WorldWideScience

Sample records for susceptible cotton gossypium

  1. Transcriptome Analysis of Cotton (Gossypium hirsutum L. Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis.

    Directory of Open Access Journals (Sweden)

    Ruijuan Li

    Full Text Available Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.. An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747, resistant (BARBREN-713, and hypersensitive (LONREN-1 genotypes of cotton (Gossypium hirsutum L. with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  2. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis).

    Science.gov (United States)

    Li, Ruijuan; Rashotte, Aaron M; Singh, Narendra K; Lawrence, Kathy S; Weaver, David B; Locy, Robert D

    2015-01-01

    Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  3. QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents.

    Science.gov (United States)

    Wang, Congli; Ulloa, Mauricio; Mullens, Teresa R; Yu, John Z; Roberts, Philip A

    2012-01-01

    The southern root-knot nematode (RKN, Meloidogyne incognita) is a major soil-inhabiting plant parasite that causes significant yield losses in cotton (Gossypium spp.). Progeny from crosses between cotton genotypes susceptible to RKN produced segregants in subsequent populations which were highly resistant to this parasite. A recombinant inbred line (RIL) population of 138 lines developed from a cross between Upland cotton TM-1 (G. hirsutum L.) and Pima 3-79 (G. barbadense L.), both susceptible to RKN, was used to identify quantitative trait loci (QTLs) determining responses to RKN in greenhouse infection assays with simple sequence repeat (SSR) markers. Compared to both parents, 53.6% and 52.1% of RILs showed less (Presistant lines (transgressive segregants) were identified in this RIL population for GI and/or EGR in two greenhouse experiments. QTLs were identified using the single-marker analysis nonparametric mapping Kruskal-Wallis test. Four major QTLs located on chromosomes 3, 4, 11, and 17 were identified to account for 8.0 to 12.3% of the phenotypic variance (R(2)) in root-galling. Two major QTLs accounting for 9.7% and 10.6% of EGR variance were identified on chromosomes 14 and 23 (Presistance contributed by both parents in combinations of two to four QTLs, dramatic reductions of >50% in both GI and EGR were observed. The transgressive segregants with epistatic effects derived from susceptible parents indicate that high levels of nematode resistance in cotton may be attained by pyramiding positive alleles using a QTL mapping approach.

  4. Assessment of cotton-seed ( Gossypium species) meal as ingredient ...

    African Journals Online (AJOL)

    The effect of feeding graded levels of cotton GossypiumSpp. seed meal as an inclusion in the diet of Clariasgariepinus juveniles for growth performance was analysed in comparison with the conventional commercial fish feed. Six experimental rations formulated were cotton-seed Gossypium spp. meal replaced fish meal at ...

  5. Polyploidization effect in two diploid cotton ( Gossypium herbaceum ...

    African Journals Online (AJOL)

    Anti-mitotic agents such as colchicine have been used to induce polyploidy in various plants. Here we examined the effects of different doses of colchicine on polyploidy induction in two cotton species (Gossypium herbaceum and Gossypium arboreum). The data reveal that the dose of colchicine, treatment duration, ...

  6. Introgression of cotton leaf curl virus-resistant genes from Asiatic cotton (Gossypium arboreum) into upland cotton (G. hirsutum).

    Science.gov (United States)

    Ahmad, S; Mahmood, K; Hanif, M; Nazeer, W; Malik, W; Qayyum, A; Hanif, K; Mahmood, A; Islam, N

    2011-10-07

    Cotton is under the constant threat of leaf curl virus, which is a major constraint for successful production of cotton in the Pakistan. A total of 3338 cotton genotypes belonging to different research stations were screened, but none were found to be resistant against the Burewala strain of cotton leaf curl virus (CLCuV). We explored the possibility of transferring virus-resistant genes from Gossypium arboreum (2n = 26) into G. hirsutum (2n = 52) through conventional breeding techniques. Hybridization was done manually between an artificial autotetraploid of G. arboreum and an allotetraploid G. hirsutum, under field conditions. Boll shedding was controlled by application of exogenous hormones, 50 mg/L gibberellic acid and 100 mg/L naphthalene acetic acid. Percentage pollen viability in F(1) hybrids was 1.90% in 2(G. arboreum) x G. hirsutum and 2.38% in G. hirsutum x G. arboreum. Cytological studies of young buds taken from the F(1) hybrids confirmed that they all were sterile. Resistance against CLCuV in the F(1) hybrids was assessed through grafting, using the hybrid plant as the scion; the stock was a virus susceptible cotton plant, tested under field and greenhouse conditions. All F(1) cotton hybrids showed resistance against CLCuV, indicating that it is possible to transfer resistant genes from the autotetraploid of the diploid donor specie G. arboreum into allotetraploid G. hirsutum through conventional breeding, and durable resistance against CLCuV can then be deployed in the field.

  7. The Nutritive Potentials Of Cotton ( Gossypium barbadense ) Leaves ...

    African Journals Online (AJOL)

    Sample of cotton plants (Gossypium barbadense) leaves were analyzed for phytochemical contents, heavy metals, trace elements, proximate composition and toxic/ anti nutritional components. On screening of the leaf extract it was found to contain alkaloids such as quinoline, indole and morphine, but tropane was absent.

  8. The draft genome of a diploid cotton Gossypium raimondii

    DEFF Research Database (Denmark)

    Wang, Kunbo; Wang, Zhiwen; Li, Fuguang

    2012-01-01

    We have sequenced and assembled a draft genome of G. raimondii, whose progenitor is the putative contributor of the D subgenome to the economically important fiber-producing cotton species Gossypium hirsutum and Gossypium barbadense. Over 73% of the assembled sequences were anchored on 13 G....... raimondii chromosomes. The genome contains 40,976 protein-coding genes, with 92.2% of these further confirmed by transcriptome data. Evidence of the hexaploidization event shared by the eudicots as well as of a cotton-specific whole-genome duplication approximately 13-20 million years ago was observed. We...... identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao...

  9. CMD: a Cotton Microsatellite Database resource for Gossypium genomics

    Directory of Open Access Journals (Sweden)

    Liu Shaolin

    2006-05-01

    Full Text Available Abstract Background The Cotton Microsatellite Database (CMD http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding. Description At present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps. Conclusion The collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.

  10. CMD: a Cotton Microsatellite Database resource for Gossypium genomics.

    Science.gov (United States)

    Blenda, Anna; Scheffler, Jodi; Scheffler, Brian; Palmer, Michael; Lacape, Jean-Marc; Yu, John Z; Jesudurai, Christopher; Jung, Sook; Muthukumar, Sriram; Yellambalase, Preetham; Ficklin, Stephen; Staton, Margaret; Eshelman, Robert; Ulloa, Mauricio; Saha, Sukumar; Burr, Ben; Liu, Shaolin; Zhang, Tianzhen; Fang, Deqiu; Pepper, Alan; Kumpatla, Siva; Jacobs, John; Tomkins, Jeff; Cantrell, Roy; Main, Dorrie

    2006-05-31

    The Cotton Microsatellite Database (CMD) http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding. At present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps. The collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.

  11. Polyploidization altered gene functions in cotton (Gossypium spp.).

    Science.gov (United States)

    Xu, Zhanyou; Yu, John Z; Cho, Jaemin; Yu, Jing; Kohel, Russell J; Percy, Richard G

    2010-12-16

    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor

  12. Salt stress alters physiological indicators in cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2012-11-01

    Full Text Available A pot experiment was conducted to evaluate performance of four upland cotton (Gossypium hirsutum L. varieties, Deir-Ezzor22, Niab78, Aleppo118 and Deltapine50 grown under non-saline conditions (control and salt stress (200 mol m-3 NaCl for 7 weeks. Results showed that seedling height, root length, leaf number, leaf area, leaf chlorophyll a and b, osmotic potential, chlorophyll content index (CCI, dry biomass and root/shoot weight ratio were significantly reduced with salinity treatment. This reduction was more pronounced in Deltapine50 and Aleppo118 than Niab78 and Deir-Ezzor22. Leaf relative water content (RWC was strongly reduced for Deltapine50 and Aleppo118, while, it was slightly increased for Niab78 and Deir-Ezzor22. In conclusion, osmotic potential, RWC, CCI, dry biomass and root/shoot weight ratio could be considered as useful indictors for salt tolerance screening among cotton varieties.

  13. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Gossypolone and Gossypolhemiquinone: Biological activity of terpenoids found in cotton (Gossypium)

    Science.gov (United States)

    The wild cotton plant, Gossypium thurberi grows in the Sonoran Desert in northern Mexico and southern Arizona, and is attacked by few herbivorous insects (Korban, 1999). In general, members of Gossypium produce a rich assortment of sesquiterpenoid and sesterterpenoids in the subepidermal pigment gl...

  15. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum.

    Science.gov (United States)

    Naqvi, Rubab Zahra; Zaidi, Syed Shan-E-Ali; Akhtar, Khalid Pervaiz; Strickler, Susan; Woldemariam, Melkamu; Mishra, Bharat; Mukhtar, M Shahid; Scheffler, Brian E; Scheffler, Jodi A; Jander, Georg; Mueller, Lukas A; Asif, Muhammad; Mansoor, Shahid

    2017-11-21

    Cotton leaf curl disease (CLCuD), caused by cotton leaf curl viruses (CLCuVs), is among the most devastating diseases in cotton. While the widely cultivated cotton species Gossypium hirsutum is generally susceptible, the diploid species G. arboreum is a natural source for resistance against CLCuD. However, the influence of CLCuD on the G. arboreum transcriptome and the interaction of CLCuD with G. arboreum remains to be elucidated. Here we have used an RNA-Seq based study to analyze differential gene expression in G. arboreum under CLCuD infestation. G. arboreum plants were infested by graft inoculation using a CLCuD infected scion of G. hirsutum. CLCuD infested asymptomatic and symptomatic plants were analyzed with RNA-seq using an Illumina HiSeq. 2500. Data analysis revealed 1062 differentially expressed genes (DEGs) in G. arboreum. We selected 17 genes for qPCR to validate RNA-Seq data. We identified several genes involved in disease resistance and pathogen defense. Furthermore, a weighted gene co-expression network was constructed from the RNA-Seq dataset that indicated 50 hub genes, most of which are involved in transport processes and might have a role in the defense response of G. arboreum against CLCuD. This fundamental study will improve the understanding of virus-host interaction and identification of important genes involved in G. arboreum tolerance against CLCuD.

  16. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.

    Science.gov (United States)

    Zhang, Jun; Cai, Lin; Cheng, Jiaqin; Mao, Huizhu; Fan, Xiaoping; Meng, Zhaohong; Chan, Ka Man; Zhang, Huijun; Qi, Jianfei; Ji, Lianghui; Hong, Yan

    2008-04-01

    While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to

  17. Evaluating protective terpenoid aldehyde compounds in cotton (Gossypium hirsutum L.) roots

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) has epidermal glands containing terpenoid aldehyde (TA) compounds that help protect the cotton plant from pests and diseases. One terpenoid aldehyde called gossypol, is found predominantly in seed and roots and has two forms, plus (+) and minus (-) present in varying a...

  18. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    Science.gov (United States)

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid.

  19. Identification and evidence of positive selection upon resistance gene analogs in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zambounis, Antonios; Ganopoulos, Ioannis; Kalivas, Apostolos; Tsaftaris, Athanasios; Madesis, Panagiotis

    2016-07-01

    Upland cotton (Gossypium hirsutum L.) is an important fiber crop species, which is intensively plagued by a plethora of phytopathogenic fungi such as Fusarium oxysporum f. sp. vasinfectum (Fov) causing severe wilt disease. Resistance gene analogs (RGAs) are the largest class of potential resistance (R) genes depicting highly conserved domains and structures in plants. Additionally, RGAs are pivotal components of breeding projects towards host disease resistance, serving as useful functional markers linked to R genes. In this study, a cloning approach based on conserved RGAs motifs was used in order to amplify 38 RGAs from two upland cotton cultivars differing in their Fov susceptibility. Besides, we assessed the phylogenetic expansion and the evolutionary pressures acting upon 127 RGA homologues, which were previously deposited in GenBank along with the 38 RGAs from this study. A total of 165 RGAs sequences were clustered according to their BLAST(P) similarities in ten paralogous genes groups (PGGs). These RGAs exhibited intensive signs of positive selection as it was revealed by inferring various maximum likelihood analyses. The results showed robust signs of positive selection, acting in almost all PGGs across the phylogeny. The evolutionary analysis revealed the existence of 42 positively selected residue sites across the PGG lineages, putatively affecting their ligand-binding specificities. As RGAs derived markers are in close linkage to R genes, these results could be used in ongoing breeding programs of upland cotton.

  20. Dominant gene cpls(r)1 corresponding to premature leaf senescence resistance in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhao, Jingqing; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-08-01

    Cotton (Gossypium hirsutum L.) premature leaf senescence-resistant inbred XLZ33 and senescence-susceptible inbred lines XLZ13 were selected and crossed to produce F(1), F(1)-reciprocal, F(2) and BC(1) generations for evaluation of leaf senescence process and inheritance. The results showed that leaf senescence processes for XLZ13 and XLZ33 were obviously different and leaf senescence traits could be distinguished between the two parents at particular periods of cotton growth. Inheritance anlysis for the cotton premature leaf senescence resistant trait further showed that the segregation in the F(2) fit a 3:1 ratio inheritance pattern, with resistance being dominant. The backcross of F(1) to the susceptible parent produced a 1:1 ratio, confirming that cotton premature leaf senescence resistant trait was from a single gene. The single dominant gene controlling cotton premature leaf senescence resistance in XLZ33 was named as cotton premature leaf senescence resistance 1, with the symbol cpls(r)1. © 2012 Institute of Botany, Chinese Academy of Sciences.

  1. RNAi-mediated resistance against Cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha.

    Science.gov (United States)

    Khatoon, Sameena; Kumar, Abhinav; Sarin, Neera B; Khan, Jawaid A

    2016-08-01

    Cotton leaf curl disease (CLCuD) is caused by several distinct begomovirus species in association with disease-specific betasatellite essential for induction of disease symptoms. CLCuD is a serious threat for the cultivation of cotton (Gossypium sp.) and several species in the family Malvaceae. In this study, RNAi-based approach was applied to generate transgenic cotton (Gossypium hirsutum) plants resistant to Cotton leaf curl Rajasthan virus (CLCuRV). An intron hairpin (ihp) RNAi construct capable of expressing dsRNA homologous to the intergenic region (IR) of CLCuRV was designed and developed. Following Agrobacterium tumefaciens-mediated transformation of cotton (G. hirsutum cv. Narasimha) plants with the designed ihpRNAi construct, a total of 9 independent lines of transformed cotton were obtained. The presence of the potential stretch of IR in the transformed cotton was confirmed by PCR coupled with Southern hybridization. Upon inoculation with viruliferous whiteflies, the transgenic plants showed high degree of resistance. None of them displayed any CLCuD symptoms even after 90 days post inoculation. The transformed cotton plants showed the presence of siRNAs. The present study demonstrated that ihp dsRNA-mediated resistance strategy of RNAi is an effective means to combat the CLCuD infection in cotton.

  2. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    Science.gov (United States)

    Avci, Utku; Pattathil, Sivakumar; Singh, Bir; Brown, Virginia L; Hahn, Michael G; Haigler, Candace H

    2013-01-01

    Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  3. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan.

    Directory of Open Access Journals (Sweden)

    Utku Avci

    Full Text Available Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh fiber was known to have an adhesive cotton fiber middle lamella (CFML that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb, the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.

  4. Analyses of Fusarium wilt race 3 resistance in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Abdullaev, Alisher A; Salakhutdinov, Ilkhom B; Egamberdiev, Sharof Sh; Kuryazov, Zarif; Glukhova, Ludmila A; Adilova, Azoda T; Rizaeva, Sofiya M; Ulloa, Mauricio; Abdurakhmonov, Ibrokhim Y

    2015-06-01

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represents a serious threat to cotton (Gossypium spp.) production. For the last few decades, the FOV pathogen has become a significant problem in Uzbekistan causing severe wilt disease and yield losses of G. hirsutum L. cultivars. We present the first genetic analyses of FOV race 3 resistance on Uzbek Cotton Germplasm with a series of field and greenhouse artificial inoculation-evaluations and inheritance studies. The field experiments were conducted in two different sites: the experimental station in Zangiota region-Environment (Env) 1 and the Institute of Cotton Breeding (Env-2, Tashkent province). The Env-1 was known to be free of FOV while the Env-2 was known to be a heavily FOV infested soil. In both (Env-1 and Env-2) of these sites, field soil was inoculated with FOV race 3. F2 and an F3 Upland populations ("Mebane B1" × "11970") were observed with a large phenotypic variance for plant survival and FOV disease severity within populations and among control or check Upland accessions. Wilt symptoms among studied F2 individuals and F3 families significantly differed depending on test type and evaluation site. Distribution of Mendelian rations of susceptible (S) and resistant (R) phenotypes were 1S:1R field Env-1 and 3S:1R field Env-2 in the F2 population, and 1S:3R greenhouse site in the F3 population. The different segregation distribution of the Uzbek populations may be explained by differences in FOV inoculum level and environmental conditions during assays. However, genetic analysis indicated a recessive single gene action under high inoculum levels or disease pressure for FOV race 3 resistance. Uzbek germplasm may be more susceptible than expected to FOV race 3, and sources of resistance to FOV may be limited under the FOV inoculum levels present in highly-infested fields making the breeding process more complex.

  5. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

    Science.gov (United States)

    Emergent phenotypes are common in polyploids relative to their diploid progenitors, a phenomenon exemplified by spinnable cotton fibers. Following 15-18 fold paleopolyploidy, allopolyploidy 1-2 million years ago reunited divergent Gossypium genomes, imparting new combinatorial complexity that might ...

  6. RNA interference for functional genomics and improvement of cotton (Gossypium species)

    Science.gov (United States)

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  7. RNA interference for functional genomics and improvement of cotton (Gossypium sp.)

    NARCIS (Netherlands)

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umidjon; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; Krol, van der Sander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of

  8. New HPLC methods to quantitate terpenoid aldehydes in foliage of cotton (Gossypium)

    Science.gov (United States)

    The cotton plant (Gossypium) produces protective terpenoid aldehydes in lysigenous pigment glands. These terpenoids include hemigossypolone, hemigossypolone-6-methyl ether, gossypol, gossypol-6-methyl ether, gossypol-6,6'-dimethyl ether, heliocides H1, H2, H3 and H4, and heliocides B1, B2, B3 and B4...

  9. Utilization of bio-waste cotton ( Gossypium hirsutum L.) stalks and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate some mechanical (modulus of rupture, modulus of elasticity and internal bond) and physical (thickness swelling and water absorption) properties of wood-based three-layer particleboard containing different cotton (Gossypium hirsutum L.) stalks and underutilized paulownia ...

  10. Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense Increase Fiber Strength in Upland Cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Quanwei Lu

    2017-10-01

    Full Text Available As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs have been developed from high-yield Upland cotton (Gossypium hirsutum crossed with high-quality Sea Island cotton (G. barbadense. Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561, and one CSSL with lower fiber strength than CCRI45 (MBI7285, for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs: those that were found in both high quality CSSLs (MBI7747 and MBI7561, but not in the low quality CSSL (MBI7285. Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase (MNS1], XLOC_029945 (FLA8, and XLOC_075372 (snakin-1, were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.

  11. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  12. Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Ademe, Mulugeta Seyoum; He, Shoupu; Pan, Zhaoe; Sun, Junling; Wang, Qinglian; Qin, Hongde; Liu, Jinhai; Liu, Hui; Yang, Jun; Xu, Dongyong; Yang, Jinlong; Ma, Zhiying; Zhang, Jinbiao; Li, Zhikun; Cai, Zhongmin; Zhang, Xuelin; Zhang, Xin; Huang, Aifen; Yi, Xianda; Zhou, Guanyin; Li, Lin; Zhu, Haiyong; Pang, Baoyin; Wang, Liru; Jia, Yinhua; Du, Xiongming

    2017-12-01

    Fiber yield and quality are the most important traits for Upland cotton (Gossypium hirsutum L.). Identifying high yield and good fiber quality genes are the prime concern of researchers in cotton breeding. Association mapping offers an alternative and powerful method for detecting those complex agronomic traits. In this study, 198 simple sequence repeats (SSRs) were used to screen markers associated with fiber yield and quality traits with 302 elite Upland cotton accessions that were evaluated in 12 locations representing the Yellow River and Yangtze River cotton growing regions of China. Three subpopulations were found after the estimation of population structure. The pair-wise kinship values varied from 0 to 0.867. Only 1.59% of the total marker locus pairs showed significant linkage disequilibrium (LD, p cotton molecular breeding programs.

  13. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement.

    Science.gov (United States)

    Zhang, Yan; Wang, Xing Fen; Ding, Ze Guo; Ma, Qing; Zhang, Gui Rong; Zhang, Shu Ling; Li, Zhi Kun; Wu, Li Qiang; Zhang, Gui Yin; Ma, Zhi Ying

    2013-09-22

    Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the most severe disease in cotton (Gossypium spp.), causing great lint losses worldwide. Disease management could be achieved in the field if genetically improved, resistant plants were used. However, the interaction between V. dahliae and cotton is a complicated process, and its molecular mechanism remains obscure. To understand better the defense response to this pathogen as a means for obtaining more tolerant cultivars, we monitored the transcriptome profiles of roots from resistant plants of G. barbadense cv. Pima90-53 that were challenged with V. dahliae. In all, 46,192 high-quality expressed sequence tags (ESTs) were generated from a full-length cDNA library of G. barbadense. They were clustered and assembled into 23126 unigenes that comprised 2661 contigs and 20465 singletons. Those unigenes were assigned Gene Ontology terms and mapped to 289 KEGG pathways. A total of 3027 unigenes were found to be homologous to known defense-related genes in other plants. They were assigned to the functional classification of plant-pathogen interactions, including disease defenses and signal transduction. The branch of "SA→NPR1→TGA→PR-1→Disease resistance" was first discovered in the interaction of cotton-V. dahliae, indicating that this wilt process includes both biotrophic and necrotrophic stages. In all, 4936 genes coding for putative transcription factors (TF) were identified in our library. The most abundant TF family was the NAC group (527), followed by G2-like (440), MYB (372), BHLH (331), bZIP (271) ERF, C3H, and WRKY. We also analyzed the expression of genes involved in pathogen-associated molecular pattern (PAMP) recognition, the activation of effector-triggered immunity, TFs, and hormone biosynthesis, as well as genes that are pathogenesis-related, or have roles in signaling/regulatory functions and cell wall modification. Their differential expression patterns were compared among

  14. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum fiber transcriptome.

    Directory of Open Access Journals (Sweden)

    Mi-Jeong Yoo

    2014-01-01

    Full Text Available The single-celled cotton (Gossypium hirsutum fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ~5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution.

  15. Introgression of genes for cotton leaf curl virus resistance and increased fiber strength from Gossypium stocksii into upland cotton (G. hirsutum).

    Science.gov (United States)

    Nazeer, W; Ahmad, S; Mahmood, K; Tipu, A L; Mahmood, A; Zhou, B

    2014-02-21

    Cotton leaf curl virus disease is a major hurdle for successful cotton production in Pakistan. There has been considerable economic loss due to this disease during the last decade. It would be desirable to have cotton varieties resistant to this disease. We explored the possibility of transferring virus resistant genes from the wild species Gossypium stocksii into MNH-786, a cultivar of G. hirsutum. Hybridization was done under field condition at the Cotton Research Station, Multan, during 2010-11. Boll shedding was controlled by application of exogenous hormones. F1 seeds were treated with 0.03% colchicine solution for 6 h and germinated. Cytological observations at peak squaring/flowering stage showed that these plants were hexaploid, having 2n = 6x = 78 chromosomes. The F1 plants showed intermediate expression for leaf size, leaf area, petiole length, bracteole number and size, bracteole area, bracteole dentation, flower size, pedicel size, and petal number and size. Moreover it possessed high fiber strength of 54.4 g/tex, which is 54% greater than that of the check variety, i.e. MNH-786 (G. hirsutum). The F1 population did not show any symptom of CLCuVD in the field, tested by grafting with CLCuVD susceptible rootstock (var. S12). We conclude that it is possible to transfer CLCuVD resistance and high fiber strength from G. stocksii to G. hirsutum.

  16. Problems and achievements of cotton (Gossypium Hirsutum L. weeds control

    Directory of Open Access Journals (Sweden)

    T. Barakova

    2017-09-01

    Full Text Available Abstract. Weed control in the cultivation of cotton is critical to the yield and quality of production. The influence of economically important weeds was studied. Chemical control is the most effective method of weed control in cotton but much of the information on it relates to primary weed infestation. Problems with primary weed infestation in cotton have been solved to a significant extent. The question of secondary weed infestation with annual and perennial graminaceous weeds during the period of cotton vegetation is also determined largely by the use of antigraminaceous herbicides. The data related to herbicides to effectively control secondary germinated broadleaf weeds in conventional technology for cotton growing are quite scarce, even globally. We are still seeking effective herbicides for control of these weeds in cotton crops. Studies on their influence on the sowing characteristics of cotton seed and the quality of cotton fiber are still insufficient. In the scientific literature there is not enough information on these questions. The combinations of herbicides, as well as their tank mixtures with fertilizers or plant growth regulators are more efficient than autonomous application. Often during their combined application higher synergistic effect on yield is produced. There is information about cotton cultivars resistant to glyphosate. These cultivars are GMO and they are banned within the European Union, including Bulgaria.

  17. Yield and fiber quality properties of cotton ( Gossypium hirsutum L ...

    African Journals Online (AJOL)

    The primary objective of this study was to determine the effect of water stress and non-stress conditions on cotton yield and fiber quality properties. A two-year field study was carried out at the Southeastern Anatolia Agricultural Research Institute (SAARI), in 2009 and 2010, with the aim of evaluating 12 cotton genotypes for ...

  18. An evaluation of some mutant cotton ( Gossypium hirsutum L ...

    African Journals Online (AJOL)

    The trial was established in randomized block design with four replications in four years (2001 to 2004). In the study, plant height, monopodia, number of sympodia and boll, weight of seed cotton per boll, ginning outturn, 100 seed weight, seed cotton yield, earliness ratio, fiber length, fiber fineness, strength and uniformity ...

  19. Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences.

    Science.gov (United States)

    Hashmi, Jamil A; Zafar, Yusuf; Arshad, Muhammad; Mansoor, Shahid; Asad, Shaheen

    2011-04-01

    Several important biological processes are performed by distinct functional domains found on replication-associated protein (Rep) encoded by AC1 of geminiviruses. Two truncated forms of replicase (tAC1) gene, capable of expressing only the N-terminal 669 bp (5'AC1) and C-terminal 783 bp (3'AC1) nucleotides cloned under transcriptional control of the CaMV35S were introduced into cotton (Gossypium hirsutum L.) using LBA4404 strain of Agrobacterium tumefaciens to make use of an interference strategy for impairing cotton leaf curl virus (CLCuV) infection in transgenic cotton. Compared with nontransformed control, we observed that transgenic cotton plants overexpressing either N-terminal (5'AC1) or C-terminal (3'AC1) sequences confer resistance to CLCuV by inhibiting replication of viral genomic and β satellite DNA components. Molecular analysis by Northern blot hybridization revealed high transgene expression in early and late growth stages associated with inhibition of CLCuV replication. Of the eight T(1) transgenic lines tested, six had delayed and minor symptoms as compared to nontransformed control lines which developed disease symptoms after 2-3 weeks of whitefly-mediated viral delivery. Virus biological assay and growth of T(2) plants proved that transgenic cotton plants overexpressing 5'- and 3'AC1 displayed high resistance level up to 72, 81%, respectively, as compared to non-transformed control plants following inoculation with viruliferous whiteflies giving significantly high cotton seed yield. Progeny analysis of these plants by polymerase chain reaction (PCR), Southern blotting and virus biological assay showed stable transgene, integration, inheritance and cotton leaf curl disease (CLCuD) resistance in two of the eight transgenic lines having single or two transgene insertions. Transgenic cotton expressing partial AC1 gene of CLCuV can be used as virus resistance source in cotton breeding programs aiming to improve virus resistance in cotton crop.

  20. Correlations and Correlated Responses in Upland Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Echekwu, CA.

    2001-01-01

    Full Text Available Plant breeders must be concerned with the total array of economic characters in their efforts to develop a crop variety acceptable to farmers. Their selection endeavours must therefore take into consideration how changes in one trait affect, simultaneously changes in other economic attributes. The importance of correlations and correlated responses is therefore self evident in plant breeding endeavours. In this study F3 progenies from a cross between two cotton lines SAMCOT-9 x Y422 were evaluated for two years and performance data were used to obtain correlations between nine agronomic and fibre quality traits in upland cotton. The results indicated that plant helght was significantly and positively correlated with seed cotton yield, number of sympodial and monopodial branches, seed index, fibre length and micronaire index. Positive and significant correlations were also obtained between : seed cotton yield, tint percent and fibre strength and fibre length. Significant negative correlations were obtained between : plant height and lint percent ; number of monopodial branches, sympodial branches and lint percent ; fibre length, fibre strength and micronaire index. The correlated responses in the other eight traits when selection was practiced for seed cotton yield in the present study shows that it might be more profitable to practice direct selection for seed cotton yield compared to selecting for seed cotton yield through any of the other traits.

  1. Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae.

    Science.gov (United States)

    Zhao, Fu'an; Fang, Weiping; Xie, Deyi; Zhao, Yuanming; Tang, Zhongjie; Li, Wu; Nie, Lihong; Lv, Shuping

    2012-04-01

    Thurber's cotton (Gossypium thurberi) is the wild relative of cultivated cotton. It is highly resistant to cotton Verticillium wilt, a disease that significantly affects cotton yield and quality. To reveal the mechanism of disease resistance in G. thurberi and to clone resistance-related genes, we used two-dimensional electrophoresis (2-DE) and tandem time-of-flight mass spectrometry (MALDI-TOF-MS) to identify differentially expressed proteins in Thurber's cotton after inoculation with Verticillium dahliae. A total of 57 different protein spots were upregulated, including 52 known proteins representing 11% of the total protein spots. These proteins are involved in resistance to stress and disease, transcriptional regulation, signal transduction, protein processing and degradation, photosynthesis, production capacity, basic metabolism, and other processes. In addition, five disease resistance proteins showed intense upregulation, indicating that resistance genes (R genes) may play a critical role in resistance to Verticillium wilt in Thurber's cotton. Our results suggest that disease and stress resistance are the combined effects of multiple co-expressed genes. This provides a basis for further, detailed investigation into the mechanisms underlying Verticillium wilt resistance of G. thurberi and for cloning essential genes into cotton cultivars to produce Verticillium wilt resistant plants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Fitness of twospotted spider mites is more affected by constitutive than induced resistance traits in cotton (Gossypium spp.).

    Science.gov (United States)

    Miyazaki, Junji; Wilson, Lewis J; Stiller, Warwick N

    2013-10-01

    Life history parameters are useful tools for comparing the fitness of pests on different host plants. This study compared life history parameters of twospotted spider mites (Tetranychus urticae Koch) on two resistant cotton Gossypium genotypes (BM13H and Sipima 280) and one susceptible genotype (Sicot 71). The effects of both constitutive and induced defences were assessed. Mites reared on the resistant genotypes had longer immature development times, lower immature survival and reduced adult fecundity. Mites reared on BM13H that had been induced by prior exposure to mites had a small additional decrease in adult fecundity. The contribution to mite resistance of constitutive resistance mechanisms was much greater than induced responses. The effect of morphological constitutive defences was minor, implicating biochemical defences as the major mite-resistance mechanism. Sensitivity analysis and a population development study using life history parameters of mites showed that a lower immature survival rate on resistant genotypes had the greatest effect on mite fitness and population development. Use of life history parameters provided valuable insight into the mite-resistance mechanisms of these Gossypium genotypes. Further, the results largely explained mite population development on these genotypes in the field. © 2013 Society of Chemical Industry.

  3. Molecular characterization and temporal expression analyses indicate that the MIC (Meloidogyne Induced Cotton) gene family represents a novel group of root-specific defense-related genes in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Hayes, Russel W; Jenkins, Johnie N

    2008-06-01

    The molecular events underlying the resistance of Upland cotton (Gossypium hirsutum L.) to the root-knot nematode (RKN) are largely unknown. In this report, we further characterize the previously identified MIC3 gene including the identification of 14 related MIC cDNAs in nematode-infected roots of allotetraploid cotton that show >85% identity with MIC3. A time-course analysis of RKN infection in resistant and susceptible cotton lines showed that maximum MIC transcript accumulation occurred immediately prior to the phenotypic manifestation of resistance. MIC expression was not induced by mechanical wounding or by virulent reniform nematode infection. MIC expression was undetectable in cotton leaves undergoing a hypersensitive response to Xanthomonas campestris. A time-course analysis of defense gene expression (PR10, ERF5, CDNS, LOX1, POD4, POD8) in resistant and susceptible cotton roots showed that RKN infection specifically elicits the induction of MIC in resistant roots and not other common defense-signaling pathways. These results suggest that cotton resistance to RKN involves novel defense-signaling pathways and further supports the idea that the MIC genes are intimately involved in this resistance response and represent a group of root-specific defense-related genes in cotton.

  4. Characterization of Two Cotton (Gossypium hirsutum) Invertase Genes

    Science.gov (United States)

    Two cotton vacuolar-invertase genes were identified and sequenced. Both genes had 7 exons, including an unusually small second exon typical of acid invertases. These genes encode peptides with many features shared by acid invertases from other species including, leader sequences that probably target...

  5. Multiple shoot regeneration of cotton (Gossypium hirsutum L.) via ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... The percentage of regenerated plants was determined for each cultivar. The elongated shoots (3 – 4 cm) were transferred to culture tubes containing the ..... Planta, 137: 113-. 117. McCabe DE, Martinell BJ (1993). Transformation of elit cotton cultivars via particle bombardment of meristems. Biotechnology ...

  6. Yield and fiber quality properties of cotton (Gossypium hirsutum L ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... negatively affected by water stress treatment. Fiber length, fiber strength, fiber fineness and fiber elongation were decreased, while fiber uniformity was not affected by water stress treatment. Key words: Cotton, yield, fiber quality properties, water stress, non-stress. INTRODUCTION. Water stress is the most ...

  7. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.).

    Science.gov (United States)

    Zhang, Bing; Wang, Yanmei; Liu, Jin-Yuan

    2018-01-01

    Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.

  8. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae.

    Science.gov (United States)

    Gong, Qian; Yang, Zhaoen; Wang, Xiaoqian; Butt, Hamama Islam; Chen, Eryong; He, Shoupu; Zhang, Chaojun; Zhang, Xueyan; Li, Fuguang

    2017-03-03

    Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be useful for controlling this disease. We cloned the ribosomal protein L18 (GaRPL18) gene, which mediates resistance to Verticillium wilt, from a wilt-resistant cotton species (Gossypium arboreum). We then characterized the function of this gene in cotton and Arabidopsis thaliana plants. GaRPL18 encodes a 60S ribosomal protein subunit important for intracellular protein biosynthesis. However, previous studies revealed that some ribosomal proteins are also inhibitory toward oncogenesis and congenital diseases in humans and play a role in plant disease defense. Here, we observed that V. dahliae infections induce GaRPL18 expression. Furthermore, we determined that the GaRPL18 expression pattern is consistent with the disease resistance level of different cotton varieties. GaRPL18 expression is upregulated by salicylic acid (SA) treatments, suggesting the involvement of GaRPL18 in the SA signal transduction pathway. Virus-induced gene silencing technology was used to determine whether the GaRPL18 expression level influences cotton disease resistance. Wilt-resistant cotton species in which GaRPL18 was silenced became more susceptible to V. dahliae than the control plants because of a significant decrease in the abundance of immune-related molecules. We also transformed A. thaliana ecotype Columbia (Col-0) plants with GaRPL18 according to the floral dip method. The plants overexpressing GaRPL18 were more resistant to V. dahliae infections than the wild-type Col-0 plants. The enhanced resistance of transgenic A. thaliana plants to V. dahliae is likely mediated by the SA pathway. Our findings provide new insights into the role of GaRPL18, indicating that it plays a crucial role in

  9. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis.

    Science.gov (United States)

    Wei, Yangyang; Xu, Yanchao; Lu, Pu; Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Lin, Zhongxu; Liu, Fang; Wang, Kunbo

    2017-01-01

    Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress.

  10. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  11. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement.

    Science.gov (United States)

    Zhang, Tianzhen; Hu, Yan; Jiang, Wenkai; Fang, Lei; Guan, Xueying; Chen, Jiedan; Zhang, Jinbo; Saski, Christopher A; Scheffler, Brian E; Stelly, David M; Hulse-Kemp, Amanda M; Wan, Qun; Liu, Bingliang; Liu, Chunxiao; Wang, Sen; Pan, Mengqiao; Wang, Yangkun; Wang, Dawei; Ye, Wenxue; Chang, Lijing; Zhang, Wenpan; Song, Qingxin; Kirkbride, Ryan C; Chen, Xiaoya; Dennis, Elizabeth; Llewellyn, Danny J; Peterson, Daniel G; Thaxton, Peggy; Jones, Don C; Wang, Qiong; Xu, Xiaoyang; Zhang, Hua; Wu, Huaitong; Zhou, Lei; Mei, Gaofu; Chen, Shuqi; Tian, Yue; Xiang, Dan; Li, Xinghe; Ding, Jian; Zuo, Qiyang; Tao, Linna; Liu, Yunchao; Li, Ji; Lin, Yu; Hui, Yuanyuan; Cao, Zhisheng; Cai, Caiping; Zhu, Xiefei; Jiang, Zhi; Zhou, Baoliang; Guo, Wangzhen; Li, Ruiqiang; Chen, Z Jeffrey

    2015-05-01

    Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

  12. Role of epicuticular waxes in the susceptibility of cotton leaf curl ...

    African Journals Online (AJOL)

    Cotton leaf curl virus (CLCuV) is the causal agent of the damaging disease of cotton that is caused by number of begomaviruses and vectored by silver leaf whitefly. In the present study, an attempt was made by infecting Gossypium arboreum variety 786, its wax mutant GaWM3 along with Gossypium hirsutum MNH-93 with ...

  13. Registrations of Five Upland Cotton (Gossypium hirsutum L.) Mutant Germplasm with Superior Fiber Length, Strength and Uniformity.

    Science.gov (United States)

    Mutant germplasm MD 15-mut 13 (Reg. No.----, PI------), MD 15-mut 31 (Reg. No.----, PI------), MD 15-mut 61 (Reg No.----- PI------), MD 15-mut 89 (Reg. No.----, PI------) and MD 15-mut 138 (Reg. No.----, PI------) are unique germplasm of upland cotton (Gossypium hirsutum L.). These germplasm lines...

  14. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.

    Science.gov (United States)

    Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F

    2013-10-01

    Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypium arboreum) fiber early development

    Science.gov (United States)

    Ma, Jun; Liu, Fang; Wang, Qinglian; Wang, Kunbo; Jones, Don C.; Zhang, Baohong

    2016-01-01

    TCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G. arboreum contains 36 TCP genes, distributing across all of the thirteen chromosomes. GaTCPs within the same subclade of the phylogenetic tree shared similar exon/intron organization and motif composition. In addition, both segmental duplication and whole-genome duplication contributed significantly to the expansion of GaTCPs. Many these TCP transcription factor genes are specifically expressed in cotton fiber during different developmental stages, including cotton fiber initiation and early development. This suggests that TCP genes may play important roles in cotton fiber development. PMID:26857372

  16. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.

    Science.gov (United States)

    Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad

    2018-01-05

    Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A genetic map of an Australian wild Gossypium C genome and assignment of homoeologies with tetraploid cultivated cotton.

    Science.gov (United States)

    Becerra Lopez-Lavalle, L A; Matheson, B; Brubaker, C L

    2011-09-01

    Genetic diversity for traits such as fibre quality or disease resistance to microorganisms is limited in the elite cotton germplasm; consequently, cotton breeders are looking for novel alleles in the secondary or even in the tertiary gene pools. The wild Australian Gossypium species (tertiary gene pool) represent an alternative source of novel alleles. However, to use these species efficiently, enabling tools are required. Chromosome-specific molecular markers are particularly useful tools to track the transmission of this exotic genetic material into the cultivated cotton during introgression. In this study, we report the construction of a genetic linkage map of the Australian wild C-genome species Gossypium sturtianum. The map, based on an F(2) population of 114 individuals, contains 291 AFLP loci. The map spans 1697 cM with an average distance of 5.8 cM between markers. To associate C-genome chromosomes with the A and D subgenomes of cultivated cotton, 29 SSR and RFLP-STS markers were assigned to chromosomes using cultivated cotton mapped marker information. Polymorphisms were revealed by 51 AFLP primer combinations and 38 RFLP-STS and 115 SSR cotton mapped markers. The utility of transferring RFLP-STS and SSR cotton mapped markers to other Gossypium species shows the usefulness of a comparative approach as a source of markers and for aligning the genetic map of G. sturtianum with the cultivated species in the future. This also indicates that the overall structure of the G. sturtianum linkage groups is similar to that of the A and D subgenomes of cotton at the gross structural level. Applications of the map for the Australia wild C-genome species and cotton breeding are discussed.

  18. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  19. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ek-Ramos, María J; Zhou, Wenqing; Valencia, César U; Antwi, Josephine B; Kalns, Lauren L; Morgan, Gaylon D; Kerns, David L; Sword, Gregory A

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  20. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers.

    Science.gov (United States)

    Jin, Shuangxia; Mushke, Ramesh; Zhu, Huaguo; Tu, Lili; Lin, Zhongxu; Zhang, Yanxin; Zhang, Xianlong

    2008-08-01

    Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), chromosomal number counting, and flow cytometric analysis. The roles of RAPD and SSR markers in detecting somaclonal variation of cotton (Gossypium hirsutum L.) were evaluated. Two cluster analyses were performed to express, in the form of dendrograms, the relationships among the hormone combinations and the genetic variability. Both DNA-based techniques were able to amplify all of the cell clones and regenerated plantlets genomes and relative higher genetic variation could be detected in the culture type with 2, 4-D and kinetin hormone combination. The result suggested that 2, 4-D and kinetin hormone combination could induce relative high somaclonal variation and RAPD and SSR markers are useful in detecting somaclonal variation of regenerated cotton plants via somatic embryogenesis. Chromosome number counting and flow cytometry analysis revealed that the number of chromosomes and ploidy levels were nearly stable in all regenerated plants except two regenerated plantlets (lost 4 and 5 chromosomes, respectively) which meant that cytological changes were not correlated with the frequency of RAPD and SSR polymorphisms. This result also might mean that the cell lines with variation of chromosome numbers were difficult to regenerate plants.

  1. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    Science.gov (United States)

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  2. Enhanced Tissue-Specific Expression of the Herbicide Resistance bar Gene in Transgenic Cotton (Gossypium hirsutum L cv. Coker 310FR) Using the Arabidopsis rbcS ats1A Promoter

    National Research Council Canada - National Science Library

    KUMAR, Shashi; P. TIMKO, Michael

    2004-01-01

    A highly regenerating cotton (Gossypium hirsutum L.) cultivar, Coker 310FR, was used to generate transgenic plants expressing the herbicide resistance gene, bar, encoding phosphinothricin acetyltransferase (PAT...

  3. Overexpression of MIC-3 indicates a direct role for the MIC gene family in mediating Upland cotton (Gossypium hirsutum) resistance to root-knot nematode (Meloidogyne incognita).

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Velten, Jeff; Burke, John J; Jenkins, Johnie N

    2015-02-01

    Transgene-based analysis of the MIC-3 gene provides the first report of a cotton gene having a direct role in mediating cotton resistance to root-knot nematode. Major quantitative trait loci have been mapped to Upland cotton (Gossypium hirsutum L.) chromosomes 11 and 14 that govern the highly resistant phenotype in response to infection by root-knot nematode (RKN; Meloidogyne incognita); however, nearly nothing is known regarding the underlying molecular determinants of this RKN-resistant phenotype. Multiple lines of circumstantial evidence have strongly suggested that the MIC (Meloidogyne Induced Cotton) gene family plays an integral role in mediating cotton resistance to RKN. In this report, we demonstrate that overexpression of MIC-3 in the RKN-susceptible genetic background Coker 312 reduces RKN egg production by ca. 60-75 % compared to non-transgenic controls and transgene-null sibling lines. MIC-3 transcript and protein overexpression were confirmed in root tissues of multiple independent transgenic lines with each line showing a similar level of increased resistance to RKN. In contrast to RKN fecundity, transgenic lines showed RKN-induced root galling similar to the susceptible controls. In addition, we determined that this effect of MIC-3 overexpression was specific to RKN as no effect was observed on reniform nematode (Rotylenchulus reniformis) reproduction. Transgenic lines did not show obvious alterations in growth, morphology, flowering, or fiber quality traits. Gene expression analyses showed that MIC-3 transcript levels in uninfected transgenic roots exceeded levels observed in RKN-infected roots of naturally resistant plants and that overexpression did not alter the regulation of native MIC genes in the genome. These results are the first report describing a direct role for a specific gene family in mediating cotton resistance to a plant-parasitic nematode.

  4. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication.

    Science.gov (United States)

    Rapp, Ryan A; Haigler, Candace H; Flagel, Lex; Hovav, Ran H; Udall, Joshua A; Wendel, Jonathan F

    2010-11-15

    Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression

  5. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum.

    Science.gov (United States)

    Wang, Baohua; Draye, Xavier; Zhuang, Zhimin; Zhang, Zhengsheng; Liu, Min; Lubbers, Edward L; Jones, Don; May, O Lloyd; Paterson, Andrew H; Chee, Peng W

    2017-06-01

    QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC 3 F 2 and 12 corresponding BC 3 F 2:3 and BC 3 F 2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.

  6. Analysis of upland cotton (Gossypium hirsutum) response to Verticillium dahliae inoculation by transcriptome sequencing.

    Science.gov (United States)

    Shao, B X; Zhao, Y L; Chen, W; Wang, H M; Guo, Z J; Gong, H Y; Sang, X H; Cui, Y L; Wang, C H

    2015-10-27

    Verticillium wilt is one of the main diseases in cotton (Gossypium hirsutum), severely reduces yield and fiber quality, and is difficult to be con-trolled effectively. At present, the molecular mechanism that confers resistance to this disease is unclear. Transcriptome sequencing is an important method to detect resistance genes, explore metabolic pathways, and study resistance mechanisms. In this study, the transcriptome of a disease-resistant inbred cot-ton line inoculated with Verticillium dahliae was sequenced. A total of 126,402 unigenes were obtained using de novo assembly and data analysis, 99,712 (78.88%) of which were annotated into the Nr, Nt, Swiss-Prot, KEGG, COG, and GO databases. The expression patterns of 16 candidate disease-resis-tance genes showed that some genes were upregulated soon after V. dahliae inoculation and others were upregulated later, which may indicate instanta-neous basal defense and lagged specific defense, respectively. We conducted a preliminary analysis of the transcriptome database, which will contribute to further research regarding the cloning of disease-resistance genes.

  7. Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response

    Science.gov (United States)

    Kunert, Grit; Gershenzon, Jonathan

    2008-01-01

    The subepidermal pigment glands of cotton accumulate a variety of terpenoid products, including monoterpenes, sesquiterpenes, and terpenoid aldehydes that can act as feeding deterrents against a number of insect herbivore species. We compared the effect of herbivory by Spodoptera littoralis caterpillars, mechanical damage by a fabric pattern wheel, and the application of jasmonic acid on levels of the major representatives of the three structural classes of terpenoids in the leaf foliage of 4-week-old Gossypium hirsutum plants. Terpenoid levels increased successively from control to mechanical damage, herbivory, and jasmonic acid treatments, with E-β-ocimene and heliocide H1 and H4 showing the highest increases, up to 15-fold. Herbivory or mechanical damage to older leaves led to terpenoid increases in younger leaves. Leaf-by-leaf analysis of terpenes and gland density revealed that higher levels of terpenoids were achieved by two mechanisms: (1) increased filling of existing glands with terpenoids and (2) the production of additional glands, which were found to be dependent on damage intensity. As the relative response of individual terpenoids did not differ substantially among herbivore, mechanical damage, and jasmonic acid treatments, the induction of terpenoids in cotton foliage appears to represent a non-specific wound response mediated by jasmonic acid. Electronic supplementary material The online version of this article (doi:10.1007/s10886-008-9453-z) contains supplementary material, which is available to authorized users. PMID:18386096

  8. Phenotyping Root System Architecture of Cotton (Gossypium barbadense L. Grown Under Salinity

    Directory of Open Access Journals (Sweden)

    Mottaleb Shady A.

    2017-12-01

    Full Text Available Soil salinity causes an annual deep negative impact to the global agricultural economy. In this study, the effects of salinity on early seedling physiology of two Egyptian cotton (Gossypium barbadense L. cultivars differing in their salinity tolerance were examined. Also the potential use of a low cost mini-rhizotron system to measure variation in root system architecture (RSA traits existing in both cultivars was assessed. Salt tolerant cotton cultivar ‘Giza 90’ produced significantly higher root and shoot biomass, accumulated lower Na+/K+ ratio through a higher Na+ exclusion from both roots and leaves as well as synthesized higher proline contents compared to salt sensitive ‘Giza 45’ cultivar. Measuring RSA in mini-rhizotrons containing solid MS nutrient medium as substrate proved to be more precise and efficient than peat moss/sand mixture. We report superior values of main root growth rate, total root system size, main root length, higher number of lateral roots and average lateral root length in ‘Giza 90’ under salinity. Higher lateral root density and length together with higher root tissue tolerance of Na+ ions in ‘Giza 90’ give it an advantage to be used as donor genotype for desirable root traits to other elite cultivars.

  9. Effect of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    A. Zare Feizabadi

    2016-04-01

    Full Text Available In order to compare of ecological management of weed control on economical income, yield and yield components of cotton (Gossypium hirsutum L., a Randomized Complete Block design with 12 treatments and four replications was conducted in Mahvelat of Khorasan Razavi province, Iran. Treatments consisted of weeding, harrowing, burning, two times weeding, weeding + harrowing, weeding + burning, harrowing + harrowing, harrowing + weeding, harrowing + burning, weeding+ harrowing+ burning, weed free and weedy as a check treatment. Investigated traits were plant height, number of boll in plant, 20 boll weight, 20 boll cotton lint weight, cotton lint yield per plant, cotton yield, number and biomass of weeds, outcome, net and gross income. The result showed that treatments had significant effect (p

  10. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  11. Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu

    2014-01-01

    A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.

  12. Short Communication: Cotton (Gossypium hirsutum L. varieties responded differently to foliar applied boron in terms of quality and yield

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2009-05-01

    Full Text Available Foliar application of boron improves seed cotton yield and fiber traits. A field experiment was conducted to study the effects of foliar application of 37 grams of boron (B per acre (91.4 g ha-1 on quality and quantity of cotton (Gossypium hirsutum L.. Ten varieties of cotton viz, VH-183, VH-206, VH-208, VH-209, VH-214, VH-224, VH-225, VH-255, VH-257 and CIM-496 were sown at Cotton Research Station, Vehari during 2006-07 using randomized complete block design with three replications in two sets. The foliar application of B resulted in improvement of seed cotton yield (48-124%, ginning outturn (7.2-10.2%, staple length (1.4-10.1% and micronaire (7.4-32.8%. A significant genetic variability existed for all the traits studied in cotton. The cotton varieties VH-183 and VH-206 were found to be the most promising varieties which responded well to B foliar application compared to other varieties. The results suggested that foliar application of B can be helpful in improvement of cotton yield and other plant and fiber traits.

  13. The Hairless Stem Phenotype of Cotton (Gossypium barbadense) Is Linked to a Copia-Like Retrotransposon Insertion in a Homeodomain-Leucine Zipper Gene (HD1)

    OpenAIRE

    Ding, Mingquan; Ye, Wuwei; Lin, Lifeng; He, Shae; Du, Xiongming; Chen, Aiqun; Cao, Yuefen; Qin, Yuan; Yang, Fen; Jiang, Yurong; Zhang, Hua; Wang, Xiyin; Paterson, Andrew H.; Rong, Junkang

    2015-01-01

    Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in th...

  14. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Ning; Hua, Hanbai; Eneji, A Egrinya; Li, Zhaohu; Duan, Liusheng; Tian, Xiaoli

    2012-05-02

    A hydroponic culture experiment was conducted to determine genotypic variation in photosynthetic rate and the associated physiological changes in response to potassium (K) deficiency in cotton (Gossypium hirsutum L.) seedlings with contrasting two cotton cultivars in K efficiency. The K-efficient Liaomian18 produced 66.7% more biomass than the K-inefficient NuCOTN99(B) under K deficiency, despite their similar biomass under K sufficiency. Compared with NuCOTN99(B), Liaomian18 showed 19.4% higher net photosynthetic rate (P(n), per unit leaf area) under K deficient solutions and this was associated with higher photochemical efficiency and faster export of soluble sugars from the phloem. The lower net P(n) of NuCOTN99(B) was attributed to higher capacity for nitrate assimilation and lower export of soluble sugars. Furthermore, NuCOTN99(B) showed 38.4% greater ETR/P(n) than Liaomian18 under K deficiency, indicating that more electrons were driven to other sinks. Higher superoxide dismutase (SOD) and lower catalase (CAT) and ascorbate peroxidase (APX) activities resulted in higher levels of reactive oxygen species (ROS; e.g. O(2)(-)and H(2)O(2)) in NuCOTN99(B) relative to Liaomian18. Thus, the K inefficiency of NuCOTN99(B), indicated by lower biomass and net P(n) under K deficiency, was associated with excessively high nitrogen assimilation, lower export of carbon assimilates, and greater ROS accumulation in the leaf. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  15. Evaluating Pilose, a Cultigen of Gossypium hirsutum, as a Source of Resistance to Cotton Fleahopper (Hemiptera: Miridae).

    Science.gov (United States)

    McLoud, Laura Ann; Knutson, Allen; Campos-Figueroa, Manuel; Smith, C Wayne; Hague, Steven

    2015-08-01

    Cotton fleahopper (Pseudatomoscelis seriatus Reuter) (Hemiptera: Miridae) is a piercing-sucking insect that has emerged as a major pest of cotton (Gossypium hirsutum L.) in Texas. Cotton fleahoppers feed on floral buds, commonly referred to as squares, causing damage and abscission, and subsequent yield loss. Previous studies indicate that plant resistance to cotton fleahopper is present in upland cotton, but the mechanism of resistance remains undetermined. In this study, Pilose, a cultigen of G. hirsutum, was examined as a source of resistance to cotton fleahopper, focusing on mechanism of resistance and heritability of the resistance trait. Results indicated that the resistance trait in Pilose is heritable and that pubescence is causative of resistance or that the resistance trait may be tightly linked to genes controlling pubescence. Behavioral assays indicated nonpreference as a mode of resistance in plants with dense pubescence. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations.

    Science.gov (United States)

    Said, Joseph I; Knapka, Joseph A; Song, Mingzhou; Zhang, Jinfa

    2015-08-01

    A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.

  17. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Lee, Mi-Kyung; Zhang, Yang; Zhang, Meiping; Goebel, Mark; Kim, Hee Jin; Triplett, Barbara A; Stelly, David M; Zhang, Hong-Bin

    2013-03-28

    Cotton, one of the world's leading crops, is important to the world's textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G

  18. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization.

    Science.gov (United States)

    Ahamd, Maqshoof; Abbasi, Waleed Mumtaz; Jamil, Moazzam; Iqbal, Muhammad; Hussain, Azhar; Akhtar, Muhammad Fakhar-U-Zaman; Nazli, Farheen

    2017-06-01

    Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310-170-110 kg ha -1 ) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH 4 + -N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g -1 ) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

  19. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    Science.gov (United States)

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  20. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution.

    Science.gov (United States)

    Wright, R J; Thaxton, P M; El-Zik, K M; Paterson, A H

    1998-08-01

    A detailed RFLP map was used to determine the chromosomal locations and subgenomic distributions of cotton (Gossypium) genes/QTLs that confer resistance to the bacterial blight pathogen, Xanthomonas campestris pv. malvacearum (Xcm). Genetic mapping generally corroborated classic predictions regarding the number and dosage effects of genes conferring Xcm resistance. One recessive allele (b6) was a noteworthy exception to the genetic dominance of most plant resistance alleles. This recessive allele appeared to uncover additional QTLs from both resistant and ostensibly susceptible genotypes, some of which corresponded in location to resistance (R)-genes effective against other Xcm races. One putatively "defeated" resistance allele (B3) reduced severity of Xcm damage by "virulent" races. Among the six resistance genes derived from tetraploid cottons, five (83%) mapped to D-subgenome chromosomes-if each subgenome were equally likely to evolve new R-gene alleles, this level of bias would occur in only about 1.6% of cases. Possible explanations of this bias include biogeographic factors, differences in evolutionary rates between subgenomes, gene conversion or other intergenomic exchanges that escaped detection by genetic mapping, or other factors. A significant D-subgenome bias of Xcm resistance genes may suggest that polyploid formation has offered novel avenues for phenotypic response to selection.

  1. Períodos de interferência das plantas daninhas na cultura do algodoeiro (Gossypium hirsutum Weed interference periods in cotton crop (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    T.P. Salgado

    2002-12-01

    Full Text Available Com o objetivo de determinar os efeitos de períodos de controle e de convivência das plantas daninhas na produtividade da cultura do algodoeiro (Gossypium hirsutum, cultivar Delta-Opal, realizou-se um experimento que constou de dois grupos de tratamentos. No primeiro, a cultura permaneceu livre da competição das plantas daninhas desde a emergência até 7, 14, 21, 28, 35, 42, 49, 56, 63 dias e colheita (159 dias. No segundo, a cultura permaneceu em competição com a comunidade infestante desde a emergência até os mesmos períodos descritos para a primeira série de tratamentos. Dentre as espécies de plantas daninhas encontradas na área experimental, destacaram-se a tiririca (Cyperus rotundus, o fedegoso (Senna obtusifolia, a anileira (Indigofera hirsuta e o capim-carrapicho (Cenchrus echinatus. Pelas condições edáficas, climáticas e florísticas sob as quais foi conduzida a cultura de algodão, o Período Anterior à Interferência (PAI dessa comunidade que reduziu em 5% a produtividade da cultura foi de oito dias após a emergência da cultura (DAE; o Período Total de Prevenção da Interferência (PTPI foi de 66 DAE; e o Período Crítico de Prevenção da Interferência (PCPI foi dos 8 aos 66 DAE.In order to evaluate the effects of weed control and weed coexistence periods on cotton (Gossypium hirsutum cultivar Delta Opal yield, an experiment was carried out consisting of two treatment groups. In the first, the crop was weed free from from emergence until 7, 14, 21, 28, 35, 42, 49, 56, 63 days, and harvest (159 days respectively. In the second group, the crop was in competition with the weed community from emergence until the same period, as described for the first series of treatment, respectively. Among the weed species found in the experimental area, the most important were purple nutsedge (Cyperus rotundus, sicklepod (Senna obtusifolia, indigo (Indigofera hirsuta and sandbur (Cenchrus echinatus. The period after cotton plant

  2. Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues.

    Science.gov (United States)

    Kim, Hee Jin; Murai, Norimoto; Fang, David D; Triplett, Barbara A

    2011-02-01

    Gossypium hirsutum cellulose synthase catalytic subunit 4 (GhCesA4) plays an important role in cellulose biosynthesis during cotton fiber development. The transcript levels of GhCesA4 are significantly up-regulated as secondary cell wall cellulose is produced in developing cotton fibers. To understand the molecular mechanisms involved in transcriptional regulation of GhCesA4, β-glucuronidase (GUS) activity regulated by a GhCesA4 promoter (-2574/+56) or progressively deleted promoters were determined in both cotton tissues and transgenic Arabidopsis. The spatial regulation of GhCesA4 expression was similar between cotton tissues and transgenic Arabidopsis. GUS activity regulated by the GhCesA4 promoter (-2574/+56) was found in trichomes and root vascular tissues in both cotton and transgenic Arabidopsis. The -2574/-1824 region was responsible for up-regulation of GhCesA4 expression in trichomes and root vascular tissues in transgenic Arabidopsis. The -1824/-1355 region negatively regulated GhCesA4 expression in most Arabidopsis vascular tissues. For vascular expression in stems and leaves, the -898/-693 region was required. The -693/-320 region of the GhCesA4 promoter was necessary for basal expression of GhCesA4 in cotton roots as well as Arabidopsis roots. Exogenous phytohormonal treatments on transgenic Arabidopsis revealed that phytohormones may be involved in the differential regulation of GhCesA4 during cotton fiber development. Published by Elsevier Ireland Ltd.

  3. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres

    Science.gov (United States)

    Some naturally-coloured brown cotton fibres from accessions of Gossypium hirsutum can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have yet to be identified, and the mechan...

  4. Elevated CO2, warmer temperatures and soil water deficit affect plant growth, physiology and water use of cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Changes in temperature, atmospheric [CO2] and precipitation under the scenarios of projected climate change present a challenge to crop production, and may have significant impacts on the physiology, growth and yield of cotton (Gossypium hirsutum L.). A glasshouse experiment explored the early growt...

  5. The GhTT2_A07 gene is linked to the brown color and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibers

    Science.gov (United States)

    Some naturally-colored brown cotton fibers from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fiber loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the me...

  6. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...

  7. Registration of three germplasm lines of cotton derived from Gossypium hirsutum L. accession T2468 with moderate resistance to the reniform nematode

    Science.gov (United States)

    Three reniform nematode, Rotylenchulus reniformis Linford and Oliveria, moderately resistant upland cotton, Gossypium hirsutum L., germplasm lines, MT2468 Ren1 (Reg. No. ________, PI ________), MT2468 Ren2 (Reg. No. ________, PI ________), and MT2468 Ren3 (Reg. No. ________, PI ________), were devel...

  8. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species

    Science.gov (United States)

    To Identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode and fungal disease resistance traits, a series of interspecific cotton (Gossypium spp.) chromosome substitution (CS) lines were used in this study. The CS lines were developed in ...

  9. Cotton leaf curl Multan betasatellite strains cloned from Gossypium barbadense further supports selection due to host resistance.

    Science.gov (United States)

    Azhar, Muhammad Tehseen; Akhtar, Sohail; Mansoor, Shahid

    2012-10-01

    The cotton leaf curl Multan betasatellite encodes an essential pathogenicity determinant involved in induction of disease symptoms. We have shown recently that a recombinant betasatellite with a satellite conserved region derived from the tomato leaf curl betasatellite, is prevalent in the Punjab province and is associated with the breakdown of resistance in cotton to cotton leaf curl disease. We intended to see if the betasatellite that was associated with the first epidemic is still being maintained in some other hosts. We cloned betasatellite from G. barbadense, a cotton species highly susceptible to the disease. We found that both the original and recombinant betasatellite are associated with this cotton species. These findings strengthen our hypothesis that the recombinant betasatellite now prevalent on commercial cotton has been selected due to its ability to cross the host resistance barrier.

  10. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Dong, Haoran; Snider, John L; Abid, Muhammad; Iqbal, Babar; Zhou, Zhiguo

    2017-10-01

    To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K 2 O kg ha -1 ) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plant's potential to maintain functionality under drought and facilitates recovery after rewatering. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-01-01

    Full Text Available Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

  12. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii.

    Science.gov (United States)

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes.

  13. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum.

    Science.gov (United States)

    Lu, Nan; Roldan, Marissa; Dixon, Richard A

    2017-08-01

    Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops. Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals. The previous studies have suggested that PAs present in cotton are a major contributor to fiber color. However, the biosynthesis of PAs in cotton still remains to be elucidated. AtTT2 (transparent testa 2) is a MYB family transcription factor from Arabidopsis that initiates the biosynthesis of PAs by inducing the expression of multiple genes in the pathway. In this study, we isolated two R2R3-type MYB transcription factors from Gossypium hirsutum that are homologous to AtTT2. Expression analysis showed that both genes were expressed at different levels in various cotton tissues, including leaf, seed coat, and fiber. Protoplast transactivation assays revealed that these two GhMYBs were able to activate promoters of genes encoding enzymes in the PA biosynthesis pathway, namely anthocyanidin reductase and leucoanthocyanidin reductase. Complementation experiments showed that both of the GhMYBs were able to recover the transparent testa seed coat phenotype of the Arabidopsis tt2 mutant by restoring PA biosynthesis. Ectopic expression of either of the two GhMYBs in Medicago truncatula hairy roots increased the contents of anthocyanins and PAs compared to control lines expressing the GUS gene, and expression levels of MtDFR, MtLAR, and MtANR were also elevated in lines expressing GhMYBs. Together, these data provide new insights into engineering condensed tannins in cotton.

  14. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton

    Directory of Open Access Journals (Sweden)

    Caiping Cai

    2014-04-01

    Full Text Available WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes. We identified 120 candidate WRKY genes from Gossypium raimondii with corresponding expressed sequence tags in at least one of four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum, and G. raimondii. These WRKY members were anchored on 13 chromosomes in G. raimondii with uneven distribution. Phylogenetic analysis showed that WRKY candidate genes can be classified into three groups, with 20 members in group I, 88 in group II, and 12 in group III. The 88 genes in group II were further classified into five subgroups, groups IIa–e, containing 7, 16, 37, 15, and 13 members, respectively. We characterized diversity in amino acid residues in the WRKY domain and/or other zinc finger motif regions in the WRKY proteins. The expression patterns of WRKY genes revealed their important roles in diverse functions in cotton developmental stages of vegetative and reproductive growth and stress response. Structural and expression analyses show that WRKY proteins are a class of important regulators of growth and development and play key roles in response to stresses in cotton.

  15. Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L. seedlings

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-11-01

    Full Text Available Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L. plants as experimental material to investigate whether alkali stress exerts varied effects on ion balance and metabolism in old and young leaves of cotton plants exposed to alkali stress. Moreover, we compared the functions of young and old leaves in alkali tolerance. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable pigment accumulation and tricarboxylic acid cycle (TCA, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages.

  16. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense.

    Science.gov (United States)

    Li, Peng-Tao; Wang, Mi; Lu, Quan-Wei; Ge, Qun; Rashid, Md Harun Or; Liu, Ai-Ying; Gong, Ju-Wu; Shang, Hai-Hong; Gong, Wan-Kui; Li, Jun-Wen; Song, Wei-Wu; Guo, Li-Xue; Su, Wei; Li, Shao-Qi; Guo, Xiao-Ping; Shi, Yu-Zhen; Yuan, You-Lu

    2017-09-08

    How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR

  17. Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Ren ari) introgressed from Gossypium aridum into upland cotton (G. hirsutum).

    Science.gov (United States)

    Romano, Gabriela Beatriz; Sacks, Erik J; Stetina, Salliana R; Robinson, A Forest; Fang, David D; Gutierrez, Osman A; Scheffler, Jodi A

    2009-12-01

    In this association mapping study, a tri-species hybrid, [Gossypium arboreum x (G. hirsutum x G. aridum)(2)], was crossed with MD51ne (G. hirsutum) and progeny from the cross were used to identify and map SSR markers associated with reniform nematode (Rotylenchulus reniformis) resistance. Seventy-six progeny (the 50 most resistant and 26 most susceptible) plants were genotyped with 104 markers. Twenty-five markers were associated with a resistance locus that we designated Ren(ari) and two markers, BNL3279_132 and BNL2662_090, mapped within 1 cM of Ren(ari). Because the SSR fragments associated with resistance were found in G. aridum and the bridging line G 371, G. aridum is the likely source of this resistance. The resistance is simply inherited, possibly controlled by a single dominant gene. The markers identified in this project are a valuable resource to breeders and geneticists in the quest to produce cotton cultivars with a high level of resistance to reniform nematode.

  18. Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    dell

    Gossypium hirsutum L.) Germplasm Using Simple Sequence Repeats. Running Title: Simple Sequence Repeats Revealed Genetic Diversity and Population. Structure in Upland Cotton. Mulugeta Seyoum1, Xiongming Du2,Shoupu He2, Yinhua Jia2, ...

  19. The effects of fruiting positions on cellulose synthesis and sucrose metabolism during cotton (Gossypium hirsutum L. fiber development.

    Directory of Open Access Journals (Sweden)

    Yina Ma

    Full Text Available Cotton (Gossypium hirsutum L. boll positions on a fruiting branch vary in their contribution to yield and fiber quality. Fiber properties are dependent on deposition of cellulose in the fiber cell wall, but information about the enzymatic differences in sucrose metabolism between these fruiting positions is lacking. Therefore, two cotton cultivars with different sensitivities to low temperature were tested in 2010 and 2011 to quantify the effect of fruit positions (FPs on fiber quality in relation to sucrose content, enzymatic activities and sucrose metabolism. The indices including sucrose content, sucrose transformation rate, cellulose content, and the activities of the key enzymes, sucrose phosphate synthase (SPS, acid invertase (AI and sucrose synthase (SuSy which inhibit cellulose synthesis and eventually affect fiber quality traits in cotton fiber, were determined. Results showed that as compared with those of FP1, cellulose content, sucrose content, and sucrose transformation rate of FP3 were all decreased, and the variations of cellulose content and sucrose transformation rate caused by FPs in Sumian 15 were larger than those in Kemian 1. Under FP effect, activities of SPS and AI in sucrose regulation were decreased, while SuSy activity in sucrose degradation was increased. The changes in activities of SuSy and SPS in response to FP effect displayed different and large change ranges between the two cultivars. These results indicate that restrained cellulose synthesis and sucrose metabolism in distal FPs are mainly attributed to the changes in the activities of these enzymes. The difference in fiber quality, cellulose synthesis and sucrose metabolism in response to FPs in fiber cells for the two cotton cultivars was mainly determined by the activities of both SuSy and SPS.

  20. High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Chen, Yurong; Rivlin, Anatoly; Lange, Andrea; Ye, Xudong; Vaghchhipawala, Zarir; Eisinger, Elizabeth; Dersch, Erik; Paris, Miriam; Martinell, Brian; Wan, Yuechun

    2014-01-01

    Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible. We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7-8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.

  1. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  2. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    Science.gov (United States)

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Chilling Injury in Cotton (Gossypium hirsutum L.) : Light Requirement for the Reduction of Injury and for the Protective Effect of Abscisic Acid

    OpenAIRE

    Arnon, Rikin; Carlos, Gitler; Dan, Atsmon; Membrane Research, The Weizmann Institute of Science; Department of Plant Genetics, The Weizmann Institute of Science

    1981-01-01

    Pretreatment by darkness increased chilling (4℃) injury in whole cotton (Gossypium hirsutum L.) seedlings and isolated cotyledonary tissue. Addition of sucrose in the dark period prevented the effect of darkness. Application of the photosynthetic inhibitor DCMU in light simulated the effect of darkness. ABA (10^ M) decreased chilling injury when applied in light as a pretreatment before the onset of chilling. The same pretreatment in darkness was almost ineffective, unless sucrose was added. ...

  4. Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought.

    Science.gov (United States)

    Chen, Yun; Liu, Zhi-Hao; Feng, Li; Zheng, Yong; Li, Deng-Di; Li, Xue-Bao

    2013-01-01

    Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  5. Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection.

    Science.gov (United States)

    Zhang, Wen-Wei; Jian, Gui-Liang; Jiang, Teng-Fei; Wang, Sheng-Zheng; Qi, Fang-Jun; Xu, Shi-Chang

    2012-10-01

    Verticillium wilt of cotton (Gossypium hirsutum) is a widespread and destructive disease that is caused by the soil-borne fungus pathogen Verticillium dahliae (V. dahliae). To study the molecular mechanism in wilt tolerance, suppression subtractive hybridization (SSH) and dot blot techniques were used to identify the specifically expressed genes in a superior wilt-resistant cotton cultivar (G. hirsutum cv. Zhongzhimian KV1) after inoculation with pathogen. cDNAs from the root tissues of Zhongzhimian KV1 inoculated with V. dahliae strain V991 or water mock were used to construct the libraries that contain 4800 clones. Based on the results from dot blot analysis, 147 clones were clearly induced by V. dahliae and selected from the SSH libraries for sequencing. A total of 92 up-regulated and 7 down-regulated non-redundant expressed sequences tags (ESTs) were identified as disease responsive genes and classified into 9 functional groups. Two important clues regarding wilt-resistant G. hirsutum were obtained from this study. One was Bet v 1 family; the other was UbI gene family that may play an important role in the defense reaction against Verticillium wilt. The result from real-time quantitative reverse transcription polymerase chain reaction showed that these genes were activated quickly and transiently after inoculation with V. dahliae.

  6. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population.

    Science.gov (United States)

    Zhao, Yunlei; Wang, Hongmei; Chen, Wei; Li, Yunhai

    2014-01-01

    Understanding the population structure and linkage disequilibrium in an association panel can effectively avoid spurious associations and improve the accuracy in association mapping. In this study, one hundred and fifty eight elite cotton (Gossypium hirsutum L.) germplasm from all over the world, which were genotyped with 212 whole genome-wide marker loci and phenotyped with an disease nursery and greenhouse screening method, were assayed for population structure, linkage disequilibrium, and association mapping of Verticillium wilt resistance. A total of 480 alleles ranging from 2 to 4 per locus were identified from all collections. Model-based analysis identified two groups (G1 and G2) and seven subgroups (G1a-c, G2a-d), and differentiation analysis showed that subgroup having a single origin or pedigree was apt to differentiate with those having a mixed origin. Only 8.12% linked marker pairs showed significant LD (Presistance were identified through association mapping, which widely were distributed among 15 chromosomes. Among which 10 marker loci were found to be consistent with previously identified QTLs and 32 were new unreported marker loci, and QTL clusters for Verticillium wilt resistanc on Chr.16 were also proved in our study, which was consistent with the strong linkage in this chromosome. Our results would contribute to association mapping and supply the marker candidates for marker-assisted selection of Verticillium wilt resistance in cotton.

  7. Role of xyloglucan in cotton (Gossypium hirsutum L.) fiber elongation of the short fiber mutant Ligon lintless-2 (Li2).

    Science.gov (United States)

    Naoumkina, Marina; Hinchliffe, Doug J; Fang, David D; Florane, Christopher B; Thyssen, Gregory N

    2017-08-30

    Xyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li 2 ) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth. Li 2 represents an excellent model system to study fiber elongation. To understand the role of xyloglucan in cotton fiber elongation we used the short fiber mutant Li 2 and its near isogenic wild type for analysis of xyloglucan content and expression of xyloglucan-related genes in developing fibers. Accumulation of xyloglucan was significantly higher in Li 2 developing fibers than in wild type. Genes encoding enzymes for nine family members of xyloglucan biosynthesis were identified in the draft Gossypium hirsutum genome. RNAseq analysis revealed that most differentially expressed xyloglucan-related genes were down-regulated in Li 2 fiber cells. RT-qPCR analysis revealed that the peak of expression for the majority of xyloglucan-related genes in wild type developing fibers was 5-16days post anthesis (DPA) compared to 1-3 DPA in Li 2 fibers. Thus, our results suggest that early activation of xyloglucan-related genes and down regulation of xyloglucan degradation genes during the elongation phase lead to elevated accumulation of xyloglucan that restricts elongation of fiber cells in Li 2 . Copyright © 2017. Published by Elsevier B.V.

  8. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    Science.gov (United States)

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  9. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  10. Fine-mapping qFS07.1 controlling fiber strength in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Fang, Xiaomei; Liu, Xueying; Wang, Xiaoqin; Wang, Wenwen; Liu, Dexin; Zhang, Jian; Liu, Dajun; Teng, Zhonghua; Tan, Zhaoyun; Liu, Fang; Zhang, Fengjiao; Jiang, Maochao; Jia, Xiuling; Zhong, Jianwei; Yang, Jinghong; Zhang, Zhengsheng

    2017-04-01

    KEY MESSAGE: qFS07.1 controlling fiber strength was fine-mapped to a 62.6-kb region containing four annotated genes. RT-qPCR and sequence of candidate genes identified an LRR RLK gene as the most likely candidate. Fiber strength is an important component of cotton fiber quality and is associated with other properties, such as fiber maturity, fineness, and length. Stable QTL qFS07.1, controlling fiber strength, had been identified on chromosome 7 in an upland cotton recombinant inbred line (RIL) population from a cross (CCRI35 × Yumian1) described in our previous studies. To fine-map qFS07.1, an F 2 population with 2484 individual plants from a cross between recombinant line RIL014 and CCRI35 was established. A total of 1518 SSR primer pairs, including 1062, designed from chromosome 1 of the Gossypium raimondii genome and 456 from chromosome 1 of the G. arboreum genome (corresponding to the QTL region) were used to fine-map qFS07.1, and qFS07.1 was mapped into a 62.6-kb genome region which contained four annotated genes on chromosome A07 of G. hirsutum. RT-qPCR and comparative analysis of candidate genes revealed a leucine-rich repeat protein kinase (LRR RLK) family protein to be a promising candidate gene for qFS07.1. Fine mapping and identification of the candidate gene for qFS07.1 will play a vital role in marker-assisted selection (MAS) and the study of mechanism of cotton fiber development.

  11. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Zhao; Ge, Xiaoyang; Yang, Zuoren; Zhang, Chaojun; Zhao, Ge; Chen, Eryong; Liu, Ji; Zhang, Xueyan; Li, Fuguang

    2017-06-12

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a plant-specific serine/threonine kinase family involved in the abscisic acid (ABA) signaling pathway and responds to osmotic stress. A genome-wide analysis of this protein family has been conducted previously in some plant species, but little is known about SnRK2 genes in upland cotton (Gossypium hirsutum L.). The recent release of the G. hirsutum genome sequence provides an opportunity to identify and characterize the SnRK2 kinase family in upland cotton. We identified 20 putative SnRK2 sequences in the G. hirsutum genome, designated as GhSnRK2.1 to GhSnRK2.20. All of the sequences encoded hydrophilic proteins. Phylogenetic analysis showed that the GhSnRK2 genes were classifiable into three groups. The chromosomal location and phylogenetic analysis of the cotton SnRK2 genes indicated that segmental duplication likely contributed to the diversification and evolution of the genes. The gene structure and motif composition of the cotton SnRK2 genes were analyzed. Nine exons were conserved in length among all members of the GhSnRK2 family. Although the C-terminus was divergent, seven conserved motifs were present. All GhSnRK2s genes showed expression patterns under abiotic stress based on transcriptome data. The expression profiles of five selected genes were verified in various tissues by quantitative real-time RT-PCR (qRT-PCR). Transcript levels of some family members were up-regulated in response to drought, salinity or ABA treatments, consistent with potential roles in response to abiotic stress. This study is the first comprehensive analysis of SnRK2 genes in upland cotton. Our results provide the fundamental information for the functional dissection of GhSnRK2s and vital availability for the improvement of plant stress tolerance using GhSnRK2s.

  12. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Loguerico, L L; Zhang, J Q; Wilkins, T A

    1999-06-01

    A PCR-based strategy was employed to identify myb-related genes potentially involved in the differentiation and development of cotton seed trichomes. cDNA clones representing six newly identified cotton myb-domain genes (GhMYB) of the R2R3-MYB family were characterized in the allotetraploid species Gossypium hirsutum L. (2n = 4x = 52; AADD). Several interesting motifs and domains in the transregulatory region (TRR) were identified as potential candidates for modulating GhMYB activity. One such structural feature is a basic 40-amino acid stretch (TRR1) located immediately downstream of the DNA-binding domain (DBD) in five of the GhMYBs. Furthermore, the conserved motif GIDxxH identified in a subset of plant MYBs is also present in the same position in the TRR1 domains of GhMYB1 and GhMYB6, exactly 12 amino acid residues downstream of the last tryptophan in the R3 repeat of the DBD. At least two of the GhMYBs (GhMYB4 and GhMYB5) contain unidentified ORFS in the 5' leader sequence (5'-uORFs) that may serve to regulate the synthesis of these particular GhMYB proteins at the translational level. Multiple alignment of DBD sequences indicated that GhMYBs show structural similarity to plant R2R3-MYB factors implicated in phenylpropanoid biosynthesis. GhMYB5 is the most distantly related cotton R2R3-MYB and is found in an isolated cluster that includes the drought-inducible AtMYB2. Sequence comparisons of DBD and TRR domains from GhMYBs, MIXTA (AmMYBMx) and G11 (AtMYBG11) did not reveal any striking similarity beyond conserved motifs. However, based on earlier phylogenetic analysis, GhMYB2, GhMYB3, and GHMYB4 are members of a cluster that contains GLABROUS1, while GhMYB1 and GhMYB6 belong to a closely related cluster. Semi-quantitative RT-PCR analysis revealed two discrete patterns of GhMYB gene expression. Type I cotton MYB (GhMYB-1, -2, and -3) transcripts were found in all tissue-types examined and were relatively more abundant than those derived from type II GhMYB genes

  13. Competition of velvet leaf (Abutilon theophrasti M.) weed with cotton (Gossypium hirsutum L.). Economic damage threshold

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, J. A.; Mendiola, M. A.; Castejon, M.

    2010-07-01

    The effect of the weed Abutilon theophrasti M. (common name: velvetleaf) on the growth of cotton grown in the Guadalquivir Valley, was studied by examining the influence of weed density on growth of the weed and that of cotton. Velvetleaf impeded normal cotton growth caused production losses as a result of the stress the cotton was subjected to. Additionally there was competition among velvet leaf plants at high velvet leaf densities. The influence of velvetleaf density in coexistence with cotton has been also studied evaluating weed effect on the biomass of cotton and its production. Additional determinations included the velvetleaf seed production capacity per unit area and seed production per plant. These determinations were adjusted to hyperbolic, inverse linear and logistic models. Last, the economic damage threshold (EDT) was calculated using the efficiency level in control of velvetleaf in cotton. In this calculation the treatment cost and losses caused by the weed, in the crop, were taken into account. The EDT varied between 0.1 and 0.5 velvetleaf plant m{sup -}2, depending on the control methods used. (Author) 27 refs.

  14. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal

    National Research Council Canada - National Science Library

    Latif, Ayesha; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Shahid, Naila; Bajwa, Kamran Shehzad; Ashraf, Muhammad Aleem; Abbas, Malik Adil; Azam, Muhammad; Shahid, Ahmad Ali; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-01-01

    .... Local cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301...

  15. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs.

    Science.gov (United States)

    Akmal, Mohd; Baig, Mirza S; Khan, Jawaid A

    2017-12-10

    Cotton leaf curl disease (CLCuD), a major factor resulting in the enormous yield losses in cotton crop, is caused by a distinct monopartite begomovirus in association with Cotton leaf curl Multan betasatellite (CLCuMB). Micro(mi)RNAs are known to regulate gene expression in eukaryotes, including antiviral defense in plants. In a previous study, we had computationally identified a set of cotton miRNAs, which were shown to have potential targets in the genomes of Cotton leaf curl Multan virus (CLCuMuV) and CLCuMB at multiple loci. In the current study, effect of Gossypium arboreum-encoded miRNAs on the genome of CLCuMuV and CLCuMB was investigated in planta. Two computationally predicted cotton-encoded miRNAs (miR398 and miR2950) that showed potential to bind multiple Open Reading Frames (ORFs; C1, C4, V1, and non- coding intergenic region) of CLCuMuV, and (βC1) of CLCuMB were selected. Functional validation of miR398 and miR2950 was done by overexpression approach in G. hirsutum var. HS6. A total of ten in vitro cotton plants were generated from independent events and subjected to biological and molecular analyses. Presence of the respective Precursor (pre)-miRNA was confirmed through PCR and Southern blotting, and their expression level was assessed by semi quantitative RT-PCR, Real Time quantitative PCR and northern hybridization in the PCR-positive lines. Southern hybridization revealed 2-4 copy integration of T-DNA in the genome of the transformed lines. Remarkably, expression of pre-miRNAs was shown up to 5.8-fold higher in the transgenic (T0) lines as revealed by Real Time PCR. The virus resistance was monitored following inoculation of the transgenic cotton lines with viruliferous whitefly (Bemisia tabaci) insect vector. After inoculation, four of the transgenic lines remained apparently symptom free. While a very low titre of viral DNA could be detected by Rolling circle amplification, betasatellite responsible for symptom induction could not be detected in

  16. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    Science.gov (United States)

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A

    2016-04-01

    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  17. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Janga, Madhusudhana R; Campbell, LeAnne M; Rathore, Keerti S

    2017-07-01

    The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.

  18. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments.

    Science.gov (United States)

    Fang, Lei; Tian, Ruiping; Li, Xinghe; Chen, Jiedan; Wang, Sen; Wang, Peng; Zhang, Tianzhen

    2014-10-02

    Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell

  19. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium).

    Science.gov (United States)

    Chaudhary, Bhupendra; Hovav, Ran; Flagel, Lex; Mittler, Ron; Wendel, Jonathan F

    2009-08-17

    Reactive oxygen species (ROS) play a prominent role in signal transduction and cellular homeostasis in plants. However, imbalances between generation and elimination of ROS can give rise to oxidative stress in growing cells. Because ROS are important to cell growth, ROS modulation could be responsive to natural or human-mediated selection pressure in plants. To study the evolution of oxidative stress related genes in a single plant cell, we conducted comparative expression profiling analyses of the elongated seed trichomes ("fibers") of cotton (Gossypium), using a phylogenetic approach. We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum) antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes. Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated.

  20. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Venkatachalam, P; Priyanka, N; Manikandan, K; Ganeshbabu, I; Indiraarulselvi, P; Geetha, N; Muralikrishna, K; Bhattacharya, R C; Tiwari, M; Sharma, N; Sahi, S V

    2017-01-01

    This report focuses on application of zinc oxide nanoparticles (ZnONPs) carrying phycomolecule ligands as a novel plant growth promoter aimed at increasing the crop productivity. The present investigation examined the effect of ZnONPs on plant growth characteristics, and associated biochemical changes in cotton (Gossypium hirsutum L.) following growth in a range of concentrations (25-200 mg L-l ZnONPs) in combination with 100 mM P in a hydroponic system. Treated plants registered an increase in growth and total biomass by 130.6% and 131%, respectively, over control. Results demonstrated a significant increase in the level of chlorophyll a (141.6%), b (134.7%), carotenoids (138.6%), and total soluble protein contents (179.4%); at the same time, a significant reduction (68%) in the level of malondialdehyde (MDA) in leaves with respect to control. Interestingly, a significant increase in superoxide dismutase (SOD, 264.2%), and peroxidase (POX, 182.8%) enzyme activities followed by a decrease in the catalase (CAT) activity, in response to above treatments. These results suggest that bioengineered ZnONPs interact with meristematic cells triggering biochemical pathways conducive to an accumulation of biomass. Further investigations will map out the mode of action involved in growth promotion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Cotton (Gossypium hirsutum L.) boll rotting bacteria vectored by the brown stink bug, Euschistus servus (Say) (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Medrano, E G; Bell, A A; Duke, S E

    2016-09-01

    To determine the capacity of the brown stink bug (BSB) (Euschistus servus) to transmit an infective Pantoea agglomerans strain Sc 1-R into cotton (Gossypium hirsutum) bolls. A laboratory colony of BSB was maintained on fresh green beans. Either sterile or Sc 1-R contaminated beans were offered to adult insects. Strain Sc 1-R holds rifampicin resistance (Rif(r) ). Insects were then caged with unopened greenhouse-grown bolls. After 2 days, BSB were surface sterilized, ground, and then plated on media with and without Rif. Two weeks later, seed with lint were ground and plated on media with and without Rif. Microbes were recovered on nonselective media from all BSBs and from seed/lint at concentrations reaching 10(9)  CFU g(-1) tissue. Rif(r) bacteria were recovered strictly from insects exposed to Sc1-R and from diseased seed/lint of respective bolls. Euschistus servus was capable of transmitting strain Sc 1-R into bolls resulting in disease. Insects not exposed to the pathogen deposited bacteria yet the nonpathogenic microbes produced insignificant damage to the boll tissue. This is the first study to concretely show the capacity of the BSB to transmit an infective P. agglomerans strain resulting in boll disease. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Plant tissue culture independent Agrobacterium tumefaciens mediated In-planta transformation strategy for upland cotton (Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Bipinchandra B. Kalbande

    2016-06-01

    Full Text Available A new method of transgenic development called “In-planta” transformation method, where Agrobacterium is used to infect the plantlets but the steps of in vitro regeneration of plants is totally avoided. In this study, we have reported a simple In-planta method for efficient transformation of diploid cotton Gossypium hirsutum cv LRK-516 Anjali using Agrobacterium tumefaciens EHA-105 harbouring recombinant binary vector plasmid pBinAR with Arabidopsis At-NPR1 gene. Four day old plantlets were used for transformation. A vertical cut was made at the junction of cotyledonary leaves, moderately bisecting the shoot tip and exposing meristem cells at apical meristem. This site was infected with Agrobacterium inoculum. The transgenic events obtained were tested positive for the presence of At-NPR1 gene with promoter nptII gene. They are also tested negative for vector backbone integration and Agrobacterium contamination in T0 events. With this method a transformation frequency of 6.89% was reported for the cv LRK-516.

  3. Cold acclimation and low temperature resistance in cotton: Gossypium hirsutum phospholipase Dalpha isoforms are differentially regulated by temperature and light.

    Science.gov (United States)

    Kargiotidou, Anastasia; Kappas, Ilias; Tsaftaris, Athanasios; Galanopoulou, Dia; Farmaki, Theodora

    2010-06-01

    Phospholipase Dalpha (PLDalpha) was isolated from cultivated cotton (Gossypium hirsutum) and characterized. Two PLDalpha genes were identified in the allotetraploid genome of G. hirsutum, derived from its diploid progenitors, G. raimondii and G. arboreum. The genes contained three exons and two introns. The translated products shared a 98.6% homology and were designated as GrPLDalpha and GaPLDalpha. Their ORFs encoded a polypeptide of 807 amino acids with a predicted molecular mass of 91.6 kDa sharing an 81-82% homology with PLDalpha1 and PLDalpha2 from A. thaliana. A possible alternative splicing event was detected at the 5' untranslated region which, however, did not result in alternative ORFs. Cold stress (10 degrees C or less) resulted in gene induction which was suppressed below control levels (25 degrees C or 22 degrees C growth temperature) when plants were acclimated at 17 degrees C before applying the cold treatment. Differences in the expression levels of the isoforms were recorded under cold acclimation, and cold stress temperatures. Expression was light regulated under growth, acclimation, and cold stress temperatures. Characterization of the products of lipid hydrolysis by the endogenous PLDalpha indicated alterations in lipid species and a variation in levels of the signalling molecule phosphatidic acid (PA) following acclimation or cold stress.

  4. The draft genome of a diploid cotton Gossypium raimondii

    DEFF Research Database (Denmark)

    Wang, Kunbo; Wang, Zhiwen; Li, Fuguang

    2012-01-01

    identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao...

  5. The Field Reaction of Long-Staple Cotton ( Gossypium barbadense L.)

    African Journals Online (AJOL)

    Twenty-five genotypes of cotton were assessed in a randomized complete block design experiment with three replications at two locations for their reaction to natural infection by alternaria leaf spot under field conditions. Disease incidence was assessed at seedling and square formation stages. Other parameters measured ...

  6. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings.

    Science.gov (United States)

    Peng, Zhen; He, Shoupu; Sun, Junling; Pan, Zhaoe; Gong, Wenfang; Lu, Yanli; Du, Xiongming

    2016-10-04

    The capacity for ion compartmentalization among different tissues and cells is the key mechanism regulating salt tolerance in plants. In this study, we investigated the ion compartmentalization capacity of two upland cotton genotypes with different salt tolerances under salt shock at the tissue, cell and molecular levels. We found that the leaf glandular trichome could secrete more salt ions in the salt-tolerant genotype than in the sensitive genotype, demonstrating the excretion of ions from tissue may be a new mechanism to respond to short-term salt shock. Furthermore, an investigation of the ion distribution demonstrated that the ion content was significantly lower in critical tissues and cells of the salt-tolerant genotype, indicating the salt-tolerant genotype had a greater capacity for ion compartmentalization in the shoot. By comparing the membrane H+-ATPase activity and the expression of ion transportation-related genes, we found that the H+-ATPase activity and Na+/H+ antiporter are the key factors determining the capacity for ion compartmentalization in leaves, which might further determine the salt tolerance of cotton. The novel function of the glandular trichome and the comparison of Na+ compartmentalization between two cotton genotypes with contrasting salt tolerances provide a new understanding of the salt tolerance mechanism in cotton.

  7. Global gene expression in cotton (Gossypium hirsutum L. leaves to waterlogging stress.

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    Full Text Available Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH, but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  8. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhu, Ya-Na; Shi, Dong-Qiao; Ruan, Meng-Bin; Zhang, Li-Li; Meng, Zhao-Hong; Liu, Jie; Yang, Wei-Cai

    2013-01-01

    Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 μM ABA), cold (4°C), drought (200 mM mannitol), salinity (200 mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple

  9. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton (Gossypium hirsutum) by Modulating ABA Levels.

    Science.gov (United States)

    Guo, Kai; Tu, Lili; Wang, Pengcheng; Du, Xueqiong; Ye, Shue; Luo, Ming; Zhang, Xianlong

    2016-01-01

    Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase-oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8'-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation.

  10. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings

    OpenAIRE

    Zhen Peng; Shoupu He; Junling Sun; Zhaoe Pan; Wenfang Gong; Yanli Lu; Xiongming Du

    2016-01-01

    The capacity for ion compartmentalization among different tissues and cells is the key mechanism regulating salt tolerance in plants. In this study, we investigated the ion compartmentalization capacity of two upland cotton genotypes with different salt tolerances under salt shock at the tissue, cell and molecular levels. We found that the leaf glandular trichome could secrete more salt ions in the salt-tolerant genotype than in the sensitive genotype, demonstrating the excretion of ions from...

  11. A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Fang, David D; Xiao, Jinhua; Canci, Paulo C; Cantrell, Roy G

    2010-03-01

    Resistance to cotton blue disease (CBD) was evaluated in 364 F(2.3) families of three populations derived from resistant variety 'Delta Opal'. The CBD resistance in 'Delta Opal' was controlled by one single dominant gene designated Cbd. Two simple sequence repeat (SSR) markers were identified as linked to Cbd by bulked segregant analysis. Cbd resides at the telomere region of chromosome 10. SSR marker DC20027 was 0.75 cM away from Cbd. DC20027 marker fragments amplified from 3 diploid species and 13 cotton varieties whose CBD resistance was known were cloned and sequenced. One single nucleotide polymorphism (SNP) was identified at the 136 th position by sequence alignment analysis. Screening SNP markers previously mapped on chromosome 10 identified an additional 3 SNP markers that were associated with Cbd. A strong association between a haplotype based on four SNP markers and Cbd was developed. This demonstrates one of the first examples in cotton where SNP markers were used to effectively tag a trait enabling marker-assisted selection for high levels of CBD resistance in breeding programs.

  12. Functional characterization of a novel jasmonate ZIM-domain interactor (NINJA) from upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Le; Wu, Shu-Ming; Zhu, Yue; Fan, Qiang; Zhang, Zhen-Nan; Hu, Guang; Peng, Qing-Zhong; Wu, Jia-He

    2017-03-01

    The jasmonic acid (JA) signalling pathway plays roles in plant development and defence against biotic and abiotic stresses. We isolated a cotton NINJA (novel interactor of JA ZIM-domain) gene, designated GhNINJA, which contains a 1305 bp open read frame. The GhNINJA gene encodes a 434 amino acid peptide. According to quantitative real-time PCR analysis, GhNINJA is preferentially expressed in roots, and its expression level is greatly induced by Verticillium dahliae infection. Through a virus-induced gene silencing technique, we developed GhNINJA-silenced cotton plants, which had significantly decreased expression of the target gene with an average expression of 6% of the control. The regenerating lateral root growth of silenced plants was largely inhibited compared to the control. Analysis by microscopy demonstrated that the cell length of the root differentiation zone in GhNINJA-silenced plants is significantly shorter than those of the control. Moreover, the silenced plants exhibited higher tolerance to V. dahliae infection compared to the control, which was linked to the increased expression of the defence marker genes PDF1.2 and PR4. Together, these data indicated that knockdown of GhNINJA represses the root growth and enhances the tolerance to V. dahliae. Therefore, GhNINJA gene can be used as a candidate gene to breed the new cultivars for improving cotton yield and disease resistance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Ya-Na Zhu

    Full Text Available Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA, cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 μM ABA, cold (4°C, drought (200 mM mannitol, salinity (200 mM NaCl and alkalinity (pH=11 respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs, stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR. Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to

  14. Efficient production of gossypol from hairy root cultures of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Verma, Praveen C; Trivedi, Ila; Singh, Harpal; Shukla, Anoop K; Kumar, Manoj; Upadhyay, Santosh K; Pandey, Paras; Hans, Aradhana L; Singh, Pradhyumna K

    2009-11-01

    A protocol for induction and establishment of Agrobacterium rhizogenes mediated hairy root culture of Gossypium hirsutum was developed through infection with the A4 strain and co-cultivation on hormone-free semi-solid MS medium with B5 vitamins. It resulted in the emergence of hairy roots from the leaf explants, 21 days after infection. The transformation of hairy roots was established by PCR amplification of rol B and rol C genes of the Ri plasmid. All root lines expressed gossypol, although distinct inter-clonal quantitative variations were noticed. Five independent hairy root lines were studied for their growth kinetics as well as gossypol production. The yield potentials of one of them superseded others, as well as the non-transformed, in-vitro grown control roots. The content of gossypol in hairy roots reached a level of 2.43 mg/g DW. It was 4.5 times higher than in vitro and 1.47 times higher than in vivo grown roots of G. hirsutum. Selection of high gossypol producing hairy root lines of G. hirsutum can provide an alternative source for large-scale production of gossypol.

  15. Uptake and metabolism of clomazone in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures

    Energy Technology Data Exchange (ETDEWEB)

    Norman, M.A.; Liebl, R.A.; Widholm, J.M. (Univ. of Illinois, Urbana (USA))

    1990-03-01

    Studies were conducted to determine the uptake and metabolism of the pigment synthesis inhibiting herbicide clomazone in tolerant-soybean (Glycine max (L.) Merr. cv Corsoy) and susceptible-cotton (Gossypium hirsutum (L.) cv Stoneville 825) photomixotrophic cell suspensions. Soybean and cotton on a whole plant level are tolerant and susceptible to clomazone, respectively. Preliminary studies indicated that I{sub 50} values for growth, chlorophyll (Chl), {beta}-carotene, and lutein were, respectively, >22, 14, 19, and 23 times greater for the soybean cell line (SB-M) 8 days after treatment (DAT) compared to the cotton cell line (COT-M) 16 DAT. Differences in ({sup 14}C)clomazone uptake cannot account for selectivity since there were significantly greater levels of domazone absorbed by the SB-M cells compared to the COT-M cells for each treatment. The percentage of absorbed clomazone converted to more polar metabolite(s) was significantly greater by the SB-M cells relative to COT-M cells at 6 and 24 hours after treatment, however, only small differences existed between the cell lines by 48 hours after treatment. Nearly identical levels of parental clomazone was recovered from both cell lines for all treatments. A pooled metabolite fraction isolated from SB-M cells had no effect on the leaf pigment content of susceptible velvetleaf or soybean seedlings. Conversely, a pooled metabolite fraction from COT-M cells reduced the leaf Chl content of velvetleaf. Soybean tolerance to clomazone appears to be due to differential metabolism (bioactivation) and/or differences at the site of action.

  16. Coupling of MIC-3 overexpression with the chromosomes 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Jenkins, Johnie N; Deng, Dewayne D

    2016-09-01

    Genetic analysis of MIC-3 transgene with RKN resistance QTLs provides insight into the resistance regulatory mechanism and provides a framework for testing additional hypotheses. Resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. The MIC-3 (Meloidogyne Induced Cotton3) protein accumulates specifically within the immature galls of RKN-resistant plants that possess these QTLs. Recently, we showed that MIC-3 overexpression in an RKN-susceptible cotton genotype suppressed RKN egg production but not RKN-induced root galling. In this study, the MIC-3 overexpression construct T-DNA in the single-copy transgenic line '14-7-1' was converted into a codominant molecular marker that allowed the marker assisted selection of F2:3 cotton lines, derived from a cross between 14-7-1 and M-240 RNR, having all possible combinations of the chromosomes 11 and 14 QTLs with and without the MIC-3 overexpression construct. Root-knot nematode reproduction (eggs g(-1) root) and severity of RKN-induced root galling were assessed in these lines. We discovered that the addition of MIC-3 overexpression suppressed RKN reproduction in lines lacking both resistance QTLs and in lines having only the chromosome 14 QTL, suggesting an additive effect of the MIC-3 construct with this QTL. In contrast, MIC-3 overexpression did not improve resistance in lines having the single chromosome 11 QTL or in lines having both resistance QTLs, suggesting an epistatic interaction between the chromosome 11 QTL and the MIC-3 construct. Overexpression of MIC-3 did not affect the severity of RKN-induced root galling regardless of QTL genotype. These data provide new insights into the relative order of action of the chromosomes 11 and 14 QTLs and their potential roles in regulating MIC-3 expression as part of the RKN resistance response.

  17. Selection of Gossypium hirsutum genotypes for interspecific ...

    African Journals Online (AJOL)

    FORRESTER

    hybridization. INTRODUCTION. Tetraploid upland cotton, Gossypium hirsutum L., is comprised of over 90% of global cotton production (Zhao et al., 2015). Cultivated G. hirsutum genotypes are considered to have a narrow genetic base, due in part to.

  18. High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv Narashima) by using embryo apex

    Science.gov (United States)

    Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Cotton (Gossypium hirsutum L.) is one of the most commercially important fiber crops in the world. Compared with other crops, cotton represents a recalcitrant species for regeneration protocols. The development of efficient and rapid regeneration protocol for elite Indian cotton variety could help improve the quality characteristics and biotic or abiotic stress tolerance. Here we report a novel regeneration protocol in Indian cotton cultivar Narashima. The maximum number of multiple shoots obtained was 16 per explants, performance which has never been achieved in any prior reports. The embryo apex explants were isolated from 2 d old in vitro growing seedlings. Explants were cultured on MS medium containing different plant growth regulator combinations in order to induce multiple shoots. Among the tested combinations, the 2 mg/l of 6-benzylaminopurine (BAP) and 2 mg/l kinetin (KIN) proved to be most suited for achieving the maximum number of multiple shoots. The elongation of multiple shoots was obtained in media supplemented with gibberellic acid (GA3). The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. This method avoids callus tissue, the stage of regeneration which may lead to somaclonal variation. The important feature of the presented method is shortening of regeneration time, as well as the induction of a high number of multiple shoots per explants. The present protocol may provide an efficient and rapid regeneration tool for obtaining more stable transformants from embryo apex explants of Indian cotton cultivar Narashima. PMID:23221745

  19. Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal.

    Science.gov (United States)

    Latif, Ayesha; Rao, Abdul Qayyum; Khan, Muhammad Azmat Ullah; Shahid, Naila; Bajwa, Kamran Shehzad; Ashraf, Muhammad Aleem; Abbas, Malik Adil; Azam, Muhammad; Shahid, Ahmad Ali; Nasir, Idrees Ahmad; Husnain, Tayyab

    2015-09-17

    Cotton yield has been badly affected by different insects and weed competition. In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. The control methods shifted towards high input and target-oriented methods after the discovery of synthetic herbicide in the 1930s. To utilise the transgenic approach, cotton plants expressing the codon-optimised CEMB GTGene were produced in the present study. Local cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301 vector under 35S promoter with Agrobacterium tumifaciens. Putative transgenic plants were screened in MS medium containing 120 µmol/L glyphosate. Integration and expression of the gene were evaluated by PCR from genomic DNA and ELISA from protein. A 1.4-kb PCR product for Glyphosate and 167-bp product for Cry2A were obtained by amplification through gene specific primers. Expression level of Glyphosate and Bt proteins in two transgenic lines were recorded to be 0.362, 0.325 µg/g leaf and 0.390, 0.300 µg/g leaf respectively. FISH analysis of transgenic lines demonstrates the presence of one and two copy no. of Cp4 EPSPS transgene respectively. Efficacy of the transgene Cp4 EPSPS was further evaluated by Glyphosate spray (41 %) assay at 1900 ml/acre and insect bioassay which shows 100 %mortality of insect feeding on transgenic lines as compared to control. The present study shows that the transgenic lines produced in this study were resistant not only to insects but also equally good against 1900 ml/acre field spray concentration of glyphosate.

  20. Identification and Characterization of miRNA Transcriptome in Asiatic Cotton (Gossypium arboreum Using High Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are small 20–24nt molecules that have been well studied over the past decade due to their important regulatory roles in different cellular processes. The mature sequences are more conserved across vast phylogenetic scales than their precursors and some are conserved within entire kingdoms, hence, their loci and function can be predicted by homology searches. Different studies have been performed to elucidate miRNAs using de novo prediction methods but due to complex regulatory mechanisms or false positive in silico predictions, not all of them express in reality and sometimes computationally predicted mature transcripts differ from the actual expressed ones. With the availability of a complete genome sequence of Gossypium arboreum, it is important to annotate the genome for both coding and non-coding regions using high confidence transcript evidence, for this cotton species that is highly resistant to various biotic and abiotic stresses. Here we have analyzed the small RNA transcriptome of G. arboreum leaves and provided genome annotation of miRNAs with evidence from miRNA/miRNA∗ transcripts. A total of 446 miRNAs clustered into 224 miRNA families were found, among which 48 families are conserved in other plants and 176 are novel. Four short RNA libraries were used to shortlist best predictions based on high reads per million. The size, origin, copy numbers and transcript depth of all miRNAs along with their isoforms and targets has been reported. The highest gene copy number was observed for gar-miR7504 followed by gar-miR166, gar-miR8771, gar-miR156, and gar-miR7484. Altogether, 1274 target genes were found in G. arboreum that are enriched for 216 KEGG pathways. The resultant genomic annotations are provided in UCSC, BED format.

  1. Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population

    Directory of Open Access Journals (Sweden)

    Giband Marc

    2010-06-01

    Full Text Available Abstract Background Cotton fibers (produced by Gossypium species are the premier natural fibers for textile production. The two tetraploid species, G. barbadense (Gb and G. hirsutum (Gh, differ significantly in their fiber properties, the former having much longer, finer and stronger fibers that are highly prized. A better understanding of the genetics and underlying biological causes of these differences will aid further improvement of cotton quality through breeding and biotechnology. We evaluated an inter-specific Gh × Gb recombinant inbred line (RIL population for fiber characteristics in 11 independent experiments under field and glasshouse conditions. Sites were located on 4 continents and 5 countries and some locations were analyzed over multiple years. Results The RIL population displayed a large variability for all major fiber traits. QTL analyses were performed on a per-site basis by composite interval mapping. Among the 651 putative QTLs (LOD > 2, 167 had a LOD exceeding permutation based thresholds. Coincidence in QTL location across data sets was assessed for the fiber trait categories strength, elongation, length, length uniformity, fineness/maturity, and color. A meta-analysis of more than a thousand putative QTLs was conducted with MetaQTL software to integrate QTL data from the RIL and 3 backcross populations (from the same parents and to compare them with the literature. Although the global level of congruence across experiments and populations was generally moderate, the QTL clustering was possible for 30 trait x chromosome combinations (5 traits in 19 different chromosomes where an effective co-localization of unidirectional (similar sign of additivity QTLs from at least 5 different data sets was observed. Most consistent meta-clusters were identified for fiber color on chromosomes c6, c8 and c25, fineness on c15, and fiber length on c3. Conclusions Meta-analysis provided a reliable means of integrating phenotypic and

  2. Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings.

    Science.gov (United States)

    McCall, P J; Turlings, T C; Loughrin, J; Proveaux, A T; Tumlinson, J H

    1994-12-01

    The effect of herbivory on the composition of the volatile blends released by cotton seedlings was investigated by collecting volatiles from undamaged, freshly damaged (0-2 hr after initiation of feeding), and old damaged (16-19 hr after initiation of feeding) plants on which corn earworm caterpillars (Helicoverpa zea Boddie) were actively feeding. A blend of 22 compounds was consistently observed to be emitted by the old damaged plants with nine occurring either only in, or in significantly greater amounts in old damaged, as compared with freshly damaged plants. These were (Z)-3-hexenyl acetate, hexyl acetate, (E)-β-ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, (Z)-3-hexenyl butyrate, (E)-2-hexenyl butyrate, (Z)-3-hexenyl 2-methylbutyrate, (E)-2-hexenyl 2-methylbutyrate, and indole. The nature of this response is compared with other studies where herbivore-induced volatile responses are also known. The presence of large amounts of terpenes and aldehydes seen at the onset of feeding and the appearance of other compounds hours later suggest that cotton defense mechanisms may consist of a constitutive repertoire that is augmented by an induced mechanism mobilized in response to attack. A number of the induced compounds are common to many plants where, in addition to an immediate defensive function, they are known to be involved in the attraction of natural enemies.

  3. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Badigannavar, Ashok; Myers, Gerald O

    2015-03-01

    Cottonseed contains 16% seed oil and 23% seed protein by weight. High levels of palmitic acid provides a degree of stability to the oil, while the presence of bound gossypol in proteins considerably changes their properties, including their biological value. This study uses genetic principles to identify genomic regions associated with seed oil, protein and fibre content in upland cotton cultivars. Cotton association mapping panel representing the US germplasm were genotyped using amplified fragment length polymorphism markers, yielding 234 polymorphic DNA fragments. Phenotypic analysis showed high genetic variability for the seed traits, seed oil range from 6.47-25.16%, protein from 1.85-28.45% and fibre content from 15.88-37.12%. There were negative correlations between seed oil and protein content.With reference to genetic diversity, the average estimate of FST was 8.852 indicating a low level of genetic differentiation among subpopulations. The AMOVA test revealed that variation was 94% within and 6% among subpopulations. Bayesian population structure identified five subpopulations and was in agreement with their geographical distribution. Among the mixed models analysed, mixed linear model (MLM) identified 21 quantitative trait loci for lint percentage and seed quality traits, such as seed protein and oil. Establishing genetic diversity, population structure and marker trait associations for the seed quality traits could be valuable in understanding the genetic relationships and their utilization in breeding programmes.

  4. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Li, Tinggang; Ma, Xuefeng; Li, Nanyang; Zhou, Lei; Liu, Zheng; Han, Huanyong; Gui, Yuejing; Bao, Yuming; Chen, Jieyin; Dai, Xiaofeng

    2017-12-01

    Verticillium wilt (VW), caused by infection by Verticillium dahliae, is considered one of the most yield-limiting diseases in cotton. To examine the genetic architecture of cotton VW resistance, we performed a genome-wide association study (GWAS) using a panel of 299 accessions and 85 630 single nucleotide polymorphisms (SNPs) detected using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Trait-SNP association analysis detected a total of 17 significant SNPs at P resistance on A10 were continuous and common in three environments (RDIG2015, RDIF2015 and RDIF2016). Haplotype block structure analysis predicted 22 candidate genes for VW resistance based on A10_99672586 with a minimum P-value (-log10 P = 6.21). One of these genes (CG02) was near the significant SNP A10_99672586 (0.26 Mb), located in a 372-kb haplotype block, and its Arabidopsis AT3G25510 homologues contain TIR-NBS-LRR domains that may be involved in disease resistance response. Real-time quantitative PCR and virus-induced gene silencing (VIGS) analysis showed that CG02 was specific to up-regulation in the resistant (R) genotype Zhongzhimian2 (ZZM2) and that silenced plants were more susceptible to V. dahliae. These results indicate that CG02 is likely the candidate gene for resistance against V. dahliae in cotton. The identified locus or gene may serve as a promising target for genetic engineering and selection for improving resistance to VW in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Shangguan, Xiao-Xia; Yang, Chang-Qing; Zhang, Xiu-Fang; Wang, Ling-Jian

    2016-10-01

    Cotton fiber is proposed to share some similarity with the Arabidopsis thaliana leaf trichome, which is regulated by the MYB-bHLH-WD40 transcription complex. Although several MYB transcription factors and WD40 family proteins in cotton have been characterized, little is known about the role of bHLH family proteins in cotton. Here, we report that GhDEL65, a bHLH protein from cotton (Gossypium hirsutum), is a functional homologue of Arabidopsis GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) in regulating trichome development. Transcripts of GhDEL65 were detected in 0 ∼ 1 days post-anthesis (DPA) ovules and abundant in 3-DPA fibers, implying that GhDEL65 may act in early fiber development. Ectopic expression of GhDEL65 in Arabidopsis gl3 egl3 double mutant partly rescued the trichome development, and constitutive expression of GhDEL65 in wild-type plants led to increased trichome density on rosette leaves and stems, mainly by activating the transcription of two key positive regulators of trichome development, GLABRA1 (GL1) and GLABRA2 (GL2), and suppressed the expression of a R3 single-repeat MYB factor TRIPTYCHON (TRY). GhDEL65 could interact with cotton R2R3 MYB transcription factors GhMYB2 and GhMYB3, as well as the WD40 protein GhTTG3, suggesting that the MYB-bHLH-WD40 protein complex also exists in cotton fiber cell, though its function in cotton fiber development awaits further investigation. © 2016 Scandinavian Plant Physiology Society.

  6. Genetic effects on morphological and yield traits in cotton (Gossypium hirsutum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Khan, N. U.; Hassan, G.

    2011-07-01

    The nature and magnitude of genetic effects on morpho-yield traits were studied in a 6 x 6 F{sub 1} and F{sub 2} diallel cross in upland cotton. An additive-dominance model was adequate for most of the traits except plant height and seed cotton yield, where the model was partially adequate. Genetic parameters were estimated following Haymans and Mathers model. Additive effects controlled lint percentage and monopodia in both generations, and plant height and sympodia in F{sub 2}. Non-additive inheritance with over-dominance controlled yield in both generations, and plant height and sympodia in F{sub 1}. Most traits presented an unequal proportion of positive (U) and negative (V) alleles in the loci (H{sub 2}

  7. Morphological and physiological responses of cotton (Gossypium hirsutum L. plants to salinity.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant and Simian 3 (salt sensitive], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl- contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD, ascorbate peroxidase (APX, and glutathione reductase (GR, but reduced catalase (CAT activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.

  8. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene

    Directory of Open Access Journals (Sweden)

    Gregory N. Thyssen

    2016-06-01

    Full Text Available Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum. Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.

  9. Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Wen-Han eCheng

    2015-12-01

    Full Text Available The objective of this study was to increase understanding about the mechanism by which polyamines (PAs promote the conversion of embryogenic calli (EC into somatic embryos in cotton (Gossypium hirsutum L.. We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE, and investigated the effects of exogenous PAs and H2O2 on differentiation and development of embryogenic calli. Putrescine (Put, spermidine (Spd and spermine (Spm significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of polyamine synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton.

  10. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene.

    Science.gov (United States)

    Thyssen, Gregory N; Fang, David D; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D; Condon, Tracy L; Li, Ping; Kim, Hee Jin

    2016-06-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. Copyright © 2016 Thyssen et al.

  11. Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Cheng, Wen-Han; Wang, Fan-Long; Cheng, Xin-Qi; Zhu, Qian-Hao; Sun, Yu-Qiang; Zhu, Hua-Guo; Sun, Jie

    2015-01-01

    The objective of this study was to increase understanding about the mechanism by which polyamines (PAs) promote the conversion of embryogenic calli (EC) into somatic embryos in cotton (Gossypium hirsutum L.). We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE), and investigated the effects of exogenous PAs and H2O2 on differentiation and development of EC. Putrescine (Put), spermidine (Spd), and spermine (Spm) significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm, and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of PA synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton. PMID:26697030

  12. The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses.

    Science.gov (United States)

    He, Peng; Zhao, Peng; Wang, Limin; Zhang, Yuzhou; Wang, Xiaosi; Xiao, Hui; Yu, Jianing; Xiao, Guanghui

    2017-07-03

    Cell elongation and expansion are significant contributors to plant growth and morphogenesis, and are often regulated by environmental cues and endogenous hormones. Auxin is one of the most important phytohormones involved in the regulation of plant growth and development and plays key roles in plant cell expansion and elongation. Cotton fiber cells are a model system for studying cell elongation due to their large size. Cotton is also the world's most utilized crop for the production of natural fibers for textile and garment industries, and targeted expression of the IAA biosynthetic gene iaaM increased cotton fiber initiation. Polar auxin transport, mediated by PIN and AUX/LAX proteins, plays a central role in the control of auxin distribution. However, very limited information about PIN-FORMED (PIN) efflux carriers in cotton is known. In this study, 17 PIN-FORMED (PIN) efflux carrier family members were identified in the Gossypium hirsutum (G. hirsutum) genome. We found that PIN1-3 and PIN2 genes originated from the At subgenome were highly expressed in roots. Additionally, evaluation of gene expression patterns indicated that PIN genes are differentially induced by various abiotic stresses. Furthermore, we found that the majority of cotton PIN genes contained auxin (AuxREs) and salicylic acid (SA) responsive elements in their promoter regions were significantly up-regulated by exogenous hormone treatment. Our results provide a comprehensive analysis of the PIN gene family in G. hirsutum, including phylogenetic relationships, chromosomal locations, and gene expression and gene duplication analyses. This study sheds light on the precise roles of PIN genes in cotton root development and in adaption to stress responses.

  13. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Suo, Jinfeng; Liang, Xiaoe; Pu, Li; Zhang, Yansheng; Xue, Yongbiao

    2003-10-20

    Cotton (Gossypium hirsutum L.) fibers are derived from ovule epidermis, which are developmentally similar to Arabidopsis trichome where several MYB transcription factors have been shown to control their formation. However, little is known about the molecular control of cotton fiber initiation. Here we isolated 55 cotton MYB domain-containing sequences expressed in ovules during fiber initiation. Among them, GhMYB109, encoding a R2R3 MYB transcription factor of 234 amino acids, was found to be structurally related to AtMYBGL1 and AtWER controlling the trichome initiation in Arabidopsis thaliana. Southern blot hybridization revealed that GhMYB109 is present as a unique-copy gene in cotton genome. RNA expression analysis showed that it is specifically expressed in cotton fiber initial cells as well as elongating fibers. These results suggested that GhMYB109 likely plays a direct role in the initiation and elongation of cotton fiber cells.

  14. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean.

    Science.gov (United States)

    Coppens d'Eeckenbrugge, Geo; Lacape, Jean-Marc

    2014-01-01

    Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race 'yucatanense' from northern Yucatán. 'Marie-Galante', the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats), wild/feral (protected habitats), and truly wild cotton (TWC) populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida), as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating 'Marie-Galante' from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively low genetic

  15. Distribution and differentiation of wild, feral, and cultivated populations of perennial upland cotton (Gossypium hirsutum L. in Mesoamerica and the Caribbean.

    Directory of Open Access Journals (Sweden)

    Geo Coppens d'Eeckenbrugge

    Full Text Available Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived from the wild race 'yucatanense' from northern Yucatán. 'Marie-Galante', the main race in the Caribbean, would have developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats, wild/feral (protected habitats, and truly wild cotton (TWC populations. The widely distributed three first categories cannot be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida, as confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites; at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence separating 'Marie-Galante' from all other feral accessions. This strong genetic structure contrasts strikingly with the absence of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a homogenous gene pool. Furthermore, the relatively

  16. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    QI MA

    Abstract. Identification of molecular markers associated with fibre traits can accelerate cotton marker-assisted selection (MAS) programmes. In this study, Gossypium barbadense germplasm accessions with diverse origins (n = 123) were used to perform association analysis of fibre traits with 120 polymorphic simple ...

  17. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers.

    Science.gov (United States)

    Zhang, Jie; Huang, Geng-Qing; Zou, Dan; Yan, Jing-Qiu; Li, Yang; Hu, Shan; Li, Xue-Bao

    2017-11-06

    Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Improvement of copper tolerance of Arabidopsis by transgenic expression of an allene oxide cyclase gene, GhAOC1, in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2015-08-01

    Full Text Available Allene oxide cyclase (AOC, E 5.3.99.6 is an essential enzyme in the jasmonic acid (JA biosynthetic pathway and mediates a wide range of adaptive responses. In this report, five AOC genes (GhAOC1–GhAOC5 were cloned from upland cotton (Gossypium hirsutum L., sequenced, and characterized. Real-time PCR analysis indicated that the transcripts of GhAOCs were abundantly expressed in roots and less in fibers, and regulated in cotton plants under methyl jasmonate (MeJA and CuCl2 stresses. To investigate the role of GhAOC under copper stress, transgenic Arabidopsis plants overexpressing cotton GhAOC1 under control of the Cauliflower mosaic virus 35S (CaMV 35S promoter were generated. Compared to untransformed plants, GhAOC1-overexpressing Arabidopsis thaliana plants exhibited markedly higher survival rate, shoot fresh weight, shoot dry weight, and photosynthetic efficiency, and reduced cell membrane damage and lipid peroxidation under copper stress. This study provides the first evidence that GhAOC1 plays an important role in copper stress tolerance.

  19. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Cotton (Gossypium hirsutum L. is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  20. The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum.

    Science.gov (United States)

    Marmey, Philippe; Jalloul, Aïda; Alhamdia, Majd; Assigbetse, Komi; Cacas, Jean-Luc; Voloudakis, Andreas E; Champion, Antony; Clerivet, Alain; Montillet, Jean-Luc; Nicole, Michel

    2007-08-01

    Hypersensitive reaction (HR) cell death of cotton to the incompatible race 18 from Xanthomonas campestris pathovar malvacearum (Xcm) is associated with 9S-lipoxygenase activity (LOX) responsible for lipid peroxidation. Here, we report the cloning of cotton (Gossypium hirsutum L.) LOX gene (GhLOX1) and the sequencing of its promoter. GhLOX1 was found to be highly expressed during Xcm induced HR. Sequence analysis showed that GhLOX1 is a putative 9-LOX, and GhLOX1 promoter contains SA and JA responsive elements. Investigation on LOX signalisation on cotyledons infiltrated with salicylic acid (SA), or incubated with methyl-jasmonate (MeJA) revealed that both treatments induced LOX activity and GhLOX1 gene expression. HR-like symptoms were observed when LOX substrates were then injected in treated (MeJA and SA) cotyledons or when Xcm compatible race 20 was inoculated on MeJA treated cotyledons. Together these results support the fact that GhLOX1 encodes a 9 LOX whose activity would be involved in cell death during cotton HR.

  1. Comparative Analysis of the Cytology and Transcriptomes of the Cytoplasmic Male Sterility Line H276A and Its Maintainer Line H276B of Cotton (Gossypium barbadense L.

    Directory of Open Access Journals (Sweden)

    Xiangjun Kong

    2017-10-01

    Full Text Available In this study, the tetrad stage of microspore development in a new cotton (Gossypium barbadense L. cytoplasmic male sterility (CMS line, H276A, was identified using paraffin sections at the abortion stage. To explore the molecular mechanism underlying CMS in cotton, a comparative transcriptome analysis between the CMS line H276A and its maintainer line H276B at the tetrad stage was conducted using an Illumina HiSeq 4000 platform. The comparison of H276A with H276B revealed a total of 64,675 genes, which consisted of 59,255 known and 5420 novel genes. An analysis of the two libraries with a given threshold yielded a total of 3603 differentially expressed genes (DEGs, which included 1363 up- and 2240 down-regulated genes. Gene Ontology (GO annotation showed that 2171 DEGs were distributed into 38 categories, and a Kyoto Encyclopedia of Genes and Genomes (KEGG analysis showed that 2683 DEGs were classified into 127 groups. Thirteen DEGs were randomly selected and detected by quantitative reverse-transcribed PCR (qRT-PCR, and the results indicated that the transcriptome sequencing results were reliable. The bioinformatic analysis results in conjunction with previously reported data revealed key DEGs that might be associated with the male sterility features of H276A. Our results provide a comprehensive foundation for understanding anther development and will accelerate the study of the molecular mechanisms of CMS in cotton.

  2. Contradictions in host plant resistance to pests: spider mite (Tetranychus urticae Koch) behaviour undermines the potential resistance of smooth-leaved cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Reddall, Amelia A; Sadras, Victor O; Wilson, Lewis J; Gregg, Peter C

    2011-03-01

    Two-spotted spider mites (Tetranychus urticae Koch) oviposit near leaf veins or in leaf folds on the undersides of cotton (Gossypium hirsutum L.) leaves where the humid boundary layer offers protection from desiccation. The authors predicted that the boundary layer of glabrous cotton leaves should be shallower than that of hairy leaves, providing some resistance to mites. The dynamics of mite populations, leaf damage, leaf gas exchange and crop yield on two leaf hair isolines (smooth versus hairy) in two genetic backgrounds was assessed. Mite colonies developed faster on the hairy leaf isolines, but leaf damage per mite was higher in smooth leaf isolines, indicating more intense damage. A 50% reduction in photosynthesis on the hairy isolines required 1.8 times more mites than smooth leaves. The yield of cotton was reduced in + mite treatments, but the magnitude of reduction was similar for hairy and smooth isolines. Paradoxically, the relative inhospitality of glabrous leaves may have induced mites to concentrate in protected leaf sections, causing more localised and more severe damage, negating the yield benefits from fewer mites. These results highlight interactions between leaf microenvironment, pest behaviour and plant productivity that may have implications for other instances of plant resistance. Copyright © 2010 Society of Chemical Industry.

  3. SELETIVIDADE DE INSETICIDAS AO COMPLEXO DE INIMIGOS NATURAIS NA CULTURA DO ALGODÃO (Gossypium hirsutum L. SELECTIVITY OF INSECTICIDES ON THE COMPLEX OF NATURAL ENEMIES IN COTTON CROP (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Fábio Shigeo Takatsuka

    2007-09-01

    ="justify">The selectivity of insecticides was evaluated in the complex of natural enemies of the cotton (Gossypium hirsutum L. crop. The cultivar Deltapine was used in a randomized block experimental design, with seven treatments and four replications. The treatments, all in their commercial formulation, were: control; thiamethoxam (300 g.ha-1; lufenuron (300 mL.ha-1; betacyflutrin (800 mL.ha-1; imidacloprid (70g.ha-1; diflubenzuron (6,0 g.ha-1; and endosulfan (1500 mL.ha-1. The insecticides were sprayed at 45 days after germination. Besides the initial evaluation, other evaluations were performed three and seven days after insecticide application. Each plot was sampled by the fabric beating method, with two random beatings per plot. Natural enemies were identified and counted. Three days after application, the insecticides thiamethoxam (300 g.ha-1, lufenuron (300 mL.ha-1, and diflubenzuron (60 g.ha-1 did not showed negative effect on the complex of predators present in the cotton. However, seven days after application, only the lufenuron treatment maintained the selective effect over predator complex.

    KEY-WORDS: Insecticide; biological control; Gossypium.

  4. Transgressive segregation of root-knot nematode resistance in cotton determined by QTL analysis

    Science.gov (United States)

    Transgressive resistance to root-knot nematode, Meloidogyne incognita, was found in intraspecific (Gossypium hirsutum; resistant Acala NemX x susceptible Acala SJ-2) and interspecific (G. barbadense susceptible Pima-S7 x Acala NemX) cotton recombinant inbred line (RIL) populations. Similar contribut...

  5. The Hairless Stem Phenotype of Cotton (Gossypium barbadense) Is Linked to a Copia-Like Retrotransposon Insertion in a Homeodomain-Leucine Zipper Gene (HD1).

    Science.gov (United States)

    Ding, Mingquan; Ye, Wuwei; Lin, Lifeng; He, Shae; Du, Xiongming; Chen, Aiqun; Cao, Yuefen; Qin, Yuan; Yang, Fen; Jiang, Yurong; Zhang, Hua; Wang, Xiyin; Paterson, Andrew H; Rong, Junkang

    2015-09-01

    Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion. Copyright © 2015 by the Genetics Society of America.

  6. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    2013-01-01

    Background The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li2) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development. The Li2 mutant phenotype provides an ideal model system to study fiber elongation. To understand metabolic processes involved in cotton fiber elongation, changes in metabolites and transcripts in the Li2 mutant fibers were compared to wild-type fibers during development. Results Principal component analysis of metabolites from GC-MS data separated Li2 mutant fiber samples from WT fiber samples at the WT elongation stage, indicating that the Li2 mutation altered the metabolome of the mutant fibers. The observed alterations in the Li2 metabolome included significant reductions in the levels of detected free sugars, sugar alcohols, sugar acids, and sugar phosphates. Biological processes associated with carbohydrate biosynthesis, cell wall loosening, and cytoskeleton were also down-regulated in Li2 fibers. Gamma-aminobutyric acid, known as a signaling factor in many organisms, was significantly elevated in mutant fibers. Higher accumulation of 2-ketoglutarate, succinate, and malate suggested higher nitrate assimilation in the Li2 line. Transcriptional activation of genes involved in nitrogen compound metabolism along with changes in the levels of nitrogen transport amino acids suggested re-direction of carbon flow into nitrogen metabolism in Li2 mutant fibers. Conclusions This report provides the first comprehensive analysis of metabolite and transcript changes in response to the Li2 mutation in elongating fibers. A number of factors associated with cell elongation found in this study will facilitate further research in understanding metabolic processes of cotton fiber elongation. PMID

  7. Land suitability evaluation for wheat (Triticum aestivum L., mays (Zea mays L. and cotton (Gossypium herbaceum L. production using GIS at Neyshabour plain

    Directory of Open Access Journals (Sweden)

    H.R. Bagherzadeh

    2016-05-01

    Full Text Available Land evaluation is the process of predicting the land use potential on the basis of its attributes. At the present study the qualitative land suitability evaluation was investigated for specific cereal crops including irrigated wheat (Triticum aestivum L., mays (Zea mays L. and cotton (Gossypium herbaceum L., based on FAO land evaluation frame works (1976, 1983 and1985, climatic and soil requirements for each crop and the parametric approach based on Kalugirou method at central plain of Neyshabour, northeast of Iran. Some sixteen soil series were studied on six land units by precise soil survey and their morphological and physicochemical properties were determined. Climatic and land qualities/characteristics for each crop were determined using the tables of crop requirements. An interpolation function was used to map values to scores in terms of land qualities/characteristics for land utilization types and the evaluation was carried out according to Kalogirou parametric approach. The interpolation technique by GIS functions helped in managing the spatial data and visualizing the results. Land suitability assessment for selected crops at the study area indicated that the priority for crops culture is wheat, mays and cotton, respectively. The results showed that the most important limiting factor is physical properties of soils for wheat culture, while mays and corn cultures are limited mainly by climatic conditions. The results indicated that 100% of Neyshabour plain has S3 and S2 suitability classes for wheat culture. While these two classes for corn production is calculated 69.15 percent totally and practically cotton doesn’t have S3 and S2 suitability classes. It seems that by improving soil physical properties, wheat and mays cultivations results higher suitability class. According to low climatic index and climate rate for cotton cultivation at Neyshabour plain this culture is not recommended at the study area.

  8. Field trial of insect-resistant and herbicide-tolerant genetically modified cotton (Gossypium hirsutum L.) for environmental risk assessment in Japan.

    Science.gov (United States)

    Asanuma, Yoko; Gondo, Takahiro; Ishigaki, Genki; Inoue, Koichi; Zaita, Norihiro; Muguerza, Melody; Akashi, Ryo

    2017-04-03

    Japan imports cottonseed mainly from Australia and the USA where more than 96% of all cotton varieties grown are genetically modified (GM). GM crops undergo an environmental risk assessment (ERA) under the Law Concerning the Conservation and Sustainable Use of Biological Diversity before import into Japan. Potential adverse effects on biodiversity are comprehensively assessed based on competitiveness, production of harmful substances and outcrossing ability. Even though imported cottonseed is intended for food and feed uses and not for cultivation, the potential risks from seed spillage during transport must be evaluated. In most cases, the ERA requires data collected from in-country field trials to demonstrate how the GM crop behaves in Japan's environment. Confined field trials in Japan were conducted for the ERA of Lepidoptera-resistant and glufosinate-tolerant GM cotton (Gossypium hirsutum L.) lines GHB119 and T304-40. These lines were compared with conventional varieties for growth habit, morphological characteristics, seed dormancy, and allelopathic activity associated with competitiveness and production of harmful substances. Outcrossing ability was not a concern due to the absence of sexually compatible wild relatives in Japan. Although slight statistical differences were observed between the GM line and its conventional comparator for some morphological characteristics, transgenes or transformation were not considered to be responsible for these differences. The trial demonstrated that competitiveness and production of harmful substances by these GM cotton lines were equivalent to conventional cotton varieties that have a long history of safe use, and no potential adverse effects to biosafety in Japan were observed.

  9. Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology.

    Science.gov (United States)

    Lu, X K; Shu, N; Wang, J J; Chen, X G; Wang, D L; Wang, S; Fan, W L; Guo, X N; Guo, L X; Ye, W W

    2017-06-29

    Cytosine DNA methylation is a significant form of DNA modification closely associated with gene expression in eukaryotes, fungi, animals, and plants. Although the reference genomes of cotton (Gossypium hirsutum L.) have been publically available, the salinity-stress-induced DNA methylome alterations in cotton are not well understood. Here, we constructed a map of genome-wide DNA methylation characteristics of cotton leaves under salt stress using the methylated DNA immunoprecipitation sequencing method. The results showed that the methylation reads on chromosome 9 were most comparable with those on the other chromosomes, but the greatest changes occurred on chromosome 8 under salt stress. The DNA methylation pattern analysis indicated that a relatively higher methylation density was found in the upstream2k and downstream2k elements of the CDS region and CG-islands. Almost 94% of the reads belonged to LTR-gspsy and LTR-copia, and the number of methylation reads in LTR-gypsy was four times greater than that in LTR-copia in both control and stressed samples. The analysis of differentially methylated regions (DMRs) showed that the gene elements upstream2k, intron, and downstream2k were hypomethylated, but the CDS regions were hypermethylated. The GO (Gene Ontology) analysis suggested that the methylated genes were most enriched in cellular processes, metabolic processes, cell parts and catalytic activities, which might be closely correlated with response to NaCl stress. In this study, we completed a genomic DNA methylation profile and conducted a DMR analysis under salt stress, which provided valuable information for the better understanding of epigenetics in response to salt stress in cotton.

  10. A combined functional and structural genomics approach identified an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic locus in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Hinchliffe, Doug J; Turley, Rickie B; Naoumkina, Marina; Kim, Hee Jin; Tang, Yuhong; Yeater, Kathleen M; Li, Ping; Fang, David D

    2011-09-09

    Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The cotton (Gossypium hirsutum L.) fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li2) that results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li2 is a model system with which to study fiber elongation. Two near-isogenic lines of Ligon lintless-2 (Li2) cotton, one mutant and one wild-type, were developed through five generations of backcrosses (BC5). An F2 population was developed from a cross between the two Li2 near-isogenic lines and used to develop a linkage map of the Li2 locus on chromosome 18. Five simple sequence repeat (SSR) markers were closely mapped around the Li2 locus region with two of the markers flanking the Li2 locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays suggested roles of reactive oxygen species (ROS) homeostasis and cytokinin regulation in the Li2 mutant phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991) that displayed complete linkage to the Li2 locus. In the field of cotton genomics, we report the first successful conversion of gene expression data into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-derived SSR marker NAU3991 displayed complete linkage to the Li2 locus on chromosome 18 and resided in a gene with similarity to a

  11. STUDY OF GENE FLOW FROM GM COTTON (Gossypium hirsutum VARIETIES IN “EL ESPINAL” (TOLIMA, COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2013-10-01

    Full Text Available In 2009, 4088 hectares of genetically modified (GM cotton were planted in Tolima (Colombia, however there is some uncertainty about containment measures needed to prevent the flow of pollen and seed from regulated GM fields into adjacent fields. In this study, the gene flow from GM cotton varieties to conventional or feral cotton plants via seed and pollen was evaluated. ImmunostripTM, PCR and ELISA assays were used to detect gene flow. Fifty six refuges, 27 fields with conventional cotton and four feral individuals of the enterprise “Remolinos Inc.” located in El Espinal (Tolima were analyzed in the first half of 2010. The results indicated seeds mediated gene flow in 45 refuges (80,4 % and 26 fields with conventional cotton (96 %, besides a pollen mediated gene flow in one field with conventional cotton and nine refuges. All fields cultivated with conventional cotton showed gene flow from GM cotton. Two refuges and two feral individuals did not reveal gene flow from GM cotton

  12. Slow desiccation leads to high-frequency shoot recovery from transformed somatic embryos of cotton (Gossypium hirsutum L. cv. Coker 310 FR).

    Science.gov (United States)

    Chaudhary, B; Kumar, S; Prasad, K V S K; Oinam, G S; Burma, P K; Pental, D

    2003-06-01

    In Agrobacterium-mediated genetic transformation of cotton (Gossypium hirsutum L. cv. Coker 310FR) the frequency at which somatic embryos were converted to plantlets was significantly improved by subjecting the embryos to slow physical desiccation. We used Agrobacterium strain GV3101 containing the binary vector pGSFR with the nos-nptII gene for in vitro selection and the 35S gus-int fragment as a reporter to optimize the transformation protocol. Although the concentration of kanamycin was reduced during embryogenesis and embryo maturation, even at the lower levels somatic embryos were predominantly abnormal, showing hypertrophy and reduced or fused cotyledons or poor radicle ends. A majority of these embryos (more than 75%) were beta-glucuronidase (GUS)-positive. Embryos with an abnormal appearance showed a very poor conversion to plantlets. However, these embryos, when subjected to slow physical desiccation followed by transfer to fresh medium, regenerated single or multiple shoots from the cotyledonary end. These shoots could be grafted on wild-type seedling stocks in vitro, which, following their transfer to soil, developed normally and set seeds. Regenerated plants tested positive for the transgene by Southern analysis. An overall scheme for the high-frequency production of cotton transgenics from both normal and abnormal appearing somatic embryos is presented.

  13. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres.

    Science.gov (United States)

    Hinchliffe, Doug J; Condon, Brian D; Thyssen, Gregory; Naoumkina, Marina; Madison, Crista A; Reynolds, Michael; Delhom, Christopher D; Fang, David D; Li, Ping; McCarty, Jack

    2016-10-01

    Some naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood. In this study, we show that both the brown colour and enhanced FR of the Lc1 lint colour locus are linked to a 1.4Mb inversion on chromosome A07 that is immediately upstream of a gene with similarity to Arabidopsis TRANSPARENT TESTA 2 (TT2). As a result of the alternative upstream sequence, the transcription factor GhTT2_A07 is highly up-regulated in developing fibres. In turn, genes in the phenylpropanoid metabolic pathway are activated, leading to biosynthesis of proanthocyanidins and accumulation of inorganic elements. We show that enhanced FR and anthocyanin precursors appear in developing brown fibres well before the brown colour is detectible, demonstrating for the first time that the polymerized proanthocyanidins that constitute the brown colour are not the source of enhanced FR. Identifying the particular colourless metabolite that provides Lc1 cotton with enhanced FR could help minimize the use of synthetic chemical flame retardant additives in textiles. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres

    Science.gov (United States)

    Yuan, Daojun; Tang, Zhonghui; Wang, Maojun; Gao, Wenhui; Tu, Lili; Jin, Xin; Chen, Lingling; He, Yonghui; Zhang, Lin; Zhu, Longfu; Li, Yang; Liang, Qiqi; Lin, Zhongxu; Yang, Xiyan; Liu, Nian; Jin, Shuangxia; Lei, Yang; Ding, Yuanhao; Li, Guoliang; Ruan, Xiaoan; Ruan, Yijun; Zhang, Xianlong

    2015-01-01

    Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus. PMID:26634818

  15. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  16. Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypium arboreum and Gossypium hirsutum.

    Science.gov (United States)

    Nazeer, Wajad; Tipu, Abdul Latif; Ahmad, Saghir; Mahmood, Khalid; Mahmood, Abid; Zhou, Baoliang

    2014-01-01

    Cotton leaf curl virus disease (CLCuD) is an important constraint to cotton production. The resistance of G. arboreum to this devastating disease is well documented. In the present investigation, we explored the possibility of transferring genes for resistance to CLCuD from G. arboreum (2n = 26) cv 15-Mollisoni into G. hirsutum (2n = 52) cv CRSM-38 through conventional breeding. We investigated the cytology of the BC1 to BC3 progenies of direct and reciprocal crosses of G. arboreum and G. hirsutum and evaluated their resistance to CLCuD. The F1 progenies were completely resistant to this disease, while a decrease in resistance was observed in all backcross generations. As backcrossing progressed, the disease incidence increased in BC1 (1.7-2.0%), BC2 (1.8-4.0%), and BC3 (4.2-7.0%). However, the disease incidence was much lower than that of the check variety CIM-496, with a CLCuD incidence of 96%. Additionally, the disease incidence percentage was lower in the direct cross 2(G. arboreum)×G. hirsutum than in that of G. hirsutum×G. arboreum. Phenotypic resemblance of BC1 ∼BC3 progenies to G. arboreum confirmed the success of cross between the two species. Cytological studies of CLCuD-resistant plants revealed that the frequency of univalents and multivalents was high in BC1, with sterile or partially fertile plants, but low in BC2 (in both combinations), with shy bearing plants. In BC3, most of the plants exhibited normal bearing ability due to the high frequency of chromosome associations (bivalents). The assessment of CLCuD through grafting showed that the BC1 to BC3 progenies were highly resistant to this disease. Thus, this study successfully demonstrates the possibility of introgressing CLCuD resistance genes from G. arboreum to G. hirsutum.

  17. Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber

    OpenAIRE

    Li, Yan-Jun; Zhu, Shou-Hong; Zhang, Xin-Yu; Liu, Yong-Chang; Xue, Fei; Zhao, Lan-Jie; Sun, Jie

    2017-01-01

    Background Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. Re...

  18. Identification of Multiple Stress Responsive Genes by Sequencing a Normalized cDNA Library from Sea-Land Cotton (Gossypium barbadense L..

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    Full Text Available Plants often face multiple stresses including drought, extreme temperature, salinity, nutrition deficiency and biotic stresses during growth and development. All the stresses result in a series of physiological and metabolic reactions and then generate reversible inhibition of metabolism and growth and can cause seriously irreversible damage, even death. At each stage of cotton growth, environmental stress conditions pose devastating threats to plant growth and development, especially yield and quality. Due to the complex stress conditions and unclear molecular mechanisms of stress response, there is an urgent need to explore the mechanisms of cotton response against abiotic stresses.A normalized cDNA library was constructed using Gossypium barbadense Hai-7124 treated with different stress conditions (heat, cold, salt, drought, potassium and phosphorus deficit and Verticillium dahliae infection. Random sequencing of this library generated 6,047 high-quality expressed sequence tags (ESTs. The ESTs were clustered and assembled into 3,135 uniESTs, composed of 2,497 contigs and 638 singletons. The blastx results demonstrated 2,746 unigenes showing significant similarity to known genes, 74 uniESTs displaying significant similarity to genes of predicted proteins, and 315 uniESTs remain uncharacterized. Functional classification unveiled the abundance of uniESTs in binding, catalytic activity, and structural molecule activity. Annotations of the uniESTs by the plant transcription factor database (PlantTFDB and Plant Stress Protein Database (PSPDB disclosed that transcription factors and stress-related genes were enriched in the current library. The expression of some transcription factors and specific stress-related genes were verified by RT-PCR under various stress conditions.Annotation results showed that a huge number of genes respond to stress in our study, such as MYB-related, C2H2, FAR1, bHLH, bZIP, MADS, and mTERF. These results will improve our

  19. Seed cotton yield, ionic and quality attributes of two cotton (Gossypium hirsutum L. varieties as influenced by various rates of K and Na under field conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Sohail

    2011-11-01

    Full Text Available Cotton is more sensitive to low K availability than most other major field crops, and often shows symptoms of K deficiency in soils not considered K deficient. Field investigation was conducted at Sahiwal to study the effect of different rates of K and Na application on seed cotton yield, ionic ratio and quality characteristics of two cotton varieties. Ten soil K: Na ratios were developed after considering indigenous K, Na status in soil. The treatments of K+Na in kg ha-1 to give K:Na ratios were as: 210+ 60 (3.5:1 i.e. control, 225 + 60 (3.75:1, 240 + 60 (4:1, 255 + 60 (4.25:1, 270 + 60 (4.5:1, 210 + 75 (2.8:1, 225 + 75 (3:1, 240 + 75 (3.2:1, 255 + 75 (3.4:1 and 270 + 75 (3.6:1. Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Maximum seed cotton yield of NIBGE-2 was observed at K: Na ratio of 3.6:1. Variety NIBGE-2 manifested greater seed cotton yield than MNH-786. Leaf K: Na ratio of two cotton varieties differed significantly (p < 0.01 due to varieties, rates of K and Na and their interaction. Variety NIBGE-2 maintained higher K: Na ratio than MNH-786 and manifested good fiber quality. There was significant relationship (R2 = 0.55, n = 10 between K: Na ratio and fiber length and significant relationship (R2 = 0.65, n = 10 between K concentration and fiber length for NIBGE-2. There was also significant relationship (R2 = 0.91, 0.78, n = 10 between boll number and seed cotton yield for both varieties. The increase in yield was attributed to increased boll weight.

  20. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Huang, Xin-Zheng; Chen, Jie-Yin; Xiao, Hai-Jun; Xiao, Yu-Tao; Wu, Juan; Wu, Jun-Xiang; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-07-07

    In response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and volatile characteristics of cotton plants in response to cotton bollworm (CBW; Helicoverpa armigera) larvae infestation. Analysis of samples revealed that 1,969 transcripts were differentially expressed (log2|Ratio| ≥ 2; q ≤ 0.05) after CBW infestation. Cluster analysis identified several distinct temporal patterns of transcriptome changes. Among CBW-induced genes, those associated with indirect defense and jasmonic acid pathway were clearly over-represented, indicating that these genes play important roles in CBW-induced defenses. The gas chromatography-mass spectrometry (GC-MS) analyses revealed that CBW infestation could induce cotton plants to release volatile compounds comprised lipoxygenase-derived green leaf volatiles and a number of terpenoid volatiles. Responding to CBW larvae infestation, cotton plants undergo drastic reprogramming of the transcriptome and the volatile profile. The present results increase our knowledge about insect herbivory-induced metabolic and biochemical processes in plants, which may help improve future studies on genes governing processes.

  1. [Arachnofauna (araneae: Araneae) in transgenic and conventional cotton crops (Gossypium hirsutum) in the North of Santa Fe, Argentina].

    Science.gov (United States)

    Almada, Melina Soledad; Sosa, María Ana; González, Alda

    2012-06-01

    Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe) was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt), conventional cotton without chemical control (ALCSC), and conventional cotton with chemical control (ALCCC). Weekly, spiders were collected using nets, vertical cloth and pitfall-traps. A total of 1255 specimens (16 families, and 32 species) were collected. Seven families were found in all the treatments, mainly Thomisidae (n=1 51, 84.04%) and Araneidae (n=83, 6.64%). The Hunting spiders guild ambushers (n=1053, 83.91%), "Orb weavers" (n=85, 6.77%) and "Stalkers" (n=53, 4.22%) were more abundant. There were no significant differences in the indexes diversity between treatments. Spiders were presented during the whole crop season, with peaks about flowering and boll maturity, with the highest abundance in ALBt. This work is part of the first set of data registered in Argentina about spider's community in cotton crops.

  2. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants.

    Science.gov (United States)

    Rajasekaran, Kanniah; Cary, Jeffrey W; Jaynes, Jesse M; Cleveland, Thomas E

    2005-11-01

    Fertile, transgenic cotton plants expressing the synthetic antimicrobial peptide, D4E1, were produced through Agrobacterium-mediated transformation. PCR products and Southern blots confirmed integration of the D4E1 gene, while RT-PCR of cotton RNA confirmed the presence of D4E1 transcripts. In vitro assays with crude leaf protein extracts from T0 and T1 plants confirmed that D4E1 was expressed at sufficient levels to inhibit the growth of Fusarium verticillioides and Verticillium dahliae compared to extracts from negative control plants transformed with pBI-d35S(Omega)-uidA-nos (CGUS). Although in vitro assays did not show control of pre-germinated spores of Aspergillus flavus, bioassays with cotton seeds in situ or in planta, inoculated with a GFP-expressing A. flavus, indicated that the transgenic cotton seeds inhibited extensive colonization and spread by the fungus in cotyledons and seed coats. In planta assays with the fungal pathogen, Thielaviopsis basicola, which causes black root rot in cotton, showed typical symptoms such as black discoloration and constriction on hypocotyls, reduced branching of roots in CGUS negative control T1 seedlings, while transgenic T1 seedlings showed a significant reduction in disease symptoms and increased seedling fresh weight, demonstrating tolerance to the fungal pathogen. Significant advantages of synthetic peptides in developing transgenic crop plants that are resistant to diseases and mycotoxin-causing fungal pathogens are highlighted in this report.

  3. Relative contribution of Na+/K+homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars.

    Science.gov (United States)

    Wang, Ning; Qiao, Wenqing; Liu, Xiaohong; Shi, Jianbin; Xu, Qinghua; Zhou, Hong; Yan, Gentu; Huang, Qun

    2017-10-01

    In this study, the role of specific components of different coping strategies to salt load were identified. A pot experiment was conducted with four cotton (Gossypium hirsutum L.) cultivars (differing in salt-sensitivity) under salinity stress. Based on observed responses in growth performance and physiological characteristics, CZ91 was the most tolerant of the four cultivars, followed by cultivars CCRI44 and CCRI49, with Z571 being much more sensitive to salt stress. To perform this tolerant response, they implement different adaptative mechanisms to cope with salt-stress. The superior salt tolerance of CZ91 was conferred by at least three complementary physiological mechanisms: its ability to regulate K + and Na + transport more effectively, its higher photochemical efficiency and better antioxidant defense capacity. However, only one or a few specific components of these defense systems play crucial roles in moderately salt tolerant CCRI44 and CCRI49. Lower ROS load in CCRI44 may be attributed to simultaneous induction of antioxidant defenses by maintaining an unusually high level of SOD, and higher activities of CAT, APX, and POD during salt stress. CCRI49 could reduce the excess generation of ROS not only by maintaining a higher selective absorption of K + over Na + in roots across the membranes through SOS1, AKT1, and HAK5, but also by displaying higher excess-energy dissipation (e.g., higher ETR, P R and qN) during salt stress. Overall, our data provide a mechanistic explanation for differential salt stress tolerance among these cultivars and shed light on the different strategies employed by cotton cultivars to minimize the ill effects of stress. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Efeito de tratamentos com fungicidas na conservação de sementes de algodoeiro (Gossypium hirsutum L. Fungicides treatment and storage of cotton seed (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Edivaldo Cia

    1980-01-01

    Full Text Available Foi feito um estudo sobre a germinação de sementes das variedades comerciais de algodoeiro IAC 13-1 e IAC 17, mantendo-se as sementes em condições de labo-ratório durante dois anos e utilizando-se os seguintes tratamentos com fungicidas: 1 PCNB + thiram; 2 Benomyl; 3 deslintamento mecânico (testemunha; 4 deslintamento ácido (D.A.; 5 PCNB + thiram + D.A.; e 6 mercúrio metálico. A semeadura foi efetuada em canteiros de casa de vegetação, com três repetições, utilizando-se cinqüenta sementes por parcela. A avaliação dos dados foi feita através de índices de emergência (relação entre o stand inicial e o número de sementes utilizadas e de resistência a fungos do tombamento (relação entre a média ponderada das notas das plantas 25 dias após a emergência e o stand inicial. As notas variaram de 1 a 3 de acordo com a lesão de tombamento na altura do colo da planta. Pelos isolados obtidos de plantas com lesão, constatou-se maior incidência de Rhyzoctonia solani Kuhn. Nas condições do ensaio, os fungicidas à base de mercúrio metálico, PCNB + thiram e Benomyl apresentaram um bom efeito aos sete meses de tratamento, o qual foi mantido até os dezesseis meses com os mesmos tratamentos, exceção feita para Benomyl. O deslintamento com ácido deu bom resultado somente até os sete meses, pois aos dezesseis meses o poder germinativo piorou relativamente, sendo que esse efeito negativo foi diminuído com tratamento de PCNB + thiram.An experiment was carried out for two years in a greenhouse to study the effect of fungicides treatment on the germination of seeds of São Paulo cotton varieties, IAC 13-1 and IAC 17. Treated seeds were stored in uncontrolled conditions and germination was tested yearly. For each variety, the following treatments were applied: 1 PCNB + thiram, 2 Benomyl, 3 Check (mechanically delinted seed, 4 Acid delinted seed (D.A., 5 D.A. + PCNB + thiram, 6 Metallic mercury. For treatments 1, 2 and 6

  5. Participation of chitin-binding peroxidase isoforms in the wilt pathogenesis of cotton

    Science.gov (United States)

    Specific chitin-binding isozymes of peroxidase (POX) play an important role in pathogenesis of plant diseases caused with fungi. We studied the dynamics of peroxidase activity in two varieties of cotton (Gossypium hirsutum L.); one was a susceptible and the other resistant to the plant pathogen Vert...

  6. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization.

    Science.gov (United States)

    Romero-Perdomo, Felipe; Abril, Jorge; Camelo, Mauricio; Moreno-Galván, Andrés; Pastrana, Iván; Rojas-Tapias, Daniel; Bonilla, Ruth

    The aim of this research was to evaluate whether the application of two plant growth-promoting (rhizo)bacteria might reduce nitrogen fertilization doses in cotton. We used strains Azotobacter chroococcum AC1 and AC10 for their proven ability to promote seed germination and cotton growth. These microorganisms were characterized by their plant growth-promoting activities. Then, we conducted a glasshouse study to evaluate the plant growth promoting ability of these strains with reduced doses of urea fertilization in cotton. Results revealed that both strains are capable of fixing nitrogen, solubilizing phosphorus, synthesizing indole compounds and producing hydrolytic enzymes. After 12 weeks, the glasshouse experiment showed that cotton growth was positively influenced due to bacterial inoculation with respect to chemical fertilization. Notably, we observed that microbial inoculation further influenced plant biomass (p<0.05) than nitrogen content. Co-inoculation, interestingly, exhibited a greater beneficial effect on plant growth parameters compared to single inoculation. Moreover, similar results without significant statistical differences were observed among bacterial co-inoculation plus 50% urea and 100% fertilization. These findings suggest that co-inoculation of A. chroococcum strains allow to reduce nitrogen fertilization doses up to 50% on cotton growth. Our results showed that inoculation with AC1 and AC10 represents a viable alternative to improve cotton growth while decreasing the N fertilizer dose and allows to alleviate the environmental deterioration related to N pollution. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber.

    Science.gov (United States)

    Li, Yan-Jun; Zhu, Shou-Hong; Zhang, Xin-Yu; Liu, Yong-Chang; Xue, Fei; Zhao, Lan-Jie; Sun, Jie

    2017-06-12

    Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. The full length of coding sequence of GhKIS13A1 was cloned using cDNA from cotton fiber for functional characterization. Expression pattern analysis showed that GhKIS13A1 maintained a lower expression level during cotton fiber development. Biochemical assay showed that GhKIS13A1 has microtubule binding activity and basal ATPase activity that can be activated significantly by the presence of microtubules. Overexpression of GhKIS13A1 in Arabidopsis reduced leaf trichomes and the percentage of three-branch trichomes, and increased two-branch and shriveled trichomes compared to wild-type. Additionally, the expression of GhKIS13A1 in the Arabidopsis Kinesin-13a-1 mutant rescued the defective trichome branching pattern of the mutant, making its overall trichome branching pattern back to normal. Our results suggested that GhKIS13A1 is functionally compatible with AtKinesin-13A regarding their role in regulating the number and branching pattern of leaf trichomes. Given the developmental similarities between cotton fibers and Arabidopsis trichomes, it is speculated that GhKIS13A1 may also be involved in the regulation of cotton fiber development.

  8. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping.

    Science.gov (United States)

    An, Chuanfu; Saha, Sukumar; Jenkins, Johnie N; Ma, Din-Pow; Scheffler, Brian E; Kohel, Russell J; Yu, John Z; Stelly, David M

    2008-05-01

    R2R3-MYB transcription factors of plants are involved in the regulation of trichome length and density. Several of them are differentially expressed during initiation and elongation of cotton fibers. We report sequence phylogenomic characterization of the six MYB genes, their chromosomal localization, and linkage mapping via SNP marker in AD-genome cotton (2n = 52). Phylogenetic grouping and comparison to At- and Dt-genome putative ancestral diploid species of allotetraploid cotton facilitated differentiation between genome-specific polymorphisms (GSPs) and marker-suitable locus-specific polymorphisms (LSPs). The SNP frequency averaged one per 77 bases overall, and one per 106 and 30 bases in coding and non-coding regions, respectively. SNP-based multivariate relationships conformed to independent evolution of the six MYB homoeologous loci in the four tetraploid species. Nucleotide diversity analysis indicated that the six MYB loci evolved more quickly in the Dt- than At-genome. The greater variation in the Dt-D genome comparisons than that in At-A genome comparisons showed no significant bias among synonymous substitution, non-synonymous substitution, and nucleotide change in non-coding regions. SNPs were concordantly mapped by deletion analysis and linkage mapping, which confirmed their value as candidate gene markers and indicated the reliability of the SNP discovery strategy in tetraploid cotton species. We consider that these SNPs may be useful for genetic dissection of economically important fiber and yield traits because of the role of these genes in fiber development.

  9. A Long-Read Transcriptome Assembly of Cotton (Gossypium hirsutum L. and Intraspecific Single Nucleotide Polymorphism Discovery

    Directory of Open Access Journals (Sweden)

    Hamid Ashrafi

    2015-07-01

    Full Text Available Upland cotton ( L. has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP markers that can be readily applied to germplasm in breeding and breeding-related research programs. Despite progress made in developing new sequencing technologies during the past decade, the cost of sequencing remains substantial when one is dealing with numerous samples and large genomes. Several strategies have been proposed to lower the cost of sequencing for multiple genotypes of large-genome species like cotton, such as transcriptome sequencing and reduced-representation DNA sequencing. This paper reports the development of a transcriptome assembly of the inbred line Texas Marker-1 (TM-1, a genetic standard for cotton, its usefulness as a reference for RNA sequencing (RNA-seq-based SNP identification, and the availability of transcriptome sequences of four other cotton cultivars. An assembly of TM-1 was made using Roche 454 transcriptome reads combined with an assembly of all available public expressed sequence tag (EST sequences of TM-1. The TM-1 assembly consists of 72,450 contigs with a total of 70 million bp. Functional predictions of the transcripts were estimated by alignment to selected protein databases. Transcriptome sequences of the five lines, including TM-1, were obtained using an Illumina Genome Analyzer-II, and the short reads were mapped to the TM-1 assembly to discover SNPs among the five lines. We identified >14,000 unfiltered allelic SNPs, of which ∼3,700 SNPs were retained for assay development after applying several rigorous filters. This paper reports availability of the reference transcriptome assembly and shows its utility in developing intraspecific SNP markers in upland cotton.

  10. Environmental effect of conventional and GM crops of cotton (Gossypium hirsutum L. and corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Chaparro Giraldo Alejandro

    2011-12-01

    Full Text Available

    In the corn belt of Valle de San Juan and in the cotton zone of El Espinal, municipalities in the department of Tolima (Colombia, 10 conventional corn producers, 10 producers of genetically modified corn, five producers of conventional cotton and 15 producers of transgenic cotton were surveyed in the first half of 2009 to contrast the differences in the environmental impact associated with use of insecticides and herbicides, which were evaluated by estimating the environmental index quotient-EIQ. In the case of maize, an EIQ of 42 was found in the conventional type, while transgenic technology had an EIQ of 3.03. In the cultivation of cotton, an EIQ of 263.59 was found for the conventional type while for transgenic technology this value varied between 335.75 (Nuopal BG/RR and 324.79 (DP 455 BG/RR. These data showed a lower environmental impact using GM technology in the cultivation of maize when compared to the conventional counterpart, in connection with the use of insecticides and herbicides, in the context of time, space and genotypic analysis. This effect was not observed in the case of cotton, where environmental impacts were similar.

  11. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  12. Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions.

    Science.gov (United States)

    Logan, Barry A; Monteiro, Gary; Kornyeyev, Dmytro; Payton, Paxton; Allen, Randy D; Holaday, A Scott

    2003-09-01

    In some studies, tissues from plants that have been genetically transformed to overproduce antioxidant enzymes sustain less damage when abruptly exposed to short-term chilling in the laboratory. However, few studies have examined the performance of transgenic plants during longer-term growth under chilling conditions. We compared growth of transgenic cotton that overproduces glutathione reductase (GR+; ∼40-fold overproduction) to growth of the wild type in a controlled environment chamber as leaf temperature was lowered from 28° to 14°C over 9 d and for a subsequent 9-d period at 14°C. In wild-type and GR+ cotton, chilling temperatures resulted in decreased dark-adapted F(v)/F(m) (the ratio of variable to maximal fluorescence; a measure of maximum photosystem II quantum yield) and mid-light period photosystem II quantum yield, coupled with increased 1 - q(P) (a nonlinear estimate of the reduction state of the primary quinone acceptor of photosystem II). The capacity for photosynthetic oxygen evolution decreased during the first portion of the chilling exposure, but recovered slightly during the second half. At no point during the chilling exposure did the performance of GR+ plants differ significantly from that of wild-type plants in any of the above parameters. The absence of an effect of GR overproduction under longer-term chilling may be explained, in part, by the fact that wild-type cotton acclimated to chilling by upregulating native GR activity.

  13. Cotton Square Morphology Offers New Insights into Host Plant Resistance to Cotton Fleahopper (Hemiptera: Miridae) in Upland Cotton.

    Science.gov (United States)

    McLoud, Laura Ann; Hague, Steven; Knutson, Allen; Wayne Smith, C; Brewer, Michael

    2016-02-01

    Cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), is a piercing-sucking pest of cotton (Gossypium hirsutum L.) that feeds preferentially on developing flower buds, called squares. Heavy infestations cause yield reductions that result from abscission of squares damaged by the cotton fleahopper feeding. Antixenosis, or nonpreference, has been reported as a mechanism of host plant resistance in cotton to cotton fleahopper. Square structure, particularly the placement of the reproductive tissues, and stylet penetration were investigated as factors that influence resistance to cotton fleahopper in cotton lines derived from crosses with Pilose, a cultigen of upland cotton resistant to cotton fleahopper, and backcrossed with high-yielding, susceptible lines. Ovary depth varied among the lines tested and was found to be a heritable trait that affected the ability of a fleahopper's feeding stylets to penetrate the reproductive tissues in the square and might influence preference. Behavioral assays suggested antixenosis as a mechanism of host plant resistance, and the trait conferring antixenosis was found to be heritable. Results suggest ovary depth plays a role in conferring resistance to cotton fleahopper and is an exploitable trait in resistance breeding. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Identification of differentially expressed genes associated with semigamy in Pima cotton (Gossypium barbadense L. through comparative microarray analysis

    Directory of Open Access Journals (Sweden)

    Stewart J McD

    2011-03-01

    Full Text Available Abstract Background Semigamy in cotton is a type of facultative apomixis controlled by an incompletely dominant autosomal gene (Se. During semigamy, the sperm and egg cells undergo cellular fusion, but the sperm and egg nucleus fail to fuse in the embryo sac, giving rise to diploid, haploid, or chimeric embryos composed of sectors of paternal and maternal origin. In this study we sought to identify differentially expressed genes related to the semigamy genotype by implementing a comparative microarray analysis of anthers and ovules between a non-semigametic Pima S-1 cotton and its doubled haploid natural isogenic mutant semigametic 57-4. Selected differentially expressed genes identified by the microarray results were then confirmed using quantitative reverse transcription PCR (qRT-PCR. Results The comparative analysis between isogenic 57-4 and Pima S-1 identified 284 genes in anthers and 1,864 genes in ovules as being differentially expressed in the semigametic genotype 57-4. Based on gene functions, 127 differentially expressed genes were common to both semigametic anthers and ovules, with 115 being consistently differentially expressed in both tissues. Nine of those genes were selected for qRT-PCR analysis, seven of which were confirmed. Furthermore, several well characterized metabolic pathways including glycolysis/gluconeogenesis, carbon fixation in photosynthetic organisms, sesquiterpenoid biosynthesis, and the biosynthesis of and response to plant hormones were shown to be affected by differentially expressed genes in the semigametic tissues. Conclusion As the first report using microarray analysis, several important metabolic pathways affected by differentially expressed genes in the semigametic cotton genotype have been identified and described in detail. While these genes are unlikely to be the semigamy gene itself, the effects associated with expression changes in those genes do mimic phenotypic traits observed in semigametic plants

  15. Effect of Irrigation-Water Salinity on Yield and Water Use Efficiency of Three Cultivars of Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    M. Jafaraghaei

    2012-12-01

    Full Text Available To investigate the effect of different levels of salinity on yield of three cultivars of cotton, an experiment was performed for two years (2008-2009 as split plot, based on randomized complete blocks design with four replications, at Rudasht Agricultural Research Station, Isfahan Province, Iran. To prepare the salinity levels, mixtures of well water, Zayandehrud river water and drainage water were used. The main plots were different salinity levels (4, 7, 10 and 13 dS/m and subplots were three cultivars of cotton (B557, Tabladila, and Delta Pine 16 (control. The results showed that with increasing salinity level, the performance of all three cotton cultivars was decreased. The highest yield (4602 kg/ha was related to the Delta Pine 16 cultivar, which was obtained at salinity level of 4 dS/m. With increasing the salinity level from 4 to 7, 10 and 13 dS/m, the percent reduction in water productivity index in Tabladila, Delta Pine 16 and B557 cultivars was (25.5, 63.7 and 175, (22.6, 58 and 189 and (26, 65.5 and 196, respectively. At all levels of salinity, water productivity index was highest in Tabladila cultivar (0.424, 0.338, 0.259 and 0.154 kg/m3 in salinities of 4, 7, 10 and 13 dS/m, respectively. In summary, the results showed that in salinity levels of 4 and 7 dS/m, the Delta Pine 16 cultivar is recommendable due to higher yield. But in salinity level of 10 dS/m, the Tabladila cultivar had significantly higher yield than the other two cultivars. From the viewpoint of resistance to salinity, the B557 cultivar couldn’t compete with Tabladila and Delta Pine 16 cultivars.

  16. Functional characterization of GhAKT1, a novel Shaker-like K⁺ channel gene involved in K⁺ uptake from cotton (Gossypium hirsutum).

    Science.gov (United States)

    Xu, Juan; Tian, Xiaoli; Egrinya Eneji, A; Li, Zhaohu

    2014-07-15

    Shaker-like potassium (K(+)) channels in plants play an important role in K(+) absorption and transport. In this study, we characterized a Shaker-like K(+) channel gene GhAKT1 from the roots of Gossypium hirsutum cv. Liaomian17. Phylogenetic analysis showed that the GhAKT1 belongs to the AKT1-subfamily in the Shaker-like K(+) channel family. Confocal imaging of a GhAKT1-green fluorescent fusion protein (GFP) in transgenic Arabidopsis plants indicated that GhAKT1 is localized in the plasma membrane. Transcript analysis located GhAKT1 predominantly in cotton leaves with low abundance in roots, stem and shoot apex. Similarly, β-glucuronidase (GUS) activity was detected in both leaves and roots of PGhAKT1::GUS transgenic Arabidopsis plants. In roots, the GUS signals appeared in the epidermis, cortex and endodermis and root hairs, suggesting the contribution of GhAKT1 to K(+) uptake. In leaves, GhAKT1 was expressed in differentiated leaf primordial as well as mesophyll cells and veins of expanded leaves, pointing to its involvement in cell elongation and K(+) transport and distribution in leaves. Severe K(+) deficiency did not affect the expression of GhAKT1 gene. GhAKT1-overexpression in either the Arabidopsis wild-type or akt1 mutant enhanced the growth of transgenic seedlings under low K(+) deficiency and raised the net K(+) influx in roots at 100μM external K(+) concentration, within the range of operation of the high-affinity K(+) uptake system. The application of 2mM BaCl2 resulted in net K(+) efflux in roots, and eliminated the differences between GhAKT1-overexpression lines and their acceptors indicating that the K(+) uptake mediated by GhAKT1 is also as Ba(2+)-sensitive as AtAKT1. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. [Gossypium hirsutum L. cv LG102

    Energy Technology Data Exchange (ETDEWEB)

    Suttle, J.C.

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of /sup 14/C-IAA transport in petiole segment isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDA response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of /sup 14/C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment.

  18. Peliculização e tratamento químico de sementes de algodoeiro (Gossypium hirsutum L. Film-coating and chemical treatment of cotton seeds (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Liana Baptista de Lima

    2006-12-01

    Full Text Available O estabelecimento ideal de plantas no campo é determinado, dentre outros fatores, pela qualidade fisiológica e sanitária das sementes utilizadas. Neste sentido, o tratamento químico de sementes torna-se essencial, pois proporciona melhor desempenho das mesmas no campo. Atualmente, em associação com o tratamento químico, a fim de aumentar a aderência dos produtos químicos nas sementes, dentre outros objetivos, tem sido estudada a utilização de películas de revestimento. Com este trabalho, objetivou-se avaliar a qualidade fisiológica e sanitária de sementes de algodoeiro de quatro lotes, tratadas quimicamente e peliculizadas com 2 tipos de películas comerciais. Utilizou-se dois lotes da cultivar Delta Opal, dois da cultivar Sure Grow, e dois tipos de películas, denominadas AG201 e TGBP1080. As sementes foram submetidas ao tratamento com a mistura dos fungicidas carboxin+thiram com o inseticida imidacloprid, na dosagem 5 mL/Kg + 5 mL/Kg de sementes e na dosagem 2,5 mL/Kg + 2,5 mL/Kg de sementes. Os tratamentos foram avaliados por teste de germinação, teste de emergência de plântulas, índice de velocidade de emergência, teste de frio e de sanidade. O tratamento químico com a mistura de carboxin+thiram com imidacloprid, na dosagem 5 mL/Kg + 5 mL/Kg de sementes promove melhor desempenho das sementes, sendo eficaz no controle de fungos. O uso da peliculização não possibilita redução da dosagem do tratamento químico. A peliculização não afeta a germinação, emergência e índice de velocidade de emergência de lotes de alta qualidade.Physiological and healthy quality of cotton seeds (Gossypium hirsutum L. are decisive factor to establish an ideal stand in the field. The chemical seed treatment is necessary to preserve the healthy quality and to obtain a better development performance of the seeds in the field. Actually, researches on chemical treatment are liberally conducted, which film-coating technique has been used

  19. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid.

    Science.gov (United States)

    Egamberdieva, Dilfuza; Jabborova, Dilfuza; Hashem, Abeer

    2015-11-01

    Abiotic stresses cause changes in the balance of phytohormones in plants and result in inhibited root growth and an increase in the susceptibility of plants to root rot disease. The aim of this work was to ascertain whether microbial indole-3-acetic acid (IAA) plays a role in the regulation of root growth and microbially mediated control of root rot of cotton caused by Fusarium solani. Seed germination and seedling growth were improved by both NaCl and Mg2SO4 (100 mM) solutions when treated with root-associated bacterial strains Pseudomonas putida R4 and Pseudomonas chlororaphis R5, which are able to produce IAA. These bacterial strains were also able to reduce the infection rate of cotton root rot (from 70 to 39%) caused by F. solani under gnotobiotic conditions. The application of a low concentration of IAA (0.01 and 0.001 μg/ml) stimulated plant growth and reduced disease incidence caused by F. solani (from 70 to 41-56%, respectively). Shoot and root growth and dry matter increased significantly and disease incidence was reduced by bacterial inoculants in natural saline soil. These results suggest that bacterial IAA plays a major role in salt stress tolerance and may be involved in induced resistance against root rot disease of cotton.

  20. Fine mapping and candidate gene analysis of the virescent gene v1in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun

    2018-02-01

    The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the

  1. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro.

    Science.gov (United States)

    Bouchabké-Coussa, O; Obellianne, M; Linderme, D; Montes, E; Maia-Grondard, A; Vilaine, F; Pannetier, C

    2013-05-01

    This work shows that overexpression of the WUS gene from Arabidopsis enhanced the expression of embryogenic competence and triggered organogenesis from some cells of the regenerated embryo-like structures. Agrobacterium-mediated genetic transformation of cotton was described in the late 1980s, but is still time consuming and largely genotype dependant due to poor regeneration. To help solve this bottleneck, we over-expressed the WUSCHEL (WUS) gene, a homeobox transcription factor cloned in Arabidopsis thaliana, known to stimulate organogenesis and/or somatic embryogenesis in Arabidopsis tissues cultured in vitro. The AtWUS gene alone, and AtWUS gene fused to the GFP marker were compared to the GFP gene alone and to an empty construct used as a control. Somatic embryogenesis was improved in WUS expressed calli, as the percentage of explants giving rise to embryogenic tissues was significantly higher (×3) when WUS gene was over-expressed than in the control. An interesting result was that WUS embryogenic lines evolved in green embryo-like structures giving rise to ectopic organogenesis never observed in any of our previous transformation experiments. Using our standard in vitro culture protocol, the overexpression of AtWUS in tissues of a recalcitrant variety did not result in the production of regenerated plants. This achievement will still require the optimization of other non-genetic factors, such as the balance of exogenous phytohormones. However, our results suggest that targeted expression of the WUS gene is a promising strategy to improve gene transfer in recalcitrant cotton cultivars.

  2. Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Memoona Ramzan

    2016-05-01

    Full Text Available Biological control is a novel approach in crop protection. Bacteria, such as Bacillus spp. and Pseudomonas spp., are reported for this purpose and some of their products are already commercially available. In this study, the rhizosphere and phyllosphere of healthy cotton plants were used as a source of bacterial isolates with properties of potential biocontrol agents. The isolates were screened for phosphate solubilization activity, indole acetic acid (IAA production and antifungal activity. Two isolates, S1HL3 and S1HL4, showed phosphate solubilization and IAA production simultaneously, while another two, JS2HR4 and JS3HR2, demonstrated potential to inhibit fungal pathogens. These bacteria were identified as Pseudomonas aeruginosa (S1HL3, Burkholderia sp. (S1HL4 and Bacillus sp. (JS2HR4 and JS3HR2 based on biochemical and molecular characteristics. The isolates were tested against Cotton leaf curl virus (CLCuV in greenhouse conditions, both as individual bacterial isolates and consortia. Treated plants were healthy as compared to control plants, where up to 74% of the plants were symptomatic for CLCuV infection. Maximum inhibition of CLCuV was observed in the plants treated with a mixture of bacterial isolates: the viral load in the treated plants was only 0.4% vs. up to 74% in controls. This treatment consortium included P. aeruginosa S1HL3, Burkholderia sp. S1HL4 and Bacillus spp. isolates, JS2HR4 and JS3HR2. The principal-component biplot showed a highly significant correlation between the viral load percentage and the disease incidence.

  3. Controle de plantas daninhas com cyanazine aplicado em mistura com outros herbicidas, na cultura do algodão (Gossypium hirsutum L. Weed control in cotton (Gossypium hirsutum L. with cyanazine and other herbicides

    Directory of Open Access Journals (Sweden)

    Julio Pedro Laca-Buendia

    1985-12-01

    Full Text Available Com a finalidade de estudar a mistura de tanque mais eficiente com cyanazine em aplicação de pré-emergência na cultura algodoeira (Gossypium hirsutum L. , foram estudados os seguintes tratamentos: cyanazine + diuron nas doses de 0,8 + 0,8 kg i.a/ha e 1,0 + 1,0 kg i.a/ha; cyanazine+ oryzalin , nas do sés de 1,2 + 0,8 kg i.a/ha e 1,6 + 1,2 kg i.a/h a; cyanazyne + metol a chlor, nas doses de 1,4 + 2,0 kg i.a/ha e 1,75 + 2,52 kg i.a/ ha;cianazine na dose de 1,75 kg i.a /ha; oryzalin na dose de 1,12 kg i.a/ha; metol achlor na dose de 2,52 kg i.a /ha e diuron na dose de 1,6 kg i.a /ha. Para efeito de comparação, utilizou-se uma testemunha sem capina e outra com capina manual. Nenhum tratamento apresentou injúria para as plantas de algodão e não houve diferenças significativas para o "stand" inicial. Já no "stand" final, a testemunha sem capina apresentou o menor número de plantas, sendo que não houve diferenças significativas dos outros tratamentos com a testemunha capinada. Para o rendimento, a mistura cyanazine + metolachior em ambas as doses estudadas, não apresentaram diferenças significativas da testemunha capinada. Quanto à altura da planta, peso de 100 sementes, porcentagem e índice de fibras não houve diferenças significativas entre os tratamentos estudados, somente o peso do capulho foi afetado pelo oryzalin. Pela avaliação visual (EWRC 1 a 9*, os herbicidas apres entaram um controle satisfatório somente até os 30 dias após aplicação, sendo que a mistura cyanazine + metolachlor foi efici ente quanto a testemunha capinada. No controle da Portulaca oleracea , a mistura cyanazine + oryzalin na maior dose e oryzalin apresentaram 71,4% de controle ate os 30 dias e 79,4% e 82,4%, respectivamente, até 45 dias da aplicação. Para Amaranthus sp., à exceção da cyanazine e cyanazine + diuron nas doses menores, não apresentaram nenhum controle, sendo que os outros herbicidas controlaram com eficiência superior a 70

  4. [Salt tolerance evaluation of cotton (Gossypium hirsutum) at its germinating and seedling stages and selection of related indices].

    Science.gov (United States)

    Zhang, Guo-wei; Lu, Hai-ling; Zhang, Lei; Chen, Bing-lin; Zhou, Zhi-guo

    2011-08-01

    A sand culture experiment was conducted to study the salt tolerance of 13 cotton cultivars at their germinating and seedling stages under the stress of different concentration NaCl, and a cluster analysis was made on the salt tolerance, according to the subjection values of salt toxicity coefficients of multi-indices and the sum subjection value. It was observed that the appropriate concentration of NaCl for the evaluation of salt tolerance was 150 mmol x L(-1). The salt tolerance differed with cultivar and growth stage. Among the 13 cultivars, the CCRI-44 and CCRI-177 were steadily salt-tolerant at both germinating and seedling stages, the CCRI-103, Dexiamian 1, and NuCOTN 33B were steadily and moderately salt-tolerant, while the CCRI-102, Sumian 12, and Simian 3 were steadily salt-sensitive. Germination rate, germination potential, germination index, vigor index, and fresh mass could be served as the indicators to evaluate the salt tolerance of the cultivars at germinating stage, while plant height, leaf expansion rate, shoot dry mass, root dry mass, root vigor, and net photosynthetic rate could be applied to assess the salt tolerance at seedling stage.

  5. In vitro cadmium-induced alterations in growth and oxidative metabolism of upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Daud, M K; Mei, Lei; Najeeb, Ullah; Khan, Muhammad Azim; Deeba, Farah; Raza, Irum; Batool, Aliya; Zhu, S J

    2014-01-01

    Cadmium (Cd) is a toxic pollutant, which cause both dose- and time-dependent physiological and biochemical alterations in plants. The present in vitro study was undertaken to explore Cd-induced physiological and biochemical changes in cotton callus culture at 0, 550, 700, 850, and 1000 μM Cd for four different stress periods (7, 14, 21, and 28 days). At 1000 μM Cd, mean growth values were lower than their respective control. The cell protein contents decreased only after 7-day and 14-day stress treatment. At 550 μM Cd, malondialdehyde (MDA) contents decreased after various stress periods except 21-day period. Superoxide dismutase (SOD) activity at 1000 μM Cd improved relative to its respective controls in the first three stress regimes. Almost a decreasing trend in the hydrogen peroxide (H2O2) and peroxidase (POD) activities at all Cd levels after different stress periods was noticed. Ascorbate peroxidase (APX) activity descended over its relevant controls in the first three stress regimes except at 700 μM Cd after 14- and 21-day stress duration. Moreover, catalase (CAT) mean values significantly increased as a whole. From this experiment, it can be concluded that lipid peroxidation as well as reactive oxygen species (ROS) production was relatively higher as has been revealed by higher MDA contents and greater SOD, CAT activities.

  6. Improvement of growth and productivity of cotton (Gossypium hirsutum L. through foliar applications of naphthalene acetic acid

    Directory of Open Access Journals (Sweden)

    Shazia Parveen

    2017-05-01

    Full Text Available Plant growth regulators like naphthalene acetic acid (NAA positively affect the growth and yield of crop plants. An experiment was conducted to check the foliar application of NAA on growth and yield components of cotton variety Bt.121 under field condition at research area of agriculture farm near Cholistan Institute of Desert Studies (CIDS, The Islamia University of Bahawalpur, Pakistan. The experiment was comprised of foliar application of NAA (1% viz. T0 (control, T1 (One spray of NAA, T2 (Two sprays of NAA, T3 (Three sprays of NAA, T4 (Four sprays of NAA. The first foliar spray was applied at 45 days after sowing (DAS and later on it was continued with 15 days interval with skilled labour by hand pump sprayer. The experiment was laid out in randomized complete block design and each treatment was replicated three times. Data recorded on growth, chlorophyll contents, yield and yield components showed a significant increase with the application of NAA. Furthermore, earliness index, mean maturity date and production rate index were also influenced with foliar application of NAA. On the basis of growth and yield parameters it can be concluded that four spray of NAA (1% can be applied commercially under field conditions.

  7. Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum).

    Science.gov (United States)

    Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli

    2015-01-01

    The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures.

    Science.gov (United States)

    Ganesan, M; Jayabalan, N

    2005-10-01

    Highly reproducible and simple protocol for cotton somatic embryogenesis is described here by using different concentrations of maltose, glucose, sucrose and fructose. Maltose (30 g/l) is the best carbon source for embryogenic callus induction and glucose (30 g/l) was suitable for induction, maturation of embryoids and plant regeneration. Creamy white embryogenic calli of hypocotyl explants were formed on medium containing MS basal salts, myo-inositol (100 mg/l), thiamine HCI (0.3 mg/l), picloram (0.3 mg/l), Kin (0.1 mg/l) and maltose (30 g/l). During embryo induction and maturation, accelerated growth was observed in liquid medium containing NH3NO4 (1 g/l), picloram (2.0 mg/l), 2 ip (0.2 mg/l), Kin (0.1 mg/l) and glucose (30 g/l). Before embryoid induction, large clumps of embryogenic tissue were formed. These tissues only produced viable embryoids. Completely matured somatic embryos were germinated successfully on the medium fortified with MS salts, myo-inositol (50 mg/l), thiamine HCl (0.2 mg/l), GA3 (0.2 mg/l), BA (1.0 mg/l) and glucose (30 g/l). Compared with earlier reports, 65% of somatic embryo germination was observed. The abnormal embryo formation was highly reduced by using glucose (30 g/l) compared to other carbon sources. The regenerated plantlets were fertile but smaller in height than the seed derived control plants.

  9. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    Full Text Available Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes, glycolysis/gluconeogenesis (122 genes, phenylpropanoid biosynthesis (101 genes, and oxidative phosphorylation (87 genes, etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.

  10. Molecular mapping and validation of a major QTL conferring resistance to a defoliating isolate of verticillium wilt in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Xingju; Yuan, Yanchao; Wei, Ze; Guo, Xian; Guo, Yuping; Zhang, Suqing; Zhao, Junsheng; Zhang, Guihua; Song, Xianliang; Sun, Xuezhen

    2014-01-01

    Verticillium wilt (VW) caused by Verticillium dahliae Kleb is one of the most destructive diseases of cotton. Development and use of a VW resistant variety is the most practical and effective way to manage this disease. Identification of highly resistant genes/QTL and the underlining genetic architecture is a prerequisite for developing a VW resistant variety. A major QTL qVW-c6-1 conferring resistance to the defoliating isolate V991 was identified on chromosome 6 in LHB22×JM11 F2∶3 population inoculated and grown in a greenhouse. This QTL was further validated in the LHB22×NNG F2∶3 population that was evaluated in an artificial disease nursery of V991 for two years and in its subsequent F4 population grown in a field severely infested by V991. The allele conferring resistance within the QTL qVW-c6-1 region originated from parent LHB22 and could explain 23.1-27.1% of phenotypic variation. Another resistance QTL qVW-c21-1 originated from the susceptible parent JM11 was mapped on chromosome 21, explaining 14.44% of phenotypic variation. The resistance QTL reported herein provides a useful tool for breeding a cotton variety with enhanced resistance to VW.

  11. Island cotton Enhanced Disease Susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-12-01

    Full Text Available Cotton is one of the most economically important crops, but most cultivated varieties lack adequate innate immunity or resistance to Verticillium wilt. This results in serious losses to both yield and fiber quality. To identify the genetic resources for innate immunity and understand the pathways for pathogen defenses in this crop, here we focus on orthologs of the central Arabidopsis thaliana defense regulator Enhanced Disease Susceptibility 1 (EDS1. The full-length cDNA of GbEDS1 was obtained by screening the full-length cDNA library of Gossypium barbadense combining with RACE strategy. Its open reading frame is 1848 bp long, encoding 615 amino acid residues. Sequence analysis showed that GbEDS1 contains a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Expression profiling indicated that the gene is induced by Verticillium dahliae as well as salicylic acid (SA treatment. Subcellular localization assays revealed that GbEDS1 is located in the cell cytoplasm and nucleus. Overexpression of GbEDS1 in Arabidopsis dramatically up-regulated SA and H2O2 production, resulting in enhanced disease resistance to V. dahliae. Silencing of GbEDS1 in G. barbadense significantly decreased SA and H2O2 acumulation, leading to the cotton more susceptibility. Moreover, combining the gene expression results from transgenic Arabidopsis and silenced-GbEDS1 cotton, it indicated that GbEDS1 could activate GbNDR1 and GbBAK1 expression. These findings not only broaden our knowledge about the biological role of GbEDS1, but also provide new insights into the defense mechanisms of GbEDS1 against V. dahliae in cotton.

  12. 6-Benzyladenine enhancements of cotton yield

    Science.gov (United States)

    The influence of applied plant growth regulators (PGR) on growth, development and yield in cotton (Gossypium hirsutum L. and Gossypium barbadense L.) has been studied for over half a century. A recent study suggested that cytokinin treatment of young cotton seedlings may enhance overall performanc...

  13. A New Synthetic Allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

    Science.gov (United States)

    Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  14. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species.

    Science.gov (United States)

    Xiang, Liuxin; Liu, Jinggao; Wu, Chaofeng; Deng, Yushan; Cai, Chaowei; Zhang, Xiao; Cai, Yingfan

    2017-04-12

    Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium barbadense allow for a more comprehensive and systematic comparative study of NBS-encoding genes to elucidate the mechanisms of cotton disease resistance. Based on the genome assembly data, 246, 365, 588 and 682 NBS-encoding genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. The distribution of NBS-encoding genes among the chromosomes was nonrandom and uneven, and was tended to form clusters. Gene structure analysis showed that G. arboreum and G. hirsutum possessed a greater proportion of CN, CNL, and N genes and a lower proportion of NL, TN and TNL genes compared to that of G. raimondii and G. barbadense, while the percentages of RN and RNL genes remained relatively unchanged. The percentage changes among them were largest for TNL genes, about 7 times. Exon statistics showed that the average exon numbers per NBS gene in G. raimondii and G. barbadense were all greater than that in G. arboretum and G. hirsutum. Phylogenetic analysis revealed that the TIR-NBS genes of G. barbadense were closely related with that of G. raimondii. Sequence similarity analysis showed that diploid cotton G. arboreum possessed a larger proportion of NBS-encoding genes similar to that of allotetraploid cotton G. hirsutum, while diploid G. raimondii possessed a larger proportion of NBS-encoding genes similar to that of allotetraploid cotton G. barbadense. The synteny analysis showed that more NBS genes in G. raimondii and G. arboreum were syntenic with that in G. barbadense and G. hirsutum, respectively. The structural architectures, amino acid sequence similarities and synteny of NBS-encoding genes between G. arboreum and G. hirsutum, and between G

  15. 6-Benzyladenine enhancement of cotton

    Science.gov (United States)

    The influence of applied plant growth regulators (PGR) on growth, development and yield in cotton (Gossypium hirsutum L. and Gossypium barbadense L.) has been studied for over half a century. Studies of PGR containing cytokinin alone or in combination with gibbererillins applied at the pinhead squa...

  16. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  17. Chilling Stress—The Key Predisposing Factor for Causing Alternaria alternata Infection and Leading to Cotton (Gossypium hirsutum L.) Leaf Senescence

    Science.gov (United States)

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2–4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence. PMID:22558354

  18. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Xiuling Wang

    Full Text Available WRKY transcription factors form one of the largest transcription factor families and function as important components in the complex signaling processes that occur during plant stress responses. However, relative to the research progress in model plants, far less information is available on the function of WRKY proteins in cotton. In the present study, we identified the GhWRKY40 gene in cotton (Gossypium hirsutum and determined that the GhWRKY40 protein is targeted to the nucleus and is a stress-inducible transcription factor. The GhWRKY40 transcript level was increased upon wounding and infection with the bacterial pathogen Ralstonia solanacearum. The overexpression of GhWRKY40 down-regulated most of the defense-related genes, enhanced the wounding tolerance and increased the susceptibility to R. solanacearum. Consistent with a role in multiple stress responses, we found that the GhWRKY40 transcript level was increased by the stress hormones salicylic acid (SA, methyl jasmonate (MeJA and ethylene (ET. Moreover, GhWRKY40 interacted with the MAPK kinase GhMPK20, as shown using yeast two-hybrid and bimolecular fluorescence complementation systems. Collectively, these results suggest that GhWRKY40 is regulated by SA, MeJA and ET signaling and coordinates responses to wounding and R. solanacearum attack. These findings highlight the importance of WRKYs in regulating wounding- and pathogen-induced responses.

  19. Yield and fiber quality of five pairs of near-isogenic cotton (Gossypium hirsutum L.) lines expressing the fuzzless/linted and fuzzy/linted seed phenotypes

    Science.gov (United States)

    Fuzzless cotton often has traits desirable to the cotton industry, including longer fibers, reduced short fiber content, fewer neps, and improved ginning efficiency. This two-year field study described yield and fiber properties of five pairs of fuzzy and fuzzless near-isogenic lines, developed from...

  20. Cottonseed protein, oil, and mineral status in near-isogenic cotton (Gossypium hirsutum) lines expressing fuzzy/linted and fuzzless/linted seed phenotypes

    Science.gov (United States)

    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed composition constituents (protein, oil, and minerals) determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed constituents is critical. Ph...

  1. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration.

    Science.gov (United States)

    Li, X; Wang, X D; Zhao, X; Dutt, Y

    2004-04-01

    A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene beta-glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.

  2. Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA

    National Research Council Canada - National Science Library

    Chen, Yong; Ale, Srinivasulu; Rajan, Nithya; Morgan, Cristine L. S; Park, Jongyoon

    2016-01-01

    The Southern High Plains ( SHP ) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum ( Sorghum bicolor...

  3. Período crítico de competição entre comunidades de plantas daninhas e o algodoeiro (Gossypium hirsutum L. no Estado de Minas Gerais The critical period of competition between weed communities and cotton (Gossypium hirsutum L. in the State of Minas Gerais

    Directory of Open Access Journals (Sweden)

    J. P. del C. Laca-Buendia

    1979-12-01

    Full Text Available Foram instalados nove ensaios no período de 1973 a 1976 em solos LVA, LE e LR de três localidades do Triângulo e duas no Norte do Estado de Minas Gerais, Brasil, a fim de se estudar as épocas críticas de competição de plantas daninhas com o algodoeiro (Gossypium hirsutum L.. Os tratamentos foram: capinas até 2, 4, 6, 8 primeiras semanas e durante todo o ciclo; e capinas após 2, 4, 6, 8 primeiras semanas e todo o ciclo sem capinas. Os resultados mostraram que a competição das plantas daninhas, quando não controladas, com a cultura, provocou 90,22% de perda na produção no Triângulo Mineiro e 70,73% no Norte de Minas. Em relação à testemunha, mantida livre de competição durante todo o ciclo, o melhor rendimento foi obtido quando se manteve a cultura livre de competição durante seis: emanas após a emergência, no Triâgulo Mineiro, e durante oito semanas, no Norte de Minas. Não houve, entretanto, diferença significativa entre os tratamentos com 4, 6, 8 semanas e também com todo o ciclo sem competição, tanto no Triângulo quanto no Norte do Estado.Nine tests were made from 1973 up to 1976 on different soil types in five localities (three in the Triângulo Mineiro and two in the Northern Region of Minas Gerais State, Brazil to Study the critical periods of weed competition with cotton (Gossypium hirsutum L.. The treatments consisted of: weed free during the first 2, 4, 6, 8 weeks and all the cycle; and competition during the first 2, 4, 6, 8 weeks and all the cycle. The results showed yield losses of 90,22% in the Triângulo Mineiro and 70,73% in the Northern Region when weed were always present. Compared to the check free of weeds during all the cycle, the best yield was obtained when cotton was kept free of weeds during the first six weeks after emergence in the Triângulo Mineiro as well as during the first eight weeks in the Northern Region. However, there was no difference among the treatments consisting of 4, 6, 8

  4. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2

    OpenAIRE

    G. Prem Kumar; Sivakumar Subiramani; Siva Govindarajan; Vinoth Sadasivam; Vigneswaran Manickam; Kanakachari Mogilicherla; Senthil Kumar Thiruppathi; Jayabalan Narayanasamy

    2015-01-01

    An efficient protocol was developed to control excessive phenolic compound secretion during callus culture of cotton. As cotton is naturally rich in phenolic compounds factors influencing the phenolic compound secretion, callus induction and proliferation were optimized for getting high frequency callus culture. Different carbon sources such as fructose, glucose, sucrose and maltose were tested at various concentrations to control phenolic secretion in callus culture. Among them, 3% maltose w...

  5. Segregation Distortions in an Interspecific Cotton Population issued from the [(Gossypium hirsutum x G. raimondii² x G. sturtianum] Hybrid

    Directory of Open Access Journals (Sweden)

    Diouf, FBH.

    2014-01-01

    Full Text Available The segregation ratio of 10 Gossypium sturtianum specific SSR markers belonging to linkage groups c2-c14, c3-c17, and c6-c25 was analysed in the BC2S6 progeny of the [G. hirsutum x G. raimondii² x G. sturtianum] (HRS hybrid; based on chi-square test. All the marker loci tested were associated with skewed allele frequencies (P<0.001 showing a strong SD with a zygotic selection. The possible causes and consequences of this massive segregation distortion are discussed.

  6. CORRELACIONES Y ANÁLISIS DE SENDERO EN ALGODÓN (Gossypium hirsutum L. EN EL CARIBE COLOMBIANO CORRELATIONS AND PATH ANALYSIS IN COTTON (Gossypium hirsutum L. IN THE COLOMBIAN CARIBBEAN

    Directory of Open Access Journals (Sweden)

    Miguel Mariano Espitia Camacho

    2008-06-01

    Full Text Available El cultivo del algodón es la principal actividad agrícola en la economía del Caribe colombiano en el segundo semestre del año y el principal abastecedor de fibra a la industria nacional desde hace aproximadamente 60 años. El objetivo de este trabajo fue estimar las correlaciones fenotípicas, genéticas y ambientales, entre 11 caracteres agronómicos y realizar un análisis de sendero para rendimiento de fibra. Se utilizaron los datos de la evaluación agronómica de 10 genotipos de algodón en ocho ambientes del Caribe colombiano. En cada ambiente se utilizó un diseño experimental de bloques completos al azar con cuatro repeticiones. Los resultados indicaron que las correlaciones genéticas fueron superiores a las fenotípicas y ambientales. El rendimiento de fibra (REF presentó las mayores correlaciones fenotípicas, genéticas y fenotipicas parciales con el porcentaje de fibra (PFI, el rendimiento de algodón - semilla (RAS y el peso de mota (PMO, con valores de r > 0,43 (PThe cotton crop is the main agricultural activity in the economy of the colombian Caribbean in the second semester of the year and the main supplier of fibre to national industry for about 60 years. The objective of this work was to estimate the phenotypic, genetic and environmental correlations, between 11 agronomic characters and to make a path analysis for fibre yield. Data of agronomic evaluation of 10 genotypes of cotton in eight environments of the colombian Caribbean were used. In each environment experimental design at random complete blocks with four repetitions were used. The results indicated that genetic correlations were superior to phenotypic and environmental correlations. Fibre yield (FIY presented the highest phenotypic, genetic and partial phenotypic correlations with ginning percentage (GP, seed-cotton yield (SCY and boll weight (BOW with values of r > 0,43 (P<0,01. The FIP (0,810 was the cause variable that showed the greatest direct effect on

  7. Genome-wide analysis of gene expression of EMS-induced short fiber mutant Ligon lintless-y (liy) in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Naoumkina, Marina; Bechere, Efrem; Fang, David D; Thyssen, Gregory N; Florane, Christopher B

    2017-07-01

    In this work we describe a chemically-induced short fiber mutant cotton line, Ligon-lintless-y (li y ), which is controlled by a single recessive locus and affects multiple traits, including height of the plant, and length and maturity of fiber. An RNAseq analysis was used to evaluate global transcriptional changes during cotton fiber development at 3, 8 and 16days post anthesis. We found that 613, 2629 and 3397 genes were significantly down-regulated, while 2700, 477 and 3260 were significantly up-regulated in li y at 3, 8 and 16 DPA. Gene set enrichment analysis revealed that many metabolic pathways, including carbohydrate, cell wall, hormone metabolism and transport were substantially altered in li y developing fibers. We discuss perturbed expression of genes involved in signal transduction and biosynthesis of phytohormones, such as auxin, abscisic acid, gibberellin and ethylene. The results of this study provide new insights into transcriptional regulation of cotton fiber development. Published by Elsevier Inc.

  8. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L.) cv. SVPR-2.

    Science.gov (United States)

    Kumar, G Prem; Subiramani, Sivakumar; Govindarajan, Siva; Sadasivam, Vinoth; Manickam, Vigneswaran; Mogilicherla, Kanakachari; Thiruppathi, Senthil Kumar; Narayanasamy, Jayabalan

    2015-09-01

    An efficient protocol was developed to control excessive phenolic compound secretion during callus culture of cotton. As cotton is naturally rich in phenolic compounds factors influencing the phenolic compound secretion, callus induction and proliferation were optimized for getting high frequency callus culture. Different carbon sources such as fructose, glucose, sucrose and maltose were tested at various concentrations to control phenolic secretion in callus culture. Among them, 3% maltose was found to be the best carbon source for effectively controlling phenolic secretion in callus induction medium. High frequency of callus induction was obtained on MSB5 medium supplemented with 3% Maltose, 2,4-D (0.90 μM) and Kinetin (4.60 μM) from both cotyledon and hypocotyl explants. The best result of callus induction was obtained with hypocotyl explant (94.90%) followed by cotyledon explant (85.20%). MSB5 medium supplemented with 2,4-D (0.45 μM) along with 2iP (2.95 μM) gave tremendous proliferation of callus with high percentage of response. Varying degrees of colors and textures of callus were observed under different hormone treatments. The present study offers a solution for controlling phenolic secretion in cotton callus culture by adjusting carbon sources without adding any additives and evaluates the manipulation of plant growth regulators for efficient callus culture of SVPR-2 cotton cultivar.

  9. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L. cv. SVPR-2

    Directory of Open Access Journals (Sweden)

    G. Prem Kumar

    2015-09-01

    Full Text Available An efficient protocol was developed to control excessive phenolic compound secretion during callus culture of cotton. As cotton is naturally rich in phenolic compounds factors influencing the phenolic compound secretion, callus induction and proliferation were optimized for getting high frequency callus culture. Different carbon sources such as fructose, glucose, sucrose and maltose were tested at various concentrations to control phenolic secretion in callus culture. Among them, 3% maltose was found to be the best carbon source for effectively controlling phenolic secretion in callus induction medium. High frequency of callus induction was obtained on MSB5 medium supplemented with 3% Maltose, 2,4-D (0.90 μM and Kinetin (4.60 μM from both cotyledon and hypocotyl explants. The best result of callus induction was obtained with hypocotyl explant (94.90% followed by cotyledon explant (85.20%. MSB5 medium supplemented with 2,4-D (0.45 μM along with 2iP (2.95 μM gave tremendous proliferation of callus with high percentage of response. Varying degrees of colors and textures of callus were observed under different hormone treatments. The present study offers a solution for controlling phenolic secretion in cotton callus culture by adjusting carbon sources without adding any additives and evaluates the manipulation of plant growth regulators for efficient callus culture of SVPR-2 cotton cultivar.

  10. The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene

    Science.gov (United States)

    Cotton seed trichomes are the globally most important source of natural fibers. The major fiber thickness properties influence the price of the raw material and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process...

  11. Effect of Methyl Jasmonate on Phytoalexins Biosynthesis and Induced Disease Resistance to Fusarium oxysporum f. sp. Vasinfectum in Cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Yao Kouakou François Konan

    2014-01-01

    Full Text Available The effect of methyl jasmonate (MeJA sprayed on cotton healthy leaves was evaluated in terms of inherent bioactive chemicals induction. The total phenolic content significantly increased after MeJA 5.0 mM treatments compared to the other tested concentrations (0; 2.5; 10; 15; 20 mM. Among the eleven phenolic compounds which were found except for ferulic acid, gossypetin, gossypol, 3-p-coumaroylquinic acid, and piceatannol were identified as major phenolic constituents of cotton. Their content also significantly increased after the MeJA treatment. In addition, gossypol increased 64 times compared to the control, in the 5.0 mM MeJA treatment. Furthermore, cichoric acid, chlorogenic acid, and pterostilbene are synthesized de novo in leaves of MeJA-treated plant. Treatment of cotton leaves with MeJA 5.0 mM followed 72 h of incubation hampered the expression of Fusarium wilt caused by Fusarium oxysporium f. sp. vasinfectum (FOV. MeJA efficiency was concentration and incubation time dependent. Disease severity on MeJA-treated leaves was significantly lower as compared to the control. Therefore, the high content of gossypetin, gossypol, 3-p-coumaroylquinic acid, ferulic acid, and piceatannol and the presence of cichoric acid, chlorogenic acid, and pterostilbene in plants treated with MeJA, contrary to the control, are essential to equip the cotton compounds with defences or phytoalexins against FOV.

  12. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    Science.gov (United States)

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Pandeya, Devendra; Campbell, LeAnne M; Nunes, Eugenia; Lopez-Arredondo, Damar L; Janga, Madhusudhana R; Herrera-Estrella, Luis; Rathore, Keerti S

    2017-12-01

    This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops. Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~ 97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.

  14. Expression of Baculovirus Anti-Apoptotic Genes p35 and op-iap in Cotton (Gossypium hirsutum L.) Enhances Tolerance to Verticillium Wilt

    Science.gov (United States)

    Liang, Benguo; Li, Shanwei; Wu, Zhixia; Wang, Qianhua; Leng, Chunxu; Dong, Jiangli; Wang, Tao

    2010-01-01

    Background Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored. Methodology/Principal Findings In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T1–T3 generation was lower than 19, significantly (P<0.05) better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines's 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD). Conclusion/Significance Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants. PMID:21151969

  15. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2015-03-01

    Full Text Available Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a two-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines. Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source to seed (sink. This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for

  16. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  17. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun

    2015-10-01

    Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.

  18. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L., is involved in disease resistance and plant development

    Directory of Open Access Journals (Sweden)

    Yu Feifei

    2012-08-01

    Full Text Available Abstract Background As a large family of regulatory proteins, WRKY transcription factors play essential roles in the processes of adaptation to diverse environmental stresses and plant growth and development. Although several studies have investigated the role of WRKY transcription factors during these processes, the mechanisms underlying the function of WRKY members need to be further explored, and research focusing on the WRKY family in cotton crops is extremely limited. Results In the present study, a gene encoding a putative WRKY family member, GhWRKY15, was isolated from cotton. GhWRKY15 is present as a single copy gene, and a transient expression analysis indicated that GhWRKY15 was localised to the nucleus. Additionally, a group of cis-acting elements associated with the response to environmental stress and plant growth and development were detected in the promoter. Consistently, northern blot analysis showed that GhWRKY15 expression was significantly induced in cotton seedlings following fungal infection or treatment with salicylic acid, methyl jasmonate or methyl viologen. Furthermore, GhWRKY15-overexpressing tobacco exhibited more resistance to viral and fungal infections compared with wild-type tobacco. The GhWRKY15-overexpressing tobacco also exhibited increased RNA expression of several pathogen-related genes, NONEXPRESSOR OF PR1, and two genes that encode enzymes involved in ET biosynthesis. Importantly, increased activity of the antioxidant enzymes POD and APX during infection and enhanced expression of NtAPX1 and NtGPX in transgenic tobacco following methyl viologen treatment were observed. Moreover, GhWRKY15 transcription was greater in the roots and stems compared with the expression in the cotyledon of cotton, and the stems of transgenic plants displayed faster elongation at the earlier shooting stages compared with wide type tobacco. Additionally, exposure to abiotic stresses, including cold, wounding and drought, resulted in

  19. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development.

    Science.gov (United States)

    Yu, Feifei; Huaxia, Yifeng; Lu, Wenjing; Wu, Changai; Cao, Xuecheng; Guo, Xingqi

    2012-08-12

    As a large family of regulatory proteins, WRKY transcription factors play essential roles in the processes of adaptation to diverse environmental stresses and plant growth and development. Although several studies have investigated the role of WRKY transcription factors during these processes, the mechanisms underlying the function of WRKY members need to be further explored, and research focusing on the WRKY family in cotton crops is extremely limited. In the present study, a gene encoding a putative WRKY family member, GhWRKY15, was isolated from cotton. GhWRKY15 is present as a single copy gene, and a transient expression analysis indicated that GhWRKY15 was localised to the nucleus. Additionally, a group of cis-acting elements associated with the response to environmental stress and plant growth and development were detected in the promoter. Consistently, northern blot analysis showed that GhWRKY15 expression was significantly induced in cotton seedlings following fungal infection or treatment with salicylic acid, methyl jasmonate or methyl viologen. Furthermore, GhWRKY15-overexpressing tobacco exhibited more resistance to viral and fungal infections compared with wild-type tobacco. The GhWRKY15-overexpressing tobacco also exhibited increased RNA expression of several pathogen-related genes, NONEXPRESSOR OF PR1, and two genes that encode enzymes involved in ET biosynthesis. Importantly, increased activity of the antioxidant enzymes POD and APX during infection and enhanced expression of NtAPX1 and NtGPX in transgenic tobacco following methyl viologen treatment were observed. Moreover, GhWRKY15 transcription was greater in the roots and stems compared with the expression in the cotyledon of cotton, and the stems of transgenic plants displayed faster elongation at the earlier shooting stages compared with wide type tobacco. Additionally, exposure to abiotic stresses, including cold, wounding and drought, resulted in the accumulation of GhWRKY15 transcripts

  20. Efeito de desfolhantes na cultura algodoeira (Gossypium hirsutum L. no Triângulo Mineiro Effects of defoliants on cotton (Gossypium hirsutum L. at Triângulo Mineiro

    Directory of Open Access Journals (Sweden)

    J. P. Del C. Laca-Buendia

    1979-12-01

    Full Text Available Foram testados 4 desfolhantes com diferentes doses, e em misturas, sobre a cultivar IAC 13-1 em solo argiloso de Ipiaçú-MG. Os tratamentos constituiram de 0,71 e 1,42 kg i.a./ha de folex (71,2% de fosforotritoato de tributila, 1,06 e 1,41 kg i.a./ha de def (70,5% de s,s,s-tributiltritiofosfato, 0,36 e 0,54 kg i.a.fha de paraquat (36,2% de 1,1 dimetil-4,4' bipiridilio-dicloreto, 1,92 kg i.a./ha de etileno (48% de ácido cloroetilfosfórico, paraquat + def (0,36 + 0,70 kg i.a./ha, paraquat + def. (0,54 + 1,41 kg i.a./ha, paraquat + folex (0,36 + 0,70 kg i.a./ha, paraquat + folex (0,54 + 1,42 kg i.a./ha, paraquat (0,36 e 0,54 kg i.a./ha e urna testemunha isenta de desfolhantes. As aplicações foram feitas com 70% a 80% de capulhos abertos usando 800 1 de água/ha. A avaliação dos resultados consistiu na contagem de folhas secas + verdes e dos efeitos dos desfolhantes sobre plantas daninhas segundo a escala E.W.R.C. Def (1,41 kg i.a./ha, paraquat + folex (0,54 + 1,42 kg i.a./ha e paraquat + def (0,54 + 1,41 kg i.a./ha foram os melhores na avaliação feita 5 dias após a aplicação. O rebrotamento, causado pelas chuvas, igualou todos os tratamentos aos 10 dias, diferenciando-os apenas da testemunha e, aos 15 dias, igualando-os a ela. Todos os tratamentos com paraquat resultaram em melhor controle sobre plantas daninhas que os demais, contribuindo para facilitar a colheita mecânica e melhorar o tipo de algodão. Os tratamentos estudados não afetaram as características tecnológicas da fibra.Four defoliants were tested, alone and blended at different rates on cotton cv. IAC 13-1 on clay soil of Ipiaçu-MG. The treatments consisted of 0,71 and 1,42 kg i.a./ha of folex (71,2% of tributyl phosphorotrithioate, 1,06 and 1,41 kg i.a./ha of def (70,5% of s,s,s, - tributyl phosphorotrithioate, 0,36 and 0,54 kg i.a./ha of paraquat (36,2% of 1'1 dime thyl-4-4'- bipyridyldiylium ion, 1,92 kg i.a./ha of ethrel (48% of chlorethyphosphoric acid, paraquat

  1. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis.

    Science.gov (United States)

    Zhang, Yan; Wang, Xingfen; Li, Yiyi; Wu, Lizhu; Zhou, Hongmei; Zhang, Guiyin; Ma, Zhiying

    2013-11-01

    Overexpression of a cotton defense-related gene GbSTK in Arabidopsis resulted in enhancing pathogen infection and oxidative stress by activating multiple defense-signaling pathways. Serine/threonine protein kinase (STK) plays an important role in the plant stress-signaling transduction pathway via phosphorylation. Most studies about STK genes have been conducted with model species. However, their molecular and biochemical characterizations have not been thoroughly investigated in cotton. Here, we focused on one such member, GbSTK. RT-PCR indicated that it is induced not only by Verticillium dahliae Kleb., but also by signaling molecules. Subcellular localization showed that GbSTK is present in the cell membrane, cytoplasm, and nucleus. Overexpression of GbSTK in Arabidopsis resulted into the enhanced resistance to V. dahliae. Moreover, Overexpression of GbSTK elevated the expression of PR4, PR5, and EREBP, conferring on transgenic plants enhanced reactive oxygen species scavenging capacity and oxidative stress tolerance. Our results suggest that GbSTK is active in multiple defense-signaling pathways, including those involved in responses to pathogen infection and oxidative stress.

  2. EPIDEMIOLOGICAL ASPECTS OF COTTON RAMULOSIS (Colletotrichum gossypii SOUTH. Var. cephalosporioides COSTA ASPECTOS EPIDEMIOLÓGICOS DA RAMULOSE (Colletotrichum gossypii South. var. cephalosporioides Costa DO ALGODOEIRO (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Fuad Calil

    2007-09-01

    Full Text Available

    These experiments deal with the effects of outbreak of early, medium and late developing ramulosis on the IAC-13.l variety of cotton, which was seeded at three different intervals in Itauçu (Goiás—Brazil. The effects of the ramulosis on the height and weight of the plants, on the number of bolls, and on the weight of the cotton seeds and lints, were studied. The experiments were installed in a flat area of red latosoil. The experimental design was one of random blocks with six repetitions and the plants were classified, at the end of their vegetative growth, into the following categories: healthy, early ramulosis, medium ramulosis and late developing ramulosis. The early and medium ramulosis affected more significantly the studied parameters, and it was observed that varieties of cotton which were moderately resistant in relation to ramulosis, can be severely affected during growing seasons of heavy rains such as the 1975/76 season.

    Estudaram-se os efeitos da incidência precoce, mediana e tardia de ramulose sobre o peso e altura das plantas, número de capulhos, peso das sementes e da pluma de algodoeiro do cultivar IAC-l3.l em três épocas de semeadura (21/10/75, 21/11/75 e 23/12/75 no município de Itauçu (GO. O experimento foi instalado em região plana com latossolo vermelho. Foram utilizados blocos casualizados com seis repetições e plantas no final do ciclo vegetativo foram classificadas em quatro tipos: sadias, com ramulose precoce, com ramulose mediana ou com ramulose tardia. Concluiu-se que a forma precoce e também a mediana foram as que afetaram mais significativamente os parâmetros aferidos, e que cultivares tidos como de razoável comportamento em relação à ramulose, podem ser severamente afetados em anos agrícolas muito chuvosos como foi o de 1975/76.

  3. Association mapping of resistance to Verticillium wilt in Gossypium ...

    African Journals Online (AJOL)

    Verticillium wilt is a major disease affecting the growth of cotton. For screening the resistant genes, 320 Gossypium hirsutum germplasms were evaluated in Verticillium nursery, and association mapping was used to detect the markers associated with the Verticillium wilt resistance. 106 microsatellite marker primer pairs ...

  4. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    Science.gov (United States)

    Background The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid ...

  5. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  6. Ionic and water relations of cotton (Gossypium hirsutum L. as influenced by various rates of K and Na in soil culture

    Directory of Open Access Journals (Sweden)

    L. Ali

    2009-05-01

    Full Text Available A pot study was conducted to investigate the growth response, ionic and water relations of two cotton varieties. Four levels of K and Na were developed after considering indigenous K, Na status in soil. The treatments of K + Na in mg kg-1 were adjusted as: 105 + 37.5, 135 + 30, 135 + 37.5 and 105 + 30 (control. Control treatment represented indigenous K and Na status of soil. Higher but non significant relative water contents were observed in treatments of135 + 30 mg kg-1 followed by 135 + 37.5 mg kg-1. The beneficial effects of Na with K application were observed greater in NIBGE-2 than in MNH-786. Both varieties varied non-significantly with respect to K:Na ratio in leaf, water potential and total chlorophyll contents. Significant relationship (R2=0.51, n= 4, average of four replicates was found between total dry weight and relative water contents in NIBGE-2.

  7. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Xueying; Teng, Zhonghua; Wang, Jinxia; Wu, Tiantian; Zhang, Zhiqin; Deng, Xianping; Fang, Xiaomei; Tan, Zhaoyun; Ali, Iftikhar; Liu, Dexin; Zhang, Jian; Liu, Dajun; Liu, Fang; Zhang, Zhengsheng

    2017-12-01

    Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

  8. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  9. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  10. Evaluation of Sentinel-2A Satellite Imagery for Mapping Cotton Root Rot

    Directory of Open Access Journals (Sweden)

    Xiaoyu Song

    2017-08-01

    Full Text Available Cotton (Gossypium hirsutum L. is an economically important crop that is highly susceptible to cotton root rot. Remote sensing technology provides a useful and effective means for detecting and mapping cotton root rot infestations in cotton fields. This research assessed the potential of 10-m Sentinel-2A satellite imagery for cotton root rot detection and compared it with airborne multispectral imagery using unsupervised classification at both field and regional levels. Accuracy assessment showed that the classification maps from the Sentinel-2A imagery had an overall accuracy of 94.1% for field subset images and 91.2% for the whole image, compared with the airborne image classification results. However, some small cotton root rot areas were undetectable and some non-infested areas within large root rot areas were incorrectly classified as infested due to the images’ coarse spatial resolution. Classification maps based on field subset Sentinel-2A images missed 16.6% of the infested areas and the classification map based on the whole Sentinel-2A image for the study area omitted 19.7% of the infested areas. These results demonstrate that freely-available Sentinel-2 imagery can be used as an alternative data source for identifying cotton root rot and creating prescription maps for site-specific management of the disease.

  11. Overexpression of 3-deoxy-7-phosphoheptulonate synthase gene from Gossypium hirsutum enhances Arabidopsis resistance to Verticillium wilt.

    Science.gov (United States)

    Yang, Jun; Ji, Lianlian; Wang, Xingfen; Zhang, Yan; Wu, Lizhu; Yang, Yingna; Ma, Zhiying

    2015-08-01

    Expression of DHS1 in cotton is induced upon infection by Verticillium dahliae , and overexpression of GhDHS1 endows transgenic Arabidopsis plants excellent Verticillium resistance. Verticillium wilt is caused by a soil-borne fungus Verticillium dahliae. Resistance in most cotton cultivars is either scarce or unavailable, making Verticillium wilt a major obstacle in cotton production. Here, we identified a 3-deoxy-7-phosphoheptulonate synthase (DHS, EC 4.1.2.15) gene from Gossypium hirsutum, named GhDHS1. Its 1620 bp open reading frame encodes a putative 59.4 kDa protein. Phylogenetic analysis indicated that GhDHS1 is clustered in a clade with potato and tomato DHSs that can be induced by wounding and elicitors, respectively. Expression analysis demonstrated that GhDHS1 is constitutively expressed in cotton roots and stems, but transcripts are rare or non-existent in the leaves. Subcellular localization showed that GhDHS1 occurs in the plastids. When plants of three cultivars were inoculated with V. dahliae, DHS1 expression was more significantly up-regulated in the roots of resistant G. barbadense cv. Pima90-53 and G. hirsutum cv. Jimian20 than in the susceptible G. hirsutum cv. Han208. This suggested that DHS1 is involved in the cotton resistance to Verticillium wilt. Furthermore, GhDHS1 overexpressing transgenic lines of Arabidopsis were developed via Agrobacterium tumefaciens-mediated transformation. Compared with the untransformed WT (wild type), these transgenic plants showed excellent Verticillium wilt resistance with a significantly lower disease index. The overexpressing transgenic lines also had significantly longer primary roots and greatly increased xylem areas under V. dahliae infection. Overall, our results indicate that GhDHS1 performs a role in the cotton resistance to V. dahliae and would be potential to breeding cottons of Verticillium wilt resistance.

  12. Bacterial blight of cotton

    Directory of Open Access Journals (Sweden)

    Aïda JALLOUL

    2015-04-01

    Full Text Available Bacterial blight of cotton (Gossypium ssp., caused by Xanthomonas citri pathovar malvacearum, is a severe disease occurring in all cotton-growing areas. The interactions between host plants and the bacteria are based on the gene-for-gene concept, representing a complex resistance gene/avr gene system. In light of the recent data, this review focuses on the understanding of these interactions with emphasis on (1 the genetic basis for plant resistance and bacterial virulence, (2 physiological mechanisms involved in the hypersensitive response to the pathogen, including hormonal signaling, the oxylipin pathway, synthesis of antimicrobial molecules and alteration of host cell structures, and (3 control of the disease.

  13. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry

    National Research Council Canada - National Science Library

    Li Xu; Longfu Zhu; Lili Tu; Linlin Liu; Daojun Yuan; Li Jin; Lu Long; Xianlong Zhang

    2011-01-01

    The incompatible pathosystem between resistant cotton (Gossypium barbadense cv. 7124) and Verticillium dahliae strain V991 was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq...

  14. Genomics-enabled analysis of the emergent disease cotton bacterial blight.

    Directory of Open Access Journals (Sweden)

    Anne Z Phillips

    2017-09-01

    Full Text Available Cotton bacterial blight (CBB, an important disease of (Gossypium hirsutum in the early 20th century, had been controlled by resistant germplasm for over half a century. Recently, CBB re-emerged as an agronomic problem in the United States. Here, we report analysis of cotton variety planting statistics that indicate a steady increase in the percentage of susceptible cotton varieties grown each year since 2009. Phylogenetic analysis revealed that strains from the current outbreak cluster with race 18 Xanthomonas citri pv. malvacearum (Xcm strains. Illumina based draft genomes were generated for thirteen Xcm isolates and analyzed along with 4 previously published Xcm genomes. These genomes encode 24 conserved and nine variable type three effectors. Strains in the race 18 clade contain 3 to 5 more effectors than other Xcm strains. SMRT sequencing of two geographically and temporally diverse strains of Xcm yielded circular chromosomes and accompanying plasmids. These genomes encode eight and thirteen distinct transcription activator-like effector genes. RNA-sequencing revealed 52 genes induced within two cotton cultivars by both tested Xcm strains. This gene list includes a homeologous pair of genes, with homology to the known susceptibility gene, MLO. In contrast, the two strains of Xcm induce different clade III SWEET sugar transporters. Subsequent genome wide analysis revealed patterns in the overall expression of homeologous gene pairs in cotton after inoculation by Xcm. These data reveal important insights into the Xcm-G. hirsutum disease complex and strategies for future development of resistant cultivars.

  15. Engineered disease resistance in cotton using RNA-interference to knock down cotton leaf curl kokhran virus-Burewala and cotton leaf curl Multan betasatellite

    Science.gov (United States)

    Cotton Leaf Curl virus Disease (CLCuD) has caused enormous losses in cotton (Gossypium hirsutum) production in Pakistan. RNA interference (RNAi) is an emerging technique that could knock out CLCuD by targeting different regions of the pathogen genome that are important for replication, transcription...

  16. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2016-01-01

    Full Text Available Superoxide dismutase (SOD as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  17. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we exami...

  18. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    Navya

    2017-03-28

    Mar 28, 2017 ... 8, 86. doi: 10.3389/fpls.2017.00086. Kantartzi S. K. and Stewart J. M. 2008 Association analysis of fibre traits in gossypium arboreum, accessions. Plant Breeding. 127, 173–179. Kline J. B., Moore D. J. and Clevenger C. V. 2001 Activation and association of the tec tyrosine kinase with the human prolactin ...

  19. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  20. Phenotypic and molecular evaluation of cotton hairy roots as a model system for studying nematode resistance

    Science.gov (United States)

    The cellular mechanisms that mediate resistance of allotetraploid cotton (Gossypium spp.) to root-knot nematode (Meloidogyne incognita) and reniform nematode (Rotylenchulus reniformis) are poorly understood. Here, Agrobacterium rhizogenes-induced hairy roots were investigated as a possible research...

  1. Reproduction and pathogenicity of endemic populations of Rotylenchulus reniformis on cotton

    Science.gov (United States)

    The reniform nematode (Rotylenchulus reniformis) is the predominant parasitic nematode of upland cotton (Gossypium hirsutum) in the southern United States. Little is known about variability in geographic isolates of reniform nematode. In order to evaluate the comparative reproduction and pathogenici...

  2. Phenotypic and molecular evaluation of cotton hairy roots as a model system for studying nematode resistance.

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Triplett, Barbara A; Jenkins, Johnie N

    2009-09-01

    Agrobacterium rhizogenes-induced cotton (Gossypium hirsutum L.) hairy roots were evaluated as a model system for studying molecular cotton-nematode interactions. Hairy root cultures were developed from the root-knot nematode (RKN) (Meloidogyne incognita [Kofoid and White] Chitwood, race 3)-resistant breeding line M315 and from the reniform nematode (RN) (Rotylenchulus reniformis Linford & Oliveira)-resistant accession GB713 (G. barbadense L.) and compared to a nematode-susceptible culture derived from the obsolete cultivar DPL90. M315, GB713, and DPL90 hairy roots differed significantly in their appearance and growth potential; however, these differences were not correlated with transcript levels of the A. rhizogenes T-DNA genes rolB and aux2 which help regulate hairy root initiation and proliferation. DPL90 hairy roots were found to support both RKN and RN reproduction in tissue culture, whereas M315 and GB713 hairy roots were resistant to RKN and RN, respectively. M315 hairy roots showed constitutive up-regulation of the defense gene MIC3 (Meloidogyne Induced Cotton3) compared to M315 whole-plant roots and DPL90 hairy roots. Our data show the potential use of cotton hairy roots in maintaining monoxenic RKN and RN cultures and suggest hairy roots may be useful in evaluating the effect of manipulated host gene expression on nematode resistance in cotton.

  3. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  4. Meloidogyne incognita emigration from cotton roots may be induced by the resistance QTL qMi-C11

    Science.gov (United States)

    Upland cotton (Gossypium hirsutum) is one of the most widely grown crops in the southern US, and Meloidogyne incognita is the most significant pathogen of cotton in the US. Two QTLs, qMi-C11 and qMi-C14, conferring resistance to M. incognita have been identified in cotton. Previous research docume...

  5. Genotypic comparisons of chromosomes 01, 04 and 18 from three tetraploid species of gossypium in topcrosses with five elite cultivars of G. hirsutum L

    Science.gov (United States)

    Upland cotton, Gossypium hirsutum L. is planted on most of the hectareage of cultivated cotton in the United States and the world. The cultivated tetraploid species G. barbadense L. produces extra long, strong, and fine fibers. Breeders would like to move fiber quality alleles from this species in...

  6. Comparative analysis of resistance gene analogues encoding NBS-LRR domains in cotton.

    Science.gov (United States)

    Khan, Abdul Manan; Khan, Asif Ali; Azhar, Muhammad Tehseen; Amrao, Luqman; Cheema, Hafiza Masooma Naseer

    2016-01-30

    Plant production is severely affected by biotic and abiotic stresses R-genes exhibit resistance against a range of diseases and pathogens in plants. The nucleotide binding site and leucine rich repeat (NBS-LRR) class of R-genes is the most comprehensively studied in terms of sequence evolution and genome distribution. The differential response for resistance against biotic and abiotic stress has been observed in cultivated and wild relatives of the genus Gossypium. Efforts have been made to address the recent evolution of NBS-LRR sequences within Gossypium hirsutum and resistance gene analogue (RGA) sequences derived from G. arboreum and G. raimondii. The % identity and phylogenetic analysis of NBS-LRR-encoded RGAs from tetraploid New World cotton and its diploid ancestors G. raimondii and G. arboreum suggest that the evolution of NBS-LRR-encoding sequences in G. hirsutum occurred by gradual accumulation of mutants that led to positive selection and a slow rate of divergence within distinct R-gene families. The allotetraploid genome of cotton, after separating from its diploid parents, experienced polyploidisation, natural and artificial selection, hybrid necrosis, duplication and recombination which became the reason to shed off and evolve new genes for its survival. These driving forces influenced the development of genomic architecture that make it susceptible to diseases and pathogens as compared to donor parents. © 2015 Society of Chemical Industry.

  7. The Effect of Integrated Weed Management (Chemical and Mechanical on Density and Dry Weight of Weed and Introduction of New Herbicide (Envoke in Cotton (Gossypium hirsutum Field in Birjand Region

    Directory of Open Access Journals (Sweden)

    H Barati Mahmoodi

    2012-02-01

    Full Text Available In order to study the effects of mechanical and chemical methods of weed control and their interaction on cotton (CV. Varamin an experiment was conducted in Agricultural Research Field, The University of Birjand during 2008 growing season using a randomize complete block design with 12 treatments and 4 replications. Treatments were: Trefelan (trifluralin 48% EC 960CC ai ha-1 (Pre-plant, Sonalan (ethalfluralin 33.3% 999CC ai ha-1 (Pre-plant, Envoke 75 WG (trifloxysulfuron sodium 11.25 gr ai ha-1 + adjuvant (Citogit 2/1000 post- emergence at 2-8 leaves stage of cotton, once cultivator at 5-8 leaves stage of cotton, using twice cultivator at 2-4 and 4-8 leaves stage of cotton, Trefelan + Envoke, Sonalan + Envoke, Envoke + Cultivator, Trefelan + Cultivator and Sonalan + Cultivator. There were also two treatments whole season weed-free and weed-infested, as controls. Result showed that the lowest weed density and dry weight was related to the treatment of using “Envoke” along with ''Citogit” and integrated treatments of Envoke + Sonalan and Envoke + Cultivator. Integration of Cultivator with Sonalan, Treflan and Envoke was more effective than Cultivator alone.

  8. The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor

    NARCIS (Netherlands)

    Wäckers, F.L.; Zuber, D.; Wunderlin, R.; Keller, F.

    2001-01-01

    The effects of feeding Spodoptera littoralis(Boisd.) (Lepidoptera: Noctuidae) larvae on the quantity and distribution of extrafloral nectar production by leaves of castor (Ricinus communis) and cotton (Gossypium herbaceum) were investigated. Following larval feeding, the total volume of nectar

  9. The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor

    NARCIS (Netherlands)

    Wäckers, F.L.; Zuber, D.; Wunderlin, R.; Keller, F.

    2001-01-01

    The effects of feeding Spodoptera a littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae on the quantity and distribution of extrafloral nectar production by leaves of castor ((Ricinus communis) and cotton (Gossypium herbaceum) were investigated. Following larval feeding, the total volume of nectar

  10. Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm.

    Science.gov (United States)

    Li, Shengyan; Wang, Zeyu; Zhou, Yiyao; Li, Changhui; Wang, Guiping; Wang, Hai; Zhang, Jie; Liang, Gemei; Lang, Zhihong

    2018-01-11

    To improve the novel Bacillus thuringiensis insecticidal gene cry2Ah1 toxicity, two mutants cry2Ah1-vp (V354VP) and cry2Ah1-sp (V354SP) were performed. SWISS-MODEL analysis showed two mutants had a longer loop located between β-4 and β-5 of domain II, resulting in higher binding affinity with brush border membrane vesicles (BBMV) of Helicoverpa armigera comparing with Cry2Ah1. The cry2Ah1, cry2Ah1-vp, and cry2Ah1-sp were optimized codon usage according to plant codon bias, and named mcry2Ah1, mcry2Ah1-vp, and mcry2Ah1-sp. They were transformed into tobacco via Agrobacterium-mediated transformation and a total of 4, 8, and 24 transgenic tobacco plants were obtained, respectively. The molecular detection showed the exogenous gene was integrated into tobacco genome, and successfully expressed at the transcript and translation levels. Cry2Ah1 protein in transgenic tobacco plants varied from 4.41 to 40.28 μg g -1 fresh weight. Insect bioassays indicated that all transgenic tobacco plants were highly toxic to both susceptible and Cry1Ac-resistant cotton bollworm larvae, and the insect resistance efficiency to Cry1Ac-resistant cotton bollworm was highest in mcry2Ah1-sp transgenic tobacco plants. The results demonstrated that cry2Ah1 was a useful Bt insecticidal gene to susceptible and Cry1Ac-resistant cotton bollworm and had potential application for insect biocontrol and as a candidate for pyramid strategy in Bt crops.

  11. Proline accumulation in response to drought and heat stress in cotton.

    African Journals Online (AJOL)

    Water and heat stress are the most important environmental variables affecting cotton growth and development. The main objective of our study was to evaluate the effect of water stress and a combination of water and heat stress on proline accumulation in six cotton cultivars (Gossypium hirsutum) and to determine the ...

  12. Using Population Genomics to Reveal Temporal Patterns of Host Use in the Cotton Fleahopper (Pseudatomoscelis seriatus)

    Science.gov (United States)

    The cotton fleahopper (CFH), Pseudatomoscelis seriatus (Reuter, 1876) (Hemiptera: Miridae), is a pest of commercial cotton (Gossypium hirsutum L.) with over 100 known host plants across its range. Both adults and nymphs attack small, developing squares, leading to abscission of the square. A new t...

  13. Genetic effects of chromosomes 01, 04, and 18 from three tetraploid gossypium species in topcrosses with five elite cultivars

    Science.gov (United States)

    Chromosome substitution lines (CSL) have been developed for selected chromosomes from two tetraploid species of Gossypium and have been shown to be effective ways to target introgression of useful alleles from exotic tetraploid species into Upland cotton, G. hirsutum L. Genetic effects of chromosome...

  14. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    Science.gov (United States)

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  15. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  16. Gossypium hirsutum L.

    Indian Academy of Sciences (India)

    Introduction. Morphological mutants of cotton are used in studies of plant development and genetic mapping and occasionally have proven to have agronomic value. With few exceptions, the most useful mutants have been those found as spontaneous mutants in breeding populations. In general, they are more vigorous and ...

  17. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis.

    Science.gov (United States)

    Guo, Weifeng; Jin, Li; Miao, Yuhuan; He, Xin; Hu, Qin; Guo, Kai; Zhu, Longfu; Zhang, Xianlong

    2016-06-01

    An ethylene response-related factor, GbERF1-like, from Gossypium barbadense cv. '7124' involved in the defence response to Verticillium dahliae was characterized. GbERF1-like transcripts present ubiquitously in various tissues, with higher accumulation in flower organs. GbERF1-like was also responsive to defence-related phytohormones and V. dahliae infection. The downregulation of GbERF1-like increased the susceptibility of cotton plants to V. dahliae infection, while overexpression of this gene improved disease resistance in both cotton and Arabidopsis, coupled with activation of the pathogenesis-related proteins. Further analysis revealed that genes involved in lignin synthesis, such as PAL, C4H, C3H, HCT, CCoAOMT, CCR and F5H, showed higher expression levels in the overexpressing cotton and Arabidopsis lines and lower expression levels in the RNAi cotton lines. The expression levels of these genes increased obviously when the GbERF1-like-overexpressing plants were inoculated with V. dahliae. Meanwhile, significant differences in the content of whole lignin could be found in the stems of transgenic and wild-type plants after inoculation with V. dahliae, as revealed by metabolic and histochemical analysis. More lignin could be detected in GbERF1-like-overexpressing cotton and Arabidopsis but less in GbERF1-like-silencing cotton compared with wild-type plants. The ratio of S and G monomers in GbERF1-like-overexpressing cotton and Arabidopsis increased significantly after infection by V. dahliae. Moreover, our results showed that the promoters of GhHCT1 and AtPAL3 could be transactivated by GbERF1-like in vivo based on yeast one-hybrid assays and dual-luciferase reporter assays. Knockdown of GhHCT1 in GbERF1-like over-expressing cotton decreases resistance to V. dahliae. Collectively, our results suggest that GbERF1-like acts as a positive regulator in lignin synthesis and contributes substantially to resistance to V. dahliae in plants.

  18. Efficacy of Cry1Ac:Cry1F proteins in cotton leaf tissue against fall armyworm, beet armyworm, and soybean looper (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Tindall, K V; Siebert, M Willrich; Leonard, B R; All, J; Haile, F J

    2009-08-01

    Cotton, Gossypium hirsutum L., plants expressing Cry1Ac and Cry1F insecticidal crystal proteins of Bacillus thuringiensis Berliner (Bt) were evaluated against selected lepidopteran pests including fall armyworm, Spodoptera frugiperda (J. E. Smith), beet armyworm, Spodoptera exigua (Hübner), and soybean looper, Pseudoplusia includens (Walker). Studies were conducted in a range of environments, challenging various cotton tissue types from several varieties containing a combination of Cry1Ac and Cry1F proteins. In fresh tissue bioassays of mature leaves and squares (flower buds) and in artificial field infestations of white flowers, plants containing Cry1Ac:Cry1F significantly reduced levels of damage (leaf defoliation, bract feeding, penetrated squares and bolls, and boll abscission) and induced significantly greater mortality (90-100%) of fall armyworm compared with that on non-Bt cotton plants. Plants containing Cry1Ac:Cry1F conferred high levels (100%) of soybean looper mortality and low levels (0.2%) of leaf defoliation compared with non-Bt cotton. Beet armyworm was relatively less sensitive to Cry1Ac:Cry1F cotton plants compared with fall armyworm and soybean looper. However, beet armyworm larval development was delayed 21 d after infestation (DAI), and ingestion of plant tissue was inhibited (14 and 21 DAI) on the Cry1Ac:Cry1F plants compared with that on non-Bt cotton plants. These results show Cry1Ac:Cry1F cotton varieties can be an effective component in a management program for these lepidopteran pest species. Differential susceptibility of fall armyworm, beet armyworm, and soybean looper larvae to Cry1Ac:Cry1F cotton reinforces the need to sample during plant development and respond with a foliar insecticide if local action thresholds are exceeded.

  19. Sampling nucleotide diversity in cotton

    Directory of Open Access Journals (Sweden)

    Yu John Z

    2009-10-01

    Full Text Available Abstract Background Cultivated cotton is an annual fiber crop derived mainly from two perennial species, Gossypium hirsutum L. or upland cotton, and G. barbadense L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between G. arboreum and G. raimondii. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from G. mustelinum and G. tomentosum into G. hirsutum using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (G. hirsutum × 3-79 (G. barbadense have been developed to allow high-density genetic mapping of traits. Results This paper describes a strategy to efficiently characterize genomic variation (SNPs and indels within and among cotton species. Over 1000 SNPs from 270 loci and 279 indels from 92 loci segregating in G. hirsutum and G. barbadense were genotyped across a standard panel of 24 lines, 16 of which are elite cotton breeding lines and 8 mapping parents of populations from six cotton species. Over 200 loci were genetically mapped in a core mapping population derived from TM-1 and 3-79 and in G. hirsutum breeding germplasm. Conclusion In this research, SNP and indel diversity is characterized for 270 single-copy polymorphic loci in cotton. A strategy for SNP discovery is defined to pre-screen loci for copy number and polymorphism. Our data indicate that the A and D genomes in both diploid and tetraploid cotton remain distinct from each such that paralogs can be distinguished. This research provides mapped DNA markers for intra-specific crosses and introgression of exotic germplasm in cotton.

  20. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    African Journals Online (AJOL)

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  1. Effect of nitrates on embryo induction efficiency in cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) cv Coker-312 callus culture was assessed in terms of its usefulness as a system for investigating the effect of nitrates from different chemical compounds of nitrogen on embryo induction percentage in calli as the plant growth and cell differentiation mainly based on nitrogen. Both sources and ...

  2. Distribution and Potential Impact of Feral Cotton on the ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum) production is limited by bollworms that cause declining yields and poor lint quality. Generally, farmers manage pests by employing Integrated Pest Management (IPM) strategies, which include biological, cultural, physical and chemical approaches. Pest management by quarantine and ...

  3. efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    INTRODUCTION. Cotton, Gossypium spp (Malvaceae) is an important industrial fibre crop widely cultivated along the Guinea savanna and derived savanna zones of West Africa (Hill and Waller, 1988;. Matthews, 1989; Langer and Hill 1991). In the savanna ecology of Ghana, lepidopteran bollworms are a major constraint ...

  4. Profitability of cover crops for single and twin row cotton

    Science.gov (United States)

    With the increased interest in cover crops, the impact of adoption on profitability of cash crops is a common question from producers. The objective of this study was to evaluate the profitability of cover crops for single and twin row cotton (Gossypium hirsutum L.) in Alabama. This experiment inclu...

  5. Identification of resistance to Aspergillus flavus infection in cotton germplasm

    Science.gov (United States)

    Natural resistance of in cottonseed to Aspergillus flavus infection has not been explored to date. A green fluorescent protein (GFP) expressing -70 strain was used to assess the resistance of seed from thirty five35 cotton varieties including representatives from Gossypium arboreum, G. barbadense, a...

  6. Review: Genetic diversity and population structure of cotton ...

    African Journals Online (AJOL)

    Review: Genetic diversity and population structure of cotton ( Gossypium hirsutum L. race latifolium H. ) using microsatellite markers. ... African Journal of Biotechnology ... Four groups were identified applying different methods (the probabilistic method, Principal Coordinates Analysis and Neighbor Joining tree). American ...

  7. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies

    OpenAIRE

    Aslam, Usman; Cheema, Hafiza M. N.; Ahmad, Sheraz; Khan, Iqrar A.; Malik, Waqas; Khan, Asif A.

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton (Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based re...

  8. Genome-wide characterization and expression analysis of MYB transcription factors in Gossypium hirsutum.

    Science.gov (United States)

    Salih, Haron; Gong, Wenfang; He, Shoupu; Sun, Gaofei; Sun, Junling; Du, Xiongming

    2016-09-09

    MYB family proteins are one of the most abundant transcription factors in the cotton plant and play diverse roles in cotton growth and evolution. Previously, few studies have been conducted in upland cotton, Gossypium hirsutum. The recent release of the G. hirsutum genome sequence provides a great opportunity to identify and characterize the entire upland cotton MYB protein family. In this study, we undertook a comprehensive genome-wide characterization and expression analysis of the MYB transcription factor family during cotton fiber development. A total of 524 non-redundant cotton MYB genes, among 1986 MYB and MYB-related putative proteins, were identified and classified into four subfamilies including 1R-MYB, 2R-MYB, 3R-MYB, and 4R-MYB. Based on phylogenetic tree analysis, MYB transcription factors were divided into 16 subgroups. The results showed that the majority (69.1 %) of GhMYBs genes belong to the 2R-MYB subfamily in upland cotton. Our comparative genomics analysis has provided novel insights into the roles of MYB transcription factors in cotton fiber development. These results provide the basis for a greater understanding of MYB regulatory networks and to develop new approaches to improve cotton fiber development.

  9. SENSIBILIDADE DE Rhizoctonia solani Kuhn, A FUNGICIDAS “IN VITRO” E EM PLÂNTULAS DE ALGODOEIRO (Gossypium hirsutum L., EM CONDIÇÕES DE CASA DE VEGETAÇÃO SENSIBILITY OF Rhizoctonia solani Kuhn TO FUNGICIDES “IN VITRO” AND IN COTTON PLANTULES (Gossypium hirsutum L AT GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Wilson Ferreira de Oliveira

    2007-09-01

    Full Text Available

    Foram instalados nas dependências do Departamento Fitossanitário da Escola de Agronomia - UFG, ensaio “in vitro”, em BDA2 e a nível de Casa de Vegetação, objetivando testar a eficiência de diferentes dosagens de Iprodione + Thiran (Rovrin em comparação com PCNB (Brassicol 75 BR, TMTD (Rhodiauran 70 e Captan + Pencycuron (Monceren para o controle de Rhizoctonia solani Kuhn, na cultura do algodoeiro, através do tratamento de sementes. Os resultados obtidos, nas condições de realização dos ensaios, permitem concluir que os fungicidas Rovrin - 320 g.i.a., Monceren - 210 g.i.a., Rovrin - 240 g.i.a., Rovrin - 200 g.i.a., PCNB - 450 g.i.a./100 litros de água ou 100 kg de sementes mostraram-se eficientes e não diferiram estatisticamente entre si no controle de R. solani, enquanto que o produto TMTD (Rhodiauran 70 na dosagem de 280 g.i.a./100 litros de água ou 100 kg de sementes de algodoeiro não se mostrou eficiente no controle deste agente causal.

    Aiming to test the efficiency of different dosages of Iprodione + Thiram (Rovrin in comparison with PCNB (Brassicol 75 BR, TMTD (Rhodiauran 70 and Captan + Pencycuron (Monceren for controlling Rhizoctonia solani Kuhn, in cotton plantation, through seeds treatment, was mounted essays “in vitro” at greenhouse level and BDA, in the Phytosanitary Department annexes of School of Agronomy-UFG. The results obtained, at essays conditions, permit to conclude that fungicides Rovrin - 320 g.i.a., Monceren - 210 g.i.a., Rovrin - 240 g.i.a., Rovrin - 200 g.i.a., PCNB - 450 g.i.a./l00 liters of water or 100kg of seeds, were efficient and statistically had no variation among them, in controlling R. solani, while chemical product TMTD (Rhodiauran 70, at dosage of 280 g.i.a./100 liters of water or 100 kg of cotton seeds, was not efficient in controlling this causal

  10. Assessing the Economic Impact of inversion tillage, cover crops, and herbicide regimes in palmer amaranth (Amaranthus palmeri) infested cotton

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) producers in Alabama and across the Cotton Belt are faced with a rapidly expanding problem that decreases yields and increases production costs: herbicide-resistant weeds. Producers are increasingly relying on production methods that raise production costs, such as add...

  11. Composição química de cogumelos comestíveis cultivados em resíduo de algodão (Gossypium hirsutum L. Chemical composition of mushrooms cultivated in cotton (Gossypium hirsutum L. waste substratum

    Directory of Open Access Journals (Sweden)

    Sandra Maria Gomes da Costa

    2000-05-01

    Full Text Available Determinou-se a composição química dos basidiomas das espécies Pleurotus ostreatoroseus Sing e Pleurotus ostreatus (Jack: Fr Kummer e do substrato (resíduo de algodão, antes e após o cultivo. Os resultados demonstram diferentes valores de composições para os basidiomas das espécies anteriormente citadas, apresentando teores de proteína entre 20% e 15%, e de lipídio entre 5% e 8%, respectivamente. No substrato, o teor de lipídios apresentou um decréscimo de aproximadamente 70% após o cultivo e o de proteína, um aumento próximo a 50%The chemical composition of species P. ostreatoroseus and P. ostreatus and of the substratum (cotton waste before and after cultivation were determined. The results demonstrate different values of compositions of mushrooms of the species above referred, showing a protein grade of approximately 20% and 15%, and lipid grade of approximately 5% and8%, respectively. In the substratum the lipid grade showed a decrease of approximately 70% after cultivation and the protein grade showed an increase of nearly 50%

  12. Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

    Directory of Open Access Journals (Sweden)

    Iftikhar Ali Khan

    2016-02-01

    Full Text Available Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB, dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease. Infected scion of Gossypium hirsutum collected from field (the source was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt in the non-coding region between A-rich sequence and βC1 gene and insertion of 27 nt in the middle of βC1 ORF. This study may help in investigating molecular basis of resistance in G. arboreum.

  13. CRITICAL COMPETITION PERIOD BETWEEN COTTON AND (Gossypium hirsutum L. HARMFUL WEED COMMUNITIES IN THE GOIÁS STATE PERÍODO CRÍTICO DE COMPETIÇÃO ENTRE COMUNIDADES DE PLANTAS DANINHAS E O ALGODOEIRO (Gossypium hirsutum L. NO ESTADO DE GOIÁS

    Directory of Open Access Journals (Sweden)

    Armando M. Macêdo

    2007-09-01

    Full Text Available

    In order to study the critical time that weeds compete with the cotton plant, five trial experiments were conducted from 1978-1981. Two of the trials were carried out in a dark red latosoil with 4.70% organic matter and 10.73% clay, at the Rio Verde Agricultural School in the state of Goiás, during the 1978—79 and 1979—80 planting seasons. The other three were carried out in dark red latosoil, with a loam clay texture, moderate acidity and a low proportion of organic matter, at the Experimental station in Goiânia, Goiás during the 1978—79, 1979—80 and 1980—81 planting seasons. The treatments designed were: weeding up to 2, 4, 6, 8 first weeks, and weeding during the whole cycle ,and weeding after the 2, 4, 6, 8 first weeks and no weeding at all during the cycle. The results showed that weed competition , when not controlled, determined a yield loss of 88.75% in Goiânia and 90.65% in Rio Verde. Regarding the group control, which was maintained without weed competition, the best yield was obtained when the cotton was maintained without competition during eight weeks after the emergence in Rio Verde and during 4, 6, 8 weeks in Goiânia. The critical competition period occurred between the fourth and sixth weeks after the emergence in Rio Verde and in the fourth week after the emergence in Goiânia.

    Com a finalidade de estudar as épocas críticas de competição de plantas daninhas com o algodoeiro (Gossipium hirsutum L. , foram instalados cinco ensaios em área do Colégio Agrícola de Rio Verde — Goiás, no período de 1978 a 1981, sendo dois ensaios nos anos agrícolas de 1978/79 e 1979/80 em latossolo vermelho—escuro com 4,71% de matéria orgânica e 10,73% de argila. Os outros três ensaios foram instalados nos anos agrícolas 1978/79, 1979/80 e 1980/81, em área da Estação Experimental de

  14. Avaliação da eficiência de controle de plantas daninhas gramíneas do herbicida clethodim em algodoeiro herbáceo (Gossypium hirsutum var. latifolium Hutch. Evaluation of the efficiency on the control of gramineous weeds by the herbicide clethodim in a herbaceous cotton crop (Gossypium hirsutum var. latifolium Hutch.

    Directory of Open Access Journals (Sweden)

    J.P. Laca-Buendia

    1992-01-01

    sethoxydim + óleo mineral, com 83% de controle, até 45 dias após a aplicação.An experiment in the Porteirinha region, north of Minas Gerais state, Brazil, was performed with the cotton cultivar IAC-20 to find out the efficiency of clethodim 0.84, 0,96 and 0,108 kg/ha plus 0.5% mineral oil v/v, in comparison to sethoxidim 0.23 kg/ha plus 0.5% mineral oil v/v, all those treatments in post emergence; other treatments were in preplanting time and incorporated to the soil alachlor 2,4 kg/ha and trifluralin 0.89 kg/ha; as check were used no weeded plots and hoed plots. The weeds involved were Cenchrus echinatus L., Eleusine indica (L. Gaertn. And Brachiaria plantaginea (Link. Hitch. None of the tested herbicides were noxious to the cotton plants. The highest production in cotton was obtained from the check hoed plots (828 kg/ha; in the second place the clethodim 0.108 kh/ha gave 528 kg/ha, the only treatments statistically different from the no weeded plots wich gave 330 kg/ha. Clethodim gave good control of Cenchrus echinatus and Eleusine indica, with all doses. Brachiaria plantaginea was efficiently controlled (86% and more by clethodim. Clethodim followed by sethoxydim gave in general 83% and 85% control of all the grasses.

  15. Taxonomy Icon Data: Gossypium raimondii Ulbr. [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available aimondii_NL.png Gossypium_raimondii_S.png Gossypium_raimondii_NS.png http://biosciencedbc.jp/taxonomy_icon/icon....cgi?i=Gossypium+raimondii&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=NL ...http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+raimondii&t=NS ...

  16. QTL Analysis of Transgressive Nematode Resistance in Tetraploid Cotton Reveals Complex Interactions in Chromosome 11 Regions.

    Science.gov (United States)

    Wang, Congli; Ulloa, Mauricio; Duong, Tra T; Roberts, Philip A

    2017-01-01

    Transgressive segregation in cotton (Gossypium spp.) provides an important approach to enhance resistance to the major pest root-knot nematode (RKN) Meloidogyne incognita. Our previous studies reported transgressive RKN resistance in an intraspecific Gossypium hirsutum resistant NemX × susceptible SJ-2 recombinant inbred line (RIL) population and early generations of interspecific cross Gossypium barbadense (susceptible Pima S-7) × G. hirsutum (NemX). However, the underlying functional mechanisms for this phenomenon are not known. In this study, the region of RKN resistance gene rkn1 on chromosome (Chr) 11 and its homoeologous Chr 21 was fine mapped with G. raimondii D5 genome reference sequence. Transgressive resistance was found in the later generation of a new RIL population F2:7 (Pima S-7 × NemX) and one interspecific F2 (susceptible Pima S-7 × susceptible SJ-2). QTL analysis revealed similar contributions to root-galling and egg-production resistance phenotypes associated with SSR marker CIR316 linked to resistance gene rkn1 in NemX on Chr 11 in all seven populations analyzed. In testcross NemX × F1 (Pima S-7 × SJ-2) marker allele CIR069-271 from Pima S-7 linked to CIR316 contributed 63% of resistance to galling phenotype in the presence of rkn1. Similarly, in RIL population F2:8 (NemX × SJ-2), SJ-2 markers closely linked to CIR316 contributed up to 82% of resistance to root-galling. These results were confirmed in BC1F1 SJ-2 × F1 (NemX × SJ-2), F2 (NemX × SJ-2), and F2 (Pima S-7 × SJ-2) populations in which up to 44, 36, and 15% contribution in resistance to galling was found, respectively. Transgressive segregation for resistance was universal in all intra- and inter-specific populations, although stronger transgressive resistance occurred in later than in early generations in the intraspecific cross compared with the interspecific cross. Transgressive effects on progeny from susceptible parents are possibly provided in the rkn1 resistance region

  17. Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes

    Science.gov (United States)

    Sun, Quan; Wang, Guanghao; Zhang, Xiao; Zhang, Xiangrui; Qiao, Peng; Long, Lu; Yuan, Youlu; Cai, Yingfan

    2017-01-01

    TIFY proteins are plant-specific proteins containing TIFY, JAZ, PPD and ZML subfamilies. A total of 50, 54 and 28 members of the TIFY gene family in three cultivated cotton species—Gossypium hirsutum, Gossypium barbadense and Gossypium arboretum—were identified, respectively. The results of phylogenetic analysis showed that these TIFY genes were divided into eight clusters. The different clusters of gene family members often have similar gene structures, including the number of exons. The results of quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that different JAZ genes displayed distinct expression patterns in the leaves of upland cotton under treatment with Gibberellin (GA), methyl jasmonate (MeJA), Jasmonic acid (JA) and abscisic acid (ABA). Different groups of JAZ genes exhibited different expression patterns in cotton leaves infected with Verticillium dahliae. The results of the comparative analysis of TIFY genes in the three cultivated species will be useful for understanding the involvement of these genes in development and stress resistance in cotton. PMID:28186193

  18. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum.

    Science.gov (United States)

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a

  19. Uma nova espécie para o gênero Gossypium L. A new tetraploid species of the genus Gossypium

    Directory of Open Access Journals (Sweden)

    Condorcet Aranha

    1969-01-01

    Full Text Available Uma nova espécie é descrita, pertencente ao gênero Gossypium L. O material procede da Serra da Formiga, município de Caicó, Estado do Rio Grande do Norte, onde foi colhido em meio da vegetação natural pela equipe da Seção de Algodão, do Instituto Agronômico, em setembro de 1963 ². Foi denominado Gossypium caicoense, Condorcet, Hermógenes et Imre. Possui 52 cromossomos, como as espécies tetraplóides do gênero. Seu estudo posterior em casa de vegetação permitiu diferenciá-lo das demais espécies tetraplóides e das descrições existentes de algodoeiros indígenas do Brasil. Os dados de um estudo comparativo são discutidos a fim de apontar as diferenças dessa espécie para com as espécies G. hirsutum L. e G. barbadense L. var. brasiliense.A new species of tetraploid cotton, Gossypium caicoense, Condorcet, Hermógenes et Imre, is described. It was collected as a wild component of the natural vegetation in the "Serra da Formiga", near Caicó, State of Rio Grande do Norte, Brazil, by research workers of the Cotton Section of the "Instituto Agronômico do Estado de São Paulo", in September of 1963. Its chromosome number is 2n = 52. It was cultivated and studied in greenhouse conditions at the referred Institute and showed significant morphological differences when compared to the known tetraploid species of the Genus as well as to existing descriptions of Brazilian native types of cotton. A discussion of the data obtained by a comparative study establishes the main morphological differences between G. caicoense and the cultivated species G. hirsutum and G. barbadense var. brasiliense.

  20. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton

    Science.gov (United States)

    Gore, J.; Catchot, A.; Cook, D.; Musser, F.; Caprio, M.

    2016-01-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae. PMID:26809264

  1. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton.

    Science.gov (United States)

    Von Kanel, M B; Gore, J; Catchot, A; Cook, D; Musser, F; Caprio, M

    2016-04-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.

  2. Induction of cotton ovule culture fibre branching by co-expression of cotton BTL, cotton SIM, and Arabidopsis STI genes.

    Science.gov (United States)

    Wang, Gaskin; Feng, Hongjie; Sun, Junling; Du, Xiongming

    2013-11-01

    The highly elongated single-celled cotton fibre consists of lint and fuzz, similar to the Arabidopsis trichome. Endoreduplication is an important determinant in Arabidopsis trichome initiation and morphogenesis. Fibre development is also controlled by functional homologues of Arabidopsis trichome patterning genes, although fibre cells do not have a branched shape like trichomes. The identification and characterization of the homologues of 10 key Arabidopsis trichome branching genes in Gossypium arboreum are reported here. Nuclear ploidy of fibres was determined, and gene function in cotton callus and fibre cells was investigated. The results revealed that the nuclear DNA content was constant in fuzz, whereas a limited and reversible change occurred in lint after initiation. Gossypeum arboreum branchless trichomes (GaBLT) was not transcribed in fibres. The homologue of STICHEL (STI), which is essential for trichome branching, was a pseudogene in Gossypium. Targeted expression of GaBLT, Arabidopsis STI, and the cytokinesis-repressing GaSIAMESE in G. hirsutum fibre cells cultured in vitro resulted in branching. The findings suggest that the distinctive developmental mechanism of cotton fibres does not depend on endoreduplication. This important component may be a relic function that can be activated in fibre cells.

  3. Genetic transformation of cry1EC gene into cotton (Gossypium ...

    African Journals Online (AJOL)

    welcome

    2013-04-10

    Apr 10, 2013 ... Transgenic plant with single copy insertion of cry1EC was selected in T0 by southern blot hybridization. Insect bioassay using Spodoptera litura larvae of first instar stages on T0 plants showed 70% mortality. Not much data has been published on the toxicity of the endotoxins to S. litura, which is a common.

  4. Polyploidization effect in two diploid cotton (Gossypium herbaceum ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... INTRODUCTION. Colchicine (C22H25O6N), a product extracted from the seeds and bulbs of the plant Colchicum autumnale L., as well as other anti-mitotic agents such as amiprophos- methyl oryzalin and trifluralin have long been used to induce polyploids (Blakeslee and Avery, 1937; Stanys et al., 2004).

  5. An evaluation of some mutant cotton (Gossypium hirsutum L ...

    African Journals Online (AJOL)

    user1

    2013-08-14

    Aug 14, 2013 ... hirsutum L. The study was carried out at the experimental field of Koruklu Agricultural Research Station in Sanliurfa Province (Akcakale-Harran Plain) in the South-east Anatolian Region of Turkey. The trial was established in randomized block design with four replications in four years (2001 to 2004). In the.

  6. Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas

    Science.gov (United States)

    Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US. Problems with these systems arise when nutrients are transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of tillage...

  7. Development of gene-tagged SNP markers for gland morphogenesis in cotton

    Science.gov (United States)

    Cotton (Gossypium spp.) plants, including cottonseed, have small, pigmented glands containing gossypol and other terpenoid compounds that are toxic to humans and non-ruminant animals. Single nucleotide polymorphism (SNP) markers involved in gland morphogenesis are useful for the discovery of candid...

  8. Employing broadband spectra and cluster analysis to assess thermal defoliation of cotton

    Science.gov (United States)

    Growers and field scouts need assistance in surveying cotton (Gossypium hirsutum L.) fields subjected to thermal defoliation to reap the benefits provided by this nonchemical defoliation method. A study was conducted to evaluate broadband spectral data and unsupervised classification as tools for s...

  9. Effects of tillage and N fertilizer on cotton growth, yield, and fiber quality

    Science.gov (United States)

    Increasing restrictions on ammonium nitrate have spurred interest in alternative sources of N fertilizer, including urea-ammonium sulfate (UAS). However, UAS has not been widely tested, particularly in row crop agriculture. A cotton (Gossypium hirsutum L.) field study was conducted in Central Alabam...

  10. Genetic diversity, virulence, and Meloidogyne incognita interactions of Fusarium oxysporum isolates causing cotton wilt in Georgia

    Science.gov (United States)

    Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. ox...

  11. Planting geometry and growing season effects on the growth and yield of dryland cotton

    Science.gov (United States)

    The declining Ogallala Aquifer beneath the Southern High Plains may necessitate dryland crop production and cotton (Gossypium hirsutum L.) is a well-adapted and potentially profitable alternative crop. The limited growing season duration of the Texas Panhandle and southwestern Kansas, however, impos...

  12. Employing canopy hyperspectral narrowband data and random forest algorithm to differentiate palmer amaranth from colored cotton

    Science.gov (United States)

    Palmer amaranth (Amaranthus palmeri S. Wats.) invasion negatively impacts cotton (Gossypium hirsutum L.) production systems throughout the United States. The objective of this study was to evaluate canopy hyperspectral narrowband data as input into the random forest machine learning algorithm to dis...

  13. A comparison of soda and soda-AQ pulps from cotton stalks | Akgül ...

    African Journals Online (AJOL)

    In this study, cotton stalks (Gossypium hirsutum L.) were cooked using soda and soda-anthraquinone (AQ) process. Nine soda cooks were conducted by changing cooking conditions including active alkali charge and pulping time. Soda-AQ cooks were obtained by adding 0.075, 0.10, 0.15, 0.2% AQ (based on o.d stalks) to ...

  14. Manure-derived biochars for use as a phosphorus fertilizer in cotton production

    Science.gov (United States)

    Biochars made from animal manure feedstocks appear to be a potential P fertilizer source. Our objective was to assess five different manure-derived biochars, pyrolyzed at two different temperatures (350 and 700 °C), for their potential as a Phosphorus (P) fertilizer for cotton (Gossypium hirsutum L....

  15. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    OpenAIRE

    Cui, J.J.; Luo, J.Y.; Werf, van der, W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was c...

  16. Density and Seasonal Dynamics of Bemisia tabaci (Gennadius) Mediterranean on Common Crops and Weeds around Cotton Fields in Northern China

    DEFF Research Database (Denmark)

    Zhang, Xiao-ming; Yang, Nian-wan; Wan, Fang-hao

    2014-01-01

    The density seasonal dynamics of Bemisia tabaci MED were evaluated over two-years in a cotton-growing area in Langfang, Hebei Province, northern China on cotton (Gossypium hirsutum L.) and six other, co-occurring common plants: common ragweed (Ambrosia artemisiifolia L.), piemarker (Abutilon...... appeared on weeds (the common ragweed and piemarker) about 10 days earlier than on cotton, or the other cultivated plants. The peak population densities were observed over a span of two to three weeks on cotton, starting in early (2010) or mid- (2011) August. The common ragweed growing adjacent to cotton...... supported the highest B. tabaci densities (no. on 100 cm2 leaf surface), 12-22 fold higher than on cotton itself. Sunflower supported more B. tabaci than the other plants, and about 1.5-2 fold higher than cotton did. Our results indicate that weeds (esp. the common ragweed) around cotton fields could...

  17. Molecular characterization of a transcriptionally active Ty1/copia-like retrotransposon in Gossypium.

    Science.gov (United States)

    Cao, Yuefen; Jiang, Yurong; Ding, Mingquan; He, Shae; Zhang, Hua; Lin, Lifeng; Rong, Junkang

    2015-06-01

    A transcriptionally active Ty1/copia -like retrotransposon was identified in the genome of Gossypium barbadense. The different heat activation of this element was observed in two tetraploid cotton species. Most retrotransposons from plants are transcriptionally silent, or activated under certain conditions. Only a small portion of elements are transcriptionally active under regular condition. A long terminal repeat (LTR) retrotransposon was isolated from the cultivated Sea Island cotton (H7124) genome during the investigation of the function of a homeodomain leucine zipper gene (HD1) in trichome growth. Insertion of this element in HD1 gene of At sub-genome was related to the trichomeless stem in Gossypium barbadense. The element, named as GBRE-1, had all features of a typical Ty1/copia retrotransposon and possessed high similarity to the members of ONSEN retrotransposon family. It was 4997 bp long, comprising a single 4110 bp open reading frame, which encoded 1369 amino acids including the conserved domains of gag and pol. The expression of GBRE-1 was detected under regular condition in G. barbadense and G. hirsutum, and its expression level was increased under heat-stress condition in G. hirsutum. Besides, its expression pattern was similar to that of the ONSEN retrotransposon. Abundant cis-regulatory motifs related to stress-response and transcriptional regulation were found in the LTR sequence. These results suggested that GBRE-1 was a transcriptionally active retrotransposon in Gossypium. To our knowledge, this is the first report of the isolation of a complete Ty1/copia-type retrotransposon with present-day transcriptional activity in cotton.

  18. Tolerance to feeding damage by cotton fleahopper (Hemiptera: Miridae) among genotypes representing adapted germplasm pools of United States upland cotton.

    Science.gov (United States)

    Knutson, Allen E; Mekala, Karthik D; Smith, C Wayne; Campos, Carlos

    2013-04-01

    Cotton fleahopper [Pseudatomoscelis seriatus (Reuter)] (Hemiptera: Miridae) is one of the most damaging insect pests of cotton (Gossypium hirsutum L.) in Texas and Oklahoma because of their feeding on small floral buds which are termed squares. Damage to early season squares can reduce yield, delay crop maturity and increase the risk of crop loss because of late season insect pests and adverse weather. Insecticide applications are the only control tactic. The objectives of this study were to determine the tolerance to cotton fleahopper injury to squares among upland cotton genotypes representing the adapted germplasm pools and breeding lines available to cotton breeders in the United States and to evaluate leaf hairiness as a resistant trait. Results of the choice and no-choice trials indicated that four entries, 'Stoneville 474', 'Suregrow 747', 'Deltapine 50', and 'TAM 96WD-22 h', were more tolerant to cotton fleahopper injury relative to the other 11 entries. In choice trials, cotton fleahopper density was significantly correlated with the density of trichomes on leaves, bracts and stems. However, there was no correlation between cotton fleahopper density and percent square damage in the choice trials, suggesting that in some genotypes the response to feeding injury is mediated by host plant resistance factors expressed as tolerance. Results of the no-choice studies also indicate that some genotypes express tolerance to cotton fleahopper feeding.

  19. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco

    OpenAIRE

    Shangguan, Xiao-Xia; Xu, Bing; Yu, Zong-Xia; Wang, Ling-Jian; Chen, Xiao-Ya

    2008-01-01

    Cotton fibres are unicellular seed trichomes. Our previous study suggested that the cotton R2R3 MYB transcript factor GaMYB2 is a functional homologue of the Arabidopsis trichome regulator GLABRA1 (GL1). Here, the GaMYB2 promoter activity is reported in cotton (Gossypium hirsutum), tobacco (Nicotiana tabacum), and Arabidopsis plants. A 2062 bp promoter of GaMYB2 was isolated from G. arboreum, and fused to a ?-glucuronidase (GUS) reporter gene. In cotton, the GaMYB2 promoter exhibited activiti...

  20. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Predation pressure in Ugandan cotton fields measured by a sentinel prey method

    DEFF Research Database (Denmark)

    Howe, Andy G.; Nachman, Gösta; Lövei, Gabor L

    2015-01-01

    on herbivores in agroecosystems remains limited.We conducted experiments in cotton, Gossypium hirsutum L. (Malvaceae), under typical local agronomic practices in Uganda to assess levels of predation pressure ascribed to natural enemies.We measured predation rates on artificial caterpillars made of plasticine...... glued to cotton plants. Predation pressure on cotton fields varied between 1.96 and 4.1% per day, but was not significantly influenced by cotton treatments (insecticide/no insecticide, monocropping/intercropping with Phaseolus spp.). Predation pressure in non-crop habitats adjacent to cotton fields...... was up to 129 higher than in the fields. Marks left on the artificial caterpillars revealed that arthropods and birds were largely accountable for predation in cotton fields, whereas arthropods and smallmammals were dominant in non-cultivated habitats....

  2. Gene expression changes and early events in cotton fibre development.

    Science.gov (United States)

    Lee, Jinsuk J; Woodward, Andrew W; Chen, Z Jeffrey

    2007-12-01

    Cotton is the dominant source of natural textile fibre and a significant oil crop. Cotton fibres, produced by certain species in the genus Gossypium, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. Cotton fibre development is delineated into four distinct and overlapping developmental stages: fibre initiation, elongation, secondary wall biosynthesis and maturation. Recent advances in gene expression studies are beginning to provide new insights into a better understanding of early events in cotton fibre development. Fibre cell development is a complex process involving many pathways, including various signal transduction and transcriptional regulation components. Several analyses using expressed sequence tags and microarray have identified transcripts that preferentially accumulate during fibre development. These studies, as well as complementation and overexpression experiments using cotton genes in arabidopsis and tobacco, indicate some similar molecular events between trichome development from the leaf epidermis and fibre development from the ovule epidermis. Specifically, MYB transcription factors regulate leaf trichome development in arabidopsis and may regulate seed trichome development in cotton. In addition, transcript profiling and ovule culture experiments both indicate that several phytohormones and other signalling pathways mediate cotton fibre development. Auxin and gibberellins promote early stages of fibre initiation; ethylene- and brassinosteroid-related genes are up-regulated during the fibre elongation phase; and genes associated with calmodulin and calmodulin-binding proteins are up-regulated in fibre initials. Additional genomic data, mutant and functional analyses, and genome mapping studies promise to reveal the critical factors mediating cotton fibre cell development.

  3. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L.

    Science.gov (United States)

    Zhu, Qian-Hao; Zhang, Jian; Liu, Dexin; Stiller, Warwick; Liu, Dajun; Zhang, Zhengsheng; Llewellyn, Danny; Wilson, Iain

    2016-02-01

    Diverse leaf morphology has been observed among accessions of Gossypium hirsutum, including okra leaf, which has advantages and disadvantages in cotton production. The okra leaf locus has been mapped to chromosome 15 of the Dt subgenome, but the underlying gene has yet to be identified. In this study, we used a combination of targeted association analysis, F2 population-based fine mapping, and comparative sequencing of orthologues to identify a candidate gene underlying the okra leaf trait in G. hirsutum. The okra leaf gene identified, GhOKRA, encoded a homeodomain leucine-zipper class I protein, whose closely related genes in several other plant species have been shown to be involved in regulating leaf morphology. The transcript levels of GhOKRA in shoot apices were positively correlated with the phenotypic expression of the okra leaf trait. Of the multiple sequence variations observed in the coding region among GrOKRA of Gossypium raimondii and GhOKRA-Dt of normal and okra/superokra leaf G. hirsutum accessions, a non-synonymous substitution near the N terminus and the variable protein sequences at the C terminus may be related to the leaf shape difference. Our results suggest that both transcription and protein activity of GhOKRA may be involved in regulating leaf shape. Furthermore, we found that non-reciprocal homoeologous recombination, or gene conversion, may have played a role in the origin of the okra leaf allele. Our results provided tools for further investigating and understanding the fundamental biological processes that are responsible for the cotton leaf shape variation and will help in the design of cotton plants with an ideal leaf shape for enhanced cotton production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism.

    Science.gov (United States)

    Miao, Weiguo; Wang, Xiben; Li, Ming; Song, Congfeng; Wang, Yu; Hu, Dongwei; Wang, Jinsheng

    2010-04-15

    The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Cells of the transgenic T-34, when mixed with the conidia suspension of V. dahliae, had a higher tolerance to V. dahliae compared to cells of untransformed Z35. Cells of T-34 were more viable 12 h after mixing with V. dahliae conidia suspension. Immunocytological analysis showed that Hpa1Xoo, expressed in T-34, accumulated as clustered particles along the cell walls of T-34. In response to the infection caused by V. dahliae, the microscopic cell death and the generation of reactive oxygen intermediates were observed in leaves of T-34 and these responses were absent in leaves of Z35 inoculated with V. dahliae. Quantitative RT-PCR analysis indicated that five defense-related genes, ghAOX1, hin1, npr1, ghdhg-OMT, and hsr203J, were up-regulated in T-34 inoculated with V. dahliae. The up-regulations of these defense-relate genes were not observed or in a less extent in leaves of Z-35 after the inoculation. Hpa1Xoo accumulates along the cell walls of the transgenic T-34, where it triggers the generation of H2O2 as an endogenous elicitor. T-34 is thus in a primed state, ready to protect the host from the pathogen. The results of this study suggest that the transformation of cotton with hpa1Xoo could be an effective approach for the development of cotton varieties with the improved resistance against soil-borne pathogens.

  5. Development of New Candidate Gene and EST-Based Molecular Markers for Gossypium Species.

    Science.gov (United States)

    Buyyarapu, Ramesh; Kantety, Ramesh V; Yu, John Z; Saha, Sukumar; Sharma, Govind C

    2011-01-01

    New source of molecular markers accelerate the efforts in improving cotton fiber traits and aid in developing high-density integrated genetic maps. We developed new markers based on candidate genes and G. arboreum EST sequences that were used for polymorphism detection followed by genetic and physical mapping. Nineteen gene-based markers were surveyed for polymorphism detection in 26 Gossypium species. Cluster analysis generated a phylogenetic tree with four major sub-clusters for 23 species while three species branched out individually. CAP method enhanced the rate of polymorphism of candidate gene-based markers between G. hirsutum and G. barbadense. Two hundred A-genome based SSR markers were designed after datamining of G. arboreum EST sequences (Mississippi Gossypium arboreum  EST-SSR: MGAES). Over 70% of MGAES markers successfully produced amplicons while 65 of them demonstrated polymorphism between the parents of G. hirsutum and G. barbadense RIL population and formed 14 linkage groups. Chromosomal localization of both candidate gene-based and MGAES markers was assisted by euploid and hypoaneuploid CS-B analysis. Gene-based and MGAES markers were highly informative as they were designed from candidate genes and fiber transcriptome with a potential to be integrated into the existing cotton genetic and physical maps.

  6. Water use, canopy temperature, lint yield, and fiber quality response of six upland cotton cultivars to water stress

    Science.gov (United States)

    The declining saturated thickness of the Ogallala Aquifer combined with the unpredictability of precipitation during the growing season in the Southern High Plains has resulted in elevated production risks associated with short-term crop water deficits. Cotton (Gossypium spp.) cultivars that can use...

  7. Registration of six germplasm lines of cotton, Gosspyium hirsutum L. with resistance to root-knot and reniform nematodes

    Science.gov (United States)

    Six Upland cotton, Gossypium hirsutum L., germplasm lines, M Rk-Rn 1, M Rk-Rn 2, M Rk-Rn 3, M Rk-Rn 4, M Rk-Rn 5, and M Rk-Rn 6, with resistance to root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, and reniform nematode, Rotylenchulus reniformis Linford and Oliveria, were jointl...

  8. Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton

    Science.gov (United States)

    The resistant line Auburn 623RNR and a number of elite breeding lines derived from it remain the most important source of root-knot nematode (RKN) resistance because they exhibit the highest level of resistance to RKN known to date in Upland cotton (Gossypium hirsutum L). Prior genetic mapping analy...

  9. Improving nitrogen fertilizer use efficiency in surface- and overhead sprinkler-irrigated cotton in the desert southwest

    Science.gov (United States)

    Nitrogen fertilizer use efficiency (NUE) is low in surface-irrigated cotton (Gossypium hirsutum L.), especially when adding N to irrigation water. A NO3 soil-test algorithm was compared with canopy reflectance-based N management with surface- overhead sprinkler-irrigation in Central AZ. The surfac...

  10. Leaf tissue assay for lepidopteran pests of Bt cotton

    Science.gov (United States)

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  11. The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubles in Cotton Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, Mary L.; Delmar, Deborah P.; Liu, Bo

    2003-05-01

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus the results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.

  12. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers.

    Science.gov (United States)

    Preuss, Mary L; Delmer, Deborah P; Liu, Bo

    2003-05-01

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus our results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.

  13. Genome-Wide Identification and Expression Analysis of the Biotin Carboxyl Carrier Subunits of Heteromeric Acetyl-CoA Carboxylase in Gossypium

    Directory of Open Access Journals (Sweden)

    Jinping Hua

    2017-05-01

    Full Text Available Acetyl-CoA carboxylase is an important enzyme, which catalyzes acetyl-CoA’s carboxylation to produce malonyl-CoA and to serve as a committed step for de novo fatty acid biosynthesis in plastids. In this study, 24 putative cotton BCCP genes were identified based on the lately published genome data in Gossypium. Among them, 4, 4, 8, and 8 BCCP homologs were identified in Gossypium raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. These genes were divided into two classes based on a phylogenetic analysis. In each class, these homologs were relatively conserved in gene structure and motifs. The chromosomal distribution pattern revealed that all the BCCP genes were distributed equally on corresponding chromosomes or scaffold in the four cotton species. Segmental duplication was a predominant duplication event in both of G. hirsutum and G. barbadense. The analysis of the expression profile showed that 8 GhBCCP genes expressed in all the tested tissues with changed expression levels, and GhBCCP genes belonging to class II were predominantly expressed in developing ovules. Meanwhile, the expression analysis for the 16 cotton BCCP genes from G. raimondii, G. arboreum and G. hirsutum showed that they were induced or suppressed by cold or salt stress, and their expression patterns varied among different tissues. These findings will help to determine the functional and evolutionary characteristics of the BCCP genes in Gossypium species.

  14. Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers

    Directory of Open Access Journals (Sweden)

    Wenbo Shan

    2016-08-01

    Full Text Available Cotton is the world's most important natural fiber crop. It is also a model system for studying polyploidization, genomic organization, and genome-size variation. Integrating the cytological characterization of cotton with its genetic map will be essential for understanding its genome structure and evolution, as well as for performing further genetic-map based mapping and cloning. In this study, we isolated a complete set of bacterial artificial chromosome clones anchored to each of the 52 chromosome arms of the tetraploid cotton Gossypium hirsutum. Combining these with telomere and centromere markers, we constructed a standard karyotype for the G. hirsutum inbred line TM-1. We dissected the chromosome arm localizations of the 45S and 5S rDNA and suggest a centromere repositioning event in the homoeologous chromosomes AT09 and DT09. By integrating a systematic karyotype analysis with the genetic linkage map, we observed different genome sizes and chromosomal structures between the subgenomes of the tetraploid cotton and those of its diploid ancestors. Using evidence of conserved coding sequences, we suggest that the different evolutionary paths of non-coding retrotransposons account for most of the variation in size between the subgenomes of tetraploid cotton and its diploid ancestors. These results provide insights into the cotton genome and will facilitate further genome studies in G. hirsutum.

  15. Release of Pima SJ-FR05, Pima SJ-FR06, Pima SJ-FR07, Pima SJ-FR08, and Pima SJ-FR09 Pima cotton with improved FOV4 resistance, and good lint yield and fiber quality

    Science.gov (United States)

    Cotton breeders continue to need alternative sources of germplasm for improving Fusarium wilt [(Fusarium oxysporum f. sp. vasinfectum (FOV)], FOV race 4, resistance in Pima (Gossypium barbadense L.) cotton in California. For this purpose, the Agricultural Research Service, United States Department o...

  16. Complete genome sequences of two new virus isolates associated with cotton blue disease resistance breaking in Brazil.

    Science.gov (United States)

    da Silva, Anna Karoline Fausto; Romanel, Elisson; Silva, Tatiane da F; Castilhos, Yamá; Schrago, Carlos G; Galbieri, Rafael; Bélot, Jean-Louis; Vaslin, Maite F S

    2015-05-01

    Since 2006, Brazilian cotton (Gossypium hirsutum) crops planted with cultivars that are resistant to cotton blue disease have developed a new disease termed "atypical" cotton blue disease or atypical vein mosaic disease. Here, we describe the complete genomes of two virus isolates associated with this disease. The new virus isolates, called CLRDV-Acr3 and CLRDV-IMA2, were found to have a high degree of nucleotide and amino acid sequence similarity to previously described isolates of cotton leafroll dwarf virus, the causal agent of cotton blue disease. However, their P0 proteins were 86.1 % identical. These results show that this new disease is caused by a new CLRDV genotype that seems to have acquired the ability to overcome cotton blue disease resistance.

  17. Spotted cotton oligonucleotide microarrays for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Nettleton Dan

    2007-03-01

    Full Text Available Abstract Background Microarrays offer a powerful tool for diverse applications plant biology and crop improvement. Recently, two comprehensive assemblies of cotton ESTs were constructed based on three Gossypium species. Using these assemblies as templates, we describe the design and creation and of a publicly available oligonucleotide array for cotton, useful for all four of the cultivated species. Results Synthetic oligonucleotide probes were generated from exemplar sequences of a global assembly of 211,397 cotton ESTs derived from >50 different cDNA libraries representing many different tissue types and tissue treatments. A total of 22,787 oligonucleotide probes are included on the arrays, optimized to target the diversity of the transcriptome and previously studied cotton genes, transcription factors, and genes with homology to Arabidopsis. A small portion of the oligonucleotides target unidentified protein coding sequences, thereby providing an element of gene discovery. Because many oligonucleotides were based on ESTs from fiber-specific cDNA libraries, the microarray has direct application for analysis of the fiber transcriptome. To illustrate the utility of the microarray, we hybridized labeled bud and leaf cDNAs from G. hirsutum and demonstrate technical consistency of results. Conclusion The cotton oligonucleotide microarray provides a reproducible platform for transcription profiling in cotton, and is made publicly available through http://cottonevolution.info.

  18. Stable Transformation and Expression of GhEXPA8 Fibre Expansin Gene to Improve Fibre Length and Micronaire Value in Cotton

    Directory of Open Access Journals (Sweden)

    Kamran Shehzad Bajwa

    2015-10-01

    Full Text Available Cotton fibre is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fibre growth on and off to influence the fibre quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fibre expansin gene cloned into a pGA482 plant expression vector with a 2X 35S promoter and a CaMV terminator was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fibre expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR and cellulose assays. The data collected from three years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fibre lengths and micronaire values as compared to control Gossypium hirsutum variety NIAB 846 cotton plants. Field data of fibre and morphological characteristics were also analyzed through statistical techniques. The results of this study support improvement of cotton fibre through genetic modification.

  19. Functional analysis of the seed coat-specific gene GbMYB2 from cotton.

    Science.gov (United States)

    Huang, Yiqun; Liu, Xiang; Tang, Kexuan; Zuo, Kaijing

    2013-12-01

    MYB transcription factors are essential for cotton fiber development. We isolated the R2R3-MYB gene GbMYB2 from Gossypium barbadense. RNA in situ hybridization analysis showed that GbMYB2 is mainly expressed in the outer integuments of cotton ovules and in elongating fibers. GbMYB2 expression increased throughout fiber initiation and during the elongation stage. The expression level of GbMYB2 was higher in the Gossypium hirsutum cultivar Xu142 than in the Xu142 (fl) mutant. Overexpression of GbMYB2 in Arabidopsis caused thicker leaf trichomes and longer roots to develop due to the activation of trichome development-related genes such as GL2. These results indicate that GbMYB2 is an R2R3-MYB gene that is involved in fiber development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Genome-wide identification and characterization of microRNAs differenytially expressed in fibers in a cotton phytochrome A1 RNAi line

    Science.gov (United States)

    Silencing phytochrome A1 gene (PHYA1) by RNA interference in Upland cotton (Gossypium hirsutum L. cv. Coker 312) had generated PHYA1 RNAi lines with simultaneously improved fiber quality (longer, stronger and finer fiber) and other key agronomic traits. Comparative analyses of altered molecular proc...

  1. Increased Helicoverpa zea (Boddie) larval feeding on a RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis in cotton plants

    Science.gov (United States)

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  2. Increased Helicoverpa zea (Boddie) larval feeding on cotton plants with RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis

    Science.gov (United States)

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  3. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    NARCIS (Netherlands)

    Cui, J.J.; Luo, J.Y.; Werf, van der W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in

  4. Genome-Wide Comparative Analysis of the Phospholipase D Gene Families among Allotetraploid Cotton and Its Diploid Progenitors.

    Directory of Open Access Journals (Sweden)

    Kai Tang

    Full Text Available In this study, 40 phospholipase D (PLD genes were identified from allotetraploid cotton Gossypium hirsutum, and 20 PLD genes were examined in diploid cotton Gossypium raimondii. Combining with 19 previously identified Gossypium arboreum PLD genes, a comparative analysis was performed among the PLD gene families among allotetraploid and two diploid cottons. Based on the orthologous relationships, we found that almost each G. hirsutum PLD had a corresponding homolog in the G. arboreum and G. raimondii genomes, except for GhPLDβ3A, whose homolog GaPLDβ3 may have been lost during the evolution of G. arboreum after the interspecific hybridization. Phylogenetic analysis showed that all of the cotton PLDs were unevenly classified into six numbered subgroups: α, β/γ, δ, ε, ζ and φ. An N-terminal C2 domain was found in the α, β/γ, δ and ε subgroups, while phox homology (PX and pleckstrin homology (PH domains were identified in the ζ subgroup. The subgroup φ possessed a single peptide instead of a functional domain. In each phylogenetic subgroup, the PLDs showed high conservation in gene structure and amino acid sequences in functional domains. The expansion of GhPLD and GrPLD gene families were mainly attributed to segmental duplication and partly attributed to tandem duplication. Furthermore, purifying selection played a critical role in the evolution of PLD genes in cotton. Quantitative RT-PCR documented that allotetraploid cotton PLD genes were broadly expressed and each had a unique spatial and developmental expression pattern, indicating their functional diversification in cotton growth and development. Further analysis of cis-regulatory elements elucidated transcriptional regulations and potential functions. Our comparative analysis provided valuable information for understanding the putative functions of the PLD genes in cotton fiber.

  5. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm.

    Science.gov (United States)

    Tabashnik, Bruce E; Wu, Kongming; Wu, Yidong

    2012-07-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Designing and transgenic expression of melanin gene in tobacco trichome and cotton fiber.

    Science.gov (United States)

    Xu, X; Wu, M; Zhao, Q; Li, R; Chen, J; Ao, G; Yu, J

    2007-01-01

    In Streptomyces antibioticus, there are two genes TYRA and ORF438 required for the melanin biogenesis. To investigate whether expression of these two genes in cotton can change cotton fiber colour, we modified the TYRA and ORF438 genes to make their codon usage closer to the codon preference of cotton fiber genes. The resulting versions of these two genes were referred to as DTYRA and DORF438, respectively. Vacuolar targeting signals were also added to their ends. Under the cotton fiber specific LTP3 promoter, DORF438 and DTYRA were first transformed into model plant tobacco (Nicotiana tabacum). Molecular analyses showed that both the DORF438 and DTYRA genes were successfully expressed in transgenic plants, and the melanin deposition was observed in the trichomes of transgenic tobacco. Excitedly, when the same DORF438 and DTYRA expression cassettes were transformed into cotton (Gossypium hirsutum L.) by pollen tube pathway, the colour of cotton fiber changed from white to brown. Molecular analyses confirmed that both genes were transformed into cotton and expressed successfully. All these results indicate that the synthesized DOFR438 and DTYRA genes can work well in tobacco and cotton. Our study may provide a potential method for modifying the colour of cotton fiber.

  7. Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation

    Directory of Open Access Journals (Sweden)

    Weiping Fang

    2015-10-01

    Full Text Available Verticillium wilt is threatening cotton productivity globally. This disease is caused by soil-borne Verticillium dahliae which directly infects cotton roots, and exclusively colonizes and occludes xylem vessels, finally resulting in necrosis, defoliation, and most severely, plant death. For the first time, iTRAQ (isobaric tags for relative and absolute quantification was applied to screen the differentially expressed proteins of Gossypium thurberi inoculated with V. dahliae. A total of 6533 proteins were identified from the roots of G. thurberi after inoculation with V. dahliae, and 396 showed up- and 279 down-regulated in comparison to a mock-inoculated roots. Of these identified proteins, the main functional groups were those involved in cell wall organization and reinforcement, disease-resistant chemicals of secondary metabolism, phytohormone signaling, pathogenesis-related proteins, and disease-resistant proteins. Physiological and biochemical analysis showed that peroxidase activity, which promotes the biosynthesis and accumulation of lignin, was induced early in the hypocotyl after inoculation with V. dahliae. Similarly, salicylic acid also accumulated significantly in hypocotyl of the seedlings after inoculation. These findings provide an important knowledge of the molecular events and regulatory networks occurring during G. thurberi-V. dahliae interaction, which may provide a foundation for breeding disease-resistance in cotton.

  8. Genome-wide comparison of AP2/ERF superfamily genes between Gossypium arboreum and G. raimondii.

    Science.gov (United States)

    Lei, Z P; He, D H; Xing, H Y; Tang, B S; Lu, B X

    2016-07-29

    The APETALA2/ethylene response factor (AP2/ERF) transcription factor superfamily is known to regulate diverse processes of plant development and stress responses. We conducted a genome-wide analysis of the AP2/ERF gene in Gossypium arboreum and G. raimondii. Using RPSBLAST and HMMsearch, a total of 271 and 269 AP2/ERF genes were identified in the G. arboreum and G. raimondii genomes, respectively. A phylogenetic analysis classified diploid Gossypium spp AP2/ERF genes into 4 families and 16 subfamilies. Orthologous genes predominated the terminal branch of the phylogenetic tree. Physical mapping showed at least 30% of AP2/ERF genes clustered together. A high level of intra- and inter-species collinearity involving AP2/ERF genes was observed, indicating common (before species divergence) or parallel (after species divergence) segmental duplications, along with tandem duplications, resulting in the species-specific expansion of AP2/ERF genes in diploid Gossypium species. Motif analyses of the AP2/ERF proteins revealed that motif arrangements were highly diverse among subfamilies, but shared by orthologous gene pairs. An examination of nucleotide divergence of AP2/ERF coding regions identified small and non-significant sequence differences among orthologs. Expression profiling of AP2/ERF orthologous gene pairs showed similar abundance levels of orthologous copies between G. arboreum and G. raimondii. Thus, cotton species possess abundant and diverse AP2/ERF genes, resulting from tandem and segmental duplications. Protein and nucleotide sequence and mRNA expression analyses revealed symmetrical evolution, indicating that most AP2/ ERF genes may not have undergone significant biochemical and morphological divergence between sister species. Our study provides detailed insights into the evolutionary characteristics and functional importance of AP2/ERF genes, and could aid in the genetic improvement of agriculturally significant crops in this genus.

  9. Chilling stress response of postemergent cotton seedlings.

    Science.gov (United States)

    DeRidder, Benjamin P; Crafts-Brandner, Steven J

    2008-11-01

    Early season development of cotton is often impaired by sudden episodes of chilling temperature. We determined the chilling response specific to postemergent 13-day-old cotton (Gossypium hirsutum L. cv. Coker 100A-glandless) seedlings. Seedlings were gradually chilled during the dark period and rewarmed during the night-to-day transition. For some chilled plants, the soil temperature was maintained at control level. Plant growth, water relations and net photosynthesis (P(n)) were analyzed after one or three chilling cycles and after 3 days of recovery. Three chilling cycles led to lower relative growth rate (RGR) compared with controls during the recovery period, especially for plants with chilled shoots and roots. Treatment differences in RGR were associated with net assimilation rate rather than specific leaf area. Both chilling treatments led to loss of leaf turgor during the night-to-day transition; this effect was greater for plants with chilled compared with warm roots. Chilling-induced water stress was associated with accumulation of the osmolyte glycine betaine to the same extent for both chilling treatments. Inhibition of P(n) during chilling was related to both stomatal and non-stomatal effects. P(n) fully recovered after seedlings were returned to control conditions for 3 days. We conclude that leaf expansion during the night-to-day transition was a significant factor determining the magnitude of the chilling response of postemergent cotton seedlings.

  10. Resistance of cotton towards Xanthomonas campestris pv. malvacearum.

    Science.gov (United States)

    Delannoy, E; Lyon, B R; Marmey, P; Jalloul, A; Daniel, J F; Montillet, J L; Essenberg, M; Nicole, M

    2005-01-01

    Interactions between Gossypium spp. and the bacterial pathogen Xanthomonas campestris pv. malvacearum are understood in the context of the gene-for-gene concept. Reviewed here are the genetic basis for cotton resistance, with reference to resistance genes, resistance gene analogs, and bacterial avirulence genes, together with the physiological mechanisms involved in the hypersensitive response to the pathogen, including production of signaling hormones, synthesis of antimicrobial molecules and alteration of host cell structures. This host-pathogen interaction represents the most complex resistance gene/avr gene system yet known and is one of the few in which phytoalexins are known to be specifically localized in HR cells at anti-microbial concentrations.

  11. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin.

    Science.gov (United States)

    Tan, Jiafu; Tu, Lili; Deng, Fenglin; Hu, Haiyan; Nie, Yichun; Zhang, Xianlong

    2013-05-01

    The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement.

  12. Boosting seed development as a new strategy to increase cotton fiber yield and quality.

    Science.gov (United States)

    Ruan, Yong-Ling

    2013-07-01

    Cotton (Gossypium spp.) is the most important textile crop worldwide due to its cellulosic mature fibers, which are single-celled hairs initiated from the cotton ovule epidermis at anthesis. Research to improve cotton fiber yield and quality in recent years has been largely focused on identifying genes regulating fiber cell initiation, elongation and cellulose synthesis. However, manipulating some of those candidate genes has yielded no effect or only a marginally positive effect on fiber yield or quality. On the other hand, evolutionary comparison and transgenic studies have clearly shown that cotton fiber growth is intimately controlled by seed development. Therefore, I propose that enhancing seed development could be a more effective and achievable strategy to increase fiber yield and quality. © 2013 Institute of Botany, Chinese Academy of Sciences.

  13. Selection of Gossypium hirsutum genotypes for interspecific ...

    African Journals Online (AJOL)

    FORRESTER

    culture/embryo rescue (Stewart and Hsu, 1978; Gill and. Bajaj, 1987) have been used for interspecific hybrid development in cotton. Ovule culture has frequently been used for hybrid development between incompatible diploid species and for crosses between diploid and tetraploid cotton species (Mehetre and Aher, 2004).

  14. Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe2] Trispecific Hybrid and Selected Characteristics.

    Directory of Open Access Journals (Sweden)

    Di Chen

    Full Text Available Speciation is always a contentious and challenging issue following with the presence of gene flow. In Gossypium, there are many valuable resources and wild diploid cotton especially C and B genome species possess some excellent traits which cultivated cotton always lacks. In order to explore character transferring rule from wild cotton to upland tetraploid cotton, the [G. capitis-viridis × (G. hirsutum × G. australe2] triple hybrid was synthesized by interspecies hybridization and chromosome doubling. Morphology comparisons were measured among this hybrid and its parents. It showed that trispecific hybrid F1 had some intermediate morphological characters like leaf style between its parents and some different characters from its parents, like crawl growth characteristics and two kind flower color. It is highly resistant to insects comparing with other cotton species by four year field investigation. By cytogenetic analysis, triple hybrid was further confirmed by meiosis behavior of pollen mother cells. Comparing with regular meiosis of its three parents, it was distinguished by the occurrence of polyads with various numbers of unbalanced microspores and finally generating various abnormal pollen grains. All this phenomenon results in the sterility of this hybrid. This hybrid was further identified by SSR marker from DNA molecular level. It showed that 98 selected polymorphism primers amplified effective bands in this hybrids and its parents. The genetic proportion of three parents in this hybrid is 47.8% from G. hirsutum, 14.3% from G. australe, 7.0% from G. capitis-viridis, and 30.9% recombination bands respectively. It was testified that wild genetic material has been transferred into cultivated cotton and this new germplasm can be incorporated into cotton breeding program.

  15. Genetic diversity analysis of the species of Gossypium by using ...

    African Journals Online (AJOL)

    Random Amplified Polymorphic DNAs (RAPDs), a DNA polymorphism assay based on the amplification of random DNA segments with single primers of arbitrary nucleotide sequence, was utilized to measure the genetic distance among the species of Gossypium. Variations among 20 different species of Gossypium were ...

  16. Role of secondary metabolites biosynthesis in resistance to cotton ...

    African Journals Online (AJOL)

    Disease percentage on six cotton varieties with respect to time for cotton leaf curl virus (CLCuV) was evaluated. In August 2007, the maximum disease was observed in CIM-506, CYTO-89 and BH-118 (susceptible), whereas CIM-443 was resistant with lower disease percentage. It was found that the leaf area, fresh weight ...

  17. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  18. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Waqas Malik

    2014-01-01

    Full Text Available Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L. is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i comparative analysis of low- and high-throughput marker technologies available in cotton, (ii genetic diversity in the available wild and improved gene pools of cotton, (iii identification of the genomic regions within cotton genome underlying economic traits, and (iv marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.

  19. Control of Plant Trichome Development by a Cotton Fiber MYB GeneW⃞

    Science.gov (United States)

    Wang, Shui; Wang, Jia-Wei; Yu, Nan; Li, Chun-Hong; Luo, Bin; Gou, Jin-Ying; Wang, Ling-Jian; Chen, Xiao-Ya

    2004-01-01

    Cotton (Gossypium spp) plants produce seed trichomes (cotton fibers) that are an important commodity worldwide; however, genes controlling cotton fiber development have not been characterized. In Arabidopsis thaliana the MYB gene GLABRA1 (GL1) is a central regulator of trichome development. Here, we show that promoter of a cotton fiber gene, RD22-like1 (RDL1), contains a homeodomain binding L1 box and a MYB binding motif that confer trichome-specific expression in Arabidopsis. A cotton MYB protein GaMYB2/Fiber Factor 1 transactivated the RDL1 promoter both in yeast and in planta. Real-time PCR and in situ analysis showed that GaMYB2 is predominantly expressed early in developing cotton fibers. After transferring into Arabidopsis, GL1∷GaMYB2 rescued trichome formation of a gl1 mutant, and interestingly, 35S∷GaMYB2 induced seed-trichome production. We further demonstrate that the first intron of both GL1 and GaMYB2 plays a role in patterning trichomes: it acts as an enhancer in trichome and a repressor in nontrichome cells, generating a trichome-specific pattern of MYB gene expression. Disruption of a MYB motif conserved in intron 1 of GL1, WEREWOLF, and GaMYB2 genes affected trichome production. These results suggest that cotton and Arabidopsis use similar transcription factors for regulating trichomes and that GaMYB2 may be a key regulator of cotton fiber development. PMID:15316114

  20. Control of plant trichome development by a cotton fiber MYB gene.

    Science.gov (United States)

    Wang, Shui; Wang, Jia-Wei; Yu, Nan; Li, Chun-Hong; Luo, Bin; Gou, Jin-Ying; Wang, Ling-Jian; Chen, Xiao-Ya

    2004-09-01

    Cotton (Gossypium spp) plants produce seed trichomes (cotton fibers) that are an important commodity worldwide; however, genes controlling cotton fiber development have not been characterized. In Arabidopsis thaliana the MYB gene GLABRA1 (GL1) is a central regulator of trichome development. Here, we show that promoter of a cotton fiber gene, RD22-like1 (RDL1), contains a homeodomain binding L1 box and a MYB binding motif that confer trichome-specific expression in Arabidopsis. A cotton MYB protein GaMYB2/Fiber Factor 1 transactivated the RDL1 promoter both in yeast and in planta. Real-time PCR and in situ analysis showed that GaMYB2 is predominantly expressed early in developing cotton fibers. After transferring into Arabidopsis, GL1::GaMYB2 rescued trichome formation of a gl1 mutant, and interestingly, 35S::GaMYB2 induced seed-trichome production. We further demonstrate that the first intron of both GL1 and GaMYB2 plays a role in patterning trichomes: it acts as an enhancer in trichome and a repressor in nontrichome cells, generating a trichome-specific pattern of MYB gene expression. Disruption of a MYB motif conserved in intron 1 of GL1, WEREWOLF, and GaMYB2 genes affected trichome production. These results suggest that cotton and Arabidopsis use similar transcription factors for regulating trichomes and that GaMYB2 may be a key regulator of cotton fiber development.

  1. Taxonomy Icon Data: upland cotton [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Gossypium_hirsutum_S.png Gossypium_hirsutum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypi...um+hirsutum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Gossypium+hirsutum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Gossypium+hirsutum&t=NS ...

  2. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  3. Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton.

    Science.gov (United States)

    Li, Yanpeng; Yang, Tiegang; Dai, Dandan; Hu, Ying; Guo, Xiaoyang; Guo, Hongxia

    2017-07-10

    Among CESA-like gene superfamily, the cellulose synthase-like D (CSLD) genes are most similar to cellulose synthase genes and have been reported to be involved in tip-growing cell and stem development. However, there has been no genome-wide characterization of this gene subfamily in cotton. We thus sought to analyze the evolution and functional characterization of CSLD proteins in cotton based on fully sequenced cotton genomes. A total of 23 full-length CSLD proteins were identified in Gossypium raimondii, Gossypium arboreum and Gossypium hirsutum. The phylogenetic tree divided the CSLD proteins into five clades with strong support: CSLD1, CSLD2/3, CSLD4, CSLD5 and CSLD6. The total expression of GhCSLD genes was the highest in androecium & gynoecium (mostly contributed by CSLD1 and CSLD4) compared with other CSL genes. CSLD1 and CSLD4 were only highly expressed in androecium & gynoecium (A&G), and showed tissue-specific expression. The total expression of CSLD2/3, 5 and 6 was highest in the specific tissues. These results suggest that CSLD genes showed the different pattern of expression. Cotton CSLD proteins were subjected to different evolutionary pressures, and the CSLD1 and CSLD4 proteins exhibited episodic and long-term shift positive selection. The predicted three-dimensional structure of GrCSLD1 suggested that GrCSLD1 belongs to glycosyltransferase family 2. The amino acid residues under positive selection in the CSLD1 lineage are positioned in a region adjacent to the class-specific region (CSR), β1-strand and transmembrane helices (TMHs) in the GrCSLD1structure. Our results characterized the CSLD proteins by an integrated approach containing phylogeny, transcriptional profiling and 3D modeling. The study added to the understanding about the importance of the CSLD family and provide a useful reference for selecting candidate genes and their associations with the biosynthesis of the cell wall in cotton.

  4. Comprehensive Analysis of the COBRA-Like (COBL Gene Family in Gossypium Identifies Two COBLs Potentially Associated with Fiber Quality.

    Directory of Open Access Journals (Sweden)

    Erli Niu

    Full Text Available COBRA-Like (COBL genes, which encode a plant-specific glycosylphosphatidylinositol (GPI anchored protein, have been proven to be key regulators in the orientation of cell expansion and cellulose crystallinity status. Genome-wide analysis has been performed in A. thaliana, O. sativa, Z. mays and S. lycopersicum, but little in Gossypium. Here we identified 19, 18 and 33 candidate COBL genes from three sequenced cotton species, diploid cotton G. raimondii, G. arboreum and tetraploid cotton G. hirsutum acc. TM-1, respectively. These COBL members were anchored onto 10 chromosomes in G. raimondii and could be divided into two subgroups. Expression patterns of COBL genes showed highly developmental and spatial regulation in G. hirsutum acc. TM-1. Of them, GhCOBL9 and GhCOBL13 were preferentially expressed at the secondary cell wall stage of fiber development and had significantly co-upregulated expression with cellulose synthase genes GhCESA4, GhCESA7 and GhCESA8. Besides, GhCOBL9 Dt and GhCOBL13 Dt were co-localized with previously reported cotton fiber quality quantitative trait loci (QTLs and the favorable allele types of GhCOBL9 Dt had significantly positive correlations with fiber quality traits, indicating that these two genes might play an important role in fiber development.

  5. Development of EST-SSR markers related to disease resistance and their application in genetic diversity and evolution analysis in Gossypium.

    Science.gov (United States)

    Wang, B H; Rong, P; Cai, X X; Wang, W; Zhu, X Y; Chen, C J; Xu, Y Y; Huang, X J; Zhuang, Z M; Wang, C B

    2015-09-09

    Cotton (Gossypium spp) is one of the most economically important crops that provide the world's most widely used natural fiber. Diseases such as Fusarium wilt and particularly Verticillium wilt seriously affect cotton production, and thus breeding for disease resistance is one of the most important goals of cotton breeding programs. Currently, potential exists to improve disease resistance in cultivated cotton. Increasing the understanding of the distribution, structure, and organization of genes or quantitative trait loci for disease resistance will help the breeders improve crop yield even in the event of disease. To facilitate the mapping of disease-resistance quantitative trait loci to achieve disease-resistant molecular breeding in cotton, it is necessary to develop polymorphic molecular markers. The objective of this study was to develop simple sequence repeat markers based on cotton expressed sequence tags for disease resistance. The efficacy of these simple sequence repeat markers, their polymorphisms, and cross-species transferability were evaluated. Their value was further investigated based on genetic diversity and evolution analysis. In this study, the unique sequences used to develop markers were compared with the G. arboretum and G. raimondii genome sequences to investigate their position, homology, and collinearity between G. arboretum and G. raimondii.

  6. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Fly ash as a liming material for cotton.

    Science.gov (United States)

    Stevens, Gene; Dunn, David

    2004-01-01

    A field experiment was conducted to determine the effect of fly ash from a coal combustion electric power facility on soil acidity in a cotton (Gossypium hirsutum L.) field. Fresh fly ash was applied to a Bosket fine sandy loam (fine-loamy, mixed, thermic Mollic Hapludalf) soil with an initial soil pH(salt) of 4.8. The fly ash was equivalent to 42 g kg(-1) calcium carbonate with 97% passing through a 60 mesh (U.S. standard) sieve. Fly ash was applied one day before cotton planting in 1999 at 0, 3.4, 6.7, and 10.1 Mg ha(-1). No fly ash was applied in 2000. Within 60 d of fly ash application in 1999, all rates of fly ash significantly increased soil pH above 6.0. Manganese levels in cotton petioles were reduced significantly by 6.7 and 10.1 Mg ha(-1) of fly ash. Soil boron (B) and sodium (Na) concentrations were significantly increased with fly ash. In 1999, B in cotton leaves ranged from 72 to 84 mg kg(-1) in plots with fly ash applications. However, no visual symptoms of B toxicity in plants were observed. In 1999, cotton lint yield decreased on average 12 kg ha(-1) for each Mg of fly ash applied. In 2000, cotton yields were significantly greater for the residual 3.4 and 6.7 Mg fly ash ha(-1) plots than the untreated check. Due to the adverse yield effects measured in the first year following application, fly ash would not be a suitable soil amendment for cotton on this soil at this time.

  8. Correspondence of trichome mutations in diploid and tetraploid cottons.

    Science.gov (United States)

    Desai, Aparna; Chee, Peng W; May, O Lloyd; Paterson, Andrew H

    2008-01-01

    Quantitative variation for leaf trichome number is observed within and among Gossypium species, varying from glabrous to densely pubescent phenotypes. Moreover, economically important cotton lint fibers are modified trichomes. Earlier studies have mapped quantitative trait loci (QTLs) affecting leaf pubescence in Gossypium using allotetraploids. In this study, we mapped genes responsible for leaf trichome density in a diploid A genome cross. We were able to map 3 QTLs affecting leaf pubescence based on trichome counts obtained from young leaves (YL) and mature leaves (ML). When the F(2) progeny were classified as pubescent versus glabrous, their ratio did not deviate significantly from a 3:1 model, suggesting that glabrousness is inherited in a simple Mendelian fashion. The glabrous mutation mapped to linkage group A3 at the position of major QTL YL1 and ML1 and appeared orthologous to the t1 locus of the allotetraploids. Interestingly, a fiber mutation, sma-4(ha), observed in the same F(2) population cosegregated with the glabrous marker, which indicates either close linkage or common genetic control of lint fiber and leaf trichomes. Studies of A genome diploids may help to clarify the genetic control of trichomes and fiber in both diploid and tetraploid cottons.

  9. Tobacco rattle virus (TRV) based silencing of cotton enoyl-CoA reductase (ECR) gene and the role of very long chain fatty acids in normal leaf development and resistance to wilt disease

    Science.gov (United States)

    A Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of Enoyl-CoA reductase (GhECR) in pathogen defense. Amino acid sequence al...

  10. Coupling of MIC-3 overexpression with the chromosome 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton...

    Science.gov (United States)

    High levels of resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. We had previously determined that MIC-3 expression played a direct role in suppressing RKN egg...

  11. Interspecific hybridization in cotton and its use in breeding

    Directory of Open Access Journals (Sweden)

    A. Stoilova

    2015-03-01

    Full Text Available Abstract. Interspecific hybridization in cotton is of great importance with a view to exploit the diversity of species in the genus Gossypium L. The aim of this study was to use the genetic potential of wild species of the genus Gossypium L. to improve productivity, fiber quality and resistance to some stressors of the modern Bulgarian cotton varieties. Interspecific hybridization of Gossypium hirsutum L. species (2n=52 with the wild diploid species G. sturtii F. Muell., G. thurberi Tod., G. davidsonii Kell. and G. raimondii Ulbr.(2n=26 was realized. To overcome sterility, caused by incompatibility of the genomes, the growing tips of the F plants in phase cotyledons were treated with 0.1% solution of colchicine for 12 hours. Amphidiploids of the G. hirsutum × G. sturtii, G. hirsutum × G. 1 thurberi and G. hirsutum × G. davidsonii, and trispecific hybrids G. hirsutum - G. arboreum - G. raimondii, G. hirsutum - G. arboreum - G. thurberi and G. hirsutum - G. thurberi - G. raimondii were obtained. To overcome the undesirable qualities that hybrids inherited together with desirable ones from the wild species two- or three-times backcrossing in C and F (at the triple hybrids and in the later generations was applied. Studies carried out with this hybridization 1 1 revealed a number of opportunities such as to increase productivity, to improve fiber quality, resistance to low positive temperatures, drought tolerance, to obtain new valuable traits. After backcrossing to the cultivated species valuable introgressed forms having high productivity (from the hybridization with G. thurberi, high strength of the fiber and resistance to aphids and thrips (from the hybridization with G. sturtii, drought-tolerance or resistance to low positive temperatures, etc., were obtained.

  12. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    Science.gov (United States)

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  13. Genetic gains from selection for fiber traits in Gossypium hirsutum L.

    Science.gov (United States)

    de Faria, G M P; Sanchez, C F B; de Carvalho, L P; da Silva Oliveira, M; Cruz, C D

    2016-11-21

    Brazil is among the five largest producers of cotton in the world, cultivating the species Gossypium hirsutum L. r. latifolium Hutch. The cultivars should have good fiber quality as well as yield. Genetic improvement of fiber traits requires the study of the genetic structure of the populations under improvement, leading to the identification of promising parent plants. To this end, it is important to acquire some information, such as estimates of genetic variance components and heritability coefficients, which will support the appropriate choice of the breeding strategy to be employed as well as enable the estimation of gains from selection. This study aimed to evaluate some agronomic characteristics, such as fiber quality and yield, estimating genetic parameters for the purpose of predicting earnings. Twelve cultivars of cotton, including four male progenitors (CNPA 01-42, BRS Verde, Glandless, and Okra leaf) and eight female progenitors (Delta opal, CNPA 7H, Aroeira, Antares, Sucupira, Facual, Precoce 3, and CNPA 8H), were used in performing crosses according to design I, proposed by Comstock and Robinson (1948). The experimental design was a randomized block with four replications. We observed genetic variability among all traits as well as higher efficiency of selection for the gains related to traits. Our results showed that the combined selection presented the highest genetic gains for all traits. For fiber length, the female/male selection and the combined selection resulted in the highest genetic gain.

  14. Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii.

    Science.gov (United States)

    Ma, Jun; Wang, Qinglian; Sun, Runrun; Xie, Fuliang; Jones, Don C; Zhang, Baohong

    2014-10-16

    Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play versatile functions in multiple aspects of plant growth and development. However, no systematical study has been performed in cotton. In this study, we performed for the first time the genome-wide identification and expression analysis of the TCP transcription factor family in Gossypium raimondii. A total of 38 non-redundant cotton TCP encoding genes were identified. The TCP transcription factors were divided into eleven subgroups based on phylogenetic analysis. Most TCP genes within the same subfamily demonstrated similar exon and intron organization and the motif structures were highly conserved among the subfamilies. Additionally, the chromosomal distribution pattern revealed that TCP genes were unevenly distributed across 11 out of the 13 chromosomes; segmental duplication is a predominant duplication event for TCP genes and the major contributor to the expansion of TCP gene family in G. raimondii. Moreover, the expression profiles of TCP genes shed light on their functional divergence.

  15. EFFECTS OF O_2 IN AIR AND NaCl IN MEDIUM ON PHOTOSYNTHESIS AND PHOTORESPIRATION IN TWO COTTON CULTIVARS

    OpenAIRE

    Mert, Hasan Huseyin

    1986-01-01

    The measurements of photosynthesis and photorespiration in the two cultivars of cotton plant under different salt and oxygen concentrations showed that, Gossypium hirsutum cv. Coker 100 A/2 was less tolerant than G. hirsutum cv. 2421-A. There was a decrease in the photosynthesis with an increase in the salt concentrations at both 21 and 2% oxygen concentrations, however, the inhibition was higher at the former as compared to the latter oxygen concentration. The photorespiration too was low in...

  16. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2012-10-01

    Full Text Available Abstract Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion and SNP (single nucleotide polymorphism developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism, were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a

  17. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Science.gov (United States)

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  18. A Genetic and Metabolic Analysis Revealed that Cotton Fiber Cell Development Was Retarded by Flavonoid Naringenin1[W][OA

    Science.gov (United States)

    Tan, Jiafu; Tu, Lili; Deng, Fenglin; Hu, Haiyan; Nie, Yichun; Zhang, Xianlong

    2013-01-01

    The cotton (Gossypium spp.) fiber is a unique elongated cell that is useful for investigating cell differentiation. Previous studies have demonstrated the importance of factors such as sugar metabolism, the cytoskeleton, and hormones, which are commonly known to be involved in plant cell development, while the secondary metabolites have been less regarded. By mining public data and comparing analyses of fiber from two cotton species (Gossypium hirsutum and Gossypium barbadense), we found that the flavonoid metabolism is active in early fiber cell development. Different flavonoids exhibited distinct effects on fiber development during ovule culture; among them, naringenin (NAR) could significantly retard fiber development. NAR is a substrate of flavanone 3-hydroxylase (F3H), and silencing the F3H gene significantly increased the NAR content of fiber cells. Fiber development was suppressed following F3H silencing, but the overexpression of F3H caused no obvious effects. Significant retardation of fiber growth was observed after the introduction of the F3H-RNA interference segment into the high-flavonoid brown fiber G. hirsutum T586 line by cross. A greater accumulation of NAR as well as much shorter fibers were also observed in the BC1 generation plants. These results suggest that NAR is negatively associated with fiber development and that the metabolism mediated by F3H is important in fiber development, thus highlighting that flavonoid metabolism represents a novel pathway with the potential for cotton fiber improvement. PMID:23535943

  19. Genetic diversity analysis of the species of Gossypium by using ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... 3Infinity Engineering and Technology Corporation, Research, Development and Extension Division, 4810 Black Rock. Drive ... the genetic distance among the species of Gossypium. ... In recent years RAPD technique.

  20. Dictionary of Cotton

    Science.gov (United States)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  1. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    Some salient properties of cotton cellulose which requires it to be treated with additives to improve its versatility were examined taken ... modification of the cotton cellulose upon resination with methylolmelamine phosphate. Keywords: Cotton Fabric ..... Decomposition of Pure Cellulose and Pulp. Paper. Polym Degrad Stab.

  2. RNAi construct of a cytochrome P450 gene CYP82D109 blocks an early step in the biosynthesis of hemigossypolone and gossypol in transgenic cotton plants.

    Science.gov (United States)

    Wagner, Tanya A; Liu, Jinggao; Puckhaber, Lorraine S; Bell, Alois A; Williams, Howard; Stipanovic, Robert D

    2015-07-01

    Naturally occurring terpenoid aldehydes from cotton, such as hemigossypol, gossypol, hemigossypolone, and the heliocides, are important components of disease and herbivory resistance in cotton. These terpenoids are predominantly found in the glands. Differential screening identified a cytochrome P450 cDNA clone (CYP82D109) from a Gossypium hirsutum cultivar that hybridized to mRNA from glanded cotton but not glandless cotton. Both the D genome cotton Gossypium raimondii and A genome cotton Gossypium arboreum possessed three additional paralogs of the gene. G. hirsutum was transformed with a RNAi construct specific to this gene family and eight transgenic plants were generated stemming from at least five independent transformation events. HPLC analysis showed that RNAi plants, when compared to wild-type Coker 312 (WT) plants, had a 90% reduction in hemigossypolone and heliocides levels, and a 70% reduction in gossypol levels in the terminal leaves, respectively. Analysis of volatile terpenes by GC-MS established presence of an additional terpene (MW: 218) from the RNAi leaf extracts. The (1)H and (13)C NMR spectroscopic analyses showed this compound was δ-cadinen-2-one. Double bond rearrangement of this compound gives 7-hydroxycalamenene, a lacinilene C pathway intermediate. δ-Cadinen-2-one could be derived from δ-cadinene via a yet to be identified intermediate, δ-cadinen-2-ol. The RNAi construct of CYP82D109 blocks the synthesis of desoxyhemigossypol and increases the induction of lacinilene C pathway, showing that these pathways are interconnected. Lacinilene C precursors are not constitutively expressed in cotton leaves, and blocking the gossypol pathway by the RNAi construct resulted in a greater induction of the lacinilene C pathway compounds when challenged by pathogens. Published by Elsevier Ltd.

  3. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton

    Science.gov (United States)

    Bajwa, Kamran S.; Shahid, Ahmad A.; Rao, Abdul Q.; Bashir, Aftab; Aftab, Asia; Husnain, Tayyab

    2015-01-01

    Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification. PMID:26583018

  4. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH.

    Science.gov (United States)

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.

  5. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii.

    Science.gov (United States)

    He, Qiuling; Jones, Don C; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-03-24

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement.

  6. Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress.

    Science.gov (United States)

    Wu, Zhansheng; Yue, Haitao; Lu, Jianjiang; Li, Chun

    2012-06-01

    A plant growth-promoting rhizobacterial strain Rs-2 with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was isolated from salinized soils using ACC as the sole nitrogen source. Based on its physiological and biochemical properties and 16S rDNA sequence analysis, this strain was identified as Raoultella planticola. The maximum value of nitrogen fixation, dissolved phosphorus and dissolved potassium of Rs-2 were 148.8 μg/ml, 205.0 and 4.31 mg/l, respectively within 192 h liquid culture. The germination rate of cotton seeds (Gossypium hirsutum L.) inoculated with Rs-2 (Rs-2-S) was enhanced by 29.5 % in pot experiments compared with that of the control (CK-S). Subsequently, individual plant height, fresh weight and dry weight of cotton seedlings in Rs-2-S treatment increased by 15.0, 33.7 and 33.3 %, respectively, compared with those in CK-S treatment. Statistical analysis showed that the inoculums of Rs-2 promoted significantly (P cotton growth. Further analysis showed that Rs-2 reduced the quantities of ethylene and abscisic acid in cotton seedlings, and increased indole acetic acid content in cotton seedlings under salinity stress. The accumulation of N, P, K(+), Ca(2+) and Fe(2+) in the cotton plants was increased significantly (P cotton seedlings decreased (P cotton growth and alleviating salinity stress.

  7. Comportamento do algodoeiro herbáceo (Gossypium hirsutum latifolium Hutch. e controle de plantas daninhas com o uso dos herbicidas diuron e sethoxydim The behavior of upland-type cotton (G. hirsutum latifolium Hutch. and the control of weeds after the use of diuron and sethoxydim herbicides

    Directory of Open Access Journals (Sweden)

    N.E. de M. Beltrão

    1983-06-01

    agressividade.To verify the behavior of the c. IAC -17, as well as, the control of weeds and competitive aspects of the infesting floristic complexes over the cotton culture under the presence of the herbicides, diuron and sethoxydium, atrial was contucted in Viçosa, Minas Gerais. The soil at the experimental site, Podzolic Red-yellow, had a clay texture wi th 1,38% of organic carbon an low natural fertility. Diuron was applied at pre -emergence time at the rates of 0, 0; 0, 8; 1,6 and 2,4 kg a.i. /ha and sethoxyd im at post-emergence at the rates of 0, 150, 300, 450 and 600 g a.i./ha. The trial was setup in a randomized blocks design with 2 1 treament sunder a factorial scheme (x 5 + 1 . Out of them, 20 composed all the combinations with different dosis of the two herbicides under study plus a relative control weeded with the aind of a mattock. Several traits concerning growth and plant development were evaluated, such as leaf area, leaf area in dex, seed -cotton yield, plant height, stem diameter. By means of syn ecological methods, th e population density, hydrated epigeous phytomase of dominant weed species, and the total of all species were evaluated. Diuron exerted a high control overlati foliates such as Galinsoga parviflora Cav . and Bidens pilosa L., at the rates of 1, 6 an d 2,4 kg a. i. /ha, seth oxydim, even using the lowvest tested rate (150 g. a. i. /h a fully controled Brachiaria plantaginea (Link. Hitch. None of th e herbicides was able to control Emilia sonchifolia DC. Th is species although being considered an important weed did not affect the normal crop development because of its low competition ability. The weeds showing highes trates of competition were G. parviflora (due to high population density an d B. plantaginea, because of its greater aggresivity.

  8. A majority of cotton genes are expressed in single-celled fiber.

    Science.gov (United States)

    Hovav, Ran; Udall, Joshua A; Hovav, Einat; Rapp, Ryan; Flagel, Lex; Wendel, Jonathan F

    2008-01-01

    Multicellular eukaryotes contain a diversity of cell types, presumably differing from one another in the suite of genes expressed during development. At present, little is known about the proportion of the genome transcribed in most cell types, nor the degree to which global patterns of expression change during cellular differentiation. To address these questions in a model plant system, we studied the unique and highly exaggerated single-celled, epidermal seed trichomes ("cotton") of cultivated cotton (Gossypium hirsutum). By taking advantage of advances in expression profiling and microarray technology, we evaluated the transcriptome of cotton fibers across a developmental time-course, from a few days post-anthesis through primary and secondary wall synthesis stages. Comparisons of gene expression in populations of developing cotton fiber cells to genetically complex reference samples derived from 6 different cotton organs demonstrated that a remarkably high proportion of the cotton genome is transcribed, with 75-94% of the total genome transcribed at each stage. Compared to the reference samples, more than half of all genes were up-regulated during at least one stage of fiber development. These genes were clustered into seven groups of expression profiles that provided new insight into biological processes governing fiber development. Genes implicated in vesicle coating and trafficking were found to be overexpressed throughout all stages of fiber development studied, indicating their important role in maintaining rapid growth of this unique plant cell.

  9. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Science.gov (United States)

    Ke, Liping; Liu, RuiE; Chu, Bijue; Yu, Xiushuang; Sun, Jie; Jones, Brian; Pan, Gang; Cheng, Xiaofei; Wang, Huizhong; Zhu, Shuijin; Sun, Yuqiang

    2012-01-01

    Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 µmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  10. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    Directory of Open Access Journals (Sweden)

    Liping Ke

    Full Text Available Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel. In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L and bentazon (4.2 µmol. A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  11. Gene-rich islands for fiber development in the cotton genome.

    Science.gov (United States)

    Xu, Zhanyou; Kohel, Russell J; Song, Guoli; Cho, Jaemin; Alabady, Magdy; Yu, Jing; Koo, Pamela; Chu, Jun; Yu, Shuxun; Wilkins, Thea A; Zhu, Yuxian; Yu, John Z

    2008-09-01

    Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step toward elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of fiber genes in the cotton genome. Results revealed the presence of gene-rich islands for fiber genes with a biased distribution in the tetraploid cotton (Gossypium hirsutum L.) genome that was also linked to discrete fiber developmental stages based on expression profiles. There were 3 fiber gene-rich islands associated with fiber initiation on chromosome 5, 3 islands for the early to middle elongation stage on chromosome 10, 3 islands for the middle to late elongation stage on chromosome 14, and 1 island on chromosome 15 for secondary cell wall deposition, for a total of 10 fiber gene-rich islands. Clustering of functionally related gene clusters in the cotton genome displaying similar transcriptional regulation indicates an organizational hierarchy with significant implications for the genetic enhancement of particular fiber quality traits. The relationship between gene-island distribution and functional expression profiling suggests for the first time the existence of functional coupling gene clusters in the cotton genome.

  12. Temporal analysis of cotton boll symptoms resulting from southern green stink bug feeding and transmission of a bacterial pathogen.

    Science.gov (United States)

    Medrano, Enrique Gino; Esquivel, Jesus F; Nichols, Robert L; Bell, Alois A

    2009-02-01

    The southern green stink bug, Nezara viridula (L.), is a significant pest of cotton, Gossypium hirsutum L., and is becoming an increasing challenge due to the decrease in use of broad-spectrum insecticides on the crop. The southern green stink bug can vector an opportunistic Pantoea agglomerans strain (designated Sc 1-R) into cotton bolls, resulting in infection. The appearance of stink bug damage varies, and pest managers cannot readily identify its source. This research reports a systematic depiction of green, immature boll responses at various stages of maturity (1, 2, and 3 wk post-anthesis [WPA]) to stink bug injury and to infection by the vectored cotton pathogen by demonstrating the progression of effects 1, 2, and 3 wk after exposure (WAE). When laboratory-reared adult southern green stink bug not harboring Sc 1-R deposited bacteria into greenhouse-grown bolls at 1, 2, or 3 WPA during feeding/probing, bacteria reached concentrations of 10(9), 10(9), and 10(3) colony-forming units (CFUs)/g tissue, respectively, at 3 WAE, yet caused minimal seed and lint damage regardless of the age of the bolls that were penetrated. Bolls at a maturity of 1 or 2 WPA showed similar susceptibility when exposed to stink bugs that vectored Sc 1-R. After a week of infection, seeds were salmon-pink with normal white lint and up to 10(4) CFUs/g tissue when Sc 1-R was detected. Necrosis of the entire inoculated locule(s) with a maximum Sc 1-R concentration detected at 10(8) CFUs/g tissue occurred in samples harvested 2 or 3 WAE. Conversely, seed and lint deterioration due to the transmitted opportunist into bolls exposed 3 WPA was confined to the puncture site. In summary, after a week of development, bolls were tolerant to southern green stink bug feeding/ probing damage and to nonpathogenic bacteria, but they were severely damaged when the opportunistic pathogen Sc 1-R was transmitted. At 3 WPA, the fruit was immune to the spread of the pathogen with infections confined to the

  13. Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan.

    Science.gov (United States)

    Amin, Asad; Nasim, Wajid; Mubeen, Muhammad; Nadeem, Muhammad; Ali, Liaqat; Hammad, Hafiz Mohkum; Sultana, Syeda Refat; Jabran, Khawar; Rehman, M Habib Ur; Ahmad, Shakeel; Awais, Muhammad; Rasool, Atta; Fahad, Shah; Saud, Shah; Shah, Adnan Noor; Ihsan, Zahid; Ali, Shahzad; Bajwa, Ali Ahsan; Hakeem, Khalid Rehman; Ameen, Asif; Amanullah; Rehman, Hafeez Ur; Alghabar, Fahad; Jatoi, Ghulam Hussain; Akram, Muhammad; Khan, Aziz; Islam, Faisal; Ata-Ul-Karim, Syed Tahir; Rehmani, Muhammad Ishaq Asif; Hussain, Sajid; Razaq, Muhammad; Fathi, Amin

    2017-02-01

    Crop nutrient management is an essential component of any cropping system. With increasing concerns over environmental protection, improvement in fertilizer use efficiencies has become a prime goal in global agriculture system. Phosphorus (P) is one of the most important nutrients, and strategies are required to optimize its use in important arable crops like cotton (Gossypium hirsutum L.) that has great significance. Sustainable P use in crop production could significantly avoid environmental hazards resulting from over-P fertilization. Crop growth modeling has emerged as an effective tool to assess and predict the optimal nutrient requirements for different crops. In present study, Decision Support System for Agro-technology Transfer (DSSAT) sub-model CSM-CROPGRO-Cotton-P was evaluated to estimate the observed and simulated P use in two cotton cultivars grown at three P application rates under the semi-arid climate of southern Punjab, Pakistan. The results revealed that both the cultivars performed best at medium rate of P application (57 kg ha-1) in terms of days to anthesis, days to maturity, seed cotton yield, total dry matter production, and harvest index during 2013 and 2014. Cultivar FH-142 performed better than MNH-886 in terms of different yield components. There was a good agreement between observed and simulated days to anthesis (0 to 1 day), days to maturity (0 to 2 days), seed cotton yield, total dry matter, and harvest index with an error of -4.4 to 15%, 12-7.5%, and 13-9.5% in MNH-886 and for FH-142, 4-16%, 19-11%, and 16-8.3% for growing years 2013 and 2014, respectively. CROPGRO-Cotton-P would be a useful tool to forecast cotton yield under different levels of P in cotton production system of the semi-arid climate of Southern Punjab.

  14. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton.

    Science.gov (United States)

    Bu, Bingwu; Qiu, Dewen; Zeng, Hongmei; Guo, Lihua; Yuan, Jingjing; Yang, Xiufen

    2014-03-01

    We found that the elicitor PevD1 triggered innate immunity in cotton, which plays an important role in future cotton wilt disease control. Elicitors can induce defense responses in plants and improve pathogen resistance. PevD1 is a secreted protein from Verticillium dahliae and activates the hypersensitive response and systemic acquired resistance to tobacco mosaic virus in tobacco plants. To investigate the PevD1-induced disease resistance mechanisms in cotton (Gossypium hirsutum), we report that Escherichia coli expressing PevD1 enhanced cotton resistance and the defense response to the fungal pathogen V. dahliae. The results showed that recombinant PevD1 improved cotton resistance when infiltrated at a concentration as low as 4 μg ml(-1), and the highest disease reduction was 38.16 % on the 15th day post V. dahliae inoculation. This protein was able to systemically induce hydrogen peroxide production, nitric oxide generation, lignin deposition, vessel reinforcement and defense enzymes, including phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. PevD1 also enhanced the expression of three pathogenesis-related genes, namely, β-1,3-glucanase, chitinase, and cadinene synthase, and three key genes, PAL, C4H1, and 4CL, from the cotton defense phenylpropanoid metabolism pathway. Our results demonstrated that PevD1 acted as an effector in cotton and V. dahliae interactions and triggered innate immunity in cotton, resulting in the upregulation of defense-related genes, metabolic substance deposition and cell wall modifications. PevD1 is a candidate plant defense activator for cotton wilt disease control.

  15. Expression of genes associated with carbohydrate metabolism in cotton stems and roots

    Directory of Open Access Journals (Sweden)

    Scheffler Jodi

    2009-01-01

    Full Text Available Abstract Background Cotton (Gossypium hirsutum L is an important crop worldwide that provides fiber for the textile industry. Cotton is a perennial plant that stores starch in stems and roots to provide carbohydrates for growth in subsequent seasons. Domesticated cotton makes these reserves available to developing seeds which impacts seed yield. The goals of these analyses were to identify genes and physiological pathways that establish cotton stems and roots as physiological sinks and investigate the role these pathways play in cotton development during seed set. Results Analysis of field-grown cotton plants indicated that starch levels peaked about the time of first anthesis and then declined similar to reports in greenhouse-grown cotton plants. Starch accumulated along the length of the stem and the shape and size of the starch grains from stems were easily distinguished from transient starch. Microarray analyses compared gene expression in tissues containing low levels of starch with tissues rapidly accumulating starch. Statistical analysis of differentially expressed genes indicated increased expression among genes associated with starch synthesis, starch degradation, hexose metabolism, raffinose synthesis and trehalose synthesis. The anticipated changes in these sugars were largely confirmed by measuring soluble sugars in selected tissues. Conclusion In domesticated cotton starch stored prior to flowering was available to support seed production. Starch accumulation observed in young field-grown plants was not observed in greenhouse grown plants. A suite of genes associated with starch biosynthesis was identified. The pathway for starch utilization after flowering was associated with an increase in expression of a glucan water dikinase gene as has been implicated in utilization of transient starch. Changes in raffinose levels and levels of expression of genes controlling trehalose and raffinose biosynthesis were also observed in vegetative

  16. Cotton Production Practices Change Soil Properties

    Science.gov (United States)

    Blaise, D.; Singh, J. V.

    2012-04-01

    Historically, indigenous Asiatic cottons (Gossypium arboreum) were cultivated with minimal inputs in India. The introduction of the Upland cottons (G. hirsutum) and later the hybrid (H-4) triggered a whole set of intensified agronomic management with reliance on high doses of fertilisers and pesticide usage. In 2002, the transgenic Bt cotton hybrids were introduced and released for commercial cultivation. Presently, more than 95% of the nearly 12.2 million hectares of cotton area is under the Bt transgenic hybrids. These hybrids are not only high yielding but have reduced the dependence on pesticide because of an effective control of the lepidopteran pests. Thus, a change in the management practices is evident over the years. In this paper, we discuss the impact of two major agronomic management practices namely, nutrient management and tillage besides organic cotton cultivation in the rainfed cotton growing regions of central India characterized by sub-humid to semi-arid climate and dominated by Vertisols. Long-term studies at Nagpur, Maharashtra indicated the importance of integrated nutrient management (INM) wherein a part of the nutrient needs through fertiliser was substituted with organic manures such as farmyard manure (FYM). With the application of mineral fertilisers alone, soils became deficient in micronutrients. This was not observed with the FYM amended plots. Further, the manure amended plots had a better soil physical properties and the water holding capacity of the soil improved due to improvements in soil organic matter (SOM). Similarly, in a separate experiment, an improvement in SOM was observed in the organically managed fields because of continuous addition of organic residues. Further, it resulted in greater biological activity compared to the conventionally managed fields. Conservation tillage systems such as reduced tillage (RT) are a means to improve soil health and crop productivity. Long-term studies on tillage practices such as

  17. Heliothis virescens and Bt cotton in the United States.

    Science.gov (United States)

    Blanco, Carlos A

    2012-01-01

    maintain their pre Bt-cotton densities. A revision of the physiological, reproductive and genetic mechanisms behind this host race speciation, as well as revisiting the role of its current host plants may offer an explanation of the puzzling phenomenon of the abatement of this pest's population in the southern United States. The challenge for the future involves the preservation of all those measures that have maintained the susceptibility of TBW to Bt-cotton.

  18. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    Science.gov (United States)

    Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian

    2015-01-01

    WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  19. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    Directory of Open Access Journals (Sweden)

    Xinqi Fan

    Full Text Available WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III, as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  20. Transcriptome-Wide Identification of Salt-Responsive Members of the WRKY Gene Family in Gossypium aridum

    Science.gov (United States)

    Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian

    2015-01-01

    WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I–III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and –GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance. PMID:25951083

  1. Microdissection of the Ah01 chromosome in upland cotton and microcloning of resistance gene anologs from the single chromosome.

    Science.gov (United States)

    Cao, Xinchuan; Liu, Yuling; Liu, Zhen; Liu, Fang; Wu, Yalei; Zhou, Zhongli; Cai, Xiaoyan; Wang, Xingxing; Zhang, Zhenmei; Wang, Yuhong; Luo, Zhimin; Peng, Renhai; Wang, Kunbo

    2017-01-01

    Chromosome microdissection is one of the most important techniques in molecular cytogenetic research. Cotton (Gossypium Linnaeus, 1753) is the main natural fiber crop in the world. The resistance gene analog (RGA) cloning after its single chromosome microdissection can greatly promote cotton genome research and breeding. Using the linker adaptor PCR (LA-PCR) with the primers of rice disease-resistance homologues, three nucleotide sequences PS016 (KU051681), PS054 (KU051682), and PS157 (KU051680) were obtained from the chromosome Ah01 of upland cotton (cv. TM-1). The Blast results showed that the three sequences are the nucleotide binding site-leucine rich repeat (NBS-LRR) type RGAs. Clustering results indicated that they are homologous to these published RGAs. Thus, the three RGAs can definitely be confirmed as NBS-LRR class of RGAs in upland cotton. Using single chromosome microdissection technique, DNA libraries containing cotton RGAs were obtained. This technique can promote cotton gene cloning, marker development and even the improvement of cotton genome research and breeding.

  2. Soybean looper (Lepidoptera: Noctuidae) oviposition on cotton and soybean of different growth stages: influence of olfactory stimuli.

    Science.gov (United States)

    Jost, Douglas J; Pitre, Henry N

    2002-04-01

    Soybean looper, Pseudoplusia includens (Walker), oviposition in cotton, Gossypium hirsutum L., and soybean, Glycine max (L.) Merr., of various stages of plant phenological development was evaluated in field cages in 1994, 1995, and 1996. Overall, females preferred to oviposit on soybean over cotton when both crops were compared in vegetative or prebloom stages, when both crops were blooming, and when soybean was blooming or in early pod stage compared with prebloom cotton. Females preferred to deposit eggs on the lower leaf surface in the upper two-thirds of the plant canopy in cotton and soybean. Oviposition in upper and middle canopy levels varied with plant growth stage. Females tended to lay more eggs in the upper canopy compared with the middle canopy in prebloom cotton and vegetative soybean; more eggs were laid in the middle canopy of blooming cotton and reproductive stages of soybean. Females responded to both cotton and soybean volatiles in an olfactometer. There was no significant difference in response to the two sources of volatiles.

  3. A Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber Development.

    Science.gov (United States)

    Zhang, Yuzhou; He, Peng; Yang, Zuoren; Huang, Gai; Wang, Limin; Pang, Chaoyou; Xiao, Hui; Zhao, Peng; Yu, Jianing; Xiao, Guanghui

    2017-01-01

    The PIN-FORMED (PIN) protein, the most important polar auxin transporter, plays a critical role in the distribution of auxin and controls multiple biological processes. However, characterizations and functions of this gene family have not been identified in cotton. Here, we identified the PIN family in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii. This gene family was divided into seven subgroups. A chromosomal distribution analysis showed that GhPIN genes were evenly distributed in eight chromosomes and that the whole genome and dispersed duplications were the main duplication events for GhPIN expansion. qRT-PCR analysis showed a tissue-specific expression pattern for GhPIN. Likely due to the cis-element variations in their promoters, transcripts of PIN6 and PIN8 genes from the At (tetraploid genome orginated from G. arboreum) subgenome and PIN1a from the Dt (tetraploid genome orginated from G. raimondii) subgenome in G. hirsutum was significantly increased compared to the transcripts in the diploids. The differential regulation of these PIN genes after the polyploidization may be conducive to fiber initiation and elongation. Exogenously applied auxin polar transport inhibitor significantly suppressed fiber growth, which is consistent with the essential function of these PIN genes for regulating cotton fiber development. Furthermore, the overexpression of GhPIN1a_Dt, GhPIN6_At, and GhPIN8_At in Arabidopsis promoted the density and length of trichomes in leaves.

  4. The promoter structure differentiation of a MYB transcription factor RLC1 causes red leaf coloration in Empire Red Leaf Cotton under light.

    Science.gov (United States)

    Gao, Zhenrui; Liu, Chuanliang; Zhang, Yanzhao; Li, Ying; Yi, Keke; Zhao, Xinhua; Cui, Min-Long

    2013-01-01

    The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.

  5. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum.

    Science.gov (United States)

    Zheng, Wu; Zhang, Xueyan; Yang, Zuoren; Wu, Jiahe; Li, Fenglian; Duan, Lanling; Liu, Chuanliang; Lu, Lili; Zhang, Chaojun; Li, Fuguang

    2014-01-01

    Upland cotton (Gossypium hirsutum) is one of the most recalcitrant species for in vitro plant regeneration through somatic embryogenesis. Callus from only a few cultivars can produce embryogenic callus (EC), but the mechanism is not well elucidated. Here we screened a cultivar, CRI24, with high efficiency of EC produce. The expression of genes relevant to EC production was analyzed between the materials easy to or difficult to produce EC. Quantitative PCR showed that CRI24, which had a 100% EC differentiation rate, had the highest expression of the genes GhLEC1, GhLEC2, and GhFUS3. Three other cultivars, CRI12, CRI41, and Lu28 that formed few ECs expressed these genes only at low levels. Each of the genes involved in auxin transport (GhPIN7) and signaling (GhSHY2) was most highly expressed in CRI24, with low levels in the other three cultivars. WUSCHEL (WUS) is a homeodomain transcription factor that promotes the vegetative-to-embryogenic transition. We thus obtained the calli that ectopically expressed Arabidopsis thaliana Wus (AtWus) in G. hirsutum cultivar CRI12, with a consequent increase of 47.75% in EC differentiation rate compared with 0.61% for the control. Ectopic expression of AtWus in CRI12 resulted in upregulation of GhPIN7, GhSHY2, GhLEC1, GhLEC2, and GhFUS3. AtWus may therefore increase the differentiation potential of cotton callus by triggering the auxin transport and signaling pathways.

  6. Genome-wide characterization and expression analysis of the aldehyde dehydrogenase (ALDH) gene superfamily under abiotic stresses in cotton.

    Science.gov (United States)

    Guo, Xinlei; Wang, Yuanyuan; Lu, Hejun; Cai, Xiaoyan; Wang, Xingxing; Zhou, Zhongli; Wang, Chunying; Wang, Yuhong; Zhang, Zhenmei; Wang, Kunbo; Liu, Fang

    2017-09-10

    In plants, aldehyde dehydrogenases (ALDHs) function as 'aldehyde scavengers' by removing reactive aldehydes and thus play important roles in stress responses. To date, 30 ALDHs have been identified in Gossypium raimondii, whereas ALDHs have not been studied in Gossypium arboreum or in tetraploid cotton. In this study, we identified 30, 59 and 59 aldehyde dehydrogenase (ALDH) genes from G. arboreum, G. hirsutum and G. barbadense, respectively. Gene structure analysis revealed that members of the same family exhibit similar exon-intron structures and structural domains, and all members of the ALDH18 family possess a distinct AA-kinase domain. Synteny analysis showed that segmental and tandem duplications have played an important role in the expansion and evolution of ALDHs in cotton. Phylogenetic and synteny analysis between G. arboreum and G. raimondii demonstrated that all GaALDHs and GrALDHs are orthologous and that most GaALDHs are located in syntenic blocks corresponding to those of G. raimondii, implying that these genes appeared before the divergence of G. arboreum and G. raimondii and that no expansion of the ALDH superfamily has occurred in these two cotton species. Quantitative real-time PCR analysis revealed that the majority of GaALDHs and GhALDHs are up-regulated under conditions of high salinity and drought, indicating that these genes may be stress responsive. The findings of this study, based on genome-wide identification of ALDHs in Gossypium and analysis of their evolution and expression, provide a foundation for further analysis of ALDHs and suggest potential target genes for improving stress resistance in cotton. Copyright © 2017. Published by Elsevier B.V.

  7. Nature Relation Between Climatic Variables and Cotton Production

    Directory of Open Access Journals (Sweden)

    Zakaria M. Sawan

    2014-08-01

    Full Text Available This study investigated the effect of climatic variables on flower and boll production and retention in cotton (Gossypium barbadense. Also, this study investigated the relationship between climatic factors and production of flowers and bolls obtained during the development periods of the flowering and boll stage, and to determine the most representative period corresponding to the overall crop pattern. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 0600 h and minimum temperature. There was a negative correlation between flower and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.

  8. Pollen- and Seed-Mediated Transgene Flow in Commercial Cotton Seed Production Fields

    Science.gov (United States)

    Heuberger, Shannon; Ellers-Kirk, Christa; Tabashnik, Bruce E.; Carrière, Yves

    2010-01-01

    Background Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt) cotton is planted on millions of hectares annually and is a potential source of transgene flow. Methodology/Principal Findings Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L.) seed production fields (some transgenic for herbicide resistance, some not) for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. Conclusions/Significance A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow. PMID:21152426

  9. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields.

    Directory of Open Access Journals (Sweden)

    Shannon Heuberger

    Full Text Available BACKGROUND: Characterizing the spatial patterns of gene flow from transgenic crops is challenging, making it difficult to design containment strategies for markets that regulate the adventitious presence of transgenes. Insecticidal Bacillus thuringiensis (Bt cotton is planted on millions of hectares annually and is a potential source of transgene flow. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored 15 non-Bt cotton (Gossypium hirsutum, L. seed production fields (some transgenic for herbicide resistance, some not for gene flow of the Bt cotton cry1Ac transgene. We investigated seed-mediated gene flow, which yields adventitious Bt cotton plants, and pollen-mediated gene flow, which generates outcrossed seeds. A spatially-explicit statistical analysis was used to quantify the effects of nearby Bt and non-Bt cotton fields at various spatial scales, along with the effects of pollinator abundance and adventitious Bt plants in fields, on pollen-mediated gene flow. Adventitious Bt cotton plants, resulting from seed bags and planting error, comprised over 15% of plants sampled from the edges of three seed production fields. In contrast, pollen-mediated gene flow affected less than 1% of the seed sampled from field edges. Variation in outcrossing was better explained by the area of Bt cotton fields within 750 m of the seed production fields than by the area of Bt cotton within larger or smaller spatial scales. Variation in outcrossing was also positively associated with the abundance of honey bees. CONCLUSIONS/SIGNIFICANCE: A comparison of statistical methods showed that our spatially-explicit analysis was more powerful for understanding the effects of surrounding fields than customary models based on distance. Given the low rates of pollen-mediated gene flow observed in this study, we conclude that careful planting and screening of seeds could be more important than field spacing for limiting gene flow.

  10. Enrichment of a set of microRNAs during the cotton fiber development.

    Science.gov (United States)

    Kwak, Pieter Bas; Wang, Qin Qin; Chen, Xu Sheng; Qiu, Cheng Xiang; Yang, Zhi Min

    2009-09-29

    Cotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture. In addition to its industrial and agricultural importance, the fiber cell (plant trichome) also is a biological model system for exploring gene expression and regulation. Small RNAs regulate many aspects of plant growth and development. However, whether small RNAs are involved in regulation of fiber cell development is unknown. We adopted a deep sequencing approach developed by Solexa (Illumina Inc.) to investigate global expression and complexity of small RNAs during cotton fiber initiation and development. We constructed two small RNA libraries prepared from wild type (WT) and fuzz/lintless (fl Mutant in the WT background) cotton ovules, respectively. Each library was sequenced individually and generated more than 6-7 million short sequences, resulting in a total of over 13 million sequence reads. At least 22 conserved candidate miRNA families including 111 members were identified. Seven families make up the vast majority of expressed miRNAs in developing cotton ovules. In total 120 unique target genes were predicted for most of conserved miRNAs. In addition, we identified 2 cell-type-specific novel miRNA candidates in cotton ovules. Our study has demonstrated significant differences in expression abundance of miRNAs between the wild-type and mutant, and suggests that these differentially expressed miRNAs potentially regulate transcripts distinctly involved in cotton fiber development. The present study is the first to deep sequence the small RNA population of G. hirsutum ovules where cotton fibers initiate and develop. Millions of unique miRNA sequences ranging from 18 to approximately 28 nt in length were detected. Our results support the importance of miRNAs in regulating the development of different cell types and indicate that identification of a comprehensive set of miRNAs in cotton fiber cells would facilitate our understanding of

  11. Living Mulch Performance in a Tropical Cotton System and Impact on Yield and Weed Control

    Directory of Open Access Journals (Sweden)

    Vinay Bhaskar

    2018-01-01

    Full Text Available Cotton (Gossypium hirsutum L. is a major crop in the Vidarbha region of central India. The vertisol soils on which much of the cotton is grown have been severely degraded by the tropical climate, excessive tillage and depletion of organic matter. Living mulches have the ability to mitigate these problems but they can cause crop losses through direct competition with the cotton crop and unreliable weed control. Field experiments were conducted in 2012 and 2013 at four locations in Vidarbha to study the potential for growing living mulches in mono-cropped cotton. Living mulch species evaluated included gliricidia [Gliricidia sepium (Jacq. Kunth ex Walp.], sesbania [Sesbania sesban (L. Merr.], sorghum sudan grass [Sorghum bicolor (L. Moench × Sorghum bicolor (L. Moench ssp. Drummondii (Nees ex Steud. de Wet & Harlan] and sunnhemp (Crotalaria juncea L.. Living mulch height was controlled through mowing and herbicides were not used. Living mulches generated 1 to 13 tons ha−1 of dry matter across sites and years. Weed cover was negatively correlated with both living mulch biomass and cover. Where living mulches were vigorous and established quickly, weed cover was as low as 7%, without the use of herbicides, or inter-row tillage. In a dry year, living mulch growth had a negative impact on cotton yield; however, in a year when soil moisture was not limiting, there was a positive relationship between cotton yield and living mulch biomass. Use of living mulches in cotton production in the Vidarbha region of India is feasible and can lead to both effective weed suppression and acceptable cotton yields.

  12. Spectral Reflectance Properties of Gossypium hirsutum Leaves after Heavy Metal Toxicity.

    Science.gov (United States)

    Manjuladevi, K K; Suriyanarayanan, S; Balasubramanian, S

    2014-04-01

    The study demonstrated a link between heavy metal induced stress and optical properties of the leaves of Gossypium hirsutum. This work was conducted using the pot culture experiment. Three replications and four concentrations of Chromium (5%, 10%, 20% and 35%) with a control to assess the growth of plants were used. This experiment was conducted till 80 days. On 80th day the experiment was terminated and the leaves were plucked and air-dried. Portion of the air-dried, powdered cotton leaves was used for the Fourier Transformed Infra-Red (FT-IR) spectral analysis and the remaining portion was used for analyzing the biochemical constituents of the leaves (chlorophyll a, b, and total C and N contents). The Fourier Transformed Infra-Red spectrum indicated the aliphatic alcohol, inorganic bridge, C-OH stretch, C-H deformation, aromatic C=C stretch, OH stretch of H bond, aliphatic C-H stretch and OH stretch of aromatic C-H. The shifting and overlapping of the spectrum was observed after heavy metal induced toxicity when compared with that of the control spectra. This was supported by the biochemical analysis of chlorophyll a, b, and total carbon and nitrogen contents. This method was a preliminary study, which may be instrumental in developing optimal procedures for interpreting a particular stress of plants through analysis of their leaf reflectance spectrum.

  13. Cotton-based nonwovens

    Science.gov (United States)

    This article is an abbreviated description of a new cotton-based nonwovens research program at the Southern Regional Research Center, which is one of the four regional research centers of the Agricultural Research Service, U.S. Department of Agriculture. Since cotton is a significant cash crop inte...

  14. Cotton trends in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Cotton trends in India. A crop of significant economic importance, valued at over Rs. 15000 Crs. Provides income to 60 million people. Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides ...

  15. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2.

    Science.gov (United States)

    Deng, Fenglin; Tu, Lili; Tan, Jiafu; Li, Yang; Nie, Yichun; Zhang, Xianlong

    2012-02-01

    Cotton (Gossypium spp.) fiber cells are seed trichomes derived from the epidermal layer of the cotton seed coat. The molecular components responsible for regulating fiber cell differentiation have not been fully elucidated. A cotton PROTODERMAL FACTOR1 gene (GbPDF1) was found to be expressed preferentially during fiber initiation and early elongation, with highest accumulation in fiber cells 5 d post anthesis. PDF1 silencing caused retardation of fiber initiation and produced shorter fibers and lower lint percentage compared with the wild type, indicating that the gene is required for cotton fiber development. Further analysis showed that a higher accumulation of hydrogen peroxide occurred in the RNA interference transgenic cotton lines. Meanwhile, the expression of several genes related to ethylene and pectin synthesis or sugar transport during cotton fiber growth was found to be significantly reduced in the PDF1-suppressed cotton. Three proteins interacting with GbPDF1 in yeast and in planta might involve cellular signaling or metabolism. GbPDF1 promoter::GUS constructs in transgenic cotton were predominantly expressed in the epidermis of ovules and developing fibers. Progressive deletions of the GbPDF1 promoter showed that a 236-bp promoter fragment was sufficient for basal GbPDF1 transcription in cotton. Mutation of putative regulatory sequences showed that HDZIP2ATATHB2, an element within the fragment, was essential for PGbPDF1-1 expression. The binding activity between this cis-element and nuclear extracts from fiber-bearing cotton ovules at 5 d post anthesis was specific. We conclude that GbPDF1 plays a critical role together with interaction partners in hydrogen peroxide homeostasis and steady biosynthesis of ethylene and pectin during fiber development via the core cis-element HDZIP2ATATHB2.

  16. Protein expression changes during cotton fiber elongation in response to drought stress and recovery.

    Science.gov (United States)

    Zheng, Mi; Meng, Yali; Yang, Changqin; Zhou, Zhiguo; Wang, Youhua; Chen, Binglin

    2014-08-01

    An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought-responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carbohydrate production and transport in cotton cultivars grown under boron deficiency

    Directory of Open Access Journals (Sweden)

    Julio Cesar Bogiani

    2013-12-01

    Full Text Available An adequate supply of boron (B is required for the optimal growth and development of cotton (Gossypium hirsutum L. plants, but the low phloem mobility of B limits the possibilities of correcting B deficiency. There are indications that different cotton cultivars could have different responses to B deficiency. The differences in responses of cotton cultivars to B regarding photoassimilate production and transport were studied in a greenhouse experiment with nutrient solution. Treatments consisted of three cotton cultivars (FMT 701, DP 604BG and FMX 993 and five concentrations of B (0.0, 2.5, 5.0, 10.0 and 20.0 µmol L−1. Sampling began at the phenological stage B1 (first square and continued for four weeks. The leaf area and the number of reproductive branches and structures decreased due to B deficiency. A higher level of abortion of reproductive structures was observed under B deficiency. Boron deficiency increased the internal CO2 concentration but decreased the transpiration rate, stomatal conductance and photosynthesis. Despite the decrease in photosynthesis, nonstructural carbohydrates accumulated in the leaves due to decreased export to bolls in B-deficient plants. The response to B deficiency is similar among cotton cultivars, which shows that the variability for this trait is low even for cultivars with different genetic backgrounds.

  18. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton

    Science.gov (United States)

    Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  19. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton.

    Science.gov (United States)

    Du, Mingwei; Li, Yi; Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ.

  20. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton.

    Directory of Open Access Journals (Sweden)

    Mingwei Du

    Full Text Available Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L., prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ. The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL and polygalacturonase (PG, and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ.

  1. Efeito da mucuna e amendoim em rotação com algodoeiro A study on crop rotation for cotton using velvet bean and peanut

    Directory of Open Access Journals (Sweden)

    Carlos A. M. Ferraz

    1977-01-01

    Full Text Available O efeito da rotação de mucuna (Stizolobium atterrimum Piper & Tracy e amendoim (Arachis hypogaea L. e de duas variedades comerciais de algodoeiro, IAC RM3 e IAC 12-2 (Gossypium hirsutum L. foi estudado nos anos agrícolas de 1967/68 a 1972/73. Foram instalados dois ensaios, um em Presidente Bernardes, com fusariose, em solo podzolizado de Lins e Marília var. Lins naturalmente infectado por Fusarium oxysporumf. vasinfectum e o nematóide causador de galhas Meloidogyne incognita (Kofoid & White Chitwood, e outro em Presidente Venceslau, sem fusariose, em latossolo vermelho-escuro f. arenosa não infectado. A variedade comercial IAC RM3 é resistente e a IAC 12-2 é suscetível à fusariose. Para a análise estatística dos dados adotou-se o esquema de parcelas subdivididas, com seis repetições, tendo sido consideradas como parcelas as variedades de algodoeiro IAC RM3 e IAC 12-2, plantadas em 1968/69, 1970/71, 1971/72 e 1972/73, e como subparcelas as culturas em rotação, mucuna, amendoim e as variedades de algodoeiro IAC RM3 e IAC 12-2, plantadas nos anos-agrícolas de 1967/68 e 1969/70. Em solos com fusariose, em 1968/69, e em solos sem fusariose, no ano agrícola de 1970/71, destacou-se o efeito da rotação com mucuna, seguida da rotação com amendoim. Depois do plantio consecutivo de algodoeiro durante três anos (1970/71 a 1972/73, cessaram praticamente os efeitos da rotação para os dois casos. Houve aumento do teor de potássio após o primeiro ano de rotação, sendo maior para a mucuna.The effect of rotation of velvet bean (Stizolobium atterrimum Piper & Tracy, and peanut (Arachis hypogaea L. with two comercial varieties of cotton IAC RM3 and IAC 12-2 (Gossypium hirsutum L. was studied during 1967/68 to 1972/73. One experiment was conducted in a soil naturally infected by Fusarium oxysporum f. vasinfectum (Atk. Snyder & Hansen and by Meloidogyne incognita (Kofoid & White Chitwood, (President Bernardes, State of São Paulo, in

  2. Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus jujube)/cotton (Gossypium hirsutum) agroforestry

    NARCIS (Netherlands)

    Wang, Qi; Han, Shuo; Zhang, Lizhen; Zhang, Dongsheng; Werf, van der Wopke; Evers, Jochem B.; Sun, Hongquan; Su, Zhicheng; Zhang, Siping

    2016-01-01

    Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the

  3. Dictionary of cotton: Picking & ginning

    Science.gov (United States)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  4. Meiosis in a triploid hybrid of Gossypium: high frequency of ...

    Indian Academy of Sciences (India)

    Studies on meiosis in pollen mother cells (PMCs) of a triploid interspecific hybrid (3x = 39 chromosomes, AAD) between tetraploid Gossypium hirsutum (4n = 2x = 52,AADD) and diploid G. arboreum (2n = 2x = 26,AA) are reported. During meiotic metaphase I, 13 AA bivalents and 13 D univalents are expected in the hybrid.

  5. Soil microbial biomass and root growth in Bt and non-Bt cotton

    Science.gov (United States)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  6. [Effects of fertilization on cotton growth and nitrogen use efficiency under salinity stress].

    Science.gov (United States)

    Dai, Jian-Long; Lu, He-Quan; Li, Zhen-Huai; Duan, Liu-Sheng; Dong, He-Zhong

    2013-12-01

    Cotton (Gossypium hirsutum) was raised at different salinity levels (0, 0.15% and 0.30%) by irrigating with fresh- or sea-water. The effects of fertilization (N, NK, NP and NPK) on plant growth, nitrogen (N) uptake and N use efficiency were studied. The results showed that salinity and fertilization both affected the biomass, agronomic N use efficiency, N bioavailability and nitrogen accumulation of plants, and significant interaction was observed between the two factors. Fertilization could improve N use efficiency and nitrogen accumulation of plants under salinity stress, and significantly promoted the cotton yield. Among the fertilization treatments, N combined with P and K had the best effect. The benefit of fertilization was better under low salinity (0.15%) than under moderate salinity (0.3%).

  7. Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton.

    Science.gov (United States)

    Hovav, Ran; Chaudhary, Bhupendra; Udall, Joshua A; Flagel, Lex; Wendel, Jonathan F

    2008-07-01

    A putative advantage of allopolyploidy is the possibility of differential selection of duplicated (homeologous) genes originating from two different progenitor genomes. In this note we explore this hypothesis using a high throughput, SNP-specific microarray technology applied to seed trichomes (cotton) harvested from three developmental time points in wild and modern accessions of two independently domesticated cotton species, Gossypium hirsutum and G. barbadense. We show that homeolog expression ratios are dynamic both developmentally and over the several-thousand-year period encompassed by domestication and crop improvement, and that domestication increased the modulation of homeologous gene expression. In both species, D-genome expression was preferentially enhanced under human selection pressure, but for nonoverlapping sets of genes for the two independent domestication events. Our data suggest that human selection may have operated on different components of the fiber developmental genetic program in G. hirsutum and G. barbadense, leading to convergent rather than parallel genetic alterations and resulting morphology.

  8. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  9. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton.

    Science.gov (United States)

    Said, Joseph I; Lin, Zhongxu; Zhang, Xianlong; Song, Mingzhou; Zhang, Jinfa

    2013-11-11

    The study of quantitative trait loci (QTL) in cotton (Gossypium spp.) is focused on traits of agricultural significance. Previous studies have identified a plethora of QTL attributed to fiber quality, disease and pest resistance, branch number, seed quality and yield and yield related traits, drought tolerance, and morphological traits. However, results among these studies differed due to the use of different genetic populations, markers and marker densities, and testing environments. Since two previous meta-QTL analyses were performed on fiber traits, a number of papers on QTL mapping of fiber quality, yield traits, morphological traits, and disease resistance have been published. To obtain a better insight into the genome-wide distribution of QTL and to identify consistent QTL for marker assisted breeding in cotton, an updated comparative QTL analysis is needed. In this study, a total of 1,223 QTL from 42 different QTL studies in Gossypium were surveyed and mapped using Biomercator V3 based on the Gossypium consensus map from the Cotton Marker Database. A meta-analysis was first performed using manual inference and confirmed by Biomercator V3 to identify possible QTL clusters and hotspots. QTL clusters are composed of QTL of various traits which are concentrated in a specific region on a chromosome, whereas hotspots are composed of only one trait type. QTL were not evenly distributed along the cotton genome and were concentrated in specific regions on each chromosome. QTL hotspots for fiber quality traits were found in the same regions as the clusters, indicating that clusters may also form hotspots. Putative QTL clusters were identified via meta-analysis and will be useful for breeding programs and future studies involving Gossypium QTL. The presence of QTL clusters and hotspots indicates consensus regions across cultivated tetraploid Gossypium species, environments, and populations which contain large numbers of QTL, and in some cases multiple QTL associated

  10. Ethyl ester purpurine-18 from Gossypium mustelinum (Malvaceae);Feoforbideo (etoxi-purpurina-18) isolado de Gossypium mustelinum (Malvaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tania Maria Sarmento; Camara, Celso Amorim, E-mail: taniasarmento@dq.ufrpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Quimica; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas

    2010-07-01

    The phaeophorbide ethyl ester named Purpurine-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm. (author)

  11. Genome-wide analysis of the WRKY gene family in cotton.

    Science.gov (United States)

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  12. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism.

    Directory of Open Access Journals (Sweden)

    Ran Hovav

    2008-02-01

    Full Text Available A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium ("cotton fiber". We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with approximately 22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing

  13. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism.

    Science.gov (United States)

    Hovav, Ran; Udall, Joshua A; Chaudhary, Bhupendra; Hovav, Einat; Flagel, Lex; Hu, Guanjing; Wendel, Jonathan F

    2008-02-01

    A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium ("cotton fiber"). We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with approximately 22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing prolongation of an ancestral

  14. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions.

    Science.gov (United States)

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton (Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  15. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions

    Science.gov (United States)

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton ( Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  16. GhNAC18 , a novel cotton ( Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    Additionally, GhNAC18 was found to have transcriptional activation activities on its C-terminal region and by bioinformatics analysis, GhNAC18 was localized in the nucleus. Tissue specific expression analysis indicated that GhNAC18 is constitutively expressed in roots, stems, earlier stages of senescing leaves, fibers and ...

  17. Above- and below- ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury

    NARCIS (Netherlands)

    Bezemer, T.M.; Wagenaar, R.; Dam, van N.M.; Putten, van der W.H.; Wackers, F.L.

    2004-01-01

    Studies on induced defenses have predominantly focused on foliar induction by above-ground herbivores and pathogens. However, roots are attacked by as many if not more phytophages than shoots, so in reality plants are exposed to above- and below-ground attack. Here, we report effects of foliar

  18. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is ...

    African Journals Online (AJOL)

    EVANS

    Huang L, Kang Z (2010). TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol. Mol. Plant Pathol. 74(8):3703-3712. Xu Q, Li S, Tian Z (2014). Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance.

  19. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M.; Singh, Narendra K.; Weaver, David B.; Goertzen, Leslie R.; Singh, Shree R.; Locy, Robert D.

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3’-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a

  20. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  1. GhMCS1, the Cotton Orthologue of Human GRIM-19, Is a Subunit of Mitochondrial Complex I and Associated with Cotton Fibre Growth.

    Science.gov (United States)

    Dong, Chun-Juan; Wu, Ai-Min; Du, Shao-Jun; Tang, Kai; Wang, Yun; Liu, Jin-Yuan

    2016-01-01

    GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a subunit of mitochondrial respiratory complex I in mammalian systems, and it has been demonstrated to be a multifunctional protein involved in the cell cycle, cell motility and innate immunity. However, little is known about the molecular functions of its homologues in plants. Here, we characterised GhMCS1, an orthologue of human GRIM-19 from cotton (Gossypium hirsutum L.), and found that it was essential for maintaining complex integrity and mitochondrial function in cotton. GhMCS1 was detected in various cotton tissues, with high levels expressed in developing fibres and flowers and lower levels in leaves, roots and ovules. In fibres at different developmental stages, GhMCS1 expression peaked at 5-15 days post anthesis (dpa) and then decreased at 20 dpa and diminished at 25 dpa. By Western blot analysis, GhMCS1 was observed to be localised to the mitochondria of cotton leaves and to colocalise with complex I. In Arabidopsis, GhMCS1 overexpression enhanced the assembly of complex I and thus respiratory activity, whereas the GhMCS1 homologue (At1g04630) knockdown mutants showed significantly decreased respiratory activities. Furthermore, the mutants presented with some phenotypic changes, such as smaller whole-plant architecture, poorly developed seeds and fewer trichomes. More importantly, in the cotton fibres, both the GhMCS1 transcript and protein levels were correlated with respiratory activity and fibre developmental phase. Our results suggest that GhMCS1, a functional ortholog of the human GRIM-19, is an essential subunit of mitochondrial complex I and is involved in cotton fibre development. The present data may deepen our knowledge on the potential roles of mitochondria in fibre morphogenesis.

  2. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  3. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  4. Proteomic and Virus-induced Gene Silencing (VIGS) Analyses Reveal That Gossypol, Brassinosteroids, and Jasmonic acid Contribute to the Resistance of Cotton to Verticillium dahliae *

    Science.gov (United States)

    Gao, Wei; Long, Lu; Zhu, Long-Fu; Xu, Li; Gao, Wen-Hui; Sun, Long-Qing; Liu, Lin-Lin; Zhang, Xian-Long

    2013-01-01

    Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae. PMID:24019146

  5. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae.

    Science.gov (United States)

    Gao, Wei; Long, Lu; Zhu, Long-Fu; Xu, Li; Gao, Wen-Hui; Sun, Long-Qing; Liu, Lin-Lin; Zhang, Xian-Long

    2013-12-01

    Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae.

  6. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Directory of Open Access Journals (Sweden)

    Diana Castillo Lopez

    Full Text Available The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus, were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae, through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of

  7. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions.

    Science.gov (United States)

    Castillo Lopez, Diana; Zhu-Salzman, Keyan; Ek-Ramos, Maria Julissa; Sword, Gregory A

    2014-01-01

    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these

  8. Les cotonniers (Gossypium hirsutum L. génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?

    Directory of Open Access Journals (Sweden)

    Berti F.

    2006-01-01

    Full Text Available Gnetically modifi ed cotton (Gossypium hirsutum L. Bt.: what future for small family farms in French-speaking Africa?After a massive adoption in South Africa, genetically modifi ed cultivars are at the door step of francophone Africa. In order toanticipate the impact of Bt cotton on small-scale farming we propose a simple profi t analysis of the crop based on our resultsfound in South Africa and data collected by our colleagues in Mali. Whereas the introduction of Bt cotton can be justifi ed bya threat of the appearance of the bollworm resistance to insecticides, its profi tability seems to be uncertain. The farmer profi tmargin depends on yield level linked with climatic, agricultural and environmental conditions and with the technology feewhich the farmer must be charged for. With a 210 FCFA purchase price for raw cotton, a 25 USD fee per hectare seems to bethe upper limit for which the farmer wouldnʼt be exposed to fi nancial risk. Given the recent drop of the purchase price, theexistence of a technology fee supported by the small-scale farmer is very questionable. At a more general level of the cottonsector, the success of Bt adoption rests on several keys: 1 the prevention of the Bt-toxin resistance; 2 the strengthening of thecontrol of stinging pests; 3 the updating of the seed production sector and 4 the improvement of the extension and trainingnetwork. Bt cotton must be considered as a tool which is part of the integrated crop management but not as the solution of thepoverty alleviation.

  9. Genome-wide analysis of the HD-ZIP IV transcription factor family in Gossypium arboreum and GaHDG11 involved in osmotic tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Chen, Eryong; Zhang, Xueyan; Yang, Zhaoen; Wang, Xiaoqian; Yang, Zuoren; Zhang, Chaojun; Wu, Zhixia; Kong, Depei; Liu, Zhao; Zhao, Ge; Butt, Hamama Islam; Zhang, Xianlong; Li, Fuguang

    2017-06-01

    HD-ZIP IV proteins belong to the homeodomain-leucine zipper (HD-ZIP) transcription factor family and are involved in trichome development and drought stress in plants. Although some functions of the HD-ZIP IV group are well understood in Arabidopsis, little is known about their function in cotton. In this study, HD-ZIP genes were identified from three Gossypium species (G. arboreum, G. raimondii and G. hirsutum) and clustered into four families (HD-ZIP I, II, III and IV) to separate HD-ZIP IV from the other three families. Systematic analyses of phylogeny, gene structure, conserved domains, and expression profiles in different plant tissues and the expression patterns under osmotic stress in leaves were further conducted in G. arboreum. More importantly, ectopic overexpression of GaHDG11, a representative of the HD-ZIP IV family, confers enhanced osmotic tolerance in transgenic Arabidopsis plants, possibly due to elongated primary root length, lower water loss rates, high osmoprotectant proline levels, significant levels of antioxidants CAT, and/or SOD enzyme activity with reduced levels of MDA. Taken together, these observations may lay the foundation for future functional analysis of cotton HD-ZIP IV genes to unravel their biological roles in cotton.

  10. 7 CFR 1205.304 - Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  11. Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro

    Directory of Open Access Journals (Sweden)

    Ayodeji Augustine Olabiyi

    2016-06-01

    Full Text Available This study sought to determine the inhibitory effect of aqueous extract of different parts (bark, leaf, and flower of cotton plant (Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. The aqueous extract (1:10 w/v of Gossypium herbaceum was prepared and the ability of the extract to inhibit the activity of α-amylase and α-glucosidase as well as activities of pro-oxidant Fe2+-induced lipid peroxidation was determined spectrophotometrically. The results revealed that the three varieties were able to inhibit the activity of α-amylase and α-glucosidase in rat's pancreas in a dose dependent manner (0–88.8 mg/ml. Also, the incubation of pancreas tissue homogenate in the presence of Fe2+ caused a significant increase (233.3% in the malondialdehyde (MDA content of pancreas homogenate, nevertheless, the introduction of the aqueous extract inhibited MDA production dose dependently (0–33.33 mg/ml and also exhibited further antioxidant properties as represented by their high radical scavenging and Fe2+ chelating abilities. Inhibition of α-amylase and α-glucosidase activities has been the primary treatment for the management/prevention of type 2 diabetes. Therefore, the α-amylase and α-glucosidase inhibitory activities of aqueous extracts of different parts of Gossypium herbaceum in rat pancreas and prevention of lipid peroxidation in the tissue may be attributed to the presence of polyphenol content of the plant.

  12. Effect of the postfeeding interval on olfactory responses of thrips to herbivore-induced cotton plants.

    Science.gov (United States)

    Silva, Rehan; Walter, Gimme H; Wilson, Lewis J; Furlong, Michael J

    2016-12-01

    We investigated the responses of 3 thrips species, Frankliniella schultzei Trybom, F. occidentalis Pergrande, and Thrips tabaci Lindeman (Thysanoptera: Thripidae) to herbivore-damaged and undamaged cotton seedlings (Gossypium hirsutum L. [Malvales: Malvaceae]) at a range of time intervals following damage by adult Tetranychus urticae (Koch), adult T. ludeni (Zacher) (Acari: Tetranychidae) or Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae in olfactometer assays. The intensity/frequency of the response of thrips to herbivore-induced plants decreased with time and ultimately disappeared in all cases; however, the rate at which the response declined was related to the herbivore species that inflicted the damage. All 3 species of thrips were attracted to plants damaged by T. urticae for longer than they were to plants damaged by T. ludeni. The duration for which damaged plants remained attractive was also affected by the degree of damage inflicted on cotton seedlings. For example, F. schultzei was attracted to plants damaged by a higher density of two-spotted spider mites (100/plant) for much longer than to plants damaged by a lower density of these mites (50/plant). The results reinforce previous studies that demonstrate that arrangement of variables influences the responses of thrips to their herbivore-induced cotton host plants. Results also show that these responses are variable in time following herbivore damage to cotton plants, which further demonstrates how difficult it is to generalize about the functional significance of these interactions. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  13. A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture.

    Science.gov (United States)

    Poon, Simon; Heath, Robyn Louise; Clarke, Adrienne Elizabeth

    2012-10-01

    Arabinogalactan proteins (AGPs) are a family of extracellular plant proteoglycans implicated in many aspects of plant growth and development, including in vitro somatic embryogenesis (SE). We found that specific AGPs were produced by cotton (Gossypium hirsutum) calli undergoing SE and that when these AGPs were isolated and incorporated into tissue culture medium, cotton SE was promoted. When the AGPs were partly or fully deglycosylated, SE-promoting activity was not diminished. Testing of AGPs separated by reverse-phase high-performance liquid chromatography revealed that the SE-promoting activity resided in a hydrophobic fraction. We cloned a full-length complementary DNA (cotton PHYTOCYANIN-LIKE ARABINOGALACTAN-PROTEIN1 [GhPLA1]) that encoded the protein backbone of an AGP in the active fraction. It has a chimeric structure comprising an amino-terminal signal sequence, a phytocyanin-like domain, an AGP-like domain, and a hydrophobic carboxyl-terminal domain. Recombinant production of GhPLA1 in tobacco (Nicotiana tabacum) cells enabled us to purify and analyze a single glycosylated AGP and to demonstrate that this chimeric AGP promotes cotton SE. Furthermore, the nonglycosylated phytocyanin-like domain from GhPLA1, which was bacterially produced, also promoted SE, indicating that the glycosylated AGP domain was unnecessary for in vitro activity.

  14. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton.

    Science.gov (United States)

    Feng, Hongjie; Tian, Xinhui; Liu, Yongchang; Li, Yanjun; Zhang, Xinyu; Jones, Brian Joseph; Sun, Yuqiang; Sun, Jie

    2013-01-01

    As a result of changing consumer preferences, cotton (Gossypium Hirsutum L.) from varieties with naturally colored fibers is becoming increasingly sought after in the textile industry. The molecular mechanisms leading to colored fiber development are still largely unknown, although it is expected that the color is derived from flavanoids. Firstly, four key genes of the flavonoid biosynthetic pathway in cotton (GhC4H, GhCHS, GhF3'H, and GhF3'5'H) were cloned and studied their expression profiles during the development of brown- and white cotton fibers by QRT-PCR. And then, the concentrations of four components of the flavonoid biosynthetic pathway, naringenin, quercetin, kaempferol and myricetin in brown- and white fibers were analyzed at different developmental stages by HPLC. The predicted proteins of the four flavonoid structural genes corresponding to these genes exhibit strong sequence similarity to their counterparts in various plant species. Transcript levels for all four genes were considerably higher in developing brown fibers than in white fibers from a near isogenic line (NIL). The contents of four flavonoids (naringenin, quercetin, kaempferol and myricetin) were significantly higher in brown than in white fibers and corresponding to the biosynthetic gene expression levels. Flavonoid structural gene expression and flavonoid metabolism are important in the development of pigmentation in brown cotton fibers.

  15. Control of Resistant Pink Bollworm (Pectinophora gossypiella) by Transgenic Cotton That Produces Bacillus thuringiensis Toxin Cry2Ab

    OpenAIRE

    Tabashnik, Bruce E.; Dennehy, Timothy J.; Sims, Maria A.; Larkin, Karen; Head, Graham P.; Moar, William J.; Carrière, Yves

    2002-01-01

    Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton...

  16. Generation and analysis of a large-scale expressed sequence Tag database from a full-length enriched cDNA library of developing leaves of Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Min Lin

    Full Text Available BACKGROUND: Cotton (Gossypium hirsutum L. is one of the world's most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR, which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. CONCLUSIONS/SIGNIFICANCE: These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence

  17. Cytogenetic maps of homoeologous chromosomes A h01 and D h01 and their integration with the genome assembly in Gossypium hirsutum

    Directory of Open Access Journals (Sweden)

    Yuling Liu

    2017-06-01

    Full Text Available Cytogenetic maps of Gossypium hirsutum (Linnaeus, 1753 homoeologous chromosomes Ah01 and Dh01 were constructed by fluorescence in situ hybridization (FISH, using eleven homoeologous-chromosomes-shared bacterial artificial chromosomes (BACs clones and one chromosome-specific BAC clone respectively. We compared the cytogenetic maps with the genetic linkage and draft genome assembly maps based on a standardized map unit, relative map position (RMP, which allowed a global view of the relationship of genetic and physical distances along each chromosome, and assembly quality of the draft genome assembly map. By integration of cytogenetic maps with sequence maps of the two chromosomes (Ah01 and Dh01, we inferred the locations of two scaffolds and speculated that some homologous sequences belonging to homoeologous chromosomes were removed as repetitiveness during the sequence assembly. The result offers molecular tools for cotton genomics research and also provides valuable information for the improvement of the draft genome assembly.

  18. A peptide hormone gene, GhPSK promotes fibre elongation and contributes to longer and finer cotton fibre.

    Science.gov (United States)

    Han, Jie; Tan, Jiafu; Tu, Lili; Zhang, Xianlong

    2014-09-01

    Cotton fibres, the single-celled trichomes derived from the ovule epidermis, provide the most important natural material for the global textile industry. A number of studies have demonstrated that regulating endogenous hormone levels through transgenic approaches can improve cotton fibre qualities. Phytosulfokine-α (PSK-α) is a novel peptide hormone in plants that is involved in regulating cell proliferation and elongation. However, its potential applications in crop genetic improvement have not been evaluated. In this study, we describe how exogenous PSK-α application promotes cotton fibre cell elongation in vitro. Chlorate, an effective inhibitor of peptide sulfation, suppressed fibre elongation in ovule culture. Exogenously applied PSK-α partly restored the chlorate-induced suppression. A putative PSK gene (GhPSK) was cloned from Gossypium hirsutum. Expression pattern analysis revealed that GhPSK is preferentially expressed in rapidly elongating fibre cells (5-20 days postanthesis). Overexpression of GhPSK in cotton increased the endogenous PSK-α level and promoted cotton fibre cell elongation, resulting in longer and finer fibres. Further results from electrophysiological and physiological analyses suggest that GhPSK affects fibre development through regulation of K(+) efflux. Digital gene expression (DGE) profile analysis of GhPSK overexpression lines indicates that PSK signalling may regulate the respiratory electron-transport chain and reactive oxygen species to affect cotton fibre development. These results imply that peptide hormones are involved in cotton fibre growth and suggest a new strategy for the biotechnological improvement of cotton fibre quality. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region.

    Science.gov (United States)

    An, Jingjie; Gao, Yulin; Wu, Kongming; Gould, Fred; Gao, Jianhua; Shen, Zhicheng; Lei, Chaoliang

    2010-12-01

    Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.

  20. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress.

    Science.gov (United States)

    Guo, Jinyan; Shi, Gongyao; Guo, Xiaoyan; Zhang, Liwei; Xu, Wenying; Wang, Yumei; Su, Zhen; Hua, Jinping

    2015-09-01

    Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. GbPDF1 Is Involved in Cotton Fiber Initiation via the Core cis-Element HDZIP2ATATHB21[W

    Science.gov (United States)

    Deng, Fenglin; Tu, Lili; Tan, Jiafu; Li, Yang; Nie, Yichun; Zhang, Xianlong

    2012-01-01

    Cotton (Gossypium spp.) fiber cells are seed trichomes derived from the epidermal layer of the cotton seed coat. The molecular components responsible for regulating fiber cell differentiation have not been fully elucidated. A cotton PROTODERMAL FACTOR1 gene (GbPDF1) was found to be expressed preferentially during fiber initiation and early elongation, with highest accumulation in fiber cells 5 d post anthesis. PDF1 silencing caused retardation of fiber initiation and produced shorter fibers and lower lint percentage compared with the wild type, indicating that the gene is required for cotton fiber development. Further analysis showed that a higher accumulation of hydrogen peroxide occurred in the RNA interference transgenic cotton lines. Meanwhile, the expression of several genes related to ethylene and pectin synthesis or sugar transport during cotton fiber growth was found to be significantly reduced in the PDF1-suppressed cotton. Three proteins interacting with GbPDF1 in yeast and in planta might involve cellular signaling or metabolism. GbPDF1 promoter::GUS constructs in transgenic cotton were predominantly expressed in the epidermis of ovules and developing fibers. Progressive deletions of the GbPDF1 promoter showed that a 236-bp promoter fragment was sufficient for basal GbPDF1 transcription in cotton. Mutation of putative regulatory sequences showed that HDZIP2ATATHB2, an element within the fragment, was essential for PGbPDF1-1 expression. The binding activity between this cis-element and nuclear extracts from fiber-bearing cotton ovules at 5 d post anthesis was specific. We conclude that GbPDF1 plays a critical role together with interaction partners in hydrogen peroxide homeostasis and steady biosynthesis of ethylene and pectin during fiber development via the core cis-element HDZIP2ATATHB2. PMID:22123900

  2. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers.

    Science.gov (United States)

    Feng, Hongjie; Yang, Yonglin; Sun, Shichao; Li, Yanjun; Zhang, Lin; Tian, Jingkui; Zhu, Qianhao; Feng, Zili; Zhu, Heqin; Sun, Jie

    2017-07-20

    The pigment components in green cotton fibers were isolated and identified as 22-O-caffeoyl-22-hydroxymonodocosanoin and 22-O-caffeoyl-22-hydroxydocosanoic acid. The concentration of 22-O-caffeoyl-22-hydroxymonodocosanoin correlated positively with the degree of colour in the green fibers, indicating a role for caffeoyl derivatives in the pigmentation of green cotton fibers. Upland cotton (Gossypium hirsutum L.) contains four genes, Gh4CL1-Gh4CL4, encoding 4-coumarate:CoA ligases (4CLs), key enzymes in the phenylpropanoid biosynthesis pathway. In 15-24-day post-anthesis fibers, the expression level of Gh4CL1 was very low, Gh4CL3 had a similar expression level in both white and green cottons, Gh4CL2 had a significantly higher expression level in green fibers than in white fibers, while Gh4CL4 had a higher expression level in white fibers than in green fibers. According to enzyme kinetics analysis, Gh4CL1 displayed a preference for 4-coumarate, Gh4CL3 and Gh4CL4 exhibited a somewhat low but still prominent activity towards ferulate, while Gh4CL2 had a strong preference for caffeate and ferulate. These results suggest that Gh4CL2 might be involved in the metabolism of caffeoyl residues and related to pigment biosynthesis in green cotton fibers. Our findings provide insights for understanding the biochemical and molecular mechanisms of pigmentation in green cotton fibers. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton

    Directory of Open Access Journals (Sweden)

    Xueqiang Su

    2017-10-01

    Full Text Available Plant type III polyketide synthase (PKS can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum and compared them with 41 PKS genes in Populus tremula, Vitis vinifera, Malus domestica and Arabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I–IV. The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C of the PKS gene family. In our study of the five species, gene duplication was found in addition to Arabidopsis thaliana and we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber.

  4. Functional genomics of cell elongation in developing cotton fibers.

    Science.gov (United States)

    Arpat, A Bulak; Waugh, Mark; Sullivan, John P; Gonzales, Michael; Frisch, David; Main, Dorrie; Wood, Todd; Leslie, Anna; Wing, Rod A; Wilkins, Thea A

    2004-04-01

    Cotton fibers are single-celled seed trichomes of major economic importance. Factors that regulate the rate and duration of cell expansion control fiber morphology and important agronomic traits. For genetic characterization of rapid cell elongation in cotton fibers, approximately 14,000 unique genes were assembled from 46,603 expressed sequence tags (ESTs) from developmentally staged fiber cDNAs of a cultivated diploid species ( Gossypium arboreum L.). Conservatively, the fiber transcriptome represents 35-40% of the genes in the cotton genome. In silico expression analysis revealed that rapidly elongating fiber cells exhibit significant metabolic activity, with the bulk of gene transcripts, represented by three major functional groups - cell wall structure and biogenesis, the cytoskeleton and energy/carbohydrate metabolism. Oligonucleotide microarrays revealed dynamic changes in gene expression between primary and secondary cell wall biogenesis showing that fiber genes in the dbEST are highly stage-specific for cell expansion - a conclusion supported by the absence of known secondary cell wall-specific genes from our fiber dbEST. During the developmental switch from primary to secondary cell wall syntheses, 2553 "expansion-associated" fiber genes are significantly down regulated. Genes (81) significantly up-regulated during secondary cell wall synthesis are involved in cell wall biogenesis and energy/carbohydrate metabolism, which is consistent with the stage of cellulose synthesis during secondary cell wall modification in developing fibers. This work provides the first in-depth view of the genetic complexity of the transcriptome of an expanding cell, and lays the groundwork for studying fundamental biological processes in plant biology with applications in agricultural biotechnology.

  5. Verde plant bug (Hemiptera: Miridae) feeding injury to cotton bolls characterized by boll age, size, and damage ratings.

    Science.gov (United States)

    Armstrong, J Scott; Brewer, Michael J; Parker, Roy D; Adamczyk, J J

    2013-02-01

    The verde plant bug, Creontiades signatus (Distant), has been present in south Texas for several years but has more recently been documented as an economic threat to cultivated cotton, (Gossypium hirsutum L. Our studies over 2 yr (2009 and 2010) and two locations (Weslaco and Corpus Christi, TX) investigated feeding-injury of the verde plant bug to a range of cotton boll age classes defined by boll diameter and accumulated degree-days (anthesis to the time of infesting) for first-position cotton bolls infested with the plant bugs. The most detrimental damage to younger cotton holls from verde plant bug feeding was boll abscission. Cotton bolls verde plant bug injured bolls compared with the controls up to 162 ACDD or a mean boll diameter 2.0 cm. Cotton seed weights were significantly reduced up to 179 ACDD or a boll diameter of 2.0 cm at Weslaco in 2009, and up to 317 ACDD or boll diameter 2.6 cm for Weslaco in 2010 when compared with the noninfested controls. Lint weight per cotton boll for infested and noninfested bolls was significantly reduced up to 262 ACDD or boll diameter 2.5 for Corpus Christi in 2010 and up to 288 ACCD or boll diameter 2.6 cm for Weslaco, TX, in 2010. Damage ratings (dependant variable) regressed against infested and noninfested seed-cotton weights showed that in every instance, the infested cotton bolls had a strong and significant relationship with damage ratings for all age classes of bolls. Damage ratings for the infested cotton bolls that did not abscise by harvest showed visual signs of verde plant bug feeding injury and the subsequent development ofboll rot; however, these two forms of injury causing lint and seed mass loss are hard to differentiate from open or boll-locked cotton bolls. Based on the results of both lint and seed loss over 2 yr and four studies cotton bolls should be protected up to approximately 300 ACDD or a boll diameter of 2.5 cm. This equilibrates to bolls that are 12-14 d of age dependent upon daily maximum

  6. Fifty years of the integrated control concept: the role of landscape ecology in IPM in San Joaquin valley cotton.

    Science.gov (United States)

    Goodell, Peter B

    2009-12-01

    In defining the integrated control concept, Stern, Smith, van den Bosch and Hagan described 'understanding the ecosystem' as a key underpinning of the concept. In following years, Stern and van den Bosch continued to refine and expand the role of the ecological landscape. They and their colleagues developed cultural practices that took advantage of this understanding to limit the need of pesticide intervention in cotton in the San Joaquin Valley during the 1960s and 1970s. Research and extension activities in the intervening years built upon those fundamental concepts using geospatial tools and analytical techniques to refine current understanding and develop ecological landscape level approaches to manage Lygus hesperus (Knight) in San Joaquin Valley cotton, Gossypium hirsutum (L.) and more recently G. barbadense (L.). The result has been a significant drop in insecticide use against L. hesperus, with less than one application per season during the 1990 s and early 2000s. (c) 2009 Society of Chemical Industry.

  7. A New Synthetic Amphiploid (AADDAA between Gossypium hirsutum and G. arboreum Lays the Foundation for Transferring Resistances to Verticillium and Drought.

    Directory of Open Access Journals (Sweden)

    Yu Chen

    Full Text Available Gossypium arboreum, a cultivated cotton species (2n = 26, AA native to Asia, possesses invaluable characteristics unavailable in the tetraploid cultivated cotton gene pool, such as resistance to pests and diseases and tolerance to abiotic stresses. However, it is quite difficult to transfer favorable traits into Upland cotton through conventional methods due to the cross-incompatibility of G. hirsutum (2n = 52, AADD and G. arboreum. Here, we improved an embryo rescue technique to overcome the cross-incompatibility between these two parents for transferring favorable genes from G. arboreum into G. hirsutum. Our results indicate that MSB2K supplemented with 0.5 mg l(-1 kinetin and 250 mg(-1 casein hydrolysate is an efficient initial medium for rescuing early (3 d after pollination hybrid embryos. Eight putative hybrids were successfully obtained, which were further verified and characterized by cytology, molecular markers and morphological analysis. The putative hybrids were subsequently treated with different concentrations of colchicine solution to double their chromosomes. The results demonstrate that four putative hybrid plants were successfully chromosome-doubled by treatment with 0.1% colchicine for 24 h and become amphiploid, which were confirmed by cytological observation, self-fertilization and backcrossing. Preliminary assessments of resistance at seedling stage indicate that the synthetic amphiploid showed highly resistant to Verticillium and drought. The synthetic amphiploid between G. hirsutum × G. arboreum would lay the foundation for developing G. arboreum-introgressed lines with the uniform genetic background of G. hirsutum acc TM-1, which would greatly enhance and simplify the mining, isolation, characterization, cloning and use of G. arboreum-specific desirable genes in future cotton breeding programs.

  8. Metal analysis of cotton

    Science.gov (United States)

    Seven varieties of cotton were investigated for 8 metal ions (K, Na, Mg, Ca, Fe, Cu, Zn, and Mn) using Inductively Coupled Plasma-Optical Emission Spectroscopy. All of the varieties were grown at the same location. Half of the samples were dry (rain fed only) and the other were well-watered (irrigat...

  9. Cotton, Prof. Aime Auguste

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Cotton, Prof. Aime Auguste. Date of birth: 9 October 1869. Date of death: 16 April 1951. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the ...

  10. Nanoengineered cotton wipes

    Science.gov (United States)

    Advances in nanotechnology are creating synergy with nonwoven technology in cleaning and/or disinfecting power for the next generation of wipe products. However, there is little known about the use of cotton fiber in wipes as a nanoengineering tool, which self-produces silver nanoparticles -- one of...

  11. Vulnerabilities and Adapting Irrigated and Rainfed Cotton to Climate Change in the Lower Mississippi Delta Region

    Directory of Open Access Journals (Sweden)

    Saseendran S. Anapalli

    2016-10-01

    Full Text Available Anthropogenic activities continue to emit potential greenhouse gases (GHG into the atmosphere leading to a warmer climate over the earth. Predicting the impacts of climate change (CC on food and fiber production systems in the future is essential for devising adaptations to sustain production and environmental quality. We used the CSM-CROPGRO-cotton v4.6 module within the RZWQM2 model for predicting the possible impacts of CC on cotton (Gossypium hirsutum production systems in the lower Mississippi Delta (MS Delta region of the USA. The CC scenarios were based on an ensemble of climate projections of multiple GCMs (Global Climate Models/General Circulation Models for climate change under the CMIP5 (Climate Model Inter-comparison and Improvement Program 5 program, that were bias-corrected and spatially downscaled (BCSD at Stoneville location in the MS Delta for the years 2050 and 2080. Four Representative Concentration Pathways (RCP drove these CC projections: 2.6, 4.5, 6.0, and 8.5 (these numbers refer to radiative forcing levels in the atmosphere of 2.6, 4.5, 6.0, and 8.5 W·m−2, representing the increasing levels of the greenhouse gas (GHG emission scenarios for the future, as used in the Intergovernmental Panel on Climate Change-Fifth Assessment Report (IPCC-AR5. The cotton model within RZWQM2, calibrated and validated for simulating cotton production at Stoneville, was used for simulating production under these CC scenarios. Under irrigated conditions, cotton yields increased significantly under the CC scenarios driven by the low to moderate emission levels of RCP 2.6, 4.5, and 6.0 in years 2050 and 2080, but under the highest emission scenario of RCP 8.5, the cotton yield increased in 2050 but declined significantly in year 2080. Under rainfed conditions, the yield declined in both 2050 and 2080 under all four RCP scenarios; however, the yield still increased when enough rainfall was received to meet the water requirements of the crop (in

  12. COTIP: Cotton TILLING Platform, a Resource for Plant Improvement and Reverse Genetic Studies.

    Science.gov (United States)

    Aslam, Usman; Cheema, Hafiza M N; Ahmad, Sheraz; Khan, Iqrar A; Malik, Waqas; Khan, Asif A

    2016-01-01

    Cotton is cultivated worldwide for its white fiber, of which around 90% is tetraploid upland cotton ( Gossypium hirsutum L.) carrying both A and D genome. Since centuries, yield increasing efforts for the cotton crop by conventional breeding approaches have caused an extensive erosion of natural genetic variability. Mutation based improvement strategies provide an effective way of creating new allelic variations. Targeting Induced Local Lesions IN Genomes (TILLING) provides a mutation based reverse genetic strategy to create and evaluate induced genetic variability at DNA level. Here, we report development and testing of TILLING populations of allotetraploid cotton ( G. hirsutum ) for functional genomic studies and mutation based enrichment of cotton genetic resources. Seed of two cotton cultivars "PB-899 and PB-900" were mutagenized with 0.3 and 0.2% (v/v) ethyl methanesulfonate, respectively. The phenotyping of M 1 and M 2 populations presented numerous mutants regarding the branching pattern, leaf morphology, disease resistance, photosynthetic lesions and flower sterility. Molecular screening for point mutations was performed by TILLING PCR aided CEL1 mismatch cleavage. To estimate the mutation frequency in the mutant genomes, five gene classes were TILLed in 8000 M 2 plants of each var. "PB-899" and "PB-900." These include actin ( GhACT ), Pectin Methyl Esterase ( GhPME ), sucrose synthase ( GhSUS ), resistance gene analog, and defense response gene ( DRGs ). The var. PB-899 was harboring 47% higher mutation induction rate than PB-900. The highest rate of mutation frequency was identified for NAC-TF5 (EU706348) of DRGs class, ranging from 1/58 kb in PB-899 to 1/105 kb in PB-900. The mutation screening assay revealed the presence of significant proportion of induced mutations in cotton TILLING populations such as 1/153 kb and 1/326 kb in var. "PB-899" and "PB-900," respectively. The establishment of a cotton TILLING platform (COTIP) and data obtained from the

  13. 7 CFR 1205.308 - Cotton Board.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

  14. 7 CFR 1205.305 - Upland cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  15. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress.

    Science.gov (United States)

    Huang, Geng-Qing; Xu, Wen-Liang; Gong, Si-Ying; Li, Bing; Wang, Xiu-Lan; Xu, Dan; Li, Xue-Bao

    2008-10-01

    Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), are usually involved in cell development in plants. To investigate the expression profiling as well as the role of FLA genes in fiber development, 19 GhFLA genes (cDNAs) were isolated from cotton (Gossypium hirsutum). Among them, 15 are predicted to be glycosylphosphatidylinositol anchored to the plasma membranes. The isolated cotton FLAs could be divided into four groups. Real-time quantitative reverse transcriptase polymerase chain reaction results indicated that the GhFLA genes are differentially expressed in cotton tissues. Three genes (GhFLA1/2/4) were specifically or predominantly expressed in 10 days post-anthesis fibers, and the transcripts of the other four genes (GhFLA6/14/15/18) were accumulated at relatively high levels in cotton fibers. Furthermore, expressions of the GhFLA genes are regulated in fiber development and in response to phytohormones and NaCl. The identification of cotton FLAs will facilitate the study of their roles in cotton fiber development and cell wall biogenesis.

  16. Structural, expression and evolutionary analysis of the non-specific phospholipase C gene family in Gossypium hirsutum.

    Science.gov (United States)

    Song, Jiuling; Zhou, Yonghe; Zhang, Juren; Zhang, Kewei

    2017-12-19

    Nonspecific phospholipase C (NPC), which belongs to a phospholipase C subtype, is a class of phospholipases that hydrolyzes the primary membrane phospholipids, such as phosphatidylcholine, to yield sn-1, 2-diacylglycerol and a phosphorylated head-group. NPC plays multiple physiological roles in lipid metabolism and signaling in plants. To fully understand the putative roles of NPC genes in upland cotton, we cloned NPC genes from Gossypium hirsutum and carried out structural, expression and evolutionary analysis. Eleven NPC genes were cloned from G. hirsutum, which were found on chromosomes scaffold269.1, D03, A07, D07, A08, D11, and scaffold3511_A13. All GhNPCs had typical phosphoesterase domains and have hydrolase activity that acts on ester bonds. GhNPCs were annotated as phospholipase C, which was involved in glycerophospholipid metabolism, ether lipid metabolism, and biosynthesis of secondary metabolites. These GhNPCs showed differential expression patterns in distinct plant tissues and in response to various types of stress (low-phosphate, salt, drought, and abscisic acid). They also had different types and numbers of cis-element. GhNPCs could be classified into four subfamilies. Four pairs of GhNPCs were generated by whole-genome duplication and they underwent purifying selection. Our results suggested that GhNPCs are involved in regulating key abiotic stress responses and ABA signaling transduction, and they may have various functional roles for different members under complex abiotic stress conditions. Functional divergence may be the evolutionary driving force for the retention of four pairs of duplicate NPCs. Our analysis provides a solid foundation for the further functional characterization of the GhNPC gene family, and leads to potential applications in the genetic improvement of cotton cultivars.

  17. Cochlospermum religiosum (L.) Alston Syn. C. gossypium DC ...

    Indian Academy of Sciences (India)

    flowered cotton tree;. Hindi Gabdi, Galgal) of Cochlospermaceae is a small deciduous tree with smooth ash-coloured fibrous, deeply furrowed bark containing gum and lobed leaves. Flowers (in the foreground) which appear after leaffall are ...

  18. Biological traits and Life table parameters A and B biotype of Bemisia tabaci (Genn. on cotton and rapeseed

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Samih

    2014-06-01

    Full Text Available The aim of this work was to construct life table of Bemisia tabaci (Gen. A and B (silverleaf whitefly B. argentifolii Bellows and Perring biotype (Hem.: Aleyrodidae on two host plants; cotton, (Gossypium hirsutum L. and rapeseed, (Brassica napus L.. Experiments were conducted in a growth chamber under 24 ± 2ºC, 55±3% RH and 16:8 (L:D h photoperiod on caged plants of cotton G. hirsutum