for these carnivore parvoviruses, and which exhibited frequent parallel evolution. To further examine the process of host adaptation, we passaged parvoviruses with alternative backgrounds in cells from different carnivore hosts. Specific mutations were selected in several viruses and these differed depending on both the background of the virus and the host cells in which they were passaged. Strikingly, these in vitro mutations recapitulated many specific changes seen in viruses from natural populations, strongly suggesting they are host adaptive, and which were shown to result in fitness advantages over their parental virus. Comparison of the sequences of the transferrin receptors of the different carnivore species demonstrated that many mutations occurred in and around the apical domain where the virus binds, indicating that viral variants were likely selected through their fit to receptor structures. Some of the viruses accumulated high levels of variation upon passage in alternative hosts, while others could infect multiple different hosts with no or only a few additional mutations. Overall, these studies demonstrate that the evolutionary history of a virus, including how long it has been circulating and in which hosts, as well as its phylogenetic background, has a profound effect on determining viral host range.

  7. A comparative analysis of genetic differentiation across six shared willow host species in leaf- and bud-galling sawflies.

    Directory of Open Access Journals (Sweden)

    Sanna A Leppänen

    Full Text Available Genetic divergence and speciation in plant-feeding insects could be driven by contrasting selection pressures imposed by different plant species and taxa. While numerous examples of host-associated differentiation (HAD have been found, the overall importance of HAD in insect diversification remains unclear, as few studies have investigated its frequency in relation to all speciation events. One promising way to infer the prevalence and repeatability of HAD is to estimate genetic differentiation in multiple insect taxa that use the same set of hosts. To this end, we measured and compared variation in mitochondrial COI and nuclear ITS2 sequences in population samples of leaf-galling Pontania and bud-galling Euura sawflies (Hymenoptera: Tenthredinidae collected from six Salix species in two replicate locations in northern Fennoscandia. We found evidence of frequent HAD in both species complexes, as individuals from the same willow species tended to cluster together on both mitochondrial and nuclear phylogenetic trees. Although few fixed differences among the putative species were found, hierarchical AMOVAs showed that most of the genetic variation in the samples was explained by host species rather than by sampling location. Nevertheless, the levels of HAD measured across specific pairs of host species were not correlated in the two focal galler groups. Hence, our results support the hypothesis of HAD as a central force in herbivore speciation, but also indicate that evolutionary trajectories are only weakly repeatable even in temporally overlapping radiations of related insect taxa.

  8. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    Science.gov (United States)

    Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  9. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Elizabeth Victoriano-Romero

    Full Text Available Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera and low (Conzattia multiflora epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  10. Wild cervids are host for tick vectors of babesia species with zoonotic capability in Belgium.

    Science.gov (United States)

    Lempereur, Laetitia; Wirtgen, Marc; Nahayo, Adrien; Caron, Yannick; Shiels, Brian; Saegerman, Claude; Losson, Bertrand; Linden, Annick

    2012-04-01

    Babesiosis is a tick-borne disease caused by different species of intraerythrocytic protozoan parasites within the genus Babesia. Different species of Babesia are described as potentially zoonotic and cause a malaria-like disease mainly in immunocompromised humans. Interest in the zoonotic potential of Babesia is growing and babesiosis has been described by some authors as an emergent zoonotic disease. The role of cervids to maintain tick populations and act as a reservoir host for some Babesia spp. with zoonotic capability is suspected. To investigate the range and infection rate of Babesia species, ticks were collected from wild cervids in southern Belgium during 2008. DNA extraction was performed for individual ticks, and each sample was evaluated for the absence of PCR inhibition using a PCR test. A Babesia spp. genus-specific PCR based on the 18S rRNA gene was applied to validated tick DNA extracts. A total of 1044 Ixodes ricinus ticks were collected and 1023 validated samples were subsequently screened for the presence of Babesia spp. DNA. Twenty-eight tick samples were found to be positive and identified after sequencing as containing DNA representing: Babesia divergens (3), B. divergens-like (5), Babesia sp. EU1 (11), Babesia sp. EU1-like (3), B. capreoli (2), or unknown Babesia sp. (4). This study confirms the presence of potentially zoonotic species and Babesia capreoli in Belgium, with a tick infection rate of 2.7% (95% CI 1.8,3.9%). Knowledge of the most common reservoir source for transmission of zoonotic Babesia spp. will be useful for models assessing the risk potential of this infection to humans.

  11. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  12. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  13. A checklist of the species of Anastrepha with the families of their host plants and hymenopteran parasitoids in Brazil

    International Nuclear Information System (INIS)

    Zucchi, Roberto Antonio

    2000-01-01

    Many surveys on fruit flies have already been carried out by several researchers in Brazil while others are still going on. Most of these surveys were conducted in areas where no studies had been previously done. With these surveys, new species and new records of species were found in Brazil. Also, in this decade, several surveys on fruit fly braconid parasitoids were conducted. These data have been summarised recently, because of the great interest in the biological control of fruit flies in Brazil. Research on eucoilid fruit fly parasitoids have been largely neglected. However, taxonomic studies are being conducted on eucoilids associated with frugivorous flies (Tephritidae and Lonchaeidae) in Brazil. All the data on fruit flies, host plants and hymenopteran parasitoids are unfortunately scattered in the literature and frequently are only published as dissertations or congress abstracts which are not widely available. Even when submitted for publication, papers take a long time to come out in Brazil. Consequently, it is very difficult to get a list of the Anastrepha species in Brazil, or to determine which host plant species are associated with them. These data are of particular interest in the case of economically important species, especially those considered as quarantine pests. Therefore, such a list is very useful for regulatory entomologists and pest management programmes by listing the Anastrepha species in Brazil and their associated host plants and hymenopteran parasitoids. The objective of this paper is to gather some available records of the Anastrepha species, their host plants and hymenopteran parasitoids (Braconidae and Eucoilidae) published in Brazil. Due to the space limitation of this paper, only families of the host plants of the Anastrepha species are presented. In fact, this work is part of a research which deals with the preparation of a database for the Anastrepha species in Brazil

  14. Prevalence and antimicrobial susceptibility of Ureaplasma species and Mycoplasma hominis in Greek female outpatients, 2012-2016.

    Science.gov (United States)

    Maraki, Sofia; Mavromanolaki, Viktoria Eirini; Nioti, Eleni; Stafylaki, Dimitra; Minadakis, George

    2017-11-28

    Mycoplasma hominis and Ureaplasma species are opportunistic pathogens associated with urogenital infections, complications during pregnancy and postpartum infections. Appropriate empirical antimicrobial treatment is necessary to achieve an optimal therapeutic outcome. This study evaluated the prevalence and the antimicrobial susceptibility of Mycoplasma hominis and Ureaplasma spp. isolated from 1,008 endocervical samples of outpatients in Crete, Greece, during a five-year period (2012-2016), using the commercially available Mycoview kit (Zeakon diagnostics, France). Ureaplasma spp. was isolated from 116 patients (11.5%), M. hominis from 6 (0.6%), while coinfection with both mycoplasmas was demonstrated in 17 (1.7%). All Ureaplasma strains were susceptible to josamycin and doxycycline. Doxycycline, minocycline and ofloxacin were the most potent antibiotics against M. hominis. Docycycline was proved the most active and is still the drug of choice for the treatment of genital mycoplasma infections. Local surveillance to monitor changes in antimicrobial susceptibilities is necessary to guide treatment strategies.

  15. Molecular identification and in-vitro antifungal susceptibility testing of Candida species isolated from patients with onychomycosis

    Directory of Open Access Journals (Sweden)

    Keyvan Pakshir

    2015-03-01

    Full Text Available Background and Purpose: Candida species are the most opportunistic fungi affecting the nails and resulting in onychomycosis. In this study, we identified and evaluated in-vitro susceptibility of the recovered isolates against fluconazole (FLC, voriconazole (VRC, and clotrimazole (CLT using the Clinical and Laboratory Standards Institute (CLSI M27-A3 document. Materials and Methods: From patients with either clinically or mycologically proven onychomycosis, 97 isolates comprising of seven Candida species were isolated, which were identified by both conventional and molecular techniques such as polymerase chain reaction-restriction fragment length polymorphism. In addition, Candida dubliniensis was confirmed by restriction endonuclease analysis. Antifungal susceptibility of each isolate against the three azoles applied in this study was determined using the CLSI microdilution reference method M27-A3. Results: Candida parapsilosis (C. parapsilosis was the most frequently isolated species (n=44, followed by C. albicans (n=23, C. tropicalis (n=13, C. glabrata (n=7, C. krusei (n=6, C. guilliermondii (n=3, and C. dubliniensis (n=1. All the isolates were susceptible to CLT. VRC had lower minimum inhibitory concentration (MIC values for the isolates compared to FLC. Geometric mean MIC values of VRC, FLC, and CLT for C. parapsilosis isolates were 0.07 µg/ml, 0.8 µg/ml, and 0.35 µg/ml, respectively. Collectively, all species exhibited greater susceptibility to VRC in comparison to C. albicans (P≤0.001. Conclusion: This study showed that non-albicans Candida species were the most common etiologic agents of non-dermatophyte onychomycosis. The major antifungal agents used in clinics to empirically treat yeast onychomycosis are FLC and CLT. Our data suggested that CLT is a better choice for the treatment of Candida onychomycosis, especially in drug resistant cases.

  16. Contrasting Plasticity in Ovariole Number Induced by A Dietary Effect of the Host Plants between Cactophilic Drosophila Species

    Directory of Open Access Journals (Sweden)

    Daniela Peluso

    2016-05-01

    Full Text Available Under the preference-performance hypothesis, natural selection will favor females that choose oviposition sites that optimize the fitness of their offspring. Such a preference-performance relationship may entail important consequences mainly on fitness-related traits. We used the well-characterized cactus-Drosophila system to investigate the reproductive capacity in the pair of sibling species D. buzzatii and D. koepferae reared in two alternative host plants. According to our hypothesis, ovariole number (as a proxy of reproductive capacity depends on host plant selection. Our results indicate that the capacity of D. buzzatii showed to be mild, only increasing the number of ovarioles by as much as 10% when reared in its preferred host. In contrast, D. koepferae exhibited a similar reproductive capacity across host cacti, even though it showed a preference for its primary host cactus. Our study also revealed that D. buzzatii has a larger genetic variation for phenotypic plasticity than its sibling, although ovariole number did not show clear-cut differences between species. We will discuss the weak preference-performance pattern observed in these cactophilic species in the light of nutritional and toxicological differences found between the natural host plants.

  17. Identification and antifungal susceptibility of Candida species isolated from the urine of patients in a university hospital in Brazil

    Directory of Open Access Journals (Sweden)

    Gláucia Moreira Espíndola Lima

    2017-12-01

    Full Text Available ABSTRACT The aim of this study was to identify Candida spp. isolated from candiduria episodes at a tertiary hospital in the Midwest region of Brazil, and to determine their susceptibility profiles to antifungal compounds. From May 2011 to April 2012, Candida spp. isolated from 106 adult patients with candiduria admitted to the University Hospital of the Federal University of Mato Grosso do Sul were evaluated. Both, species identification and susceptibility testing with fluconazole-FLC, voriconazole-VRC, and amphotericin B-AmB were carried out using the Vitek 2. To discriminate species of the C. parapsilosis complex, a RAPD-PCR technique using the RPO2 primer was performed. From the total of 106 isolates, 42 (39.6% C. albicans and 64 (60.4% Candida non-albicans (CNA - 33 C. tropicalis, 18 C. glabrata, 5 C. krusei, 4 C. parapsilosis sensu stricto, 2 C. kefyr, 1 C. lusitaniae, and 1 C. guilliermondii were identified. All isolates were susceptible to AmB and VRC, whereas all C. glabrata isolates presented either resistance (5.6% or dose-dependent susceptibility (94.4% to FLC. The study of Candida spp. and their resistance profiles may help in tailoring more efficient therapeutic strategies for candiduria.

  18. Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador.

    Science.gov (United States)

    Bodner, Florian; Brehm, Gunnar; Homeier, Jürgen; Strutzenberger, Patrick; Fiedler, Konrad

    2010-01-01

    During four months of field surveys at the Reserva Biológica San Francisco in the south Ecuadorian Andes, caterpillars of 59 Geometridae species were collected in a montane rainforest between 1800 and 2800m altitude and reared to adults. The resulting data on host plant affiliations of these species was collated. The preimaginal stages of 58 and adult stages of all 59 species are depicted in colour plates. Observations on morphology and behaviour are briefly described. Five species, documented for the first time in the study area by means of larval collections, had not been previously collected by intensive light-trap surveys. Together with published literature records, life-history data covers 8.6% of the 1271 geometrid species observed so far in the study area. For 50 species these are the first records of their early stages, and for another 7 the data significantly extend known host plant ranges. Most larvae were collected on shrubs or trees, but more unusual host plant affiliations, such as ferns (6 geometrid species) and lichens (3 geometrid species), were also recorded. Thirty-four percent of the caterpillars were infested by wasp or tachinid parasitoids.

  19. Molecular and morphological analysis reveals five new species of Zygophiala associated with flyspeck signs on plant hosts from China.

    Directory of Open Access Journals (Sweden)

    Liu Gao

    Full Text Available Species in the genus Zygophiala are associated with sooty blotch and flyspeck disease on a wide range of hosts. In this study, 63 Zygophiala isolates collected from flyspeck colonies on a range of plants from several regions of China were used for phylogeny, host range and geographic distribution analysis. Phylogenetic trees were constructed on four genes--internal transcribed spacer (ITS, partial translation elongation factor 1-alpha (TEF, β-tubulin (TUB2, and actin (ACT--both individually and in combination. Isolates were grouped into 11 clades among which five new species, Z. emperorae, Z. trispora, Z. musae, Z. inaequalis and Z. longispora, were described. Species of Zygophiala differed in observed host range and geographic distribution. Z. wisconsinensis and Z. emperorae were the most prevalent throughout the sampled regions of China, whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were collected only in southern China. The hosts of Z. wisconsinensis and Z. emperorae were mainly in the family Rosaceae whereas Z. trispora, Z. musae, Z. inaequalis and Z. longispora were found mainly on banana (Musa spp.. Cross inoculation tests provided evidence of host specificity among SBFS species.

  20. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species.

    Science.gov (United States)

    Nakadai, Ryosuke; Murakami, Masashi; Hirao, Toshihide

    2014-08-01

    Historical, niche-based, and stochastic processes have been proposed as the mechanisms that drive community assembly. In plant-herbivore systems, these processes can correspond to phylogeny, leaf traits, and the distribution of host plants, respectively. Although patterns of herbivore assemblages among plant species have been repeatedly examined, the effects of these factors among co-occurring congeneric host plant species have rarely been studied. Our aim was to reveal the process of community assembly for herbivores by investigating the effects of phylogeny, leaf traits, and the altitudinal distribution of closely related host plants of the genus Acer. We sampled leaf functional traits for 30 Acer species in Japan. Using a newly constructed phylogeny, we determined that three of the six measured leaf traits (leaf thickness, C/N ratio, and condensed tannin content) showed a phylogenetic signal. In a field study, we sampled herbivore communities on 14 Acer species within an elevation gradient and examined relationships between herbivore assemblages and host plants. We found that herbivore assemblages were significantly correlated with phylogeny, leaf traits, phylogenetic signals, and the altitudinal distribution of host plants. Our results indicate that the interaction between historical and current ecological processes shapes herbivore community assemblages.

  1. Candida species distribution and fluconazole susceptibility of blood isolates at a regional hospital in Passo Fundo, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Maira Giseli C. Silva

    2015-06-01

    Full Text Available ABSTRACT Introduction: Candidemia is a bloodstream infection produced by Candida genus yeasts. Objective: The purpose of this study was to characterize the epidemiology and the fluconazole susceptibility in Candida species isolated from patients at a regional hospital in Passo Fundo, RS. Methods: Records from the laboratory were used to identify patients with positive blood cultures for Candida between 2010 and 2011. The in vitro activity of fluconazole was determined using the disk diffusion method. Results: Were analyzed 24 positive blood cultures for Candida and found a 54.16% mortality rate. C. albicans was the most prevalent species, followed by C. parapsilosis and C. krusei. For susceptibility to fluconazole, C. albicans, C. parapsilosis and C. tropicalis showed 100% sensitivity. However, C. krusei was 100% resistant; and C. glabrata, 50% resistant. Conclusion: The high mortality and fluconazole resistance rates emphasize the importance of the diagnosis of candidemia in a hospital environment.

  2. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts

    NARCIS (Netherlands)

    Gerla, D.J.; Gsell, A.S.; Kooi, B.W.; Ibelings, B.W.; Van Donk, E.; Mooij, W.M.

    2013-01-01

    1. Despite the strong impact parasites can have, only few models of phytoplankton ecology or aquatic food webs have specifically included parasitism. 2. Here, we provide a susceptible-infected model for a diatom-chytrid host–parasite system that explicitly includes nutrients, infected and uninfected

  3. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts

    NARCIS (Netherlands)

    Gerla, D.J.; Gsell, A.S.; Kooi, B.W.; Ibelings, B.W.; Donk, van E.; Mooij, W.M.

    2013-01-01

    1. Despite the strong impact parasites can have, only few models of phytoplankton ecology or aquatic food webs have specifically included parasitism. 2. Here, we provide a susceptible-infected model for a diatom-chytrid hostparasite system that explicitly includes nutrients, infected and uninfected

  4. Cuticle Fatty Acid Composition and Differential Susceptibility of Three Species of Cockroaches to the Entomopathogenic Fungi Metarhizium anisopliae (Ascomycota, Hypocreales).

    Science.gov (United States)

    Gutierrez, Alejandra C; Gołębiowski, Marek; Pennisi, Mariana; Peterson, Graciela; García, Juan J; Manfrino, Romina G; López Lastra, Claudia C

    2015-04-01

    Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, γ-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Insecticide susceptibility of Nezara viridula (Heteroptera: Pentatomidae) and three other stink bug species composing a soybean pest complex in Japan.

    Science.gov (United States)

    Takeuchi, Hiroaki; Endo, Nobuyuki

    2012-06-01

    The susceptibility of the stink bug species Nezara viridula (L.), Nezara antennata Scott, Piezodorus hybneri (Gmelin), and Riptortus pedestris (F.) to insecticides was tested, establishing their 50% lethal dose (LD50) values as baseline data. Third instars and adults of the four species were treated by topical application with seven insecticides: fenitrothion, fenthion, etofenprox, silafluofen, dinotefuran, clothianidin, and ethiprole. The weight of the stink bug and weight of the insecticide applied to each bug were used as explanatory variables in the probit regression analysis. The effect of the body weight on the dose-response relationship, the proportional model, was not uniform among the tested insecticide-stink bug combinations. However, the basic model fit all combinations and could estimate LD50 values successfully. Therefore, LD50 values at the medium (average) weight estimated by the basic model were selected to describe the susceptibility of the stink bugs. The LD50 value of silafluofen for N. viridula adults, and that of silafluofen and etofenprox for N. antennata adults, was at least 2,338 ng greater than the other species exposed to each insecticide. Almost all of the LD50 values for adults were over 10 times greater than those of the same species' nymphs treated with the same insecticide. Thus monitoring of occurring species and their developmental stages is important for controlling effectively the stink bug pest complex by insecticides, especially by silafluofen or etofenprox. The estimated LD50 values can be used as baseline data to compare the susceptibility of the species collected in another year or location.

  6. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran.

    Science.gov (United States)

    Sharifynia, Somayeh; Falahati, Mehraban; Akhlaghi, Lame; Foroumadi, Alireza; Fateh, Roohollah

    2017-01-01

    Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Candida species were isolated from eighty suspected patients (61.79%). The most common pathogen was Candida albicans (63.75%). Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis.

  7. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Sharifynia

    2017-01-01

    Full Text Available Background: Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Materials and Methods: Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Results: Candida species were isolated from eighty suspected patients (61.79%. The most common pathogen was Candida albicans (63.75%. Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. Conclusion: The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis.

  8. Species-specific identification of equine cyathostomes resistant to fenbendazole and susceptible to oxibendazole and moxidectin by macroarray probing.

    Science.gov (United States)

    Traversa, Donato; Iorio, Raffaella; Otranto, Domenico; Giangaspero, Annunziata; Milillo, Piermarino; Klei, Thomas R

    2009-01-01

    Cyathostome populations in horses on two farms located in central Italy with a history of fenbendazole (FBZ) resistance were investigated with the Faecal Egg Count Reduction Test to evaluate the susceptibility to oxibendazole and moxidectin. Faecal eggs were collected pre- and post-treatment on each farm and molecularly examined with a Reverse Line Blot (RLB) assay able to unequivocally detect and identify 13 cyathostome species. Resistance to FBZ was confirmed on both farms, while oxibendazole and moxidectin demonstrated 97% and 100% efficacy, respectively. Overall eight species of cyathostomes (Coronocyclus labiatus, Cylicocyclus ashworthi, Cylicocyclus nassatus, Cyathostomum catinatum, Cylicostephanus longibursatus, Cylicostephanus goldi, Cylicostephanus calicatus and Cylicocyclus insigne) were identified in pre-treatment samples. Coronocyclus labiatus and C. goldi were identified after treatment with FBZ while C. calicatus and C. labiatus were shown to be <100% susceptible to oxibendazole. These data confirm that resistance to benzimidazoles is established in cyathostome populations from horse farms in Italy and that they are susceptible to moxidectin. The oxibendazole has been successfully demonstrated for the first time as effective against Italian populations of cyathostomes resistant to other benzimidazoles. The RLB assay herein used showed to be useful to study the distribution of these parasitic populations at species level under field conditions and could represent a powerful tool in broader investigation of drug resistance in horse farms from several countries.

  9. Epidemiology, species distribution, antifungal susceptibility and outcome of candidemia among Internal Medicine Wards of community hospitals of Udine province, Italy

    Directory of Open Access Journals (Sweden)

    Federico Silvestri

    2014-09-01

    Full Text Available Candidemia is an emerging problem among patients hospitalized in Internal Medicine Wards (IMW. We performed a retrospective study to assess the epidemiology, species distribution, antifungal susceptibility and outcome of candidaemia recorded over a 3-year period (2010-2012 among IMW of community hospitals of Udine province in Italy: forty-eight patients were identified, with an overall incidence of 1.44 cases/1000 hospital admissions/year. Candida albicans was the most frequent species, followed by Candida parapsilosis that accounted for 42.9% of Tolmezzo cases. All isolates were susceptible to amphotericin and caspofungin, while 11.4% of strains were not-susceptible to voriconazole and 14.3% to fluconazole. Crude mortality was 41.7%. In conclusion, in community hospitals overall incidence of candidemia is similar to tertiary care hospitals, but 80% of cases are detected in IMW. Candida species distribution is overlapping, but differences in local epidemiology were found and should be taken into consideration. No resistance to amphotericin and caspofungin was found while resistance to azoles was observed. Knowledge of this data might be useful when planning the best therapeutic strategy.

  10. Differential divergences of obligately insect-pathogenic Entomophthora species from fly and aphid hosts.

    Science.gov (United States)

    Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia

    2009-11-01

    Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.

  11. Intraspecific variation in host susceptibility and climatic factors mediate epidemics of sudden oak death in western US forests

    Science.gov (United States)

    D. Huberli; K.J. Hayden; M. Calver; M. Garbelotto

    2011-01-01

    Umbellularia californica is one of the key infectious hosts of the exotic Phytophthora ramorum, which causes sudden oak death (SOD) in California and Oregon forests. This study provides a comprehensive analysis of the epidemiologically relevant parameters for SOD in California and southern Oregon, including potential differences between the two...

  12. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease

    NARCIS (Netherlands)

    Biemans, Floor; Jong, de Mart C.M.; Bijma, Piter

    2017-01-01

    Background: Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of

  13. Epifluorescence and stereomicroscopy of trichomes associated with resistant and susceptible host plant genotypes of the Asian citrus psyllid (Hemiptera: Liviidae)

    Science.gov (United States)

    Epifluorescence, light and stereo-microscopy were used to characterize foliar trichomes associated with young flush leaves and stems of six plant genotypes that are hosts of the Asian citrus psyllid, Diaphorina citri, vector of the economically important citrus greening disease. These genotypes incl...

  14. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  15. Etest and Sensititre YeastOne Susceptibility Testing of Echinocandins against Candida Species from a Single Center in Austria.

    Science.gov (United States)

    Aigner, Maria; Erbeznik, Thomas; Gschwentner, Martin; Lass-Flörl, Cornelia

    2017-08-01

    Candida species were tested for susceptibility to caspofungin, anidulafungin, and micafungin in order to evaluate the roles of Etest and Sensititre YeastOne in antifungal susceptibility testing for daily routines and to survey resistance. A total of 104 Candida species isolates detected from blood cultures were investigated. With EUCAST broth microdilution as the reference method, essential agreement (EA), categorical agreement (CA), very major errors (VME), major errors (ME), and minor (MIN) errors were assessed by reading MICs at 18, 24, and 48 h. By use of EUCAST broth microdilution and species-specific clinical breakpoints (CBPs), echinocandin resistance was not detected during the study period. Using EUCAST CBPs, MIC readings at 24 h for the Etest and Sensititre YeastOne resulted in CA levels of 99% and 93% for anidulafungin and 99% and 97% for micafungin. Using revised CLSI CBPs for caspofungin, CA levels were 92% and 99% for Etest and Sensititre YeastOne. The Etest proved an excellent, easy-to-handle alternative method for testing susceptibility to anidulafungin and micafungin. Due to misclassifications, the Etest is less suitable for testing susceptibility to caspofungin (8% of isolates falsely tested resistant). The CA levels of Sensititre YeastOne were 93% and 97% for anidulafungin and micafungin (24 h) by use of EUCAST CBPs and increased to 100% for both antifungals if CLSI CBPs were applied and to 100% and 99% if Sensititre YeastOne epidemiological cutoff values (ECOFFs) were applied. No one echinocandin could be demonstrated to be superior to another in vitro Since resistance was lacking among our Candida isolates, we cannot derive any recommendation from accurate resistance detection by the Etest and Sensititre YeastOne. Copyright © 2017 American Society for Microbiology.

  16. Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Silva, Aline Lobão da; Monteiro, Frederico Ozanan Barros; Guedes, Glaucia Morgana de Melo; Sales, Jamille Alencar; Oliveira, Jonathas Sales de; Maia Junior, José Erisvaldo; Miranda, Stefânia Araújo; Sidrim, José Júlio Costa; Alencar, Lucas Pereira de; Castelo-Branco, Débora Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pereira Neto, Waldemiro de Aquino; Rocha, Marcos Fábio Gadelha

    2017-10-01

    This study aimed to identify yeasts from the gastrointestinal tract of scarlet ibises (Eudocimus ruber) and from plant material collected from the environment where they live. Then, the isolates phenotypically identified as Candida famata were submitted to molecular identification of their closely related species and evaluated for their antifungal susceptibility and possible resistance mechanisms to antifungal drugs. Cloacal swabs from 20 scarlet ibises kept in captivity at Mangal das Garças Park (Brazil), pooled stool samples (n = 20) and samples of trunks and hollow of trees (n = 20) obtained from their enclosures were collected. The samples were seeded on Sabouraud agar supplemented with chloramphenicol. The 48 recovered isolates were phenotypically identified as 15 Candida famata, 13 Candida catenulata, 2 Candida intermedia, 1 Candida lusitaniae, 2 Candida guilliermondii, 1 Candida kefyr, 1 Candida amapae, 1 Candida krusei, 8 Trichosporon spp., and 4 Rhodotorula spp. The C. famata isolates were further identified as 3 C. famata, 8 Debaryomyces nepalensis, and 4 C. palmioleophila. All C. famata and C. palmioleophila were susceptible to caspofungin and itraconazole, while one D. nepalensis was resistant to fluconazole and voriconazole. This same isolate and another D. nepalensis had lower amphotericin B susceptibility. The azole resistant strain had an increased efflux of rhodamine 6G and an alteration in the membrane sterol content, demonstrating multifactorial resistance mechanism. Finally, this research shows that scarlet ibises and their environment harbor C. famata and closely related species, including antifungal resistant isolates, emphasizing the need of monitoring the antifungal susceptibility of these yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  18. Epidemiological investigation and antimicrobial susceptibility analysis of ureaplasma species and Mycoplasma hominis in outpatients with genital manifestations.

    Science.gov (United States)

    Song, Tiejun; Ye, Aiqing; Xie, Xinyou; Huang, Jun; Ruan, Zhi; Kong, Yingying; Song, Jingjuan; Wang, Yue; Chen, Jiangzhong; Zhang, Jun

    2014-09-01

    The aim of this study was to assess the prevalence and drug resistance of Ureaplasma species and Mycoplasma hominis in outpatients with genital manifestation from 2005 to 2013 in Hangzhou, China. A total of 2689 female and 2336 male patients with various genital symptoms were included in this study. Species identification and antimicrobial susceptibility test were performed by using the mycoplasma IST-2 kit. The prevalence rate of Ureaplasma species was 39.9%, M hominis was 1.2% in female patients, and the coinfection rate was 13.4%; while in males, the prevalence rate of Ureaplasma species was 18.8%, M hominis was 0.4%, and the coinfection rate was 2.9%. Moreover, significantly high positive rates for mycoplasmas (Ureaplasma species M hominis) and were found in 16–20-year-old females (65.2%) and males (27.3%). Ureaplasma species and M hominis displayed relatively lower resistance rates (Ureaplasma species to quinolones (ofloxacin and ciprofloxacin) were much higher (>50%) and increased significantly from 2005 to 2013. Our study indicates that high positive rates of Ureaplasma species and M hominis were found in young outpatients with genital symptoms, and monitoring the local drug resistance is critical for prevention of the occurrence of resistant strains.

  19. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex.

    Science.gov (United States)

    Becker, Noémie S; Margos, Gabriele; Blum, Helmut; Krebs, Stefan; Graf, Alexander; Lane, Robert S; Castillo-Ramírez, Santiago; Sing, Andreas; Fingerle, Volker

    2016-09-15

    The Borrelia burgdorferi sensu lato (s.l.) species complex consists of tick-transmitted bacteria and currently comprises approximately 20 named and proposed genospecies some of which are known to cause Lyme Borreliosis. Species have been defined via genetic distances and ecological niches they occupy. Understanding the evolutionary relationship of species of the complex is fundamental to explaining patterns of speciation. This in turn forms a crucial basis to frame testable hypotheses concerning the underlying processes including host and vector adaptations. Illumina Technology was used to obtain genome-wide sequence data for 93 strains of 14 named genospecies of the B. burgdorferi species complex and genomic data already published for 18 additional strain (including one new species) was added. Phylogenetic reconstruction based on 114 orthologous single copy genes shows that the genospecies represent clearly distinguishable taxa with recent and still ongoing speciation events apparent in Europe and Asia. The position of Borrelia species in the phylogeny is consistent with host associations constituting a major driver for speciation. Interestingly, the data also demonstrate that vector associations are an additional driver for diversification in this tick-borne species complex. This is particularly obvious in B. bavariensis, a rodent adapted species that has diverged from the bird-associated B. garinii most likely in Asia. It now consists of two populations one of which most probably invaded Europe following adaptation to a new vector (Ixodes ricinus) and currently expands its distribution range. The results imply that genotypes/species with novel properties regarding host or vector associations have evolved recurrently during the history of the species complex and may emerge at any time. We suggest that the finding of vector associations as a driver for diversification may be a general pattern for tick-borne pathogens. The core genome analysis presented here

  20. Migratory status is not related to the susceptibility to HPAIV H5N1 in an insectivorous passerine species.

    Directory of Open Access Journals (Sweden)

    Donata Kalthoff

    Full Text Available Migratory birds have evolved elaborate physiological adaptations to travelling, the implications for their susceptibility to avian influenza are however unknown. Three groups of stonechats (Saxicola torquata from (I strongly migrating, (II weakly migrating and (III non-migrating populations were experimentally infected with HPAIV H5N1. The different bird groups of this insectivorous passerine species were infected in autumn, when the migrating populations clearly exhibit migratory restlessness. Following infection, all animals succumbed to the disease from 3 through 7 days post inoculation. Viral shedding, antigen distribution in tissues, and survival time did not differ between the three populations. However, notably, endothelial tropism of the HPAIV infection was exclusively seen in the group of resident birds. In conclusion, our data document for the first time the high susceptibility of an insectivorous passerine species to H5N1 infection, and the epidemiological role of these passerine birds is probably limited due to their high sensitivity to HPAIV H5N1 infection. Despite pronounced inherited differences in migratory status, the groups were generally indistinguishable in their susceptibility, survival time, clinical symptoms and viral shedding. Nevertheless, the migratory status partly influenced pathogenesis in the way of viral tropism.

  1. The susceptibility of Asian, European and North American Fraxinus species to the ash dieback pathogen Hymenoscyphus fraxineus reflects their phylogenetic history

    DEFF Research Database (Denmark)

    Nielsen, Lene Rostgaard; McKinney, Lea Vig; Hietala, Ari M.

    2017-01-01

    susceptibility where closely related Asian, European and North American species in section Fraxinus had relatively high levels of H. fraxineus DNA in the leaves and supported high production of apothecia. Leaves from some North American species also contained relatively high levels of H. fraxineus DNA, supported...... that there is species-specific variation in disease susceptibility among European and North American Fraxinus species, but a wider comparison at the genus level has been missing so far. We assessed disease symptoms and pathogen apothecium development in 17 Fraxinus species from Asia, Europe and North America exposed...

  2. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E.

    2017-01-01

    The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. PMID:27915230

  3. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran : comparison of colonizing and infecting isolates

    NARCIS (Netherlands)

    Badiee, Parisa; Badali, Hamid; Boekhout, Teun; Diba, Kambiz; Moghadam, Abdolkarim Ghadimi; Hossaini Nasab, Ali; Jafarian, Hadis; Mohammadi, Rasoul; Mirhendi, Hossein; Najafzadeh, Mohammad Javad; Shamsizadeh, Ahmad; Soltani, Jafar

    2017-01-01

    BACKGROUND: Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to

  5. Identification of drug susceptibility pattern and mycobacterial species in sputum smear positive pulmonary tuberculosis patients with and without HIV co-infection in north west Ethiopia

    DEFF Research Database (Denmark)

    Mekonen, Mekdem; Abate, Ebba; Aseffa, Abraham

    2010-01-01

    Ethiopia is among the high-burden countries of tuberculosis (TB) in the world Since mycobacterial culture and susceptibility testing are not routinely performed in Ethiopia, recent data on susceptibility patterns and the mycobacterial species cultured from sputum smear positive patients are limited....

  6. Powdery mildew of Chrysanthemum × morifolium: phylogeny and taxonomy in the context of Golovinomyces species on Asteraceae hosts.

    Science.gov (United States)

    Bradshaw, Michael; Braun, Uwe; Götz, Monika; Meeboon, Jamjan; Takamatsu, Susumu

    2017-01-01

    The taxonomic history of the common powdery mildew of Chrysanthemum × morifolium (chrysanthemum, florist's daisy), originally described in Germany as Oidium chrysanthemi, is discussed. The position of O. chrysanthemi was investigated on the basis of morphological traits and molecular phylogenetic analyses. Based on the results of this study, this species, which is closely related to Golovinomyces artemisae, was reassessed and reallocated to Golovinomyces. The phylogenetic analysis and taxonomic reassessment of the chrysanthemum powdery mildew is supplemented by a morphological description, a summary of its worldwide distribution data, and a brief discussion of the introduction of this fungus to North America. G. chrysanthemi differs from true G. artemisiae in that it has much longer conidiophores, is not constricted at the base, and has much larger and most importantly longer conidia. The close affinity of Golovinomyces to Artemisia and Chrysanthemum species signifies a coevolutionary event between the powdery mildews concerned and their host species in the subtribe Artemisiinae (Asteraceae tribe Anthemideae). This conclusion is fully supported by the current phylogeny and taxonomy of the host plant genera and the coevolution that occurred with the host and pathogen. The following powdery mildew species, which are associated with hosts belonging to the tribe Anthemideae of the Asteraceae, are epitypified: Alphitomorpha depressa β artemisiae (≡ Alphitomorpha artemisiae), Erysiphe artemisiae, and Oidium chrysanthemi. Erysiphe macrocarpa is neotypified. Their sequences were retrieved from the epitype collections and have been added to the phylogenetic tree. Golovinomyces orontii, an additional powdery mildew species on Chrysanthemum ×morifolium, is reported. This species is rarely found as a spontaneous infection and was obtained from inoculation experiments.

  7. Ultra-deep sequencing of intra-host rabies virus populations during cross-species transmission.

    Directory of Open Access Journals (Sweden)

    Monica K Borucki

    2013-11-01

    Full Text Available One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350 in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009 and geographic location (northern vs. southern. A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change.

  8. Interspecific variation in resistance of two host tree species to spruce budworm

    Science.gov (United States)

    Fuentealba, Alvaro; Bauce, Éric

    2016-01-01

    Woody plants regularly sustain biomass losses to herbivorous insects. Consequently, they have developed various resistance mechanisms to cope with insect attack. However, these mechanisms of defense and how they are affected by resource availability are not well understood. The present study aimed at evaluating and comparing the natural resistance (antibiosis and tolerance) of balsam fir (Abies balsamea [L.] Mill.) and white spruce (Picea glauca [Moench) Voss] to spruce budworm, Choristoneura fumiferana (Clem.), and how drainage site quality as a component of resource availability affects the expression of resistance over time (6 years). Our results showed that there are differences in natural resistance between the two tree species to spruce budworm, but it was not significantly affected by drainage quality. Balsam fir exhibited higher foliar toxic secondary compounds concentrations than white spruce in all drainage classes, resulting in lower male pupal mass, survival and longer male developmental time. This, however, did not prevent spruce budworm from consuming more foliage in balsam fir than in white spruce. This response suggests that either natural levels of measured secondary compounds do not provide sufficient toxicity to reduce defoliation, or spruce budworm has developed compensatory mechanisms, which allow it to utilize food resources more efficiently or minimize the toxic effects that are produced by its host's defensive compounds. Larvae exhibited lower pupal mass and higher mortality in rapidly drained and subhygric sites. Drainage class also affected the amount of foliage destroyed but its impact varied over the years and was probably influenced by climatic variables. These results demonstrate the complexity of predicting the effect of resource availability on tree defenses, especially when other confounding environmental factors can affect tree resource allocation and utilization.

  9. Effects of host species and population density on Anoplophora glabripennis flight propensity

    Science.gov (United States)

    Joseph A. Francese; David R. Lance; Baode Wang; Zhichun Xu; Alan J. Sawyer; Victor C. Mastro

    2007-01-01

    Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae), the Asian longhorned beetle (ALB) is a pest of hardwoods in its native range of China. While the host range of this pest has been studied extensively, its mechanisms for host selection are still unknown. Our goal was to study the factors influencing movement and orientation of adult ALB...

  10. Gene expression plasticity across hosts of an invasive scale insect species

    DEFF Research Database (Denmark)

    Christodoulides, Nicholas; Van Dam, Alex; Peterson, Daniel A.

    2017-01-01

    For plant-eating insects, we still have only a nascent understanding of the genetic basis of host-use promiscuity. Here, to improve that situation, we investigated host-induced gene expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata (Hemiptera: Keriidae). We...

  11. Variable antibiotic susceptibility patterns among Streptomyces species causing actinomycetoma in man and animals

    Directory of Open Access Journals (Sweden)

    Hamid Mohamed E

    2011-06-01

    Full Text Available Abstract Background Drug therapy is recommended in conjunction with surgery in treatment of actinomycetoma. The specific prescription depends on the type of bacteria (actinomycetoma or fungi (eumycetoma causing the disease and their in vitro antimicrobial susceptibility. Objectives To investigate the antimicrobial susceptibility among isolates of Streptomyces spp. isolated from cases of actinomycetoma in man and animals in Sudan. Methods Streptomyces strains (n = 18 isolated from cases of actinomycetoma were tested in vitro against 15 commonly prescribed antibacterial agents using MIC agar dilution method as per standard guidelines. Results Streptomyces strains isolated from actinomycetoma fall into various phenotypic groups. All of the strains were inhibited by novobiocin (8 μg/mL, gentamycin (8, 32 μg/mL and doxycycline (32 μg/mL. Fusidic acid (64 μg/mL inhibited 94.4% of the strains; bacitracin, streptomycin, cephaloridine, clindamycin, ampicillin, rifampicin and tetracycline (64 μg/mL inhibited between 61.1 and 77.8% of the strains. All strains were found resistant to amphotericin B (64 μg/mL, penicillin (20 μg/mL and sulphamethoxazole (64 μg/mL. Conclusions Saprophytic Streptomyces spp. cause actinomycetoma in man and animal belong to separate phenotypes and have a wide range of susceptibility patterns to antimicrobial agents, which pose a lot of difficulties in selecting effective in vivo treatment for actinomycetoma.

  12. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis.

    Science.gov (United States)

    Nagashima, Masahito; Yamagishi, Yuka; Mikamo, Hiroshige

    2016-02-01

    There have been the current Japanese data on susceptibility testing for Candida isolates from vaginal candidiasis. The in vitro activities of therapeutic antifungal drugs for vulvovaginal candidiasis (VVC); miconazole (MCZ), itraconazole (ITCZ), fluconazole (FLCZ), clotrimazole (CTZ), oxiconazole (OCZ), isoconazole (ICZ) and bifonazole (BFZ) against vaginal isolates. Fifty-four strains Candida albicans and 19 strains of Candida glabrata were evaluated using a broth microdilution method specified by Clinical Laboratories Standard Institute (CLSI) document M27-A3. The MIC90 of each drug, MCZ, ITCZ, FLCZ, CTZ, OCZ, ICZ and BFZ, against C. albicans and C. glabrata isolates were 0.25, 0.12, 1, 0.06, 0.12, 0.12 and 1 μg/ml and 1, 1, 8, 0.5, 0.25, 0.5 and 1 μg/ml respectively. The activities of these drugs, except for BFZ, against C. glabrata were lower than that of C. albicans. There was one azole-resistant isolate in C. glabrata of which MIC of FLCZ is > 64 μg/ml and this isolate had cross resistance to other antifungal drugs tested. These results suggest that antifungal drugs for treatment of VVC continues to have potent antifungal activities against C. albicans and C. glabrata isolates from vaginitis. CTZ, OCZ and ICZ susceptibility of FLCZ low susceptibility C. glabrata are relatively higher than MCZ, ITCZ and FLCZ. Copyright © 2015. Published by Elsevier Ltd.

  13. Antimicrobial susceptibility of Clostridium perfringens isolated from domestic and wild animal species in Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Augusto de Oliveira Júnior

    2016-02-01

    Full Text Available Clostridium perfringens is a microorganism commonly found in the microbiota of humans and animals and a potential cause of enteric, muscle or nervous diseases. The treatment of these diseases is based on antimicrobial therapy and it is extremely important to know the antimicrobial susceptibility profile of the strains present in the region. The aim of this study was to evaluate the antimicrobial susceptibility of C. perfringens isolated from domestic and wild animals in Brazil against seven different antimicrobials. Forty-one strains from the stool samples of cattle (n = 12, buffalo (n = 2, goat (n = 3, dogs (n = 12 and wild carnivores (n = 12 were examined. The minimum inhibitory concentration was determined by the agar dilution method using Brucella agar supplemented with 5% of sheep blood, 0.1% of vitamin K, 0.1% of hemin and concentrations ranging from 0,25 to 256,0 mg L-1 of the following antibiotics: erythromycin, florfenicol, metronidazole, oxytetracycline, penicillin, tylosin, and vancomycin. All C. perfringens strains were susceptible to florfenicol, metronidazole, penicillin and vancomycin. Two strains (4.9% were resistant to erythromycin and tylosin, while five (12.2% were resistant to oxytetracycline, one of which (2.4% from an ocelot.

  14. Antifungal susceptibility testing of vulvovaginal Candida species among women attending antenatal clinic in tertiary care hospitals of Peshawar

    Directory of Open Access Journals (Sweden)

    Khan M

    2018-03-01

    sensitive, 16.7% were SDD and 58.3% were resistant. Susceptibility of clotrimazole was analyzed, and it was sensitive in 21.3% of patients, SDD in 19.4% of patients and resistant in 59.3% of patients. Voriconazole susceptibility was recorded to be sensitive in 85.2% of patients, SDD in 4.6% of patients and resistant in 10.2% of patients suffering from VVC. Susceptibility results for itraconazole in patients with VVC were as follows: 42.6% of patients were sensitive, 16.7% of patients were SDD, and 40.7% of patients were resistant. Conclusion: In this study, frequency of VVC was noted to be high in the second trimester of pregnancy, with the highest frequency of C. albicans isolated, followed by C. tropicalis and C. krusei. Antifungal susceptibility testing revealed that fluconazole was exceedingly resistant against Candida species (62%, followed by clotrimazole (59.3% and nystatin (58.3%. On the contrary, voriconazole had the highest antimicrobial activity against Candida species (85.2%. Keywords: vulvovaginal candidiasis, fluconazole, voriconazole, itraconazole, ketoconazole, nystatin

  15. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria.

    Science.gov (United States)

    Stecher, Bärbel; Chaffron, Samuel; Käppeli, Rina; Hapfelmeier, Siegfried; Freedrich, Susanne; Weber, Thomas C; Kirundi, Jorum; Suar, Mrutyunjay; McCoy, Kathy D; von Mering, Christian; Macpherson, Andrew J; Hardt, Wolf-Dietrich

    2010-01-01

    The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut

  16. Antibiotic susceptibility of enterobacteriaceae species isolated from mastitic milk in Algeria

    Directory of Open Access Journals (Sweden)

    R Saidi

    2014-12-01

    Conclusions: We conclude that Enterobacteriaceae species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic test, which has implications for treatment and management decisions.

  17. Low host-tree preferences among saproxylic beetles : acomparison of four deciduous species

    OpenAIRE

    Milberg, Per; Bergman, Karl-Olof; Johansson, Helena; Jansson, Nicklas

    2014-01-01

    Many wood-dwelling beetles rely on old hollow trees. In Europe, oaks are known to harbour a species-rich saproxylic beetle fauna, while less is known regarding other broad-leaved tree species. Furthermore, the extent to which saproxylic insect species have specialised on different tree species remains unknown. In this study, we sampled beetles through pitfall traps and window traps in four different tree species in a landscape with many old oaks. We recorded 242 saproxylic beetle species of w...

  18. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila-associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.

  19. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    Science.gov (United States)

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  20. The co-evolved Helicobacter pylori and gastric cancer: trinity of bacterial virulence, host susceptibility and lifestyle

    Directory of Open Access Journals (Sweden)

    Devi S Manjulata

    2007-01-01

    Full Text Available Abstract Helicobacter pylori is an important yet unproven etiological agent of gastric cancer. H. pylori infection is more prevalent in developing Asian countries like India and it is usually acquired at an early age. It has been two decades since Marshall and Warren (1984 first described curved bacilli in the stomach of ulcer and gastritis patients. This discovery has won them the Nobel Prize recently, but the debate whether H. pylori is a pathogen or a commensal organism is still hot. Associations with disease-specific factors remain illusive years after the genome sequences were made available. Cytotoxin-associated antigen A (CagA and the so-called plasticity region cluster genes are implicated in pathogenesis of the carcinoma of stomach. Another virulence factor VacA whose role is still debatable, has recently been projected in pathology of gastric cancer. Studies of the evolution through genetic variation in H. pylori populations have provided a window into the history of human population migrations and a possible co-evolution of this pathogen with its human host. Possible symbiotic relationships were seriously debated since the discovery of this pathogen. The debate has been further intensified as some studies proposed H. pylori infection to be beneficial in some humans. In this commentary, we attempt to briefly discuss about H. pylori as a human pathogen, and some of the important issues linked to its pathophysiology in different hosts. 'We dance around in a ring and suppose, the secret sits in the middle and knows' – Robert Frost

  1. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    Science.gov (United States)

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Pythium species from rice roots differ in virulence, host colonization and nutritional profile

    OpenAIRE

    Van Buyten, Evelien; Höfte, Monica

    2013-01-01

    Background: Progressive yield decline in Philippine aerobic rice fields has been recently associated with three closely related Pythium spp., P. arrhenomanes, P. graminicola and P. inflatum. To understand their differential virulence towards rice seedlings, we conducted a comparative survey in which three isolates each of P. arrhenomanes, P. graminicola and P. inflatum were selected to investigate host colonization, host responses and carbon utilization profiles using histopathological analys...

  3. Assessing host-parasite specificity through coprological analysis: a case study with species of Corynosoma (Acanthocephala: Polymorphidae) from marine mammals.

    Science.gov (United States)

    Aznar, F J; Hernández-Orts, J; Suárez, A A; García-Varela, M; Raga, J A; Cappozzo, H L

    2012-06-01

    In this paper we report an investigation of the utility of coprological analysis as an alternative technique to study parasite specificity whenever host sampling is problematic; acanthocephalans from marine mammals were used as a model. A total of 252 scats from the South American sea lion, Otaria flavescens, and rectal faeces from 43 franciscanas, Pontoporia blainvillei, from Buenos Aires Province, were examined for acanthocephalans. Specimens of two species, i.e. Corynosoma australe and C. cetaceum, were collected from both host species. In sea lions, 78 out of 145 (37.9%) females of C. australe were gravid and the sex ratio was strongly female-biased. However, none of the 168 females of C. cetaceum collected was gravid and the sex ratio was not female-biased. Conversely, in franciscanas, 14 out of 17 (82.4%) females of C. cetaceum were gravid, but none of 139 females of C. australe was, and the sex ratio of C. cetaceum, but not that of C. australe, was female-biased. In putative non-hosts, the size of worms was similar to that from specimens collected from prey. Results suggest that both acanthocephalans contact sea lions and franciscanas regularly. However, C. australe and C. cetaceum cannot apparently reproduce, nor even grow, in franciscanas and sea lions, respectively. Coprological analysis may represent a useful supplementary method to investigate parasite specificity, particularly when host carcasses are difficult to obtain.

  4. Multisite reproducibility of the broth microdilution method for susceptibility testing of Nocardia species.

    Science.gov (United States)

    Conville, Patricia S; Brown-Elliott, Barbara A; Wallace, Richard J; Witebsky, Frank G; Koziol, Deloris; Hall, Geraldine S; Killian, Scott B; Knapp, Cindy C; Warshauer, David; Van, Tam; Wengenack, Nancy L; Deml, Sharon; Woods, Gail L

    2012-04-01

    Antimicrobial susceptibility testing (AST) of clinical isolates of Nocardia is recommended to detect resistance to commonly used antimicrobial agents; such testing is complicated by difficulties in inoculum preparation and test interpretation. In this study, six laboratories performed repetitive broth microdilution testing on single strains of Nocardia brasiliensis, Nocardia cyriacigeorgica, Nocardia farcinica, Nocardia nova, and Nocardia wallacei. For each isolate, a total of 30 microdilution panels from three different lots were tested at most sites. The goal of the study was to determine the inter- and intralaboratory reproducibility of susceptibility testing of this group of isolates. Acceptable agreement (>90% agreement at ±1 dilution of the MIC mode) was found for amikacin, ciprofloxacin, clarithromycin, and moxifloxacin. After eliminating MIC values from single laboratories whose results showed the greatest deviation from those of the remaining laboratories, acceptable agreement was also found for amoxicillin-clavulanic acid, linezolid, minocycline, and tobramycin. Results showed unsatisfactory reproducibility of broth microdilution testing of ceftriaxone with N. cyriacigeorgica and N. wallacei, tigecycline with N. brasiliensis and N. cyriacigeorgica, and sulfonamides with N. farcinica and N. wallacei. N. nova ATCC BAA-2227 is proposed as a quality control organism for AST of Nocardia sp., and the use of a disk diffusion test for sulfisoxazole is proposed as a check of the adequacy of the inoculum and to confirm sulfonamide MIC results.

  5. From the Atlantic Forest to the borders of Amazonia: species richness, distribution, and host association of ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in northeastern Brazil.

    Science.gov (United States)

    Barbier, Eder; Bernard, Enrico

    2017-11-01

    Better knowledge of the geographical distribution of parasites and their hosts can contribute to clarifying aspects of host specificity, as well as on the interactions among hosts, parasites, and the environment in which both exist. Ectoparasitic flies of the Nycteribiidae and Streblidae families are highly specialized hematophagous parasites of bats, whose distributional patterns, species richness, and associations with hosts remain underexplored and poorly known in Brazil. Here, we used information available in the literature and unpublished data to verify if the occurrence of bat hosts in a given environment influences the occurrence and distribution of nycteribiid and streblid flies in different ecoregions in the northeastern Brazil. We evaluate species richness and similarity between ecoregions and tested correlations between species richness and the number of studies in each ecoregion and federative unit. We recorded 50 species and 15 genera of bat ectoparasitic flies on 36 species and 27 genera of bat hosts. The Atlantic Forest had the highest fly species richness (n = 31; 62%), followed by Caatinga (n = 27; 54%). We detected the formation of distinct groups, with low species overlap between ecoregions for both flies and bats. Fly species richness was correlated with host species richness and with the number of studies in each federative unit, but not with the number of studies by ecoregion. Due to the formation of distinct groups with low species overlap for both groups, host availability is likely to be one of the factors that most influence the occurrence of highly specific flies. We also discuss host specificity for some species, produced an updated list of species and distribution for both nycteribiid and streblid flies with information on interaction networks, and conclude by presenting recommendations for more effective inventories of bat ectoparasites in the future.

  6. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    OpenAIRE

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-01-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the fi...

  7. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease.

    Science.gov (United States)

    Nicolet, K J; Chong-Seng, K M; Pratchett, M S; Willis, B L; Hoogenboom, M O

    2018-03-27

    Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.

  8. Antibiotic Susceptibility and Sequence Type Distribution of Ureaplasma Species Isolated from Genital Samples in Switzerland.

    Science.gov (United States)

    Schneider, Sarah C; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas; Endimiani, Andrea

    2015-10-01

    Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse

  9. Symbiotic germination of three species of epiphytic orchids susceptible to genetic erosion, from Soconusco (Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Vincenzo Bertolini

    2012-02-01

    Full Text Available The Soconusco region of southeast Mexico has almost a quarter of the orchid species registered in Mexico and 37 threatened species (NOM-059-SEMARNAT-2001, many with severely reduced and non-viable populations. We chose two of the most threatened species, Rossioglossum grande (Lindl. Garay and G. C. Kenn. and Cuitlauzina convallarioides (Schltr. Dressler and N. H. Williams and a rare species recently discovered in the region, Rhynchostele bictoniensis (Bateman Soto Arenas and Salazar, to study the mycorrhizal fungi associated with the roots, isolate them and use them to induce seed germination and promote development in asymbiotically produced protocorms, in the laboratory. We isolated ten strains of Rhizoctonia-like orchid mycorrhizal fungi from Rossioglossum grande and three from Cuitlauzina convallarioides. Using selected fungal strains from the same species, we tested for the promotion of further development of asymbiotically pre-germinated protocorms of R. grande and the promotion of seed germination of C. convallarioides. In the case of R. bictoniensis, we studied the effects on seed germination of nine strains of Rhizoctonia-like fungi isolated from other orchid species. For R. grande, after 10 months, one strain of Rhizoctonia promoted development of the pre-germinated protocorms, and almost 90% of the protocorms produced rhizoids. For C. convallarioides, after 3 months, one fungal strain promoted protocorm development to the stage where they produced green tissue under illumination, suggesting the onset of photosynthesis. For R. bictoniensis three of the fungal strains (from other orchid species promoted germination and, after 4 months, autotrophic protocorms.

  10. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    Science.gov (United States)

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  11. Species distribution and drug susceptibility of candida in clinical isolates from a tertiary care centre at Indore

    Directory of Open Access Journals (Sweden)

    N Pahwa

    2014-01-01

    Full Text Available Background: The incidence of fungal infections has increased significantly, contributing to morbidity and mortality. This is caused by an alarming increase in infections with multi-drug resistant bacteria leading to overuse of broad-spectrum antimicrobials, which lead to overgrowth of Candida, thus enhancing its opportunity to cause disease. Candida are major human fungal pathogens that cause both mucosal and deep tissue infections. Objective : The aim of our study was to identify the distribution of Candida species among clinical isolates and their sensitivity pattern for common antifungal drugs. Materials and Methods : Two hundred and thirty-seven different clinical isolates of Candida were collected from patients visiting to a tertiary care centre of Indore from 2010 to 2012. Identification of Candida species as well as antifungal sensitivity testing was performed with Vitek2 Compact (Biomerieux France using vitek 2 cards for identification of yeast and yeast like organisms (ID-YST cards. Antifungal susceptibility testing was performed with Vitek2 "Fungal Susceptibility Card (AST YS01 kits respectively. Results : We found that the non-albicans Candida were more prevalent than Candida albicans in paediatric (60 year patients than other age group (4-18, 19-60 years patients and also in intensive care unit (ICU patients as compared to out patient department (OPD patients. Resistance rates for amphotericin B, fluconazole, flucytosine, itraconazole, and voriconazole were 2.9%, 5.9%, 0.0%, 4.2% and 2.5%%, respectively. All the strains of C. krusei were found resistant to fluconazole with intermediate sensitivity to flucytosine. Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should be performed to achieve better clinical results.

  12. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.

    Science.gov (United States)

    Hernán, Gema; Ortega, María J; Gándara, Alberto M; Castejón, Inés; Terrados, Jorge; Tomas, Fiona

    2017-11-01

    Increases in seawater temperature are expected to have negative consequences for marine organisms. Beyond individual effects, species-specific differences in thermal tolerance are predicted to modify species interactions and increase the strength of top-down effects, particularly in plant-herbivore interactions. Shifts in trophic interactions will be especially important when affecting habitat-forming species such as seagrasses, as the consequences on their abundance will cascade throughout the food web. Seagrasses are a major component of coastal ecosystems offering important ecosystem services, but are threatened by multiple anthropogenic stressors, including warming. The mechanistic understanding of seagrass responses to warming at multiple scales of organization remains largely unexplored, especially in early-life stages such as seedlings. Yet, these early-life stages are critical for seagrass expansion processes and adaptation to climate change. In this study, we determined the effects of a 3 month experimental exposure to present and predicted mean summer SST of the Mediterranean Sea (25°C, 27°C, and 29°C) on the photophysiology, size, and ecology (i.e., plant-herbivore interactions) of seedlings of the seagrass Posidonia oceanica. Warming resulted in increased mortality, leaf necrosis, and respiration as well as lower carbohydrate reserves in the seed, the main storage organ in seedlings. Aboveground biomass and root growth were also limited with warming, which could hamper seedling establishment success. Furthermore, warming increased the susceptibility to consumption by grazers, likely due to lower leaf fiber content and thickness. Our results indicate that warming will negatively affect seagrass seedlings through multiple direct and indirect pathways: increased stress, reduced establishment potential, lower storage of carbohydrate reserves, and increased susceptibly to consumption. This work provides a significant step forward in understanding the

  13. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India

    Directory of Open Access Journals (Sweden)

    Partha Bhattacharjee

    2016-06-01

    Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should to be performed to achieve better clinical result and to select an appropriate and effective antifungal therapy. High resistance to antifungal agents is an alarming sign to the healthcare professionals.

  14. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    Science.gov (United States)

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  15. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species

    Directory of Open Access Journals (Sweden)

    Gaasenbeek Cor

    2009-09-01

    Full Text Available Abstract Background Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years. Results The DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar. Conclusion Besides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.

  16. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection.

    Science.gov (United States)

    Wan, Ran; Hou, Xiaoqing; Wang, Xianhang; Qu, Jingwu; Singer, Stacy D; Wang, Yuejin; Wang, Xiping

    2015-01-01

    The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, "Pingli-5" (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, "Red Globe" were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on "Pingli-5" before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O[Formula: see text] accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O[Formula: see text] (not H2O2) were detected 4 hpi and ROS (H2O2 and O[Formula: see text]) accumulation from 8 hpi onwards was also lower in "Pingli-5" leaves than in "Red Globe" leaves. B. cinerea triggered sustained ROS production in "Red Globe" but not in "Pingli-5" with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant "Pingli-5" which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future.

  17. North American tree squirrels and ground squirrels with overlapping ranges host different Cryptosporidium species and genotypes

    Czech Academy of Sciences Publication Activity Database

    Stenger, B.L.S.; Clark, M.E.; Kváč, Martin; Khan, E.; Giddings, C.W.; Prediger, Jitka; McEvoy, J.M.

    2015-01-01

    Roč. 36, 2015-Dec (2015), s. 287-293 ISSN 1567-1348 R&D Projects: GA ČR GA15-01090S Institutional support: RVO:60077344 Keywords : Cryptosporidium * Tree squirrels * Ground squirrels * Host specificity * Zoonotic Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.591, year: 2015

  18. Long-term infection and vertical transmission of a gammaretrovirus in a foreign host species.

    Science.gov (United States)

    Sakuma, Toshie; Tonne, Jason M; Malcolm, Jessica A; Thatava, Tayaramma; Ohmine, Seiga; Peng, Kah-Whye; Ikeda, Yasuhiro

    2012-01-01

    Increasing evidence has indicated natural transspecies transmission of gammaretroviruses; however, viral-host interactions after initial xeno-exposure remain poorly understood. Potential association of xenotropic murine leukemia virus-related virus (XMRV) in patients with prostate cancer and chronic fatigue syndrome has attracted broad interests in this topic. Although recent studies have indicated that XMRV is unlikely a human pathogen, further understanding of XMRV xenoinfection would allow in vivo modeling of the initial steps of gammaretroviral interspecies transmission, evolution and dissemination in a new host population. In this study, we monitored the long-term consequences of XMRV infection and its possible vertical transmission in a permissive foreign host, wild-derived Mus pahari mice. One year post-infection, XMRV-infected mice showed no notable pathological changes, while proviral DNA was detected in three out of eight mice. XMRV-infected mice remained seropositive throughout the study although the levels of gp70 Env- and p30 capsid-specific antibodies gradually decreased. When vertical XMRV transmission was assessed, no viremia, humoral immune responses nor endogenization were observed in nine offspring from infected mothers, yet one offspring was found PCR-positive for XMRV-specific sequences. Amplified viral sequences from the offspring showed several mutations, including one amino acid deletion in the receptor binding domain of Env SU. Our results therefore demonstrate long-term asymptomatic infection, low incidence of vertical transmission and limited evolution of XMRV upon transspecies infection of a permissive new host, Mus pahari.

  19. Long-term infection and vertical transmission of a gammaretrovirus in a foreign host species.

    Directory of Open Access Journals (Sweden)

    Toshie Sakuma

    Full Text Available Increasing evidence has indicated natural transspecies transmission of gammaretroviruses; however, viral-host interactions after initial xeno-exposure remain poorly understood. Potential association of xenotropic murine leukemia virus-related virus (XMRV in patients with prostate cancer and chronic fatigue syndrome has attracted broad interests in this topic. Although recent studies have indicated that XMRV is unlikely a human pathogen, further understanding of XMRV xenoinfection would allow in vivo modeling of the initial steps of gammaretroviral interspecies transmission, evolution and dissemination in a new host population. In this study, we monitored the long-term consequences of XMRV infection and its possible vertical transmission in a permissive foreign host, wild-derived Mus pahari mice. One year post-infection, XMRV-infected mice showed no notable pathological changes, while proviral DNA was detected in three out of eight mice. XMRV-infected mice remained seropositive throughout the study although the levels of gp70 Env- and p30 capsid-specific antibodies gradually decreased. When vertical XMRV transmission was assessed, no viremia, humoral immune responses nor endogenization were observed in nine offspring from infected mothers, yet one offspring was found PCR-positive for XMRV-specific sequences. Amplified viral sequences from the offspring showed several mutations, including one amino acid deletion in the receptor binding domain of Env SU. Our results therefore demonstrate long-term asymptomatic infection, low incidence of vertical transmission and limited evolution of XMRV upon transspecies infection of a permissive new host, Mus pahari.

  20. Semiochemical exploitation of host-associated cues by seven Melittobia parasitoid species

    NARCIS (Netherlands)

    González, Jorge M.; Camino, Dakota; Simon, Sabrina; Cusumano, Antonino

    2018-01-01

    Chemical compounds (infochemicals or semiochemicals) play an important role both in intra-specific and inter-specific communication. For example, chemical cues appear to play a key role in the host selection process adopted by insect parasitoids. In recent years significant advances have been made

  1. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States

    OpenAIRE

    Mirajkar, Nandita S.; Davies, Peter R.; Gebhart, Connie J.

    2016-01-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determi...

  2. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements.

    Directory of Open Access Journals (Sweden)

    Meghana Deepak Shirke

    Full Text Available Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck, finger millet (leaf and neck, foxtail millet (leaf and buffel grass (leaf. Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors.

  3. Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility.

    Science.gov (United States)

    Whitten, Miranda M A; Davies, Charlotte E; Kim, Anita; Tlusty, Michael; Wootton, Emma C; Chistoserdov, Andrei; Rowley, Andrew F

    2014-06-01

    Diseases of lobster shells have a significant impact on fishing industries but the risk of disease transmission between different lobster species has yet to be properly investigated. This study compared bacterial biofilm communities from American (Homarus americanus) and European lobsters (H. gammarus), to assess both healthy cuticle and diseased cuticle during lesion formation. Culture-independent molecular techniques revealed diversity in the bacterial communities of cuticle biofilms both within and between the two lobster species, and identified three bacterial genera associated with shell lesions plus two putative beneficial bacterial species (detected exclusively in healthy cuticle or healing damaged cuticle). In an experimental aquarium shared between American and European lobsters, heterospecific transmission of potentially pathogenic bacteria appeared to be very limited; however, the claws of European lobsters were more likely to develop lesions when reared in the presence of American lobsters. Aquarium biofilms were also examined but revealed no candidate pathogens for environmental transmission. Aquimarina sp. 'homaria' (a potential pathogen associated with a severe epizootic form of shell disease) was detected at a much higher prevalence among American than European lobsters, but its presence correlated more with exacerbation of existing lesions rather than with lesion initiation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Prevalence, species differentiation, haemolytic activity, and antibiotic susceptibility of aeromonads in untreated well water

    Directory of Open Access Journals (Sweden)

    Khalifa Sifaw Ghenghesh

    2001-02-01

    Full Text Available The use of untreated water for drinking and other activities have been associated with intestinal and extraintestinal infections in humans due to Aeromonas species. In the present study aeromonads were isolated from 48.7% of 1,000 water samples obtained from wells and other miscellaneous sources. Aeromonas species were detected in 45% of samples tested in spring, 34.5% in summer, 48% in autumn and 60% of samples tested in winter. Speciation of 382 strains resulted in 225 (59% being A. hydrophila, 103 (27% A. caviae, 42 (11% A. sobria and 11 (3% atypical aeromonads. Of 171 Aeromonas strains tested for their haemolytic activity, 53%, 49%, 40% and 37% were positive in this assay using human, horse, sheep and camel erythrocytes respectively. The results obtained indicate that potentially enteropathogenic Aeromonas species are commonly present in untreated drinking water obtained from wells in Libya (this may also apply to other neighbouring countries which may pose a health problem to users of such water supplies. In addition, ceftriaxone and ciprofloxacin are suitable drugs that can be used in the treatment of Aeromonas-associated infections, particularly in the immunocompromised, resulting from contact with untreated sources of water.

  5. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  6. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2018-01-01

    Root knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites having a wide-host range. We have taken a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible p...

  7. West Nile Virus Infection in American Singer Canaries: An Experimental Model in a Highly Susceptible Avian Species.

    Science.gov (United States)

    Hofmeister, Erik K; Lund, Melissa; Shearn Bochsler, Valerie

    2018-01-01

    This study investigated the susceptibility of American singer canaries ( Serinus canaria) to West Nile virus (WNV) infection. Adult canaries were inoculated with 10 5 , 10 2 , and 10 1 plaque forming units (PFU) of WNV. All birds became infected and mortality occurred by 5 days postinoculation. The load of viral RNA as determined by RT-qPCR was dose dependent, and was higher at all doses than the level of viral RNA detected in American crows ( Corvus brachyrhynchos) challenged with 10 5 PFU of WNV. In a subset of birds, viremia was detected by virus isolation; canaries inoculated with 10 1 PFU of WNV developed viremia exceeding 10 10 PFU/mL serum, a log higher than American crows inoculated with 10 5 PFU of virus. In canaries euthanized at 3 days postinoculation, WNV was isolated at >10 7 PFU of virus/100 mg of lung, liver, heart, spleen, and kidney tissues. Pallor of the liver and splenomegaly were the most common macroscopic observations and histologic lesions were most severe in liver, spleen, and kidney, particularly in canaries challenged with 10 2 and 10 1 PFU. Immunoreactivity to WNV was pronounced in the liver and spleen. IgG antibodies to WNV were detected in serum by enzyme immunoassay in 11 of 21 (52%) challenged canaries and, in 4 of 5 (20%) of these sera, neutralization antibodies were detected at a titer ≥ 1:20. American singer canaries provide a useful model as this bird species is highly susceptible to WNV infection.

  8. Novel Paraconiothyrium species on stone fruit trees and other woody hosts

    NARCIS (Netherlands)

    Damm, U; Verkley, G J M; Crous, P W; Fourie, P H; Haegi, A; Riccioni, L

    Coniothyrium-like fungi are common wood and soil inhabitants and hyperparasites on other fungi. They belong to different fungal genera within the Pleosporales. Several isolates were obtained on wood of different Prunus species (plum, peach and nectarine) from South Africa, on Actinidia species from

  9. A retrospective analysis of pollen host plant use by stable and declining bumble bee species

    NARCIS (Netherlands)

    Kleijn, D.; Raemakers, I.P.

    2008-01-01

    Understanding population declines has been the objective of a wide range of ecological studies. When species have become rare such studies are complicated because particular behavior or life history traits may be the cause but also the result of the decline of a species. We approached this problem

  10. Allopatric origin of cryptic butterfly species that were discovered feeding on distinct host plants in sympatry.

    NARCIS (Netherlands)

    McBride, L.C.; Velzen, van R.; Larsen, T.B.

    2009-01-01

    Surveys of tropical insects are increasingly uncovering cryptic species ¿ morphologically similar yet reproductively isolated taxa once thought to comprise a single interbreeding entity. The vast majority of such species are described from a single location. This leaves us with little information on

  11. Comparison of Bloodmeal Digestion and the Peritrophic Matrix in Four Sand Fly Species Differing in Susceptibility to Leishmania donovani.

    Science.gov (United States)

    Pruzinova, Katerina; Sadlova, Jovana; Seblova, Veronika; Homola, Miroslav; Votypka, Jan; Volf, Petr

    2015-01-01

    The early stage of Leishmania development in sand flies is closely connected with bloodmeal digestion. Here we compared various parameters of bloodmeal digestion in sand flies that are either susceptible (Phlebotomus argentipes and P. orientalis) or refractory (P. papatasi and Sergentomyia schwetzi) to Leishmania donovani, to study the effects on vector competence. The volume of the bloodmeal ingested, time of defecation of bloodmeal remnants, timing of formation and degradation of the peritrophic matrix (PM) and dynamics of proteolytic activities were compared in four sand fly species. Both proven vectors of L. donovani showed lower trypsin activity and slower PM formation than refractory species. Interestingly, the two natural L. donovani vectors strikingly differed from each other in secretion of the PM and midgut proteases, with P. argentipes possessing fast bloodmeal digestion with a very high peak of chymotrypsin activity and rapid degradation of the PM. Experimental infections of P. argentipes did not reveal any differences in vector competence in comparison with previously studied P. orientalis; even the very low initial dose (2×103 promastigotes/ml) led to fully developed late-stage infections with colonization of the stomodeal valve in about 40% of females. We hypothesise that the period between the breakdown of the PM and defecation of the bloodmeal remnants, i.e. the time frame when Leishmania attach to the midgut in order to prevent defecation, could be one of crucial parameters responsible for the establishment of Leishmania in the sand fly midgut. In both natural L. donovani vectors this period was significantly longer than in S. schwetzi. Both vectors are equally susceptible to L. donovani; as average bloodmeal volumes taken by females of P. argentipes and P. orientalis were 0.63 μl and 0.59 μl, respectively, an infective dose corresponding to 1-2 parasites was enough to initiate mature infections.

  12. Antimicrobial susceptibility pattern in nosocomial infections caused by Acinetobacter species in Asir Region, Saudi Arabia.

    Science.gov (United States)

    Abdalla, Nazar M; Osman, Amani A; Haimour, Waleed O; Sarhan, Mohammed A A; Mohammed, Mohammed N; Zyad, Eyhab M; Al-Ghtani, Abdalla M

    2013-03-15

    This study aimed at evaluating the sensitivity of antibiotics towards nosocomial infections caused by Acinetobacter species. The study took place during the period Dec. 2011- Dec. 2012 at Assir Central Hospital in collaboration with the department of microbiology, college of medicine, King Khalid University, Abha. A prospective study involving 150 patients presented with nosocomial infections due to Acinetobacter species detected by bacteriological tests; direct microscopy, culture in blood agar media, fermentation test in MacConkey media and MIC (minimum inhibitory concentration) for antibiotics sensitivity using Muller Hinton media and Chemical test using API 20. A 150 nosocomial infections in this study showed gram-negative coccobacilli, non motile, glucose-negative fermentor and oxidase negative. All isolates showed 100% sensitivity to: Imipramine, Meropenem, Colistin. From the rest of tested antibiotics the higher resistant ones were; Nitrofurantoin 87% and Cefoxitin 85%. The least resistant antibiotics; Imipenem 3% and Ticarcillin 7%. While variable resistance in the rest of tested antimicrobials. A 47 patients (31.3%) have used antibiotics prior to this study. The high rate of usage occurred in elder patients. The frequency of Acinetobacter calcoaceticus baumannii complex multi-drugs resistance ABCMDR is rising including almost all commonly used antibiotics. Only few antibiotics exert 100% sensitivity towards these bacteria.

  13. Host specificity and genealogy of the louse Polyplax serrata on field mice, Apodemus species: a case of parasite duplication or colonisation?

    Science.gov (United States)

    Stefka, Jan; Hypsa, Václav

    2008-05-01

    The genealogy, population structure and population dynamics of the sucking louse Polyplax serrata were analysed across four host species of the genus Apodemus. An analysis of 126 sequences of cytochrome c oxidase subunit I using phylogenetic approaches and haplotype networking revealed a clear structure of European samples, forming three distinct and genetically distant clades with different host specificities. Although a clear connection was detected between the host and parasite genealogies/phylogenies, a uniform pattern of co-speciation was not found. For example, a dramatic shift in the degree of host specificity was demonstrated for two related louse lineages living in sympatry and sharing one of their host species. While one of the louse lineages frequently parasitised two different host taxa (Apodemus sylvaticus and Apodemus flavicollis), the other louse lineage was strictly specific to A. flavicollis. The estimate of divergence time between the two louse lineages indicates that they may have arisen due to parasite duplication on A. flavicollis.

  14. In vitro antifungal susceptibility of oral candida species from Iranian HIV infected patients

    Directory of Open Access Journals (Sweden)

    Katiraee F

    2012-05-01

    Results: Candida albicans (50.2% was the most frequent isolated yeast, followed by C. glabrata (22%. Non-Candida albicans species were isolated from 71 (61% positive cultures. 25.7% of Candida albicans isolates were resistant to fluconazole (MIC≥64 µg/ml as were 21.9% and 16.4% to ketoconazole and clotrimazole (MIC>0.125 µg/ml, respectively. Resistance to polyene antifungals including amphotericin B and nystatin, and caspofungin were scarce. 57.7% of candida glabrata isolates were resistant to fluconazole, 31% to ketoconazole and 35% to clotrimazole. Conclusion: Screening for antifungal resistant candida isolates by disk diffusion or broth dilution methods in clinical laboratories is an ideal surveillance measure in the management of oral thrush in patients with HIV/AIDS. Although nystatin is widely used in clinical practice for HIV positive patients, there was no evidence of enhanced resistance to it. Regarding no resistance to caspofungin, its administration is suggested.

  15. MTL genotypes, phenotypic switching, and susceptibility profiles of Candida parapsilosis species group compared to Lodderomyces elongisporus.

    Directory of Open Access Journals (Sweden)

    Aylin Döğen

    Full Text Available Reference isolates of Candida parapsilosis (n = 8, Candida metapsilosis (n = 6, Candida orthopsilosis (n = 7, and Lodderomyces elongisporus (n = 11 were analyzed to gain insight into their pathobiology and virulence mechanisms. Initial evaluation using BBL Chromagar Candida medium misidentified L. elongisporus isolates as C. albicans. Polymerase chain reaction analysis of isolate MTL idiomorphs revealed that all C. parapsilosis isolates were MTLa homozygous and no MTL α1, α2, a1, or a2 gene was detected in L. elongisporus isolates. For C. orthopsilosis, two isolates were MTLa homozygous and five were MTL-heterozygous. Similarly, one C. metapsilosis isolate was MTLα homozygous whereas five were MTL-heterozygous. Isolate phenotypic switching analysis revealed potential phenotypic switching in the MTLα homozygous C. metapsilosis isolate, resulting in concomitant elongated cell formation. Minimum inhibitory concentrations of fluconazole (FLC and FK506, alone or in combination, were determined by checkerboard assay, with data analyzed using the fractional inhibitory concentration index model. Synergistic or additive effects of these compounds were commonly observed in C. parapsilosis and L. elongisporus isolates. No killer activity was observed in the studied isolates, as determined phenotypically. No significant difference in virulence was seen for the four species in a Galleria mellonella model (P > 0.05. In conclusion, our results demonstrated phenotypic switching of C. metapsilosis CBS 2315 and that FLC and FK506 represent a promising drug combination against C. parapsilosis and L. elongisporus. The findings of the present study contribute to our understanding of the biology, diagnosis, and new possible treatments of the C. parapsilosis species group and L. elongisporus.

  16. Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans.

    Science.gov (United States)

    Vandeputte, Patrick; Pradervand, Sylvain; Ischer, Françoise; Coste, Alix T; Ferrari, Sélène; Harshman, Keith; Sanglard, Dominique

    2012-07-01

    The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

  17. Candida species diversity and antifungal susceptibility patterns in oral samples of HIV/AIDS patients in Baja California, Mexico.

    Science.gov (United States)

    Clark-Ordóñez, Isadora; Callejas-Negrete, Olga A; Aréchiga-Carvajal, Elva T; Mouriño-Pérez, Rosa R

    2017-04-01

    Candidiasis is the most common opportunistic fungal infection in HIV patients. The aims of this study were to identify the prevalence of carriers of Candida, Candida species diversity, and in vitro susceptibility to antifungal drugs. In 297 HIV/AIDS patients in Baja California, Mexico, Candida strains were identified by molecular methods (PCR-RFLP) from isolates of oral rinses of patients in Tijuana, Mexicali, and Ensenada. 56.3% of patients were colonized or infected with Candida. In Tijuana, there was a significantly higher percentage of carriers (75.5%). Out of the 181 strains that were isolated, 71.8% were Candida albicans and 28.2% were non-albicans species. The most common non-albicans species was Candida tropicalis (12.2%), followed by Candida glabrata (8.3%), Candida parapsilosis (2.2%), Candida krusei (1.7%), and Candida guilliermondii (1.1%). Candida dubliniensis was not isolated. Two associated species were found in 11 patients. In Mexicali and Ensenada, there was a lower proportion of Candida carriers compared to other regions in Mexico and worldwide, however, in Tijuana, a border town with many peculiarities, a higher carrier rate was found. In this population, only a high viral load was associated with oral Candida carriers. Other factors such as gender, use of antiretroviral therapy, CD4+ T-lymphocyte levels, time since diagnosis, and alcohol/ tobacco consumption, were not associated with Candida carriers. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Species used for drug testing reveal different inhibition susceptibility for 17beta-hydroxysteroid dehydrogenase type 1.

    Directory of Open Access Journals (Sweden)

    Gabriele Möller

    Full Text Available Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1 for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17beta-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17beta-HSD types 1, 2, 4, 5 and 7 but also against 17beta-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17beta-HSDs analyzed were observed. Especially, the rodent 17beta-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17beta-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.

  19. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Rijs Antonius JMM

    2008-08-01

    Full Text Available Abstract Background In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. Methods A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients with oropharyngeal candidiasis at the Muhimbili National Hospital, Dar es Salaam, Tanzania. Identification of the yeasts was performed using standard phenotypic methods. Antifungal susceptibility to fluconazole, itraconazole, miconazole, clotrimazole, amphotericin B and nystatin was assessed using a broth microdilution format according to the guidelines of the Clinical and Laboratory Standard Institute (CLSI; M27-A2. Results Candida albicans was the most frequently isolated species from 250 (84.5% patients followed by C. glabrata from 20 (6.8% patients, and C. krusei from 10 (3.4% patients. There was no observed significant difference in species distribution between patients with primary and recurrent oropharyngeal candidiasis, but isolates cultured from patients previously treated were significantly less susceptible to the azole compounds compared to those cultured from antifungal naïve patients. Conclusion C. albicans was the most frequently isolated species from patients with oropharyngeal candidiasis. Oral yeast isolates from Tanzania had high level susceptibility to the antifungal agents tested. Recurrent oropharyngeal candidiasis and previous antifungal therapy significantly correlated with reduced susceptibility to azoles antifungal agents.

  20. An in vitro study of antifungal drug susceptibility of Candida species isolated from human immunodeficiency virus seropositive and human immunodeficiency virus seronegative individuals in Lucknow population Uttar Pradesh.

    Science.gov (United States)

    Dar, Mohammad Shafi; Sreedar, Gadiputi; Shukla, Abhilasha; Gupta, Prashant; Rehan, Ahmad Danish; George, Jiji

    2015-01-01

    Candidiasis is the most common opportunistic infection in human immunodeficiency virus (HIV) seropositive patients, starting from asymptomatic colonization to pathogenic forms and gradual colonization of non-albicans in patients with advanced immunosuppression leads to resistance for azole group of antifungal drugs with high rate of morbidity and mortality. To isolate the Candida species and determine of antifungal drug susceptibility against fluconazole, itraconazole, nystatin, amphotericin B, and clotrimazolein HIV seropositive and control individuals, with or without clinical oropharyngeal candidiasis (OPC). Includes samples from faucial region of 70 subjects with and without clinical candidiasis in HIV seropositive and controls were aseptically inoculated onto Sabaraud's Dextrose Agar media and yeasts were identified for the specific species by Corn Meal Agar, sugar fermentation and heat tolerance tests. Antifungal drug susceptibility of the isolated species was done against above-mentioned drugs by E-test and disc diffusion method. The commonly isolated species in HIV seropositive and controls were Candida albicans, Candida glabrata and Candida tropicalis Candida guilliermondii and Candida dubliniensis isolated only in HIV seropositive patients. Susceptibility against selected antifungal drugs was observed more in HIV-negative individuals whereas susceptible dose-dependent and resistance were predominant in HIV-positive patients. Resistance is the major problem in the therapy of OPC, especially in HIV seropositive patients due to aggressive and prolonged use of antifungal agents, therefore, our study emphasizes the need for antifungal drug susceptibility testing whenever antifungal treatment is desired, especially in HIV-infected subjects.

  1. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2016-08-01

    Full Text Available Background The diversity and composition of the microbial community of tree leaves (the phyllosphere varies among trees and host species and along spatial, temporal, and environmental gradients. Phyllosphere community variation within the canopy of an individual tree exists but the importance of this variation relative to among-tree and among-species variation is poorly understood. Sampling techniques employed for phyllosphere studies include picking leaves from one canopy location to mixing randomly selected leaves from throughout the canopy. In this context, our goal was to characterize the relative importance of intra-individual variation in phyllosphere communities across multiple species, and compare this variation to inter-individual and interspecific variation of phyllosphere epiphytic bacterial communities in a natural temperate forest in Quebec, Canada. Methods We targeted five dominant temperate forest tree species including angiosperms and gymnosperms: Acer saccharum, Acer rubrum, Betula papyrifera, Abies balsamea and Picea glauca. For one randomly selected tree of each species, we sampled microbial communities at six distinct canopy locations: bottom-canopy (1–2 m height, the four cardinal points of mid-canopy (2–4 m height, and the top-canopy (4–6 m height. We also collected bottom-canopy leaves from five additional trees from each species. Results Based on an analysis of bacterial community structure measured via Illumina sequencing of the bacterial 16S gene, we demonstrate that 65% of the intra-individual variation in leaf bacterial community structure could be attributed to the effect of inter-individual and inter-specific differences while the effect of canopy location was not significant. In comparison, host species identity explains 47% of inter-individual and inter-specific variation in leaf bacterial community structure followed by individual identity (32% and canopy location (6%. Discussion Our results suggest that

  2. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    Science.gov (United States)

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Relative resistance or susceptibility of maple (Acer) species, hybrids and cultivars to six arthropod pests of production nurseries.

    Science.gov (United States)

    Seagraves, Bonny L; Redmond, Carl T; Potter, Daniel A

    2013-01-01

    Maples (Acer spp.) in production nurseries are vulnerable to numerous arthropod pests that can stunt or even kill the young trees. Seventeen cultivars representing various Acer species and hybrids were evaluated for extent of infestation or injury by shoot and trunk borers (Proteoteras aesculana, Chrysobothris femorata), potato leafhopper (Empoasca fabae), Japanese beetle (Popillia japonica), maple spider mite (Oligonychus aceris) and calico scale (Eulecanium cerasorum). Evaluations were done in replicated field plots in central and western Kentucky. All of the maples were susceptible, to varying degrees, to one or more key pest(s). Red maples (A. rubrum) were relatively vulnerable to potato leafhopper injury and borers but nearly free of Japanese beetle feeding and spider mites. Sugar maples sustained conspicuous Japanese beetle damage but had very low mite populations, whereas the opposite was true for Freeman maples (A. × freemanii). A. campestre was heavily infested by calico scale. Within each species or hybrid there were cultivar differences in degree of infestation or damage by particular pests. The results should help growers to focus pest management efforts on those plantings at greatest risk from particular pests, and to choose cultivars requiring fewer insecticide inputs to produce a quality tree. Copyright © 2012 Society of Chemical Industry.

  4. Phytophthora cinnamomi Colonized Reclaimed Surface Mined Sites in Eastern Kentucky: Implications for the Restoration of Susceptible Species

    Directory of Open Access Journals (Sweden)

    Kenton L. Sena

    2018-04-01

    Full Text Available Appalachian forests are threatened by a number of factors, especially introduced pests and pathogens. Among these is Phytophthora cinnamomi, a soil-borne oomycete pathogen known to cause root rot in American chestnut, shortleaf pine, and other native tree species. This study was initiated to characterize the incidence of P. cinnamomi on surface mined lands in eastern Kentucky, USA, representing a range of time since reclamation (10, 12, 15, and 20 years since reclamation. Incidence of P. cinnamomi was correlated to soil properties including overall soil development, as indicated by a variety of measured soil physical and chemical parameters, especially the accumulation of soil organic carbon. P. cinnamomi was detected in only two of the four sites studied, aged 15 and 20 years since reclamation. These sites were generally characterized by higher organic matter accumulation than the younger sites in which P. cinnamomi was not detected. These results demonstrate that P. cinnamomi is capable of colonizing reclaimed mine sites in Appalachia; additional research is necessary to determine the impact of P. cinnamomi on susceptible tree species at these sites.

  5. Novel Paraconiothyrium species on stone fruit trees and other woody hosts.

    Science.gov (United States)

    Damm, U; Verkley, G J M; Crous, P W; Fourie, P H; Haegi, A; Riccioni, L

    2008-06-01

    Coniothyrium-like fungi are common wood and soil inhabitants and hyperparasites on other fungi. They belong to different fungal genera within the Pleosporales. Several isolates were obtained on wood of different Prunus species (plum, peach and nectarine) from South Africa, on Actinidia species from Italy and on Laurus nobilis from Turkey. Morphological and cultural characteristics as well as DNA sequence data (5.8S nrDNA, ITS1, ITS2, partial SSU nrDNA) were used to characterise them. The isolates belonged to three species of the recently established genus Paraconiothyrium. This is the first report of Paraconiothyrium brasiliense on Prunus spp. from South Africa. Two new species are described, namely Paraconiothyrium variabile sp. nov. on Prunus persica and Prunus salicina from South Africa, on Actinidia spp. from Italy and on Laurus nobilis from Turkey, and Paraconiothyrium africanum sp. nov. on Prunus persica from South Africa. Although other known species of Paraconiothyrium commonly produce aseptate conidia, those of P. africanum and P. hawaiiense comb. nov. are predominantly two-celled.

  6. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism and susceptibility to herbivory: Consequences for fungi and host plants

    Directory of Open Access Journals (Sweden)

    Catherine A. Gehring

    2014-06-01

    Full Text Available Plants and mycorrhizal fungi influence each other’s abundance, diversity and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of mistletoe parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis, and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  7. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    Science.gov (United States)

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  8. Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization

    OpenAIRE

    Lewandowski, Mariusz; Skoracka, Anna; Szydło, Wiktoria; Kozak, Marcin; Druciarek, Tobiasz; Griffiths, Don A.

    2014-01-01

    Eriophyoid species belonging to the genus Trisetacus are economically important as pests of conifers. A narrow host specialization to conifers and some unique morphological characteristics have made these mites interesting subjects for scientific inquiry. In this study, we assessed morphological and genetic variation of seven Trisetacus species originating from six coniferous hosts in Poland by morphometric analysis and molecular sequencing of the mitochondrial cytochrome oxidase subunit I ge...

  9. Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species

    Science.gov (United States)

    Meistertzheim, Anne.-Leila; Lartaud, Franck; Arnaud-Haond, Sophie; Kalenitchenko, Dimitri; Bessalam, Manon; Le Bris, Nadine; Galand, Pierre E.

    2016-08-01

    Cold-water corals (CWC) are main ecosystem engineers of the deep sea, and their reefs constitute hot-spots of biodiversity. However, their ecology remains poorly understood, particularly, the nature of the holobiont formed by corals with their associated bacterial communities. Here, we analyzed Madrepora oculata and Lophelia pertusa samples, collected from one location in a Mediterranean canyon in two different seasons (autumn and spring), in order to test for species specificity and temporal stability of the host-bacteria associations. The 16S rRNA sequencing revealed host-specific patterns of bacterial communities associated with L. pertusa and M. oculata, both in terms of community composition and diversity. All analyzed M. oculata polyps exhibited temporally and spatially similar bacterial communities dominated by haplotypes homologous to the known cnidarians-associated genus Endozoicomonas. In contrast, the bacterial communities associated with L. pertusa varied among polyps from the same colony, as well as among distinct colonies and between seasons. While the resilient consortium formed by M. oculata and its bacterial community fit the definition of holobiont, the versatility of the L. pertusa microbiome suggests that this association is more influenced by the environmental conditions or nutritional status. Our results thus highlight distinct host/microbes association strategies for these two closely related Scleractinians sharing the same habitat, suggesting distinct sensitivity to environmental change.

  10. Ticks (Acarina: Ixodida) infesting five reptile species in Sri Lanka with sixteen new host records.

    Science.gov (United States)

    Liyanaarachchi, Dilrukshi R; Rajakaruna, Rupika S; Dikkumbura, Anil W; De Silva, Anslem; Rajapakse, R P V Jayantha

    2015-05-29

    The first study on ticks on reptiles of Sri Lanka dates back to Seneviratna (1965) who reported ticks from five reptiles. Later studies were either limited to one reptile (Fernando & Fernando 2012), or captive animals in zoos (Fernando & Randeniaya 2009) and household pets (Nathanael et al. 2004). According to the current classification (Guglielmone et al. 2010), all the tick species previously recorded on reptiles belong to five species of Amblyomma: A. clypeolatum Neumann, A. gervaisi (Lucas), A. pattoni (Neumann), A. trimaculatum (Lucas) and A. varanense (Supino). Some of the species listed by Seneviratna (1965) were either synonyms or invalid in respect to the present classification. For example Amblyomma laeve sensu Warburton (1910) is a junior synonym of A. pattoni and A. gervaisii var. lucasi is considered a junior synonym of A. varanense (Guglielmone et al. 2010; D. Apanaskevich pers. comm.).

  11. In vitro antimicrobial susceptibility in clinical isolates of Enterococcus species Susceptibilidad antimicrobiana in vitro en aislamientos clínicos de Enterococcus species

    Directory of Open Access Journals (Sweden)

    Ernesto Calderón-Jaimes

    2003-04-01

    Full Text Available OBJECTIVE: To describe the antimicrobial activity of several antimicrobial agents against 97 clinical significant isolates of Enterococcus spp. MATHERIAL AND METHODS: During a 2-year prospective study at Instituto Nacional de Pediatria (National Institute of Pediatrics in Mexico City. Ninety seven strains of Enterococcus spp. (60 E. faecalis and 37 E. faecium were tested against 11 antibiotics. Susceptibility tests were performed with agar, according to the standards of the sNational Committee for Clinical Laboratory Standards (NCCLS. Isolates were screened for high-level resistance (HLR to beta-lactams, aminoglycosides, glycopeptides and other antibiotics, as well as for vancomycin-phenotypes. Differences between proportions were evaluated with chi2 of Fisher exact fest. RESULTS: Overall resistance rates to the antibiotics tested were: 17/97 (17.5% to penicillin, ampicillin, amoxicillin-clavulanate and imipenem. There was neither HLR nor beta-lactamase production; 74/97 (48.4% were resistant to erythromycin; 60% to ciprofloxacin; 31/97 (32% to gentamicin, and 55/97 (56.7% to streptomycin. Seven strains were vancomycin-resistant enterococci (VRE, all of them identified as E. faecium; 5/7 with Van A and 2/7 with Van B phenotypes. All the isolates were susceptible to linezolid. The difference in susceptibility among species was significant. CONCLUSIONS: Mutidrug-resistant enterococci is a real problem and continuous surveillance is necessary. The microbiology laboratory is the first line of defense against the spread of multiantibiotic-resistan enterococci in the hospital environment . All the strains recovered should be tested for susceptibility to ampicillin, streptomycin, gentamicin and glycopeptides.OBJECTIVO: Describir la actividad antimicrobiana de varios antibióticos, contra 97 cepas de Enterococcus spp., consideradas como aislamientos clínicamente significativos. MATERIAL Y MÉTODOS: En un estudio prospectivo de dos años, (enero de 1998

  12. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level.

    Science.gov (United States)

    Smati, Mounira; Clermont, Olivier; Bleibtreu, Alexandre; Fourreau, Frédéric; David, Anthony; Daubié, Anne-Sophie; Hignard, Cécile; Loison, Odile; Picard, Bertrand; Denamur, Erick

    2015-08-01

    The primary habitat of the Escherichia coli species is the gut of warm-blooded vertebrates. The E. coli species is structured into four main phylogenetic groups A, B1, B2, and D. We estimated the relative proportions of these phylogroups in the feces of 137 wild and domesticated animals with various diets living in the Ile de France (Paris) region by real-time PCR. We distinguished three main clusters characterized by a particular abundance of two or more phylogroups within the E. coli animal commensal populations, which we called "enterocolitypes" by analogy with the enterotypes defined in the human gut microbiota at the genus level. These enterocolitypes were characterized by a dominant (>50%) B2, B1, or A phylogroup and were associated with different host species, diets, and habitats: wild and herbivorous species (wild rabbits and deer), domesticated herbivorous species (domesticated rabbits, horses, sheep, and cows), and omnivorous species (boar, pigs, and chickens), respectively. By analyzing retrospectively the data obtained using the same approach from 98 healthy humans living in Ile de France (Smati et al. 2013, Appl. Environ. Microbiol. 79, 5005-5012), we identified a specific human enterocolitype characterized by the dominant and/or exclusive (>90%) presence of phylogroup B2. We then compared B2 strains isolated from animals and humans, and revealed that human and animal strains differ regarding O-type and B2 subgroup. Moreover, two genes, sfa/foc and clbQ, were associated with the exclusive character of strains, observed only in humans. In conclusion, a complex network of interactions exists at several levels (genus and intra-species) within the intestinal microbiota. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Olive anthracnose: a yield- and oil quality-degrading disease caused by several species of Colletotrichum that differ in virulence, host preference and geographical distribution.

    Science.gov (United States)

    Talhinhas, Pedro; Loureiro, Andreia; Oliveira, Helena

    2018-03-08

    Olive anthracnose causes fruit rot leading to its drop or mummification, resulting in yield losses and the degradation of oil quality. The disease is caused by diverse species of Colletotrichum, mostly clustering in the C. acutatum species complex. Colletotrichum nymphaeae and C. godetiae are the prevalent species in the Northern Hemisphere, whereas C. acutatum sensu stricto is the most frequent species in the Southern Hemisphere, although it is recently and quickly emerging in the Northern Hemisphere. The disease has been reported from all continents, but it attains higher incidence and severity in the west of the Mediterranean Basin, where it is endemic in traditional orchards of susceptible cultivars. The pathogens are able to survive on vegetative organs. On the fruit surface, infections remain quiescent until fruit maturity, when typical anthracnose symptoms develop. Under severe epidemics, defoliation and death of branches can also occur. Pathogen species differ in virulence, although this depends on the cultivar. The selection of resistant cultivars depends strongly on pathogen diversity and environmental conditions, posing added difficulties to breeding efforts. Chemical disease control is normally achieved with copper-based fungicides, although this may be insufficient under highly favourable disease conditions and causes concern because of the presence of fungicide residues in the oil. In areas in which the incidence is high, farmers tend to anticipate harvest, with consequences in yield and oil characteristics. Olive production systems, harvest and post-harvest processing have experienced profound changes in recent years, namely new training systems using specific cultivars, new harvest and processing techniques and new organoleptic market requests. Changes are also occurring in both the geographical distribution of pathogen populations and the taxonomic framework. In addition, stricter rules concerning pesticide use are likely to have a strong impact

  14. West Nile virus infection in American singer canaries: An experimental model in a highly susceptible avian species

    Science.gov (United States)

    Hofmeister, Erik K.; Lund, Melissa; Shearn-Bochsler, Valerie I.

    2018-01-01

    This study investigated the susceptibility of American singer canaries (Serinus canaria) to West Nile virus (WNV) infection. Adult canaries were inoculated with 105, 102, and 101plaque forming units (PFU) of WNV. All birds became infected and mortality occurred by 5 days postinoculation. The load of viral RNA as determined by RT-qPCR was dose dependent, and was higher at all doses than the level of viral RNA detected in American crows (Corvus brachyrhynchos) challenged with 105 PFU of WNV. In a subset of birds, viremia was detected by virus isolation; canaries inoculated with 101 PFU of WNV developed viremia exceeding 1010 PFU/mL serum, a log higher than American crows inoculated with 105 PFU of virus. In canaries euthanized at 3 days postinoculation, WNV was isolated at >107 PFU of virus/100 mg of lung, liver, heart, spleen, and kidney tissues. Pallor of the liver and splenomegaly were the most common macroscopic observations and histologic lesions were most severe in liver, spleen, and kidney, particularly in canaries challenged with 102 and 101 PFU. Immunoreactivity to WNV was pronounced in the liver and spleen. IgG antibodies to WNV were detected in serum by enzyme immunoassay in 11 of 21 (52%) challenged canaries and, in 4 of 5 (20%) of these sera, neutralization antibodies were detected at a titer ≥ 1:20. American singer canaries provide a useful model as this bird species is highly susceptible to WNV infection.

  15. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    Directory of Open Access Journals (Sweden)

    Ketseoglou Irene

    2012-10-01

    Full Text Available Abstract Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus An. arabiensis An. gambiae An. quadriannulatus, where 50. The LC50 of PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent.

  16. New species and host plants of Anastrepha (Diptera: Tephritidae) primarily from Peru and Bolivia

    Science.gov (United States)

    Twenty-eight new species of Anastrepha are described and illustrated: A. acca (Bolivia, Peru), A. adami (Peru), A. amplidentata (Bolivia, Peru), A. annonae (Peru), A. breviapex (Peru), A. caballeroi (Peru), A. camba (Bolivia, Peru), A. cicra (Bolivia, Peru), A. disjuncta (Peru), A. durantae (Peru), ...

  17. Temporal effects on host-parasite associations in four naturalized goby species living in sympatry

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Valová, Zdenka; Hudcová, Iveta; Michálková, Veronika; Šimková, A.; Borcherding, J.; Jurajda, Pavel

    2015-01-01

    Roč. 746, č. 1 (2015), s. 233-243 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Fish * Gobiidae * Non-native species * Parasite * Rhine Subject RIV: EG - Zoology Impact factor: 2.051, year: 2015

  18. Impact of curly top host plants on accumulation, competitiveness, and durability of curtovirus species.

    Science.gov (United States)

    Curly top disease, caused by viruses in the genus, Curtovirus, has affected sugarbeet production throughout much of the West for over a century; however, over that period the viruses responsible for causing the disease have changed. The two curly top virus species currently affecting production, Bee...

  19. Foot and mouth disease virus in different host species; the effect of vaccination on transmission

    NARCIS (Netherlands)

    Orsel, K.

    2007-01-01

    Foot and mouth disease (FMD) is a contagious disease, affecting important livestock species like cattle, sheep and pigs. Therefore, FMD is listed as a notifiable disease to the Office International des Epizooties. The outbreaks of FMD in Europe in 2001 triggered the discussion about the use of

  20. Investigation of susceptibility of Staphylococcus species to some antibacterial drugs by disk diffusion and broth microdilution

    Directory of Open Access Journals (Sweden)

    Ašanin Jelena

    2012-01-01

    Full Text Available The objective of this work was to identify isolated Staphylococcus species and to investigate their sensitivity to some antibacterial drugs. The material used for these investigations were Staphylococcus isolates originating from milk samples. A total of 25 strains of Staphylococcus isolates were examined, including 24 from milk samples from cows with mastitis, and one strain was isolated from a milk sample from a cow following treatment for mastitis. For primary identification, catalase and oxidase tests were used, as well as the free coagulase test. Following the preliminary tests, the isolated strains were identified using commercial systems ID32 STAPH (bioMérieux, France and the BBL Crystal Gram-Positive ID Kit (Becton Dickinson, USA according to the enclosed instructions. The Staphylococcus isolates were examined for sensitivity to the following: oxacillin, penicillin, cefoxitin, gentamicin, erythromycin, chloramphenicol, tetracycline, ciprofloxacin, sulfametoxazol/trimetoprim, and vacomycin using the disk diffusion method and the broth microdilution method as recommended by the Clinical and Laboratory Strandards Institute - CLSI(2003, and the results were interpreted according to CLSI recommendations from 2008 and 2010. Antibiogram disks manufactured by Becton Dickinson (USA were used, and the broth microdilution method was applied using pure antibiotic substances from different manufacturers: erythromycin, chloramphenicol, cefoxitin, gentamicin, oxacillin, tetracycline (Sigma Aldrich, USA, sulfametoxazol (Fluka, USA, penicillin (Calbiochem, Germany, vancomycin (Abbott laboratories, USA, ciprofloxacin and trimetoprim (Zdravlje A.D., Serbia. All 25 strains were catalase positive and oxidase negative. Of the 25 strains, 19 were coagulase positive and 6 were coagulase negative.With the implementation of the disk diffusion method on 19 strains of S. aureus, 17 were established to be resistant to penicillin (89.5%, and 2 strains to gentamicin

  1. Historical biogeography among species of Varestrongylus lungworms (Nematoda: Protostrongylidae) in ungulates: episodic expansion and host colonization linking Eurasia and North America.

    Science.gov (United States)

    Verocai, Guilherme G; Kutz, Susan J; Hoberg, Eric P

    2018-05-03

    Varestrongylus lungworms (Nematoda: Protostrongylidae) include 10 nominal species that parasitize wild and domesticated artiodactyles. Eight species are endemic to the western Palearctic and Eurasia, whereas two are limited in distribution to the Nearctic. Complex host associations, primarily among Cervidae and Bovidae (Caprinae), and biogeography were explored based on direct comparisons of parasite and host phylogenies to reveal the historical development of this fauna. Diversification among Varestrongylus species has an intricate history extending over the Pliocene and Quaternary involving episodic processes for geographic and host colonization: (1) Varestrongylus has origins in Eurasia with independent expansion events into bordering ecozones; (2) cervids are ancestral hosts; (3) the caprine-associated V. pneumonicus is basal and a result of an independent host colonization event; (4) secondary diversification, linked to sequential and independent host colonization events, occurred within cervids (V. sagittatus + V. tuvae; V. alpenae; and V. capreoli, V. alces + V. eleguneniensis); (5) at least two additional host colonization events into caprines occurred, followed or not by diversification (V. qinghaiensis + V. longispiculatus; V. capricola, respectively); (6) two independent events of geographic expansion into North America from Eurasia with cervids in the late Pliocene and early Pleistocene are postulated (V. alpenae, V. eleguneniensis). Comparisons based on phylogenetic hypotheses derived from comparative morphology and molecular inference for these nematodes are consistent with the postulated history for coevolutionary and biogeographic history. Episodes of geographic and host colonization, often in relation to rapid shifts in climate and habitat perturbation, have dominated the history of diversification of Varestrongylus.

  2. Effects of Population Density and Host Availability on The Migration Process of Brown Planthopper Fed Using Susceptible and Resistant Rice Varieties

    Directory of Open Access Journals (Sweden)

    Imam Habibi

    2016-12-01

    Full Text Available Brown planthopper, Nilaparvata lugens Stal. (Hemiptera: Delphacidae, is an important pest of rice. This pest can cause hopperburn and field failure. This research aimed to determine the effects of population density and host availability on migration of N. lugens. The criteria used to justify the effects of host availability and population density on migration of N. lugens were based the hardness and tannin tests of the rice stems, fecundity of N. lugens, and the life cycle of N. lugens. The research was conducted under the temperature of 29.42°C with relative humidity of 61% and Light 12: Dark 12 times, using ten pairs of N. lugens brachypterous (F0 constant and then was added with five male adults on fifth days after the first infestation (F0 changed. The varieties used were IR64, as a resistant variety, and Ketan Lusi, as a susceptible variety. The results showed that the adding of the macropterous males did not affect the number of macropterous, because of that has been preplanned by the F0. Therefore, the percentage of existing macropterous was 51−52%.   INTISARI   Wereng Batang Cokelat (WBC merupakan salah satu hama tanaman padi yang sangat penting. Kerusakan parah dapat menyebabkan hopperburn dan puso (gagal panen. Tujuan penelitian ini adalah mengetahui pengaruh kepadatan populasi dan tanaman inang sebagai tempat migrasi WBC. Parameter yang dikaji untuk mengetahui pengaruh kepadatan populasi WBC dan tanaman inang tempat migrasi WBC berdasarkan tingkat kekerasan dan kandungan tanin batang tanaman padi, fekunditas WBC, dan siklus hidup WBC. Penelitian ini dilakukan pada temperatur 29.42˚C dengan kelembapan relatif 61% dan durasi siang hari 12 jam: durasi malam hari 12 jam. Metode yang dilakukan adalah dengan menggunakan 10 pasang imago WBC brakhiptera (F0 konstan, kemudian dilakukan penambahan 5 ekor imago jantan pada hari kelima setelah infestasi awal (F0 diubah. Varietas padi yang digunakan yaitu padi varietas IR64 sebagai varietas

  3. Leishmaniasis in the major endemic region of Plurinational State of Bolivia: Species identification, phylogeography and drug susceptibility implications.

    Science.gov (United States)

    Bilbao-Ramos, Pablo; Dea-Ayuela, M Auxiliadora; Cardenas-Alegría, Oscar; Salamanca, Efraín; Santalla-Vargas, José Antonio; Benito, Cesar; Flores, Ninoska; Bolás-Fernández, Francisco

    2017-12-01

    The Plurinational State of Bolivia is one of the Latin American countries with the highest prevalence of leishmaniasis, highlighting the lowlands of the Department of La Paz where about 50% of the total cases were reported. The control of the disease can be seriously compromised by the intrinsic variability of the circulating species that may limit the efficacy of treatment while favoring the emergence of resistance. Fifty-five isolates of Leishmania from cutaneous and mucocutaneous lesions from patients living in different provinces of the Department of La Paz were tested. Molecular characterization of isolates was carried out by 3 classical markers: the rRNA internal transcribed spacer 1 (ITS-1), the heat shock protein 70 (HSP70) and the mitochondrial cytochrome b (Cyt-b). These markers were amplified by PCR and their products digested by the restriction endonuclease enzymes AseI and HaeIII followed by subsequent sequencing of Cyt-b gene and ITS-1 region for subsequent phylogenetic analysis. The combined use of these 3 markers allowed us to assign 36 isolates (65.5%) to the complex Leishmania (Viannia) braziliensis, 4 isolates (7, 27%) to L. (Viannia) lainsoni. and the remaining 15 isolates (23.7%) to a local variant of L. (Leishmania) mexicana. Concerning in vitro drug susceptibility the amastigotes from all isolates where highly sensitive to Fungizone ® (mean IC 50 between 0.23 and 0.5μg/mL) whereas against Glucantime ® the sensitivity was moderate (mean IC 50 ranging from 50.84μg/mL for L. (V.) braziliensis to 18.23μg/mL for L. (L.) mexicana. L. (V.) lainsoni was not sensitive to Glucantime ® . The susceptibility to miltefosine was highly variable among species isolates, being L. (L.) mexicana the most sensitive, followed by L. (V.) braziliensis and L. (V.) lainsoni (mean IC 50 of 8.24μg/mL, 17.85μg/mL and 23.28μg/mL, respectively). Copyright © 2017. Published by Elsevier B.V.

  4. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  5. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  6. Antifungal susceptibility testing of Aspergillus species complex in the Clinical Laboratory: how to do it, when to do it, and how to interpret it

    Directory of Open Access Journals (Sweden)

    Esther Manso

    2014-12-01

    Full Text Available The emergence of drug resistance in fungal pathogens has a profound impact on human health given limited number of antifungal drugs. Antifungal resistance in Aspergillus spp. infection can be encountered in the antifungal drug-exposed patient due to selection of intrinsically resistant species or isolates with acquired resistance belonging to species that are normally susceptible. Resistance to triazoles is not common in Aspergillus spp., however, triazole resistance in A. fumigatus appears to be increasing in several European countries in recent years and can be clinically relevant. The Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing have developed breakpoints and epidemiological cutoff values that are now established for Aspergillus spp. Clinical microbiology laboratories will be employed commercial susceptibility assays, rather than reference broth microdilution methods and comparative studies are particularly important.

  7. Geographic distribution and host plants of Raoiella indica and associated mite species in northern Venezuela.

    Science.gov (United States)

    Vásquez, Carlos; de Moraes, Gilberto J

    2013-05-01

    The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive pest in the New World, where it is currently considered a serious threat to coconut and banana crops. It was first reported from northern Venezuela in 2007. To determine its current distribution in this country, surveys were carried out from October 2008 to April 2010 on coconut (Cocos nucifera L.), banana (Musa spp.), ornamental plants and weeds in northern Venezuela. Higher population levels of RPM were registered on commercial coconut farms in Falcón and Sucre states but also on other plant species naturally growing along the coastal line in Anzoategui, Aragua, Carabobo, Monagas and Nueva Esparta states. Out of 34 botanical species evaluated, all RPM stages were observed only on eight arecaceous, one musaceous and one streliziaceous species, indicating that the pest developed and reproduced only on these plants. Mite specimens found on weeds were considered spurious events, as immature stages of the pest were never found on these. Amblyseius largoensis (Muma) (Acari: Phytoseiidae) was the most frequent predatory mite associated with RPM in all sampling sites. The results indicate that RPM has spread to extensive areas of northern Venezuela since its initial detection in Güiria, Sucre state. Considering the report of this pest mite in northern Brazil in the late 2009, additional samplings in southern Venezuela should be carried out, to evaluate the possible presence of RPM also in that region.

  8. Differential precocious sexual development of Proctoeces lintoni (Digenea: Fellodistomidae) in three sympatric species of keyhole limpets Fissurella spp. may affect transmission to the final host.

    Science.gov (United States)

    Balboa, L; George-Nascimento, M; Ojeda, F P

    2001-10-01

    The prevalence, abundance, and developmental status of the digenetic trematode Proctoeces lintoni Siddiqui et Cable 1960 were compared in 3 species of keyhole limpets Fissurella. A total of 197 limpets was collected at Caleta Chome, south-central Chile. Fissurella picta and F. costata had the highest prevalence of infection, whereas F. picta showed the greatest abundance of parasites, which increased with host shell length. However, the frequency of P. lintoni specimens with eggs in the uterus was greatest in F. costata. These results suggest that an increased rate of development of a parasite in the intermediate host may shorten the residence time necessary for maturation in the final host. Thus, faster development of the parasite in F. costata suggests the possibility that the parasites transmitted through this host species have shorter maturation times in clingfishes than individuals transmitted via other limpet species.

  9. The ethnobotanical, phytochemical and mineral analyses of phragmanthera incana (klotzsch), a species of mistletoe growing on three plant hosts in South-Western Nigeria.

    Science.gov (United States)

    Ogunmefun, O T; Fasola, T R; Saba, A B; Oridupa, O A

    2013-03-01

    Mistletoe is collected wildly on various plants and Phragmanthera incana is noted to grow on different plant hosts. This study was designed to carry out the ethnobotanical survey, phytochemical and mineral analyses of Phragmanthera incana, a species of mistletoe growing on three plant hosts namely Cocoa (Theobroma cacao), Kolanut (Cola nitida) and Bush mango (Irvingia gabonensis). Mistletoe samples were identified at the Forestry Research Institute of Nigeria Herbarium. Phragmanthera incana was screened for its phytochemical constituents and mineral cations along its hosts following standard methods and to confirm if the mistletoe species is host specific. The powdered samples of the mistletoe species (Phragmanthera incana) was used for both the phytochemical screening and the cation mineral analysis. The uses and the harvesting methods of mistletoe were also reviewed extensively in this paper.

  10. Species distribution and antifungal susceptibility patterns of Candida isolates from a public tertiary teaching hospital in the Eastern Cape Province, South Africa.

    Science.gov (United States)

    Mnge, P; Okeleye, B I; Vasaikar, S D; Apalata, T

    2017-05-15

    Candida species are the leading cause of invasive fungal infections, and over the past decade there has been an increased isolation of drug resistant Candida species. This study aimed to identify the species distribution of Candida isolates and to determine their unique antifungal susceptibility and resistance patterns. During a cross-sectional study, 209 Candida isolates (recovered from 206 clinical samples) were collected and their species distribution was determined using ChromAgar Candida. The Vitek-2 system (Biomerieux, South Africa) was used to determine minimum inhibitory concentrations (MICs) to azoles (fluconazole, voriconazole), echinocandins (caspofungin, micafungin), polyenes (amphotericin B) and flucytosine. Four species of Candida were isolated, of which C. albicans was the most frequent, isolated in 45.4% (95/209) of the isolates, followed by C. glabrata: 31.1% (65/209). The MICs of the different antifungal drugs varied amongst the species of Candida. From the 130 isolates tested for MICs, 90.77% (112/130) were susceptible to all antifungal drugs and 6.9% (9/130) of the isolates were multi-drug resistant. C. dubliniensis (n=2) isolates were susceptible to all the above mentioned antifungal drugs. There was no significant difference in species distribution amongst clinical specimens and between patients' genders (P>0.05). An increase in MIC values for fluconazole and flucytosine towards the resistance range was observed. To our knowledge, this is the first report on surveillance of Candida species distribution and antifungal susceptibility at a public tertiary teaching hospital in Eastern Cape, South Africa.

  11. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis.

    NARCIS (Netherlands)

    Hamza, O.J.M.; Matee, M.I.N.; Moshi, M.J.; Simon, E.N.; Mugusi, F.; Mikx, F.H.M.; Palenstein Helderman, W.H. van; Rijs, A.J.M.M.; Ven, A.J.A.M. van der; Verweij, P.E.

    2008-01-01

    BACKGROUND: In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. METHODS: A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients

  12. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Directory of Open Access Journals (Sweden)

    Jennifer H Wilson-Welder

    2016-07-01

    Full Text Available Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2 was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of

  13. Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: Application in an urban stream in China

    International Nuclear Information System (INIS)

    Li, Huizhen; Sun, Baoquan; Chen, Xin; Lydy, Michael J.; You, Jing

    2013-01-01

    Sediments collected from an urban creek in China exhibited high acute toxicity to Hyalella azteca with 81.3% of sediments being toxic. A toxic unit (TU) estimation demonstrated that the pyrethroid, cypermethrin, was the major contributor to toxicity. The traditional TU approach, however, overestimated the toxicity. Reduced bioavailability of sediment-associated cypermethrin due to sequestration explained the overestimation. Additionally, antagonism among multiple contaminants and species susceptibility to various contaminants also contributed to the unexpectedly low toxicity to H. azteca. Bioavailable TUs derived from the bioavailability-based approaches, Tenax extraction and matrix-solid phase microextraction (matrix-SPME), showed better correlations with the noted toxicity compared to traditional TUs. As the first successful attempt to use matrix-SPME for estimating toxicity caused by emerging insecticides in field sediment, the present study found freely dissolved cypermethrin concentrations significantly improved the prediction of sediment toxicity to H. azteca compared to organic carbon normalized and Tenax extractable concentrations. Highlights: •Over 80% sediments from an urban stream in China were acutely toxic to H. azteca. •Toxic unit analysis showed cypermethrin was the major contributor to toxicity. •The traditional toxic unit approach overestimated sediment toxicity. •Reduced bioavailability was the reason for overestimating sediment toxicity. •Freely dissolved cypermethrin concentrations greatly improved toxicity prediction. -- Field sediment toxicity caused by current-use pesticides could be more accurately evaluated by incorporating bioavailability measurements into the toxic unit analysis

  14. Exploration of bacterial species associated with the salivary microbiome of individuals with a low susceptibility to dental caries.

    Science.gov (United States)

    Yasunaga, Haruna; Takeshita, Toru; Shibata, Yukie; Furuta, Michiko; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Takahashi, Ichiro; Yamashita, Yoshihisa

    2017-11-01

    Dental caries is caused by acidogenic plaque microbiota formed on saliva-bathed tooth surfaces, in which multiple organisms act collectively to initiate and expand a cavity. We explored bacterial species associated with the salivary microbiome of individuals with low susceptibility to dental caries. The bacterial composition of saliva from 19 young adults was analyzed using barcoded pyrosequencing of the 16S rRNA gene; we compared 10 caries-experienced (CE) and nine caries-free (CF) individuals. A quantitative PCR assay of saliva from 139 orally healthy adults aged 40-59 years was carried out to confirm the result obtained by pyrosequencing analysis. The microbiomes of CF individuals showed more diverse communities with a significantly greater proportion of the genus Porphyromonas. Among operational taxonomic units (OTUs) corresponding to the genus Porphyromonas, the OTU corresponding to P. pasteri was the most predominant and its relative abundance in CF individuals was significantly greater than in CE individuals (P oral microbiome against dental caries.

  15. Chrysomelids American diabroticines Hosts and natural enemies. Biology-feasibility for control of pest species (Crisomelidos Diabroticinos americanos Hospederos y enemigos naturales Biologia y factibili manejo especies plagas

    Science.gov (United States)

    The chrysomelids in the Diabroticites include some of the most important pest species of the American continent. The chemical and management techniques used to date to control them are: crop rotation to prevent re-infection of host crops, especially in the species that display an egg diapause; insec...

  16. New species of the family Triozidae (Homoptera: Psylloidea) from China, and the first record of Psylloidea as host of Braconidae (Hymenoptera)

    NARCIS (Netherlands)

    Li, F.; Achterberg, van C.; He, J.

    2000-01-01

    Two new species of Triozidae (Psylloidea) from China producing sphere-shaped leaf galls on Ficus hainanensis Merr. & Shun., are illustrated and described. For the first time Psylloidea are reported as host of a species of Braconidae. The parasitoid belonging to the genus Bracon Fabricius, 1804, is

  17. The phylogeny and life cycle of two species of Profilicollis (Acanthocephala: Polymorphidae) in marine hosts off the Pacific coast of Chile.

    Science.gov (United States)

    Rodríguez, S M; D'Elía, G; Valdivia, N

    2017-09-01

    Resolving complex life cycles of parasites is a major goal of parasitological research. The aim of this study was to analyse the life cycle of two species of the genus Profilicollis, the taxonomy of which is still unstable and life cycles unclear. We extracted individuals of Profilicollis from two species of crustaceans (intermediate hosts) and four species of seagulls (definitive hosts) from sandy-shore and estuarine habitats along the south-east Pacific coast of Chile. Mitochondrial DNA analyses showed that two species of Profilicollis infected intermediate hosts from segregated habitats: while P. altmani larvae infected exclusively molecrabs of the genus Emerita from fully marine habitats, P. antarcticus larvae infected the crab Hemigrapsus crenulatus from estuarine habitats. Moreover, P. altmani completed its life cycle in four seagulls, Chroicocephalus maculipennis, Leucopheus pipixcan, Larus modestus and L. dominicanus, while P. antarcticus, on the other hand, completed its life cycle in the kelp gull L. dominicanus. Accordingly, our results show that two congeneric parasites use different and spatially segregated species as intermediate hosts, and both are capable of infecting one species of definitive hosts. As such, our analyses allow us to shed light on a complex interaction network.

  18. Geography and host species shape the evolutionary dynamics of U genogroup infectious hematopoietic necrosis virus

    Science.gov (United States)

    Black, Allison; Breyta, Rachel; Bedford, Trevor; Kurath, Gael

    2016-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a negative-sense RNA virus that infects wild and cultured salmonids throughout the Pacific Coastal United States and Canada, from California to Alaska. Although infection of adult fish is usually asymptomatic, juvenile infections can result in high mortality events that impact salmon hatchery programs and commercial aquaculture. We used epidemiological case data and genetic sequence data from a 303 nt portion of the viral glycoprotein gene to study the evolutionary dynamics of U genogroup IHNV in the Pacific Northwestern United States from 1971 to 2013. We identified 114 unique genotypes among 1,219 U genogroup IHNV isolates representing 619 virus detection events. We found evidence for two previously unidentified, broad subgroups within the U genogroup, which we designated ‘UC’ and ‘UP’. Epidemiologic records indicated that UP viruses were detected more frequently in sockeye salmon (Oncorhynchus nerka) and in coastal waters of Washington and Oregon, whereas UC viruses were detected primarily in Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, which is a large, complex watershed extending throughout much of interior Washington, Oregon, and Idaho. These findings were supported by phylogenetic analysis and by FST. Ancestral state reconstruction indicated that early UC viruses in the Columbia River Basin initially infected sockeye salmon but then emerged via host shifts into Chinook salmon and steelhead trout sometime during the 1980s. We postulate that the development of these subgroups within U genogroup was driven by selection pressure for viral adaptation to Chinook salmon and steelhead trout within the Columbia River Basin.

  19. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms.

    Science.gov (United States)

    Cataldi, Valentina; Di Campli, Emanuela; Fazii, Paolo; Traini, Tonino; Cellini, Luigina; Di Giulio, Mara

    2017-08-01

    Candida species are regular commensal in humans, but-especially in immunocompromised patients-they represent opportunistic pathogens giving rise to systemic infection. The aim of the present work was to isolate and characterize for their antifungal profile Candida species from different body sites and to analyze the biofilms produced by C. albicans and C. glabrata isolates. Eighty-one strains of Candida species from 77 patients were identified. Epidemiological study showed that the most isolated species were C. albicans (44), C. glabrata (13) and C. parapsilosis (13) mainly from Hematology, Infectious Diseases, Medicine, Neonatology and Oncology Divisions, the majority of the biological samples were swabs (44) and blood cultures (16). The analysis of the biofilm formation was performed at 24 and 48-hours comparing resistant and susceptible strains of C. albicans to resistant and susceptible strains of C. glabrata. Candida albicans has a greater ability to form biofilm compared to C. glabrata, both in the susceptible and resistant strains reaching maturity after 24 hours with a complex structure composed of blastospores, pseudohyphae, and hyphae embedded in a matrix. On the contrary, C. glabrata biofilm was composed exclusively of blastospores that in the resistant strain, after 24 hours, were organized in a compact multilayer different to the discontinuous structure observed in the susceptible analyzed strains. In conclusion, the increasing of the incidence of Candida species infection together with their emerging drug resistance also related to the biofilm forming capability underline the need to monitor their distribution and susceptibility patterns for improving the surveillance and for a correct management of the infection. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?

    Directory of Open Access Journals (Sweden)

    St Leger Judy

    2007-11-01

    Full Text Available Abstract Background Leptospirosis is a zoonotic disease infecting a broad range of mammalian hosts, and is re-emerging globally. California sea lions (Zalophus californianus have experienced recurrent outbreaks of leptospirosis since 1970, but it is unknown whether the pathogen persists in the sea lion population or is introduced repeatedly from external reservoirs. Methods We analyzed serum samples collected over an 11-year period from 1344 California sea lions that stranded alive on the California coast, using the microscopic agglutination test (MAT for antibodies to Leptospira interrogans serovar Pomona. We evaluated seroprevalence among yearlings as a measure of incidence in the population, and characterized antibody persistence times based on temporal changes in the distribution of titer scores. We conducted multinomial logistic regression to determine individual risk factors for seropositivity with high and low titers. Results The serosurvey revealed cyclical patterns in seroprevalence to L. interrogans serovar Pomona, with 4–5 year periodicity and peak seroprevalence above 50%. Seroprevalence in yearling sea lions was an accurate index of exposure among all age classses, and indicated on-going exposure to leptospires in non-outbreak years. Analysis of titer decay rates showed that some individuals probably maintain high titers for more than a year following exposure. Conclusion This study presents results of an unprecedented long-term serosurveillance program in marine mammals. Our results suggest that leptospirosis is endemic in California sea lions, but also causes periodic epidemics of acute disease. The findings call into question the classical dichotomy between maintenance hosts of leptospirosis, which experience chronic but largely asymptomatic infections, and accidental hosts, which suffer acute illness or death as a result of disease spillover from reservoir species.

  1. Two new species of Rhabdias (Nematoda: Rhabditida: Rhabdiasidae) in anuran hosts from Dehradun (Uttarakhand), India.

    Science.gov (United States)

    Rizvi, Anjum N; Bursey, Charles R; Bhutia, Pasang T

    2013-04-01

    Rhabdias himalayanus n. sp. from the lungs of Duttaphrynus himalayanus and Rhabdias dehradunensis n. sp. from the lungs of Nanorana minica from Dehradun, India are described and figured. Of the 3 previously described Indian species, Rhabdias himalayanus n. sp. is most similar to Rhabdias shortii in having a cylindrical corpus, inflated cuticle, and conical tail; it differs from R. shortii in having greater body measurements, longer esophagus, larger eggs, and a different pattern of cuticle inflation at the vulva and tail region. Rhabdias dehradunensis n. sp. is most similar to Rhabdias bulbicauda in that both possess a swollen posterior end; it differs from R. bulbicauda by having a subterminal anus, a prominent tail, and a postequatorial vulva.

  2. The New World Gibbobruchus Pic (Coleoptera, Chrysomelidae, Bruchinae): description of a new species and phylogenetic insights into the evolution of host associations and biogeography.

    Science.gov (United States)

    Manfio, Daiara; Jorge, Isaac R; Morse, Geoffrey E; Ribeiro-Costa, Cibele S

    2016-04-18

    The seed beetle Gibbobruchus tridentatus Manfio, Jorge & Ribeiro-Costa sp. nov. is described from the Amazon basin in Brazil (Acre) and Ecuador (Napo), and is included in an updated key to the species of Gibbobruchus Pic. This new species and the recently described G. bergamini Manfio & Ribeiro-Costa are incorporated into a phylogenetic reanalysis of the genus and into a comparative analysis of host plant use and biogeography. Species groups previously proposed were supported and the evolutionary history in host plant-use shows Gibbobruchus conserved at tribe level, Cercideae (Caesalpinioideae), with coordination between biogeographic expansion and host genus shifts. Both species, Gibbobruchus tridentatus Manfio, Jorge & Ribeiro-Costa sp. nov. and G. bergamini, were placed within the group scurra (G. tridentatus (G. scurra (G. cavillator+G. bolivianus+G. bergamini))) and supported by one synapomorphy. Additionally, we update geographic distributions and host plant records. Two hosts, Bauhinia argentinensis Burkart and B. tarapotensis Benth. are recorded for the first time as hosts for the genus and for the subfamily.

  3. Assessing the Total Mortality Caused by Two Species of Trichogramma on Its Natural Host Plutella xylostella (L.) at Different Temperatures.

    Science.gov (United States)

    Marchioro, C A; Krechemer, F S; Foerster, L A

    2015-06-01

    Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman & Platner are natural enemies of Plutella xylostella (L.) in Southern Brazil. Laboratory studies to evaluate parasitoids performance under different conditions, such as temperature regimes, are necessary to assess their potential as biocontrol agents of P. xylostella. In most studies involving Trichogramma, parasitism rate is the main parameter used to evaluate parasitoid performance, ignoring that parasitoids can cause egg mortality by feeding on the host content and/or to multiple drilling without laying eggs. This study was conducted to investigate three main issues: how temperature affects T. pretiosum and T.atopovirilia development on eggs of P. xylostella, whether or not these species respond differently to temperature, and how important is the mortality they cause besides parasitism on P. xylostella. Temperature effects (from 10 to 30°C) on development, survival, parasitism rate, mortality, and total mortality caused by T. pretiosum and T. atopovirilia on eggs of P. xylostella were evaluated. Temperature affected the development time, female longevity, parasitism rate, mortality not directly related to parasitoid larval development, and total mortality caused on the host. No significant differences were recorded for the estimated thermal requirements for T. pretiosum and T. atopovirilia. However, the higher mortality caused by T. pretiosum indicates that this parasitoid is the most suitable to be used against P. xylostella. Also, the results suggest that the use of parasitism rate as the only parameter to evaluate the performance of T. pretiosum and T. atopovirilia may underestimate the potential of these parasitoids in regulating pest populations.

  4. Radiation of the red algal parasite Congracilaria babae onto a secondary host species, Hydropuntia sp. (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Ng, Poh-Kheng; Lim, Phaik-Eem; Phang, Siew-Moi

    2014-01-01

    Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene). Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data.

  5. Radiation of the red algal parasite Congracilaria babae onto a secondary host species, Hydropuntia sp. (Gracilariaceae, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Poh-Kheng Ng

    Full Text Available Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene. Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data.

  6. A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production

    DEFF Research Database (Denmark)

    de Vries, R.P.; Burgers, K.; van de Vondervoort, P.J.I

    2004-01-01

    A new species of the group of black aspergilli, Aspergillus vadensis, was analyzed for its potential as a host for homologous and heterologous protein production. Unlike the other black aspergilli, this strain does not acidify the culture medium when nitrate is the nitrogen source and only produces...... very low levels of extracellular proteases, mainly serine metalloproteases. The stability of A. tubingensis feruloyl esterase A (FaeA) was compared upon production in wild-type A. vadensis, A. tubingensis, and an A. niger strain in which the three main protease-encoding genes were disrupted....... The production of FaeA in A. vadensis resulted in larger amounts of intact protein than production in A. tubingensis and was similar to production in an A. niger protease disruptant, confirming in vivo the low proteolytic activity of A. vadensis. The protoplast formation and transformation efficiencies of A...

  7. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran: comparison of colonizing and infecting isolates

    Directory of Open Access Journals (Sweden)

    Parisa Badiee

    2017-11-01

    Full Text Available Abstract Background Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to ten university hospitals in Iran. Methods In totally, 846 Candida species were isolated from more than 4000 clinical samples and identified by the API 20 C AUX system. Antifungal susceptibility testing was performed by broth microdilution method according to CLSI. Results The most frequent Candida species isolated from all patients was Candida albicans (510/846. The epidemiological cutoff value and percentage of wild-type species for amphotericin B and fluconazole in Candida albicans, Candida tropicalis, Candida glabrata and Candida krusei were 0.5 μg/ml (95% and 4 μg/ml (96%; 1 μg/ml (95% and 8 μg/ml (95%; 0.5 μg/ml (99% and 19 μg/ml (98%; and 4 μg/ml (95% and 64 μg/ml (95%, respectively. The MIC90 and epidemiological cutoff values to posaconazole in Candida krusei were 0.5 μg/ml. There were significant differences between infecting and colonizing isolates of Candida tropicalis in MIC 90 values of amphotericin B, and isolates of Candida glabrata in values of amphotericin B, caspofungin, and voriconazole (P < 0.05. Conclusions Our findings suggest that the susceptibility patterns of Candida species (colonizing and infecting isolates in immunocompromised patients are not the same and acquired resistance was seen in some species.

  8. Further evidence for the existence of environmental and host-associated species of coagulase-negative staphylococci in dairy cattle.

    Science.gov (United States)

    De Visscher, Anneleen; Supré, Karlien; Haesebrouck, Freddy; Zadoks, Ruth N; Piessens, Veerle; Van Coillie, Els; Piepers, Sofie; De Vliegher, Sarne

    2014-08-27

    Coagulase-negative staphylococci (CNS) are abundantly present in the dairy farm environment and on bovine skin and mucosae. They are also the most prevalent bacteria causing bovine intramammary infections (IMI). Reservoirs and transmission routes of CNS are not yet fully unraveled. The objectives of this study were to explore the distribution of CNS in parlor-related extramammary niches and to compare it to the distributions of CNS causing IMI in those herds. Niches that were targeted in this study were cows' teat apices, milking machine unit liners, and milker's skin or gloves. Each of the three herds had its own CNS microbiota in those niches. The most prevalent species in the parlor-related extramammary niches were Staphylococcus cohnii, S. fleurettii, and S. equorum in the first, second, and third herd, respectively, whereas S. haemolyticus and S. sciuri were found in all herds. S. cohnii and S. fleurettii, as well as S. haemolyticus, which was present in each herd, were also frequently found in milk samples. By contrast, S. chromogenes, S. simulans, and S. xylosus favored the mammary gland, whereas S. equorum was more common in the parlor-associated niches. Within each herd, species distribution was similar between teat apices and milking machine unit liners. In conclusion, some of the extramammary niches related to the milking process might act as infection sources for IMI-causing CNS. This study provides further evidence that the group of CNS species is comprised of environmental, opportunistic and host-adapted species which differ in ecology. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Laboratory Investigations of African Pouched Rats (Cricetomys gambianus as a Potential Reservoir Host Species for Monkeypox Virus.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s. In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats and this rodent species' competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4 or West African (W-MPXV: n = 4; an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV between 3 and 27 days post infection (p.i. (up to 1X108 pfu/ml, with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.

  10. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    Science.gov (United States)

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  11. Geochemical association of Pu and Am in selected host-phases of contaminated soils from the UK and their susceptibility to chemical and microbiological leaching

    International Nuclear Information System (INIS)

    Kimber, Richard L.; Corkhill, Claire L.; Amos, Sean; Livens, Francis R.; Lloyd, Jonathan R.

    2015-01-01

    Understanding the biogeochemical behaviour and potential mobility of actinides in soils and groundwater is vital for developing remediation and management strategies for radionuclide-contaminated land. Pu is known to have a high Kd in soils and sediments, however remobilization of low concentrations of Pu remains a concern. Here, some of the physicochemical properties of Pu and the co-contaminant, Am, are investigated in contaminated soils from Aldermaston, Berkshire, UK, and the Esk Estuary, Cumbria, UK, to determine their potential mobility. Sequential extraction techniques were used to examine the host-phases of the actinides in these soils and their susceptibility to microbiological leaching was investigated using acidophilic sulphur-oxidising bacteria. Sequential extractions found the majority of 239,240 Pu associated with the highly refractory residual phase in both the Aldermaston (63.8–85.5 %) and Esk Estuary (91.9–94.5%) soils. The 241 Am was distributed across multiple phases including the reducible oxide (26.1–40.0%), organic (45.6–63.6%) and residual fractions (1.9–11.1%). Plutonium proved largely resistant to leaching from microbially-produced sulphuric acid, with a maximum 0.18% leached into solution, although up to 12.5% of the 241 Am was leached under the same conditions. If Pu was present as distinct oxide particles in the soil, then 241 Am, a decay product of Pu, would be expected to be physically retained in the particle. The differences in geochemical association and bioleachability of the two actinides suggest that this is not the case and hence, that significant Pu is not present as distinct particles. These data suggest the majority of Pu in the contaminated soils studied is highly recalcitrant to geochemical changes and is likely to remain immobile over significant time periods, even when challenged with aggressive “bioleaching” bacteria. - Highlights: • Pu in the contaminated soils is associated with the recalcitrant

  12. Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets.

    Science.gov (United States)

    Jamali, Hossein; Paydar, Mohammadjavad; Ismail, Salmah; Looi, Chung Yeng; Wong, Won Fen; Radmehr, Behrad; Abedini, Atefeh

    2015-07-25

    The aim of this study was to investigate the prevalence and characterization of Listeria species and Listeria monocytogenes isolated from raw fish and open-air fish market environments. Eight hundred and sixty two samples including raw fish and fish market environments (samples from workers' hands, workers' knives, containers and work surface) were collected from the open-air fish markets in the Northern region of Iran. Listeria spp. was isolated from 104/488 (21.3%) raw fish and 29/374 (7.8%) of samples from open-air fish market environment. The isolates of Listeria spp. included L. innocua (35.3%), L. monocytogenes (32.3%), L. seeligeri (18%), and L. ivanovii (14.3%). Of the 43 L. monocytogenes isolates, 31 (72.1%), 10 (23.3%) and 2 (4.7%) belonged to serovars 1/2a, 4b, and 1/2b, respectively. The inlA, inlB, inlC, inlJ, actA, hlyA, iap, plcA, and prfA virulence-associated genes were detected in almost all of the L. monocytogenes isolates. The Listeria spp. isolates showed high resistance against tetracycline (23.3%), penicillin G, and cephalothin (each 16.5%). Besides, we observed significant resistance level to tetracycline (27.9%), ampicillin (20.9%), cephalothin, penicillin G, and streptomycin (each 16.3%) in the L. monocytogenes isolates. All of the isolates were susceptible to cefotaxime, gentamicin, kanamycin, and pefloxacin. We found that tetM (25.6%), tetA (23.3%), ampC (14%), and penA (11.6%) were the most prevalent antibiotic resistance genes in the L. monocytogenes isolates. Recovery of potentially pathogenic L. monocytogenes from raw fish and environment of open-air fish market samples in this study is a convincing evidence for the zoonotic potential of listeriosis.

  13. Native trees of the Northeast Argentine: natural hosts of the Cryptococcus neoformans-Cryptococcus gattii species complex.

    Science.gov (United States)

    Cattana, Maria Emilia; Sosa, María de Los Ángeles; Fernández, Mariana; Rojas, Florencia; Mangiaterra, Magdalena; Giusiano, Gustavo

    2014-01-01

    In Argentina, information about epidemiology and environmental distribution of Cryptococcus is scarce. The city of Resistencia borders with Brazil and Paraguay where this fungus is endemic. All these supported the need to investigate the ecology of the genus and the epidemiology of cryptococcosis in this area. The aim was to investigate the presence of species of Cryptococcus neoformans-Cryptococcus gattii complex and their genotypes in trees of the city of Resistencia. One hundred and five trees were sampled by swabbing technique. The isolates were identified using conventional and commercial methods and genotyped by PCR-RFLP (Restriction Fragment Length Polymorphism). Cryptococcus was found in 7 out of the total trees. 6 out of 7 Cryptococcus isolates were identified as C. neoformans and one as C. gattii. C. gattii was isolated from Grevillea robusta. C. neoformans strains were isolated from Tabebuia avellanedae and Peltophorum dubium. Genotyping showed that all C. neoformans belonged to the VNI type and C. gattii belonged to the VGI type. This represents the first study on the ecology of Cryptococcus spp. associated to trees from northeastern Argentina, and the first report describing Grevillea robusta as a host of members of this fungal genus. Another finding is the isolation of C. neoformans from Tabebuia avellanedae and Peltophorum dubium, both tree species native to northeastern Argentina. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    Science.gov (United States)

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Prevalence and antimicrobial susceptibility profile of listeria species from ready-to-eat foods of animal origin in Gondar Town, Ethiopia.

    Science.gov (United States)

    Garedew, Legesse; Taddese, Ayele; Biru, Tigist; Nigatu, Seleshe; Kebede, Elias; Ejo, Mebrat; Fikru, Abraham; Birhanu, Tamiru

    2015-05-12

    Listeriosis, mostly caused by Listeria monocytogenes species, has become a major concern to public health authorities due to its clinical severity and high mortality rate, particularly in high risk groups. Currently, there is limited information regarding the prevalence and antimicrobial susceptibility profiles of listeria species in ready-to-eat foods of animal origin in Gondar town, Ethiopia. The aim of this study was to determine the prevalence and antimicrobial susceptibility pattern of Listeria species isolated from ready-to-eat food of animal origin from public dinning places in Gondar town, Ethiopia. A cross sectional study on ready-toeat foods of animal origin sampled from major supermarkets, butcher shops, pastry shops, restaurants and hotels was carried out. Culture, biochemical and sugar tests were conducted for listeria species identification and disc diffusion test was performed to study the antimicrobial susceptibility profiles of the isolates. Out of 384 food samples examined, 96 (25%) were positive for Listeria species. Listeria monocytogenes was detected in 24 (6.25%) of the samples. Listeria monocytogenes was isolated from cake, raw meat, ice cream, minced beef, fish, unpasteurized milk and pizza in that order from higher to lower rate. Assessment of antimicrobial susceptibility profile of L. monocytogenes revealed the presence of four multi-drug resistant isolates. The higher resistance rate was recorded for penicillin, nalidixic acid, tetracycline and chloramphenicol, in decreasing order. All L. monocytogenes identified in the current study were sensitive to amoxicillin, cephalothin, cloxacillin, sulfamethoxazole, gentamicin and vancomycin. The presence of L. monocytogenes including drug resistant and multidrug resistant isolates in some ready-to-eat food items is an indicator of the presence of public health hazards to the consumer, particularly to the high-risk groups. Hence awareness creation on food safety and implementation of regulations

  16. Species distribution and in vitro fluconazole susceptibility of clinical Candida isolates in a Brazilian tertiary-care hospital over a 3-year period

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Furlaneto

    2011-10-01

    Full Text Available INTRODUCTION: In this study, we aimed at identifying Candida isolates obtained from blood, urine, tracheal secretion, and nail/skin lesions from cases attended at the Hospital Universitário de Londrina over a 3-year period and at evaluating fluconazole susceptibilities of the isolates. METHODS: Candida isolates were identified by polymerase chain reaction (PCR using species-specific forward primers. The in vitro fluconazole susceptibility test was performed according to EUCAST-AFST reference procedure. RESULTS: Isolates were obtained from urine (53.4%, blood cultures (19.2%, tracheal secretion (17.8%, and nail/skin lesions (9.6%. When urine samples were considered, prevalence was similar in women (45.5% and in men (54.5% and was high in the age group >61 years than that in younger ones. For blood samples, prevalence was high in neonates (35% and advanced ages (22.5%. For nail and skin samples, prevalence was higher in women (71.4% than in men (28.6%. Candida albicans was the most frequently isolated in the hospital, but Candida species other than C. albicans accounted for 64% of isolates, including predominantly Candida tropicalis (33.2% and Candida parapsilosis (19.2%. The trend for non-albicans Candida as the predominant species was noted from all clinical specimens, except from urine samples. All Candida isolates were considered susceptible in vitro to fluconazole with the exception of isolates belonging to the intrinsically less-susceptible species C. glabrata. CONCLUSIONS: Non-albicans Candida species were more frequently isolated in the hospital. Fluconazole resistance was a rare finding in our study.

  17. A review of Epipenaeon ingens Nobili, 1906 (Isopoda: Bopyridae) host species and documentation of a new host, Metapenaeopsis stridulans (Alcock, 1905) (Decapoda: Penaeidae)

    Science.gov (United States)

    Rajkumar, M.; Manokaran, S.; Sun, Jun; Trilles, J. P.

    2011-01-01

    We collected 3 596 Metapenaeopsis stridulans (Decapoda: Penaeidae) from the southeast coast of India between January and December 2007. Sixty three specimens (43 females and 18 males) were parasitized by the bopyrid isopod Epipenaeon ingens (Isopoda: Bopyridae). This is the first report of the occurrence of E. ingens in this host; therefore, it was considered as a new host record. The highest level of infestation (3.2%) occurred in October 2007, coincident with observations of gravid females (9). The total prevalence and presence of gravid females were 17.46% and 28%, respectively. Infestation caused a characteristic bulge of the branchial chamber, growth retardation, and degeneration of the sex organs, but had no effect on the host weight.

  18. Are gall midge species (Diptera, Cecidomyiidae host-plant specialists? Espécies de moscas galhadoras (Diptera, Cecidomyiidae são especialistas em plantas hospedeiras?

    Directory of Open Access Journals (Sweden)

    Marco Antonio A. Carneiro

    2009-01-01

    Full Text Available Despite the speciose fauna of gall-inducing insects in the Neotropical region, little is known about their taxonomy. On the other hand, gall morphotypes associated with host species have been extensively used as a surrogate of the inducer species worldwide. This study reviewed the described gall midges and their galls to test the generalization on the use of gall morphotypes as surrogates of gall midge species in the Brazilian fauna. We compiled taxonomic and biological data for 196 gall midge species recorded on 128 host plant species. Ninety two percent of those species were monophagous, inducing galls on a single host plant species, whereas only 5.6% species were oligophagous, inducing galls on more than one congeneric host plant species. Only four species induced galls on more than one host plant genus. We conclude that gall morphotypes associated with information on the host plant species and attacked organs are reliable surrogates of the gall-inducing species.Apesar do elevado número de espécies da fauna de insetos indutores de galhas na região Neotropical, muito pouco espécies foram descritas. Por outro lado, o morfotipo da galha associado com a espécie da planta hospedeira é em todo o mundo amplamente utilizado como um indicador da espécie de inseto indutor. Este estudo revê as espécies de cecidommídeos descritos e suas galhas para verificar a generalização do uso da morfologia da galha como indicador da espécie de cecidomíideo na fauna brasileira. Nós compilamos dados biológicos e taxonômicos de 196 espécies de cecidomiídeos em 128 espécies de plantas no Brasil. Noventa e dois porcento destas espécies foram monófagas, induzindo galhas em uma única espécie de planta hospedeira, enquanto somente 5,6% das espécies foram oligófagas, induzindo galhas em mais de uma espécie de planta do mesmo gênero. Somente quatro espécies induzem galhas em espécies de plantas de gêneros diferentes. Nós concluímos que o morfo

  19. Antibiotic susceptibility of body surface and gut micro flora of two aquatic leech species (Hirudinaria manillensis and Hirudinaria javanica in Malaysia

    Directory of Open Access Journals (Sweden)

    Parimannan Sivachandran

    2013-08-01

    Full Text Available Objective: To elucidate the antibiotic susceptibility of body surface and gut associated microflora of two local aquatic leech species Hirudinaria manillensis and Hirudinaria javanica. Methods: Four commercially available antibiotics (doxycycline, chloramphenicol, tetracycline and ciprofloxacin were used in this study. A total of 13 isolated gut and two surface micro flora from Hirudinaria manillensis and two gut and two surface micro flora from Hirudinaria javanica were tested for their antibiotic susceptibility. Results: Based on the susceptibility, it was observed that all the isolated bacteria were found to be susceptible to at least three of the antibiotics except Microbacterium resistens, Serratia marcescens and Morganella morganii. This study also found that the bacterial species Bacillus fusiformis has displayed resistance against tetracycline and Tsukamurella inchonensis against chloramphenicol. Conclusions: Among all the antibiotics tested, ciprofloxacin was found to be the best bactericidal agent. The immersion of leeches in ciprofloxacin before the application to the patient may be beneficial to prevent invasive infection of the patient. Further study is needed to sterilize the live leech by immersion/oral mode of administration for the tested antibiotics.

  20. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    Science.gov (United States)

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  1. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran: comparison of colonizing and infecting isolates.

    Science.gov (United States)

    Badiee, Parisa; Badali, Hamid; Boekhout, Teun; Diba, Kambiz; Moghadam, Abdolkarim Ghadimi; Hossaini Nasab, Ali; Jafarian, Hadis; Mohammadi, Rasoul; Mirhendi, Hossein; Najafzadeh, Mohammad Javad; Shamsizadeh, Ahmad; Soltani, Jafar

    2017-11-21

    Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to ten university hospitals in Iran. In totally, 846 Candida species were isolated from more than 4000 clinical samples and identified by the API 20 C AUX system. Antifungal susceptibility testing was performed by broth microdilution method according to CLSI. The most frequent Candida species isolated from all patients was Candida albicans (510/846). The epidemiological cutoff value and percentage of wild-type species for amphotericin B and fluconazole in Candida albicans, Candida tropicalis, Candida glabrata and Candida krusei were 0.5 μg/ml (95%) and 4 μg/ml (96%); 1 μg/ml (95%) and 8 μg/ml (95%); 0.5 μg/ml (99%) and 19 μg/ml (98%); and 4 μg/ml (95%) and 64 μg/ml (95%), respectively. The MIC90 and epidemiological cutoff values to posaconazole in Candida krusei were 0.5 μg/ml. There were significant differences between infecting and colonizing isolates of Candida tropicalis in MIC 90 values of amphotericin B, and isolates of Candida glabrata in values of amphotericin B, caspofungin, and voriconazole (P Candida species (colonizing and infecting isolates) in immunocompromised patients are not the same and acquired resistance was seen in some species.

  2. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia.

    Science.gov (United States)

    Olival, Kevin J; Dick, Carl W; Simmons, Nancy B; Morales, Juan Carlos; Melnick, Don J; Dittmar, Katharina; Perkins, Susan L; Daszak, Peter; Desalle, Rob

    2013-08-08

    Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date. We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities. All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure. The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus

  3. Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization.

    Science.gov (United States)

    Lewandowski, Mariusz; Skoracka, Anna; Szydło, Wiktoria; Kozak, Marcin; Druciarek, Tobiasz; Griffiths, Don A

    2014-08-01

    Eriophyoid species belonging to the genus Trisetacus are economically important as pests of conifers. A narrow host specialization to conifers and some unique morphological characteristics have made these mites interesting subjects for scientific inquiry. In this study, we assessed morphological and genetic variation of seven Trisetacus species originating from six coniferous hosts in Poland by morphometric analysis and molecular sequencing of the mitochondrial cytochrome oxidase subunit I gene and the nuclear D2 region of 28S rDNA. The results confirmed the monophyly of the genus Trisetacus as well as the monophyly of five of the seven species studied. Both DNA sequences were effective in discriminating between six of the seven species tested. Host-dependent genetic and morphological variation in T. silvestris and T. relocatus, and habitat-dependent genetic and morphological variation in T. juniperinus were detected, suggesting the existence of races or even distinct species within these Trisetacus taxa. This is the first molecular phylogenetic analysis of the Trisetacus species. The findings presented here will stimulate further investigations on the evolutionary relationships of Trisetacus as well as the entire Phytoptidae family.

  4. Species-Specific and Drug-Specific Differences in Susceptibility of Candida Biofilms to Echinocandins: Characterization of Less Common Bloodstream Isolates

    Science.gov (United States)

    Simitsopoulou, Maria; Peshkova, Pavla; Tasina, Efthymia; Katragkou, Aspasia; Kyrpitzi, Daniela; Velegraki, Aristea; Walsh, Thomas J.

    2013-01-01

    Candida species other than Candida albicans are increasingly recognized as causes of biofilm-associated infections. This is a comprehensive study that compared the in vitro activities of all three echinocandins against biofilms formed by different common and infrequently identified Candida isolates. We determined the activities of anidulafungin (ANID), caspofungin (CAS), and micafungin (MFG) against planktonic cells and biofilms of bloodstream isolates of C. albicans (15 strains), Candida parapsilosis (6 strains), Candida lusitaniae (16 strains), Candida guilliermondii (5 strains), and Candida krusei (12 strains) by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. Planktonic and biofilm MICs were defined as ≥50% fungal damage. Planktonic cells of all Candida species were susceptible to the three echinocandins, with MICs of ≤1 mg/liter. By comparison, differences in the MIC profiles of biofilms in response to echinocandins existed among the Candida species. Thus, C. lusitaniae and C. guilliermondii biofilms were highly recalcitrant to all echinocandins, with MICs of ≥32 mg/liter. In contrast, the MICs of all three echinocandins for C. albicans and C. krusei biofilms were relatively low (MICs ≤ 1 mg/liter). While echinocandins exhibited generally high MICs against C. parapsilosis biofilms, MFG exhibited the lowest MICs against these isolates (4 mg/liter). A paradoxical growth effect was observed with CAS concentrations ranging from 8 to 64 mg/liter against C. albicans and C. parapsilosis biofilms but not against C. krusei, C. lusitaniae, or C. guilliermondii. While non-albicans Candida planktonic cells were susceptible to all echinocandins, there were drug- and species-specific differences in susceptibility among biofilms of the various Candida species, with C. lusitaniae and C. guilliermondii exhibiting profiles of high MICs of the three echinocandins. PMID:23529739

  5. Role of dung beetle feeding mechanisms in limiting the suitability of species as hosts for the nematode Spirocerca lupi

    DEFF Research Database (Denmark)

    du Toit, C. A.; Holter, P.; Lutermann, H.

    2012-01-01

    Various species of dung beetle serve as intermediate hosts after ingesting the embryonated eggs (1115 x 3037 mu m) of Spirocerca lupi (Spirurida: Spirocercidae) in dog faeces. The feeding mechanisms of coprophagous dung beetles restrict the size of the food particles they can ingest and hence may...

  6. Laboratory investigations of African Pouched Rats (Cricetomys gambianus) as a potential reservoir host species for Monkeypox Virus

    Science.gov (United States)

    Hutson, Christina L.; Nakazawa, Yoshinori J.; Self, Joshua; Olson, Victoria A.; Regnery, Russell L.; Braden, Zachary; Weiss, Sonja; Malekani, Jean; Jackson, Eddie; Tate, Mallory; Karem, Kevin L.; Rocke, Tonie E.; Osorio, Jorge E.; Damon, Inger K.; Carroll, Darin S.

    2015-01-01

    Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species’ competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.

  7. Disentangling Peronospora on Papaver: Phylogenetics, Taxonomy, Nomenclature and Host Range of Downy Mildew of Opium Poppy (Papaver somniferum) and Related Species

    Science.gov (United States)

    Voglmayr, Hermann; Montes-Borrego, Miguel; Landa, Blanca B.

    2014-01-01

    Based on sequence data from ITS rDNA, cox1 and cox2, six Peronospora species are recognised as phylogenetically distinct on various Papaver species. The host ranges of the four already described species P. arborescens, P. argemones, P. cristata and P. meconopsidis are clarified. Based on sequence data and morphology, two new species, P. apula and P. somniferi, are described from Papaver apulum and P. somniferum, respectively. The second Peronospora species parasitizing Papaver somniferum, that was only recently recorded as Peronospora cristata from Tasmania, is shown to represent a distinct taxon, P. meconopsidis, originally described from Meconopsis cambrica. It is shown that P. meconopsidis on Papaver somniferum is also present and widespread in Europe and Asia, but has been overlooked due to confusion with P. somniferi and due to less prominent, localized disease symptoms. Oospores are reported for the first time for P. meconopsidis from Asian collections on Papaver somniferum. Morphological descriptions, illustrations and a key are provided for all described Peronospora species on Papaver. cox1 and cox2 sequence data are confirmed as equally good barcoding loci for reliable Peronospora species identification, whereas ITS rDNA does sometimes not resolve species boundaries. Molecular phylogenetic data reveal high host specificity of Peronospora on Papaver, which has the important phytopathological implication that wild Papaver spp. cannot play any role as primary inoculum source for downy mildew epidemics in cultivated opium poppy crops. PMID:24806292

  8. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    Science.gov (United States)

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  9. Intraspecific variation between the ITS sequences of Toxocara canis, Toxocara cati and Toxascaris leonina from different host species in south-western Poland.

    Science.gov (United States)

    Fogt-Wyrwas, R; Mizgajska-Wiktor, H; Pacoń, J; Jarosz, W

    2013-12-01

    Some parasitic nematodes can inhabit different definitive hosts, which raises the question of the intraspecific variability of the nematode genotype affecting their preferences to choose particular species as hosts. Additionally, the issue of a possible intraspecific DNA microheterogeneity in specimens from different parts of the world seems to be interesting, especially from the evolutionary point of view. The problem was analysed in three related species - Toxocara canis, Toxocara cati and Toxascaris leonina - specimens originating from Central Europe (Poland). Using specific primers for species identification, internal transcribed spacer (ITS)-1 and ITS-2 regions were amplified and then sequenced. The sequences obtained were compared with sequences previously described for specimens originating from other geographical locations. No differences in nucleotide sequences were established in T. canis isolated from two different hosts (dogs and foxes). A comparison of ITS sequences of T. canis from Poland with sequences deposited in GenBank showed that the scope of intraspecific variability of the species did not exceed 0.4%, while in T. cati the differences did not exceed 2%. Significant differences were found in T. leonina, where ITS-1 differed by 3% and ITS-2 by as much as 7.4% in specimens collected from foxes in Poland and dogs in Australia. Such scope of differences in the nucleotide sequence seems to exceed the intraspecific variation of the species.

  10. The path to host extinction can lead to loss of generalist parasites.

    Science.gov (United States)

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  11. A test of the nest sanitation hypothesis for the evolution of foreign egg rejection in an avian brood parasite rejecter host species.

    Science.gov (United States)

    Luro, Alec B; Hauber, Mark E

    2017-04-01

    Hosts of avian brood parasites have evolved diverse defenses to avoid the costs associated with raising brood parasite nestlings. In egg ejection, the host recognizes and removes foreign eggs laid in its nest. Nest sanitation, a behavior similar in motor pattern to egg ejection, has been proposed repeatedly as a potential pre-adaptation to egg ejection. Here, we separately placed blue 3D-printed, brown-headed cowbird (Molothrus ater) eggs known to elicit interindividual variation in ejection responses and semi-natural leaves into American robins' (Turdus migratorius) nests to test proximate predictions that (1) rejecter hosts should sanitize debris from nests more frequently and consistently than accepter hosts and (2) hosts that sanitize their nests of debris prior to the presentation of a foreign egg will be more likely to eject the foreign egg. Egg ejection responses were highly repeatable within individuals yet variable between them, but were not influenced by prior exposure to debris, nor related to sanitation tendencies as a whole, because nearly all individuals sanitized their nests. Additionally, we collected published data for eight different host species to test for a potential positive correlation between sanitation and egg ejection. We found no significant correlation between nest sanitation and egg ejection rates; however, our comparative analysis was limited to a sample size of 8, and we advise that more data from additional species are necessary to properly address interspecific tests of the pre-adaptation hypothesis. In lack of support for the nest sanitation hypothesis, our study suggests that, within individuals, foreign egg ejection is distinct from nest sanitation tendencies, and sanitation and foreign egg ejection may not correlate across species.

  12. Infection, specificity and host manipulation of Australapatemon sp (Trematoda, Strigeidae) in two sympatric species of leeches (Hirudinea)

    Czech Academy of Sciences Publication Activity Database

    Karvonen, A.; Faltýnková, Anna; Choo, J. M.; Valtonen, E. T.

    2017-01-01

    Roč. 144, č. 10 (2017), s. 1346-1355 ISSN 0031-1820 Institutional support: RVO:60077344 Keywords : complex life cycle * Digenea * host manipulation * host-parasite relationship * spatiotemporal variation * specificity * Trematoda Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.713, year: 2016

  13. Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina, a primate species susceptible to Human Immunodeficiency Virus type 1 infection

    Directory of Open Access Journals (Sweden)

    Jiang Xue-Long

    2009-06-01

    Full Text Available Abstract Background The pig-tailed macaques are the only Old World monkeys known to be susceptible to human immunodeficiency virus type 1 (HIV-1 infection. We have previously reported that the TRIM5-Cyclophilin A (TRIMCyp fusion in pig-tailed macaques (Macaca nemestrina is dysfunctional in restricting HIV-1, which may explain why pig-tailed macaques are susceptible to HIV-1 infection. Similar results have also been reported by other groups. However, according to the current primate taxonomy, the previously reported M. nemestrina are further classified into three species, which all belong to the Macaca spp. This calls for the need to look into the previous studies in more details. Results The local species Northern pig-tailed macaque (M. leonina was analyzed for the correlation of TRIM5 structure and HIV-1 infection. Eleven M. leonina animals were analyzed, and all of them were found to possess TRIM5-CypA fusion at the TRIM5 locus. The transcripts encoding the dysfunctional TRIM5-CypA should result from the G-to-T mutation in the 3'-splicing site of intron 6. Polymorphism in the putative TRIMCyp recognition domain was observed. The peripheral blood mononuclear cells (PBMCs of M. leonina were susceptible to HIV-1 infection. Consistent with the previous results, expression of the M. leonina TRIMCyp in HeLa-T4 cells rendered the cells resistant to HIV-2ROD but not to SIVmac239 infection. Conclusion The susceptibility of M. leonina to HIV-1 infection is due to the dysfunctional TRIM5-CypA fusion in the TRIM5 locus. This finding should broaden our perspective in developing better HIV/AIDS non-human primate animal models.

  14. Egg morphology, laying behavior and record of the host plants of Ricania speculum (Walker, 1851), a new alien species for Europe (Hemiptera: Ricaniidae).

    Science.gov (United States)

    Rossi, Elisabetta; Stroiński, Adam; Lucchi, Andrea

    2015-11-17

    The exotic planthopper, Ricania speculum (Ricaniidae) was recently detected in Liguria, in northern Italy, and recorded as a first alert for Europe. The first morphological description of eggs and laying behavior are given. Eggs are inserted into the woody tissue of a wide range of different host plants in such a unique manner among native and alien planthoppers of Italy that it can be used to describe the prevalence and diffusion of the species in new environments, though in the absence of juveniles and/or adults. In addition, the paper lists the host plants utilized for egg laying and describes the eggs.

  15. Light and scanning electron microscopic studies of Unionicola tetrafurcatus (Acari: Unionicolidae) infecting four freshwater bivalve species with referring to histopathological effect on its hosts.

    Science.gov (United States)

    Abdel-Gaber, Rewaida; Fol, Mona; Al Quraishy, Saleh

    2018-05-08

    Water mites of the genus Unionicola are the most common symbionts of freshwater bivalves. During the current investigation, a total of 120 live freshwater mussels [Corbicula fluminea (Veneroida), Coelatura aegyptiaca (Unionoidea) Mutela rostrata and Chambardia rubens (Mutelidae)], were collected from 2 localities in Tura (Helwan Governorate) and El Kanater (Qaluobiya Governorate), Egypt. Only 3 of the 4 bivalve species listed are considered freshwater bivalves (members of Unionoidea). While, C. fluminea belong to the family Cyrenidae within Veneroida. The collected mussels were dissected and examined for the presence of unionicolid mites. It was found that 30.83% (37/120) were infected with a single mite species Unionicola tetrafurcatus (Unionicolidae). The highest prevalence was observed during the summer with 83.33% (25/30), whereas the least was observed in autumn, i.e. 33.33% (10/30). Mites were recovered from the gills, gonads, and visceral mass of mussel hosts. gills of host mussels were the primary site of oviposition for unionicola mites. Smaller bivalves in size had significantly greater numbers of mites than larger ones in size. Numbers of mites per host species was variable and the highest prevalence level of 83.33% (25/30) was recorded in C. fluminea, while, the lowest one of 16.66% (5/30) was found in C. rubens. Morphological and morphometric characterizations of mites revealed some differences between the present species and other related Unionicola. Histopathological responses of host mussels to the eggs, larvae, and cuticular remnants of U. tetrafurcatus were also studied. Therefore, the present study demonstrated that freshwater bivalves have a new host and locality records for infection with U. tetrafurcatus. Future studies are recommended to include advanced molecular characteristics for these mites.

  16. Identifying the Achilles heel of multi-host pathogens: the concept of keystone ‘host’ species illustrated by Mycobacterium ulcerans transmission

    International Nuclear Information System (INIS)

    Roche, Benjamin; Eric Benbow, M; Merritt, Richard; Kimbirauskas, Ryan; McIntosh, Mollie; Small, Pamela L C; Williamson, Heather; Guégan, Jean-François

    2013-01-01

    Pathogens that use multiple host species are an increasing public health issue due to their complex transmission, which makes them difficult to mitigate. Here, we explore the possibility of using networks of ecological interactions among potential host species to identify the particular disease-source species to target to break down transmission of such pathogens. We fit a mathematical model on prevalence data of Mycobacterium ulcerans in western Africa and we show that removing the most abundant taxa for this category of pathogen is not an optimal strategy to decrease the transmission of the mycobacterium within aquatic ecosystems. On the contrary, we reveal that the removal of some taxa, especially Oligochaeta worms, can clearly reduce rates of pathogen transmission, and these should be considered as keystone organisms for its transmission because they lead to a substantial reduction in pathogen prevalence regardless of the network topology. Besides their potential application for the understanding of M. ulcerans ecology, we discuss how networks of species interactions can modulate transmission of multi-host pathogens. (letter)

  17. Modulation of nonessential amino acid biosynthetic pathways in virulent Hessian fly larvae (Mayetiola destructor), feeding on susceptible host wheat (Triticum aestivum)

    Science.gov (United States)

    Hessian fly (Mayetiola destructor), an obligate plant-parasitic gall midge, is an important dipteran pest of wheat (Triticum aestivum). The insect employs an effector-based feeding strategy to reprogram the host plant to be nutritionally beneficial for the developing larva by inducing formation of p...

  18. Occurrence of 3 Bordetella species during an outbreak of cough illness in Ohio: epidemiology, clinical features, laboratory findings and antimicrobial susceptibility.

    Science.gov (United States)

    Spicer, Kevin B; Salamon, Doug; Cummins, Carol; Leber, Amy; Rodgers, Loren E; Marcon, Mario J

    2014-07-01

    An increase in laboratory diagnosis of pertussis was noted in central Ohio during 2010. Diagnosis was made using a polymerase chain reaction assay targeting the multicopy insertion sequence IS481, which is found in both Bordetella pertussis (Bp) and Bordetella holmesii (Bh). An increase in specimens testing positive for Bordetella parapertussis (Bpp) using insertion sequence IS1001 was also noted. Nasopharyngeal swab specimens submitted April 1, 2010, to March 31, 2011, were tested using a multiplex polymerase chain reaction assay for Bp/Bh (IS481) and Bpp followed by singleplex assays for Bp and Bh. A subgroup of specimens was also cultured for Bordetella species, and antimicrobial susceptibility testing was performed on recovered organisms. Demographic and clinical features were compared for patients with Bp, Bh and Bpp. Of 520 IS481-positive specimens, 214 (41.1%) were positive for Bp, 79 (15.2%) were positive for Bh and 5 (1.0%) were positive for both Bp and Bh; 222 (42.7%) were negative for both targets. An additional 220 specimens were positive for Bpp. Among a sample of 155 IS481-positive specimens, 40, 15 and 0 were culture positive for Bp, Bh and Bpp, respectively. Among a sample of 55 BparaIS1001-positive (Bpp) specimens, 22, 0 and 0 were culture positive for Bpp, Bp and Bh, respectively. All Bordetella species were susceptible to macrolide antibiotics. Patients with Bh were older than patients with Bp, who were older than those positive for Bpp (mean ages: 12.0, 8.0 and 4.2 years, respectively; P Bpp and 100 negative for Bordetella species), but did not differ statistically among the groups (χ = 5.1, P = 0.17). All 3 Bordetella species, Bp, Bh and Bpp, were detected during on outbreak of pertussis-like cough illness. There were noted differences in age and seasonality, but clinical features at the time of presentation did not allow clear differentiation of these infections. All Bordetella species recovered from culture and tested were susceptible in

  19. Host plant quality of Tamarix ramosissima and T. parviflora for three sibling species of the biocontrol insect Diorhabda elongata (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Dalin, Peter; O'Neal, Melissa J; Dudley, Tom; Bean, Daniel W

    2009-10-01

    Several sibling species of the leaf beetle Diorhabda elongata (Brullé) have been introduced into North America for the biocontrol of saltcedars (Tamarix spp.), but only one, D. carinulata (Desbrochers), has been extensively used in the field. The first open releases took place in 2001, and widespread defoliation occurred at sites infested by Tamarix ramosissima, T. chinensis, and their hybrid forms. The beetles failed, however, to establish at sites where other Tamarix species are targeted for control. In this study, we compared the preference and performance of three Diorhabda sibling species using adult choice and larval performance experiments on the two formally targeted Tamarix species: T. ramosissima and T. parviflora. In the adult choice experiment, a greater proportion of D. carinulata was found on T. ramosissima than on T. parviflora. For the other two sibling species, D. elongata (Brullé) and D. carinata (Faldermann), adults were found in similar proportions on the two host plants. In the larval performance experiment, larval growth and survival did not differ between Tamarix species for any Diorhabda type; however, D. carinata larval biomass was 35-50% greater than the other beetles regardless of host species. Based on the few adults of D. carinulata found on T. parviflora in the adult choice experiment, we do not recommend introducing this beetle at sites where T. parviflora is targeted for biological control. The species D. carinata seems especially promising for future release because its larvae gained substantially more biomass than the other beetles during the same time period on both Tamarix species.

  20. Host tolerance, not symbiont tolerance, determines the distribution of coral species in relation to their environment at a Central Pacific atoll

    Science.gov (United States)

    Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.

    2012-06-01

    Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.

  1. Monogeneans from Pangasiidae (Siluriformes in Southeast Asia: VII. Six new host-specific species of Thaparocleidus Jain, 1952 (Ancylodiscoididae from Pangasius polyuranodon

    Directory of Open Access Journals (Sweden)

    Pariselle A.

    2004-12-01

    Full Text Available The examination of gill parasites from Pangasius polyuranodon Bleeker, 1852 (Siluriformes, Pangasiidae revealed the presence of six new host-specific species of Monogenea, all belonging to Thaparocleidus Jain, 1952 (Monogenea, Ancylodiscoididae as defined by Lim (1996 and Lim et al. (2001: T. caestus n. sp., T. crassipenis n. sp., T. legendrei n. sp., T. levangi n. sp., T. slembroucki n. sp. and T. virgula n. sp.

  2. Ligophorus species (Monogenea: Ancyrocephalidae) from Mugil cephalus (Teleostei: Mugilidae) off Morocco with the description of a new species and remarks about the use of Ligophorus spp. as biological markers of host populations.

    Science.gov (United States)

    El Hafidi, Fouzia; Rkhami, Ouafae Berrada; de Buron, Isaure; Durand, Jean-Dominique; Pariselle, Antoine

    2013-11-01

    Gill monogenean species of Ligophorus Euzet et Suriano, 1977 were studied from the teleost Mugil cephalus Linneaus (Mugilidae) from the Mediterranean and Atlantic coasts of Morocco. We report the presence of L. mediterraneus from both the Mediterranean and Atlantic coast and L. cephali and L. maroccanus sp. n. from the Atlantic coast only. The latter species, which is described herein as new, resembles L. guanduensis but differs from this species mainly in having a shorter penis compared to the accessory piece, a proportionally longer extremity of the accessory piece and a less developed heel. The utility of Ligophorus spp. as markers of cryptic species of the complex M. cephalus is discussed in the context of species diversity and geographical distribution of these monogeneans on this host around the world. Presence of different species of Ligophorus on M. cephalus sensu stricto from the Atlantic and Mediterranean coast of Morocco demonstrates the usefulness of these species as fine resolution markers of genetic populations of their host, which are known to inhabit those coasts.

  3. The abundance and host-seeking behavior of culicine species (Diptera: Culicidae and Anopheles sinensis in Yongcheng city, people's Republic of China

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Bo

    2011-11-01

    Full Text Available Abstract Background The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis. Results Culex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens. These trends were similar across all capture nights at three distinct villages. The human blood index (HBI of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P Conclusions Pigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity mainly occurred from 19:00 to 21:00. Thus

  4. Prevalence and antibiotic susceptibility of coagulase-negative Staphylococcus species from bovine subclinical mastitis in dairy herds in the central region of Argentina.

    Science.gov (United States)

    Raspanti, Claudia G; Bonetto, Cesar C; Vissio, Claudina; Pellegrino, Matías S; Reinoso, Elina B; Dieser, Silvana A; Bogni, Cristina I; Larriestra, Alejandro J; Odierno, Liliana M

    2016-01-01

    Coagulase-negative staphylococci (CNS) are a common cause of bovine subclinical mastitis (SCM). The prevalence of CNS species causing SCM identified by genotyping varies among countries. Overall, the antimicrobial resistance in this group of organisms is increasing worldwide; however, little information exists about a CNS species resistant to antibiotics. The aim of the present study was to genotypically characterize CNS at species level and to determine the prevalence and antibiotic resistance profiles of CNS species isolated from bovine SCM in 51 dairy herds located in the central region of the province of Cordoba, Argentina. In this study, we identified 219 CNS isolates at species level by PCR-restriction fragment length polymorphism of the groEL gene. Staphylococcus chromogenes (46.6%) and Staphylococcus haemolyticus (32%) were the most prevalent species. A minimum of three different CNS species were present in 41.2% of the herds. S. chromogenes was isolated from most of the herds (86.3%), whereas S. haemolyticus was isolated from 66.7% of them. The broth microdilution method was used to test in vitro antimicrobial susceptibility. Resistance to a single compound or two related compounds was expressed in 43.8% of the isolates. S. chromogenes and S. haemolyticus showed a very high proportion of isolates resistant to penicillin. Resistance to two or more non-related antimicrobials was found in 30.6% of all CNS. S. haemolyticus exhibited a higher frequency of resistance to two or more non-related antimicrobials than S. chromogenes. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Blends of Pheromones, With and Without Host Plant Volatiles, Can Attract Multiple Species of Cerambycid Beetles Simultaneously

    Science.gov (United States)

    L.M. Hanks; J.A. Mongold-Diers; T.H. Atkinson; M.K. Fierke; M.D. Ginzel; E.E. Graham; T.M. Poland; A.B. Richards; M.L. Richardson; J.G. Millar

    2018-01-01

    Pheromone components of cerambycid beetles are often conserved, with a given compound serving as a pheromone component for multiple related species, including species native to different continents. Consequently, a single synthesized compound may attract multiple species to a trap simultaneously. Furthermore, our previous research in east-central Illinois had...

  6. [Molecular epidemiology and antifungal susceptibility of Candida species isolated from urine samples of patients in intensive care unit].

    Science.gov (United States)

    Yüksekkaya, Serife; Fındık, Duygu; Arslan, Uğur

    2011-01-01

    The aims of this study were to analyse the amphotericin B and fluconazole susceptibility and molecular epidemiology of Candida strains (Candida albicans, Candida tropicalis and Candida glabrata) isolated from the urine samples of patients hospitalized in the intensive care unit. Identification of the isolates was done according to microscopic morphology (chlamydospor, blastospor, pseudohyphae and true hyphae) on cornmeal agar, germ tube formation and carbohydrate assimilation patterns (API ID 32C bioMérieux, France). Antifungal susceptibilities of the isolates were determined by in vitro broth microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). To investigate the clonal relationship of the isolates, randomly amplified polymorphic DNA (RAPD) analysis was performed by using Cnd3 primer. Of the 56 Candida isolates minimum inhibitory concentration (MIC) ranges, MIC50 and MIC90 values for amphotericin B were 0.125-1 µg/ml, 0.125 and 0.5 µg/ml for C.albicans, 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.tropicalis and 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.glabrata, respectively. Fluconazole MIC ranges, MIC50 and MIC90 values were 0.25-4 µg/ml, 0.25 and 0.5 µg/ml for C.albicans, 0.25-16 µg/ml, 0.5 and 1 µg/ml for C.tropicalis and 0.5-64 µg/ml, 8 and 16 µg/ml for C.glabrata, respectively. For amphotericin B, none of the isolates had high MIC values (MIC > 1 µg/ml). While one of the C.glabrata isolates was resistant to fluconazole (MIC ≥ 64 µg/ml), one C.tropicalis and two C.glabrata isolates were dose-dependent susceptible (MIC: 16-32 µg/ml). The results of RAPD analysis indicated an exogenous spread from two clones for C.albicans, one clone for C.glabrata and one clone for C.tropicalis. This study underlines the importance of molecular epidemiological analysis of clinical samples together with hospital environmental samples in terms of Candida spp. To determine the exogenous origin for the related strains and to prevent

  7. Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses.

    Science.gov (United States)

    Hoverman, Jason T; Gray, Matthew J; Haislip, Nathan A; Miller, Debra L

    2011-09-01

    Research that identifies the potential host range of generalist pathogens as well as variation in host susceptibility is critical for understanding and predicting the dynamics of infectious diseases within ecological communities. Ranaviruses have been linked to amphibian die-off events worldwide with the greatest number of reported mortality events occurring in the United States. While reports of ranavirus-associated mortality events continue to accumulate, few data exist comparing the relative susceptibility of different species. Using a series of laboratory exposure experiments and comparative phylogenetics, we compared the susceptibilities of 19 amphibian species from two salamander families and five anurans families for two ranavirus isolates: frog virus 3 (FV3) and an FV3-like isolate from an American bullfrog culture facility. We discovered that ranaviruses were capable of infecting 17 of the 19 larval amphibian species tested with mortality ranging from 0 to 100%. Phylogenetic comparative methods demonstrated that species within the anuran family Ranidae were generally more susceptible to ranavirus infection compared to species from the other five families. We also found that susceptibility to infection was associated with species that breed in semi-permanent ponds, develop rapidly as larvae, and have limited range sizes. Collectively, these results suggest that phylogeny, life history characteristics, and habitat associations of amphibians have the potential to impact susceptibility to ranaviruses.

  8. Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition.

    Science.gov (United States)

    Morawo, Tolulope; Fadamiro, Henry

    2014-12-01

    Volatile organic compounds (VOCs) released by herbivore-damaged plants can guide parasitoids to their hosts. The quantity and quality of VOC blends emitted by plants may be affected by the duration of plant damage by herbivores, which could have potential ramifications on the recruitment of competing parasitoids. We used two parasitoid species, Microplitis croceipes and Cotesia marginiventris (Hymenoptera: Braconidae), to address the question of whether duration of plant damage affects parasitoid use of plant VOCs for host location. Both wasp species are larval endoparasitoids of Heliothis virescens (Lepidoptera: Noctuidae), an important pest of cotton. Attraction of the two parasitoid species to odors emitted by undamaged (UD), fresh (6 h infestation) damage (FD), and old (24 h infestation) damage (OD) cotton plants infested by H. virescens larvae was investigated using a headspace volatile collection system coupled with four-choice olfactometer bioassay. Both sexes of M. croceipes showed a preference for FD- and OD-plant odors over UD-plants. On the other hand, more C. marginiventris females were attracted to UD- and FD-plants than to OD-plants. GC/MS analyses showed qualitative and quantitative differences in the VOC profiles of UD, FD, and OD-plants, which may explain the observed preferences of the parasitoids. These results suggest a temporal partitioning in the recruitment of M. croceipes and C. marginiventris to H. virescens-damaged cotton, and may have potential implications for interspecific competition between the two parasitoid species.

  9. Host specificity and genealogy of Polyplax serrata on Apodemus species: a case of parasite duplication or colonisation?

    Czech Academy of Sciences Publication Activity Database

    Štefka, Jan; Hypša, Václav

    2008-01-01

    Roč. 38, č. 6 (2008), s. 731-741 ISSN 0020-7519 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60220518 Keywords : parasite duplication * host specificity * genealogy * speciation * Polyplax * Apodemus Subject RIV: EH - Ecology, Behaviour Impact factor: 3.752, year: 2008

  10. Elevation, space and host plant species structure Ericaceae root-associated fungal communities in Papua New Guinea

    Czech Academy of Sciences Publication Activity Database

    Kohout, Petr; Bahram, M.; Polme, S.; Tedersoo, L.

    2017-01-01

    Roč. 30, Dec 2017 (2017), s. 112-121 ISSN 1754-5048 Institutional support: RVO:67985939 Keywords : ericoid mycorrhiza * fungal diversity * host effect Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.219, year: 2016

  11. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species.

    NARCIS (Netherlands)

    Sprong, H.; Wielinga, P.R.; Fonville, M.; Reusken, C.; Brandenburg, A.H.; Borgsteede, F.H.M.

    2009-01-01

    Background - Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts.

  12. Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States

    Science.gov (United States)

    Betsy A. Bancroft; Barbara A. Han; Catherine L. Searle; Lindsay M. Biga; Deanna H. Olson; Lee B. Kats; Joshua J. Lawler; Andrew R. Blaustein

    2011-01-01

    Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, ...

  13. Susceptibility to Laurel Wilt and disease incidence in two rare plant species, Pondberry and Pondspice Plant Disease.

    Science.gov (United States)

    Stephen Fraedrich; T Harrington; C Bates; J Johnson; L. Reid; Glenda Susan Best; T Leininger; Tracy Hawkins

    2011-01-01

    Laurel wilt, caused by Raffaelea lauricola, has been responsible for extensive losses of redbay (Persea borbonia) in South Carolina and Georgia since 2003. Symptoms of the disease have been noted in other species of the Lauraceae such as the federally endangered pondberry (Lindera melissifolia) and the threatened pondspice (Litsea aestivalis). Pondberry and pondspice...

  14. On some Indo-Pacific boring endolithic Bivalvia species introduced into the Mediterranean Sea with their host – spread of Sphenia rueppelli A. Adams, 1850

    Directory of Open Access Journals (Sweden)

    A. ZENETOS

    2010-06-01

    Full Text Available The study of the endolithic molluscs found on/in living alien Spondylusshells collected in the Gulf of Iskenderun (Turkey brought to light three more alien bivalvia species namely Petricola hemprichi, Gastrochaena cymbium and Sphenia rueppelli. The presence of Sphenia rueppellideserves attention as it constitutes the first record of this species as living in the Mediterranean Sea. The definitive establishment and spreading of these bivalves in the basin seems to be also attested by careful analysis of specimens sampled in other southern Turkish localities and previously retained in local private collections. The present records raise some questions on the vector of arrival of the species in the Mediterranean Sea that could be strictly connected with their hosts.

  15. Complete Genome sequence of Burkholderia phymatum STM815, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Lionel [UMR, France; Klonowska, Agnieszka [UMR, France; Caroline, Bournaud [UMR, France; Booth, Kristina [University of Massachusetts; Vriezen, Jan A.C. [University of Massachusetts; Melkonian, Remy [UMR, France; James, Euan [James Hutton Institute, Dundee, United Kingdom; Young, Peter W. [University of York, United Kingdom; Bena, Gilles [UMR, France; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lizotte-Waniewski, Michelle [University of Massachusetts; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Riley, Monica [Woods Hole Oceanographic Institution (WHOI), Woods Hole

    2014-01-01

    Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815T, was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

  16. Trends in antimicrobial susceptibility among isolates of Campylobacter species in Ireland and the emergence of resistance to ciprofloxacin.

    LENUS (Irish Health Repository)

    Lucey, B

    2012-02-03

    Measurements were made of the susceptibility to six commonly prescribed antibiotics, including erythromycin, tetracycline and ciprofloxacin, of 130 isolates of Campylobacterjejuni and 15 isolates of Campylobacter coli cultured from human and poultry sources during 2000. The results were compared with the results from a collection of strains isolated between 1996 and 1998. The levels of resistance to erythromycin remained low, 2 per cent and 4.4 per cent for the human and poultry isolates, respectively. Resistance to tetracycline had increased to 31 per cent and 24.4 per cent from 13.9 per cent and 18.8 per cent for the human and poultry isolates, respectively. However, the resistance to ciprofloxacin of the strains isolated during 2000 had increased to 30 per cent, whereas between 1996 and 1998 there had been no resistance to this agent among human isolates, and only 3.1 per cent resistance among poultry isolates. The molecular basis for this resistance has been shown to be the result of a single amino acid substitution, Thr-86-Ile, in the gyrA subunit of DNA gyrase in Cjejuni. A subset of 59 isolates was tested by molecular methods and all of the 25 phenotypically resistant isolates possessed this substitution. None of the human isolates had been treated with ciprofloxacin before their laboratory isolation.

  17. Susceptibility of various Japanese freshwater fish species to an isolate of viral haemorrhagic septicaemia virus (VHSV) genotype IVb

    DEFF Research Database (Denmark)

    Ito, Takafumi; Olesen, Niels Jørgen

    2013-01-01

    Genotype IVb of viral haemorrhagic septicaemia virus (VHSV) was isolated for the first time in the Great Lakes basin in 2003, where it spread and caused mass mortalities in several wild fish species throughout the basin. In order to prevent further spreading of the disease and to assess risks...... mortalities in bluegill Lepomis macrochirus used as positive controls, Japanese fluvial sculpin Cottus pollux, and iwana Salvelinus leucomaenis pluvius were 50, 80 and 0%, respectively. In Expt 2, cumulative mortalities of 100, 100 and 10% were observed in Japanese fluvial sculpin C. pollux, Japanese rice......-isolation by cell culture was successful from all dead fish. We detected the virus in the brain from a few surviving bluegill 50 d post exposure by both cell culture and RT-PCR. These results revealed that VHSV IVb could become a serious threat to wild freshwater fish species in Japan, and that some surviving fish...

  18. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David; Nielsen, Lene Nørby

    2015-01-01

    The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some...... described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while...... qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence...

  19. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus i>species

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David; Nielsen, Lene Nørby

    2015-01-01

    described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while...... variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting...... antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family...

  20. Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics

    NARCIS (Netherlands)

    Crous, P.W.; Groenewald, J.Z.; Pongpanich, K.; Himaman, W.; Arzanlou, M.; Wingfield, M.J.

    2004-01-01

    Species of Mycosphaerella and their anamorphs represent serious pathogens of two phyllodenous species of Acacia, A. mangium and A. crassicarpa. In recent years, these fungi have been collected during surveys in South America and South-East Asia, where these trees are widely planted as exotics. In

  1. Comparison of passively transferred antibodies in bighorn and domestic lambs reveals one factor in differential susceptibility of these species to Mannheimia haemolytica-induced pneumonia.

    Science.gov (United States)

    Herndon, Caroline N; Shanthalingam, Sudarvili; Knowles, Donald P; Call, Douglas R; Srikumaran, Subramaniam

    2011-07-01

    Mannheimia haemolytica consistently causes fatal bronchopneumonia in bighorn sheep (BHS; Ovis canadensis) under natural and experimental conditions. Leukotoxin is the primary virulence factor of this organism. BHS are more susceptible to developing fatal pneumonia than the related species Ovis aries (domestic sheep [DS]). In BHS herds affected by pneumonia, lamb recruitment is severely impaired for years subsequent to an outbreak. We hypothesized that a lack of maternally derived antibodies (Abs) against M. haemolytica provides an immunologic basis for enhanced susceptibility of BH lambs to population-limiting pneumonia. Therefore, the objective of this study was to determine the titers of Abs directed against M. haemolytica in the sera of BH and domestic lambs at birth through 12 weeks of age. Results revealed that BH lambs had approximately 18-fold lower titers of Ab against surface antigens of M. haemolytica and approximately 20-fold lower titers of leukotoxin-neutralizing Abs than domestic lambs. The titers of leukotoxin-neutralizing Abs in the serum and colostrum samples of BH ewes were approximately 157- and 50-fold lower than those for domestic ewes, respectively. Comparatively, the higher titers of parainfluenza 3 virus-neutralizing Abs in the BH lambs ruled out the possibility that these BHS had an impaired ability to passively transfer Abs to their lambs. These results suggest that lower levels of leukotoxin-neutralizing Abs in the sera of BH ewes, and resultant low Ab titers in their lambs, may be a critical factor in the poor lamb recruitment in herds affected by pneumonia.

  2. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves

    International Nuclear Information System (INIS)

    Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong; Krishnamurthy, Konduru; Payton, Mark E.; Verchot-Lubicz, Jeanmarie

    2004-01-01

    Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereas GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement

  3. Asymmetric consequences of host plant occupation on the competition between the whiteflies Bemisia tabaci cryptic species MEAM1 and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Zhang, Gui-Fen; Lövei, Gábor L; Hu, Man; Wan, Fang-Hao

    2014-12-01

    The two common whitefly species, Bemisia tabaci (Gennadius) MEAM1 and Trialeurodes vaporariorum (Westwood), often co-occur on their host plants. The effect of host plant occupation by one species on later-arriving conspecific individuals or on the other competing species was examined. Resource preoccupied by T. vaporariorum had mostly negative effects on the life history parameters of later-arriving conspecifics. Red-eyed nymph and immature survival of T. vaporariorum decreased when resource was preoccupied by conspecifics, irrespective of the previous occupation scenario. However, resource preoccupied by T. vaporariorum had only minor detrimental effects on the performance of later-arriving B. tabaci MEAM1. In the opposite colonisation sequence, previous occupation by B. tabaci MEAM1 had no significant effects on the life history parameters of later-arriving conspecifics, but severe detrimental effects were observed on the performance of later-arriving T. vaporariorum. Total immature survival of T. vaporariorum decreased in both weak and strong previous occupation situations by B. tabaci MEAM1. The interspecific interactions between B. tabaci MEAM1 and T. vaporariorum were asymmetric, with B. tabaci MEAM1 being the superior competitor. This superiority could partially explain the rapid spread of B. tabaci MEAM1 in China. © 2013 Society of Chemical Industry.

  4. Host social behavior and parasitic infection: A multifactorial approach

    Science.gov (United States)

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  5. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    Science.gov (United States)

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  6. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. New host records for four species of tortricid moths (Lepidoptera: Tortricidae) on cultivated blueberries, Vaccinium corymbosum (Ericaceae), in Argentina

    Science.gov (United States)

    Four species of tortricids were reared from cultivated blueberries, Vaccinium corymbosum L. (Ericaceae), from four field sites in the province of Buenos Aires, Argentina: Clarkeulia bourquini (Clarke, 1949), Clarkeulia deceptiva (Clarke, 1949), Argyrotaenia spheralopa (Meyrick, 1909), and Platynota ...

  8. Suppressed Gastric Mucosal TGF-β1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin

    2010-01-01

    Background/Aims Loss of transforming growth factor β1 (TGF-β1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-β1 levels could be used to determine the outcome after H. pylori infection. Methods Northern blot for the TGF-β1 transcript, staining of TGF-β1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-β1 levels were performed at different times after H. pylori infection. Results The TGF-β1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-β1 levels. SNU-16 cells showing intact TGF-β signaling exhibited a marked decrease in TGF-β1 expression, whereas SNU-638 cells defective in TGF-β signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-β1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-β1 is a host defense mechanism to avoid attachment of H. pylori. Conclusions H. pylori infection was associated with depressed gastric mucosal TGF-β1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation. PMID:20479912

  9. Suppressed Gastric Mucosal TGF-beta1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response.

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin; Hahm, Ki-Baik

    2010-03-01

    Loss of transforming growth factor beta1 (TGF-beta1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-beta1 levels could be used to determine the outcome after H. pylori infection. Northern blot for the TGF-beta1 transcript, staining of TGF-beta1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-beta1 levels were performed at different times after H. pylori infection. The TGF-beta1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-beta1 levels. SNU-16 cells showing intact TGF-beta signaling exhibited a marked decrease in TGF-beta1 expression, whereas SNU-638 cells defective in TGF-beta signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-beta1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-beta1 is a host defense mechanism to avoid attachment of H. pylori. H. pylori infection was associated with depressed gastric mucosal TGF-beta1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation.

  10. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress

    DEFF Research Database (Denmark)

    Abrego, David; Ulstrup, Karin E; Willis, Bette L

    2008-01-01

    The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties...... and a potential role for host factors in determining the physiological performance of reef corals....... of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated...

  11. Antibiotic Susceptibilities of Enterococcus Species Isolated from Hospital and Domestic Wastewater Effluents in Alice, Eastern Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Benson Chuks Iweriebor

    2015-04-01

    Full Text Available Background: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. Methods: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. Results: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. Conclusions: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus

  12. HOST PLANTS AND CLIMATIC PREFERENCES OF THE INVASIVE SPECIES METCALFA PRUINOSA (SAY 1830 (HEMIPTERA: FLATIDAE IN SOME PLACES FROM SOUTHERN ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniela Barbuceanu

    2015-12-01

    Full Text Available Observations carried out in May-September 2015 in two sites of Southern Romania reveal a rich spectrum of host plants for Metcalfa pruinosa, which consists of 204 species in 56 families. The species it is noticed on weeds and cultivated plants. The remarkable polyphagia of this species, the lack of natural enemies, and the climatic conditions of 2015 - warm and dry summer, had lead to an invasion of M. pruinosa, in the researched areas; the highest numerical abundances are noticed in shady habitats. Furthermore, on herbs, such as Levisticum officinale, Artemisia dracunculus, Ocimum basilicum, Mentha spp., usually avoided by pests, were observed colonies of the species. It is recorded high numerical abundance on fruit trees and shrubs: Hippophaë rhamnoides, Juglans regia, Prunus cerasus, Vitis vinifera, Rubus idaeus. The harmful effect occurs on apple trees Romus 1 variety as a result of the association with another pest of American origin, Eriosoma lanigerum, situation that favors the attack of the Erwinia amylovora bacteria, causing the collapse of the tree. It is found that altitudes higher than 200 m do not represent a limitative factor in the spreading of species, one of the investigated sites being located at 304 m altitude.

  13. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses.

    Directory of Open Access Journals (Sweden)

    Hoang Hoa Long

    Full Text Available BACKGROUND: All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP rhizobacteria which can decrease ethylene (ET levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC deaminase or produce indole acetic acid (IAA. Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested. METHODOLOGY/PRINCIPAL FINDINGS: We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization; and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ reinforced the conclusion that the PGP effects are not highly conserved. CONCLUSIONS/SIGNIFICANCE: We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved.

  14. Additions to the Encyrtidae and Mymaridae (Chalcidoidea of India with new distribution and host records for some species

    Directory of Open Access Journals (Sweden)

    A. Rameshkumar

    2015-06-01

    Results and conclusions. A total of 961 specimens were collected, from which 883 COI sequences were obtained. The sequences generated corresponded to 289 barcoding species and 30 identified genera. The most speciose genera were Heterospilus Haliday (170 spp., Ecphylus Förster (19 spp., Allorhogas Gahan (15 spp. and Callihormius Ashmead (14 spp.. Addition of previously collected material increased the diversity of the subfamily in the region to 34 genera and 290 species. Paraphyly of Heterospilus with respect to Neoheterospilus and Heterospathius was again recovered. Twenty new species and two new genera (Sabinita Belokobylskij, Zaldívar-Riverón et Martínez, Ficobolus Martínez, Belokobylskij et Zaldívar-Riverón have been described so far from the material collected in this work.

  15. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range.

    Science.gov (United States)

    Zhang, Danli; Ye, Zhen; Yamada, Kazutaka; Zhen, Yahui; Zheng, Chenguang; Bu, Wenjun

    2016-08-31

    On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of

  16. Entomopathogenic Potential of Verticillium and Acremonium Species (Deuteromycotina: Hyphomycetes)

    DEFF Research Database (Denmark)

    Steenberg, Tove; Humber, Richard A

    1999-01-01

    their entomopathogenicity. A test was also conducted with a coleopteran (lesser mealworm, Alphitobius diaperinus) to further evaluate the host range for some of the fungi. V. lamellicola was not pathogenic to the two species of insects treated, while varying levels of pathogenicity were shown for the other species....... In general, V. lecanii was the most pathogenic species. Immature whiteflies appeared to be more susceptible to fungal infection than adult houseflies, and the host range for several of the fungi also included lesser mealworm....

  17. Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest

    Directory of Open Access Journals (Sweden)

    Adam L. Essene