WorldWideScience

Sample records for susceptible host cells

  1. Propofol Increases Host Susceptibility to Microbial Infection by Reducing Subpopulations of Mature Immune Effector Cells at Sites of Infection

    Science.gov (United States)

    Visvabharathy, Lavanya; Xayarath, Bobbi; Weinberg, Guy; Shilling, Rebecca A.; Freitag, Nancy E.

    2015-01-01

    Anesthetics are known to modulate host immune responses, but separating the variables of surgery from anesthesia when analyzing hospital acquired infections is often difficult. Here, the bacterial pathogen Listeria monocytogenes (Lm) was used to assess the impact of the common anesthetic propofol on host susceptibility to infection. Brief sedation of mice with physiologically relevant concentrations of propofol increased bacterial burdens in target organs by more than 10,000-fold relative to infected control animals. The adverse effects of propofol sedation on immune clearance of Lm persisted after recovery from sedation, as animals given the drug remained susceptible to infection for days following anesthesia. In contrast to propofol, sedation with alternative anesthetics such as ketamine/xylazine or pentobarbital did not increase susceptibility to systemic Lm infection. Propofol altered systemic cytokine and chemokine expression during infection, and prevented effective bacterial clearance by inhibiting the recruitment and/or activity of immune effector cells at sites of infection. Propofol exposure induced a marked reduction in marginal zone macrophages in the spleens of Lm infected mice, resulting in bacterial dissemination into deep tissue. Propofol also significantly increased mouse kidney abscess formation following infection with the common nosocomial pathogen Staphylococcus aureus. Taken together, these data indicate that even brief exposure to propofol severely compromises host resistance to microbial infection for days after recovery from sedation. PMID:26381144

  2. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice.

    Science.gov (United States)

    Rogala, Allison R; Schoenborn, Alexi A; Fee, Brian E; Cantillana, Viviana A; Joyce, Maria J; Gharaibeh, Raad Z; Roy, Sayanty; Fodor, Anthony A; Sartor, R Balfour; Taylor, Gregory A; Gulati, Ajay S

    2017-12-22

    Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-Related GTPase M (IRGM) is an established CD risk allele. We have shown previously that conventionally-raised (CV) mice lacking the IRGM ortholog, Irgm1, exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1-/- mice were re-derived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns and epithelial cell morphology and function in wild-type and Irgm1-/- mice. Remarkably, in contrast to CV mice, SPF Irgm1-/- mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1-/- mice also displayed minimal abnormalities in PC number, morphology, and antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1-/- mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1-/- mice with H. hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1-/- mice as a model to elucidate host-environment interactions that regulate mucosal homeostasis and

  3. Prehematopoietic Stem Cell Transplantation Tear Cytokines as Potential Susceptibility Biomarkers for Ocular Chronic Graft-Versus-Host Disease.

    Science.gov (United States)

    Cocho, Lidia; Fernández, Itziar; Calonge, Margarita; Sainz de la Maza, Maite; Rovira, Montserrat; Stern, Michael E; Garcia-Vazquez, Carmen; Enríquez-de-Salamanca, Amalia

    2017-09-01

    To determine if cytokine tear levels before hematopoietic stem cell transplantation (HSCT) can help anticipate the occurrence of ocular chronic graft-versus-host disease (cGVHD). In this pilot study, 25 patients undergoing HSCT were followed prospectively for ≤43 months. After ocular examinations, tears were collected before HSCT. Levels of 19 cytokines (epidermal growth factor [EGF], eotaxin 1/CCL11, fractalkine/CX3CL1, IL-1Ra, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8/CXCL8, IL-10, IL-12p70, IL-13, IL-17A, IP-10/CXCL10, IFN-γ, VEGF, TNF-α, and RANTES/CCL5) were measured by multiplex bead assay. A multistate model (MSM) based on four states (HSCT, systemic cGVHD, ocular cGVHD, and death) was developed to identify cytokines associated with each transition probability. Molecules included in the final multivariable model were selected by a supervised principal components analysis. Bootstrap resampling internally validated the final MSM. Model discriminatory ability was determined by time-dependent receiver operating characteristic curves and the corresponding area under the curve (AUC). The final model, based on fractalkine, IL-1Ra, and IL-6 tear levels, accurately influenced the transition between the four different states. The AUC for this model, based on a new variable built upon the combination of these three molecules, was 67% to 80% throughout follow-up and, thus, had good discriminatory ability. In this prospective study, a model based on pre-HSCT tear levels of the inflammatory molecules fractalkine, IL-1Ra, and IL-6 had good prognostic ability for the development of ocular cGVHD after HSCT. These cytokines potentially could act as susceptibility biomarkers for the development of this disease after HSCT.

  4. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species.

    NARCIS (Netherlands)

    Silvie, O.; Greco, C.; Franetich, J.F.; Dubart-Kupperschmitt, A.; Hannoun, L.; Gemert, G.J.A. van; Sauerwein, R.W.; Levy, S.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic

  5. Host glycosaminoglycan confers susceptibility to bacterial infection in Drosophila melanogaster.

    Science.gov (United States)

    Baron, Miriam J; Wong, Sandra L; Nybakken, Kent; Carey, Vincent J; Madoff, Lawrence C

    2009-02-01

    Many pathogens engage host cell surface glycosaminoglycans, but redundancy in pathogen adhesins and host glycosaminoglycan-anchoring proteins (heparan sulfate proteoglycans) has limited the understanding of the importance of glycosaminoglycan binding during infection. The alpha C protein of group B streptococcus, a virulence determinant for this neonatal human pathogen, binds to host glycosaminoglycan and mediates the entry of bacteria into human cells. We studied alpha C protein-glycosaminoglycan binding in Drosophila melanogaster, whose glycosaminoglycan repertoire resembles that of humans but whose genome includes only three characterized membrane heparan sulfate proteoglycan genes. The knockdown of glycosaminoglycan polymerases or of heparan sulfate proteoglycans reduced the cellular binding of alpha C protein. The interruption of alpha C protein-glycosaminoglycan binding was associated with longer host survival and a lower bacterial burden. These data indicate that the glycosaminoglycan-alpha C protein interaction involves multiple heparan sulfate proteoglycans and impairs bacterial killing. Host glycosaminoglycans, anchored by multiple proteoglycans, thereby determine susceptibility to infection. Because there is homology between Drosophila and human glycosaminoglycan/proteoglycan structures and many pathogens express glycosaminoglycan-binding structures, our data suggest that interfering with glycosaminoglycan binding may protect against infections in humans.

  6. Temperature alters host genotype-specific susceptibility to chytrid infection

    NARCIS (Netherlands)

    Gsell, A.S.; De Senerpont Domis, L.N.; Van Donk, E.; Ibelings, B.W.

    2013-01-01

    The cost of parasitism often depends on environmental conditions and host identity. Therefore, variation in the biotic and abiotic environment can have repercussions on both, species-level host-parasite interaction patterns but also on host genotype-specific susceptibility to disease. We exposed

  7. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  8. Toxicogenetics: In Search of Host Susceptibility to Environmental Toxicants

    Directory of Open Access Journals (Sweden)

    Gelareh eAlam

    2014-09-01

    Full Text Available Heavy metals, various pesticide and herbicides are implicated as risk factors for human health. Paraquat, maneb, and rotenone, carbamate and organophospherous insecticides are examples of toxicants for which acute and chronic exposure are associated with multiple neurological disorders including Parkinson’s disease (PD. Nevertheless, the role of pesticide exposure in neurodegenerative diseases is not clear-cut, as there are inconsistencies in both the epidemiological and preclinical research. The aim of this short review is to show that the inconsistencies are related to individual differences in susceptibility to the effects of neurotoxicants, individual differences that can be traced to the genetic constitution of the individuals and animals studies, i.e., host-based susceptibility.

  9. Host plant susceptibility to the swede midge (Diptera: Cecidomyiidae).

    Science.gov (United States)

    Hallett, Rebecca H

    2007-08-01

    The relative resistance and susceptibility of various cruciferous plants to swede midge, Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), damage was investigated to provide growers with planting recommendations and to identify potential sources of resistance to the swede midge. Broccoli cultivars experienced more severe damage than cabbage, cauliflower, and Brussels sprouts. The broccoli 'Paragon', 'Eureka', and 'Packman' are highly susceptible to the swede midge, whereas 'Triathlon' and 'Regal' showed reduced susceptibility to damage and slower development of damage symptoms. No differences were found between normal and red cultivars of cabbage and cauliflower in damage severity and progression of damage symptoms. Four new plant species (Brassica juncea Integlifolia group, Erucastrum gallicum (Willd.) O. E. Shulz., Lepidium campestre (L.) R.Br., and Capsella bursa-pastoris (L.) Medic.) are reported as hosts of the swede midge. The weed species Descurainia sophia (L.) Webb, Camelina microcarpa Andrz. ex Dc., and Erysimum cheiranthoides L. exhibited no damage symptoms, and they seem to be nonhost crucifers for the swede midge.

  10. Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis.

    Science.gov (United States)

    Kaushansky, A; Metzger, P G; Douglass, A N; Mikolajczak, S A; Lakshmanan, V; Kain, H S; Kappe, S Hi

    2013-08-08

    Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.

  11. Host genetic factors in susceptibility to HIV-1 infection and ...

    Indian Academy of Sciences (India)

    to influence the rate of AIDS progression in HIV-1 infected individuals. The candidate host genes suspected to influence the rate of progression from HIV to AIDS can be divided into three categories: (i) genes encoding cell-surface receptors or lig- ands for these proteins; (ii) genes within human leukocyte antigens (HLA) that ...

  12. Do parasitic trematode cercariae demonstrate a preference for susceptible host species?

    Directory of Open Access Journals (Sweden)

    Brittany F Sears

    Full Text Available Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo terrestris (southern toad, Hyla squirella (squirrel tree frog, Lithobates ( = Rana sphenocephala (southern leopard frog, and Osteopilus septentrionalis (Cuban tree frog. These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen "arms race" between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.

  13. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  14. A Game of Russian Roulette for a Generalist Dinoflagellate Parasitoid: Host Susceptibility Is the Key to Success.

    Science.gov (United States)

    Alacid, Elisabet; Park, Myung G; Turon, Marta; Petrou, Katherina; Garcés, Esther

    2016-01-01

    Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading to species exclusion. If

  15. A game of Russian roulette for a generalist dinoflagellate parasitoid: host susceptibility is the key to success

    Directory of Open Access Journals (Sweden)

    Elisabet eAlacid

    2016-05-01

    Full Text Available Marine microbial interactions involving eukaryotes and their parasites play an important role in shaping the structure of phytoplankton communities. These interactions may alter population densities of the main host, which in turn may have consequences for the other concurrent species. The effect generalist parasitoids exert on a community is strongly dependent on the degree of host specificity. Parvilucifera sinerae is a generalist parasitoid able to infect a wide range of dinoflagellates, including toxic-bloom-forming species. A density-dependent chemical cue has been identified as the trigger for the activation of the infective stage. Together these traits make Parvilucifera-dinoflagellate hosts a good model to investigate the degree of specificity of a generalist parasitoid, and the potential effects that it could have at the community level. Here, we present for the first time, the strategy by which a generalist dinoflagellate parasitoid seeks out its host and determine whether it exhibits host preferences, highlighting key factors in determining infection. Our results demonstrate that in its infective stage, P. sinerae is able to sense potential hosts, but does not actively select among them. Instead, the parasitoids contact the host at random, governed by the encounter probability rate and once encountered, the chance to penetrate inside the host cell and develop the infection strongly depends on the degree of host susceptibility. As such, their strategy for persistence is more of a game of Russian roulette, where the chance of survival is dependent on the susceptibility of the host. Our study identifies P. sinerae as a potential key player in bloom community ecology, where in mixed dinoflagellate communities consisting of hosts that are highly susceptible to infection, parasitoid preferences may mediate coexistence between host species, reducing the dominance of the superior competitor. Alternatively, it may increase competition, leading

  16. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Science.gov (United States)

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  17. Host phenology and leaf effects on susceptibility of California bay laurel to Phytophthora ramorum

    Science.gov (United States)

    Steven F. Johnston; Michael F. Cohen; Tamas Torok; Ross K. Meentemeyer; Nathan E. Rank

    2016-01-01

    Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to

  18. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Rebollar, Eria A; Hughey, Myra C; Medina, Daniel; Harris, Reid N; Ibáñez, Roberto; Belden, Lisa K

    2016-07-01

    Symbiotic bacteria on amphibian skin can inhibit growth of the fungus Batrachochytrium dendrobatidis (Bd) that has caused dramatic population declines and extinctions of amphibians in the Neotropics. It remains unclear how the amphibians' skin microbiota is influenced by environmental bacterial reservoirs, host-associated factors such as susceptibility to pathogens, and pathogen presence in tropical amphibians. We sampled skin bacteria from five co-occurring frog species that differ in Bd susceptibility at one Bd-naive site, and sampled one of the non-susceptible species from Bd-endemic and Bd-naive sites in Panama. We hypothesized that skin bacterial communities (1) would be distinct from the surrounding environment regardless of the host habitat, (2) would differ between Bd susceptible and non-susceptible species and (3) would differ on hosts in Bd-naive and Bd-endemic sites. We found that skin bacterial communities were enriched in bacterial taxa that had low relative abundances in the environment. Non-susceptible species had very similar skin bacterial communities that were enriched in particular taxa such as the genera Pseudomonas and Acinetobacter. Bacterial communities of Craugastor fitzingeri in Bd-endemic sites were less diverse than in the naive site, and differences in community structure across sites were explained by changes in relative abundance of specific bacterial taxa. Our results indicate that skin microbial structure was associated with host susceptibility to Bd and might be associated to the history of Bd presence at different sites.

  19. Salmonella - at home in the host cell.

    Directory of Open Access Journals (Sweden)

    Preeti eMalik Kale

    2011-06-01

    Full Text Available The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic trigger-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS, although T3SS-independent mechanisms of entry may be important for invasion of certain host cell-types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.

  20. Host susceptibility of citrus cultivars to Queensland fruit fly (Diptera: Tephritidae).

    Science.gov (United States)

    Lloyd, A C; Hamacek, E L; Smith, D; Kopittke, R A; Gu, H

    2013-04-01

    Citrus crops are considered to be relatively poor hosts for Queensland fruit fly, Bactrocera tryoni (Froggatt), as for other tephritid species. Australian citrus growers and crop consultants have reported observable differences in susceptibility of different citrus cultivars under commercial growing conditions. In this study we conducted laboratory tests and field surveys to determine susceptibility to B. tryoni of six citrus cultivars [(Eureka lemon (Citrus limon (L.) Osbeck); Navel and Valencia oranges (C. sinensis (L.) Osbeck); and Imperial, Ellendale, and Murcott mandarins (C. reticulata Blanco). The host susceptibility of these citrus cultivars was quantified by a Host Susceptibility Index, which is defined as the number of adult flies produced per gram of fruit infested at a calculated rate of one egg per gram of fruit. The HSI was ranked as Murcott (0.083) > Imperial (0.052) > Navel (0.026) - Ellendale (0.020) > Valencia (0.008) > Eureka (yellow) (0.002) > Eureka (green) (0). Results of the laboratory study were in agreement with the level of field infestation in the four citrus cultivars (Eureka lemon, Imperial, Ellendale, and Murcott mandarins) that were surveyed from commercial orchards under baiting treatments against fruit flies in the Central Burnett district of Queensland. Field surveys of citrus hosts from the habitats not subject to fruit fly management showed that the numbers of fruit flies produced per gram of fruit were much lower, compared with the more susceptible noncitrus hosts, such as guava (Psidium guajava L.), cherry guava (P. littorale Raddi), mulberry (Morus nigra L.), loquat (Eriobotrya japonica (Thunb.) Lindl.), and pear (Pyrus communis L.). Therefore, the major citrus crops commercially cultivated in Australia have a relatively low susceptibility to B. tryoni, with Eureka lemons being a particularly poor host for this tephritid fruit fly.

  1. Plasmodium spp.: an experimental study on vertebrate host susceptibility to avian malaria.

    Science.gov (United States)

    Dimitrov, Dimitar; Palinauskas, Vaidas; Iezhova, Tatjana A; Bernotienė, Rasa; Ilgūnas, Mikas; Bukauskaitė, Dovile; Zehtindjiev, Pavel; Ilieva, Mihaela; Shapoval, Anatoly P; Bolshakov, Casimir V; Markovets, Mikhail Yu; Bensch, Staffan; Valkiūnas, Gediminas

    2015-01-01

    The interest in experimental studies on avian malaria caused by Plasmodium species has increased recently due to the need of direct information about host-parasite interactions. Numerous important issues (host susceptibility, development of infection, the resistance and tolerance to avian malaria) can be answered using experimental infections. However, specificity of genetically different lineages of malaria parasites and their isolates is largely unknown. This study reviews recent experimental studies and offers additional data about susceptibility of birds to several widespread cytochrome b (cyt b) lineages of Plasmodium species belonging to four subgenera. We exposed two domesticated avian hosts (canaries Serinus canaria and ducklings Anas platyrhynchos) and also 16 species of common wild European birds to malaria infections by intramuscular injection of infected blood and then tested them by microscopic examination and PCR-based methods. Our study confirms former field and experimental observations about low specificity and wide host-range of Plasmodium relictum (lineages SGS1 and GRW11) and P. circumflexum (lineage TURDUS1) belonging to the subgenera Haemamoeba and Giovannolaia, respectively. However, the specificity of different lineages and isolates of the same parasite lineage differed between species of exposed hosts. Several tested Novyella lineages were species specific, with a few cases of successful development in experimentally exposed birds. The majority of reported cases of mortality and high parasitaemia were observed during parasite co-infections. Canaries were susceptible mainly for the species of Haemamoeba and Giovannolaia, but were refractory to the majority of Novyella isolates. Ducklings were susceptible to three malaria infections (SGS1, TURDUS1 and COLL4), but parasitaemia was light (<0.01%) and transient in all exposed birds. This study provides novel information about susceptibility of avian hosts to a wide array of malaria parasite

  2. Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts.

    Directory of Open Access Journals (Sweden)

    Luciana de Lima Ferreira

    Full Text Available Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts.

  3. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2009-01-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays multis...... in PBMCs was investigated throughout the acute infections. We observed Th1- and Th2-type cytokine responses beginning in the prodromal phase, and late inflammatory responses were shared between the wild-type infections.......The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays...... multisystemic infection similar to measles virus (MV) and rinderpest virus (RPV) infections in their susceptible natural hosts. The wild-type CDVs investigated provoked marked virulence differences inducing mild versus marked to severe acute disease. The mildly virulent wild-type induced transient lymphopenia...

  4. Unveiling time in dose-response models to infer host susceptibility to pathogens.

    Directory of Open Access Journals (Sweden)

    Delphine Pessoa

    2014-08-01

    Full Text Available The biological effects of interventions to control infectious diseases typically depend on the intensity of pathogen challenge. As much as the levels of natural pathogen circulation vary over time and geographical location, the development of invariant efficacy measures is of major importance, even if only indirectly inferrable. Here a method is introduced to assess host susceptibility to pathogens, and applied to a detailed dataset generated by challenging groups of insect hosts (Drosophila melanogaster with a range of pathogen (Drosophila C Virus doses and recording survival over time. The experiment was replicated for flies carrying the Wolbachia symbiont, which is known to reduce host susceptibility to viral infections. The entire dataset is fitted by a novel quantitative framework that significantly extends classical methods for microbial risk assessment and provides accurate distributions of symbiont-induced protection. More generally, our data-driven modeling procedure provides novel insights for study design and analyses to assess interventions.

  5. Susceptibility of cell lines to avian viruses

    Directory of Open Access Journals (Sweden)

    Simoni Isabela Cristina

    1999-01-01

    Full Text Available The susceptibility of the five cell lines - IB-RS-2, RK-13, Vero, BHK-21, CER - to reovirus S1133 and infectious bursal disease virus (IBDV vaccine GBV-8 strain was studied to better define satisfactory and sensitive cell culture systems. Cultures were compared for presence of CPE, virus titers and detection of viral RNA. CPE and viral RNA were detected in CER and BHK-21 cells after reovirus inoculation and in RK-13 cell line after IBDV inoculation and with high virus titers. Virus replication by production of low virus titers occurred in IB-RS-2 and Vero cells with reovirus and in BHK-21 cell line with IBDV.

  6. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  7. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis

    OpenAIRE

    Zhi Liu; Wenshu Liu; Chao Ran; Jun Hu; Zhigang Zhou

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A...

  8. Parvoviral host range and cell entry mechanisms.

    Science.gov (United States)

    Cotmore, Susan F; Tattersall, Peter

    2007-01-01

    Parvoviruses elaborate rugged nonenveloped icosahedral capsids of approximately 260 A in diameter that comprise just 60 copies of a common core structural polypeptide. While serving as exceptionally durable shells, capable of protecting the single-stranded DNA genome from environmental extremes, the capsid also undergoes sequential conformational changes that allow it to translocate the genome from its initial host cell nucleus all the way into the nucleus of its subsequent host. Lacking a duplex transcription template, the virus must then wait for its host to enter S-phase before it can initiate transcription and usurp the cell's synthetic pathways. Here we review cell entry mechanisms used by parvoviruses. We explore two apparently distinct modes of host cell specificity, first that used by Minute virus of mice, where subtle glycan-specific interactions between host receptors and residues surrounding twofold symmetry axes on the virion surface mediate differentiated cell type target specificity, while the second involves novel protein interactions with the canine transferrin receptor that allow a mutant of the feline leukopenia serotype, Canine parvovirus, to bind to and infect dog cells. We then discuss conformational shifts in the virion that accompany cell entry, causing exposure of a capsid-tethered phospholipase A2 enzymatic core that acts as an endosomolytic agent to mediate virion translocation across the lipid bilayer into the cell cytoplasm. Finally, we discuss virion delivery into the nucleus, and consider the nature of transcriptionally silent DNA species that, escaping detection by the cell, might allow unhampered progress into S-phase and hence unleash the parvoviral Trojan horse.

  9. [Susceptibilities of Oncomelania hupensis snails to Schistosoma japonicum miracidia from different hosts].

    Science.gov (United States)

    Tian, Yue; Wang, Tian-Ping; Wang, Qi-Zhi; Lv, Da-Bing; Yin, Xiao-Mei; Zhou, Li; Wang, Zhen-Li; Wang, Feng-Feng; Wang, Yue; Zhang, Le-Sheng

    2011-08-01

    To understand the susceptibilities of Oncomelania hupensis snails to Schistosoma japonicum miracidia from different hosts. The Schistosoma japonicum eggs from different hosts, such as rabbits, cattle and mice were collected. These eggs were incubated for miracidia, respectively. Each snail from the same site was exposed to 5 miracidia of Schistosoma japonicum from different hosts. The infected snails were fed in the laboratory for two months. Then all the snails were dissected and observed under the dissecting microscope in order to know the infection rate of snails. In the experiment group, the infection rates of snails infected with miracidia from rabbits, cattle and mice were 1.42%, 8.67% and 19.87%, respectively, the mortality rates were 29.5%, 13.5% and 24.5%, respectively. However, the infection rates of snails in the control group were 2.63%, 2.02% and 11.66%, respectively, and the mortality rates were 24.0%, 49.5% and 18.5%, respectively. The susceptibilities of Oncomelania snails to Schistosoma japonicum miracidia from 3 kinds of hosts are significantly different.

  10. AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition.

    Science.gov (United States)

    Chassaing, Benoit; Koren, Omry; Carvalho, Frederic A; Ley, Ruth E; Gewirtz, Andrew T

    2014-07-01

    Inflammatory bowel disease (IBD) is driven by a seemingly aberrant immune response to the gut microbiota with disease development dictated by genetics and environmental factors. A model exemplifying this notion is our recent demonstration that colonisation of adherent-invasive Escherichia coli (AIEC) during microbiota acquisition drove chronic colitis in mice lacking the flagellin receptor TLR5 (T5KO). T5KO colitis persisted beyond AIEC clearance and requires TLR4 and the NLRC4 inflammasome. We hypothesised that AIEC instigates chronic inflammation by increasing microbial lipopolysaccharide (LPS) and flagellin levels. Examine if transient AIEC colonisation lastingly alters levels of LPS and flagellin and changes microbiota composition. Germ-free mice (wild type (WT) and T5KO) were inoculated with AIEC strain LF82 and placed in standard housing allowing a complex microbiota that eliminated AIEC in both mice strains. Faeces were assayed for the inflammatory marker, lipocalin-2, bacterial loads, and microbiota composition by pyrosequencing. Faecal LPS and flagellin bioactivity were measured via a cell-based reporter assay. Transient AIEC colonisation, in WT mice, did not alter inflammatory markers, bacterial loads, microbiota composition, nor its pro-inflammatory potential. By contrast, transient AIEC colonisation of T5KO mice drove chronic inflammation which correlated with microbiota components having higher levels of bioactive LPS and flagellin. Such AIEC-induced elevation of LPS and flagellin persisted well beyond AIEC clearance, required AIEC be flagellated, and was associated with alteration in microbiota species composition including a loss of species diversity. AIEC, and perhaps other pathobionts, may instigate chronic inflammation in susceptible hosts by altering the gut microbiota composition so as to give it an inherently greater ability to activate innate immunity/pro-inflammatory gene expression. Published by the BMJ Publishing Group Limited. For

  11. Tuberculosis Susceptibility and Vaccine Protection Are Independently Controlled by Host Genotype.

    Science.gov (United States)

    Smith, Clare M; Proulx, Megan K; Olive, Andrew J; Laddy, Dominick; Mishra, Bibhuti B; Moss, Caitlin; Gutierrez, Nuria Martinez; Bellerose, Michelle M; Barreira-Silva, Palmira; Phuah, Jia Yao; Baker, Richard E; Behar, Samuel M; Kornfeld, Hardy; Evans, Thomas G; Beamer, Gillian; Sassetti, Christopher M

    2016-09-20

    The outcome of Mycobacterium tuberculosis infection and the immunological response to the bacillus Calmette-Guerin (BCG) vaccine are highly variable in humans. Deciphering the relative importance of host genetics, environment, and vaccine preparation for the efficacy of BCG has proven difficult in natural populations. We developed a model system that captures the breadth of immunological responses observed in outbred individual mice, which can be used to understand the contribution of host genetics to vaccine efficacy. This system employs a panel of highly diverse inbred mouse strains, consisting of the founders and recombinant progeny of the "Collaborative Cross" project. Unlike natural populations, the structure of this panel allows the serial evaluation of genetically identical individuals and the quantification of genotype-specific effects of interventions such as vaccination. When analyzed in the aggregate, our panel resembled natural populations in several important respects: the animals displayed a broad range of susceptibility to M. tuberculosis, differed in their immunological responses to infection, and were not durably protected by BCG vaccination. However, when analyzed at the genotype level, we found that these phenotypic differences were heritable. M. tuberculosis susceptibility varied between lines, from extreme sensitivity to progressive M. tuberculosis clearance. Similarly, only a minority of the genotypes was protected by vaccination. The efficacy of BCG was genetically separable from susceptibility to M. tuberculosis, and the lack of efficacy in the aggregate analysis was driven by nonresponsive lines that mounted a qualitatively distinct response to infection. These observations support an important role for host genetic diversity in determining BCG efficacy and provide a new resource to rationally develop more broadly efficacious vaccines. Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB

  12. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis

    Science.gov (United States)

    Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596

  13. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  14. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance.

    Directory of Open Access Journals (Sweden)

    Maëlle Jaouannet

    2015-05-01

    Full Text Available Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants.

  15. Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation of susceptible dog hosts is reduced by slow release of semiochemicals from a less susceptible host.

    Science.gov (United States)

    de Oliveira Filho, Jaires Gomes; Ferreira, Lorena Lopes; Sarria, André Lucio Franceschini; Pickett, John A; Birkett, Michael A; Mascarin, Gabriel Moura; de León, Adalberto A Pérez; Borges, Lígia Miranda Ferreira

    2017-01-01

    Domestic dog breeds are hosts for the brown dog tick, Rhipicephalus sanguineus sensu lato, but infestation levels vary among breeds. Beagles are less susceptible to tick infestations than English cocker spaniels due to enhanced production of 2-hexanone and benzaldehyde that act as volatile tick repellents. We report the use of prototype slow-release formulations of these compounds to reduce the burden of R. sanguineus s. l. on English cocker spaniel dogs. Twelve dogs were randomly assigned to two groups with six dogs each. The treated group received collars with slow-release formulations of the compounds attached, while the control group received collars with clean formulations attached. Five environmental infestations were performed, with the number of ticks (at all stages) on the dogs being counted twice a day for 45days. The counts on the number of tick stages found per dog were individually fitted to linear mixed effects models with repeated measures and normal distribution for errors. The mean tick infestation in the treated group was significantly lower than in the control group. For larvae and nymphs, a decrease in tick infestation was observed at the fifth count, and for adults, lower average counts were observed in all counts. The compounds did not interfere with the distribution of the ticks on the body of the dogs, as a similar percentage of ticks was found on the anterior half of the dogs (54.5% for the control group and 56.2% for the treated group). The biological and reproductive parameters of the ticks were not affected by the repellents. This study highlights for the first time the potential use of a novel allomone (repellent)-based formulation for reduction of tick infestation on susceptible dogs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Centrality of host cell death in plant-microbe interactions.

    Science.gov (United States)

    Dickman, Martin B; Fluhr, Robert

    2013-01-01

    Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.

  17. Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection.

    Science.gov (United States)

    Bastos, Reginaldo G; Howard, Zachary P; Hiroyasu, Aoi; Goodman, Alan G

    2017-07-01

    Coxiella burnetii is the causative agent of Q fever, a zoonotic disease that threatens both human and animal health. Due to the paucity of experimental animal models, little is known about how host factors interface with bacterial components and affect pathogenesis. Here, we used Drosophila melanogaster, in conjunction with the biosafety level 2 (BSL2) Nine Mile phase II (NMII) clone 4 strain of C. burnetii, as a model to investigate host and bacterial components implicated in infection. We demonstrate that adult Drosophila flies are susceptible to C. burnetii NMII infection and that this bacterial strain, which activates the immune deficiency (IMD) pathway, is able to replicate and cause mortality in the animals. We show that in the absence of Eiger, the only known tumor necrosis factor (TNF) superfamily homolog in Drosophila, Coxiella-infected flies exhibit reduced mortality from infection. We also demonstrate that the Coxiella type 4 secretion system (T4SS) is critical for the formation of the Coxiella-containing vacuole and establishment of infection in Drosophila Altogether, our data reveal that the Drosophila TNF homolog Eiger and the Coxiella T4SS are implicated in the pathogenesis of C. burnetii in flies. The Drosophila/NMII model mimics relevant aspects of the infection in mammals, such as a critical role of host TNF and the bacterial T4SS in pathogenesis. Our work also demonstrates the usefulness of this BSL2 model to investigate both host and Coxiella components implicated in infection. Copyright © 2017 American Society for Microbiology.

  18. Paediatric medulloblastoma cells are susceptible to Viscum album (Mistletoe) preparations.

    Science.gov (United States)

    Zuzak, T J; Rist, L; Eggenschwiler, J; Grotzer, M A; Viviani, A

    2006-01-01

    Medulloblastoma constitute more than 20% of all paediatric brain tumours and are the most common malignant brain tumours in children. Adjuvant chemotherapy has seen a strong increase in the use of complementary medicine for cancer treatment. Evidence for cytotoxic and apoptotic effects of Viscum album (Mistletoe) in vitro is available, however, no data concerning paediatric tumours, especially paediatric brain tumours, has been provided so far. In order to compare the receptiveness of medulloblastoma cells to different Viscum album preparations, in vitro cytotoxic effects of eight Viscum album extracts on four different paediatric medulloblastoma cell lines were analysed by MTT-Tests. Lectin contents of the extracts were determined to correlate them with the mitochondrial activity of mistletoe-treated cells. Flowcytometric analyses with Annexin V-FITC staining were carried out to quantify the amount of apoptotic cells compared to necrotic and viable cells. Data obtained with the medulloblastoma cell lines, Daoy, D342, D425 and UW-288-2, treated with Viscum album preparations from eight dissimilar host trees (Iscucin Abietis, Pini, Populi, Mali, Salicis, Crataegi, Quercus and Tiliae), indicated a significant growth-inhibition of all cell lines, yet the cell susceptibility was dissimilar against the different extracts. The decrease in mitochondrial activity and increase in apoptosis correlated with the lectin content of the used preparation in a dose-dependent manner. These in vitro results show that paediatric medulloblastoma cells respond to Viscum album preparations, by undergoing cell death through apoptosis and that this growth-inhibition correlates with the lectin content of the used preparation.

  19. A murine model for cerebral toxocariasis: characterization of host susceptibility and behaviour.

    Science.gov (United States)

    Hamilton, C M; Stafford, P; Pinelli, E; Holland, C V

    2006-06-01

    Toxocara canis, the parasitic roundworm of dogs, can infect a number of paratenic hosts, such as mice and humans, due to the widespread dissemination of its ova in the environment. In these paratenic hosts, larvae have been shown to exhibit a predilection for the central nervous system, resulting in an increasing number of parasites migrating to the brain as infection progresses. In an initial experiment, we investigated the differential brain involvement of T. canis in 7 strains of inbred mice, and chose 2 strains, susceptible (BALB/c) and resistant (NIH) to cerebral infection. In a second experiment, both strains were investigated in terms of course of migration, larval accumulation, and behavioural response to T. canis infection. Results revealed that infected BALB/c mice took significantly longer to drink from a water source (following a period of deprivation), compared with control mice, indicating some degree of memory impairment. Cerebral larval recoveries from both strains of mice demonstrated variation between the two experiments, suggesting that larval burdens may not be a reliable indicator of susceptibility or resistance to T. canis infection. The percentage of total recovered larvae in each organ may be a better representation of larval distribution. Our model system may provide insights into the impact of chronic geohelminth infection on cognitive development.

  20. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  1. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Groen, Simon C; Jiang, Sanjie; Murphy, Alex M; Cunniffe, Nik J; Westwood, Jack H; Davey, Matthew P; Bruce, Toby J A; Caulfield, John C; Furzer, Oliver J; Reed, Alison; Robinson, Sophie I; Miller, Elizabeth; Davis, Christopher N; Pickett, John A; Whitney, Heather M; Glover, Beverley J; Carr, John P

    2016-08-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  2. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  3. Concepts of papillomavirus entry into host cells.

    Science.gov (United States)

    Day, Patricia M; Schelhaas, Mario

    2014-02-01

    Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    Science.gov (United States)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  5. The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases

    Science.gov (United States)

    Antonissen, Gunther; Martel, An; Pasmans, Frank; Ducatelle, Richard; Verbrugghe, Elin; Vandenbroucke, Virginie; Li, Shaoji; Haesebrouck, Freddy; Van Immerseel, Filip; Croubels, Siska

    2014-01-01

    Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well. PMID:24476707

  6. Cryptosporidium parvum Infection Requires Host Cell Actin Polymerization

    OpenAIRE

    Elliott, David A.; Coleman, Daniel J.; Lane, Michael A.; May, Robin C.; Machesky, Laura M.; Clark, Douglas P.

    2001-01-01

    The intracellular protozoan parasite Cryptosporidium parvum accumulates host cell actin at the interface between the parasite and the host cell cytoplasm. Here we show that the actin polymerizing proteins Arp2/3, vasodilator-stimulated phosphoprotein (VASP), and neural Wiskott Aldrich syndrome protein (N-WASP) are present at this interface and that host cell actin polymerization is necessary for parasite infection.

  7. Cryptosporidium parvum infection requires host cell actin polymerization.

    Science.gov (United States)

    Elliott, D A; Coleman, D J; Lane, M A; May, R C; Machesky, L M; Clark, D P

    2001-09-01

    The intracellular protozoan parasite Cryptosporidium parvum accumulates host cell actin at the interface between the parasite and the host cell cytoplasm. Here we show that the actin polymerizing proteins Arp2/3, vasodilator-stimulated phosphoprotein (VASP), and neural Wiskott Aldrich syndrome protein (N-WASP) are present at this interface and that host cell actin polymerization is necessary for parasite infection.

  8. Counting Legionella cells within single amoeba host cells

    Science.gov (United States)

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  9. Resistance and Susceptibility to Malarial Infection: A Host De¬fense Strategy against Malaria

    Directory of Open Access Journals (Sweden)

    Hanaa BAKIR

    2015-12-01

    Full Text Available Background: In an effort to understand what limits the virulence of malaria para­sites in relation to the host genetic and immunogenic background, we investi­gated the possibility that the parasite and host genotype crossover interac­tions constrain virulence.Methods: Two groups of mice from different genotypes were used (C57BL/6 (B6 and DBA/2 mice. The mice were infected with a virulent parasite line Plasmo­dium yoelii17XL (P. yoelii17XL. Parasitemia, hematocrit value and lympho­cytes yielded by livers and spleens were evaluated. Fluorescence Activated Cell Sorting (FACS analysis illustrated phenotypic characterization of lymphocytes.Results: Infection with P. yoelii17XL did not result in thedeath of DBA/2 mice. In contrast,B6 mice developed significantly high parasitemia and succumbed to death. Using (FACS analysis, DBA/2 mice were found to experience a marked expansion of interleukin (IL-2Rb+ CD3int cells and gd T cells in the liver, espe­cially in the recovery phase. The expansion of unconventional T cells (i.e. B220+ T cells was also marked in DBA/2 mice.Conclusion: The outcome of murine malaria infections depends on the dynamic interplay between the immune-mediator and the genotype of the host.

  10. Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation ofsusceptible dog hosts is reduced by slow release of semiochemicalsfrom a less susceptible host

    Science.gov (United States)

    Domestic dog breeds are hosts for the tick Rhipicephalus sanguineus sensu lato, but infestation levels vary among breeds. Beagles are less susceptible to tick infestations than English cocker spaniels due to enhanced production of 2-hexanone and benzaldehyde that act as tick repellents. We report th...

  11. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation.

    Directory of Open Access Journals (Sweden)

    Rowena Y Kelley

    Full Text Available BACKGROUND: Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. RESULTS: Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04:86 in contrast to two susceptible maize inbred lines (Va35 and B73 by microarray analysis. Principal component analysis (PCA was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. CONCLUSION: Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines

  12. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone

    2017-12-20

    In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether-and to what extent-ecological interactions can mediate species\\' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.

  13. In vitro susceptibility of goat mononuclear cells to bluetongue virus.

    Science.gov (United States)

    Garg, A K; Prasad, G

    1996-08-01

    Goat peripheral blood mononuclear cells were cultured and their susceptibility to bluetongue virus (BTV) serotype 1 was tested. A small number of adherent and non-adherent cells were found positive for BTV antigens by immunoperoxidase and immunofluorescence tests. Both adherent and non-adherent cells supported limited level of viral replication as evidenced by low titre in the biological assay, thus indicating their susceptibility.

  14. An integrated transcriptomic and meta-analysis of hepatoma cells reveals factors that influence susceptibility to HCV infection.

    Directory of Open Access Journals (Sweden)

    Jamie I MacPherson

    Full Text Available Hepatitis C virus (HCV is a global problem. To better understand HCV infection researchers employ in vitro HCV cell-culture (HCVcc systems that use Huh-7 derived hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-permissive cells have been subcloned for this purpose. In addition, subclones of Huh-7 which have evolved resistance to HCV are available. However, the mechanisms of susceptibility or resistance to infection among these cells have not been fully determined. In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell cultures that have different levels of permissiveness to infection. A great number of genes, representing a wide spectrum of functions are differentially expressed between cells. To focus our investigation, we identify host proteins from HCV replicase complexes, perform gene expression analysis of three HCV infected cells and conduct a detailed analysis of differentially expressed host factors by integrating a variety of data sources. Our results demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells are linked to the innate immune response, secreted signal peptides and host factors that have a role in virus entry and replication. This work identifies both known and novel host factors that may influence HCV infection. Our findings build upon current knowledge of the complex interplay between HCV and the host cell, which could aid development of new antiviral strategies.

  15. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines.

    Science.gov (United States)

    Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E

    2013-01-01

    To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.

  16. Repeated Schistosoma japonicum infection following treatment in two cohorts: evidence for host susceptibility to helminthiasis?

    Directory of Open Access Journals (Sweden)

    Elizabeth J Carlton

    Full Text Available In light of multinational efforts to reduce helminthiasis, we evaluated whether there exist high-risk subpopulations for helminth infection. Such individuals are not only at risk of morbidity, but may be important parasite reservoirs and appropriate targets for disease control interventions.We followed two longitudinal cohorts in Sichuan, China to determine whether there exist persistent human reservoirs for the water-borne helminth, Schistosoma japonicum, in areas where treatment is ongoing. Participants were tested for S. japonicum infection at enrollment and two follow-up points. All infections were promptly treated with praziquantel. We estimated the ratio of the observed to expected proportion of the population with two consecutive infections at follow-up. The expected proportion was estimated using a prevalence-based model and, as highly exposed individuals may be most likely to be repeatedly infected, a second model that accounted for exposure using a data adaptive, machine learning algorithm. Using the prevalence-based model, there were 1.5 and 5.8 times more individuals with two consecutive infections than expected in cohorts 1 and 2, respectively (p<0.001 in both cohorts. When we accounted for exposure, the ratio was 1.3 (p = 0.013 and 2.1 (p<0.001 in cohorts 1 and 2, respectively.We found clustering of infections within a limited number of hosts that was not fully explained by host exposure. This suggests some hosts may be particularly susceptible to S. japonicum infection, or that uncured infections persist despite treatment. We propose an explanatory model that suggests that as cercarial exposure declines, so too does the size of the vulnerable subpopulation. In low-prevalence settings, interventions targeting individuals with a history of S. japonicum infection may efficiently advance disease control efforts.

  17. Comparative susceptibility of vero and baby hamster kidney cell ...

    African Journals Online (AJOL)

    This study was undertaken to assess the comparative susceptibility of the different cell lines to PPRV using virus isolation by Vero and BHK cell lines from field samples. The inoculated BHK and Vero cells supported the growth of the virus with syncytia formation more commonly observed in the BHK cells while vacuolation ...

  18. Effects of Non-Susceptible Hosts on the Infection with Trypanosoma cruzi of the Vector Triatoma infestans: an Experimental Model

    Directory of Open Access Journals (Sweden)

    Vázquez Diego P

    1999-01-01

    Full Text Available We tested experimentally the effects of the presence of non-susceptible hosts on the infection with Trypanosoma cruzi of the vector Triatoma infestans. The experiment consisted in two treatments: with chickens, including two chickens (non-susceptible hosts and two infected guinea pigs (susceptible hosts, and without chickens, including only two infected guinea pigs. The hosts were held unrestrained in individual metal cages inside a closed tulle chamber. A total of 200 uninfected T. infestans third instar nymphs were liberated in each replica, collected on day 14, and examined for infection and blood meal sources on day 32-36. The additional presence of chickens relative to infected guinea pigs: (a significantly modified the spatial distribution of bugs; (b increased significantly the likelihoods of having a detectable blood meal on any host and molting to the next instar; (c did not affect the bugs' probability of death by predation; and (d decreased significantly the overall percentage of T. infestans infected with T. cruzi. The bugs collected from inside or close to the guinea pigs' cages showed a higher infection rate (71-88% than those collected from the chickens' cages (22-32%. Mixed blood meals on chickens and guinea pigs were detected in 12-21% of bugs. Although the presence of chickens would decrease the overall percentage of infected bugs in short term experiments, the high rate of host change of T. infestans would make this difference fade out if longer exposure times had been provided.

  19. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  20. Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles.

    Science.gov (United States)

    Hickey, Christina A; Kuhn, Kristine A; Donermeyer, David L; Porter, Nathan T; Jin, Chunsheng; Cameron, Elizabeth A; Jung, Haerin; Kaiko, Gerard E; Wegorzewska, Marta; Malvin, Nicole P; Glowacki, Robert W P; Hansson, Gunnar C; Allen, Paul M; Martens, Eric C; Stappenbeck, Thaddeus S

    2015-05-13

    Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A low frequency persistent reservoir of a genomic island in a pathogen population ensures island survival and improves pathogen fitness in a susceptible host.

    Science.gov (United States)

    Neale, Helen C; Laister, Robert; Payne, Joseph; Preston, Gail; Jackson, Robert W; Arnold, Dawn L

    2016-11-01

    The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Host resistance imposes stress on invading pathogens that can lead to changes in the bacterial genome enabling the pathogen to escape host resistance. We have observed this phenomenon with the plant pathogen Pseudomonas syringae pv. phaseolicola where isolates that have lost the genomic island PPHGI-1 carrying the effector gene avrPphB from its chromosome are infective against previously resistant plant hosts. However, we have never observed island extinction from the pathogen population within a host suggesting the island is maintained. Here, we present a mathematical model which predicts different possible fates for the island in the population; one outcome indicated that PPHGI-1 would be maintained at low frequency in the population long term, if it confers a fitness benefit. We empirically tested this prediction and determined that PPHGI-1 frequency in the bacterial population drops to a low but consistently detectable level during host resistance. Once PPHGI-1-carrying cells encounter a susceptible host, they rapidly increase in the population in a negative frequency-dependent manner. Importantly, our data show that mobile genetic elements can persist within the bacterial population and increase in frequency under favourable conditions. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Susceptibility of human liver cells to porcine endogenous retrovirus.

    Science.gov (United States)

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  3. Invasion of Eukaryotic Cells by Legionella Pneumophila: A Common Strategy for all Hosts?

    Directory of Open Access Journals (Sweden)

    Paul S Hoffman

    1997-01-01

    Full Text Available Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.

  4. Papillon-Lefevre syndrome, Genetic aspects of host susceptibility & treatment modalities- A case report

    Directory of Open Access Journals (Sweden)

    Rad Afshar G.

    2002-08-01

    Full Text Available Diagnosis and treatment of patients with periodontitis as a manifestation of systemic diseases"nis of especial concern to the periodontist, especially those associated with genetic disorders, which have"npoor prognosis. With aggressive progression of periodontal bone and attachment loss, a patient could be"na partial or total edentulous early in life."nThe aim of this article was to report a case of Papillon-Lefevre syndrome (PLS with generalized"nprepubertal periodontitis (GPPP. A ten-year old boy for whom active periodontal treatment and"nsubsequent maintenance recalls was performed for five years since the diagnosis of PLS. Treatment"nprocedures included: precise mechanical instrumentation at several visits, periodontal surgery, adjunctive"nserial systemic antibiotic therapy, professional irrigation of pockets with 0/2% chlorhexidine solution and"nperiodic maintenance recall visits. In spite of all of these, progressive course of the disease continued"nuntil the patient was fifteen and edentulous. Unfortunately association of GPPP with systemic"nunmanageable condition or diseases has caused refractory periodontitis, which yet has no proven and"nreliable treatment protocol. Besides, this article has discussed more successful treatment modalities for"nPLS with GPPP and the genetic aspects of host susceptibility, which is a complicated and challenging"nfield.

  5. Pathogen development and host responses to Plasmopara viticola in resistant and susceptible grapevines: an ultrastructural study.

    Science.gov (United States)

    Yin, Xiao; Liu, Rui-Qi; Su, Hang; Su, Li; Guo, Yu-Rui; Wang, Zi-Jia; Du, Wei; Li, Mei-Jie; Zhang, Xi; Wang, Yue-Jin; Liu, Guo-Tian; Xu, Yan

    2017-01-01

    The downy mildew disease in grapevines is caused by Plasmopara viticola. This disease poses a serious threat wherever viticulture is practiced. Wild Vitis species showing resistance to P. viticola offer a promising pathway to develop new grapevine cultivars resistant to P. viticola which will allow reduced use of environmentally unfriendly fungicides. Here, transmission and scanning microscopy was used to compare the resistance responses to downy mildew of three resistant genotypes of V. davidii var. cyanocarpa, V. piasesezkii and V. pseudoreticulata and the suceptible V. vinifera cultivar 'Pinot Noir'. Following inoculation with sporangia of P. viticola isolate 'YL' on V. vinifera cv. 'Pinot Noir', the infection was characterized by a rapid spread of intercellular hyphae, a high frequency of haustorium formation within the host's mesophyll cells, the production of sporangia and by the absence of host-cell necrosis. In contrast zoospores were collapsed in the resistant V. pseudoreticulata 'Baihe-35-1', or secretions appeared arround stomata at the beginning of the infection period in V. davidii var. cyanocarpa 'Langao-5' and V. piasezkii 'Liuba-8'. The main characteristics of the resistance responses were the rapid depositions of callose and the appearance of empty hyphae and the plasmolysis of penetrated tissue. Moreover, collapsed haustoria were observed in V. davidii var. cyanocarpa 'Langao-5' at 5 days post inoculation (dpi) and in V. piasezkii 'Liuba-8' at 7 dpi. Lastly, necrosis extended beyond the zone of restricted colonization in all three resistant genotypes. Sporangia were absent in V. piasezkii 'Liuba-8' and greatly decreased in V. davidii var. cyanocarpa 'Langao-5' and in V. pseudoreticulata 'Baihe-35-1' compared with in V. vinifera cv. 'Pinot Noir'. Overall, these results provide insights into the cellular biological basis of the incompatible interactions between the pathogen and the host. They indicate a number of several resistant Chinese wild

  6. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    compare susceptibility between cell lines and between lineages within a laboratory and between laboratories (Inter-laboratory Proficiency Test). The objective being that the most sensitive cell line and lineages are routinely selected for diagnostic purposes.In comparing cell lines, we simulated "non......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  7. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    plants and two infection time intervals from resistant plants, grown under soil conditions. Differentially expressed genes during susceptible (1827-tomato, 462-RKN) and resistance (25-tomato, 160-RKN) interactions were identified. In susceptible responses, tomato genes involved in cell wall structure......, development, primary and secondary metabolites and defense signalling pathways along with RKN genes involved in host parasitism, development and defense are discussed. In resistance responses, tomato genes involved in secondary metabolite and hormone-mediated defense responses along with RKN genes involved...

  8. Somatic Host Cell Alterations in HPV Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tamara R. Litwin

    2017-08-01

    Full Text Available High-risk human papilloma virus (HPV infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA and phosphatase and tensin homolog (PTEN, human leukocyte antigen A and B (HLA-A and HLA-B-A/B, and the transforming growth factor beta (TGFβ pathway, and rarely have mutations in the tumor protein p53 (TP53 and RB transcriptional corepressor 1 (RB1 tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  9. Somatic Host Cell Alterations in HPV Carcinogenesis.

    Science.gov (United States)

    Litwin, Tamara R; Clarke, Megan A; Dean, Michael; Wentzensen, Nicolas

    2017-08-03

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) and phosphatase and tensin homolog ( PTEN ), human leukocyte antigen A and B ( HLA-A and HLA-B ) -A/B , and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 ( TP53 ) and RB transcriptional corepressor 1 ( RB1 ) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  10. Aggregation of Argulus coregoni (Crustacea: Branchiura) on rainbow trout (Oncorhynchus mykiss): a consequence of host susceptibility or exposure?

    Science.gov (United States)

    Bandilla, M; Hakalahti, T; Hudson, P J; Valtonen, E T

    2005-02-01

    By sampling individual rainbow trout, Oncorhynchus mykiss, at a fish farm we showed that Argulus coregoni were aggregated within their host population. The relative significance of susceptibility and exposure generating the observed pattern was tested using experimental infections. We examined, whether rainbow trout developed protective resistance mechanisms against the louse following a challenge infection and if there was variation between individual trout in their susceptibility to A. coregoni metanauplii. Fish were exposed to 20 A. coregoni for 5, 25, 50, 85 or 120 min and the numbers attaching recorded. Three weeks later, developing argulids were removed and the experiment repeated with a standardized exposure of 20 metanauplii. Prior exposure of fish with A. coregoni did not reduce the total infection intensity compared to naive fish, but fish gained infection more rapidly. We suggest that there is no protective acquired resistance of pre-exposed rainbow trout to subsequent Argulus exposure. The possibility that an immunosuppressive mechanism by argulids was acting enabling the higher attachment rate could be refuted since control individuals, not previously exposed to lice, gained the infection at a similar rate as the fish challenged twice. Our results do not indicate clear differences in susceptibility among individual fish but the transmission of metanauplii on fish seemed to be opportunistic and non-selective. Our results support the view that variation in exposure time, rather than differences in susceptibility of individual hosts, might be the key factor in generating the aggregated distribution of Argulus on their hosts.

  11. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  12. Characterization of Host Cell Proteins (HCPs) in CHO Cell Bioprocesses.

    Science.gov (United States)

    Hogwood, Catherine E M; Chiverton, Lesley M; Mark Smales, C

    2017-01-01

    Host cell protein content during bioprocessing of biotherapeutic proteins generated from cultured Chinese hamster ovary (CHO) cells is typically measured using immunological and gel-based methods. Estimation of HCP concentration is usually undertaken using Enzyme-Linked ImmunoSorbent Assays (ELISA), while estimation of HCP clearance/presence can be achieved by comparing 2D-PAGE images of samples and by undertaking western blotting of 2D-PAGE analyzed samples. Here, we describe the analyses of HCP content using these methodologies.

  13. Host cells and methods for production of isobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  14. Host cells and methods for production of isobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2017-10-17

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  15. Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host

    Science.gov (United States)

    Wooldridge, Scott A.

    2014-03-01

    It is well established that different coral species have different susceptibilities to thermal stress, yet it is less clear which biological or physical mechanisms allow some corals to resist thermal stress, whereas other corals bleach and die. Although the type of symbiont is clearly of fundamental importance, many aspects of coral bleaching cannot be explained solely by differences in symbionts amongst coral species. Here, I use the CO2 (sink) limitation model of coral bleaching to repose various host traits believed to influence thermal tolerance (e.g. metabolic rates, colony tissue thickness, skeletal growth form, mucus production rates, tissue concentration of fluorescent pigments and heterotrophic feedings capacity) in terms of an integrated strategy to reduce the likelihood of CO2 limitation around its intracellular photosymbionts. Contrasting observational data for the skeletal vital effect on oxygen isotope composition (δ18O) partitions two alternate evolutionary strategies. The first strategy is heavily reliant on a sea water supply chain of CO2 to supplement respiratory CO2(met). In contrast, the alternate strategy is less reliant on the sea water supply source, potentially facilitated by increased basal respiration rates and/or a lower photosynthetic demand for CO2. The comparative vulnerability of these alternative strategies to modern ocean conditions is used to explain the global-wide observation that corals with branching morphologies (and thin tissue layers) are generally more thermally sensitive than corals with massive morphologies (and thick tissue layers). The life history implications of this new framework are discussed in terms of contrasting fitness drivers and past environmental constraints, which delivers ominous predictions for the viability of thin-tissued branching and plating species during the present human-dominated ("Anthropocene") era of the Earth System.

  16. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  17. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection.

    Directory of Open Access Journals (Sweden)

    Imtiaz A Khan

    2006-06-01

    Full Text Available The host response to intracellular pathogens requires the coordinated action of both the innate and acquired immune systems. Chemokines play a critical role in the trafficking of immune cells and transitioning an innate immune response into an acquired response. We analyzed the host response of mice deficient in the chemokine receptor CCR5 following infection with the intracellular protozoan parasite Toxoplasma gondii. We found that CCR5 controls recruitment of natural killer (NK cells into infected tissues. Without this influx of NK cells, tissues from CCR5-deficient (CCR5-/- mice were less able to generate an inflammatory response, had decreased chemokine and interferon gamma production, and had higher parasite burden. As a result, CCR5-/- mice were more susceptible to infection with T. gondii but were less susceptible to the immune-mediated tissue injury seen in certain inbred strains. Adoptive transfer of CCR5+/+ NK cells into CCR5-/- mice restored their ability to survive lethal T. gondii infection and demonstrated that CCR5 is required for NK cell homing into infected liver and spleen. This study establishes CCR5 as a critical receptor guiding NK cell trafficking in host defense.

  18. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    OpenAIRE

    C. J. Carter

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P??from??8.01E ? 05??(ADHD)??to??1.22E ?...

  19. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  20. Salmonella – At Home in the Host Cell

    OpenAIRE

    Preeti eMalik Kale; Jolly, Carrie E.; Stephanie eLathrop; Seth eWinfree; Courtney eLuterbach; Olivia eSteele-Mortimer

    2011-01-01

    The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on c...

  1. CD46 accelerates macrophage-mediated host susceptibility to meningococcal sepsis in a murine model.

    Science.gov (United States)

    Wang, Xiao; Zhang, Ding; Sjölinder, Mikael; Wan, Yi; Sjölinder, Hong

    2017-01-01

    CD46, a membrane cofactor expressed on all nucleated human cells, plays an essential role in suppressing autoimmune reactions and protecting host cells from complement-mediated attack. Human transgenic CD46 homozygous mice (CD46+/+ ) are prone to lethal sepsis upon infection with Neisseria meningitidis (N. meningitidis). However, the underlying mechanisms are poorly understood. Here, we determined thatCD46+/+ mice produce large numbers of M1 type macrophages with enhanced surface expression of MHC II and production of pro-inflammatory mediators such as IL-6, TNF, IL-12, and IL-1β In the presence of M-CSF or GM-CSF, CD46 signaling enhances monocyte-macrophage differentiation. Additionally, CD46+/+ macrophages rapidly undergo apoptosis upon LPS challenge or meningococcal infection, which could contribute to uncontrolled bacterial dissemination in vivo. Adoptive transfer of CD46+/+ peritoneal macrophages aggravated septic responses in wild-type mice, but the depletion of macrophages partially alleviated septic reactions in CD46+/+ mice after N. meningitidis infection. Our findings reveal a novel role of CD46 in accelerating inflammatory responses upon meningococcal infection or LPS stimulation by regulating the functional polarization and survival of macrophages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2011-12-01

    Full Text Available Abstract Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae, the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots

  3. Induction of Rhizopus oryzae germination under starvation using host metabolites increases spore susceptibility to heat stress.

    Science.gov (United States)

    Turgeman, Tidhar; Kakongi, Nathan; Schneider, Avishai; Vinokur, Yakov; Teper-Bamnolker, Paula; Carmeli, Shmuel; Levy, Maggie; Skory, Christopher D; Lichter, Amnon; Eshel, Dani

    2014-03-01

    Sweetpotato is a nutritional source worldwide. Soft rot caused by Rhizopus spp. is a major limiting factor in the storage of produce, rendering it potentially unsafe for human consumption. In this study, Rhizopus oryzae was used to develop a concept of postharvest disease control by weakening the pathogen through induction of spore germination under starvation conditions. We isolated the sweetpotato active fractions (SPAFs) that induce spore germination and used them at a low dose to enhance spore weakening caused by starvation. Germination in SPAF at 1 mg/ml weakened the pathogen spores by delaying their ability to form colonies on rich media and by increasing their sensitivity to heat stress. The weakening effect was also supported by reduced metabolic activity, as detected by Alarmar Blue fluorescent dye assays. Spores incubated with SPAF at 1 mg/ml showed DNA fragmentation in some of their nuclei, as observed by TUNEL assay. In addition, these spores exhibited changes in ultrastructural morphology (i.e., shrinkage of germ tubes, nucleus deformation, and vacuole formation) which are hallmarks of programmed cell death. We suggest that induction of spore germination under starvation conditions increases their susceptibility to stress and, therefore, might be considered a new strategy for pathogen control.

  4. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    Science.gov (United States)

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.

  5. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

    Science.gov (United States)

    Elahi, Shokrollah; Ertelt, James M.; Kinder, Jeremy M.; Jiang, Tony T.; Zhang, Xuzhe; Xin, Lijun; Chaturvedi, Vandana; Strong, Beverly S.; Qualls, Joseph E.; Steinbrecher, Kris A.; Kalfa, Theodosia A.; Shaaban, Aimen F.; Way, Sing Sing

    2013-12-01

    Newborn infants are highly susceptible to infection. This defect in host defence has generally been ascribed to the immaturity of neonatal immune cells; however, the degree of hyporesponsiveness is highly variable and depends on the stimulation conditions. These discordant responses illustrate the need for a more unified explanation for why immunity is compromised in neonates. Here we show that physiologically enriched CD71+ erythroid cells in neonatal mice and human cord blood have distinctive immunosuppressive properties. The production of innate immune protective cytokines by adult cells is diminished after transfer to neonatal mice or after co-culture with neonatal splenocytes. Neonatal CD71+ cells express the enzyme arginase-2, and arginase activity is essential for the immunosuppressive properties of these cells because molecular inhibition of this enzyme or supplementation with L-arginine overrides immunosuppression. In addition, the ablation of CD71+ cells in neonatal mice, or the decline in number of these cells as postnatal development progresses parallels the loss of suppression, and restored resistance to the perinatal pathogens Listeria monocytogenes and Escherichia coli. However, CD71+ cell-mediated susceptibility to infection is counterbalanced by CD71+ cell-mediated protection against aberrant immune cell activation in the intestine, where colonization with commensal microorganisms occurs swiftly after parturition. Conversely, circumventing such colonization by using antimicrobials or gnotobiotic germ-free mice overrides these protective benefits. Thus, CD71+ cells quench the excessive inflammation induced by abrupt colonization with commensal microorganisms after parturition. This finding challenges the idea that the susceptibility of neonates to infection reflects immune-cell-intrinsic defects and instead highlights processes that are developmentally more essential and inadvertently mitigate innate immune protection. We anticipate that these

  6. Molecular characterization and antimicrobial susceptibility of Pasteurella multocida strains isolated from hosts affected by various diseases in Italy.

    Science.gov (United States)

    Cucco, Lucilla; Massacci, Francesca Romana; Sebastiani, Carla; Mangili, Piermario; Bano, Luca; Cocchi, Monia; Luppi, Andrea; Ortenzi, Roberta; Pezzotti, Giovanni; Magistrali, Chiara Francesca

    2017-03-31

    Pasteurella multocida is a widespread pathogen associated with major animal diseases of economic significance. Despite this, little is known about the capsular types, virulence gene pattern, and antimicrobial susceptibility of isolates from hosts affected by different diseases, and no data are available in Italy. One hundred eighty six isolates of P. multocida, were taken from different species in different states of health in several Italian regions, and were tested for genes encoding for capsular types (cap) and major virulence factors (tbpA, toxA, hgbB and pfhA). Antimicrobial susceptibility was investigated with the agar diffusion test. The majority of isolates was capA+. However, the distribution differed according to species and disease of origin, with a greater heterogeneity in isolates from rabbits; capE was never found, while capB was detected once. Only capA+ and capF+ strains tested positive for pfhA. Conversely, almost all capD+ isolates were hgbB+. In bovine respiratory disease, pfhA+/tbpA+/capA+ isolates predominated, while tbpA+/toxA+/capD+ isolates predominated in sheep. Overall, low levels of resistance were found, with full susceptibility to ceftiofur and florfenicol. Lower susceptibility to older antimicrobials was recorded, since only approximately 1/3 of the isolates showed susceptibility to tylosin and erythromycin, and resistance to tetracycline (7.5%), and trimethoprim - sulphametoxazole (4.8%) was also observed.

  7. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.

    Science.gov (United States)

    Mehlitz, Adrian; Eylert, Eva; Huber, Claudia; Lindner, Buko; Vollmuth, Nadine; Karunakaran, Karthika; Goebel, Werner; Eisenreich, Wolfgang; Rudel, Thomas

    2017-03-01

    Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco-2 cells with 13 C-marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC-MS-based isotopologue analysis of protein-derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT-ICR-MS analyses also demonstrated that label from exogenous 13 C-glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6-phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13 C-malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co-substrate usage of intracellular C. trachomatis in a stream-lined bipartite metabolism with host cell-supplied amino acids for protein biosynthesis, host cell-provided glucose 6-phosphate for cell wall biosynthesis, and, to some extent, one or more host cell-derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso-2,6-diaminopimelate required for the formation of chlamydial peptidoglycan. © 2016 John Wiley & Sons Ltd.

  8. Red Blood Cell Parameters as Indices of Susceptibility to ...

    African Journals Online (AJOL)

    The anaemia recorded in infected cattle by 38 days post-infection (pi) was mildest in WF and most severe in SG. It was concluded that low red blood cell values (PCV, Hb and RBC) are some of the markers that are consistently associated with susceptibility of cattle to trypanosomosis. Of the three cattle breeds studied, the ...

  9. Leptin Protects Host Cells from Entamoeba histolytica Cytotoxicity by a STAT3-Dependent Mechanism

    Science.gov (United States)

    Verkerke, Hans P.; Paul, Shom N.; Mackey, Aaron J.; Petri, William A.

    2012-01-01

    The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection. PMID:22331430

  10. Schistosoma mansoni enhances host susceptibility to mucosal but not intravenous challenge by R5 Clade C SHIV.

    Directory of Open Access Journals (Sweden)

    Nagadenahalli B Siddappa

    2011-08-01

    Full Text Available The high prevalence of HIV-1/AIDS in areas endemic for schistosomiasis and other helminthic infections has led to the hypothesis that parasites increase host susceptibility to immunodeficiency virus infection. We previously showed that rhesus macaques (RM with active schistosomiasis were significantly more likely to become systemically infected after intrarectal (i.r. exposure to an R5-tropic clade C simian-human immunodeficiency virus (SHIV-C than were parasite-free controls. However, we could not address whether this was due to systemic or mucosal effects. If systemic immunoactivation resulted in increased susceptibility to SHIV-C acquisition, a similarly large difference in host susceptibility would be seen after intravenous (i.v. SHIV-C challenge. Conversely, if increased host susceptibility was due to parasite-induced immunoactivation at the mucosal level, i.v. SHIV-C challenge would not result in significant differences between parasitized and parasite-free monkeys.We enrolled two groups of RM and infected one group with Schistosoma mansoni; the other group was left parasite-free. Both groups were challenged i.v. with decreasing doses of SHIV-C. No statistically significant differences in 50% animal infectious doses (AID(50 or peak viremia were seen between the two groups. These data strongly contrast the earlier i.r. SHIV-C challenge (using the same virus stock in the presence/absence of parasites, where we noted a 17-fold difference in AID(50 and one log higher peak viremia in parasitized monkeys (P90% of all new HIV-1 infections worldwide are acquired through mucosal contact, parasitic infections that inflame mucosae may play an important role in the spread of HIV-1.

  11. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  12. Malaria Sporozoites Traverse Host Cells within Transient Vacuoles.

    Science.gov (United States)

    Risco-Castillo, Veronica; Topçu, Selma; Marinach, Carine; Manzoni, Giulia; Bigorgne, Amélie E; Briquet, Sylvie; Baudin, Xavier; Lebrun, Maryse; Dubremetz, Jean-François; Silvie, Olivier

    2015-11-11

    Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication.

  13. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  14. Susceptibility to Phytophthora ramorum in California bay laurel, a key foliar host of sudden oak death

    Science.gov (United States)

    Brian L. Anacker; Nathan E. Rank; Daniel Hüberli; Matteo Garbelotto; Sarah Gordon; Rich Whitkus; Tami Harnik; Matthew Meshriy; Lori Miles; Ross K. Meentemeyer

    2008-01-01

    Sudden oak death, caused by the water mold Phytophthora ramorum, is a plant disease responsible for the death of hundreds of thousands of oak and tanoak trees. Some foliar hosts play a major role in the epidemiology of this disease. Upon infection by P. ramorum, these foliar hosts express non-fatal leaf lesions from which large...

  15. A multidirectional non-cell autonomous control and a genetic interaction restricting tobacco etch virus susceptibility in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suresh Gopalan

    2007-10-01

    Full Text Available Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery.An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV, a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement.The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.

  16. Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani.

    Science.gov (United States)

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2015-06-04

    Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids--documented in previous studies--compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission.

  17. Immune Modulation by Group B Streptococcus Influences Host Susceptibility to Urinary Tract Infection by Uropathogenic Escherichia coli

    Science.gov (United States)

    Kline, Kimberly A.; Schwartz, Drew J.; Gilbert, Nicole M.

    2012-01-01

    Urinary tract infection (UTI) is most often caused by uropathogenic Escherichia coli (UPEC). UPEC inoculation into the female urinary tract (UT) can occur through physical activities that expose the UT to an inherently polymicrobial periurethral, vaginal, or gastrointestinal flora. We report that a common urogenital inhabitant and opportunistic pathogen, group B Streptococcus (GBS), when present at the time of UPEC exposure, undergoes rapid UPEC-dependent exclusion from the murine urinary tract, yet it influences acute UPEC-host interactions and alters host susceptibility to persistent outcomes of bladder and kidney infection. GBS presence results in increased UPEC titers in the bladder lumen during acute infection and reduced inflammatory responses of murine macrophages to live UPEC or purified lipopolysaccharide (LPS), phenotypes that require GBS mimicry of host sialic acid residues. Taken together, these studies suggest that despite low titers, the presence of GBS at the time of polymicrobial UT exposure may be an overlooked risk factor for chronic pyelonephritis and recurrent UTI in susceptible groups, even if it is outcompeted and thus absent by the time of diagnosis. PMID:22988014

  18. Variation in susceptibility pattern of fish to Argulus siamensis: Do immune responses of host play a role?

    Science.gov (United States)

    Kar, Banya; Moussa, Cisse; Mohapatra, Amruta; Mohanty, Jyotirmaya; Jayasankar, Pallipuram; Sahoo, Pramoda Kumar

    2016-05-15

    Branchiuran ectoparasites of the genus Argulus can have extensive damaging effects on cultured fish. There exist no systematic studies that evaluate susceptibility or resistance of various carp species to Argulus sp. and the underlying mechanisms. The present study aimed at identifying the most susceptible and resistant cultured species, studying settlement and survival of parasite on these species, and finally unravelling the variations of immune response in both resistant and susceptible species. Fish from eight species (Labeo rohita, Cirrhinus mrigala, Catla catla, Hypophthalmichthys molitrix, Cyprinus carpio, Ctenopharyngodon idella, Carassius auratus, Labeo fimbriatus) were individually challenged with metanauplii of A. siamensis (100 metanauplii/fish) before rearing them in single tank in triplicate for 45 days. Based on the observed parasite load on each species, L. rohita was found to be the most susceptible and C. idella the resistant species. The settlement and survival of the parasite on L. rohita and C. idella was compared at 24, 48, 72 and 96h post experimental infection. Survival was significantly low at 72h onwards in C. idella indicating it is an unsuitable/poorly preferred host for A. siamensis. The inflammatory responses which are known to be related to susceptibility were analysed. Individuals of both the species were exposed to A. siamensis (100 parasites/fish), and after 24h and 3 d, skin samples directly from the attachment site and non-attachment sites were assessed for transcriptomic profiles of selected innate defence genes. Artificial skin abrasion permitted comparisons between abrasion associated injury and louse-associated injury. The inflammatory responses varied significantly between both species indicating their role in determining susceptibility of a host to A. siamensis. The expression of major histocompatibility class II and matrix metalloproteinase 2 was significantly higher in C. idella compared to L. rohita and therefore

  19. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.

    Science.gov (United States)

    Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan

    2015-10-01

    The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  20. Mitotic arrest in teratoma susceptible fetal male germ cells.

    Directory of Open Access Journals (Sweden)

    Patrick S Western

    Full Text Available Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27(KIP1, p15(INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility.

  1. Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods

    Science.gov (United States)

    Jenkins, William G.; Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2017-01-01

    The importance of the role that parasites play in ecological communities is becoming increasingly apparent. However much about their impact on hosts and thus populations and communities remains poorly understood. A common observation in wild populations is high variation in levels of parasite infestation among hosts. While high variation could be due to chance encounter, there is increasing evidence to suggest that such patterns are due to a combination of environmental, host, and parasite factors. In order to examine the role of host condition on parasite infection, rates of Gnathia marleyi infestation were compared between experimentally injured and uninjured fish hosts. Experimental injuries were similar to the minor wounds commonly observed in nature. The presence of the injury significantly increased the probability of infestation by gnathiids. However, the level of infestation (i.e., total number of gnathiid parasites) for individual hosts, appeared to be unaffected by the treatment. The results from this study indicate that injuries obtained by fish in nature may carry the additional cost of increased parasite burden along with the costs typically associated with physical injury. These results suggest that host condition may be an important factor in determining the likelihood of infestation by a common coral reef fish ectoparasite, G. marleyi.

  2. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Punsiri M Colonne

    2016-09-01

    Full Text Available Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, subversion of cell intrinsic immunity, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  3. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response.

    Science.gov (United States)

    Liu, Dong; Uzonna, Jude E

    2012-01-01

    The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility.

  4. Myxoma virus in the European rabbit: interactions between the virus and its susceptible host.

    Science.gov (United States)

    Stanford, Marianne M; Werden, Steven J; McFadden, Grant

    2007-01-01

    Myxoma virus (MV) is a poxvirus that evolved in Sylvilagus lagomorphs, and is the causative agent of myxomatosis in European rabbits (Oryctolagus cuniculus). This virus is not a natural pathogen of O. cuniculus, yet is able to subvert the host rabbit immune system defenses and cause a highly lethal systemic infection. The interaction of MV proteins and the rabbit immune system has been an ideal model to help elucidate host/poxvirus interactions, and has led to a greater understanding of how other poxvirus pathogens are able to cause disease in their respective hosts. This review will examine how MV causes myxomatosis, by examining a selection of the identified immunomodulatory proteins that this virus expresses to subvert the immune and inflammatory pathways of infected rabbit hosts.

  5. A murine model for cerebral toxocariasis: characterisation of host susceptibility and behaviour.

    OpenAIRE

    HOLLAND, CELIA; STAFFORD, PETER

    2006-01-01

    PUBLISHED Toxocara canis, the parasitic roundworm of dogs, can infect a number of paratenic hosts, such as mice and humans, due to the widespread dissemination of its ova in the environment. In these paratenic hosts, larvae have been shown to exhibit a predilection for the central nervous system, resulting in an increasing number of parasites migrating to the brain as infection progresses. In an initial experiment, we investigated the differential brain involvement of T. canis in 7 strains...

  6. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  7. Use of a Regression Model to Study Host-Genomic Determinants of Phage Susceptibility in MRSA

    DEFF Research Database (Denmark)

    Zschach, Henrike; Larsen, Mette V; Hasman, Henrik

    2018-01-01

    Staphylococcus aureus is a major agent of nosocomial infections. Especially in methicillin-resistant strains, conventional treatment options are limited and expensive, which has fueled a growing interest in phage therapy approaches. We have tested the susceptibility of 207 clinical S. aureus...

  8. Genetic Induction of Cytolytic Susceptibility in Breast Cancer Cells

    Science.gov (United States)

    2001-07-01

    nonon- pendent activation of CPP32beta. Cancer Res. 57, 2550-2554. cogenic or oncogenic adenovirus. Science 224, 612-615. 37. Gooding, L. R., Aquino ...P., Toes, R. E., Scaffidi, C., Zheng, T. S., Flavell, 76. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Toma - R. A., Melief, C. J...killer cell cytolytic compe- 36. Gooding, L. R., L. Aquino , P. J. Duerksen-Hughes. D. Day, T. M. Horton, S. Yei, tence and tumor susceptibility of athymic

  9. [How does the apicomplexan parasite Theileria control host cell identity?].

    Science.gov (United States)

    Marsolier, Justine; Weitzman, Jonathan B

    2014-01-01

    Infectious agents, like bacteria or virus, are responsible for a large number of pathologies in mammals. Microbes have developed mechanisms for interacting with host cell pathways and hijacking cellular machinery to change the phenotypic state. In this review, we focus on an interesting apicomplexan parasite called Theileria. Infection by the tick-transmitted T. annulata parasite causes Tropical Theileriosis in North Africa and Asia, and the related T. parva parasite causes East Coast Fever in Sub-Saharan Africa. This parasite is the only eukaryote known to induce the transformation of its mammalian host cells. Indeed, T. annulata and T. parva infect bovine leukocytes leading to transforming phenotypes, which partially mirror human lymphoma pathologies. Theileria infection causes hyperproliferation, invasiveness and escape from apoptosis, presumably through the manipulation of host cellular pathways. Several host-signaling mechanisms have been implicated. Here we describe the mechanisms involved in parasite-induced transformation phenotypes. © Société de Biologie, 2015.

  10. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  11. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  12. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Science.gov (United States)

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize. PMID:28611813

  13. Invasion of Host Cells and Tissues by Uropathogenic Bacteria

    Science.gov (United States)

    Lewis, Adam J.; Richards, Amanda C.; Mulvey, Matthew A.

    2016-01-01

    Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli (UPEC) and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections (UTIs). Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of UTIs in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of UPEC and other uropathogenic bacteria. PMID:28087946

  14. Role of Innate Host Defenses in Susceptibility to Early Onset Neonatal Sepsis

    Science.gov (United States)

    Wynn, James L.; Levy, Ofer

    2010-01-01

    Neonatal sepsis continues to take a devastating toll globally. Although adequate to protect against invasive infection in most newborns, the distinct function of neonatal innate host defense coupled with impairments in adaptive immune responses, increases the likelihood of acquiring infection early in life with subsequent rapid dissemination and death. Unique differences exist between neonates and older populations with respect to the capacity, quantity, and quality of innate host responses to pathogens. Recent characterization of the age-dependent maturation of neonatal innate immune function has identified novel translational approaches that may lead to improved diagnostic, prophylactic and therapeutic modalities. PMID:20569810

  15. Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread

    Science.gov (United States)

    Severns, Paul M.; Estep, Laura K.; Sackett, Kathryn E.; Mundt, Christopher C.

    2014-01-01

    Summary Disease epidemics typically begin as an outbreak of a relatively small, spatially explicit population of infected individuals (focus), in which disease prevalence increases and rapidly spreads into the uninfected, at-risk population. Studies of epidemic spread typically address factors influencing disease spread through the at-risk population, but the initial outbreak may strongly influence spread of the subsequent epidemic.We initiated wheat stripe rust Puccinia striiformis f. sp. tritici epidemics to assess the influence of the focus on final disease prevalence when the degree of disease susceptibility differed between the at-risk and focus populations.When the focus/at-risk plantings consisted of partially genetic resistant and susceptible cultivars, final disease prevalence was statistically indistinguishable from epidemics produced by the focus cultivar in monoculture. In these experimental epidemics, disease prevalence was not influenced by the transition into an at-risk population that differed in disease susceptibility. Instead, the focus appeared to exert a dominant influence on the subsequent epidemic.Final disease prevalence was not consistently attributable to either the focus or the at-risk population when focus/at-risk populations were planted in a factorial set-up with a mixture (~28% susceptible and 72% resistant) and susceptible individuals. In these experimental epidemics, spatial heterogeneity in disease susceptibility within the at-risk population appeared to counter the dominant influence of the focus.Cessation of spore production from the focus (through fungicide/glyphosate application) after 1.3 generations of stripe rust spread did not reduce final disease prevalence, indicating that the focus influence on disease spread is established early in the epidemic.Synthesis and applications. Our experiments indicated that outbreak conditions can be highly influential on epidemic spread, even when disease resistance in the at-risk population

  16. Zika virus infection reprograms global transcription of host cells to allow sustained infection.

    Science.gov (United States)

    Tiwari, Shashi Kant; Dang, Jason; Qin, Yue; Lichinchi, Gianluigi; Bansal, Vikas; Rana, Tariq M

    2017-04-26

    Zika virus (ZIKV) is an emerging virus causally linked to neurological disorders, including congenital microcephaly and Guillain-Barré syndrome. There are currently no targeted therapies for ZIKV infection. To identify novel antiviral targets and to elucidate the mechanisms by which ZIKV exploits the host cell machinery to support sustained replication, we analyzed the transcriptomic landscape of human microglia, fibroblast, embryonic kidney and monocyte-derived macrophage cell lines before and after ZIKV infection. The four cell types differed in their susceptibility to ZIKV infection, consistent with differences in their expression of viral response genes before infection. Clustering and network analyses of genes differentially expressed after ZIKV infection revealed changes related to the adaptive immune system, angiogenesis and host metabolic processes that are conducive to sustained viral production. Genes related to the adaptive immune response were downregulated in microglia cells, suggesting that ZIKV effectively evades the immune response after reaching the central nervous system. Like other viruses, ZIKV diverts host cell resources and reprograms the metabolic machinery to support RNA metabolism, ATP production and glycolysis. Consistent with these transcriptomic analyses, nucleoside metabolic inhibitors abrogated ZIKV replication in microglia cells.

  17. Screening low fire blight susceptible Crataegus species for host suitability to hawthorn leaf-curling aphids (Dysaphis spp.).

    Science.gov (United States)

    Bribosia, E; Bylemans, D; Van Impe, G; Migon, M

    2002-01-01

    The group of hawthorn leaf-curling aphids (Dysaphis spp.) hosted by the common hawthorn Crataegus monogyna Jacq. may play an important role in the biological control of the rosy apple aphid, Dysaphis plantaginea (Passerini), by increasing reproduction opportunities for the indigenous hymenopteran parasitoid Ephedrus persicae Froggatt. Unfortunately, most fruitgrowers hesitate to introduce the common hawthorn in their orchards because they fear fire blight infections which may be transmitted by this highly susceptible hawthron species. This potential hazard led us to investigate the suitability to leaf-curling aphids of alternative Crataegus species. As representative for these closely-related aphids, the species Dysaphis apiifolia petroselini (Börner) was used in the trials. Ten Crataegus species characterized by their very low susceptibility to fire blight were examined from two angles. Firstly, aphid sexuals were introduced in autumn onto the different species to verify whether egg laying could take place. Secondly, the development of fundatrices and gall formation were followed the next spring. Although eggs and mature fundatrices could be obtained on almost all species, no fundatrice-hosting galls were recorded in spring. The possible causes of these negative results with respect to the geographical origin of the particular Crataegus species involved in this work are discussed.

  18. Complement susceptibility in glutamine deprived breast cancer cells

    Directory of Open Access Journals (Sweden)

    Boackle Robert J

    2007-07-01

    Full Text Available Abstract Background Membrane complement regulatory proteins (mCRPs inhibit complement-mediated killing of human cells by human complement, a property that confers protection from complement to malignant breast cancer cells and that thwarts some immunotherapies. Metabolic mechanisms may come into play in protecting cancer cells from the complement system subsequent to relatively low levels of complement deposition. Results In differentiating these mechanisms, two types of human breast cancer cell lines, MCF7 (adenocarcinoma and Bcap37 (medullary carcinoma were cell-cycle synchronized using glutamine-deprivation followed by restoration. These cells were examined for the expression of two mCRPs (CD59 and CD55, and for subsequent susceptibility to antibody-mediated complement-induced membrane damage. After glutamine restoration, MCF7 and Bcap37 cells were synchronized into the G2/M phase and an average increased expression of CD59 and CD55 occurred with a corresponding resistance to complement-mediated damage. Blocking CD59 inhibitory function with monoclonal antibody revealed that CD59 played a key role in protecting unsynchronized Bcap37 and MCF7 cancer cells from the complement membrane attack complex. Interestingly, glutamine-deprivation did not significantly affect the expression of proteins e.g., the surface level of CD59 or CD55, but did increase the susceptibility to complement-mediated killing. One possible explanation is that glutamine-deprivation may have slowed the turnover rate of mCRPs, preventing the cells from replacing pre-existing mCRPs, as they became neutralized by covalent C4b and C3b depositions. Conclusion Taken together the findings are consistent with the conclusion that future immunotherapies should aim to achieve a highly specific and profound activation and deposition of complement as well as to disrupt the synthesis and expression of CD59 and CD55 by the cancer cells.

  19. Methionine Sulfoxide Reductase A (MsrA) Deficient Mycoplasma genitalium Shows Decreased Interactions with Host Cells

    Science.gov (United States)

    Das, Kishore; De la Garza, Georgina; Maffi, Shivani; Saikolappan, Sankaralingam; Dhandayuthapani, Subramanian

    2012-01-01

    Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells. PMID:22558404

  20. Methionine sulfoxide reductase A (MsrA deficient Mycoplasma genitalium shows decreased interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Kishore Das

    Full Text Available Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA, an antioxidant enzyme which converts oxidized methionine (Met(O into methionine (Met, shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37 with an msrA mutant (MS5 strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37. Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells.

  1. [HIV-1 infection affects the expression of host cell factor TSG101 and Alix].

    Science.gov (United States)

    Hu, Hui-liang; Meng, Zhe-feng; Zhang, Xiao-yan; Lu, Jian-xin

    2011-03-01

    To investigate the effects of HIV-1 infection on the expression of host factors TSG101 (Tumor Susceptibility Gene 101) and Alix (ALG-2-interacting protein X). HIV-1 infectious clone pNL4-3 was used to infect TZM-bl, PM1, Jurkat cell lines and human peripheral blood mononuclear cells (PBMC). Twenty-four hours post-infection, the infected or uninfected cells were harvested respectively for extraction of total RNAs and total cellular proteins, which were subsequently used in RT-PCR and Western-blotting respectively to quantify TSG101 and Alix, respectively. Our data showed that HIV-1 infection resulted in various influences on the expression of TSG101 and Alix in the cell lines and the primary PBMC. A down-regulation was mainly observed in the cell lines, whereas an up-regulation of TSG101 was identified in primary PBMC. Three patterns were observed for down-regulation, including dual down-regulation of TSG101 and Alix for Jurkat cells, single down-regulation of Alix for TZM-bl cells and marginal or no influence on PM1 cells. The dual down-regulation of Alix and TSG101 in Jurkat cells coincided with less expression of HIV-1 p24 protein. This is the first-line evidence that HIV-1 infection affects the expression of host factors TSG101 and Alix, the down-regulation of these molecules may influence the HIV-1 replication. The underlying mechanism remains to be addressed.

  2. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

    Science.gov (United States)

    Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus

    2015-09-02

    The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

  3. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  4. Genetic susceptibility to head and neck squamous cell carcinoma.

    Science.gov (United States)

    Lacko, Martin; Braakhuis, Boudewijn J M; Sturgis, Erich M; Boedeker, Carsten C; Suárez, Carlos; Rinaldo, Alessandra; Ferlito, Alfio; Takes, Robert P

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives of research on genetic susceptibility in HNSCC are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lacko, Martin [Department of Otorhinolaryngology—Head and Neck Surgery, Maastricht University Medical Center, Maastricht (Netherlands); Braakhuis, Boudewijn J.M. [Department of Otolaryngology—Head and Neck Surgery, VU University Medical Center, Amsterdam (Netherlands); Sturgis, Erich M. [Department of Head and Neck Surgery and Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Boedeker, Carsten C. [Department of Otorhinolaryngology—Head and Neck Surgery, Albert-Ludwigs-University, Freiburg, Germany and Department of Otorhinolaryngology - Head and Neck Surgery, HELIOS Hanseklinikum Stralsund, Stralsund (Germany); Suárez, Carlos [Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo (Spain); Instituto Universitario de Oncología del Principado de Asturias, Oviedo (Spain); Rinaldo, Alessandra; Ferlito, Alfio [ENT Clinic, University of Udine, Udine (Italy); Takes, Robert P., E-mail: robert.takes@radboudumc.nl [Department of Otolaryngology—Head and Neck Surgery, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands)

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives of research on genetic susceptibility in HNSCC are discussed.

  6. Early Bunyavirus-Host Cell Interactions

    Directory of Open Access Journals (Sweden)

    Amelina Albornoz

    2016-05-01

    Full Text Available The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.

  7. Leishmania major-specific B cells are necessary for Th2 cell development and susceptibility to L. major LV39 in BALB/c mice.

    Science.gov (United States)

    Ronet, Catherine; Voigt, Heike; Himmelrich, Hayo; Doucey, Marie-Agnès; Hauyon-La Torre, Yazmin; Revaz-Breton, Mélanie; Tacchini-Cottier, Fabienne; Bron, Claude; Louis, Jacques; Launois, Pascal

    2008-04-01

    B lymphocytes are considered to play a minimal role in host defense against Leishmania major. In this study, the contribution of B cells to susceptibility to infection with different strains of L. major was investigated in BALB/c mice lacking mature B cells due to the disruption of the IgM transmembrane domain (microMT). Whereas BALB/c microMT remained susceptible to infection with L. major IR173 and IR75, they were partially resistant to infection with L. major LV39. Adoptive transfer of naive B cells into BALB/c microMT mice before infection restored susceptibility to infection with L. major LV39, demonstrating a role for B cells in susceptibility to infection with this parasite. In contrast, adoptive transfer of B cells that express an IgM/IgD specific for hen egg lysozyme (HEL), an irrelevant Ag, did not restore disease progression in BALB/c microMT mice infected with L. major LV39. This finding was likely due to the inability of HEL Tg B cells to internalize and present Leishmania Ags to specific T cells. Furthermore, specific Ig did not contribute to disease progression as assessed by transfer of immune serum in BALB/c microMT mice. These data suggest that direct Ag presentation by specific B cells and not Ig effector functions is involved in susceptibility of BALB/c mice to infection with L. major LV39.

  8. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts

    Science.gov (United States)

    Fett, William F.; Dunn, Michael F.

    1989-01-01

    Bacterial exopolysaccharide (EPS) was extracted from infected leaves of several host plants inoculated with phytopathogenic strains of Pseudomonas syringae pathovars. Extraction was by a facilitated diffusion procedure or by collection of intercellular fluid using a centrifugation method. The extracted EPS was purified and characterized. All bacterial pathogens which induced watersoaked lesions on their host leaves, a characteristic of most members of this bacterial group, were found to produce alginic acid (a polymer consisting of varying ratios of mannuronic and guluronic acids). Only trace amounts of bacterial EPS could be isolated from leaves inoculated with a pathovar (pv. syringae) which does not induce the formation of lesions with a watersoaked appearance. Guluronic acid was either present in very low amounts or absent in the alginic acid preparations. All bacterial alginates were acetylated (7-11%). Levan (a fructan) was apparently not produced as an EPS in vivo by any of the pathogens tested. PMID:16666545

  9. The Cell Biology of the Trichosporon-Host Interaction.

    Science.gov (United States)

    Duarte-Oliveira, Cláudio; Rodrigues, Fernando; Gonçalves, Samuel M; Goldman, Gustavo H; Carvalho, Agostinho; Cunha, Cristina

    2017-01-01

    Fungi of the genus Trichosporon are increasingly recognized as causative agents of superficial and invasive fungal disease in humans. Although most species are considered commensals of the human skin and gastrointestinal tract, these basidiomycetes are an increasing cause of fungal disease among immunocompromised hosts, such as hematological patients and solid organ transplant recipients. The initiation of commensal or pathogenic programs by Trichosporon spp. involves the adaptation to the host microenvironment and its immune system. However, the exact virulence factors activated upon the transition to a pathogenic lifestyle, including the intricate biology of the cell wall, and how these interact with and subvert the host immune responses remain largely unknown. Here, we revisit our current understanding of the virulence attributes of Trichosporon spp., particularly T. asahii, and their interaction with the host immune system, and accommodate this knowledge within novel perspectives on fungal diagnostics and therapeutics.

  10. Lipid exchange between Borrelia burgdorferi and host cells.

    Directory of Open Access Journals (Sweden)

    Jameson T Crowley

    2013-01-01

    Full Text Available Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or (3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease.

  11. Antibiotic susceptibility of Tropheryma whipplei in MRC5 cells.

    Science.gov (United States)

    Boulos, Areen; Rolain, Jean-Marc; Raoult, Didier

    2004-03-01

    Whipple's disease is considered a rare chronic disease with a broad spectrum of clinical manifestations. Several antibiotics have been used for the treatment of this disease, and the current reference treatment was determined empirically on the basis of only a few clinical observations. Patients should be treated for months, and many relapse after antibiotic withdrawal. We report here the first extensive study on the susceptibilities of three reference strains of Tropheryma whipplei to antibiotic in cell culture by using a real-time PCR assay as previously described. We found that doxycycline, macrolides, ketolides, aminoglygosides, penicillin, rifampin, teicoplanin, chloramphenicol, and trimethoprim-sulfamethoxazole were active, with MICs ranging from 0.25 to 2 microg/ml. Vancomycin was somewhat active at an MIC of 10 microg/ml. We found heterogeneity in the susceptibility to imipenem, with one strain being susceptible and the two other strains being resistant. Cephalosporins, colimycine, aztreonam, and fluoroquinolones were not active. We also demonstrated that a combination of doxycycline and hydroxychloroquine was bactericidal. This combination has been shown to be active in the treatment of patients suffering from chronic infections with Coxiella burnetii, a bacterium that is also found intracellularly in acidic vacuoles. We believe, then, that this combination therapy should be further evaluated in clinical trials for the treatment of Whipple's disease.

  12. Canine Macrophage DH82 Cell Line As a Model to Study Susceptibility to Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Braz Mendonça

    2017-05-01

    Full Text Available Trypanosoma cruzi is an obligatory intracellular protozoan parasite, and it is the etiological agent of Chagas’ disease that is endemic in the Americas. In addition to humans, a wide spectrum of mammals can be infected by T. cruzi, including dogs. Dogs develop acute and chronic disease, similar to human infection. T. cruzi can infect almost all cell types and after cell invasion, the metacyclics trypomastigotes localize in the cytoplasm, where they transform into amastigotes, the replicative form of T. cruzi in mammals. After amastigote multiplication and differentiation, parasites lyse host cells and spread through the body by blood circulation. In this work, we evaluated the in vitro ability of T. cruzi to infect a canine macrophage cell line DH82 compared with RAW264.7, a murine tissue culture macrophage. Our results have shown that the T. cruzi is able to infect, replicate and differentiate in DH82 cell line. We observed that following treatment with LPS and IFN-γ DH82 cells were more resistant to infection and that resistance was not related reactive oxygen species production in our system. In this study, we also found that DH82 cells became more susceptible to T. cruzi infection when cocultured with apoptotic cells. The analysis of cytokine production has showed elevated levels of the TGF-β, IL-10, and TNF-α produced by T. cruzi-infected canine macrophages. Additionally, we demonstrated a reduced expression of the MHC class II and CD80 by infected DH82 cell line.

  13. Galactose/N-acetylgalactosamine lectin: the coordinator of host cell ...

    Indian Academy of Sciences (India)

    This killing involves the amoebic surface protein referred to as the Gal/GalNAc lectin. The Gal/GalNAc lectin binds galactose and N-acetylgalactosamine allowing the adherence of amoebas to host cells. Involvement of the lectin in the pathogenesis of E. histolytica infection will be reviewed in this paper. The lectin has been ...

  14. Non-native parasite enhances susceptibility of host to native predators.

    Science.gov (United States)

    Gehman, Alyssa-Lois M; Byers, James E

    2017-04-01

    Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.

  15. Microvesicles released during the interaction between Trypanosoma cruzi TcI and TcII strains and host blood cells inhibit complement system and increase the infectivity of metacyclic forms of host cells in a strain-independent process.

    Science.gov (United States)

    Wyllie, M P; Ramirez, M I

    2017-09-29

    Extracellular vesicles, whether microvesicles (MVs) or exosomes, shed by pathogens transfer virulence factors and biomolecules to host cells, thereby altering the host's susceptibility to infection. We have previously demonstrated that MV release is increased during the interaction between the infective forms of Trypanosoma cruzi and host cells. MVs confer parasite resistance to complement-mediated lysis and enhance parasite invasion. In this study, we show that differences exist in the levels of MVs released during the interaction between metacyclic trypomastigotes of different T. cruzi strains (with varied sensitivity to complement-mediated lysis, namely sensitive G strain TcI and resistant Y strain TcII) and host cells. MVs produced during the interaction between TcII parasites and host cells increased parasite resistance to complement lysis from 50% to 80% and parasite invasion was increased to over 50%. MVs purified during the interaction between TcI parasites and host cells have a stronger effect, doubling complement resistance and parasite invasion. The complement-mediated lysis assays showed that all MVs inhibit mainly the lectin pathway. Interestingly, MVs derived from parasites of one class did not alter complement resistance and the invasion process of parasites from the other class. This is the first description of MVs from T. cruzi with strain-dependent phenotypic effects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The Contribution of the Airway Epithelial Cell to Host Defense

    OpenAIRE

    Frauke Stanke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how t...

  17. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells.

    OpenAIRE

    Schramm, N.; Wyrick, P B

    1995-01-01

    Infection of genital epithelial cells by the closely related sexually transmitted pathogens Chlamydia trachomatis serovars E and L2 results in different clinical disease manifestations. Following entry into target host cells, individual vesicles containing chlamydiae fuse with one another to form one large inclusion. At the cellular level, the only obvious difference between these serovars is the time until inclusion maturation, which is 48 h for the invasive serovar L2 and 72 h for serovar E...

  18. Acidosis increases the susceptibility of respiratory epithelial cells to Pseudomonas aeruginosa-induced cytotoxicity.

    Science.gov (United States)

    Torres, Iviana M; Demirdjian, Sally; Vargas, Jennifer; Goodale, Britton C; Berwin, Brent

    2017-07-01

    Bacterial infection can lead to acidosis of the local microenvironment, which is believed to exacerbate disease pathogenesis; however, the mechanisms by which changes in pH alter disease progression are poorly understood. We test the hypothesis that acidosis enhances respiratory epithelial cell death in response to infection with Pseudomonas aeruginosa Our findings support the idea that acidosis in the context of P. aeruginosa infection results in increased epithelial cell cytotoxicity due to ExoU intoxication. Importantly, enforced maintenance of neutral pH during P. aeruginosa infection demonstrates that cytotoxicity is dependent on the acidosis. Investigation of the underlying mechanisms revealed that host cell cytotoxicity correlated with increased bacterial survival during an acidic infection that was due to reduced bactericidal activity of host-derived antimicrobial peptides. These findings extend previous reports that the activities of antimicrobial peptides are pH-dependent and provide novel insights into the consequences of acidosis on infection-derived pathology. Therefore, this report provides the first evidence that physiological levels of acidosis increase the susceptibility of epithelial cells to acute Pseudomonas infection and demonstrates the benefit of maintaining pH homeostasis during a bacterial infection. Copyright © 2017 the American Physiological Society.

  19. Impact of host age and parity on susceptibility to severe urinary tract infection in a murine model.

    Directory of Open Access Journals (Sweden)

    Kimberly A Kline

    Full Text Available The epidemiology and bacteriology of urinary tract infection (UTI varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC and/or Group B Streptococcus (GBS, we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10-100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups.

  20. Necroptosis: The Trojan horse in cell autonomous antiviral host defense.

    Science.gov (United States)

    Mocarski, Edward S; Guo, Hongyan; Kaiser, William J

    2015-05-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Host T cells affect donor T cell engraftment and graft-versus-host disease after reduced-intensity hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hardy, Nancy M; Hakim, Frances; Steinberg, Seth M; Krumlauf, Michael; Cvitkovic, Romana; Babb, Rebecca; Odom, Jeanne; Fowler, Daniel H; Gress, Ronald E; Bishop, Michael R

    2007-09-01

    Mixed chimerism in the T cell compartment (MCT) after reduced-intensity stem cell transplantation (RIST) may influence immune repopulation with alloreactive donor T cells. We examined effects of host T cell numbers on donor T cell engraftment and recovery and on acute graft-versus-host disease (aGVHD) in a relatively homogeneous patient population with respect to residual host T cells through quantified immune depletion prior to RIST and to donor T cells by setting the allograft T cell dose of 1x10(5) CD3+ cells/kg. In this setting, 2 patterns of early donor T cell engraftment could be distinguished by day +42: (1) early and complete donor chimerism in the T cell compartment (FDCT) and (2) persistent MCT. FDCT was associated with lower residual host CD8+ T cell counts prior to transplant and aGVHD. With persistent MCT, subsequent development of aGVHD could be predicted by the direction of change in T cell donor chimerism after donor lymphocyte infusion, and no aGVHD occurred until FDCT was established. MCT did not affect recovery of donor T cell counts. These observations suggest that the relative number and alloreactivity of donor and host T cells are more important than the absolute allograft T cell dose in determining donor engraftment and aGVHD after RIST.

  2. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    Directory of Open Access Journals (Sweden)

    Elsa B. Damonte

    2012-09-01

    Full Text Available Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  3. Streptococcus pyogenes Sortase Mutants Are Highly Susceptible to Killing by Host Factors Due to Aberrant Envelope Physiology

    Science.gov (United States)

    Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.

    2015-01-01

    Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774

  4. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  5. Recombinant host cells and media for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  6. Establishment of a cell line with high transfection efficiency from zebrafish Danio rerio embryos and its susceptibility to fish viruses.

    Science.gov (United States)

    Jin, Y L; Chen, L M; Le, Y; Li, Y L; Hong, Y H; Jia, K T; Yi, M S

    2017-10-01

    A cell line ZBE3 isolated from a continuous cell culture derived from zebrafish Danio rerio blastomeres by clonal growth was characterized. ZBE3 cells had been subcultured for >120 passages since the initial primary culture of the blastomeres. The ZBE3 cells grow stably at temperature from 20 to 32° C with an optimum temperature of 28° C in ESM2 or ESM4 medium with 15% foetal bovine serum (FBS). The optimum FBS concentration for ZBE3 cell growth ranged from 15 to 20%. Cytogenetical analysis indicated that the modal chromosome number of ZBE3 cells was 50, the same as the diploid chromosome number of D. rerio. Significant cytopathic effect was observed in ZBE3 cells after infection with redspotted grouper nervous necrosis virus, Singapore grouper iridovirus and grass carp reovirus, and the viral replication in the cells was confirmed by real-time quantitative PCR and transmission electron microscopy, indicating the susceptibility of ZBE3 cells to the three fish viruses. After transfected with pEGFP-N3 plasmid, ZBE3 cells showed a transfection efficiency of about 40% which was indicated by the percentage of cells expressing green fluorescence protein. The stable growth, susceptibility to fish viruses as well as high transfection efficiency make ZBE3 cells be a useful tool in transgenic manipulation, fish virus-host cell interaction and immune response in fish. © 2017 The Fisheries Society of the British Isles.

  7. Host Susceptibility to Brucella abortus Infection Is More Pronounced in IFN-γ knockout than IL-12/β2-Microglobulin Double-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ana Paula M. S. Brandão

    2012-01-01

    Full Text Available Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/β2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i., only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/β2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/β2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies.

  8. SUSCEPTIBILITY OF DIFFERENT CELLS TO RED SEA BREAM IRIDOVIRUS (RSIV

    Directory of Open Access Journals (Sweden)

    Ketut Mahardika

    2012-06-01

    Full Text Available RSIV is an isolate virus in the genus Megalocytivirus (family Iridoviridae that has been reported to be pathogen in more than 31 marine fish species in East Asia. The aim of study was to know the susceptibility of several cultured cells to RSIV. RSIV inoculum was inoculated onto cultured cells and then incubated in 25oC. Routine observation of cytopatic effect (CPE was carried out for 7 days and harvested cells were prepared for virus titration and electron microscopy (EM. The result showed that RSIV grew and propagated in GF (grunt fin, KF-1 (koi fin and BF-2 (barfin flounder which caused cytophatic effect as cel ls enlargement. However, RSIV did not propagated on EPC (epithelioma papulosum cyprini, FHM (feathed minnow and EK-1 (eel kidney cells. The virus titer were 105.3 TCID50/mL in GF cells, 103.8 and 4.3 TCID50/mL in KF-1, 103.6 and 3.8 TCID50/mL in BF-2, and 7 102.1 TCID50/mL in EPC, FHM and EK-1. The EM observation revealed formation of enlarged cells containing hexagonal virus particles with 140-160 nm in diameter. These results indicated that GF was cultured cell to be optimal for replication of isolate RSIV derived from Ise bay, Mie, Japan.

  9. Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India

    Directory of Open Access Journals (Sweden)

    Tyagi Prajesh K

    2008-12-01

    Full Text Available Abstract Background Host adhesion molecules play a significant role in the pathogenesis of Plasmodium falciparum malaria and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study was to investigate the association of SNPs of three adhesion molecule genes, ICAM1, PECAM1 and CD36, with severity of falciparum malaria in a malaria-endemic and a non-endemic region of India. Methods The frequency distribution of seven selected SNPs of ICAM1, PECAM1 and CD36 was determined in 552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD plots were generated using PHASE and Haploview, respectively. Odds-ratio (OR for risk assessment was estimated using EpiInfo™ version 3.4. Results Association of the ICAM1 rs5498 (exon 6 G allele and the CD36 exon 1a A allele with increased risk of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively. The CD36 rs1334512 (-53 T allele as well as the TT genotype associated with protection from severe disease (severe versus control, TT versus GG, OR = 0.37, P = 0.004. Interestingly, a SNP of the PECAM1 gene (rs668, exon 3, C/G with low minor allele frequency in populations of the endemic region compared to the non-endemic region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in the endemic region, but exhibited significant association with protection from disease in the non-endemic region. Conclusion The data highlights the significance of variations in the ICAM1, PECAM1 and CD36 genes in the manifestation of falciparum malaria in India. The PECAM1 exon 3 SNP exhibits altered association with disease in the

  10. Necroptosis: The Trojan Horse in Cell Autonomous Antiviral Host Defense

    OpenAIRE

    Mocarski, Edward S.; Guo, Hongyan; Kaiser, William J.

    2015-01-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to blocks apoptosis, an activity that unleashes necroptosis. Herpes s...

  11. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  12. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells.

    Science.gov (United States)

    Acosta, Eliana G; Piccini, Luana E; Talarico, Laura B; Castilla, Viviana; Damonte, Elsa B

    2014-05-12

    The aim of the present study was to analyze the influence of virus origin, mammalian or mosquito cell-derived, on antiviral susceptibility of DENV-2 to entry inhibitors and the association of this effect with any alteration in the mode of entry into the cell. To this end, ten serial passages of DENV-2 were performed in mosquito C6/36 cells or monkey Vero cells and the antiviral susceptibility of each virus passage to sulfated polysaccharides (SPs), like heparin and carrageenans, was evaluated by a virus plaque reduction assay. After serial passaging in Vero cells, DENV-2 became increasingly resistant to SP inhibition whereas the antiviral susceptibility was not altered in virus propagated in C6/36 cells. The change in antiviral susceptibility was associated to a differential mode of entry into the host cell. The route of endocytic entry for productive Vero cell infection was altered from a non-classical clathrin independent pathway for C6/36-grown virus to a clathrin-mediated endocytosis when the virus was serially propagated in Vero cells. Our results show the impact of the cellular system used for successive propagation of DENV on the initial interaction between the host cell and the virion in the next round of infection and the relevant consequences it might have during the in vitro evaluation of entry inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Diversity and Geographical Distribution of Flavobacterium psychrophilum Isolates and Their Phages: Patterns of Susceptibility to Phage Infection and Phage Host Range

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio

    2014-01-01

    in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme...

  14. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  15. Variation in RNA virus mutation rates across host cells.

    Directory of Open Access Journals (Sweden)

    Marine Combe

    2014-01-01

    Full Text Available It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10(-6 to 10(-4 substitutions per nucleotide per round of copying (s/n/r and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV, which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10(-5 s/n/r. Cell immortalization through p53 inactivation and oxygen levels (1-21% did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.

  16. The Contribution of the Airway Epithelial Cell to Host Defense.

    Science.gov (United States)

    Stanke, Frauke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  17. The Contribution of the Airway Epithelial Cell to Host Defense

    Directory of Open Access Journals (Sweden)

    Frauke Stanke

    2015-01-01

    Full Text Available In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  18. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Directory of Open Access Journals (Sweden)

    Xiaocui He

    Full Text Available Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr, tonsil (MmTo, peritoneal cavity (MmPca, nasal epithelium (MmNep and nervus olfactorius (MmNol after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS. Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable

  19. The NRAMPI, VDR and TNF-α gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility

    Directory of Open Access Journals (Sweden)

    Muayad Merza

    Full Text Available The natural resistance-associated macrophage protein (NRAMP1, Vitamin-D receptor (VDR and Tumor necrosis factor (TNF-α have been associated in susceptibility to tuberculosis, but the results have been inconsistent. This study aimed to determine the association of NRAMP1, VDR, and TNF-á variant with development of pulmonary tuberculosis (PTB among Iranian patients. The single nucleotide polymorphisms (SNPs at INT4, D543, 3'UTR of NRAMP1 gene, SNPs in restriction sites of BsmI, and FokI of the VDR gene and SNPs of TNF-α at -238,-308, -244,857,-863 positions were analyzed by PCR-RFLP among two groups of individual; patients with PTB (n=117 and healthy controls (n=60. Thereafter, the frequencies of extended haplotypes and diplotypes were estimated. No statistically significant differences were observed in allele frequencies of INT4, D543, 3'UTR of NRAMPI, FokI of VDR and TNF-α at -238, -244,-863 and -857 position. Although, the frequency of b allele of BsmI [ORs: 0.24 CI95% (0.07-0.67 (p=0.001] and -308 A variant in TNF-α promoter region [ORs:0.26 CI95%( 0.07-0.77 (p=0.006] were significantly more in PTB patients than healthy controls. The frequency of extended diplotypes of NRAMP [GG TGTG++GA; 0.02(0.001-0.0035], VDR [FFBB; 0.2(0.6-0.6] and TNF-α [CCCCGGGGGG; 0.49(0.25-0.97] were statistically different in patients and control subjects (p<0.05. This study confirmed the association of SNPs in BsmI (B/b + b/b of VDR and SNPs in -308A (G/A +G/G of TNF-α genes with susceptibility to tuberculosis in Iranian PTB patients. Furthermore, the extended haplotypes and diplotypes analysis can be considered as an alternative way to determine the host susceptibility to TB.

  20. Gene Expression Changes Induced by Trypanosoma cruzi Shed Microvesicles in Mammalian Host Cells: Relevance of tRNA-Derived Halves

    Directory of Open Access Journals (Sweden)

    Maria R. Garcia-Silva

    2014-01-01

    Full Text Available At present, noncoding small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, canonical small RNA pathways seem to be lost or excessively simplified in some unicellular organisms including Trypanosoma cruzi which lack functional RNAi pathways. Recently, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by homogeneous populations of tRNA- and rRNA-derived small RNAs, which are secreted to the extracellular medium included in extracellular vesicles. Extracellular vesicle cargo could be delivered to other parasites and to mammalian susceptible cells promoting metacyclogenesis and conferring susceptibility to infection, respectively. Here we analyzed the changes in gene expression of host HeLa cells induced by extracellular vesicles from T. cruzi. As assessed by microarray assays a large set of genes in HeLa cells were differentially expressed upon incorporation of T. cruzi-derived extracellular vesicles. The elicited response modified mainly host cell cytoskeleton, extracellular matrix, and immune responses pathways. Some genes were also modified by the most abundant tRNA-derived small RNAs included in extracellular vesicles. These data suggest that microvesicles secreted by T. cruzi could be relevant players in early events of the T. cruzi host cell interplay.

  1. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  2. A Novel Technique for Performing PID Susceptibility Screening during the Solar Cell Fabrication Process

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jaewon; Dahal, Som; Dauksher, Bill; Bowden, Stuart; Tamizhmani, Govindasamy; Hacke, Peter

    2016-11-21

    Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.

  3. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions.

    Science.gov (United States)

    Swierzy, Izabela J; Händel, Ulrike; Kaever, Alexander; Jarek, Michael; Scharfe, Maren; Schlüter, Dirk; Lüder, Carsten G K

    2017-08-03

    The apicomplexan parasite Toxoplasma gondii infects various cell types in avian and mammalian hosts including humans. Infection of immunocompetent hosts is mostly asymptomatic or benign, but leads to development of largely dormant bradyzoites that persist predominantly within neurons and muscle cells. Here we have analyzed the impact of the host cell type on the co-transcriptomes of host and parasite using high-throughput RNA sequencing. Murine cortical neurons and astrocytes, skeletal muscle cells (SkMCs) and fibroblasts differed by more than 16,200 differentially expressed genes (DEGs) before and after infection with T. gondii. However, only a few hundred of them were regulated by infection and these largely diverged in neurons, SkMCs, astrocytes and fibroblasts indicating host cell type-specific transcriptional responses after infection. The heterogeneous transcriptomes of host cells before and during infection coincided with ~5,400 DEGs in T. gondii residing in different cell types. Finally, we identified gene clusters in both T. gondii and its host, which correlated with the predominant parasite persistence in neurons or SkMCs as compared to astrocytes or fibroblasts. Thus, heterogeneous expression profiles of different host cell types and the parasites' ability to adapting to them may govern the parasite-host cell interaction during toxoplasmosis.

  4. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    Science.gov (United States)

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  5. Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Daniela Cerny

    2014-12-01

    Full Text Available Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs, three populations of dermal dendritic cells (DCs, and macrophages. Using samples of normal human skin we detected productive infection of CD14(+ and CD1c(+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response.

  6. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes.

    Directory of Open Access Journals (Sweden)

    Ionit Iberkleid

    Full Text Available Plant-parasitic nematodes produce at least one structurally unique class of small helix-rich retinol- and fatty-acid-binding proteins that have no counterparts in their plant hosts. Herein we describe a protein of the plant-parasitic root-knot nematode Meloidogyne javanica, which is a member of the nematode-specific fatty-acid- and retinol-binding (Mj-FAR-1 family of proteins. The mj-far-1 mRNA was detected through M. javanica pre-parasitic J2s, migratory and sedentary parasitic stages by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Immunolocalization assays demonstrate that the FAR protein of Meloidogyne is secreted during sedentary stages, as evidenced by the accumulation of FAR at the nematode cuticle surface and along the adjacent host root tissues. Tomato roots constitutively expressing mj-far-1 demonstrated an increased susceptibility to root-knot nematodes infection as observed by accelerated gall induction and expansion, accompanied by a higher percentage of nematodes developing into mature females compared to control roots. RNA interference assays that expressed double-stranded RNA complementary to mj-far-1 in transgenic tomato lines specifically reduced nematode infection levels. Histological analysis of nematode-infested roots indicated that in roots overexpressing mj-far-1, galls contained larger feeding cells and might support a faster nematode development and maturation. Roots overexpressing mj-far-1 suppressed jasmonic acid responsive genes such as the proteinase inhibitor (Pin2 and γ-thionin, illustrating the possible role of Mj-FAR-1 in manipulating the lipid based signaling in planta. This data, suggests that Meloidogyne FAR might have a strategic function during the interaction of the nematode with its plant host. Our study present the first demonstration of an in planta functional characterization and localization of FAR proteins secreted by plant-parasitic nematodes. It provides evidence that Mj

  7. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    Science.gov (United States)

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  8. The Survival Strategies of Malaria Parasite in the Red Blood Cell and Host Cell Polymorphisms

    Directory of Open Access Journals (Sweden)

    Gunanidhi Dhangadamajhi

    2010-01-01

    Full Text Available Parasite growth within the erythrocyte causes dramatic alterations of host cell which on one hand facilitates nutrients acquisition from extracellular environment and on other hand contributes to the symptoms of severe malaria. The current paper focuses on interactions between the Plasmodium parasite and its metabolically highly reduced host cell, the natural selection of numerous polymorphisms in the genes encoding hemoglobin and other erythrocyte proteins.

  9. Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans.

    Science.gov (United States)

    Vandeputte, Patrick; Pradervand, Sylvain; Ischer, Françoise; Coste, Alix T; Ferrari, Sélène; Harshman, Keith; Sanglard, Dominique

    2012-07-01

    The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.

  10. Increased dermal mast cell prevalence and susceptibility to development of basal cell carcinoma in humans

    DEFF Research Database (Denmark)

    Grimbaldeston, Michele A; Skov, Lone; Finlay-Jones, John J

    2002-01-01

    eliminate them. Studies in a range of inbred mouse strains as well as mast cell-depleted mice reconstituted with mast cell precursors support a functional link between histamine-staining dermal mast cells and the extent of susceptibility to UVB-induced systemic immunomodulation. Humans, like mouse strains......, display variations in dermal mast cell prevalence. In a study of Danish and South Australian BCC patients and control subjects, one 4-mm punch biopsy of non-sun-exposed buttock skin was sampled from each participant. This skin site was investigated to avoid any changes in mast cell prevalence caused...... by sun exposure. Two sections (4 microm) per biopsy were immunohistochemically stained for detection of histamine-containing dermal mast cells. Computer-generated image analysis evaluated dermal mast cell prevalence in both sections by quantifying the total number of mast cells according to the total...

  11. [Cell-host-parasite interactions: biodiversity, pathogenesis, environment].

    Science.gov (United States)

    Villena, I; Aubert, D; Pinon, J-M

    2006-03-01

    The apicomplexan Toxoplasma gondii, an obligate intracellular parasite, can infect humans and a wide range of vertebrates leading to toxoplasmosis. This generally benign affection can causes severe life-threatening disease, particularly in immunocompromised patients and in children with congenital toxoplasmosis. Our research team works on cell-host-parasite interactions by studying biodiversity, pathogenic mechanisms and environment. We search to identify prognostic factors of disease and markers of resistance. This project is an integral part of our Research Institute (IFR53) which receives support from the Toxoplasma Biological Resource Center for constituting a bank of well characterized toxoplasma isolates for genotyping, clinical and epidemiological data. The involvement of metalloproteinases implicated during monocytic cell invasion and identification of ABC transporter proteins in T. gondii, factors implicated in resistance, need to be explored.

  12. Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells.

    Science.gov (United States)

    Ramirez, M I; Deolindo, P; de Messias-Reason, I J; Arigi, Emma A; Choi, H; Almeida, I C; Evans-Osses, I

    2017-04-01

    Extracellular vesicles released from pathogens may alter host cell functions. We previously demonstrated the involvement of host cell-derived microvesicles (MVs) during early interaction between Trypanosoma cruzi metacyclic trypomastigote (META) stage and THP-1 cells. Here, we aim to understand the contribution of different parasite stages and their extracellular vesicles in the interaction with host cells. First, we observed that infective host cell-derived trypomastigote (tissue culture-derived trypomastigote [TCT]), META, and noninfective epimastigote (EPI) stages were able to induce different levels of MV release from THP-1 cells; however, only META and TCT could increase host cell invasion. Fluorescence resonance energy transfer microscopy revealed that THP-1-derived MVs can fuse with parasite-derived MVs. Furthermore, MVs derived from the TCT-THP-1 interaction showed a higher fusogenic capacity than those from META- or EPI-THP-1 interaction. However, a higher presence of proteins from META (25%) than TCT (12%) or EPI (5%) was observed in MVs from parasite-THP-1 interaction, as determined by proteomics. Finally, sera from patients with chronic Chagas disease at the indeterminate or cardiac phase differentially recognized antigens in THP-1-derived MVs resulting only from interaction with infective stages. The understanding of intracellular trafficking and the effect of MVs modulating the immune system may provide important clues about Chagas disease pathophysiology. © 2016 John Wiley & Sons Ltd.

  13. Fierce Competition between Toxoplasma and Chlamydia for Host Cell Structures in Dually Infected Cells

    Science.gov (United States)

    Romano, Julia D.; de Beaumont, Catherine; Carrasco, Jose A.; Ehrenman, Karen; Bavoil, Patrik M.

    2013-01-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients. PMID:23243063

  14. HCMV Induces Macropinocytosis for Host Cell Entry in Fibroblasts.

    Science.gov (United States)

    Hetzenecker, Stefanie; Helenius, Ari; Krzyzaniak, Magdalena Anna

    2016-04-01

    Human cytomegalovirus (HCMV) is an important and widespread pathogen in the human population. While infection by this β-herpesvirus in endothelial, epithelial and dendritic cells depends on endocytosis, its entry into fibroblasts is thought to occur by direct fusion of the viral envelope with the plasma membrane. To characterize individual steps during entry in primary human fibroblasts, we employed quantitative assays as well as electron, fluorescence and live cell microscopy in combination with a variety of inhibitory compounds. Our results showed that while infectious entry was pH- and clathrin-independent, it required multiple, endocytosis-related factors and processes. The virions were found to undergo rapid internalization into large vacuoles containing internalized fluid and endosome markers. The characteristics of the internalization process fulfilled major criteria for macropinocytosis. Moreover, we found that soon after addition to fibroblasts the virus rapidly triggered the formation of circular dorsal ruffles in the host cell followed by the generation of large macropinocytic vacuoles. This distinctive form of macropinocytosis has been observed especially in primary cells but has not previously been reported in response to virus stimulation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells.

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    2010-09-01

    Full Text Available The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

  16. Bacterial colonization of host cells in the absence of cholesterol.

    Directory of Open Access Journals (Sweden)

    Stacey D Gilk

    2013-01-01

    Full Text Available Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/- mouse embryonic fibroblasts (MEFs. DHCR24(-/- MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/- MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/- MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(Vβ(3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/- MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.

  17. Bacterial Colonization of Host Cells in the Absence of Cholesterol

    Science.gov (United States)

    Gilk, Stacey D.; Cockrell, Diane C.; Luterbach, Courtney; Hansen, Bryan; Knodler, Leigh A.; Ibarra, J. Antonio; Steele-Mortimer, Olivia; Heinzen, Robert A.

    2013-01-01

    Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. PMID:23358892

  18. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  19. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  20. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Science.gov (United States)

    Taft, Robert A; Low, Benjamin E; Byers, Shannon L; Murray, Stephen A; Kutny, Peter; Wiles, Michael V

    2013-01-01

    There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs). We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH) that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium). ESC germline transmission was observed in 9/11 (82%) lines using PH blastocysts, compared to 6/11 (55%) when conventional host blastocysts were used. Furthermore, less than 35% (83/240) of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137) of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the production

  1. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    Science.gov (United States)

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  2. Expression of Orseolia oryzae nucleoside diphosphate kinase (OoNDPK) is enhanced in rice gall midge feeding on susceptible rice hosts and its over-expression leads to salt tolerance in Escherichia coli.

    Science.gov (United States)

    Sinha, D K; Atray, I; Bentur, J S; Nair, S

    2012-12-01

    The Asian rice gall midge, Orseolia oryzae, is a major dipteran pest of rice, with many known biotypes. The present investigation was initiated to understand the molecular mechanisms of infestation for developing novel integrated pest management strategies. We isolated and characterized a gene, nucleoside diphosphate kinase (OoNDPK), from the rice gall midge, encoding a protein with 169 amino acid residues and with a secretory signal sequence - an observation that assumes significance as salivary gland secretions have been implicated to play a major role in insect-plant interactions. Furthermore, up-regulation (> 18 folds) of OoNDPK was observed in the salivary glands of maggots feeding on susceptible host in contrast to those feeding on resistant host. Phylogenetic analysis revealed similarity of OoNDPK with its dipteran orthologues. 3DLigandSite analysis, of the predicted OoNDPK and its orthologues, revealed phenylalanine and tyrosine residues to be specifically present in NDPK proteins from the plant feeders. Results suggest secretion of OoNDPK into the host plant and its probable involvement in gall midge-rice interaction. Using the coleoptile cell elongation assay, we demonstrated that the recombinant OoNDPK is capable of causing elongation of rice coleoptile cells. Additionally, heterologous expression of OoNDPK in Escherichia coli increased the tolerance of these cells to salt (NaCl; up to 1 mM), hinting at the involvement of this gene in abiotic stress response as well. © 2012 Royal Entomological Society.

  3. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.

    Science.gov (United States)

    Torriani, Giulia; Galan-Navarro, Clara; Kunz, Stefan

    2017-02-15

    Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors. Copyright © 2017 American Society for Microbiology.

  4. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication

    OpenAIRE

    Hamid, Penny H.; Hirzmann, Joerg; Kerner, Katharina; Gimpl, Gerald; Lochnit, Guenter; Hermosilla, Carlos R.; Taubert, Anja

    2015-01-01

    During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholestero...

  5. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.

    Science.gov (United States)

    Sisodiya, Vikram N; Lequieu, Joshua; Rodriguez, Maricel; McDonald, Paul; Lazzareschi, Kathlyn P

    2012-10-01

    Protein A chromatography is typically used as the initial capture step in the purification of monoclonal antibodies produced in Chinese hamster ovary (CHO) cells. Although exploiting an affinity interaction for purification, the level of host cell proteins in the protein A eluent varies significantly with different feedstocks. Using a batch binding chromatography method, we performed a controlled study to assess host cell protein clearance across both MabSelect Sure and Prosep vA resins. We individually spiked 21 purified antibodies into null cell culture fluid generated with a non-producing cell line, creating mock cell culture fluids for each antibody with an identical composition of host cell proteins and antibody concentration. We demonstrated that antibody-host cell protein interactions are primarily responsible for the variable levels of host cell proteins in the protein A eluent for both resins when antibody is present. Using the additives guanidine HCl and sodium chloride, we demonstrated that antibody-host cell protein interactions may be disrupted, reducing the level of host cell proteins present after purification on both resins. The reduction in the level of host cell proteins differed between antibodies suggesting that the interaction likely varies between individual antibodies but encompasses both an electrostatic and hydrophobic component. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Identification of TRAPPC8 as a host factor required for human papillomavirus cell entry.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ishii

    Full Text Available Human papillomavirus (HPV is a non-enveloped virus composed of a circular DNA genome and two capsid proteins, L1 and L2. Multiple interactions between its capsid proteins and host cellular proteins are required for infectious HPV entry, including cell attachment and internalization, intracellular trafficking and viral genome transfer into the nucleus. Using two variants of HPV type 51, the Ma and Nu strains, we have previously reported that MaL2 is required for efficient pseudovirus (PsV transduction. However, the cellular factors that confer this L2 dependency have not yet been identified. Here we report that the transport protein particle complex subunit 8 (TRAPPC8 specifically interacts with MaL2. TRAPPC8 knockdown in HeLa cells yielded reduced levels of reporter gene expression when inoculated with HPV51Ma, HPV16, and HPV31 PsVs. TRAPPC8 knockdown in HaCaT cells also showed reduced susceptibility to infection with authentic HPV31 virions, indicating that TRAPPC8 plays a crucial role in native HPV infection. Immunofluorescence microscopy revealed that the central region of TRAPPC8 was exposed on the cell surface and colocalized with inoculated PsVs. The entry of Ma, Nu, and L2-lacking PsVs into cells was equally impaired in TRAPPC8 knockdown HeLa cells, suggesting that TRAPPC8-dependent endocytosis plays an important role in HPV entry that is independent of L2 interaction. Finally, expression of GFP-fused L2 that can also interact with TRAPPC8 induced dispersal of the Golgi stack structure in HeLa cells, a phenotype also observed by TRAPPC8 knockdown. These results suggest that during viral intracellular trafficking, binding of L2 to TRAPPC8 inhibits its function resulting in Golgi destabilization, a process that may assist HPV genome escape from the trans-Golgi network.

  7. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  8. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2017-08-22

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  9. Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars.

    Science.gov (United States)

    Yoneyama, Kaori; Arakawa, Ryota; Ishimoto, Keiko; Kim, Hyun Il; Kisugi, Takaya; Xie, Xiaonan; Nomura, Takahito; Kanampiu, Fred; Yokota, Takao; Ezawa, Tatsuhiro; Yoneyama, Koichi

    2015-05-01

    Strigolactones released from plant roots trigger both seed germination of parasitic weeds such as Striga spp. and hyphal branching of the symbionts arbuscular mycorrhizal (AM) fungi. Generally, strigolactone composition in exudates is quantitatively and qualitatively different among plants, which may be involved in susceptibility and host specificity in the parasite-plant interactions. We hypothesized that difference in strigolactone composition would have a significant impact on compatibility and host specificity/preference in AM symbiosis. Strigolactones in root exudates of Striga-susceptible (Pioneer 3253) and -resistant (KST 94) maize (Zea mays) cultivars were characterized by LC-MS/MS combined with germination assay using Striga hermonthica seeds. Levels of colonization and community compositions of AM fungi in the two cultivars were investigated in field and glasshouse experiments. 5-Deoxystrigol was exuded exclusively by the susceptible cultivar, while the resistant cultivar mainly exuded sorgomol. Despite the distinctive difference in strigolactone composition, the levels of AM colonization and the community compositions were not different between the cultivars. The present study demonstrated that the difference in strigolactone composition has no appreciable impact on AM symbiosis, at least in the two maize cultivars, and further suggests that the traits involved in Striga-resistance are not necessarily accompanied by reduction in compatibility to AM fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell.

    Science.gov (United States)

    Rolando, Monica; Buchrieser, Carmen

    2014-12-01

    Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  12. Host cell protein adsorption characteristics during protein A chromatography.

    Science.gov (United States)

    Tarrant, Richard D R; Velez-Suberbie, M Lourdes; Tait, Andrew S; Smales, C Mark; Bracewell, Daniel G

    2012-07-01

    Protein A chromatography is a critical and 'gold-standard' step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI-TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back-bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D-PAGE was then used to determine individual components associated with resin back-bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  13. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    Science.gov (United States)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  14. Cancer cell: using inflammation to invade the host

    Directory of Open Access Journals (Sweden)

    Aller María-Angeles

    2007-04-01

    Full Text Available Abstract Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T, node (N and metastasis (M. However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic, a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces.

  15. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Directory of Open Access Journals (Sweden)

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  16. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  17. B-cell involvement in chronic graft-versus-host disease

    NARCIS (Netherlands)

    Kapur, Rick; Ebeling, Saskia; Hagenbeek, Anton

    2008-01-01

    Chronic graft-versus-host disease is a serious complication in long-term survivors of allogeneic hematopoietic stem cell transplantation, with several organ systems affected. Chronic graft-versus-host disease is an important cause of morbidity and mortality in allogeneic hematopoietic stem cell

  18. Host Factors Invovled in the Entry of Coronaviruses into Mammalian Cells

    NARCIS (Netherlands)

    Burkard, C.

    2015-01-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral

  19. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  20. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    Science.gov (United States)

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Tomato susceptibility to Alternaria stem canker : Parameters involved in host-specific toxin-induced leaf necrosis

    NARCIS (Netherlands)

    Witsenboer, Hanneke M.A.; Kloosterziel, Karen M.; Hateboer, Guus; Nijkamp, H. John J.; Hille, Jacques

    1992-01-01

    AAL-toxin causes severe necrosis in leaves of susceptible tomato cultivars at nanomolar concentrations. In resistant tomato cultivars harbouring the semi-dominant Alternaria stem canker resistance locus necrosis is also observed, however at much higher toxin concentrations, in both lines the

  2. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts

    NARCIS (Netherlands)

    Gerla, D.J.; Gsell, A.S.; Kooi, B.W.; Ibelings, B.W.; Donk, van E.; Mooij, W.M.

    2013-01-01

    1. Despite the strong impact parasites can have, only few models of phytoplankton ecology or aquatic food webs have specifically included parasitism. 2. Here, we provide a susceptible-infected model for a diatom-chytrid hostparasite system that explicitly includes nutrients, infected and uninfected

  3. Alternative states and population crashes in a resource-susceptible-infected model for planktonic parasites and hosts

    NARCIS (Netherlands)

    Gerla, D.J.; Gsell, A.S.; Kooi, B.W.; Ibelings, B.W.; Van Donk, E.; Mooij, W.M.

    2013-01-01

    1. Despite the strong impact parasites can have, only few models of phytoplankton ecology or aquatic food webs have specifically included parasitism. 2. Here, we provide a susceptible-infected model for a diatom-chytrid host–parasite system that explicitly includes nutrients, infected and uninfected

  4. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting.

    Science.gov (United States)

    Hodzic, Jasmina; Dingjan, Ilse; Maas, Mariëlle Jp; van der Meulen-Muileman, Ida H; de Menezes, Renee X; Heukelom, Stan; Verheij, Marcel; Gerritsen, Winald R; Geldof, Albert A; van Triest, Baukelien; van Beusechem, Victor W

    2015-02-27

    Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will

  5. Susceptibility of bovine umbilical cord endothelial cells to bovine herpesviruses and pseudocowpox virus.

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.R.A.M.; Jongejan, F.; Oirschot, van J.T.

    2002-01-01

    The purpose of the study was to determine the susceptibility of bovine umbilical cord endothelial (BUE) cells to bovine herpesvirus (BHV) 1, BHV2, BHV4 and BHV5, and to pseudocowpox virus. the detection limits and growth curves of these viruses in BUE cells were compared with those in Vero,

  6. Early Life Processes, Endocrine Mediators and Number of Susceptible Cells in Relation to Breast Cancer Risk

    Science.gov (United States)

    2007-04-01

    Early life processes, endocrine mediators and number of susceptible cells in relation 5a. CONTRACT NUMBER to breast cancer ... cancer risk. Method: Five interlinked component projects covering the spectrum from endometrial to adult life . Progress report: Component projects...Analyses are pending and no findings can be reported yet. 15. SUBJECT TERMS Breast cancer , early life , mammary gland specific stem cells, hormones 16

  7. Host selection and probing behavior of the poplar aphid Chaitophorus leucomelas (Sternorrhyncha: Aphididae) on two poplar hybrids with contrasting susceptibility to aphids.

    Science.gov (United States)

    Barrios-San Martín, Joceline; Quiroz, Andrés; Verdugo, Jaime A; Parra, Leonardo; Hormazabal, Emilio; Astudillo, Luis A; Rojas-Herrera, Marcelo; Ramírez, Claudio C

    2014-02-01

    Poplars are frequently attacked by aphids. The differential susceptibility of poplar hybrids to the aphid Chaitophorus leucomelas Koch (Sternorrhyncha: Aphididae) has been described, but the mechanism underlying this pattern is unknown. This work tested the hypothesis that poplar resistance to this aphid is associated with the presence of volatiles and secondary plant compounds that affect host selection and feeding behavior. This hypothesis was tested by studying the host choice and feeding behavior of C. leucomelas on two poplar hybrids with contrasting susceptibilities to this aphid ([Populus trichocarpa Torrey & Gray x Populus deltoides Bartram ex Marshall] x P. deltoides [TD x D], and [P. trichocarpa x Populus maximowiczii Henry] x [P. trichocarpa x P. maximowiczii] [TM x TM]). The results showed that C. leucomelas rejected leaves of the TM x TM hybrid and did not prefer odors from either hybrid. Electronic monitoring of the probing behavior of C. leucomelas suggested the involvement of antifeedant factors in the TM x TM hybrid. In addition, the chemical characterization of volatiles, epicuticular waxes, and internal phenols of leaves from both poplar hybrids revealed that TM x TM had a higher abundance of monoterpenes, sesquiterpenes, n-alkanes, and phenols. These results are discussed in terms of their contribution to poplar breeding programs aimed at enhancing insect resistance.

  8. Gain of virulence by Soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host.

    Science.gov (United States)

    Wang, Y; Hajimorad, M R

    2016-09-01

    'Gene-for-gene' theory predicts that gain of virulence by an avirulent pathogen on plants expressing resistance (R) genes is associated with fitness loss in susceptible hosts. However, the validity of this prediction has been studied in only a few plant viral pathosystems. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to test this prediction. In Rsv4-genotype soybeans, P3 of avirulent SMV strains provokes an as yet uncharacterized resistance mechanism that restricts the invading virus to the inoculated leaves. A single amino acid substitution in P3 functionally converts an avirulent to a virulent strain, suggesting that the genetic composition of P3 plays a crucial role in virulence on Rsv4-genotype soybeans. In this study, we examined the impact of gain of virulence mutation(s) on the fitness of virulent variants derived from three avirulent SMV strains in a soybean genotype lacking the Rsv4 gene. Our data demonstrate that gain of virulence mutation(s) by all avirulent viruses on Rsv4-genotype soybean is associated with a relative fitness loss in a susceptible host. The implications of this finding on the durable deployment of the Rsv4 gene in soybean are discussed. © 2015 BSPP and John Wiley & Sons Ltd.

  9. Host-Based Th2 Cell Therapy for Prolongation of Cardiac Allograft Viability

    Science.gov (United States)

    Foley, Jason E.; Costanzo, Carliann M.; Sennesh, Joel D.; Solomon, Michael A.; Fowler, Daniel H.

    2011-01-01

    Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA) therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1) reduced the frequency of activated T cells in secondary lymphoid organs; (2) shifted post-transplant cytokines towards a Th2 phenotype; and (3) prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use “direct” host T cell therapy for prolongation of allograft viability as an alternative to “indirect” therapy mediated by donor T cell infusion. PMID:21559526

  10. Host-based Th2 cell therapy for prolongation of cardiac allograft viability.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    Full Text Available Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1 reduced the frequency of activated T cells in secondary lymphoid organs; (2 shifted post-transplant cytokines towards a Th2 phenotype; and (3 prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use "direct" host T cell therapy for prolongation of allograft viability as an alternative to "indirect" therapy mediated by donor T cell infusion.

  11. Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated

    Science.gov (United States)

    Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E

    2012-01-01

    Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231

  12. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle

    Science.gov (United States)

    Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  13. Tumor-specific suppressor T-cells which inhibit the in vitro generation of cytolytic T-cells from immune and early tumor-bearing host spleens.

    Science.gov (United States)

    Bear, H D

    1986-04-01

    Spleen cells from DBA/2 mice, after immunization with syngeneic P815 mastocytoma cells and Corynebacterium parvum, respond to P815 in vitro with a brisk, secondary-type generation of cytotoxic cells. This cytotoxicity is mediated by antigen-specific T-lymphocytes and correlates with resistance to in vivo challenge. This model confirms the observations of previous investigators made in semisyngeneic hosts using an in vivo transfer model. Spleen cells from "early" tumor-bearing hosts (TBHs), 7-12 days after intradermal (i.d.) inoculation of 10(6) P815 cells alone, made a similar, but generally higher, cytotoxic T-lymphocyte (CTL) response in vitro. Spleen cells from "late" TBHs (18-28 days) completely suppressed the in vitro CTL response of immune cells (e.g., from 71% specific release in controls down to 8% at an effector: target ratio of 40:1). Early i.d. TBH spleen cells, because of their higher level response, appeared to be resistant to this suppression (85% release for controls and 84% when suppressor cells were added at 40:1). By testing early TBH CTL at lower effector: target ratios, however, suppression by late TBH spleen cells could be readily demonstrated. When TBHs were inoculated s.c. instead of i.d. or with lower doses of tumor cells, responses were lower and susceptibility of splenic CTLs to suppression was increased. At intermediate times after tumor inoculation (14-20 days), spleen cells from TBHs still can respond in vitro, but they are completely suppressed by spleen cells from late TBHs. The suppressor cells are antigen-specific, radiation-sensitive, Thy1+ cells.

  14. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  15. IMMUNE INHIBITION OF VIRUS RELEASE FROM HUMAN AND NONHUMAN CELLS BY ANTIBODY TO VIRAL AND HOST-CELL DETERMINANTS

    NARCIS (Netherlands)

    SHARIFF, DM; DESPERBASQUES, M; BILLSTROM, M; GEERLIGS, HJ; WELLING, GW; WELLINGWESTER, S; BUCHAN, A; SKINNER, GRB

    1991-01-01

    Immune inhibition of release of the DNA virues, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and

  16. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  17. Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways

    Directory of Open Access Journals (Sweden)

    Renata Watanabe Costa

    2016-03-01

    Full Text Available Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.

  18. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes.

    Science.gov (United States)

    Killackey, Samuel A; Sorbara, Matthew T; Girardin, Stephen E

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.

  19. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV infection and evolution of persistent infection.

    Directory of Open Access Journals (Sweden)

    Yíngyún Caì

    Full Text Available Middle East respiratory syndrome coronavirus (MERS-CoV is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.

  20. Three-Dimensional In Vitro Models of Granuloma to Study Bacteria-Host Interactions, Drug-Susceptibility, and Resuscitation of Dormant Mycobacteria

    Science.gov (United States)

    Fitzgerald, Liam E.; Abendaño, Naiara; Juste, Ramon A.

    2014-01-01

    Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium avium subsp. paratuberculosis can survive within host macrophages in a dormant state, encased within an organized aggregate of immune host cells called granuloma. Granulomas consist of uninfected macrophages, foamy macrophages, epithelioid cells, and T lymphocytes accumulated around infected macrophages. Within granulomas, activated macrophages can fuse to form multinucleated giant cells, also called giant Langhans cells. A rim of T lymphocytes surrounds the core, and a tight coat of fibroblast closes the structure. Several in vivo models have been used to study granuloma's structure and function, but recently developed in vitro models of granuloma show potential for closer observation of the early stages of host's responses to live mycobacteria. This paper reviews culture conditions that resulted in three-dimensional granulomas, formed by the adhesion of cell populations in peripheral blood mononuclear cells infected with mycobacteria. The similarities of these models to granulomas encountered in clinical specimens include cellular composition, granulomas' cytokine production, and cell surface antigens. A reliable in vitro dormancy model may serve as a useful platform to test whether drug candidates can kill dormant mycobacteria. Novel drugs that target dormancy-specific pathways may shorten the current long, difficult treatments necessary to cure mycobacterial diseases. PMID:24967387

  1. Three-dimensional in vitro models of granuloma to study bacteria-host interactions, drug-susceptibility, and resuscitation of dormant mycobacteria.

    Science.gov (United States)

    Fitzgerald, Liam E; Abendaño, Naiara; Juste, Ramon A; Alonso-Hearn, Marta

    2014-01-01

    Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium avium subsp. paratuberculosis can survive within host macrophages in a dormant state, encased within an organized aggregate of immune host cells called granuloma. Granulomas consist of uninfected macrophages, foamy macrophages, epithelioid cells, and T lymphocytes accumulated around infected macrophages. Within granulomas, activated macrophages can fuse to form multinucleated giant cells, also called giant Langhans cells. A rim of T lymphocytes surrounds the core, and a tight coat of fibroblast closes the structure. Several in vivo models have been used to study granuloma's structure and function, but recently developed in vitro models of granuloma show potential for closer observation of the early stages of host's responses to live mycobacteria. This paper reviews culture conditions that resulted in three-dimensional granulomas, formed by the adhesion of cell populations in peripheral blood mononuclear cells infected with mycobacteria. The similarities of these models to granulomas encountered in clinical specimens include cellular composition, granulomas' cytokine production, and cell surface antigens. A reliable in vitro dormancy model may serve as a useful platform to test whether drug candidates can kill dormant mycobacteria. Novel drugs that target dormancy-specific pathways may shorten the current long, difficult treatments necessary to cure mycobacterial diseases.

  2. Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease

    Directory of Open Access Journals (Sweden)

    Corey Falcon

    2017-06-01

    Full Text Available Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD. Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis, as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.

  3. Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease.

    Science.gov (United States)

    Falcon, Corey; Al-Obaidi, Mustafa; Di Stasi, Antonio

    2017-06-14

    Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD). Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis), as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.

  4. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Directory of Open Access Journals (Sweden)

    Maura De Simone

    Full Text Available Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s may have a role in the reduction of cell-mediated immunity playing a critical role in

  5. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Adam Sateriale

    2011-01-01

    Full Text Available The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model.

  6. Signalome-wide assessment of host cell response to hepatitis C virus

    OpenAIRE

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-?B pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machine...

  7. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    Science.gov (United States)

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  8. Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor.

    Science.gov (United States)

    Wang, Gen; Barrett, John W; Stanford, Marianne; Werden, Steven J; Johnston, James B; Gao, Xiujuan; Sun, Mei; Cheng, Jin Q; McFadden, Grant

    2006-03-21

    We demonstrate that the susceptibility of human cancer cells to be infected and killed by an oncolytic poxvirus, myxoma virus (MV), is related to the basal level of endogenous phosphorylated Akt. We further demonstrate that nonpermissive tumor cells will switch from resistant to susceptible for MV infection after expression of ectopically active Akt (Myr-Akt) and that permissive cancer cells can be rendered nonpermissive by blocking Akt activation with a dominant-negative inhibitor of Akt. Finally, the activation of Akt by MV involves the formation of a complex between the viral host range ankyrin-repeat protein, M-T5, and Akt. We conclude that the Akt pathway is a key restriction determinant for permissiveness of human cancer cells by MV.

  9. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  10. Some Observations on Carbon Nanotubes Susceptibility to Cell Phagocytosis

    Directory of Open Access Journals (Sweden)

    Aneta Fraczek-Szczypta

    2011-01-01

    Full Text Available The aim of this study was to assess the influence of different types of carbon nanotubes (CNTs on cell phagocytosis. Three kinds of carbon nanotubes: single-walled carbon nanohorns (SWCNHs, multiwalled carbon nanotubes (MWCNTs, and ultra-long single-walled carbon nanotubes (ULSWCNTs before and after additional chemical functionalization were seeded with macrophage cell culture. Prior to biological testing, the CNTs were subjected to dispersion process with the use of phosphate buffered solution (PBS and PBS containing surfactant (Tween 20 or dimethyl sulfoxide (DMSO. The results indicate that the cells interaction with an individual nanotube is entirely different as compared to CNTs in the form of aggregate. The presence of the surfactant favors the CNTs dispersion in culture media and facilitates phagocytosis process, while it has disadvantageous influence on cells morphology. The cells phagocytosis is a more effective for MWCNTs and SWCNHs after their chemical functionalization. Moreover, these nanotubes were well dispersed in culture media without using DMSO or surfactant. The functionalized carbon nanotubes were easily dispersed in pure PBS and seeded with cells.

  11. Innate Immune Defense Defines Susceptibility of Sarcoma Cells to Measles Vaccine Virus-Based Oncolysis

    OpenAIRE

    Berchtold, Susanne; Lampe, Johanna; Weiland, Timo; Smirnow, Irina; Schleicher, Sabine; Handgretinger, Rupert; Kopp, Hans-Georg; Reiser, Jeanette; Stubenrauch, Frank; Mayer, Nora; Malek, Nisar P.; Bitzer, Michael; Lauer, Ulrich M

    2013-01-01

    The oncolytic potential of measles vaccine virus (MeV) has been demonstrated in several tumor entities. Here, we investigated the susceptibility of eight sarcoma cell lines to MeV-mediated oncolysis and found five to be susceptible, whereas three proved to be resistant. In the MeV-resistant cell lines, we often observed an inhibition of viral replication along with a strong upregulation of the intracellular virus-sensing molecule RIG-I and of the interferon (IFN)-stimulated gene IFIT1. Not on...

  12. Host Cell Nuclear Localization of Shigella flexneri Effector OspF Is Facilitated by SUMOylation.

    Science.gov (United States)

    Jo, Kyungmin; Kim, Eun Jin; Yu, Hyun Jin; Yun, Cheol-Heui; Kim, Dong Wook

    2017-03-28

    When Shigella infect host cells, various effecter molecules are delivered into the cytoplasm of the host cell through the type III secretion system (TTSS) to facilitate their invasion process and control the host immune responses. Among these effectors, the S. flexneri effector OspF dephosphorylates mitogen-activated protein kinases and translocates itself to the nucleus, thus preventing histone H3 modification to regulate expression of proinflammatory cytokines. Despite the critical role of OspF, the mechanism by which it localizes in the nucleus has remained to be elucidated. In the present study, we identified a potential small ubiquitin-related modifier (SUMO) modification site within OspF and we demonstrated that Shigella TTSS effector OspF is conjugated with SUMO in the host cell and this modification mediates the nuclear translocation of OspF. Our results show a bacterial virulence factor can exploit host post-translational machinery to execute its intracellular trafficking.

  13. Chew on this: Amoebic trogocytosis and host cell killing by Entamoeba histolytica

    Science.gov (United States)

    Ralston, Katherine S.

    2015-01-01

    Entamoeba histolytica was named “histolytica” (histo-: tissue; lytic-: dissolving) for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. Here we review this process, termed “amoebic trogocytosis” (trogo-: nibble), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. “Nibbling” processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange. PMID:26070402

  14. Bordetella effector BopN is translocated into host cells via its N-terminal residues.

    Science.gov (United States)

    Abe, Akio; Nishimura, Ryutaro; Kuwae, Asaomi

    2017-06-01

    Bordetella bronchiseptica infects a wide variety of mammals, the type III secretion system (T3SS) being involved in long-term colonization by Bordetella of the trachea and lung. T3SS translocates virulence factors (commonly referred to as effectors) into host cells, leading to alterations in the host's physiological function. The Bordetella effectors BopN and BteA are known to have roles in up-regulation of IL-10 and cytotoxicity, respectively. Nevertheless, the mechanism by which BopN is translocated into host cells has not been examined in sufficient detail. Therefore, to determine the precise mechanisms of translocation of BopN into host cells, truncated derivatives of BopN were built and the derivatives' ability to translocate into host cells evaluated by adenylate cyclase-mediated translocation assay. It was found that N-terminal amino acid (aa) residues 1-200 of BopN are sufficient for its translocation into host cells. Interestingly, BopN translocation was completely blocked by deletion of the N-terminal aa residues 6-50, indicating that the N-terminal region is critical for BopN translocation. Furthermore, BopN appears to play an auxiliary role in BteA-mediated cytotoxicity. Thus, BopN can apparently translocate into host cells and may facilitate activity of BteA. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  15. Genetic susceptibility to head and neck squamous cell carcinoma

    NARCIS (Netherlands)

    Lacko, M.; Braakhuis, B.J.M.; Sturgis, E.M.; Boedeker, C.C.; Suarez, C.; Rinaldo, A.; Ferlito, A.; Takes, R.P.

    2014-01-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all

  16. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell.

    Science.gov (United States)

    Hatch, G M; McClarty, G

    1998-08-01

    Chlamydia trachomatis is an obligate intracellular eubacterial parasite capable of infecting a wide range of eucaryotic host cells. Purified chlamydiae contain several lipids typically found in eucaryotes, and it has been established that eucaryotic lipids are transported from the host cell to the parasite. In this report, we examine the phospholipid composition of C. trachomatis purified from host cells grown under a variety of conditions in which the cellular phospholipid composition was altered. A mutant CHO cell line, with a thermolabile CDP-choline synthetase, was used to show that decreased host cell phosphatidylcholine levels had no significant effect on C. trachomatis growth. However, less phosphatidylcholine was transported to the parasite and purified elementary bodies contained decreased levels of phosphatidylcholine. Brefeldin A, fumonisin B1, and exogenous sphingomyelinase were used to alter levels of host cell sphingomyelin. None of the agents had a significant effect on C. trachomatis replication. Treatment with fumonisin B1 and exogenous sphingomyelinase resulted in decreased levels of host cell sphingomyelin. This had no effect on glycerophospholipid trafficking to chlamydiae; however, sphingomyelin trafficking was reduced and elementary bodies purified from treated cells had reduced sphingomyelin content. Exposure to brefeldin A, which had no adverse effect on chlamydia growth, resulted in an increase in cellular levels of sphingomyelin and a concomitant increase in the amount of sphingomyelin in purified chlamydiae. Under the experimental conditions used, brefeldin A treatment had only a small effect on sphingomyelin trafficking to the host cell surface or to C. trachomatis. Thus, the final phospholipid composition of purified C. trachomatis mimics that of the host cell in which it is grown.

  17. Exon level transcriptomic profiling of HIV-1-infected CD4(+ T cells reveals virus-induced genes and host environment favorable for viral replication.

    Directory of Open Access Journals (Sweden)

    Michaël Imbeault

    Full Text Available HIV-1 is extremely specialized since, even amongst CD4(+ T lymphocytes (its major natural reservoir in peripheral blood, the virus productively infects only a small proportion of cells under an activated state. As the percentage of HIV-1-infected cells is very low, most studies have so far failed to capture the precise transcriptomic profile at the whole-genome scale of cells highly susceptible to virus infection. Using Affymetrix Exon array technology and a reporter virus allowing the magnetic isolation of HIV-1-infected cells, we describe the host cell factors most favorable for virus establishment and replication along with an overview of virus-induced changes in host gene expression occurring exclusively in target cells productively infected with HIV-1. We also establish that within a population of activated CD4(+ T cells, HIV-1 has no detectable effect on the transcriptome of uninfected bystander cells at early time points following infection. The data gathered in this study provides unique insights into the biology of HIV-1-infected CD4(+ T cells and identifies genes thought to play a determinant role in the interplay between the virus and its host. Furthermore, it provides the first catalogue of alternative splicing events found in primary human CD4(+ T cells productively infected with HIV-1.

  18. Susceptibility of KSHV-Infected PEL Cell Lines to the Human Complement System.

    Science.gov (United States)

    Yoo, Seung-Min; Jeon, Hyungtaek; Lee, Suhyuk; Lee, Myung-Shin

    2016-03-01

    Pleural effusion lymphoma (PEL) is a rare B-cell lymphoma that has a very poor prognosis with a median survival time of around 6 months. PEL is caused by Kaposi's sarcoma-associated herpesvirus, and is often co-infected with the Epstein Barr virus. The complement system is fundamental in the innate immune system against pathogen invasion and tumor development. In the present study, we investigated the activation of the complement system in PEL cells using human serum complements. Interestingly, two widely used PEL cell lines, BCP-1 and BCBL-1, showed different susceptibility to the complement system, which may be due to CD46 expression on their cell membranes. Complement activation did not induce apoptosis but supported cell survival considerably. Our results demonstrated the susceptibility of PEL to the complement system and its underlying mechanisms, which would provide insight into understanding the pathogenesis of PEL.

  19. Diversity in host clone performance within a Chinese hamster ovary cell line.

    Science.gov (United States)

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  20. Bacterial cell-cell communication in the host via RRNPP peptide-binding regulators

    Directory of Open Access Journals (Sweden)

    David ePerez-Pascual

    2016-05-01

    Full Text Available Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  1. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Science.gov (United States)

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  2. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants.

    Science.gov (United States)

    Zhuo, Kan; Chen, Jiansong; Lin, Borong; Wang, Jing; Sun, Fengxia; Hu, Lili; Liao, Jinling

    2017-01-01

    Meloidogyne enterolobii is one of the most important plant-parasitic nematodes that can overcome the Mi-1 resistance gene and damage many economically important crops. Translationally controlled tumour protein (TCTP) is a multifunctional protein that exists in various eukaryotes and plays an important role in parasitism. In this study, a novel M. enterolobii TCTP effector, named MeTCTP, was identified and functionally characterized. MeTCTP was specifically expressed within the dorsal gland and was up-regulated during M. enterolobii parasitism. Transient expression of MeTCTP in protoplasts from tomato roots showed that MeTCTP was localized in the cytoplasm of the host cells. Transgenic Arabidopsis thaliana plants overexpressing MeTCTP were more susceptible to M. enterolobii infection than wild-type plants in a dose-dependent manner. By contrast, in planta RNA interference (RNAi) targeting MeTCTP suppressed the expression of MeTCTP in infecting nematodes and attenuated their parasitism. Furthermore, MeTCTP could suppress programmed cell death triggered by the pro-apoptotic protein BAX. These results demonstrate that MeTCTP is a novel plant-parasitic nematode effector that promotes parasitism, probably by suppressing programmed cell death in host plants. © 2016 BSPP and John Wiley & Sons Ltd.

  3. Innate immune defense defines susceptibility of sarcoma cells to measles vaccine virus-based oncolysis.

    Science.gov (United States)

    Berchtold, Susanne; Lampe, Johanna; Weiland, Timo; Smirnow, Irina; Schleicher, Sabine; Handgretinger, Rupert; Kopp, Hans-Georg; Reiser, Jeanette; Stubenrauch, Frank; Mayer, Nora; Malek, Nisar P; Bitzer, Michael; Lauer, Ulrich M

    2013-03-01

    The oncolytic potential of measles vaccine virus (MeV) has been demonstrated in several tumor entities. Here, we investigated the susceptibility of eight sarcoma cell lines to MeV-mediated oncolysis and found five to be susceptible, whereas three proved to be resistant. In the MeV-resistant cell lines, we often observed an inhibition of viral replication along with a strong upregulation of the intracellular virus-sensing molecule RIG-I and of the interferon (IFN)-stimulated gene IFIT1. Not only expression of IFIT1 but also phosphorylation of IFN-stimulated Stat1 took place rapidly and were found to be persistent over time. In contrast, susceptible cell lines showed a much weaker, delayed, or completely missing expression of IFIT1 as well as a delayed or only transient phosphorylation of Stat1, whereas exogenic stimulation with beta interferon (IFN-β) resulted in a comparable profound activation of Stat1 and expression of IFIT1 in all cell lines. Pretreatment with IFN-β rendered three of the susceptible cell lines more resistant to MeV-mediated oncolysis. These data suggest that differences in the innate immune defense often account for different degrees of susceptibility of sarcoma cell lines to MeV-mediated oncolysis. From a therapeutic perspective, we were able to overcome resistance to MeV by increasing the multiplicity of infection (MOI) and by addition of the prodrug 5-fluorocytosine (FC), thereby exploiting the suicide gene function of virotherapeutic vector MeV-SCD armed with the SCD fusion protein, which consists of yeast cytosine deaminase and yeast uracil phosphoribosyltransferase.

  4. Matrix protein of VSV New Jersey serotype containing methionine to arginine substitutions at positions 48 and 51 allows near-normal host cell gene expression.

    Science.gov (United States)

    Kim, Gyoung Nyoun; Kang, C Yong

    2007-01-05

    The matrix (M) protein of vesicular stomatitis virus (VSV) plays significant roles in the replication of VSV through its involvement in the assembly of virus particles as well as by facilitating the evasion of innate host cell defense mechanisms. The presence of methionine at position 51 (M51) of the matrix (M) protein of the VSV Indiana serotype (VSV(Ind)) has been proven to be crucial for cell rounding and inhibition of host cell gene expression. The M protein of VSV(Ind) with the substitution of M51 with arginine (R:M51R) results in the loss of inhibitory effects on host cell gene expression. The VSV(Ind) expressing the M(M51R) protein became the attractive oncolytic virus which is safer and more tumor-specific because the normal cells can clear the mutant VSV(Ind) easily but tumor cells are susceptible to the virus because a variety of tumor cells lack innate antiviral activities. We have studied the role of the methionines at positions 48 and 51 of the M protein of the New Jersey serotype of VSV (VSV(NJ)) in the induction of cytopathic effects (CPE) and host cell gene expression. We have generated human embryonic kidney 293 cell lines inducibly expressing M proteins with M to R mutations at positions 48 and 51, either separately or together as a double mutant, and examined expression of heat shock protein 70 (HSP70) as an indicator of host cell gene expression. We have also generated recombinant VSV(NJ) encoding the mutant M proteins M(M48R) or M(M48R+M51R) for the first time and tested for the expression of HSP70 in infected cells. Our results demonstrated that the M51 of VSV(NJ) M proteins has a major role in cell rounding and in suppressing the host cell gene expression either when the M protein was expressed alone in inducible cell lines or when expressed together with other VSV proteins by the recombinant VSV(NJ). Amino acid residue M48 may also have some role in cell rounding and in the inhibitory effects of VSV(NJ) M, which was demonstrated by the fact

  5. Mucosal dendritic cells in HIV-1 susceptibility: a critical role for C-type lectin receptors

    NARCIS (Netherlands)

    Hertoghs, Nina; van Pul, Lisa; Geijtenbeek, Teunis B. H.

    2017-01-01

    Sexual transmission is the major route of HIV-1 infection worldwide. The interaction of HIV-1 with mucosal dendritic cells (DCs) might determine HIV-1 susceptibility as well as initial antiviral immunity controlling virus in the chronic phase. Different DC subsets reside in mucosal tissues and

  6. Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage

    NARCIS (Netherlands)

    Bosman, G.J.C.G.M.; Cluitmans, J.C.A.; Groenen, Y.A.; Werre, J.M.; Willekens, F.L.A.; Novotny, V.M.J.

    2011-01-01

    BACKGROUND: During storage of red blood cell (RBCs) before transfusion, RBCs undergo a series of structural and functional changes that include the exposure of phosphatidylserine (PS), a potent removal signal. It was postulated that, during blood bank storage, the susceptibility to stress-induced PS

  7. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma

    NARCIS (Netherlands)

    Cerhan, James R.; Berndt, Sonja I.; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S.; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; De Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R.; De Roos, Anneclaire J.; Brooks-Wilson, Angela R.; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D.; Kane, Eleanor; Teras, Lauren R.; Purdue, Mark P.; Vajdic, Claire M.; Spinelli, John J.; Giles, Graham G.; Albanes, Demetrius; Kelly, Rachel S.; Zucca, Mariagrazia; Bertrand, Kimberly A.; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M.; Link, Brian K.; Novak, Anne J.; Dogan, Ahmet; Asmann, Yan W.; Liebow, Mark; Thompson, Carrie A.; Ansell, Stephen M.; Witzig, Thomas E.; Weiner, George J.; Veron, Amelie S.; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans Olov; Bracci, Paige M.; Riby, Jacques; Smith, Martyn T.; Holly, Elizabeth A.; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M.; Severson, Richard K.; Tinker, Lesley F.; North, Kari E.; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W. Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J.; Villano, Danylo J.; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R.; Kricker, Anne; Turner, Jenny; Southey, Melissa C.; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M.; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju Hyun; Chung, Charles C.; Weisenburger, Dennis D.; Chatterjee, Nilanjan; Fraumeni, Joseph F.; Slager, Susan L.; Wu, Xifeng; De Sanjose, Silvia; Smedby, Karin E.; Salles, Gilles; Skibola, Christine F.; Rothman, Nathaniel; Chanock, Stephen J.

    2014-01-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of

  8. Perturbation of host cell cytoskeleton by cranberry proanthocyanidins and their effect on enteric infections.

    Directory of Open Access Journals (Sweden)

    Kevin Harmidy

    Full Text Available Cranberry-derived compounds, including a fraction known as proanthocyanidins (PACs exhibit anti-microbial, anti-infective, and anti-adhesive properties against a number of disease-causing organisms. In this study, the effect of cranberry proanthocyanidins (CPACs on the infection of epithelial cells by two enteric bacterial pathogens, enteropathogenic Escherichia coli (EPEC and Salmonella Typhimurium was investigated. Immunofluorescence data showed that actin pedestal formation, required for infection by enteropathogenic Escherichia coli (EPEC, was disrupted in the presence of CPACs. In addition, invasion of HeLa cells by Salmonella Typhimurium was significantly reduced, as verified by gentamicin protection assay and immunofluorescence. CPACs had no effect on bacterial growth, nor any detectable effect on the production of bacterial effector proteins of the type III secretion system. Furthermore, CPACs did not affect the viability of host cells. Interestingly, we found that CPACs had a potent and dose-dependent effect on the host cell cytoskeleton that was evident even in uninfected cells. CPACs inhibited the phagocytosis of inert particles by a macrophage cell line, providing further evidence that actin-mediated host cell functions are disrupted in the presence of cranberry CPACs. Thus, although CPAC treatment inhibited Salmonella invasion and EPEC pedestal formation, our results suggest that this is likely primarily because of the perturbation of the host cell cytoskeleton by CPACs rather than an effect on bacterial virulence itself. These findings have significant implications for the interpretation of experiments on the effects of CPACs on bacteria-host cell interactions.

  9. Attachment and Invasion of Neisseria meningitidis to Host Cells Is Related to Surface Hydrophobicity, Bacterial Cell Size and Capsule

    OpenAIRE

    Bartley, Stephanie N.; Yih-Ling Tzeng; Kathryn Heel; Lee, Chiang W.; Shakeel Mowlaboccus; Torsten Seemann; Wei Lu; Ya-Hsun Lin; Ryan, Catherine S.; Christopher Peacock; Stephens, David S.; Davies, John K.; Kahler, Charlene M.

    2013-01-01

    We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determ...

  10. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

    NARCIS (Netherlands)

    Sinha, B; Francois, P; Que, Y A; Hussain, M; Heilmann, C; Moreillon, P; Lew, D; Krause, K H; Peters, Georg; Herrmann, M

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell.

  11. Three-Dimensional In Vitro Models of Granuloma to Study Bacteria-Host Interactions, Drug-Susceptibility, and Resuscitation of Dormant Mycobacteria

    Directory of Open Access Journals (Sweden)

    Liam E. Fitzgerald

    2014-01-01

    Full Text Available Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium avium subsp. paratuberculosis can survive within host macrophages in a dormant state, encased within an organized aggregate of immune host cells called granuloma. Granulomas consist of uninfected macrophages, foamy macrophages, epithelioid cells, and T lymphocytes accumulated around infected macrophages. Within granulomas, activated macrophages can fuse to form multinucleated giant cells, also called giant Langhans cells. A rim of T lymphocytes surrounds the core, and a tight coat of fibroblast closes the structure. Several in vivo models have been used to study granuloma’s structure and function, but recently developed in vitro models of granuloma show potential for closer observation of the early stages of host’s responses to live mycobacteria. This paper reviews culture conditions that resulted in three-dimensional granulomas, formed by the adhesion of cell populations in peripheral blood mononuclear cells infected with mycobacteria. The similarities of these models to granulomas encountered in clinical specimens include cellular composition, granulomas’ cytokine production, and cell surface antigens. A reliable in vitro dormancy model may serve as a useful platform to test whether drug candidates can kill dormant mycobacteria. Novel drugs that target dormancy-specific pathways may shorten the current long, difficult treatments necessary to cure mycobacterial diseases.

  12. Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal.

    Science.gov (United States)

    Sigurlásdóttir, Sara; Engman, Jakob; Eriksson, Olaspers Sara; Saroj, Sunil D; Zguna, Nadezda; Lloris-Garcerá, Pilar; Ilag, Leopold L; Jonsson, Ann-Beth

    2017-04-01

    The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization sites and facilitates the crossing of the cell barrier; however, this process is poorly understood. In this study, we used live-cell imaging to investigate the process of N. meningitidis microcolony dispersal. We show that direct contact with host cells is not required for microcolony dispersal, instead accumulation of a host-derived effector molecule induces microcolony dispersal. By using a host-cell free approach, we demonstrated that lactate, secreted from host cells, initiate rapid dispersal of microcolonies. Interestingly, metabolic utilization of lactate by the bacteria was not required for induction of dispersal, suggesting that lactate plays a role as a signaling molecule. Furthermore, Neisseria gonorrhoeae microcolony dispersal could also be induced by lactate. These findings reveal a role of host-secreted lactate in microcolony dispersal and virulence of pathogenic Neisseria.

  13. Manipulation of the host cell membrane by human γ-herpesviruses EBV and KSHV for pathogenesis.

    Science.gov (United States)

    Wei, Fang; Zhu, Qing; Ding, Ling; Liang, Qing; Cai, Qiliang

    2016-10-01

    The cell membrane regulates many physiological processes including cellular communication, homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exploit the host cell membrane to avoid immune surveillance and promote viral replication. Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands (cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection.

  14. The co-evolved Helicobacter pylori and gastric cancer: trinity of bacterial virulence, host susceptibility and lifestyle

    Directory of Open Access Journals (Sweden)

    Devi S Manjulata

    2007-01-01

    Full Text Available Abstract Helicobacter pylori is an important yet unproven etiological agent of gastric cancer. H. pylori infection is more prevalent in developing Asian countries like India and it is usually acquired at an early age. It has been two decades since Marshall and Warren (1984 first described curved bacilli in the stomach of ulcer and gastritis patients. This discovery has won them the Nobel Prize recently, but the debate whether H. pylori is a pathogen or a commensal organism is still hot. Associations with disease-specific factors remain illusive years after the genome sequences were made available. Cytotoxin-associated antigen A (CagA and the so-called plasticity region cluster genes are implicated in pathogenesis of the carcinoma of stomach. Another virulence factor VacA whose role is still debatable, has recently been projected in pathology of gastric cancer. Studies of the evolution through genetic variation in H. pylori populations have provided a window into the history of human population migrations and a possible co-evolution of this pathogen with its human host. Possible symbiotic relationships were seriously debated since the discovery of this pathogen. The debate has been further intensified as some studies proposed H. pylori infection to be beneficial in some humans. In this commentary, we attempt to briefly discuss about H. pylori as a human pathogen, and some of the important issues linked to its pathophysiology in different hosts. 'We dance around in a ring and suppose, the secret sits in the middle and knows' – Robert Frost

  15. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool.

    Science.gov (United States)

    Lecompte, François; Nicot, Philippe C; Ripoll, Julie; Abro, Manzoor A; Raimbault, Astrid K; Lopez-Lauri, Félicie; Bertin, Nadia

    2017-03-01

    Plant soluble sugars, as main components of primary metabolism, are thought to be implicated in defence against pathogenic fungi. However, the function of sucrose and hexoses remains unclear. This study aimed to identify robust patterns in the dynamics of soluble sugars in sink tissues of tomato plants during the course of infection by the necrotrophic fungus Botrytis cinerea . Distinct roles for glucose and fructose in defence against B. cinerea were hypothesized. We examined sugar contents and defence hormonal markers in tomato stem tissues before and after infection by B. cinerea , in a range of abiotic environments created by various nitrogen and water supplies. Limited nitrogen or water supplies increased tomato stem susceptibility to B. cinerea . Glucose and fructose contents of tissues surrounding infection sites evolved differently after inoculation. The fructose content never decreased after inoculation with B. cinerea , while that of glucose showed either positive or negative variation, depending on the abiotic environment. An increase in the relative fructose content (defined as the proportion of fructose in the soluble sugar pool) was observed in the absence of glucose accumulation and was associated with lower susceptibility. A lower expression of the salicylic acid marker PR1a , and a lower repression of a jasmonate marker COI1 were associated with reduced susceptibility. Accordingly, COI1 expression was positively correlated with the relative fructose contents 7 d after infection. Small variations of fructose content among the sugar pool are unlikely to affect intrinsic pathogen growth. Our results highlight distinct use of host glucose and fructose after infection by B. cinerea and suggest strongly that adjustment of the relative fructose content is required for enhanced plant defence.

  16. Combined single-cell quantitation of host and SIV genes and proteins ex vivo reveals host-pathogen interactions in individual cells.

    Science.gov (United States)

    Bolton, Diane L; McGinnis, Kathleen; Finak, Greg; Chattopadhyay, Pratip; Gottardo, Raphael; Roederer, Mario

    2017-06-01

    CD4 T cells harboring HIV-1/SIV represent a formidable hurdle to eradicating infection, and yet their detailed phenotype remains unknown. Here we integrate two single-cell technologies, flow cytometry and highly multiplexed quantitative RT-PCR, to characterize SIV-infected CD4 T cells directly ex vivo. Within individual cells, we correlate the cellular phenotype, in terms of host protein and RNA expression, with stages of the viral life cycle defined by combinatorial expression of viral RNAs. Spliced RNA+ infected cells display multiple memory and activation phenotypes, indicating virus production by diverse CD4 T cell subsets. In most (but not all) cells, progressive infection accompanies post-transcriptional downregulation of CD4 protein, while surface MHC class I is largely retained. Interferon-stimulated genes were also commonly upregulated. Thus, we demonstrate that combined quantitation of transcriptional and post-transcriptional regulation at the single-cell level informs in vivo mechanisms of viral replication and immune evasion.

  17. Inhibition of TACE activity enhances the susceptibility of myeloma cells to TRAIL.

    Directory of Open Access Journals (Sweden)

    Kumiko Kagawa

    Full Text Available BACKGROUND: TNF-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L selectively induces apoptosis in various cancer cells including myeloma (MM cells. However, the susceptibility of MM cells to TRAIL is largely low in most of MM cells by yet largely unknown mechanisms. Because TNF-α converting enzyme (TACE can cleave some TNF receptor family members, in the present study we explored the roles of proteolytic modulation by TACE in TRAIL receptor expression and TRAIL-mediated cytotoxicity in MM cells. METHODOLOGY/PRINCIPAL FINDINGS: MM cells preferentially expressed death receptor 4 (DR4 but not DR5 on their surface along with TACE. Conditioned media from RPMI8226 and U266 cells contained a soluble form of DR4. The DR4 levels in these conditioned media were reduced by TACE inhibition by the TACE inhibitor TAPI-0 as well as TACE siRNA. Conversely, the TACE inhibition restored surface levels of DR4 but not DR5 in these cells without affecting DR4 mRNA levels. The TACE inhibition was able to restore cell surface DR4 expression in MM cells even in the presence of bone marrow stromal cells or osteoclasts, and enhanced the cytotoxic effects of recombinant TRAIL and an agonistic antibody against DR4 on MM cells. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that MM cells post-translationally down-modulate the cell surface expression of DR4 through ectodomain shedding by endogenous TACE, and that TACE inhibition is able to restore cell surface DR4 levels and the susceptibility of MM cells to TRAIL or an agonistic antibody against DR4. Thus, TACE may protect MM cells from TRAIL-mediated death through down-modulation of cell-surface DR4. It can be envisaged that TACE inhibition augments clinical efficacy of TRAIL-based immunotherapy against MM, which eventually becomes resistant to the present therapeutic modalities.

  18. Regulation of the susceptibility to oxidative stress by cysteine availability in pancreatic beta-cells.

    Science.gov (United States)

    Numazawa, Satoshi; Sakaguchi, Harumi; Aoki, Risa; Taira, Toshio; Yoshida, Takemi

    2008-08-01

    Pancreatic beta-cells are susceptible to oxidative stress, which is related closely to the islet dysfunction. In the present study, using the pancreatic cell lines HIT-T15 and RINm5F as known in vitro models of impaired beta-cell function as well as primary rat islet beta-cells, we observed a relationship between intracellular glutathione levels and oxidative stress-mediated cell dysfunction. Hydrogen peroxide and 4-hydroxy-2-nonenal caused cell death in HIT-T15 and RINm5F cells at lower concentrations compared with non-beta-cells, such as HepG2 and NRK-49F cells. The extent of the cytotoxicity caused by the model oxidants was inversely correlated well with intracellular glutathione levels in the cell lines used. Treatment of HIT-T15 and RINm5F cells with l-cysteine or l-cystine significantly augmented the glutathione contents, surpassing the effect of N-acetylcysteine, and abrogated 4-hydroxy-2-nonenal-mediated cytotoxicity almost completely. l-Cysteine increased intracellular glutathione levels in primary beta-cells as well. Supplementation of l-cysteine to the RINm5F cell culture inhibited 4-hydroxy-2-nonenal-mediated cytosolic translocation of PDX-1, a key transcription factor for beta-cell function. Intrinsic transport activities (V(max)/K(m)) of the l-cystine/l-glutamate exchanger in HIT-T15 and RINm5F cells were considerably lower than that in NRK-49F cells, although gene expressions of the exchanger were similar in these cells. Results obtained from the present study suggest that the restricted activity of the l-cystine/l-glutamate exchanger controls the levels of intracellular glutathione, thereby making beta-cells become susceptible to oxidative stress.

  19. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5.

    Science.gov (United States)

    Whiteley, Liam; Haug, Maria; Klein, Kristina; Willmann, Matthias; Bohn, Erwin; Chiantia, Salvatore; Schwarz, Sandra

    2017-01-01

    Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.

  20. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5.

    Directory of Open Access Journals (Sweden)

    Liam Whiteley

    Full Text Available Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5 to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and

  1. AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma.

    Science.gov (United States)

    Conteduca, Giuseppina; Fenoglio, Daniela; Parodi, Alessia; Battaglia, Florinda; Kalli, Francesca; Negrini, Simone; Tardito, Samuele; Ferrera, Francesca; Salis, Annalisa; Millo, Enrico; Pasquale, Giuseppe; Barra, Giusi; Damonte, Gianluca; Indiveri, Francesco; Ferrone, Soldano; Filaci, Gilberto

    2016-09-20

    AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains.The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p AIRE genotype than in those bearing the TT one (p AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma.

  2. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility

    Science.gov (United States)

    Sivakumaran, Anushen; Akinyemi, Aderemi; Mandon, Julian; Cristescu, Simona M.; Hall, Michael A.; Harren, Frans J. M.; Mur, Luis A. J.

    2016-01-01

    Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defense against this pathogen – occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production. PMID:27252724

  3. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  4. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility.

    Science.gov (United States)

    Sivakumaran, Anushen; Akinyemi, Aderemi; Mandon, Julian; Cristescu, Simona M; Hall, Michael A; Harren, Frans J M; Mur, Luis A J

    2016-01-01

    Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production - an established mediator of defense against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  5. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  6. Cell-host, LINE and environment: Three players in search of a balance.

    Science.gov (United States)

    Del Re, Brunella; Giorgi, Gianfranco

    2013-01-01

    Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship.

  7. Cif type III effector protein: a smart hijacker of the host cell cycle.

    Science.gov (United States)

    Samba-Louaka, Ascel; Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2009-09-01

    During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.

  8. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  9. Higher susceptibility of NOD/LtSz-scid Il2rg-/- NSG mice to xenotransplanted lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kanaji N

    2014-10-01

    Full Text Available Nobuhiro Kanaji,1 Akira Tadokoro,1 Kentaro Susaki,1 Saki Yokokura,1 Kiyomi Ohmichi,2 Reiji Haba,2 Naoki Watanabe,1 Shuji Bandoh,1 Tomoya Ishii,1 Hiroaki Dobashi,1 Takuya Matsunaga11Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan; 2Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, JapanPurpose: No lung cancer xenograft model using non-obese diabetic (NOD-scid Il2rg-/- mice has been reported. The purpose of this study is to select a suitable mouse strain as a xenogenic host for testing tumorigenicity of lung cancer.Materials and methods: We directly compared the susceptibility of four immunodeficient mouse strains, c-nu, C.B-17 scid, NOD-scid, and NOD/LtSz-scid Il2rg-/- (NSG mice, for tumor formation from xenotransplanted lung cancer cell lines. Various numbers (101–105 cells/head of two lung cancer cell lines, A549 and EBC1, were subcutaneously inoculated and tumor sizes were measured every week up to 12 weeks.Results: When 104 EBC1 cells were inoculated, no tumor formation was observed in BALB/c-nu or C.B-17 scid mice. Tumors developed in two of the five NOD-scid mice (40% and in all the five NSG mice (100%. When 103 EBC1 cells were injected, no tumors developed in any strain other than NSG mice, while tumorigenesis was achieved in all the five NSG mice (100%, P=0.0079 within 9 weeks. NSG mice similarly showed higher susceptibility to xenotransplantation of A549 cells. Tumor formation was observed only in NSG mice after inoculation of 103 or fewer A549 cells (40% vs 0% in 15 NSG mice compared with others, respectively, P=0.0169. We confirmed that the engrafted tumors originated from inoculated human lung cancer cells by immunohistochemical staining with human cytokeratin and vimentin.Conclusion: NSG mice may be the most suitable strain for testing tumorigenicity of lung cancer, especially if only a few cells

  10. Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra Sémont

    Full Text Available Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9 progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation.

  11. Trypanosoma cruzi: Entry Into Mammalian Host Cells and Parasitophorous Vacuole Formation

    Directory of Open Access Journals (Sweden)

    Emile Santos Barrias

    2013-08-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T.cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T.cruzi with phagocytic or non-phagocytic cell types, plasma membrane protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes and lysosomes, participate in the formation of the nascent parasithophorous vacuole (VP. Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the parasitophorous vacuole release from the host cell plasma membrane. This review focuses on the multiple pathways that T.cruzi can use to enter the host cells until complete VP formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss other mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.

  12. Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions

    Science.gov (United States)

    Twu, Olivia; Lustig, Gila; Stevens, Grant C.; Vashisht, Ajay A.; Wohlschlegel, James A.

    2013-01-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization. PMID:23853596

  13. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  14. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    Science.gov (United States)

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.

  15. Autophagy controls an intrinsic host defense to bacteria by promoting epithelial cell survival: a murine model.

    Directory of Open Access Journals (Sweden)

    Sun-Young Chang

    Full Text Available Cell death is a critical host response to regulate the fate of bacterial infections, innate immune responses, and ultimately, disease outcome. Shigella spp. invade and colonize gut epithelium in human and nonhuman primates but adult mice are naturally resistant to intra-gastric Shigella infection. In this study, however, we found Shigella could invade the terminal ileum of the mouse small intestine by 1 hour after infection and be rapidly cleared within 24 h. These early phase events occurred shortly after oral infection resulting in epithelial shedding, degranulation of Paneth cells, and cell death in the intestine. During this process, autophagy proceeded without any signs of inflammation. In contrast, blocking autophagy in epithelial cells enhanced host cell death, leading to tissue destruction and to inflammation, suggesting that autophagic flow relieves cellular stress associated with host cell death and inflammation. Herein we propose a new concept of "epithelial barrier turnover" as a general intrinsic host defense mechanism that increases survival of host cells and inhibits inflammation against enteric bacterial infections, which is regulated by autophagy.

  16. Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell.

    Science.gov (United States)

    Barrias, E S; Reignault, L C; De Souza, W; Carvalho, T M U

    2012-11-01

    Several intracellular pathogens are internalized by host cells via multiple endocytic pathways. It is no different with Trypanosoma cruzi. Evidences indicate that T. cruzi entry may occur by endocytosis/phagocytosis or by an active manner. Although macropinocytosis is largely considered an endocytic process where cells internalize only large amounts of solutes, several pathogens use this pathway to enter into host cells. To investigate whether T. cruzi entry into peritoneal macrophages and LLC-MK2 epithelial cells can be also mediated through a macropinocytosis-like process, we used several experimental strategies presently available to characterize macropinocytosis such as the use of different inhibitors. These macropinocytosis' inhibitors blocked internalization of T. cruzi by host cells. To further support this, immunofluorescence microscopy and scanning electron microscopy techniques were used. Field emission scanning electron microscopy revealed that after treatment, parasites remained attached to the external side of host cell plasma membrane. Proteins such as Rabankyrin 5, tyrosine kinases, Pak1 and actin microfilaments, which participate in macropinosome formation, were localized at T. cruzi entry sites. We also observed co-localization between the parasite and an endocytic fluid phase marker. All together, these results indicate that T. cruzi is able to use multiple mechanisms of penetration into host cell, including macropinocytosis. Copyright © 2012. Published by Elsevier Masson SAS.

  17. Toxoplasma gondii Development of Its Replicative Niche: in Its Host Cell and Beyond

    Science.gov (United States)

    2014-01-01

    Intracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections. Toxoplasma gondii is an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence of Toxoplasma in humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by which Toxoplasma interacts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells. PMID:24951442

  18. Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zheng

    Full Text Available Diabetic nephropathy (DN is the leading cause of kidney disease; however, there are no early biomarkers and no cure. Thus, there is a large unmet need to predict which individuals will develop nephropathy and to understand the molecular mechanisms that govern this susceptibility. We compared the glomerular transcriptome from mice with distinct susceptibilities to DN at four weeks after induction of diabetes, but before histologic injury, and identified differential regulation of genes that modulate inflammation. From these genes, we identified endothelial cell specific molecule-1 (Esm-1, as a glomerular-enriched determinant of resistance to DN. Glomerular Esm-1 mRNA and protein were lower in DN-susceptible, DBA/2, compared to DN-resistant, C57BL/6, mice. We demonstrated higher Esm-1 secretion from primary glomerular cultures of diabetic mice, and high glucose was sufficient to increase Esm-1 mRNA and protein secretion in both strains of mice. However, induction was significantly attenuated in DN-susceptible mice. Urine Esm-1 was also significantly higher only in DN-resistant mice. Moreover, using intravital microscopy and a biomimetic microfluidic assay, we showed that Esm-1 inhibited rolling and transmigration in a dose-dependent manner. For the first time we have uncovered glomerular-derived Esm-1 as a potential non-invasive biomarker of DN. Esm-1 inversely correlates with disease susceptibility and inhibits leukocyte infiltration, a critical factor in protecting the kidney from DN.

  19. Persistence of donor-derived protein in host myeloid cells after induced rejection of engrafted allogeneic bone marrow cells

    Science.gov (United States)

    Saito, Toshiki I.; Fujisaki, Joji; Carlson, Alicia L.; Lin, Charles P.; Sykes, Megan

    2014-01-01

    Objective In recipients of allogeneic hematopoietic stem cell transplantation to treat hematologic malignancies, we have unexpectedly observed anti-tumor effects in association with donor cell rejection in both mice and humans. Host-type CD8 T cells were shown to be required for these anti-tumor effects in the murine model. Since sustained host CD8 T cell activation was observed in the murine bone marrow following the disappearance of donor chimerism in the peripheral blood, we hypothesized that donor antigen presentation in the bone marrow might be prolonged. Materials and Methods To assess this hypothesis, we established mixed chimerism with green fluorescence protein (GFP)-positive allogeneic bone marrow cells, induced rejection of the donor cells by giving recipient leukocyte infusions (RLI), and utilized in vivo microscopy to follow GFP-positive cells. Results After peripheral donor leukocytes disappeared, GFP persisted within host myeloid cells surrounding the blood vessels in the bone marrow, suggesting that the host myeloid cells captured donor-derived GFP protein. Conclusions Since the host-versus-graft reaction promotes the induction of anti-tumor responses in this model, this retention of donor-derived protein may play a role in the efficacy of RLI as an anti-tumor therapy. PMID:20167247

  20. Red Cell Genetic Markers in Malarial Susceptibility and Selective Advantage Hypothesis

    Directory of Open Access Journals (Sweden)

    RS Balgir

    2014-02-01

    Full Text Available Malaria is still a serious public health challenge in many parts of the world including India. Human genetic susceptibility to malaria varies from individual to individual depending upon the genetic constitution and from region to region based on geo-ecological and climatic conditions. In the present study, intravenous 334 random blood samples of unrelated adult individuals belonging to Mongoloid ethnic stock were taken after informed consent from the endemic localities of Arunachal Pradesh, Assam and Nagaland to find out the relationship between the abnormal hemoglobin and G6PD enzyme deficiency, and susceptibility to malaria. Abnormal hemoglobin E and G6PD enzyme deficiency seem to interact with malarial parasite in such a way that they probably provide decreased susceptibility or inhibitory effect or increased resistance. Genetic alterations in human genome are maintained in the specific population by natural selection to protect the host against the malarial infection. These findings are consistent with those studies which support the notion of selective genetic advantage hypothesis against the malaria infection.

  1. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Danelle S Eto

    2007-07-01

    Full Text Available Uropathogenic Escherichia coli (UPEC, the primary causative agent of urinary tract infections, typically express filamentous adhesive organelles called type 1 pili that mediate both bacterial attachment to and invasion of bladder urothelial cells. Several host proteins have previously been identified as receptors for type 1 pili, but none have been conclusively shown to promote UPEC entry into host bladder cells. Using overlay assays with FimH, the purified type 1 pilus adhesin, and mass spectroscopy, we have identified beta1 and alpha3 integrins as key host receptors for UPEC. FimH recognizes N-linked oligosaccharides on these receptors, which are expressed throughout the urothelium. In a bladder cell culture system, beta1 and alpha3 integrin receptors co-localize with invading type 1-piliated bacteria and F-actin. FimH-mediated bacterial invasion of host bladder cells is inhibited by beta1 and alpha3 integrin-specific antibodies and by disruption of the beta1 integrin gene in the GD25 fibroblast cell line. Phosphorylation site mutations within the cytoplasmic tail of beta1 integrin that alter integrin signaling also variably affect UPEC entry into host cells, by either attenuating or boosting invasion frequencies. Furthermore, focal adhesion and Src family kinases, which propagate integrin-linked signaling and downstream cytoskeletal rearrangements, are shown to be required for FimH-dependent bacterial invasion of target host cells. Cumulatively, these results indicate that beta1 and alpha3 integrins are functionally important receptors for type 1 pili-expressing bacteria within the urinary tract and possibly at other sites within the host.

  2. Molecular Biology of Prune Dwarf Virus-A Lesser Known Member of the Bromoviridae but a Vital Component in the Dynamic Virus-Host Cell Interaction Network.

    Science.gov (United States)

    Kozieł, Edmund; Bujarski, Józef J; Otulak, Katarzyna

    2017-12-16

    Prune dwarf virus (PDV) is one of the members of Bromoviridae family, genus Ilarvirus. Host components that participate in the regulation of viral replication or cell-to-cell movement via plasmodesmata are still unknown. In contrast, viral infections caused by some other Bromoviridae members are well characterized. Bromoviridae can be distinguished based on localization of their replication process in infected cells, cell-to-cell movement mechanisms, and plant-specific response reactions. Depending upon the genus, "genome activation" and viral replication are linked to various membranous structures ranging from endoplasmic reticulum, to tonoplast. In the case of PDV, there is still no evidence of natural resistance sources in the host plants susceptible to virus infection. Apparently, PDV has a great ability to overcome the natural defense responses in a wide spectrum of plant hosts. The first manifestations of PDV infection are specific cell membrane alterations, and the formation of replicase complexes that support PDV RNA replication inside the spherules. During each stage of its life cycle, the virus uses cell components to replicate and to spread in whole plants, within the largely suppressed cellular immunity environment. This work presents the above stages of the PDV life cycle in the context of current knowledge about other Bromoviridae members.

  3. Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses.

    Science.gov (United States)

    Hogwood, Catherine E M; Bracewell, Daniel G; Smales, C Mark

    2014-12-01

    Chinese hamster ovary (CHO) cells are widely used for the production of biotherapeutic recombinant proteins for a range of molecules including monoclonal antibodies and Fc-fusion proteins. Regulatory requirements for the final product include the removal of host cell proteins (HCPs) to acceptable amounts (<100ppm). Recent research has begun to unravel the extent to which upstream process conditions and subsequent product recovery and purification processes impact upon the HCP profile. A number of upstream parameters, including the selection of the cell line, the culturing process (e.g. feeding regime, culture temperature), cell viability at time of harvest/culture duration and cell shear sensitivity can all influence the resulting HCP profile. Further, the molecule itself plays an important role in determining those HCPs that are retained throughout a bioprocess and HCPs can co-elute with the target product during purification. Measurement and monitoring of HCPs is usually undertaken using ELISA technology, however alternative approaches are also now emerging that complement ELISA and allow the detection, identification and monitoring of specific HCPs. Here we discuss our understanding of how the process itself influences those HCPs present throughout the production process and the challenges in their monitoring, measurement and removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A defect in the synthesis of Interferon-γ by the T cells of Complement-C5 deficient mice leads to enhanced susceptibility for tuberculosis

    Science.gov (United States)

    Mashruwala, Mary Anne; Smith, Amanda K.; Lindsey, Devin R.; Moczygemba, Margaret; Wetsel, Rick A.; Klein, John R.; Actor, Jeffrey K.; Jagannath, Chinnaswamy

    2012-01-01

    Interferon-γ (IFNγ) plays a major role during host defense against Mycobacterium tuberculosis (Mtb). T cells produce IFNγ in response to IL-12 and IL-18 secreted from Mtb infected macrophages. IFNγ in turn, induces nitric oxide secretion in macrophages that kills Mtb. IFNγ knock-out mice are thus hyper-susceptible to tuberculosis. We reported earlier that Complement C5 deficient (C5-/-) congenic mice are more susceptible to tuberculosis and showed reduced IL-12 synthesis in their macrophages. Using C5-/- congenic mice that carry a deletion in the C5 gene and the wild type C5+/+ mice, we demonstrate here that, the C5-/-derived CD3+ T cells, have an additional defect in the synthesis of IFNγ. C5-/- T cells produced lower levels of IFNγ upon stimulation by antigen presenting cells (APCs) infected with Mtb or when stimulated directly with a combination of IL-12 and IL-18. The latter was in part due to a reduced phosphorylation of STAT-4 following IL-12/IL-18 stimulation. Addition of C5a peptide to IL-12/IL-18 partially restored STAT4 phosphorylation and IFNγ synthesis in C5-/- T cells indicating that IL-12/IL-18 mediated signaling within CD3+ T cells involves C5a peptide. Finally, C5-/- T cells derived from M.bovis BCG or Mtb infected mice showed a reduced expression of T-bet (T-box expressed in T cells) transcription factor, which correlated well with a reduced T cell secretion of IFNγ. Since T-bet mediated IFNγ synthesis facilitates Th1 expansion, C5-/- mouse derived T cells appear to have an intrinsic defect in the production of IFNγ, which is related to C5 deficiency and this may explain their increased susceptibility to infection with Mtb and BCG. PMID:22154007

  5. Traversing the Cell: Agrobacterium T-DNA’s Journey to the Host Genome

    Science.gov (United States)

    Gelvin, Stanton B.

    2012-01-01

    The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA “borders” can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus. PMID:22645590

  6. An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell.

    Science.gov (United States)

    Coffey, Michael J; Sleebs, Brad E; Uboldi, Alessandro D; Garnham, Alexandra; Franco, Magdalena; Marino, Nicole D; Panas, Michael W; Ferguson, David Jp; Enciso, Marta; O'Neill, Matthew T; Lopaticki, Sash; Stewart, Rebecca J; Dewson, Grant; Smyth, Gordon K; Smith, Brian J; Masters, Seth L; Boothroyd, John C; Boddey, Justin A; Tonkin, Christopher J

    2015-11-18

    Infection by Toxoplasma gondii leads to massive changes to the host cell. Here, we identify a novel host cell effector export pathway that requires the Golgi-resident aspartyl protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell.

  7. RNA-Seq unveils new attributes of the heterogeneous Salmonella-host cell communication.

    Science.gov (United States)

    García-Del Portillo, Francisco; Pucciarelli, M Graciela

    2017-04-03

    High-throughput RNA sequencing (RNA-Seq) has uncovered hundreds of small RNAs and complex modes of RNA regulation in every bacterium analyzed to date. This complexity agrees with the adaptability of most bacteria to varied environments including, in the case of pathogens, the new niches encountered in the host. Recent RNA-Seq studies have analyzed simultaneously gene expression in the intracellular pathogen Salmonella enterica and infected host cells at population and single-cell level. Distinct polarization states or interferon responses in the infected macrophage were linked to variable growth rates or activities of defined virulence regulators in intra-phagosomal bacteria. Intracellular Salmonella, however, exhibit disparate intracellular lifestyles depending the host cell, ranging from a hyper-replicative cytosolic state in epithelial cells to a non-replicative intra-phagosomal condition in varied host cell types. The basis of such diverse pathogen-host communications could be examined by RNA-Seq studies in single intracellular Salmonella cells, certainly a challenge for future investigations.

  8. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication.

    Science.gov (United States)

    Hamid, Penny H; Hirzmann, Joerg; Kerner, Katharina; Gimpl, Gerald; Lochnit, Guenter; Hermosilla, Carlos R; Taubert, Anja

    2015-09-23

    During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholesterol metabolism and found considerable differences to other coccidian parasites. Overall, free cholesterol significantly accumulated in E. bovis infected host cells. Furthermore, a striking increase of lipid droplet formation was observed within immature macromeronts. Artificial host cell lipid droplet enrichment significantly improved E. bovis merozoite I production confirming the key role of lipid droplet contents for optimal parasite proliferation. The transcription of several genes being involved in both, cholesterol de novo biosynthesis and low density lipoprotein-(LDL) mediated uptake, was significantly up-regulated at a time in infected cells suggesting a simultaneous exploitation of these two cholesterol acquisition pathways. E. bovis scavenges LDL-derived cholesterol apparently through significantly increased levels of surface LDL receptor abundance and LDL binding to infected cells. Consequently, LDL supplementation significantly improved parasite replication. The up-regulation of the oxidized LDL receptor 1 furthermore identified this scavenger receptor as a key molecule in parasite-triggered LDL uptake. Moreover, cellular cholesterol processing was altered in infected cells as indicated by up-regulation of cholesterol-25-hydroxylase and sterol O-acyltransferase. Overall, these results show that E. bovis considerably exploits the host cell cholesterol metabolism to guarantee its massive intracellular growth and replication.

  9. A human NK cell activation/inhibition threshold allows small changes in the target cell surface phenotype to dramatically alter susceptibility to NK cells.

    Science.gov (United States)

    Holmes, Tim D; El-Sherbiny, Yasser M; Davison, Adam; Clough, Sally L; Blair, G Eric; Cook, Graham P

    2011-02-01

    NK cell activation is negatively regulated by the expression of target cell MHC class I molecules. We show that this relationship is nonlinear due to an NK cell activation/inhibition threshold. Ewing's sarcoma family tumor cell monolayers, which were highly susceptible to NK cells in vitro, developed a highly resistant phenotype when cultured as three-dimensional multicellular tumor spheroid structures. This suggested that tumor architecture is likely to influence the susceptibility to NK cells in vivo. Resistance of the multicellular tumor spheroid was associated with the increased expression of MHC class I molecules and greatly reduced NK cell activation, implying that a threshold of NK cell activation/inhibition had been crossed. Reducing MHC class I expression on Ewing's sarcoma family tumor monolayers did not alter their susceptibility to NK cells, whereas increased expression of MHC class I rendered them resistant and allowed the threshold point to be identified. This threshold, as defined by MHC class I expression, was predictive of the number of NK-resistant target cells within a population. A threshold permits modest changes in the target cell surface phenotype to profoundly alter the susceptibility to NK cells. Whereas this allows for the efficient detection of target cells, it also provides a route for pathogens and tumors to evade NK cell attack.

  10. Neural precursor cells derived from induced pluripotent stem cells exhibit reduced susceptibility to infection with a neurotropic coronavirus.

    Science.gov (United States)

    Mangale, Vrushali; Marro, Brett S; Plaisted, Warren C; Walsh, Craig M; Lane, Thomas E

    2017-11-01

    The present study examines the susceptibility of mouse induced pluripotent stem cell-derived neural precursor cells (iPSC-NPCs) to infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Similar to NPCs derived from striatum of day 1 postnatal GFP-transgenic mice (GFP-NPCs), iPSC-derived NPCs (iPSC-NPCs) are able to differentiate into terminal neural cell types and express MHC class I and II in response to IFN-γ treatment. However, in contrast to postnatally-derived NPCs, iPSC-NPCs express low levels of carcinoembryonic antigen-cell adhesion molecule 1a (CEACAM1a), the surface receptor for JHMV, and are less susceptible to infection and virus-induced cytopathic effects. The relevance of this in terms of therapeutic application of NPCs resistant to viral infection is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. RCAN1 Regulates Mitochondrial Function and Increases Susceptibility to Oxidative Stress in Mammalian Cells

    Science.gov (United States)

    Peiris, Heshan; Dubach, Daphne; Jessup, Claire F.; Raghupathi, Ravinarayan; Muyderman, Hakan; Zanin, Mark P.; Mackenzie, Kimberly; Pritchard, Melanie A.; Keating, Damien J.

    2014-01-01

    Mitochondria are the primary site of cellular energy generation and reactive oxygen species (ROS) accumulation. Elevated ROS levels are detrimental to normal cell function and have been linked to the pathogenesis of neurodegenerative disorders such as Down's syndrome (DS) and Alzheimer's disease (AD). RCAN1 is abundantly expressed in the brain and overexpressed in brain of DS and AD patients. Data from nonmammalian species indicates that increased RCAN1 expression results in altered mitochondrial function and that RCAN1 may itself regulate neuronal ROS production. In this study, we have utilized mice overexpressing RCAN1 (RCAN1ox) and demonstrate an increased susceptibility of neurons from these mice to oxidative stress. Mitochondria from these mice are more numerous and smaller, indicative of mitochondrial dysfunction, and mitochondrial membrane potential is altered under conditions of oxidative stress. We also generated a PC12 cell line overexpressing RCAN1 (PC12RCAN1). Similar to RCAN1ox neurons, PC12RCAN1 cells have an increased susceptibility to oxidative stress and produce more mitochondrial ROS. This study demonstrates that increasing RCAN1 expression alters mitochondrial function and increases the susceptibility of neurons to oxidative stress in mammalian cells. These findings further contribute to our understanding of RCAN1 and its potential role in the pathogenesis of neurodegenerative disorders such as AD and DS. PMID:25009690

  12. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  13. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  14. Cycle Inhibiting Factors (Cifs): Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Science.gov (United States)

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2011-01-01

    Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions. PMID:22069713

  15. Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes.

    Science.gov (United States)

    Madinda, Nadège F; Ehlers, Bernhard; Wertheim, Joel O; Akoua-Koffi, Chantal; Bergl, Richard A; Boesch, Christophe; Akonkwa, Dieudonné Boji Mungu; Eckardt, Winnie; Fruth, Barbara; Gillespie, Thomas R; Gray, Maryke; Hohmann, Gottfried; Karhemere, Stomy; Kujirakwinja, Deo; Langergraber, Kevin; Muyembe, Jean-Jacques; Nishuli, Radar; Pauly, Maude; Petrzelkova, Klara J; Robbins, Martha M; Todd, Angelique; Schubert, Grit; Stoinski, Tara S; Wittig, Roman M; Zuberbühler, Klaus; Peeters, Martine; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2016-10-01

    It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Toxoplasma gondii RON4 binds to heparan sulfate on the host cell surface.

    Science.gov (United States)

    Takemae, Hitoshi; Kobayashi, Kyousuke; Sugi, Tatsuki; Han, Yongmei; Gong, Haiyan; Ishiwa, Akiko; Recuenco, Frances C; Murakoshi, Fumi; Takano, Ryo; Murata, Yuho; Nagamune, Kisaburo; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2018-04-01

    Toxoplasma gondii rhoptry neck protein 4 (TgRON4) is a component of the moving junction, a key structure for host cell invasion. We previously showed that host cellular β-tubulin is a binding partner of TgRON4 in the invasion process. Here, to identify other binding partners of TgRON4 in the host cell, we examined the binding of TgRON4 to components of the host cell surface. TgRON4 binds to various mammalian cells, but this binding disappeared in glycosaminoglycan- and heparan sulfate-deficient CHO cells and after heparitinase treatment of mammalian cells. The C-terminal half of TgRON4 showed relatively strong binding to cells and heparin agarose. A glycoarray assay indicated that TgRON4 binds to heparin and modified heparin derivatives. Immunoprecipitation of T. gondii-infected CHO cell lysates showed that TgRON4 interacts with glypican 1 during Toxoplasma invasion. This interaction suggests a role for heparan sulfate in parasite invasion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhancement and abrogation : modifications of host immune status influence IL-2 and LAK cell immunotherapy

    NARCIS (Netherlands)

    E.P. Steller (Erick)

    1988-01-01

    textabstractThis thesis will discuss the role immune cells and the host immune system can play in enhancement and abrogation of this novel immunotherapy with interleukin 2 and lymphokine-activated killer cells. Chapter 3 and 4 will discuss the scoring methods in this intraperitoneal cancer and

  18. Host Actin Polymerization Tunes the Cell Division Cycle of an Intracellular Pathogen

    Directory of Open Access Journals (Sweden)

    M. Sloan Siegrist

    2015-04-01

    Full Text Available Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.

  19. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    LENUS (Irish Health Repository)

    O'Shea, Donal

    2012-02-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  20. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    LENUS (Irish Health Repository)

    O'Shea, Donal

    2010-01-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  1. Third-party regulatory T cells prevent murine acute graft-versus-host disease.

    Science.gov (United States)

    Lim, Jung-Yeon; Im, Keon-Il; Song, Yunejin; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2017-10-19

    Adoptive therapy with regulatory T (Treg) cells to prevent graft-versus-host disease (GVHD) would benefit from a strategy to improve homing to the sites of inflammation following hematopoietic stem cell transplantation (HSCT). Although donor-derived Treg cells have mainly been used in these models, third-party-derived Treg cells are a promising alternative for cell-based immunotherapy, as they can be screened for pathogens and cell activity, and banked for GVHD prevention. In this study, we explored major histocompatibility complex (MHC) disparities between Treg cells and conventional T cells in HSCT to evaluate the impact of these different cell populations on the prevention of acute GVHD, as well as survival after allogeneic transplantation. To induce acute GVHD, lethally irradiated BALB/c (H-2d) mice were transplanted with 5 × 105 T cell-depleted bone marrow cells and 5 × 105 CD4+CD25- splenic T cells from C57BL/6 (H-2b) mice. Recipients were injected with 5 × 105 cultured donor-, host-, or third-party-derived CD4+CD25+CD62L+ Treg cells (bone marrow transplantation + day 1). Systemic infusion of three groups of Treg cell improved clinicopathological manifestations and survival in an acute GVHD model. Although donor-derived Treg cells were immunologically the most effective, the third-party-derived Treg cell therapy group displayed equal regulation of expansion of CD4+CD25+- Foxp3+ Treg cells and suppressive CD4+IL-17+ T-helper (Th17) cells in ex vivo assays compared with the donor- and host-derived groups. Our findings demonstrate that the use of third-party Treg cells is a viable alternative to donor-derived Treg cellular therapy in clinical settings, in which human leukocyte antigen-matched donors are not always readily available.

  2. Virus versus host cell translation love and hate stories.

    Science.gov (United States)

    Komarova, Anastassia V; Haenni, Anne-Lise; Ramírez, Bertha Cecilia

    2009-01-01

    Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.

  3. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  4. Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines.

    Science.gov (United States)

    Prats Mateu, Batirtze; Harreither, Eva; Schosserer, Markus; Puxbaum, Verena; Gludovacz, Elisabeth; Borth, Nicole; Gierlinger, Notburga; Grillari, Johannes

    2017-01-01

    As a possible viable and non-invasive method to identify high producing cells, Confocal Raman Microscopy was shown to be able to differentiate CHO host cell lines and derivative production clones. Cluster analysis of spectra and their derivatives was able to differentiate between different producer cell lines and a host, and also distinguished between an intracellular region of high lipid and protein content that in structure resembles the Endoplasmic Reticulum. This ability to identify the ER may be a major contributor to the identification of high producers. PCA enabled the discrimination even of host cell lines and their subclones with inherently higher production capacity. The method is thus a promising option that may contribute to early, non-invasive identification of high potential candidates during cell line development and possibly could also be used for proof of identity of established production clones. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  6. Cell-Type-Specific Epigenetic Editing at the Fosb Gene Controls Susceptibility to Social Defeat Stress.

    Science.gov (United States)

    Hamilton, Peter J; Burek, Dominika J; Lombroso, Sonia I; Neve, Rachael L; Robison, Alfred J; Nestler, Eric J; Heller, Elizabeth A

    2018-01-01

    Chronic social defeat stress regulates the expression of Fosb in the nucleus accumbens (NAc) to promote the cell-type-specific accumulation of ΔFosB in the two medium spiny neuron (MSN) subtypes in this region. ΔFosB is selectively induced in D1-MSNs in the NAc of resilient mice, and in D2-MSNs of susceptible mice. However, little is known about the consequences of such selective induction, particularly in D2-MSNs. This study examined how cell-type-specific control of the endogenous Fosb gene in NAc regulates susceptibility to social defeat stress. Histone post-translational modifications (HPTMs) were targeted specifically to Fosb using engineered zinc-finger proteins (ZFPs). Fosb-ZFPs were fused to either the transcriptional repressor, G9a, which promotes histone methylation or the transcriptional activator, p65, which promotes histone acetylation. These ZFPs were expressed in D1- vs D2-MSNs using Cre-dependent viral expression in the NAc of mice transgenic for Cre recombinase in these MSN subtypes. We found that stress susceptibility is oppositely regulated by the specific cell type and HPTM targeted. We report that Fosb-targeted histone acetylation in D2-MSNs or histone methylation in D1-MSNs promotes a stress-susceptible, depressive-like phenotype, while histone methylation in D2-MSNs or histone acetylation in D1-MSNs increases resilience to social stress as quantified by social interaction behavior and sucrose preference. This work presents the first demonstration of cell- and gene-specific targeting of histone modifications, which model naturally occurring transcriptional phenomena that control social defeat stress behavior. This epigenetic-editing approach, which recapitulates physiological changes in gene expression, reveals clear differences in the social defeat phenotype induced by Fosb gene manipulation in MSN subtypes.

  7. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles.

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E

    2015-03-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol.

  8. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  9. PKH26 can transfer to host cells in vitro and vivo.

    Science.gov (United States)

    Li, Peng; Zhang, Run; Sun, Haitao; Chen, Lei; Liu, Fang; Yao, Chen; Du, Mouxuan; Jiang, Xiaodan

    2013-01-15

    The fluorescent dye, PKH26, which mainly binds to the cell membrane, has been used as the cell tracer to locate the transplanted cells in host for a long time. However, there was no detailed report that whether the PKH26 dye was specific to the transplanted cells. Therefore, the aim of this article is to explore the effect of cells debris as the cracking cells from the PKH26-labeled adipose-derived stem cells (ADSCs) on the cells in vitro and the host in vivo. After we tested the proliferation and toxicity of PKH26 to the ADSCs by the Cell Count-8 kit and alamar blue assay, we constructed 2 models, coculturing lots of PKH26-labeled cell debris with the unlabeled ADSCs in vitro and injecting via the tail vein in rat, to evaluate the specificity of the PKH26 dye. The result indicated that the PKH26 didn't inhibit the proliferation and had no toxicity to the ADSCs compared with the unlabeled ADSCs, but the cell debris cracking from PKH26-labeled transplanted cells can cause the unlabeled cells to emit red fluorescence in vitro and also lead the tissues displaying red fluorescence in vivo. We can conclude that the PKH26 dye, used as a cell tracer for a long time, was not an ideal cell tracer.

  10. Specific dysregulation of IFNγ production by natural killer cells confers susceptibility to viral infection.

    Directory of Open Access Journals (Sweden)

    Nassima Fodil

    2014-12-01

    Full Text Available Natural Killer (NK cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H(+ NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease.

  11. African swine fever virus uses macropinocytosis to enter host cells.

    Science.gov (United States)

    Sánchez, Elena G; Quintas, Ana; Pérez-Núñez, Daniel; Nogal, Marisa; Barroso, Susana; Carrascosa, Ángel L; Revilla, Yolanda

    2012-01-01

    African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+)/H(+) exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  12. African swine fever virus uses macropinocytosis to enter host cells.

    Directory of Open Access Journals (Sweden)

    Elena G Sánchez

    Full Text Available African swine fever (ASF is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV, which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V, and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+/H(+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  13. Host-parasite interactions that guide red blood cell invasion by malaria parasites.

    Science.gov (United States)

    Paul, Aditya S; Egan, Elizabeth S; Duraisingh, Manoj T

    2015-05-01

    Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism, and indicate opportunities for malaria control.

  14. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni.

    Science.gov (United States)

    Samuelson, Derrick R; Konkel, Michael E

    2013-11-04

    Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time

  15. Langerhans cells are not required for graft-versus-host disease

    OpenAIRE

    Li, Hongmei; Kaplan, Daniel H.; Matte-Martone, Catherine; Tan, Hung Sheng; Venkatesan, Srividhya; Johnson, Kody; Demetris, Anthony J.; McNiff, Jennifer; Shlomchik, Mark J.; Shlomchik, Warren D.

    2011-01-01

    Graft-versus-host disease (GVHD) is initiated and maintained by antigen-presenting cells (APCs) that prime alloreactive donor T cells. APCs are therefore attractive targets for GVHD prevention and treatment. APCs are diverse in phenotype and function, making understanding how APC subsets contribute to GVHD necessary for the development of APC-targeted therapies. Langerhans cells (LCs) have been shown to be sufficient to initiate skin GVHD in a major histocompatibility complex–mismatched model...

  16. Role of B cells in host defense against primary Coxiella burnetii infection.

    Science.gov (United States)

    Schoenlaub, Laura; Elliott, Alexandra; Freches, Danielle; Mitchell, William J; Zhang, Guoquan

    2015-12-01

    Despite Coxiella burnetii being an obligate intracellular bacterial pathogen, our recent study demonstrated that B cells play a critical role in vaccine-induced immunity to C. burnetii infection by producing protective antibodies. However, the role of B cells in host defense against primary C. burnetii infection remains unclear. In this study, we investigated whether B cells play an important role in host defense against primary C. burnetii infection. The results showed that peritoneal B cells were able to phagocytose virulent C. burnetii bacteria and form Coxiella-containing vacuoles (CCVs) and that C. burnetii can infect and replicate in peritoneal B1a subset B cells in vitro, demonstrating a potential role for peritoneal B cells in host defense against C. burnetii infection in vivo. In addition, the results showing that B1a cells secreted a high level of interleukin-10 (IL-10) in response to C. burnetii infection in vitro suggest that B1a cells may play an important role in inhibiting the C. burnetii infection-induced inflammatory response. The observation that adoptive transfer of peritoneal B cells did not significantly affect the severity of C. burnetii infection-induced diseases in both severe combined immunity-deficient (SCID) and μMT mice indicates that peritoneal B cells alone may not be able to control C. burnetii infection. In contrast, our finding that C. burnetii infection induced more-severe splenomegaly and a higher bacterial burden in the spleens of B1a cell-deficient Bruton's tyrosine kinase x-linked immunity-deficient (BTK(xid)) mice than in their wild-type counterparts further suggests that B1a cells play an important role in host defense against primary C. burnetii infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Relationships between host and symbiont cell cycles in sea anemones and their symbiotic dinoflagellates.

    Science.gov (United States)

    Dimond, James L; Pineda, Rea R; Ramos-Ascherl, Zullaylee; Bingham, Brian L

    2013-10-01

    The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize. By extruding symbiont-containing gastrodermal cells from the relatively large tentacles of these species and using nuclear staining and flow cytometry, we selectively analyzed cell cycle distributions of the symbionts and the host gastrodermal cells that house them. We found no indications of diel synchrony in host and symbiont G2/M phases, and we observed evidence of diel periodicity only in Symbiodinium spp. associated with S. helianthus but not in the anemone itself. Seasonally, S. muscatinei showed considerable G2/M phase variability among samples collected quarterly over an annual period, while the G2/M phase of its host varied much less. Within samples taken at different times of the year, correlations between host and symbiont G2/M phases ranged from very weakly to very strongly positive, with significant correlations in only half of the samples (two of four A. elegantissima samples and one of two S. helianthus samples). Overall, the G2/M phase relationships across species and sampling periods were positive. Thus, while we found no evidence of close cell cycle coupling, our results suggest a loose, positive relationship between cell cycle processes of the symbiotic partners.

  18. Systems approach to characterizing cell signaling in host-pathogen response to staphylococcus toxin.

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosiano, J. J. (John J.); Gupta, G. (Goutam); Gray, P. C. (Perry C.); Hush, D. R. (Donald R.); Fugate, M. L. (Michael L.); Cleland, T. J. (Timothy J.); Roberts, R. M. (Randy M.); Hlavacek, W. S. (William S.); Smith, J. L. (Jessica L.)

    2002-01-01

    The mammalian immune system is capable of highly sensitive and specific responses when challenged by pathogens. It is believed that the human immune repertoire - the total number of distinct antigens that can be recognized - is between 10{sup 9} and 10{sup 11}. The most specific responses are cell mediated and involve complex and subtle communications among the immune cells via small proteins known as cytokines. The details of host-pathogen response are exceedingly complex, involving both intracellular and extracellular mechanisms. These include the presentation of antigen by B cells to helper T cells and subsequent stimulation of signal transduction pathways and gene expression within both B and T-cell populations. These in turn lead to the secretion of cytokines and receptor expression. Intercellular cytokine signaling can trigger a host of immune responses including the proliferation and specialization of naive immune cells and the marshaling of effector cells to combat infection. In the ever-evolving game of threat and countermeasure played out by pathogens and their intended hosts, there are direct assaults aimed at subverting the immune system's ability to recognize antigens and respond effectively to challenge by pathogens. Staphylococcus is one of these. Staph bacteria secrete a variety of toxins known generically as superantigens. Superantigen molecules bind simultaneously to the MHC receptors of antigen presenting cells and the TCR receptors of helper T cells, locking them in place and leading to overstimulation. This strategy can effectively burn out the immune system in a matter of days.

  19. Intra- and intergenerational persistence of an insect nucleopolyhedrovirus: adverse effects of sublethal disease on host development, reproduction, and susceptibility to superinfection.

    Science.gov (United States)

    Cabodevilla, Oihana; Villar, Eduardo; Virto, Cristina; Murillo, Rosa; Williams, Trevor; Caballero, Primitivo

    2011-05-01

    Sublethal infections by Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) are common in field populations of the beet armyworm (S. exigua, Hübner) in the Almerian horticultural region of Spain. Inoculation of second, third, and fourth instars with occlusion bodies (OBs) of an isolate (VT-SeAl1) associated with vertically transmitted infections resulted in 15 to 100% of sublethal infection in adult survivors, as determined by reverse transcription-PCR (RT-PCR) detection of viral DNA polymerase transcripts, and quantitative PCR (qPCR) targeted at the DNA polymerase gene. The prevalence of adult sublethal infection was positively related to the inoculum OB concentration consumed during the larval stage. Sublethal infections persisted in OB-treated insects for at least five generations. Viral transcripts were more frequently detected in adult insects than in third instars. qPCR analysis indicated a consistently higher prevalence of sublethal infection than RT-PCR. Sublethal infection was associated with significant reductions in pupal weight, adult emergence, fecundity, and fertility (egg hatch) and significant increases in larval development time and duration of the preoviposition period. Insects taken from a persistently infected experimental population were significantly more susceptible to the OB inoculum than control insects that originated from the same virus-free colony as the persistently infected insects. We conclude that OB treatment results in rapid establishment of sublethal infections that persist between generations and which incur costs in the development and reproductive capacity of the host insect.

  20. The white-nosed coati (Nasua narica) is a naturally susceptible definitive host for the zoonotic nematode Angiostrongylus costaricensis in Costa Rica.

    Science.gov (United States)

    Santoro, Mario; Alfaro-Alarcón, Alejandro; Veneziano, Vincenzo; Cerrone, Anna; Latrofa, Maria Stefania; Otranto, Domenico; Hagnauer, Isabel; Jiménez, Mauricio; Galiero, Giorgio

    2016-09-15

    Angiostrongylus costaricensis (Strongylida, Angiostrongylidae) is a roundworm of rodents, which may cause a severe or fatal zoonosis in several countries of the Americas. A single report indicated that the white-nosed coati (Nasua narica), acts as a potential free-ranging wildlife reservoir. Here we investigated the prevalence and features of A. costaricensis infection in two procyonid species, the white-nosed coati and the raccoon (Procyon lotor) from Costa Rica to better understand their possible role in the epidemiology of this zoonotic infection. Eighteen of 32 (56.2%) white-nosed coatis collected between July 2010 and March 2016 were infected with A. costaricensis but none of 97 raccoons from the same localities were diagnosed with this infection. First-stage larvae of A. costaricensis were obtained from feces of 17 fresh white-nosed coati carcasses by Baermann technique. Parasite identity was confirmed by morphology, histology and molecular characterization of target genes. These data demonstrate that the white-nosed coati is a naturally susceptible definitive host for A. costaricensis in Costa Rica contrary to findings in the raccoon. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Susceptibility and antibody response of Vesper Sparrows (Pooecetes gramineus) to West Nile virus: A potential amplification host in sagebrush-grassland habitat

    Science.gov (United States)

    Hofmeister, Erik K.; Dusek, Robert J.; Fassbinder-Orth, Carol; Owen, Benjamin; Franson, J. Christian

    2016-01-01

    West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.

  2. Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal.

    Science.gov (United States)

    Gachon, Claire M M; Strittmatter, Martina; Müller, Dieter G; Kleinteich, Julia; Küpper, Frithjof C

    2009-01-01

    In the marine environment, a growing body of evidence points to parasites as key players in the control of population dynamics and overall ecosystem structure. However, their prevalence and impact on marine macroalgal communities remain virtually unknown. Indeed, infectious diseases of seaweeds are largely underdocumented, partly because of the expertise required to diagnose them with a microscope. Over the last few years, however, real-time quantitative PCR (qPCR) has emerged as a rapid and reliable alternative to visual symptom scoring for monitoring pathogens. Thus, we present here a qPCR assay suitable for the detection and quantification of the intracellular oomycete pathogen Eurychasma dicksonii in its ectocarpalean and laminarialean brown algal hosts. qPCR and microscopic observations made of laboratory-controlled cultures revealed that clonal brown algal strains exhibit different levels of resistance against Eurychasma, ranging from high susceptibility to complete absence of symptoms. This observation strongly argues for the existence of a genetic determinism for disease resistance in brown algae, which would have broad implications for the dynamics and genetic structure of natural populations. We also used qPCR for the rapid detection of Eurychasma in filamentous brown algae collected in Northern Europe and South America and found that the assay is specific, robust, and widely applicable to field samples. Hence, this study opens the perspective of combining large-scale disease monitoring in the field with laboratory-controlled experiments on the genome model seaweed Ectocarpus siliculosus to improve our understanding of brown algal diseases.

  3. Detection of Differential Host Susceptibility to the Marine Oomycete Pathogen Eurychasma dicksonii by Real-Time PCR: Not All Algae Are Equal▿ †

    Science.gov (United States)

    Gachon, Claire M. M.; Strittmatter, Martina; Müller, Dieter G.; Kleinteich, Julia; Küpper, Frithjof C.

    2009-01-01

    In the marine environment, a growing body of evidence points to parasites as key players in the control of population dynamics and overall ecosystem structure. However, their prevalence and impact on marine macroalgal communities remain virtually unknown. Indeed, infectious diseases of seaweeds are largely underdocumented, partly because of the expertise required to diagnose them with a microscope. Over the last few years, however, real-time quantitative PCR (qPCR) has emerged as a rapid and reliable alternative to visual symptom scoring for monitoring pathogens. Thus, we present here a qPCR assay suitable for the detection and quantification of the intracellular oomycete pathogen Eurychasma dicksonii in its ectocarpalean and laminarialean brown algal hosts. qPCR and microscopic observations made of laboratory-controlled cultures revealed that clonal brown algal strains exhibit different levels of resistance against Eurychasma, ranging from high susceptibility to complete absence of symptoms. This observation strongly argues for the existence of a genetic determinism for disease resistance in brown algae, which would have broad implications for the dynamics and genetic structure of natural populations. We also used qPCR for the rapid detection of Eurychasma in filamentous brown algae collected in Northern Europe and South America and found that the assay is specific, robust, and widely applicable to field samples. Hence, this study opens the perspective of combining large-scale disease monitoring in the field with laboratory-controlled experiments on the genome model seaweed Ectocarpus siliculosus to improve our understanding of brown algal diseases. PMID:19011072

  4. B cells as a critical node in the microbiota-host immune system network.

    Science.gov (United States)

    Slack, Emma; Balmer, Maria L; Macpherson, Andrew J

    2014-07-01

    Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we address how B-cell responses to members of the intestinal microbiota form a robust network with mucus, epithelial integrity, follicular helper T cells, innate immunity, and gut-associated lymphoid tissues to maintain host-microbiota mutualism. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Active penetration of Trypanosoma cruzi into host cells: historical considerations and current concepts

    Directory of Open Access Journals (Sweden)

    Tecia Maria Ulisses Carvalho

    2013-01-01

    Full Text Available A significant number of scientific groups working on several countries have made efforts to better understand the process of invasion of several types of host cells by Trypanosoma cruzi, the etiologic agent of Chagas disease. In this mini-review we analyze the two mechanisms of invasion considered to be relevant: active penetration and endocytosis. The term active penetration is considered in view of its original description by Dvorak and co-workers. Taking into consideration all results obtained we conclude that endocytosis, with its many variations, is the only mechanism used by T. cruzi to invade host cells.

  6. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells.

    Science.gov (United States)

    Sateriale, Adam; Miller, Peter; Huston, Christopher D

    2016-04-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. A Reinterpretation of Cell Transplantation: GFP Transfer From Donor to Host Photoreceptors.

    Science.gov (United States)

    Ortin-Martinez, Arturo; Tsai, En Leh Samuel; Nickerson, Philip E; Bergeret, Miriam; Lu, Yao; Smiley, Sheila; Comanita, Lacrimioara; Wallace, Valerie A

    2017-04-01

    The utilization of fluorescent reporter transgenes to discriminate donor versus host cells has been a mainstay of photoreceptor transplantation research, the assumption being that the presence of reporter+ cells in outer nuclear layer (ONL) of transplant recipients represents the integration of donor photoreceptors. We previously reported that GFP+ cells in the ONL of cone-GFP transplanted retinas exhibited rod-like characteristics, raising the possibility that GFP signal in recipient tissue may not be a consequence of donor cell integration. To investigate the basis for this mismatch, we performed a series of transplantations using multiple transgenic donor and recipient models, and assessed cell identity using nuclear architecture, immunocytochemistry, and DNA prelabeling. Our results indicate that GFP+ cells in the ONL fail to exhibit hallmark elements of donor cells, including nuclear hetero/euchromatin architecture. Furthermore, GFP signal does not appear to be a consequence of classic donor/host cell fusion or transfating post-transplant, but is most likely due to material exchange between donor and host photoreceptors. This transfer can be mediated by rods and cones, is bidirectional between donor and host cells, requires viable photoreceptors, occurs preferentially at sites of outer limiting membrane disruption and can be detected in second-order retinal neurons and Müller glia. Collectively, these data warrant re-evaluation of the use of lineage tracing fluorescent reporters in transplantation studies involving the retina and other CNS tissues. Furthermore, the reinterpretation of previous functional rescue data, based on material exchange, rather than cell integration, may offer a novel approach to vision rescue. Stem Cells 2017;35:932-939. © 2016 AlphaMed Press.

  8. Pixuna virus modifies host cell cytoskeleton to secure infection.

    Science.gov (United States)

    Gil, Pedro Ignacio; Albrieu-Llinás, Guillermo; Mlewski, Estela Cecilia; Monetti, Marina; Fozzatti, Laura; Cuffini, Cecilia; Fernández Romero, José; Kunda, Patricia; Paglini, María Gabriela

    2017-07-18

    Pixuna virus (PIXV) is an enzootic member of the Venezuelan Equine Encephalitis Virus complex and belongs to the New World cluster of alphaviruses. Herein we explore the role of the cellular cytoskeleton during PIXV replication. We first identified that PIXV undergoes an eclipse phase consisting of 4 h followed by 20 h of an exponential phase in Vero cells. The infected cells showed morphological changes due to structural modifications in actin microfilaments (MFs) and microtubules (MTs). Cytoskeleton-binding agents, that alter the architecture and dynamics of MFs and MTs, were used to study the role of cytoskeleton on PIXV replication. The virus production was significantly affected (p < 0.05) after treatment with paclitaxel or nocodazole due to changes in the MTs network. Interestingly, disassembly of MFs with cytochalasin D, at early stage of PIXV replication cycle, significantly increased the virus yields in the extracellular medium (p < 0.005). Furthermore, the stabilization of actin network with jasplakinolide had no effect on virus yields. Our results demonstrate that PIXV relies not only on intact MTs for the efficient production of virus, but also on a dynamic actin network during the early steps of viral replication.

  9. The Importance of Physiologically Relevant Cell Lines for Studying Virus–Host Interactions

    Directory of Open Access Journals (Sweden)

    David Hare

    2016-11-01

    Full Text Available Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.

  10. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  11. Secretion of Cpn0796 from Chlamydia pneumoniae into the host cell cytoplasm by an autotransporter mechanism

    DEFF Research Database (Denmark)

    Vandahl, Brian B S; Stensballe, Allan; Roepstorff, Peter

    2005-01-01

    By comparison of proteome profiles of purified Chlamydia pneumoniae and whole lysates of C. pneumoniae infected HEp-2 cells, an N-terminal fragment of the previously uncharacterized chlamydial protein Cpn0796 was identified as a secreted protein. A 38 kDa cleavage product of Cpn0796 was present...... of C. pneumoniae infected HEp-2 and BHK cells. Furthermore, Cpn0796 was detected in the cytoplasm of infected cells in the lungs of C. pneumoniae infected C57Bl mice. When cleavage was inhibited, Cpn0796 was retained in the chlamydiae. We propose that Cpn0796 is an autotransporter the N......-terminal of which is translocated to the host cell cytoplasm. This is the first example of secretion of a Chlamydia autotransporter passenger domain into the host cell cytoplasm. Cpn0796 is specific for C. pneumoniae, where five homologous proteins are encoded by clustered genes. None of these five proteins were...

  12. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging.

    Science.gov (United States)

    Baltekin, Özden; Boucharin, Alexis; Tano, Eva; Andersson, Dan I; Elf, Johan

    2017-08-22

    The emergence and spread of antibiotic-resistant bacteria are aggravated by incorrect prescription and use of antibiotics. A core problem is that there is no sufficiently fast diagnostic test to guide correct antibiotic prescription at the point of care. Here, we investigate if it is possible to develop a point-of-care susceptibility test for urinary tract infection, a disease that 100 million women suffer from annually and that exhibits widespread antibiotic resistance. We capture bacterial cells directly from samples with low bacterial counts (10(4) cfu/mL) using a custom-designed microfluidic chip and monitor their individual growth rates using microscopy. By averaging the growth rate response to an antibiotic over many individual cells, we can push the detection time to the biological response time of the bacteria. We find that it is possible to detect changes in growth rate in response to each of nine antibiotics that are used to treat urinary tract infections in minutes. In a test of 49 clinical uropathogenic Escherichia coli (UPEC) isolates, all were correctly classified as susceptible or resistant to ciprofloxacin in less than 10 min. The total time for antibiotic susceptibility testing, from loading of sample to diagnostic readout, is less than 30 min, which allows the development of a point-of-care test that can guide correct treatment of urinary tract infection.

  13. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu

    Directory of Open Access Journals (Sweden)

    Luan Jinwei

    2016-06-01

    Full Text Available Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA-enhancing X-ray susceptibility in FaDu cells.

  14. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions

    Science.gov (United States)

    Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.

    2017-01-01

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  15. Signalome-wide assessment of host cell response to hepatitis C virus.

    Science.gov (United States)

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J; Daly, Roger J; Netter, Hans J; Baumert, Thomas F; Doerig, Christian

    2017-05-08

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen.

  16. Signalome-wide assessment of host cell response to hepatitis C virus

    Science.gov (United States)

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen. PMID:28480889

  17. [Molecular mechanism of ORFV intervention strategies based on the UPS of host cell: a review].

    Science.gov (United States)

    Yu, Yong-Zhong; Tong, Chun-Yu; Song, Bai-Fen; An, Hong-Boi; Yu, Li-Yun; Yu, Li; Cui, Yu-Dong

    2013-11-01

    In order to compete the antiviral effects of the host cell in the process of infection, ORFV(known as Orf virus) relies on a series of functional genes developed through long-term population evolution, such as interferon resistance genes, Bcl-2 protein genes and cell cycle inhibitor gene and so on, with these weapons this virus is able to effectively counteract immune clearance and immune regulation from a host cell. Concurrently, ORFV also focuses on exploiting signal transduction pathways of the ubiquitin-proteasome system(UPS), circumvents the intracellular signal transduction and CD8+ T activation, for shielding virus particles towards maturation and releasing outside. This review introduced inner link between the UPS of host cell and intervention mechanism by virus, and analyzed the key roles of certains components in UPS, these all together showed the evolution tendency of ORFV that was involved in the designing of inhibition to immune response and for intracellular immune escape upon the selection pressure in host cell infected.

  18. Susceptibility and production of a feline endogenous retrovirus (RD-114 virus) in various feline cell lines.

    Science.gov (United States)

    Okada, Masaya; Yoshikawa, Rokusuke; Shojima, Takayuki; Baba, Kenji; Miyazawa, Takayuki

    2011-01-01

    RD-114 virus is a replication-competent feline endogenous retrovirus that has been classified as a xenotropic virus. In this study, we examined the expression of the receptors for RD-114 virus in feline cell lines by conducting a pseudotype virus infection assay. Six out of eight feline cell lines were susceptible to the RD-114 pseudotype virus and two cell lines (MCC and FER cells) were resistant. The two resistant cell lines and one cell line (CRFK cells) weakly sensitive to the RD-114 pseudotype virus were found to produce replication-competent RD114-like viruses by the LacZ marker rescue assay and the interference assay. These data strongly suggest that RD-114 virus is polytropic and resistance to RD-114 virus in certain cell lines is due to receptor interference but not polymorphism of the RD-114 receptors. In addition, we determined the amino acid sequences of the envelope region of RD-114-like viruses produced from MCC, FER and CRFK cells. The sequences were identical with the authentic RD-114 virus. Because many feline cell lines are used to manufacture live attenuated vaccines for companion animals, attention should be paid to contamination of the RD-114 virus in vaccines. Copyright © 2010. Published by Elsevier B.V.

  19. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity.

    Science.gov (United States)

    Vilela, Ricardo Chaves; Benchimol, Marlene

    2012-09-01

    Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause

  20. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2012-09-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such

  1. Reduced expression IRF7 in nasal epithelial cells from smokers as a potential mechanism mediating enhanced susceptibility to influenza

    Science.gov (United States)

    Rationale: Smokers are more susceptible to viral infections, including influenza virus, yet the mechanisms mediating this effect are not known. Methods: We have established an in vitro model of differentiated nasal epithelial cells from smokers, which maintain enhanced levels...

  2. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  3. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation.

    Science.gov (United States)

    Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H; Yang, Li-Jun

    2013-08-15

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.

  4. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Kurtis W Straub

    2011-03-01

    Full Text Available The apicomplexan moving junction (MJ is a highly conserved structure formed during host cell entry that anchors the invading parasite to the host cell and serves as a molecular sieve of host membrane proteins that protects the parasitophorous vacuole from host lysosomal destruction. While recent work in Toxoplasma and Plasmodium has reinforced the composition of the MJ as an important association of rhoptry neck proteins (RONs with micronemal AMA1, little is known of the precise role of RONs in the junction or how they are targeted to the neck subcompartment. We report the first functional analysis of a MJ/RON protein by disrupting RON8 in T. gondii. Parasites lacking RON8 are severely impaired in both attachment and invasion, indicating that RON8 enables the parasite to establish a firm clasp on the host cell and commit to invasion. The remaining junction components frequently drag in trails behind invading knockout parasites and illustrate a malformed complex without RON8. Complementation of Δron8 parasites restores invasion and reveals a processing event at the RON8 C-terminus. Replacement of an N-terminal region of RON8 with a mCherry reporter separates regions within RON8 that are necessary for rhoptry targeting and complex formation from those required for function during invasion. Finally, the invasion defects in Δron8 parasites seen in vitro translate to radically impaired virulence in infected mice, promoting a model in which RON8 has a crucial and unprecedented task in committing Toxoplasma to host cell entry.

  5. Fibronectin-degrading activity of Trypanosoma cruzi cysteine proteinase plays a role in host cell invasion.

    Science.gov (United States)

    Maeda, Fernando Yukio; Cortez, Cristian; Izidoro, Mario Augusto; Juliano, Luiz; Yoshida, Nobuko

    2014-12-01

    Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the major T. cruzi cysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase of T. cruzi metacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    Science.gov (United States)

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD 50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  7. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  8. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.

    Science.gov (United States)

    Gutierrez, Jahir M; Lewis, Nathan E

    2015-07-01

    Eukaryotic cell lines, including Chinese hamster ovary cells, yeast, and insect cells, are invaluable hosts for the production of many recombinant proteins. With the advent of genomic resources, one can now leverage genome-scale computational modeling of cellular pathways to rationally engineer eukaryotic host cells. Genome-scale models of metabolism include all known biochemical reactions occurring in a specific cell. By describing these mathematically and using tools such as flux balance analysis, the models can simulate cell physiology and provide targets for cell engineering that could lead to enhanced cell viability, titer, and productivity. Here we review examples in which metabolic models in eukaryotic cell cultures have been used to rationally select targets for genetic modification, improve cellular metabolic capabilities, design media supplementation, and interpret high-throughput omics data. As more comprehensive models of metabolism and other cellular processes are developed for eukaryotic cell culture, these will enable further exciting developments in cell line engineering, thus accelerating recombinant protein production and biotechnology in the years to come. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  10. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite-host interaction.

    Science.gov (United States)

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (Plactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study reveals the possible mechanism of

  11. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Science.gov (United States)

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Background Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Methods Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. Results The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (Plactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. Conclusion The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study

  12. Intracellular accommodation of rhizobia in legume host cell: the fine-tuning of the endomembrane system

    NARCIS (Netherlands)

    Gavrin, A.Y.

    2015-01-01

    The symbiosis of legumes with rhizobia leads to the formation of root nodules. Rhizobia which are hosted inside specialized infected cells are surrounded by hostderived membranes, forming symbiosomes. Although it is known that symbiosome formation involves proliferation of membranes and changing of

  13. Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions

    NARCIS (Netherlands)

    Kjos, M.; Aprianto, R.; Fernandes, V.E.; Andrew, P.W.; Strijp, van J.A.G.; Nijland, R.; Veening, J.W.

    2015-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people, but at the same time one of the major causes of infectious diseases such as pneumonia, meningitis and sepsis. The shift from commensal to pathogen and its interaction with host cells is poorly understood. One of the

  14. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    NARCIS (Netherlands)

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.|info:eu-repo/dai/nl/074307053; Nijland, Reindert; Veening, Jan-Willem

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the

  15. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Brennan S. Dirk

    2016-10-01

    Full Text Available Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1 is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED and photoactivation and localization microscopy (PALM have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET and bimolecular fluorescence complementation (BiFC have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  16. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota

    OpenAIRE

    Feng, Ting; Elson, Charles O.; Cong, Yingzi

    2010-01-01

    The intestine is the home to a vast diversity of microbiota and a complex of mucosal immune system. Multiple regulatory mechanisms control host immune responses to microbiota and maintain intestinal immune homeostasis. This mini review will provide evidence indicating a Treg cell-IgA axis and such axis playing a major role in maintenance of intestinal homeostasis.

  17. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    Rosana ePuccia

    2011-12-01

    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  18. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  19. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia.

    Science.gov (United States)

    Xu, Xin; Weiss, Ido D; Zhang, Hongwei H; Singh, Satya P; Wynn, Thomas A; Wilson, Mark S; Farber, Joshua M

    2014-02-15

    It was reported that host defense against pulmonary Klebsiella pneumoniae infection requires IL-22, which was proposed to be of T cell origin. Supporting a role for IL-22, we found that Il22(-/-) mice had decreased survival compared with wild-type mice after intratracheal infection with K. pneumoniae. Surprisingly, however, Rag2(-/-) mice did not differ from wild-type mice in survival or levels of IL-22 in the lungs postinfection with K. pneumoniae. In contrast, K. pneumoniae-infected Rag2(-/-)Il2rg(-/-) mice failed to produce IL-22. These data suggested a possible role for NK cells or other innate lymphoid cells in host defense and production of IL-22. Unlike NK cell-like innate lymphoid cells that produce IL-22 and display a surface phenotype of NK1.1(-)NKp46(+)CCR6(+), lung NK cells showed the conventional phenotype, NK1.1(+)NKp46(+)CCR6(-). Mice depleted of NK cells using anti-asialo GM1 showed decreased survival and higher lung bacterial counts, as well as increased dissemination of K. pneumoniae to blood and liver, compared with control-treated mice. NK cell depletion also led to decreased production of IL-22 in the lung. Within 1 d postinfection, although there was no increase in the number of lung NK cells, a subset of lung NK cells became competent to produce IL-22, and such cells were found in both wild-type and Rag2(-/-) mice. Our data suggest that, during pulmonary infection of mice with K. pneumoniae, conventional NK cells are required for optimal host defense, which includes the production of IL-22.

  20. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zienolddiny S

    2011-12-01

    Full Text Available Shanbeh Zienolddiny, Vidar SkaugSection for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, NorwayAbstract: Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung, lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC, 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes, detoxification (glutathione S-transferases, adduct removal (DNA repair genes, cell growth/apoptosis (TP53/MDM2, the immune system (cytokines/chemokines, and membrane receptors (nicotinic acetylcholine and dopaminergic receptors. Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most

  1. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule.

    Directory of Open Access Journals (Sweden)

    Stephanie N Bartley

    Full Text Available We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.

  2. Attachment and invasion of Neisseria meningitidis to host cells is related to surface hydrophobicity, bacterial cell size and capsule.

    Science.gov (United States)

    Bartley, Stephanie N; Tzeng, Yih-Ling; Heel, Kathryn; Lee, Chiang W; Mowlaboccus, Shakeel; Seemann, Torsten; Lu, Wei; Lin, Ya-Hsun; Ryan, Catherine S; Peacock, Christopher; Stephens, David S; Davies, John K; Kahler, Charlene M

    2013-01-01

    We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.

  3. A role for host cell exocytosis in InlB-mediated internalisation of Listeria monocytogenes.

    Science.gov (United States)

    Van Ngo, Hoan; Bhalla, Manmeet; Chen, Da-Yuan; Ireton, Keith

    2017-11-01

    The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB-mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB-dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB-mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB-mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection. © 2017 John Wiley & Sons Ltd.

  4. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Masaaki Nakayama

    2017-11-01

    Full Text Available Porphyromonas gingivalis (P. gingivalis is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR, also called HGP15, has the function of induction of interleukin-8 (IL-8 expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

  5. Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites.

    Directory of Open Access Journals (Sweden)

    Sebastien Pomel

    2008-10-01

    Full Text Available Apicomplexan parasites are dependent on an F-actin and myosin-based motility system for their invasion into and escape from animal host cells, as well as for their general motility. In Toxoplasma gondii and Plasmodium species, the actin filaments and myosin motor required for this process are located in a narrow space between the parasite plasma membrane and the underlying inner membrane complex, a set of flattened cisternae that covers most the cytoplasmic face of the plasma membrane. Here we show that the energy required for Toxoplasma motility is derived mostly, if not entirely, from glycolysis and lactic acid production. We also demonstrate that the glycolytic enzymes of Toxoplasma tachyzoites undergo a striking relocation from the parasites' cytoplasm to their pellicles upon Toxoplasma egress from host cells. Specifically, it appears that the glycolytic enzymes are translocated to the cytoplasmic face of the inner membrane complex as well as to the space between the plasma membrane and inner membrane complex. The glycolytic enzymes remain pellicle-associated during extended incubations of parasites in the extracellular milieu and do not revert to a cytoplasmic location until well after parasites have completed invasion of new host cells. Translocation of glycolytic enzymes to and from the Toxoplasma pellicle appears to occur in response to changes in extracellular [K(+] experienced during egress and invasion, a signal that requires changes of [Ca(2+](c in the parasite during egress. Enzyme translocation is, however, not dependent on either F-actin or intact microtubules. Our observations indicate that Toxoplasma gondii is capable of relocating its main source of energy between its cytoplasm and pellicle in response to exit from or entry into host cells. We propose that this ability allows Toxoplasma to optimize ATP delivery to those cellular processes that are most critical for survival outside host cells and those required for growth and

  6. The cyclomodulin Cif of Photorhabdus luminescens inhibits insect cell proliferation and triggers host cell death by apoptosis.

    Science.gov (United States)

    Chavez, Carolina Varela; Jubelin, Grégory; Courties, Gabriel; Gomard, Aurélie; Ginibre, Nadège; Pages, Sylvie; Taïeb, Frédéric; Girard, Pierre-Alain; Oswald, Eric; Givaudan, Alain; Zumbihl, Robert; Escoubas, Jean-Michel

    2010-12-01

    Cycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G(2)/M phase transition in human cell lines. We report here the first direct functional analysis of Cif(Pl), from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host. The cif(Pl) gene was expressed in P. luminescens cultures in vitro. The resulting protein was released into the culture medium, unlike the well characterized type III effector LopT. During locust infection, cif(Pl) was expressed in both the hemolymph and the hematopoietic organ, but was not essential for P. luminescens virulence. Cif(Pl) inhibited proliferation of the insect cell line Sf9, by blocking the cell cycle at the G(2)/M phase transition. It also triggered host cell death by apoptosis. The integrity of the Cif(Pl) catalytic triad is essential for the cell cycle arrest and pro-apoptotic activities of this protein. These results highlight, for the first time, the dual role of Cif in the control of host cell proliferation and apoptotic death in a non-mammalian cell line. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  7. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions.

    Science.gov (United States)

    Carvalho, Cristina; Katz, Paige S; Dutta, Somhrita; Katakam, Prasad V G; Moreira, Paula I; Busija, David W

    2014-01-01

    We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.

  8. A Coevolutionary Arms Race between Hosts and Viruses Drives Polymorphism and Polygenicity of NK Cell Receptors.

    Science.gov (United States)

    Carrillo-Bustamante, Paola; Keşmir, Can; de Boer, Rob J

    2015-08-01

    Natural killer cell receptors (NKRs) monitor the expression of major histocompatibility class I (MHC-I) and stress molecules to detect unhealthy tissue, such as infected or tumor cells. The NKR gene family shows a remarkable genetic diversity, containing several genes encoding receptors with activating and inhibiting signaling, and varying in gene content and allelic polymorphism. The expansion of the NKR genes is species-specific, with different species evolving alternative expanded NKR genes, which encode structurally different proteins, yet perform comparable functions. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. To study the evolution of NKRs, we have developed an agent-based model implementing a coevolutionary scenario between hosts and herpes-like viruses that are able to evade the immune response by downregulating the expression of MHC-I on the cell surface. We show that hosts evolve specific inhibitory NKRs, specialized to particular MHC-I alleles in the population. Viruses in our simulations readily evolve proteins mimicking the MHC molecules of their host, even in the absence of MHC-I downregulation. As a result, the NKR locus becomes polygenic and polymorphic, encoding both specific inhibiting and activating receptors to optimally protect the hosts from coevolving viruses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. MicroRNA profile analysis of host cells before and after wild human rotavirus infection.

    Science.gov (United States)

    Zhou, Yan; Wu, Jinyuan; Geng, Panpan; Kui, Xiang; Xie, Yuping; Zhang, Lei; Liu, Yaling; Yin, Na; Zhang, Guangming; Yi, Shan; Li, Hongjun; Sun, Maosheng

    2016-09-01

    Rotavirus infection is an important cause of acute gastroenteritis in children, but the interaction between rotavirus and host cells is not completely understood. We isolated a wildtype (wt) rotavirus strain, ZTR-68(P [8] G1), which is derived from an infant with diarrhea in southwest China in 2010. In this study, we investigated host cellular miRNA expression profiles changes in response to ZTR-68 in early stage of infection to investigate the role of miRNAs upon rotavirus infection. Differentially expressed miRNAs were identified by deep sequencing and qRT-PCR and the function of their targets predicted by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. A total of 36 candidate miRNAs were identified. Comparative analysis indicated that 29 miRNAs were significantly down-regulated and 7 were up-regulated after infection. The data were provided contrasting the types of microRNAs in two different permissive cell lines (HT29 and MA104). The target assays results showed that mml-miR-7 and mml-miR-125a are involved in anti-rotavirus and virus-host interaction in host cells. These results offer clues for identifying potential candidates in vector-based antiviral strategies. J. Med. Virol. 88:1497-1510, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection

    OpenAIRE

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-01-01

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae. During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effectiv...

  11. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.

    Science.gov (United States)

    Ufimtseva, Elena

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.

  12. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection

    Directory of Open Access Journals (Sweden)

    Elena Ufimtseva

    2015-01-01

    Full Text Available Tuberculosis (TB is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.

  13. APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition.

    Science.gov (United States)

    Buisson, Rémi; Lawrence, Michael S; Benes, Cyril H; Zou, Lee

    2017-09-01

    The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like APOBEC3A and APOBEC3B have emerged as key mutation drivers in cancer. Here, we show that APOBEC3A and APOBEC3B activities impose a unique type of replication stress by inducing abasic sites at replication forks. In contrast to cells under other types of replication stress, APOBEC3A-expressing cells were selectively sensitive to ATR inhibitors (ATRi), but not to a variety of DNA replication inhibitors and DNA-damaging drugs. In proliferating cells, APOBEC3A modestly elicited ATR but not ATM. ATR inhibition in APOBEC3A-expressing cells resulted in a surge of abasic sites at replication forks, revealing an ATR-mediated negative feedback loop during replication. The surge of abasic sites upon ATR inhibition associated with increased accumulation of single-stranded DNA, a substrate of APOBEC3A, triggering an APOBEC3A-driven feed-forward loop that ultimately drove cells into replication catastrophe. In a panel of cancer cell lines, ATRi selectively induced replication catastrophe in those harboring high APOBEC3A and/or APOBEC3B activities, showing that APOBEC3A and APOBEC3B activities conferred susceptibility to ATRi. Our results define an APOBEC-driven replication stress in cancer cells that may offer an opportunity for ATR-targeted therapy. Cancer Res; 77(17); 4567-78. ©2017 AACR. ©2017 American Association for Cancer Research.

  14. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection.

    Science.gov (United States)

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel; Lereclus, Didier

    2015-04-28

    Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host's death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. Bt is an entomopathogen found ubiquitously in the environment and is a widely used biopesticide. Studies performed at the population level suggest that the infection process of Bt includes three successive steps (virulence, necrotrophism, and sporulation) controlled by different regulators. This study aimed to determine how these phenotypes are activated at the

  15. Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available Microsporidia are eukaryotic, unicellular parasites that have been studied for more than 150 years. These organisms are extraordinary in their ability to invade a wide range of hosts including vertebrates and invertebrates, such as human and commercially important animals. A lack of appropriate labeling methods has limited the research of the cell cycle and protein locations in intracellular stages. In this report, an easy fluorescent labeling method has been developed to mark the proliferative and sporogonic phases of microsporidia Nosema bombycis in host cells. Based on the presence of chitin, Calcofluor White M2R was used to label the sporogonic phase, while β-tubulin antibody coupled with fluorescence secondary antibody were used to label the proliferative phase by immunofluorescence. This method is simple, efficient and can be used on both infected cells and tissue slices, providing a great potential application in microsporidia research.

  16. Ultrastructural characteristics of nurse cell-larva complex of four species of Trichinella in several hosts

    Directory of Open Access Journals (Sweden)

    Sacchi L.

    2001-06-01

    Full Text Available The nurse cell-larva complex of nematodes of the genus Trichinella plays an Important role in the survival of the larva in decaying muscles, frequently favouring the transmission of the parasite in extreme environmental conditions. The ultrastructure of the nurse cell-larva complex in muscles from different hosts infected with T. nativa (a walrus and a polar bear, T. spiralis (horses and humans, T. pseudospiralis (a laboratory mouse and T. papuae (a laboratory mouse were examined. Analysis with transmission electron microscope showed that the typical nurse cell structure was present in all examined samples, irrespective of the species of larva, of the presence of a collagen capsule, of the age of infection and of the host species, suggesting that there exists a molecular mechanism that in the first stage of larva invasion is similar for encapsulated and non-encapsulated species.

  17. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    Science.gov (United States)

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Trypanosoma cruzi: effect of phenothiazines on the parasite and its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Solange L. de Castro

    1992-06-01

    Full Text Available Phenothiazines were observed to have a direct effect on Trypanosoma cruzi and on its in vitro interaction with host cells. They caused lysis of trypomastigotes (50 uM/24 h and,to a lesser extent, epimastigote proliferation. Treatment of infected peritoneal macrophages with 12.5 uM chlorpromazine or triflupromazine inhibited the infection; this effect was found to be partially reversible if the drugs were removed after 24 h of treatment. At 60 uM, the drugs caused damage to amastigotes interiorized in heart muscle cells. However, the narrow margin of toxity between anti-trypanossomal activity and damage to host cells mitigates against in vivo investigation at the present time. Possible hypothesis for the mechanism of action of phenothiazines are discussed.

  19. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    Science.gov (United States)

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Modeling within-host HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral enzyme function and drug susceptibility

    Science.gov (United States)

    Rong, Libin; Gilchrist, Michael A.; Feng, Zhilan; Perelson, Alan S.

    2007-01-01

    There are many biological steps between viral infection of CD4+ T cells and the production of HIV-1 virions. Here we incorporate an eclipse phase, representing the stage in which infected T cells have not started to produce new virus, into a simple HIV-1 model. Model calculations suggest that the quicker infected T cells progress from the eclipse stage to the productively infected stage, the more likely that a viral strain will persist. Long-term treatment effectiveness of antiretroviral drugs is often hindered by the frequent emergence of drug resistant virus during therapy. We link drug resistance to both the rate of progression of the eclipse phase and the rate of viral production of the resistant strain, and explore how the resistant strain could evolve to maximize its within-host viral fitness. We obtained the optimal progression rate and the optimal viral production rate, which maximize the fitness of a drug resistant strain in the presence of drugs. We show that the window of opportunity for invasion of drug resistant strains is widened for a higher level of drug efficacy provided that the treatment is not potent enough to eradicate both the sensitive and resistant virus. PMID:17532343

  1. Besnoitia besnoiti and Toxoplasma gondii: two apicomplexan strategies to manipulate the host cell centrosome and Golgi apparatus.

    Science.gov (United States)

    Cardoso, Rita; Nolasco, Sofia; Gonçalves, João; Cortes, Helder C; Leitão, Alexandre; Soares, Helena

    2014-09-01

    Besnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.

  2. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection.

    Directory of Open Access Journals (Sweden)

    Sabrina Schreiner

    Full Text Available Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24-48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms

  3. Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.

    Science.gov (United States)

    Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee

    Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. β2-agonists promote host defense against bacterial infection in primary human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Weinberger Andrew R

    2010-05-01

    Full Text Available Abstract Background Airway epithelial cells are critical in host defense against bacteria including Mycoplasma pneumoniae (Mp in chronic obstructive pulmonary disease (COPD and asthma. β2-agonists are mainstay of COPD and asthma therapy, but whether β2-agonists directly affect airway epithelial host defense functions is unclear. Methods Epithelial cells from bronchial brushings of normal (n = 8, asthma (n = 8 and COPD (n = 8 subjects were grown in air-liquid interface cultures, and treated with cigarette smoke extract (CSE and/or Th2 cytokine IL-13, followed by Mp infection and treatment with β2-agonists albuterol and formoterol for up to seven days. Mp and host defense proteins short palate, lung, and nasal epithelial clone 1 (SPLUNC1 and β-defensin-2 were quantified. Expression of β2-adrenergic receptors was also measured by real-time quantitative RT-PCR. Results (R- or racemic albuterol and (R,R- or racemic formoterol significantly decreased Mp levels in normal and asthma epithelial cells. Normal cells treated with Mp and (R- or racemic albuterol showed an increase in SPLUNC1, but not in β-defensin-2. COPD cells did not respond to drug treatment with a significant decrease in Mp or an increase in SPLUNC1. IL-13 attenuated drug effects on Mp, and markedly decreased SPLUNC1 and β2-adrenergic receptors. Conclusions These results for the first time show that β2-agonists enhance host defense functions of primary bronchial epithelial cells from normal and asthma subjects, which is attenuated by IL-13.

  5. Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development.

    Science.gov (United States)

    Hamid, Penny H; Hirzmann, Jörg; Hermosilla, Carlos; Taubert, Anja

    2014-11-01

    Eimeria bovis macromeront formation in bovine endothelial host cells is an energy- and nutrient-demanding process. Obligate intracellular replicating coccidians are generally considered as auxotrophic for cholesterol synthesis and scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating the host cellular de novo biosynthesis. We here focused on the latter mechanism and analyzed the effects of several inhibitors targeting the host cellular mevalonate biosynthesis pathway and cholesterol processing. The following inhibitors were used: lovastatin, squalestatin, CI976 and C75 targeting HMG-CoA reductase, squalene synthase, acyl-CoA:cholesterol acyltransferase, and fatty acid synthase, respectively. In summary, all inhibitors significantly interfered with E. bovis meront formation and merozoite production in a dose-dependent manner. Dose effect responses identified lovastatin as the most effective compound, followed by CI976, C75, and squalestatin, respectively. Overall, merozoite production was inhibited by 99.6, 99.7, 84.6, and 70.2% via lovastatin (1 μM), CI976, C75, and squalestatin (all 5 μM) treatments, respectively. Concerning macromeront formation, both the rate and size of developing meronts were affected by inhibitor treatments. The effects were characterized by developmental arrest and meront degradation. In the case of CI976 treatment, we additionally observed detrimental effects on host cellular lipid droplet formation leading to meront developmental arrest irrespective of the time point of treatment onset. These analyses clearly indicate that successful E. bovis intracellular development strictly depends on the host cellular de novo biosynthesis of cholesterol and on the adequate subsequent processing thereof.

  6. Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells

    OpenAIRE

    Phan, Quynh T.; Myers, Carter L.; Yue Fu; Sheppard, Donald C.; Yeaman, Michael R.; Welch, William H.; Ibrahim, Ashraf S.; Edwards, John E.; Filler, Scott G.

    2007-01-01

    Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organi...

  7. Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods.

    Science.gov (United States)

    Jamshidi, Neema; Raghunathan, Anu

    2015-01-01

    Constraint-based models have become popular methods for systems biology as they enable the integration of complex, disparate datasets in a biologically cohesive framework that also supports the description of biological processes in terms of basic physicochemical constraints and relationships. The scope, scale, and application of genome scale models have grown from single cell bacteria to multi-cellular interaction modeling; host-pathogen modeling represents one of these examples at the current horizon of constraint-based methods. There are now a small number of examples of host-pathogen constraint-based models in the literature, however there has not yet been a definitive description of the methodology required for the functional integration of genome scale models in order to generate simulation capable host-pathogen models. Herein we outline a systematic procedure to produce functional host-pathogen models, highlighting steps which require debugging and iterative revisions in order to successfully build a functional model. The construction of such models will enable the exploration of host-pathogen interactions by leveraging the growing wealth of omic data in order to better understand mechanism of infection and identify novel therapeutic strategies.

  8. CELL SCALE HOST-PATHOGEN MODELING: ANOTHER BRANCH IN THE EVOLUTION OF CONSTRAINT-BASED METHODS

    Directory of Open Access Journals (Sweden)

    Neema eJamshidi

    2015-10-01

    Full Text Available Constraint-based models have become popular methods for systems biology as they enable the integration of complex, disparate datasets in a biologically cohesive framework that also supports the description of biological processes in terms of basic physicochemical constraints and relationships. The scope, scale, and application of genome scale models have grown from single cell bacteria to multi-cellular interaction modeling; host-pathogen modeling represents one of these examples at the current horizon of constraint-based methods. There are now a small number of examples of host-pathogen constraint-based models in the literature, however there has not yet been a definitive description of the methodology required for the functional integration of genome scale models in order to generate simulation capable host-pathogen models. Herein we outline a systematic procedure to produce functional host-pathogen models, highlighting steps which require debugging and iterative revisions in order to successfully build a functional model. The construction of such models will enable the exploration of host-pathogen interactions by leveraging the growing wealth of omic data in order to better understand mechanism of infection and identify novel therapeutic strategies.

  9. Susceptibility of naïve and differentiated PC12 cells to Japanese encephalitis virus infection.

    Science.gov (United States)

    Li, Jian-Ri; Wu, Chih-Cheng; Chang, Cheng-Yi; Ou, Yen-Chuan; Lin, Shih-Yi; Wang, Ya-Yu; Chen, Wen-Ying; Raung, Shue-Ling; Liao, Su-Lan; Chen, Chun-Jung

    2017-02-01

    Japanese encephalitis is a mosquito-borne disease caused by Japanese encephalitis virus (JEV) infection. Although JEV infects and replicates in cells with multiple tissue origins, neurons are the preferential cells for JEV infection. Currently, the identities of JEV cell tropism are largely unclear. To gain better insight into the underlying identities of JEV cell tropism, this study was designed to compare the JEV cell tropism with naïve or differentiated PC12 cells. Through nerve growth factor-differentiated PC12 cells, we discovered that JEV efficiently replicated in differentiated PC12 cells rather than naïve cells. Mechanistic studies revealed that viral adsorption/attachment seemed not to be a crucial factor. Supporting data showed that antagonizing postreceptor intracellular signaling of interferons, along with the activation of suppressor of cytokine signaling-3 (SOCS3) expression and protein tyrosine phosphatase activity, were apparent in differentiated PC12 cells after JEV infection. Independent of differentiating inducing agents, the upregulation of SOCS3 expression and protein tyrosine phosphatase activity, as well as preferential JEV tropism, were common in JEV-infected differentiated PC12 cells. Using cultured primary neurons, JEV efficiently replicated in embryonic neurons rather than adult neurons, and the preference was accompanied by higher SOCS3 expression and protein tyrosine phosphatase activity. Given that both SOCS3 and protein tyrosine phosphatases have been implicated in the process of neuronal differentiation, JEV infection seems to not only create an antagonizing strategy to escape host's interferon antiviral response but also takes advantage of cellular machinery to favor its replication. Taken together, current findings imply that dynamic changes within cellular regulators of antiviral machinery could be accompanied by events of neuronal differentiation, thus concurrently playing roles in the control of JEV cell tropism and

  10. T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice.

    Directory of Open Access Journals (Sweden)

    Daniel R Neill

    Full Text Available Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3(+Helios(+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design.

  11. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A J; Schmid, T E; Marchetti, F

    2004-06-15

    Some chemotherapy regimens include agents that are mutagenic or clastogenic in model systems. This raises concerns that cancer survivors, who were treated before or during their reproductive years, may be at increased risks for abnormal reproductive outcomes. However, the available data from offspring of cancer survivors are limited, representing diverse cancers, therapies, time-to-pregnancies, and reproductive outcomes. Rodent breeding data after paternal exposures to individual chemotherapeutic agents illustrate the complexity of factors that influence the risk for transmitted genetic damage including agent, dose, endpoint, and the germ-cell susceptibility profiles that vary across agents. Direct measurements of chromosomal abnormalities in sperm of mice and humans by sperm FISH have corroborated the differences in germ-cell susceptibilities. The available evidence suggests that the risk of producing chromosomally defective sperm is highest during the first few weeks after the end of chemotherapy, and decays with time. Thus, sperm samples provided immediately after the initiation of cancer therapies may contain treatment-induced genetic defects that will jeopardize the genetic health of offspring.

  12. African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses.

    OpenAIRE

    Govorkova, E A; Murti, G; Meignier, B; de Taisne, C; Webster, R G

    1996-01-01

    The preparation of live, attenuated human influenza virus vaccines and of large quantities of inactivated vaccines after the emergence or reemergence of a pandemic influenza virus will require an alternative host cell system, because embryonated chicken eggs will likely be insufficient and suboptimal. Preliminary studies indicated that an African green monkey kidney cell line (Vero) is a suitable system for the primary isolation and cultivation of influenza A viruses (E. A. Govorkova, N. V. K...

  13. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  14. Recombinant Wild-Type and Edmonston Strain Measles Viruses Bearing Heterologous H Proteins: Role of H Protein in Cell Fusion and Host Cell Specificity

    OpenAIRE

    Takeuchi, Kaoru; Takeda, Makoto; Miyajima, Naoko; Kobune, Fumio; Tanabayashi, Kiyoshi; Tashiro, Masato

    2002-01-01

    Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but...

  15. Role of αβ T Cell Depletion in Prevention of Graft versus Host Disease

    Directory of Open Access Journals (Sweden)

    Haitham Abdelhakim

    2017-06-01

    Full Text Available Graft versus host disease (GVHD represents a major complication of allogeneic hematopoietic stem cell transplantation (allo HCT. Graft cellular manipulation has been used to mitigate the risk of GVHD. The αβ T cells are considered the primary culprit for causing GVHD therefore depletion of this T cell subset emerged as a promising cellular manipulation strategy to overcome the human leukocyte antigen (HLA barrier of haploidentical (haplo HCT. This approach is also being investigated in HLA-matched HCT. In several studies, αβ T cell depletion HCT has been performed without pharmacologic GVHD prophylaxis, thus unleashing favorable effect of donor’s natural killer cells (NK and γδ T cells. This article will discuss the evolution of this method in clinical practice and the clinical outcome as described in different clinical trials.

  16. Legionella Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Samual C. Allgood

    2017-09-01

    Full Text Available The facultative intracellular bacterium Legionella pneumophila proliferates within amoebae and human alveolar macrophages, and it is the causative agent of Legionnaires' disease, a life-threatening pneumonia. Within host cells, L. pneumophila establishes a replicative haven by delivering numerous effector proteins into the host cytosol, many of which target membrane trafficking by manipulating the function of Rab GTPases. The Legionella effector AnkX is a phosphocholine transferase that covalently modifies host Rab1 and Rab35. However, a detailed understanding of the biological consequence of Rab GTPase phosphocholination remains elusive. Here, we broaden the understanding of AnkX function by presenting three lines of evidence that it interferes with host endocytic recycling. First, using immunogold transmission electron microscopy, we determined that GFP-tagged AnkX ectopically produced in mammalian cells localizes at the plasma membrane and tubular membrane compartments, sites consistent with targeting the endocytic recycling pathway. Furthermore, the C-terminal region of AnkX was responsible for association with the plasma membrane, and we determined that this region was also able to bind the phosphoinositide lipids PI(3P and PI(4P in vitro. Second, we observed that mCherry-AnkX co-localized with Rab35, a regulator of recycling endocytosis and with major histocompatibility class I protein (MHC-I, a key immunoregulatory protein whose recycling from and back to the plasma membrane is Rab35-dependent. Third, we report that during infection of macrophages, AnkX is responsible for the disruption of endocytic recycling of transferrin, and AnkX's phosphocholination activity is critical for this function. These results support the hypothesis that AnkX targets endocytic recycling during host cell infection. Finally, we have demonstrated that the phosphocholination activity of AnkX is also critical for inhibiting fusion of the Legionella

  17. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells.

    Science.gov (United States)

    Laiño, Jonathan; Villena, Julio; Kanmani, Paulraj; Kitazawa, Haruki

    2016-08-15

    Researchers have demonstrated that lactic acid bacteria (LAB) with immunomodulatory capabilities (immunobiotics) exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS), that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells) as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR)-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105)/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  18. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2016-08-01

    Full Text Available Researchers have demonstrated that lactic acid bacteria (LAB with immunomodulatory capabilities (immunobiotics exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS, that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  19. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  20. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens

    Directory of Open Access Journals (Sweden)

    Simona John Von Freyend

    2017-04-01

    Full Text Available Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

  1. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens.

    Science.gov (United States)

    John Von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian

    2017-04-21

    Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

  2. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens

    Science.gov (United States)

    John von Freyend, Simona; Kwok-Schuelein, Terry; Netter, Hans J.; Haqshenas, Gholamreza; Semblat, Jean-Philippe; Doerig, Christian

    2017-01-01

    Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases. PMID:28430160

  3. The role of arginine and arginine-metabolizing enzymes during Giardia - host cell interactions in vitro.

    Science.gov (United States)

    Stadelmann, Britta; Hanevik, Kurt; Andersson, Mattias K; Bruserud, Oystein; Svärd, Staffan G

    2013-11-14

    Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Giardia affects the host's arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy.

  4. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

    Directory of Open Access Journals (Sweden)

    Tejas Bouklas

    2017-05-01

    Full Text Available Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and

  5. TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis.

    Science.gov (United States)

    Francisco, Ngiambudulu M; Hsu, Nai-Jen; Keeton, Roanne; Randall, Philippa; Sebesho, Boipelo; Allie, Nasiema; Govender, Dhirendra; Quesniaux, Valerie; Ryffel, Bernhard; Kellaway, Lauriston; Jacobs, Muazzam

    2015-06-26

    Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. We generated neuron-specific TNF-deficient (NsTNF(-/-)) mice and compared outcomes of disease against TNF(f/f) control and global TNF(-/-) mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). Intracerebral M. tuberculosis infection of TNF(-/-) mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF(-/-) mice were resistant to infection and presented with a phenotype similar to that in TNF(f/f) control mice. Impaired immunity in TNF(-/-) mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB.

  6. CD69 Deficiency Enhances the Host Response to Vaccinia Virus Infection through Altered NK Cell Homeostasis.

    Science.gov (United States)

    Notario, Laura; Alari-Pahissa, Elisenda; de Molina, Antonio; Lauzurica, Pilar

    2016-07-15

    During the host response to viral infection, the transmembrane CD69 protein is highly upregulated in all immune cells. We have studied the role of CD69 in the murine immune response to vaccinia virus (VACV) infection, and we report that the absence of CD69 enhances protection against VACV at both short and long times postinfection in immunocompetent and immunodeficient mice. Natural killer (NK) cells were implicated in the increased infection control, since the differences were greatly diminished when NK cells were depleted. This role of NK cells was not based on an altered NK cell reactivity, since CD69 did not affect the NK cell activation threshold in response to major histocompatibility complex class I NK cell targets or protein kinase C activation. Instead, NK cell numbers were increased in the spleen and peritoneum of CD69-deficient infected mice. That was not just secondary to better infection control in CD69-deficient mice, since NK cell numbers in the spleens and the blood of uninfected CD69(-/-) mice were already augmented. CD69-deficient NK cells from infected mice did not have an altered proliferation capacity. However, a lower spontaneous cell death rate was observed for CD69(-/-) lymphocytes. Thus, our results suggest that CD69 limits the innate immune response to VACV infection at least in part through cell homeostatic survival. We show that increased natural killer (NK) cell numbers augment the host response and survival after infection with vaccinia virus. This phenotype is found in the absence of CD69 in immunocompetent and immunodeficient hosts. As part of the innate immune system, NK lymphocytes are activated and participate in the defense against infection. Several studies have focused on the contribution of NK cells to protection against infection with vaccinia virus. In this study, it was demonstrated that the augmented early NK cell response in the absence of CD69 is responsible for the increased protection seen during infection with

  7. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    Science.gov (United States)

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. © 2015 John Wiley & Sons Ltd.

  8. Cell lines from grc congenic strains of rats having different susceptibilities to chemical carcinogens.

    Science.gov (United States)

    Lu, D; Kunz, H W; Melhem, M F; Gill, T J

    1993-09-01

    The growth and reproduction complex (grc-) strains of rats have a 70-kilobase deletion in the major histocompatibility complex (MHC)-linked grc-G/C region that is associated with embryonic death, developmental defects, and an increased susceptibility to chemical carcinogens. To study further the effects associated with the deletion, fibroblastic cell lines from grc-, grc+, and grc+/- rat embryos were developed: BIL-derived cell lines are congenic for the MHC and grc, whereas R16-derived cell lines are congenic for the grc alone. In early passages, all cell lines expressed the MHC class I antigen RT1.A, had a diploid chromosome number, and did not display anchorage-independent growth or in vivo tumorigenicity. The grc- cells [median population doubling time (PDT), 47 h] grew more slowly than the grc+ (PDT, 30.5 h) and grc+/- (PDT, 33 h) cells. All cells underwent crisis, but the crisis stage began earlier and lasted longer in the grc- cells. The established grc- cell lines (PDT, 32.5 h) grew faster than the grc+ (PDT, 48.5 h) and grc+/- (PDT, 54 h) cell lines. Two of the three BIL-derived grc- lines that survived crisis became anchorage independent in tissue culture and tumorigenic in histocompatible F1 rats (highly malignant fibrosarcomas) at passages 33 and 48, respectively; by contrast, none of the R16-derived grc- cell lines transformed. None of 8 grc+ or 8 grc+/- cell lines that survived crisis displayed anchorage-independent growth or tumorigenicity under the same conditions up to passage 50. All of the established cell lines, including the two tumorigenic ones, expressed MHC class I antigens. Southern and Northern blot analyses of BIL-derived cell lines before and after crisis showed that they all constitutively expressed H-ras and Rb and that no cell line showed rearrangement, amplification, or overexpression of c-myc, H-ras, Rb, and p53 either before or after crisis. These observations indicate that: (a) the homozygous grc- deletion is necessary but not

  9. Susceptibility of Chinese Perch Brain (CPB Cell and Mandarin Fish to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV Infection

    Directory of Open Access Journals (Sweden)

    Jiagang Tu

    2016-05-01

    Full Text Available Nervous necrosis virus (NNV is the causative agent of viral encephalopathy and retinopathy (VER, a neurological disease responsible for high mortality of fish species worldwide. Taking advantage of our established Chinese perch brain (CPB cell line derived from brain tissues of Mandarin fish (Siniperca chuatsi, the susceptibility of CPB cell to Red-Spotted Grouper nervous necrosis virus (RGNNV was evaluated. The results showed that RGNNV replicated well in CPB cells, resulting in cellular apoptosis. Moreover, the susceptibility of Mandarin fish to RGNNV was also evaluated. Abnormal swimming was observed in RGNNV-infected Mandarin fish. In addition, the cellular vacuolation and viral particles were also observed in brain tissues of RGNNV-infected Mandarin fish by Hematoxylin-eosin staining or electronic microscopy. The established RGNNV susceptible brain cell line from freshwater fish will pave a new way for the study of the pathogenicity and replication of NNV in the future.

  10. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Directory of Open Access Journals (Sweden)

    An

    2015-07-01

    Full Text Available Namrata Anand,1 Rupinder K Kanwar,2 Mohan Lal Dubey,1 R K Vahishta,3 Rakesh Sehgal,1,* Anita K Verma,4 Jagat R Kanwar2,*1Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 4Nanobiotech Laboratory, Department of Zoology, Kirorimal College, University of Delhi, Delhi, India*These authors contributed equally to this workBackground: Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs and macrophages (human monocytic cell line-derived macrophages THP1 cells.Methods: Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections.Results: The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene

  11. Susceptibility of mouse minute virus to inactivation by heat in two cell culture media types.

    Science.gov (United States)

    Schleh, Marc; Romanowski, Peter; Bhebe, Prince; Zhang, Li; Chinniah, Shivanthi; Lawrence, Bill; Bashiri, Houman; Gaduh, Asri; Rajurs, Viveka; Rasmussen, Brian; Chuck, Alice; Dehghani, Houman

    2009-01-01

    Viral contaminations of biopharmaceutical manufacturing cell culture facilities are a significant threat and one for which having a risk mitigation strategy is highly desirable. High temperature, short time (HTST) mammalian cell media treatment may potentially safeguard manufacturing facilities from such contaminations. HTST is thought to inactivate virions by denaturing proteins of the viral capsid, and there is evidence that HTST provides ample virucidal efficacy against nonenveloped or naked viruses such as mouse minute virus (MMV), a parvovirus. The aim of the studies presented herein was to further delineate the susceptibility of MMV, known to have contaminated mammalian cell manufacturing facilities, to heat by exposing virus-spiked cell culture media to a broad range of temperatures and for various times of exposure. The results of these studies show that HTST is capable of inactivating MMV by three orders of magnitude or more. Thus, we believe that HTST is a useful technology for the purposes of providing a barrier to adventitious contamination of mammalian cell culture processes in the biopharmaceutical industry. 2009 American Institute of Chemical Engineers

  12. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    Science.gov (United States)

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  13. Shiga Toxins: Intracellular Trafficking to the ER Leading to Activation of Host Cell Stress Responses

    Directory of Open Access Journals (Sweden)

    Moo-Seung Lee

    2010-06-01

    Full Text Available Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.

  14. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?

    Directory of Open Access Journals (Sweden)

    Tadhg eÓ Cróinín

    2012-03-01

    Full Text Available Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the zipper over the trigger mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.

  15. Molecular dissection of host cell invasion by the Apicomplexans: the glideosome

    Directory of Open Access Journals (Sweden)

    Soldati-Favre D.

    2008-09-01

    Full Text Available Gliding motility is an essential and fascinating apicomplexantypical adaptation to an intracellular lifestyle. Apicomplexan parasites rely on gliding motility for their migration across biological barriers and for host cell invasion and egress. This unusual substrate-dependent mode of locomotion involves the concerted action of secretory adhesins, a myosin motor, factors regulating actin dynamics and proteases. During invasion, complexes of soluble and transmembrane micronemes proteins (MICs and rhoptry neck proteins (RONs are discharged to the apical pole of the parasite, some protein acts as adhesins and bind to host cell receptors whereas others are involved in the moving junction formation. These complexes redistribute towards the posterior pole of the parasite via a physical connection to the parasite actomyosin system and are eventually released from the parasite surface by the action of parasite proteases.

  16. Voriconazole-Induced Periostitis Mimicking Chronic Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation.

    Science.gov (United States)

    Sweiss, Karen; Oh, Annie; Rondelli, Damiano; Patel, Pritesh

    2016-01-01

    Voriconazole is an established first-line agent for treatment of invasive fungal infections in patients undergoing allogeneic stem cell transplantation (ASCT). It is associated with the uncommon complication of periostitis. We report this complication in a 58-year-old female undergoing HSCT. She was treated with corticosteroids with minimal improvement. The symptoms related to periostitis can mimic chronic graft-versus-host disease in patients undergoing HSCT and clinicians should differentiate this from other diagnoses and promptly discontinue therapy.

  17. Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells

    Science.gov (United States)

    Skapski, Agnès; Hygonenq, Marie-Claude; Sagné, Eveline; Guiral, Sébastien; Citti, Christine; Baranowski, Eric

    2011-01-01

    Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions. PMID:21966487

  18. Analysis of host-cell proteins in biotherapeutic proteins by LC/MS approaches.

    Science.gov (United States)

    Doneanu, Catalin E; Chen, Weibin

    2014-01-01

    A generic method for the identification and quantification of host-cell proteins (HCPs) in protein biopharmaceuticals is described. Therapeutic proteins and HCPs were converted to complex peptide mixtures following tryptic digestion. Comprehensive peptide separations were performed using online two-dimensional capillary liquid chromatography-(LC) involving high-pH reversed phase (RP)/low-pH RP separations. We applied this method to the analysis of HCP impurities in monoclonal antibody (mAb) preparations.

  19. Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling

    Science.gov (United States)

    Warncke, Jan D.; Vakonakis, Ioannis

    2016-01-01

    SUMMARY During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family. PMID:27582258

  20. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  1. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  2. The Role of B Cell Targeting in Chronic Graft-Versus-Host Disease.

    Science.gov (United States)

    Rhoades, Ruben; Gaballa, Sameh

    2017-10-17

    Chronic graft-versus-host disease (cGVHD) is a leading cause of late morbidity and mortality following allogeneic stem cell transplantation. Current therapies, including corticosteroids and calcineurin inhibitors, are only effective in roughly 50% of cases; therefore, new treatment strategies are under investigation. What was previously felt to be a T cell disease has more recently been shown to involve activation of both T and B cells, as well as a number of cytokines. With a better understanding of its pathophysiology have come more expansive preclinical and clinical trials, many focused on B cell signaling. This report briefly reviews our current understanding of cGVHD pathophysiology and reviews clinical and preclinical trials with B cell-targeted agents.

  3. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  4. Liver Graft versus Host Disease after Allogeneic Peripheral Stem Cell Transplantation: Update on Etiopathogenesis and Diagnosis

    Directory of Open Access Journals (Sweden)

    Mihăilă R.-G.

    2016-06-01

    Full Text Available Graft versus host disease (GVHD is the main complication of allogeneic hematopoietic cell transplantation and is more frequent after peripheral stem cell transplants. Graft versus leukemia or lymphoma component of them is beneficial to eradicate residual tumor mass after previous treatment and conditioning regimen. A severe GVHD may endanger the patient's life. The most important liver manifestations of GVHD are increased serum alkaline phosphatase and bilirubin values. The last allows to estimate the GVHD severity. Sometimes, an increase of aminotransferases can mimic an acute hepatitis. Donor-derived hematopoietic cells appeared to turn in mesenchymal liver cells. Activated CD4(+ T cells, humoral and complement activation, a large number of cytokines and cytokine receptors are involved in GVHD development. Correct and early recognition of GVHD and its differentiation from the other liver diseases are essential for the medical practice.

  5. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Kumutha Malar Vellasamy

    2016-07-01

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS and its secreted proteins (CCMS.We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms or to escape potential sensing by macrophages.Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

  6. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms

    Directory of Open Access Journals (Sweden)

    Jérôme Josse

    2017-12-01

    Full Text Available Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin, as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.

  7. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae

    Directory of Open Access Journals (Sweden)

    Kempf Volkhard AJ

    2011-04-01

    Full Text Available Abstract Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA, the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (VirB/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail.

  8. Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection

    Science.gov (United States)

    Shlezinger, Neta; Minz, Anna; Gur, Yonatan; Hatam, Ido; Dagdas, Yasin F.; Talbot, Nicholas J.; Sharon, Amir

    2011-01-01

    Necrotrophic fungi are unable to occupy living plant cells. How such pathogens survive first contact with living host tissue and initiate infection is therefore unclear. Here, we show that the necrotrophic grey mold fungus Botrytis cinerea undergoes massive apoptotic-like programmed cell death (PCD) following germination on the host plant. Manipulation of an anti-apoptotic gene BcBIR1 modified fungal response to PCD-inducing conditions. As a consequence, strains with reduced sensitivity to PCD were hyper virulent, while strains in which PCD was over-stimulated showed reduced pathogenicity. Similarly, reduced levels of PCD in the fungus were recorded following infection of Arabidopsis mutants that show enhanced susceptibility to B. cinerea. When considered together, these results suggest that Botrytis PCD machinery is targeted by plant defense molecules, and that the fungal anti-apoptotic machinery is essential for overcoming this host-induced PCD and hence, for establishment of infection. As such, fungal PCD machinery represents a novel target for fungicides and antifungal drugs. PMID:21876671

  9. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection.

    Directory of Open Access Journals (Sweden)

    Neta Shlezinger

    2011-08-01

    Full Text Available Necrotrophic fungi are unable to occupy living plant cells. How such pathogens survive first contact with living host tissue and initiate infection is therefore unclear. Here, we show that the necrotrophic grey mold fungus Botrytis cinerea undergoes massive apoptotic-like programmed cell death (PCD following germination on the host plant. Manipulation of an anti-apoptotic gene BcBIR1 modified fungal response to PCD-inducing conditions. As a consequence, strains with reduced sensitivity to PCD were hyper virulent, while strains in which PCD was over-stimulated showed reduced pathogenicity. Similarly, reduced levels of PCD in the fungus were recorded following infection of Arabidopsis mutants that show enhanced susceptibility to B. cinerea. When considered together, these results suggest that Botrytis PCD machinery is targeted by plant defense molecules, and that the fungal anti-apoptotic machinery is essential for overcoming this host-induced PCD and hence, for establishment of infection. As such, fungal PCD machinery represents a novel target for fungicides and antifungal drugs.

  10. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells.

    Science.gov (United States)

    Riestra, Angelica M; Gandhi, Shiv; Sweredoski, Michael J; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J

    2015-12-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis.

  11. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  12. Exploitation of host cell biology and evasion of immunity by Francisella tularensis

    Directory of Open Access Journals (Sweden)

    Yousef eAbu Kwaik

    2011-01-01

    Full Text Available Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagoscytosis. Uptake is mediated in part by Syk, which may activate actin rearrangement in the phagocytic cup resulting in the engulfment of F. tularensis in a lipid raft rich phagosome. Inside the host cells, F. tularensis resides transiently in an acidified late endosome-like compartment before disruption of the phagosomal membrane and escape into the cytosol, where bacterial proliferation occurs. Modulation of phagosome biogenesis and escape into the cytosol is mediated by the Francisella pathogenicity island-encoded type VI-like secretion system. Whilst inside the phagosome, F. tularensis inhibits NADPH oxidase activity but temporarily inducing pro-inflammatory cytokines in PI3K/Akt-dependent manner, which is counteracted by the induction of SHIP that negatively regulates PI3K/Akt activation and promotes bacterial escape into the cytosol. Interestingly, F. tularensis subverts CD4 T cells-mediated killing by inhibiting antigen presentation by activated macrophages through ubiquitin dependent degradation of MHC II molecules on activated macrophages. In the cytosol, F. tularensis is recognized by the host cell AIM2-dependent inflammasome, which is down-regulated by F. tularensis that also inhibits Caspase-1 and ASC activity. During late stages of intracellular proliferation, caspase-3 is activated but apoptosis is delayed through activation of NF-kB and Ras, which ensures cell viability.

  13. Apoptosis Susceptibility Prolongs the Lack of Memory B Cells in Acute Leukemic Patients After Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Mensen, Angela; Oh, Youngseong; Becker, Sonya C; Hemmati, Philipp G; Jehn, Christian; Westermann, Jörg; Szyska, Martin; Göldner, Henning; Dörken, Bernd; Scheibenbogen, Carmen; Arnold, Renate; Na, Il-Kang

    2015-11-01

    Long-term survival after allogeneic hematopoietic stem cell transplantation requires intact immunosurveillance, which is hampered by lymphoid organ damage associated with conditioning therapy, graft-versus-host disease, and immunosuppression. Our study aimed to identify the mechanisms contributing to sustained low memory B cell numbers after transplantation. Peripheral B and T cell subset recovery and functional marker expression were investigated in 35 acute leukemic patients up to 1 year after transplantation. Apoptosis of B cells after CD40/TLR-9, CD40/BCR, and CD40/BCR/TLR-9-dependent stimulation and drug efflux capacity were analyzed. One half of the patients suffered from infections after day 180. All patients had strongly diminished CD27(+) memory B cells despite already normalized total B cell numbers and fully recovered CD27(-)IgD(-) memory B cells, putatively of extra-follicular origin. Circulating memory follicular helper T cells were reduced in the majority of patients as well. Naïve B cells exhibited a decreased expression of CXCR5, which mediates follicular B cell entry. Additionally, a lower HLA-DR expression was found on naïve B cells, impairing antigen presentation. Upon CD40/TLR-9-dependent activation, B cells underwent significantly increased apoptosis paralleled by an aberrant up-regulation of Fas-L on activated T cells and Fas on resting B cells. Significantly increased B cell apoptosis was also observed after CD40/BCR and CD40/BCR/TLR-9-dependent activation. Drug efflux capacity of naïve B cells was diminished in cyclosporin A-treated patients, additionally contributing to an apoptosis-prone phenotype. We conclude that B cell survival and migration and T cell communication defects are contributing candidates for an impaired germinal center formation of memory B cells after allogeneic hematopoietic stem cell transplantation. Follow-up studies should evaluate effectiveness of revaccinations on the cellular level and should

  14. Impacts of CA9 gene polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic characteristics in Taiwan.

    Directory of Open Access Journals (Sweden)

    Shian-Shiang Wang

    Full Text Available Carbonic anhydrase 9 (CA9 is reportedly overexpressed in several types of carcinomas and is generally considered a marker of malignancy. The current study explored the effect of CA9 gene polymorphisms on the susceptibility of developing urothelial cell carcinoma (UCC and the clinicopathological status.A total of 442 participants, including 221 healthy people and 221 patients with UCC, were recruited for this study. Four single-nucleotide polymorphisms (SNPs of the CA9 gene were assessed by a real-time PCR with the TaqMan assay. After adjusting for other co-variants, the individuals carrying at least one A allele at CA9 rs1048638 had a 2.303-fold risk of developing UCC than did wild-type (CC carriers. Furthermore, UCC patients who carried at least one A allele at rs1048638 had a higher invasive stage risk (p< 0.05 than did patients carrying the wild-type allele. Moreover, among the UCC patients with smoker, people with at least one A allele of CA9 polymorphisms (rs1048638 had a 4.75-fold (95% CI = 1.204-18.746 increased risk of invasive cancer.The rs1048638 polymorphic genotypes of CA9 might contribute to the prediction of susceptibility to and pathological development of UCC. This is the first study to provide insight into risk factors associated with CA9 variants in carcinogenesis of UCC in Taiwan.

  15. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading

    Science.gov (United States)

    Lu, Yi; Gao, Jian; Zhang, Donna D.; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2014-01-01

    Multidrug-resistant pathogens are an emerging global health problem. In addition to the need of developing new antibiotics in the pipeline, the ability to rapidly determine the antibiotic resistance profiles of bacteria represents one of the most crucial steps toward the management of infectious diseases and the prevention of multidrug-resistant pathogens. Here, we report a single cell antimicrobial susceptibility testing (AST) approach for rapid determination of the antibiotic resistance of bacterial pathogens. By confining individual bacteria in gas permeable microchannels with dimensions comparable to a single bacterium, the antibiotic resistance of the bacteria can be monitored in real-time at the single cell level. To facilitate the dynamic loading of the bacteria into the confined microchannels for observation, AC electrokinetics is demonstrated for capturing bacteria to defined locations in high-conductivity AST buffer. The electrokinetic technique achieves a loading efficiency of about 75% with a negligible effect on the bacterial growth rate. To optimize the protocol for single cell AST, the bacterial growth rate of individual bacteria under different antibiotic conditions has been determined systematically. The applicability of single cell AST is demonstrated by the rapid determination of the antimicrobial resistant profiles of uropathogenic clinical isolates in Mueller-Hinton media and in urine. The antibiotic resistance profiles of bacteria can be determined in less than one hour compared to days in standard culture-based AST techniques. PMID:23445209

  16. Prolactin increases the susceptibility of primary leukemia cells to NK and LAK effectors.

    Science.gov (United States)

    Oberholtzer, E; Contarini, M; Veglia, F; Cossarizza, A; Franceschi, C; Geuna, M; Provinciali, M; Di Stefano, G; Sissom, J; Brizzi, M F; Pegoraro, L; Matera, L

    1996-01-01

    Our previous studies have shown that prolactin (PRL), a pituitary and lymphocyte hormone and a ligand of the cytokine/hemopoietin receptors (R) superfamily, acts synergistically with interleukin (IL)-2 on the development of lymphokine activated killer (LAK) cells and enhances the effects of GM-CSF and IL-3 on myeloid progenitors' proliferation and differentiation. More recently, we have demonstrated that GM-CSF and IL-3 increase the sensitivity of acute myeloid leukemic (AML) cells to LAK activity. Together, these findings have prompted us to study the role of PRL on the target arm of the LAK response. We show here that CD33+ blasts from AML patients express membrane PRL-R and that the PRL/PRL-R interaction is followed by increased susceptibility to natural killer (NK) (p < 0.02) and LAK (p < 0.001) cells. As predicted from the dimerization model of PRL-R and in agreement with previous reports, the response of AML blasts to PRL was bell-shaped with a trend peak at 25 ng/ml. Although enhanced lysis occurred at the target recognition level, it was not accompanied by changes in the MHC class I, cellular adhesion molecules, or myeloid differentiation antigens. Cell cycle recruitment and lysis increased concurrently in three cases studied, suggesting a modulatory action of PRL on the expression of putative cycle-related NK/LAK-target structures. Together, these data strengthen the role of PRL in the LAK response.

  17. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  18. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  19. Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease?

    Directory of Open Access Journals (Sweden)

    Neil Dunavin

    2017-07-01

    Full Text Available After more than a decade of preclinical and clinical development, therapeutic infusion of mesenchymal stromal cells is now a leading investigational strategy for the treatment of acute graft-versus-host disease (GVHD. While their clinical use continues to expand, it is still unknown which of their immunomodulatory properties contributes most to their therapeutic activity. Herein we describe the proposed mechanisms, focusing on the inhibitory activity of mesenchymal stromal cells (MSCs at immunologic checkpoints. A deeper understanding of the mechanism of action will allow us to design more effective treatment strategies.

  20. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...... and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal...

  1. IL-17A and Th17 Cells in Lung Inflammation: An Update on the Role of Th17 Cell Differentiation and IL-17R Signaling in Host Defense against Infection

    Directory of Open Access Journals (Sweden)

    Hsing-Chuan Tsai

    2013-01-01

    Full Text Available The significance of Th17 cells and interleukin- (IL-17A signaling in host defense and disease development has been demonstrated in various infection and autoimmune models. Numerous studies have indicated that Th17 cells and its signature cytokine IL-17A are critical to the airway’s immune response against various bacteria and fungal infection. Cytokines such as IL-23, which are involved in Th17 differentiation, play a critical role in controlling Klebsiella pneumonia (K. pneumonia infection. IL-17A acts on nonimmune cells in infected tissues to strengthen innate immunity by inducing the expression of antimicrobial proteins, cytokines, and chemokines. Mice deficient in IL-17 receptor (IL-17R expression are susceptible to infection by various pathogens. In this review, we summarize the recent advances in unraveling the mechanism behind Th17 cell differentiation, IL-17A/IL-17R signaling, and also the importance of IL-17A in pulmonary infection.

  2. Nuclear import of Avian Sarcoma Virus integrase is facilitated by host cell factors

    Directory of Open Access Journals (Sweden)

    Goldstein Andrew D

    2008-08-01

    Full Text Available Abstract Background Integration of retroviral DNA into the host cell genome is an obligatory step in the virus life cycle. In previous reports we identified a sequence (amino acids 201–236 in the linker region between the catalytic core and C-terminal domains of the avian sarcoma virus (ASV integrase protein that functions as a transferable nuclear localization signal (NLS in mammalian cells. The sequence is distinct from all known NLSs but, like many, contains basic residues that are essential for activity. Results Our present studies with digitonin-permeabilized HeLa cells show that nuclear import mediated by the NLS of ASV integrase is an active, saturable, and ATP-dependent process. As expected for transport through nuclear pore complexes, import is blocked by treatment of cells with wheat germ agglutinin. We also show that import of ASV integrase requires soluble cellular factors but does not depend on binding the classical adapter Importin-α. Results from competition studies indicate that ASV integrase relies on one or more of the soluble components that mediate transport of the linker histone H1. Conclusion These results are consistent with a role for ASV integrase and cytoplasmic cellular factors in the nuclear import of its viral DNA substrate, and lay the foundation for identification of host cell components that mediate this reaction.

  3. MAVS-mediated host cell defense is inhibited by Borna disease virus.

    Science.gov (United States)

    Li, Yujun; Song, Wuqi; Wu, Jing; Zhang, Qingmeng; He, Junming; Li, Aimei; Qian, Jun; Zhai, Aixia; Hu, Yunlong; Kao, Wenping; Wei, Lanlan; Zhang, Fengmin; Xu, Dakang

    2013-08-01

    Viruses often have strategies for preventing host cell apoptosis, which antagonizes viral replication. Borna disease virus (BDV) is a neurotropic RNA virus that establishes a non-cytolytic persistent infection. Although BDV suppresses type I Interferon (IFN) through (TANK)-binding kinase 1 (TBK-1) associated BDV P protein, it is still unclear how BDV can survive in the host cell and establish a persistent infection. Recently, it has been recognized that mitochondria-mediated apoptosis through the mitochondrial antiviral signaling protein (MAVS) and the RIG-I-like receptor (RLR) signaling pathway is a crucial component of the innate immune response. In this work we show that BDV X protein colocalizes and interacts with MAVS in the mitochondria to block programmed cell death. BDV X protein-mediated inhibition of apoptosis was independent of type I IFN production and NF-κB activity. The reduction of BDV X expression with RNA interference (RNAi) or the mutation of BDV X enhanced MAVS-induced cell death. Collectively, our data provide novel insights into how BDV X protein inhibits antiviral-associated programmed cell death, through its action of MAVS function. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells

    Science.gov (United States)

    Fujiwara, Nagatoshi; Maeda, Shinji; Naka, Takashi; Taniguchi, Hatsumi; Yamamoto, Saburo; Ayata, Minoru

    2015-01-01

    Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells. PMID:25970481

  5. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells.

    Directory of Open Access Journals (Sweden)

    Nagatoshi Fujiwara

    Full Text Available Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc(2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402 correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc(2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc(2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells.

  6. Analysis of Prototype Foamy Virus particle-host cell interaction with autofluorescent retroviral particles

    Directory of Open Access Journals (Sweden)

    Schwille Petra

    2010-05-01

    Full Text Available Abstract Background The foamy virus (FV replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. Results In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. Conclusions We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we

  7. Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles.

    Science.gov (United States)

    Stirnnagel, Kristin; Lüftenegger, Daniel; Stange, Annett; Swiersy, Anka; Müllers, Erik; Reh, Juliane; Stanke, Nicole; Grosse, Arend; Chiantia, Salvatore; Keller, Heiko; Schwille, Petra; Hanenberg, Helmut; Zentgraf, Hanswalter; Lindemann, Dirk

    2010-05-17

    The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. S