WorldWideScience

Sample records for susceptibility electron paramagnetic

  1. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  2. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    Recently, electron paramagnetic resonance (EPR) spectros- copy has emerged as a powerful tool to study the structure and dynamics of biological macromolecules such as proteins, protein aggregates, RNA and DNA. It is used in combination with molecular modelling to study complex systems such as soluble proteins ...

  3. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    Electron Paramagnetic Resonance Imaging. 2. Radiofrequency FT-EPR Imaging. Sankaran Subramanian and Murali C Krishna. Keywords. FT-EPR, Hahn-echo, acquisition delay, single-point imaging (SPI), gradient-echo, k-space, echo-SPI, carbogen, oxygen relaxivity, T2*. T2- and T1-based oximetry, co- registration ...

  5. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  6. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    IAS Admin

    Resonance Imaging (MRI). Unlike MRI which addresses the naturally occurring abundant water protons in vivo, EPRI re- quires the administration of non-toxic paramagnetic free radicals into the living system prior to monitoring their distribution. The principle behind imaging is to generate profiles of EPR spectra in presence ...

  7. Electron paramagnetic resonance and AC susceptibility studies of Mn and Gd doped 1:2:3 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    La Robina, M.A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    For many years superconductivity was considered to be a low temperature phenomenon occurring below {approx} 25K. All this changed in April 1986 when J. G. Bednorz and K. A. Muller showed that the oxide La{sub 2-x}Ba{sub x}CuO{sub 4} becomes a superconductor at {approx} 30K. Later in December 1986 the oxides La{sub 2-x} Sr{sub x} CuO{sub 4} and La{sub 2-x}Ba{sub x}CuO{sub 4} synthesised under high pressure, were shown to superconduct at {approx} 40K and {approx} 50K, respectively. Finally in February 1987, Chu synthesised the classic superconductor YBa{sub 2}Cu{sub 3}O{sub 6.8}, the so-called 1:2:3 material, which has a critical temperature circa 92K. In this thesis, electron paramagnetic resonance (EPR) and susceptibility measurements are reported on various superconductors. In 1987 Bowden et al., showed that pure phase 1:2:3 samples are characterised by an absence of Cu EPR signals. This contrasts sharply with the Green phase material, Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5}, which shows a very large EPR signal with a g{sub eff} of 2.08. In an attempt to induce EPR signals, Mn doped 1:2:3 samples have been synthesised and characterised with EPR , AC susceptibility, XRD and SEM measurements. It is shown that Mn EPR signals are not evident in the Mn doped samples with a g{sub eff} of 2.09. Also, below T{sub c} the EPR signals of the lightly doped Mn samples vanish. It is argued that this is due to fluxoids motion within the superconductor, which gives rise to very large non-reproducible signals. It is suggested that the signals originate from Cu, impurity contaminants and multiple phases produced when the 1:2:3 superconductor is doped with Manganese (author) refs., figs.

  8. ELECTRON PARAMAGNETIC RESONANCE IN BIOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Androes, G.M.; Calvin, Melvin.

    1961-08-15

    A review of the theories of electron paramagnetic resonance in biology is presented, including a discussion of the nature of the physical observation, followed by examples of materials of biological interest. Iq discussing these examples, information is presented in terms of the nature of the starting material under observation rather than the nature of the magnetic entities observed. The examples proceed from the simpler molecules of biological interest (metabolites, vitamins, cofactors) into the more complex materials (polymers, proteins, nucleic acids) toward cellular organelles (mitochondria, chloroplasts) and, finally, to whole cells, organisms and organs. The observation of photoinduced unpaired electrons in photosynthetic material is described and the various parameters controlling it are discussed. The basic observation is interpreted in terms of a primary photophysical act of quantum conversion.

  9. Electron paramagnetic resonance study of nanostructured graphite

    Science.gov (United States)

    Kausteklis, Jonas; Cevc, Pavel; Arčon, Denis; Nasi, Lucia; Pontiroli, Daniele; Mazzani, Marcello; Riccò, Mauro

    2011-09-01

    We report on a systematic temperature-dependent x-band electron paramagnetic resonance (EPR) study of nanosized graphite particles prepared by ball milling. In as-prepared samples a very intense and sharp EPR resonance at g=2.0035 has been measured. The EPR line width shows a Korringa-like linear temperature dependence arising due to the coexistence and strong exchange coupling of itinerant and localized edge states. With a prolonged aging in inert atmosphere, changes in the EPR signal suggest gradual structural reconstruction where the localized edge states dominate the EPR signal. In this case the EPR spin susceptibility shows a maximum at ≈23K indicating the development of antiferromagnetic correlations as expected for the graphene lattice with a bipartite symmetry.

  10. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    Abstract. The electron paramagnetic resonance (EPR) parameters (the g factors, hy- perfine structure constants and the superhyperfine parameters) for the tetragonal Ir2+ centre in NaCl are theoretically investigated from the perturbation formulas of these parameters for a 5d7 ion in tetragonally elongated octahedra.

  11. Demonstrations on Paramagnetism with an Electronic Balance

    Science.gov (United States)

    Cortel, Adolf

    1998-01-01

    The paramagnetism of inorganic compounds is related to the number of unpaired electrons of the atoms. Thus, can be used to stablish oxidation states and bonding properties. A simple set-up made with a powerful neodymium magnet over the plate of an electronic balance allows measuring the force of attraction over a solid substance or a solution in a test tube. The lack of paramagnetism of salts whose elements have complete electronic subshells and the comparison of the force of attraction over compounds of the same metal in different oxidation state (as potassium ferro and ferricianide, or salts of Cu(I) and Cu(II)), allows to confirm that paramagnetism is associated to the number of unpaired electrons. The splitting of the five d orbitals according to the ligand field theory allows to justify the different behavior of some Fe(II) or Fe(III) compounds. The graph of the force of attraction over each mole versus the number of unpaired electrons fits to the second grade polynomial k(N2+2N) predicted by the theory of magnetochemistry. This set-up also allows demonstrating the diamagnetism of solid bismuth.

  12. Electron paramagnetic resonance of transition ions

    CERN Document Server

    Abragam, A

    2012-01-01

    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each

  13. Electron Paramagnetic Resonance Characterization of Point Defects

    Science.gov (United States)

    Zvanut, Mary E.

    Electron paramagnetic resonance (EPR) spectroscopy identifies, counts, and monitors point defects in a wide variety of materials. Unfortunately, this powerful tool has faded from the literature in recent years. The present trend away from fundamental studies and towards technological challenges, and the need for fast diagnostic tools for use during and after materials growth has weakened the popularity of magnetic resonance tools. While admittedly the use of EPR in industrial laboratories for routine materials characterization is limited, EPR spectroscopy can be, and has been, successfully used to provide reams of information directly relevant to technologically significant materials.

  14. Electron Paramagnetic Resonance Imaging and Spectroscopy of Polydopamine Radicals.

    Science.gov (United States)

    Mrówczyński, Radosław; Coy, L Emerson; Scheibe, Błażej; Czechowski, Tomasz; Augustyniak-Jabłokow, Maria; Jurga, Stefan; Tadyszak, Krzysztof

    2015-08-13

    A thorough investigation of biomimetic polydopamine (PDA) by Electron Paramagnetic Resonance (EPR) is shown. In addition, temperature dependent spectroscopic EPR data are presented in the range 3.8-300 K. Small discrepancies in magnetic susceptibility behavior are observed between previously reported melanin samples. These variations were attributed to thermally acitivated processes. More importantly, EPR spatial-spatial 2D imaging of polydopamine radicals on a phantom is presented for the first time. In consequence, a new possible application of polydopamine as EPR imagining marker is addressed.

  15. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Murugesan; Cook; Devasahayam

    1997-01-01

    Imaging of free radicals by electron paramagnetic resonance (EPR) spectroscopy using time domain acquisition as in nuclear magnetic resonance (NMR) has not been attempted because of the short spin-spin relaxation times, typically under 1 μs, of most biologically relevant paramagnetic species......, Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing...

  16. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  17. Mössbauer, electron paramagnetic resonance, and magnetic susceptibility studies on members of a new family of cyano-bridged 3d-4f complexes. Demonstration of anisotropic exchange in a Fe-Gd complex.

    Science.gov (United States)

    Stoian, Sebastian A; Paraschiv, Carmen; Kiritsakas, Nathalie; Lloret, Francesc; Münck, Eckard; Bominaar, Emile L; Andruh, Marius

    2010-04-05

    The synthesis and crystallographic characterization of a new family of M(mu-CN)Ln complexes are reported. Two structural series have been prepared by reacting in water rare earth nitrates (Ln(III) = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho) with K(3)[M(CN)(6)] (M(III) = Fe, Co) in the presence of hexamethylenetetramine (hmt). The first series consists of six isomorphous heterobinuclear complexes, [(CN)(5)M-CN-Ln(H(2)O)(8)].2hmt ([FeLa] 1, [FePr] 2, [FeNd] 3, [FeSm] 4, [FeEu] 5, [FeGd] 6), while the second series consists of four isostructural ionic complexes, [M(CN)(6)][Ln(H(2)O)(8)].hmt ([FeDy] 7, [FeHo] 8, [CoEu] 9, [CoGd] 10). The hexamethylenetetramine molecules contribute to the stabilization of the crystals by participating in an extended network of hydrogen bond interactions. In both series the aqua ligands are hydrogen bonded to the nitrogen atoms from both the terminal CN(-) groups and the hmt molecules. The [FeGd] complex has been analyzed with (57)Fe Mossbauer spectroscopy and magnetic susceptibility measurements. We have also analyzed the [FeLa] complex, in which the paramagnetic Gd(III) is replaced by diamagnetic La(III), with (57)Fe Mossbauer spectroscopy, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements, to obtain information about the low-spin Fe(III) site that is not accessible in the presence of a paramagnetic ion at the complementary site. For the same reason, the [CoGd] complex, containing diamagnetic Co(III), was studied with EPR and magnetic susceptibility measurements, which confirmed the S = 7/2 spin of Gd(III). Prior knowledge about the paramagnetic sites in [FeGd] allows a detailed analysis of the exchange interactions between them. In particular, the question of whether the exchange interaction in [FeGd] is isotropic or anisotropic has been addressed. Standard variable-temperature magnetic susceptibility measurements provide only the value for a linear combination of J(x), J(y), and J(z) but contain no information

  18. Multifrequency Electron Paramagnetic Resonance Theory and Applications

    CERN Document Server

    Misra, Sushil K

    2011-01-01

    Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.

  19. Theoretical evaluation of the electron paramagnetic resonance spin ...

    Indian Academy of Sciences (India)

    Theoretical evaluation of the electron paramagnetic resonance spin Hamiltonian parameters for the impurity displacements for Fe3+ and Ru3+ in corundum. Q FU1,SYWU1,2∗, J Z LIN1 and J S YAO1. 1Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, People's ...

  20. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    Science.gov (United States)

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  1. Electron paramagnetic resonance study of ternary Cu compounds ...

    Indian Academy of Sciences (India)

    Abstract. We report here electron paramagnetic resonance (EPR) measurements at 9 and 34 GHz, and room temperature (T ), in powder and single crystal samples of the ternary compounds of copper nitrate or copper chloride with glycine and 1,10-phenanthroline [Cu(Gly)(phen)(H2O)]·NO3·1.5H2O (1) and.

  2. Theoretical study of the electron paramagnetic resonance ...

    Indian Academy of Sciences (India)

    Author Affiliations. Y-X Hu1 S-Y Wu1 2 X-F Wang1 P Xu1. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610 054, People's Republic of China; International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China ...

  3. The Electron Paramagnetic Resonance in the study of tissue specimens

    CERN Document Server

    Stefaniuk, Ireneusz; Skrȩt, Andrzej; Skrȩt-Magierło, Joanna; Góra, Tomasz; Szczerba, Piotr

    2014-01-01

    The Electron Paramagnetic Spectroscopy (EPR) is the most direct and powerful method for the detection and identification of free radicals and other species with unpaired electrons. Statistics disorders are a common gynaecological disorder occurring in women. The condition afflicts around 15% of women to the extent of impairing the quality of living. According to scientific reports as many as 50% of women experiencing problems related to genital statistics disorders. The aim of this work was to investigate tissue taken from women with genital statistics disorders using the Electron Paramagnetic Resonance method. The studies on the tissue of women is one of the first studies in this area. In this work we observed a close relationship between the observed EPR signal and the consumption of omega 3 acids.

  4. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite

    Science.gov (United States)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Frost, Ray L.; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals.

  5. Clinical Electron Paramagnetic Resonance (EPR) Oximetry using India Ink

    OpenAIRE

    Williams, Benjamin B.; Khan, Nadeem; Zaki, Bassem; Hartford, Alan; Ernstoff, Marc S.; Swartz, Harold M.

    2010-01-01

    Electron paramagnetic resonance (EPR) oximetry can be used to provide direct absolute measurements of pO2 in living tissue using India ink as an O2 reporter. In vivo measurements are made using low frequency (1.2GHz) EPR spectroscopy and surface loop resonators, which enable measurements to be made at superficial sites through a non-invasive (after placing the ink in the tissues) and repeatable measurement procedure. Ongoing EPR oximetry studies in human subjects include measurement of subcut...

  6. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance

    OpenAIRE

    Bourbin, Mathilde; Gourier, Didier; Binet, Laurent; Le Du, Yann; Derenne, Sylvie; Westall, Francès; Kremer, Barbara; Gautret, Pascale

    2013-01-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than gre...

  7. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    OpenAIRE

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems.

  8. Electron paramagnetic resonance identification of irradiated cuttlefish (Sepia officinalis L.)

    Energy Technology Data Exchange (ETDEWEB)

    Duliu, O.G. E-mail: odlu@scut.fizica.unibuc.ro

    2000-05-15

    Gamma-ray irradiated fresh cuttlefish bone display very intense Electron Paramagnetic Resonance (EPR) spectra, which could be attributed to five different centers, including CO{sup -}{sub 2}, previously observed in irradiated carbonates. All centers display a positive correlation with the absorbed dose, described by linear or saturation type dependencies. During 36 h of isothermal annealing at 100 deg. C, three of them decayed with time exponentially, one remained constant, while the EPR spectrum amplitude of the fifth increased.

  9. Electron paramagnetic resonance identification of irradiated cuttlefish (Sepia officinalis L.).

    Science.gov (United States)

    Duliu, O G

    2000-05-01

    Gamma-ray irradiated fresh cuttlefish bone display very intense Electron Paramagnetic Resonance (EPR) spectra, which could be attributed to five different centers, including CO2-, previously observed in irradiated carbonates. All centers display a positive correlation with the absorbed dose, described by linear or saturation type dependencies. During 36 h of isothermal annealing at 100 degrees C, three of them decayed with time exponentially, one remained constant, while the EPR spectrum amplitude of the fifth increased.

  10. Electron paramagnetic resonance parameters of Mn4+ ion in h ...

    Indian Academy of Sciences (India)

    569–575. Electron paramagnetic resonance parameters of Mn4+ ion in h-BaTiO3 crystal from a two-mechanism model. WU XIAO-XUAN1,4,∗, FANG WANG2, FENG WEN-LIN2,3 and. ZHENG WEN-CHEN2,4. 1Department of Physics, Civil Aviation Flight University of China, Guanghan 618307,. People's Republic of China.

  11. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    The electron paramagnetic resonance parameters, zero-field splittings (ZFSs) b 2 0 , b 4 0 , b 4 4 , b 6 0 , b 6 4 and the factors for Gd3+ on the tetragonal Y3+ site in KY3F10 are theoretically studied from the superposition model for the ZFSs and the approximation formula for the factor containing the admixture of the ...

  12. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    Science.gov (United States)

    Holloway, A.

    1992-01-07

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

  13. THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II

    Directory of Open Access Journals (Sweden)

    Karsten Holldack

    2016-02-01

    Full Text Available The THz beamline at BESSY II employs high power broadband femto- to picosecond long THz pulses for magneto-optical THz and FIR studies. A newly designed set-up exploits the unique properties of ultrashort THz pulses generated by laser-energy modulation of electron bunches in the storage ring or alternatively from compressed electron bunches. Experiments from 0.15 to 5 THz (~ 5 – 150 cm-1 may be conducted at a user station equipped with a fully evacuated high resolution FTIR spectrometer (0.0063 cm-1, lHe cooled bolometer detectors, a THz TDS set-up and different sample environments, including a superconducting high field magnet (+11 T - 11T with variable temperature insert (1.5 K – 300 K, a sample cryostat and a THz attenuated total reflection chamber.  Main applications are Frequency Domain Fourier transform THz-Electron Paramagnetic Resonance (FD-FT THz-EPR, THz-FTIR spectroscopy and optical pump - THz probe time domain spectroscopy (TDS, with sub-ps time resolution.

  14. Electron paramagnetic resonance spectroscopy of lithium donors in monoisotopic silicon

    Science.gov (United States)

    Ezhevskii, Alexandr A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Gusev, Anatoly V.

    2009-12-01

    Electron paramagnetic resonance (X-band EPR) spectra are reported for lithium-related donors in monoisotopic silicon. High resolution EPR spectra of lithium donor centers in monoisotopic silicon, enriched by 28Si isotope (99.99%) with very narrow individual lines are observed. In monoisotopic silicon sample (28Si enriched floating zone silicon with low concentration of lithium 1016 cm-3), the trigonal EPR spectrum, with well resolved 7Li hyperfine structure is recorded in the temperature range 3.5-20 K. This spectrum was attributed to LiO complex. At high concentration of lithium (about 1018 cm-3) in monoisotopic silicon two types of spectra are observed. The trigonal one has the same feature as for low concentration of lithium with g-values: g∥=1.9974 and g⊥=1.9989. Another spectrum consists of two lines and has tetragonal symmetry with g∥=1.9992 and g⊥=1.9983. This spectrum is more intensive than the trigonal one and has no resolved hyperfine structure probably due to time averaging of the hyperfine interaction caused by hopping motion of electrons.

  15. The Contribution of Electron Paramagnetic Resonance to Melanoma Research

    Directory of Open Access Journals (Sweden)

    Quentin Godechal

    2011-01-01

    Full Text Available The incidence of malignant melanoma, the most dangerous form of skin cancer, is rising each year. However, some aspects of the tumor initiation and development are still unclear, and the current method of diagnosis, based on the visual aspect of the tumor, shows limitations. For these reasons, developments of new techniques are ongoing to improve basic knowledge on the disease and diagnosis of tumors in individual patients. This paper shows how electron paramagnetic resonance (EPR, a method able to detect free radicals trapped in melanin pigments, has recently brought its unique value to this specific field. The general principles of the method and the convenience of melanin as an endogenous substrate for EPR measurements are explained. Then, the way by which EPR has recently helped to assess the contribution of ultraviolet rays (UVA and UVB to the initiation of melanoma is described. Finally, we describe the improvements of EPR spectrometry and imaging in the detection and mapping of melanin pigments inside ex vivo and in vivo melanomas. We discuss how these advances might improve the diagnosis of this skin cancer and point out the present capabilities and limitations of the method.

  16. Electron paramagnetic resonance (EPR) in characterization of rocks and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Valezi, D.F.; Mauro, E. di [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Lab. de Fluorescencia e Ressonaancia Paramagnetica Eletronica (LAFLURPE); Zaia, D.A.M.; Carneiro, C.E.A. [Universidade Estadual de Londrina (UEL), PR (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Costa, A.C.S. da [Universidade Estadual de Maringa (UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia

    2011-07-01

    Full text. his work is based on the study of several stones and minerals from the Parana state, Brazil. They were analyzed by the Electron Paramagnetic Resonance (EPR) technique. The measurements were made on a spectrometer JEOL (JES-PE-3X), operating on X-band and at room temperature, with the exception of the mineral Goethite, which was measured with temperature variation. In all the samples were determined spectroscopic factors (or g factor) and line widths of paramagnetic species. A great number of the samples showed in their spectra, the presence of iron complexes. Phyllite and shale showed a resonance signal with approximately g = 2, and line width with about 1000 Gauss, which indicates the presence of the hematite mineral hematite in these rocks. Shale and coal samples showed the presence of free radical, it was identified as a very intense signal, centered at about g = 2.003. Phyllite sample showed in its spectra a resonance signal between the third and fourth line of the g marker (Mg O:Mn{sup 2+}) used in the measurements, and also a signal at g = 4.3, these characteristics may indicate the presence of Kaolinite in the sample. Limestone showed a signal with line width of about 600 Gauss, centered around g = 2, this signal is probably due to a mixture of ferrihydrite and some other compound, besides the presence of manganese, displaying a spectra with its six peculiar lines, due to hyperfine splitting. The two different types of limestone presented a overlap of two distinct spectra lines for the manganese, in the first limestone sample, rich in calcite, the existence of these different spectra is a result of the manganese substitution in a single site with different orientations of the calcite; the other limestone sample, this one abundant in dolomite, the existence of these different spectra is the result of the manganese substitution in different dolomite sites, taking the place of calcium and or of the magnesium. Now, we are focusing our research in the

  17. Electron paramagnetic resonance and luminescent properties of Mn2+:MgGa2O4 phosphor

    Science.gov (United States)

    Yasoda, B.; Sreekanth Chakradhar, R. P.; Lakshmana Rao, J.; Gopal, N. O.; Xu, C. N.

    2005-09-01

    Electron-paramagnetic-resonance (EPR) and photoluminescence (PL) studies on magnesium gallate (MgGa2O4) phosphor activated with divalent manganese have been carried out. The EPR spectrum exhibits a six-line hyperfine structure centered at g=1.995, which is a characteristic of a Mn2+ ion with a nuclear spin I=5/2. The spin-Hamiltonian parameters have been evaluated. The concentration and temperature (123-433 K) dependences of EPR signals have been studied. The number of spins participating in resonance (N) with temperature obeys the Boltzman law and from the graph of log N versus 1/T the activation energy has been evaluated. The paramagnetic susceptibilities (χ) have been calculated from the EPR data at different temperatures and it is interesting to note that it obeys the Curie-Weiss behavior. The Curie constant has been evaluated from the 1/χ versus T graph. A bright green photoluminescence according to the transition 4T1-->6A1 whose emission peak is located at 502 nm is observed from the phosphor under UV excitation when excited by 267-nm light. Such a stable luminescence performance is promising for use in the field of flat panel light-emitting devices. The mechanism involved in the generation of green emission has been explained in detail.

  18. Electronic paramagnetic resonance power saturation of wooden samples

    Science.gov (United States)

    Brai, Maria; Longo, Anna; Maccotta, Antonella; Marrale, Maurizio

    2009-05-01

    The deterioration of wood used for artifacts of artistic interest involves the production of different free radicals from the macromolecules of the wooden matrix (cellulose, lignin, and hemicellulose). Among the techniques able to provide information about these free radicals, the contribution of electronic paramagnetic resonance (EPR) can be very valuable. In this paper, the study of EPR signals (with g ≈2) of both modern and ancient wooden taxa was undertaken in order to analyze some features of the free radicals in natural wood. In particular, we have studied the microwave power saturation behaviors of seasoned wooden samples from ten species, and we have found remarkable differences between softwoods and hardwoods. These differences can be correlated to dissimilarities in the relaxation times T1 and T2 attributable to the different microscopic structures of the two trees' categories. The method has been also applied to ancient woods belonging to works of art in order to assess the conservation state of these artifacts. The analysis of the saturation curves has been found to be sensitive to the wood decay state. Indeed the deterioration process of the wooden matrix involves a variation of the relaxation times; this could be ascribed to both possible structure modifications and to concentration increments of the free radicals inside ancient woods due to decay induced by natural (biological, chemical, and physical) agents. This analysis method seems to be promising for the characterization of the wooden decay state and, therefore, it could provide valuable diagnostic indications which are necessary for the restoration and conservation of many artifact of historical-artistic-archaeological interest.

  19. Clinical electron paramagnetic resonance (EPR) oximetry using India ink.

    Science.gov (United States)

    Williams, Benjamin B; Khan, Nadeem; Zaki, Bassem; Hartford, Alan; Ernstoff, Marc S; Swartz, Harold M

    2010-01-01

    Electron paramagnetic resonance (EPR) oximetry can be used to provide direct absolute measurements of pO(2) in living tissue using India ink as an O(2) reporter. In vivo measurements are made using low frequency (1.2 GHz) EPR spectroscopy and surface loop resonators, which enable measurements to be made at superficial sites through a non-invasive (after placing the ink in the tissues) and repeatable measurement procedure. Ongoing EPR oximetry studies in human subjects include measurement of subcutaneous pO(2) in the feet of healthy volunteers to develop procedures that could be used in the treatment of peripheral vascular disease and oximetry in tumors during courses of radiation and chemotherapy, to follow pO(2) so oxygen-dependent therapies can be optimized. In each case, we aim to provide quantitative measurements of tissue pO(2) which will aid physicians in the characterization of disease status and the effects of therapeutic measures, so that treatments can be applied with optimal effectiveness by taking into account the oxygen-dependent aspects of the therapy. The overall goal is to enhance clinical outcomes. Oximetry measurements of subcutaneous tissue on dorsal and plantar foot surfaces have been made in 9 volunteers, with measurements ongoing for each and the longest set of measurements carried out successfully over the last 5 years. Tumor oximetry measurements have been performed in tumor tissues of 10 patients during courses of radiation and chemotherapy. Tumor types include melanoma, basal cell, soft tissue sarcoma, and lymphoma, and measurement sites have ranged from the feet to the scalp. These studies demonstrate the feasibility of EPR oximetry in a clinical setting and the potential for more widespread use in the treatment of these and other oxygen-dependent diseases.

  20. Dating carbonaceous matter in archean cherts by electron paramagnetic resonance.

    Science.gov (United States)

    Bourbin, M; Gourier, D; Derenne, S; Binet, L; Le Du, Y; Westall, F; Kremer, B; Gautret, P

    2013-02-01

    Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

  1. Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation

    National Research Council Canada - National Science Library

    Dietmar Appelhans; Ulrich Oertel; Roberto Mazzeo; Hartmut Komber; Jan Hoffmann; Steffen Weidner; Bernhard Brutschy; Brigitte Voit; Maria Francesca Ottaviani

    2010-01-01

    ...(propyleneimine) glycodendrimers ranging up to the fifth generation that have either a dense maltose or maltotriose shell was investigated by UV/Vis spectroscopy and electron paramagnetic resonance (EPR...

  2. Paramagnetic susceptibility of the Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} metallic glass subjected to high-pressure torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, A.V., E-mail: korolyov@imp.uran.ru [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Kourov, N.I. [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Pushin, V.G. [Institute of Metal Physics of the Ural Branch RAS, Ekaterinburg (Russian Federation); Ural Federal University, Ekaterinburg (Russian Federation); Gunderov, D.V. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Ufa State Aviation Technical University, Ufa (Russian Federation); Boltynjuk, E.V.; Ubyivovk, E.V. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Valiev, R.Z. [Saint-Petersburg State University, Saint-Petersburg (Russian Federation); Ufa State Aviation Technical University, Ufa (Russian Federation)

    2017-09-01

    Highlights: • Zr-based BMG was subjected to HPT at temperatures of 20 °C and 150 °C. • Magnetic measurements reveal well recordable changes in paramagnetic susceptibility. • Paramagnetic susceptibility may be an indicator of a change in the structural state. - Abstract: The Zr{sub 62}Cu{sub 22}Al{sub 10}Fe{sub 5}Dy{sub 1} bulk metallic glass is studied in the as-cast state and in the state after processing by high-pressure torsion at temperatures of 20 °C and 150 °C. According to the data from X-ray diffraction and transmission electron microscopy, the structural state of the samples depends weakly on the conducted processing. At the same time, magnetic measurements reveal well recordable changes in paramagnetic susceptibility induced by the processing of the samples. It is assumed that, because of high-pressure torsion deformation, there occurs a noticeable change in the material electronic structure, which leads to a change in the full susceptibility of the samples. The performed studies demonstrate that paramagnetic susceptibility may be an indicator of a change in the structural state of paramagnetic amorphous metallic substances.

  3. The use of chemical shift temperature gradients to establish the paramagnetic susceptibility tensor orientation: Implication for structure determination/refinement in paramagnetic metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Xia Zhicheng; Nguyen, Bao D.; La Mar, Gerd N. [University of California, Department of Chemistry (United States)

    2000-06-15

    The use of dipolar shifts as important constraints in refining molecular structure of paramagnetic metalloproteins by solution NMR is now well established. A crucial initial step in this procedure is the determination of the orientation of the anisotropic paramagnetic susceptibility tensor in the molecular frame which is generated interactively with the structure refinement. The use of dipolar shifts as constraints demands knowledge of the diamagnetic shift, which, however, is very often not directly and easily accessible. We demonstrate that temperature gradients of dipolar shifts can serve as alternative constraints for determining the orientation of the magnetic axes, thereby eliminating the need to estimate the diamagnetic shifts. This approach is tested on low-spin, ferric sperm whale cyanometmyoglobin by determining the orientation, anisotropies and anisotropy temperature gradients by the alternate routes of using dipolar shifts and dipolar shift gradients as constraints. The alternate routes ultimately lead to very similar orientation of the magnetic axes, magnetic anisotropies and magnetic anisotropy temperature gradients which, by inference, would lead to an equally valid description of the molecular structure. It is expected that the use of the dipolar shift temperature gradients, rather than the dipolar shifts directly, as constraints will provide an accurate shortcut in a solution structure determination of a paramagnetic metalloprotein.

  4. Dosimetry of ionizing radiations by Electron paramagnetic resonance; Dosimetria de radiaciones ionizantes por resonancia paramagnetica electronica

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J. [UAM-I, Av. San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico)

    2005-07-01

    In this work, some historical and theoretical aspects about the Electron Paramagnetic Resonance (EPR), its characteristics, the resonance detection, the paramagnetic species, the radiation effects on inorganic and organic materials, the diagrams of the instrumentation for the EPR detection, the performance of an EPR spectrometer, the coherence among EPR and dosimetry and, practical applications as well as in the food science there are presented. (Author)

  5. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...

  6. Enhanced dynamic electron paramagnetic resonance imaging of in vivo physiology

    Science.gov (United States)

    Redler, Gage

    It is well established that low oxygen concentration (hypoxia) in tumors strongly affects their malignant state and resistance to therapy. The importance of tumor oxygenation status has led to increased interest in the development of robust oxygen imaging modalities. One such method is electron paramagnetic resonance imaging (EPRI). EPRI has provided a non-invasive, quantitative imaging modality with sensitivity deep in tissues, capable of investigating static oxygen concentration (pO2) in vivo and has helped to corroborate the correlation between chronic states of hypoxia and tumor malignancy. However, when studying the complicated physiology of a living animal, the situation tends to be inherently dynamic. It has been found that in certain tumor regions there may exist steady states of hypoxia, or chronic hypoxia, whereas in other regions there may exist transient states of hypoxia, or acute hypoxia. It has been postulated that the negative prognostic implications associated with hypoxic tumors may be amplified for acutely hypoxic tumors. However, controversial data and a current lack in methods with the capability to noninvasively image tumor pO2 in vivo with sufficient spatial, temporal, and pO 2 resolution preclude definitive conclusions on the relationships between the different forms of hypoxia and the differences in their clinical implications. A particularly promising oxygen imaging modality that can help to study both chronic and acute hypoxia and elucidate important physiological and clinical differences is rapid Dynamic EPRI. The focus of this work is the development of methods enabling Dynamic EPRI of in vivo physiology as well as its potential applications. This work describes methods which enhance various aspects of EPRI in order to establish a more robust Dynamic EPRI capable of noninvasively studying and quantifying acute hypoxia in vivo. These enhancements are achieved through improvements that span from methods for the acquisition of individual

  7. Electron paramagnetic resonance and photoluminescence properties of α-Al2O3:Cr3+ phosphors

    Science.gov (United States)

    Singh, V.; Chakradhar, R. P. S.; Rao, J. L.; Al-Shamery, K.; Haase, M.; Jho, Y.-D.

    2012-05-01

    The red emitting Cr3+ activated α-Al2O3 powder phosphor has been prepared by easy combustion reactions from mixed metal nitrate reactants and urea with ignition temperatures of 500 °C. The as-synthesized powder was characterized by X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared techniques. The X-ray diffraction pattern reveals that the phosphor crystallized in the hexagonal α-Al2O3 phase directly from the combustion reaction. The EPR spectrum exhibits an intense resonance signal with effective g value at g=3.33 along with a few weak resonance signals with effective g values at g=13.7, 2.34, 1.95, 1.49, and 1.26. The spin concentration ( N) and its paramagnetic susceptibility ( χ) have been evaluated. The excitation spectrum consists of two broad intense bands at 415 nm and 555 nm and are assigned to 4A2 g (F)→4T1 g (F) and 4A2 g (F)→4T2 g (F) transitions, respectively. The intense fluorescence peak around 691 nm is attributed to 2E g →4A2 g transition of Cr3+ ion. By correlating EPR and optical data, the crystal field splitting parameter ( Dq), Racah inter-electronic repulsion parameter ( B) have been evaluated and discussed. The EPR and optical studies reveal that Cr3+ ions are occupying in Al3+ sites in octahedral coordination.

  8. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...

  9. Exchange mechanism for electron paramagnetic resonance of individual adatoms

    Science.gov (United States)

    Lado, J. L.; Ferrón, A.; Fernández-Rossier, J.

    2017-11-01

    We propose a universal mechanism that makes it possible to drive an individual atomic spin using a spin-polarized scanning tunnel microscope (STM) with an oscillating electric signal. We show that the combination of the distance-dependent exchange with the magnetic tip and the electrically driven mechanical oscillation of the surface spins permits us to control their quantum state. Based on a combination of density functional theory and multiplet calculations, we show that the proposed mechanism is essential to account for the recently observed electrically driven paramagnetic spin resonance (ESR) of an individual Fe atom on a MgO/Ag(100) surface. Our findings set the foundation to deploy the ESR-STM quantum sensing technique to a much broader class of systems.

  10. Critical Electron-Paramagnetic-Resonance Spin Dynamics in NiCl2

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Rupp, L.W.; Guggenheim, H.J.

    1973-01-01

    We have studied the critical behavior of the electron-paramagnetic-resonance linewidth in the planar XY antiferromagnet NiCl2; it is found that the linewidth diverges like ξ∼(T-TN)-0.7 rather than ξ5/2 predicted by the current random-phase-approximation theory.......We have studied the critical behavior of the electron-paramagnetic-resonance linewidth in the planar XY antiferromagnet NiCl2; it is found that the linewidth diverges like ξ∼(T-TN)-0.7 rather than ξ5/2 predicted by the current random-phase-approximation theory....

  11. Determining magnetic susceptibilities of everyday materials using an electronic balance

    Science.gov (United States)

    Laumann, Daniel; Heusler, Stefan

    2017-05-01

    The magnetic properties of an object and its interaction with an external magnetic field can be described through the magnetic (volume) susceptibility χV, which divides nearly all kinds of matter into diamagnetic, paramagnetic, and ferromagnetic substances. Quantitative measurements of χV are usually technically sophisticated or require the investigation of substances with high values of χV to reveal meaningful results. Here, we show that both diamagnetic and paramagnetic effects in everyday materials can be measured using only an electronic balance and a neodymium magnet, both of which are within the reach of typical introductory college and high school physics classrooms. The experimental results match related literature values remarkably well.

  12. Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.

    2012-01-01

    Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...

  13. Coordination Environment of Copper Sites in Cu-CHA Zeolite Investigated by Electron Paramagnetic Resonance

    DEFF Research Database (Denmark)

    Godiksen, Anita; Stappen, Frederick N.; Vennestrøm, Peter N. R.

    2014-01-01

    the zeolite framework is very simple with only one crystallographically independent tetrahedral site (T-site). In this study the results of an X-band electron paramagnetic resonance (EPR) investigation of ion-exchanged Cu-CHA zeolite with a Si/Al ratio of 14 ± 1 is presented. Different dehydration treatments...

  14. Identification and Quantification of Copper Sites in Zeolites by Electron Paramagnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Godiksen, Anita; Vennestrøm, Peter N. R.; Rasmussen, Søren Birk

    2017-01-01

    Recent quantitative electron paramagnetic resonance spectroscopy (EPR) data on different copper species present in copper exchanged CHA zeolites are presented and put into context with the literature on other copper zeolites. Results presented herein were obtained using ex situ and in situ EPR...

  15. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion...

  16. Gamma-irradiated ExtraVit M nutritive supplement studied by electron paramagnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Petrisor, Dina [Faculty of Physics, Babes-Bolyai University, 1A Kogalniceanu Street, 400084 Cluj-Napoca (Romania)], E-mail: dinapetrisor@yahoo.co.uk; Damian, Grigore; Simon, Simion [Faculty of Physics, Babes-Bolyai University, 1A Kogalniceanu Street, 400084 Cluj-Napoca (Romania)

    2008-04-15

    An unirradiated and {gamma}-irradiated nutritive supplement named ExtraVit M was studied by electron paramagnetic resonance (EPR) spectroscopy in order to detect stable paramagnetic species following improvement of hygienic quality by {gamma}-radiation. Free radicals were induced by {gamma}-radiation in the studied samples from low absorbed doses, showing a certain sensibility of these samples to the radiation treatment. The EPR spectrum of irradiated ExtraVit M is typical for drugs or nutritive supplements containing high levels of sugars, vitamin C and cellulose.

  17. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    Science.gov (United States)

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  18. Handbook of multifrequency electron paramagnetic resonance data and techniques

    CERN Document Server

    Misra, Sushil K

    2014-01-01

    This handbook is aimed to deliver an up-to-date account of some of the recently developed experimental and theoretical methods in EPR, as well as a complete up-to-date listing of the experimentally determined values of multifrequency transition-ion spin Hamiltonian parameters by Sushil Misra, reported in the past 20 years, extending such a listing published by him in the Handbook on Electron Spin Resonance, volume 2. This extensive data tabulation makes up roughly 60% of the book`s content. It is complemented by the first full compilation of hyperfine splittings and g-factors for aminoxyl (nit

  19. Characterization of humic acids from tundra soils of northern Western Siberia by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Chukov, S. N.; Ejarque, E.; Abakumov, E. V.

    2017-01-01

    Humic acids from polar soils—cryozems (Cryosols), gleyezems (Gleysols), and peat soils (Histosols)—have been studied by electron paramagnetic resonance spectroscopy. First information was acquired on the content of free radicals in humic acids from polar soils for the northern regions of Western Siberia (Gydan Peninsula, Belyi Island). It was found that polar soils are characterized by higher contents of free radicals than other zonal soils. This is related to the lower degree of humification of organic matter and the enhanced hydromorphism under continuous permafrost conditions. The low degree of organic matter humification in the cryolithozone was confirmed by the increased content of free radicals as determined by electron paramagnetic resonance, which indicates a low biothermodynamic stability of organic matter.

  20. Thermally stimulated luminescence and electron paramagnetic resonance studies on uranium doped calcium phosphate

    CERN Document Server

    Natarajan, V; Veeraraghavan, R; Sastry, M D

    2003-01-01

    Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies on uranium doped calcium phosphate yielded mechanistic information on the observed glow peaks at 365, 410 and 450 K. TSL spectral studies of the glow peaks showed that UO sub 2 sup 2 sup + acts as the luminescent center. Electron paramagnetic resonance studies on gamma-irradiated samples revealed that the predominant radiation induced centers are H sup 0 , PO sub 4 sup 2 sup - , PO sub 3 sup 2 sup - and O sup - ion. Studies on the temperature dependence studies of the EPR spectra of samples annealed to different temperatures indicate the role of H sup 0 and PO sub 4 sup 2 sup - ions in the main glow peak at 410 K.

  1. Very-Low-Frequency Electron Paramagnetic Resonance (EPR) Imaging of Nitroxide-Loaded Cells

    OpenAIRE

    Kao, Joseph P. Y.; Barth, Eugene D.; Burks, Scott R.; Smithback, Philip; Mailer, Colin; Ahn, Kang-Hyun; Halpern, Howard J.; Rosen, Gerald M

    2007-01-01

    Recent advances in electron paramagnetic resonance (EPR) imaging have made it possible to image, in real time in vivo, cells that have been labeled with nitroxide spin probes. We previously reported that cells can be loaded to high (millimolar) intracellular concentrations with (2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-ylmethyl)amine-N,N-diacetic acid by incubation with the corresponding acetoxymethyl (AM) ester. Furthermore, the intracellular lifetime (t1/e) of this nitroxide is 114 min—suffic...

  2. Electron spin resonance study of the demagnetization fields of the ferromagnetic and paramagnetic films

    Directory of Open Access Journals (Sweden)

    I.I. Gimazov, Yu.I. Talanov

    2015-12-01

    Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.

  3. Characteristic defects in CVD diamond: optical and electron paramagnetic resonance study

    OpenAIRE

    Nesladek, Milos; MEYKENS, Kristien; Haenen, Ken; Navratil, Jiri; QUAEYHAEGENS, Carl; STALS, Lambert; Stesmans, A.; Iakoubovskij, K; Adriaensens, Peter; Rosa, J.; Vanecek, M.

    1999-01-01

    Constant photocurrent method (CPM), electron paramagnetic resonance (EPR), and infra-red optical absorption (FTIR) techniques are used to study characteristic defects in the gap of free-standing optical-quality CVD diamond. It is shown that the gap density of states (DOS) is very sensitive to oxidation, hydrogenation and annealing treatments. The room-temperature (RT) EPR and CPM measurements reveal a well-defined single substitutional nitrogen defect (P1). The photoionization energy of this ...

  4. Visualization of oxidative stress in ex vivo biopsies using electron paramagnetic resonance imaging.

    Science.gov (United States)

    Gustafsson, Håkan; Hallbeck, Martin; Lindgren, Mikael; Kolbun, Natallia; Jonson, Maria; Engström, Maria; de Muinck, Ebo; Zachrisson, Helene

    2015-04-01

    The purpose of this study was to develop an X-Band electron paramagnetic resonance imaging protocol for visualization of oxidative stress in biopsies. The developed electron paramagnetic resonance imaging protocol was based on spin trapping with the cyclic hydroxylamine spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine and X-Band EPR imaging. Computer software was developed for deconvolution and back-projection of the EPR image. A phantom containing radicals of known spatial characteristic was used for evaluation of the developed protocol. As a demonstration of the technique electron paramagnetic resonance imaging of oxidative stress was performed in six sections of atherosclerotic plaques. Histopathological analyses were performed on adjoining sections. The developed computer software for deconvolution and back-projection of the EPR images could accurately reproduce the shape of a phantom of known spatial distribution of radicals. The developed protocol could successfully be used to image oxidative stress in six sections of the three ex vivo atherosclerotic plaques. We have shown that oxidative stress can be imaged using a combination of spin trapping with the cyclic hydroxylamine spin probe cyclic hydroxylamine spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine and X-Band EPR imaging. A thorough and systematic evaluation on different types of biopsies must be performed in the future to validate the proposed technique. © 2014 Wiley Periodicals, Inc.

  5. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

    Science.gov (United States)

    Sathiya, M.; Leriche, J.-B.; Salager, E.; Gourier, D.; Tarascon, J.-M.; Vezin, H.

    2015-01-01

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research. PMID:25662295

  6. Temperature dependence of Q-band electron paramagnetic resonance spectra of nitrosyl heme proteins

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marco; Wajnberg, Eliane; Bemski, George

    1997-11-01

    The Q-band (35 GHz) electron paramagnetic resonance (EPR) spectra of nitrosyl hemoglobin (Hb N O) and nitrosyl myoglobin (Mb NO) were studied as a function of temperature between 19 K and 200 K. The spectra of both heme proteins show classes of variations as a function of temperature. The first one has previously been associated with the existence of two paramagnetic species, one with rhombic and the other with axial symmetry. The second one manifests itself in changes in the g-factors and linewidths of each species. These changes are correlated with the conformational substates model and associate the variations of g-values with changes in the angle of the N(his)-Fe-N (NO) bond in the rhombic species and with changes in the distance between Fe and N of the proximal (F8) histidine in the axial species. (author) 24 refs., 6 figs.

  7. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  8. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Science.gov (United States)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Seiler, A.; Bondarchuk, O.; Hänsel-Ziegler, W.; Risse, T.; Freund, H.-J.

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  9. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  10. Temperature dependent electron paramagnetic resonance study on magnetoelectric YCrO3

    Science.gov (United States)

    Mall, Ashish Kumar; Dixit, Ambesh; Garg, Ashish; Gupta, Rajeev

    2017-12-01

    We report temperature dependent electron paramagnetic resonance (EPR) studies on polycrystalline YCrO3 samples at X-band (9.46 GHz) in the temperature range of 120 K–298 K. The EPR spectra exhibit a single broad line across the whole temperature range, attributed to Cr3+ ions. The variation of EPR spectra parameters (line width, integrated intensity, and g-factor) as a function of temperature was analyzed to understand the nature of spin-dynamics in the paramagnetic region of YCrO3. A peak in the g-factor suggests the presence of a new phase within the paramagnetic state at an intermediate point of temperature T IP ~ 230 K, attributed to the onset of short range canted antiferromagnetic correlations in the material much above 140 K, Néel temperature (T N) of YCrO3. The EPR intensity increases with a decrease in temperature up to T N due to the renormalization of the magnetic moments arising from the appearance of canted antiferromagnetic correlations. Further, temperature dependent dielectric measurements also exhibit an anomaly at ~230 K suggesting the presence of magnetodielectric coupling in YCrO3, with a possibility towards a relatively high temperature magnetodielectric system.

  11. Retrospective dosimetry of nail by Electron Paramagnetic Resonance; Dosimetria retrospectiva de unha por Ressonancia Paramagnetica Eletronica

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The purpose of this study is to characterize samples of human nails, subjected to irradiation of high doses through Technical Electron Paramagnetic Resonance (EPR). The goal is to establish a dose/response relationship in order to assess dose levels absorbed by individuals exposed in radiation accidents situations, retrospectively. Samples of human nails were irradiated with gamma radiation, and received a dose of 20 Gy. EPR measurements performed on samples before irradiation identified EPR signals associated with defects caused by the mechanical action of the sample collection. After irradiation other species of free radicals, associated with the action of gamma radiation, have been identified.

  12. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation.

    Science.gov (United States)

    Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid

    2012-08-08

    During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils.

  13. Electron paramagnetic resonance study of the migratory ant Pachycondyla marginata abdomens.

    OpenAIRE

    Wajnberg, E.; Acosta-Avalos, D; El-Jaick, L J; Abraçado, L; Coelho, J.L.A.; Bakuzis, A F; Morais,P. C.; Esquivel, D.M.S.

    2000-01-01

    Electron paramagnetic resonance was used to investigate the magnetic material present in abdomens of Pachycondyla marginata ants. A g congruent with 4.3 resonance of high-spin ferric ions and a very narrow g congruent with 2 line are observed. Two principal resonance broad lines, one with g > 4.5 (LF) and the other in the region of g congruent with 2 (HF), were associated with the biomineralization process. The resonance field shift between these two lines, HF and LF, associated with magnetic...

  14. Design of a low temperature translation balance for the measurement of paramagnetic and diamagnetic susceptibilities

    Energy Technology Data Exchange (ETDEWEB)

    Mowry, G.S.

    1979-05-01

    A modified Foex and Forrer Translation Balance has been designed for measuring the paramagnetic and diamagnetic properties of materials over the temperature range 77-300/sup 0/K. The systems' temperature range can eventually be extended to 4.2/sup 0/K. The apparatus incorporates a vertical Dewar of Standard variety in addition to a horizontal Dewar for cooling the sample holder and adjacent horizontal supports. The design also allows for the placement of a thermocouple junction in direct contact with a sample. The balance sensitivity, defined as the change in displacement per unit applied force, is 0.0044 cm/dyne. The precision of the balance is +- .5% with an accuracy of 1.5%.

  15. Theory of experiments in paramagnetic resonance

    CERN Document Server

    Talpe, Jan

    1971-01-01

    International Series of Monographs in Natural Philosophy, Volume 33: Theory of Experiments in Paramagnetic Resonance discusses the technique for studying materials with unpaired electrons. This book is divided into four chapters. Chapter 1 provides a general introduction to examining matter through applying a magnetic field. The paramagnetic resonance line, such as the HF susceptibility as a function of certain parameters, is analyzed in the next chapter. Chapter 3 deals with the electronic signal that produces the HF susceptibility. The last chapter is devoted to the enhancement of the electr

  16. Synthesis and unusual electron paramagnetic resonance spectrum of metastable nanoclusters of ZnO semiconductor crystallites.

    Science.gov (United States)

    Ram, S; Kundu, T K

    2004-11-01

    Metastable nanoclusters of ZnO semiconductor crystallites, 20 to 30 nm diameter, are synthesized by a reconstructive decomposition of a polymer precursor of dispersed Zn2+ cations in poly vinyl alcohol (PVA) polymer molecules. They have EPR (electron paramagnetic resonance) spectrum of distinct excitonic features. Multiple EPR bands appear in prominent intensities in oxygen vacancies VO+ and singly ionized Oi- and Zn(i)+ interstitials. A paramagnetic VO+ vacancy derives from usual diamagnetic O2- vacancy of VO++ (behaves as if doubly charged compared to the lattice) by addition of one electron. The results demonstrate the existence of a surface-interface or surface barrier layer in free-carrier depletion at the crystallite surface in the clusters and its effects on the Oi- and Zn(i)+ ionization states (determine green photoluminescence). Both VO+ and Zn(i)+ are curable by a thermal annealing in O2 gas. A cured sample of equilibrium structure achieved by heating at approximately 550 degrees C has a single EPR in Oi- at g = 1.990. The results are useful in understanding their correlation with EPR and optical properties in ZnO semiconductors and devices.

  17. Electron Paramagnetic Resonance Spectroscopy of Photosynthetic Systems and Inorganic Model Complexes.

    Science.gov (United States)

    Dexheimer, Susan Lynne

    1990-01-01

    This thesis discusses the application of parallel polarization electron paramagnetic resonance (EPR) spectroscopy, a technique sensitive to formally forbidden transitions in high spin states, to the study of the electronic structure of photosynthetic electron transfer centers and related inorganic model complexes. The theoretical basis for the origin of the parallel polarization transitions and the interpretation of the resulting spectra is presented, and experimental aspects of the detection of parallel polarization transitions are discussed. Parallel polarization EPR was used to study inorganic complexes of trivalent manganese that serve as models for the spectroscopic properties of biological electron transfer centers. X-band EPR spectra were detected from non-Kramers spin states of these complexes. EPR spectra of the S = 2 ground states of the mononuclear complexes Mn(III) tris -acetylacetonate and Mn(III) tris-picolinate and a low-lying excited state of the weakly antiferromagnetically coupled binuclear complex Mn_2(III,III) O(O_2CCH_3) _2 (HB(pz)_3) _2 (HB(pz)_3 = hydrotris(1-pyrazolyl)borate) are discussed. The spectra are interpreted using numerical simulations. Application of parallel polarization EPR to photosyntheic systems led to the detection of a new paramagnetic intermediate associated with photosynthetic water oxidation. The parallel polarization EPR signal is assigned to an S = 1 spin state of an exchange-coupled manganese center in the resting (S_1) state of the photosynthetic oxygen-evolving complex. The properties of the S _1 state parallel polarization EPR signal indicate that it corresponds to the reduced form of the species that gives rise to the previously established multiline conventional EPR signal in the light-induced S _2 state, and the behavior of the signal upon advancement to the S_2 state demonstrates the presence of two separate redox-active centers in the oxygen-evolving complex. The implications for the electronic structure of

  18. Electromagnetic susceptibility anisotropy and its importance for paramagnetic NMR and optical spectroscopy in lanthanide coordination chemistry.

    Science.gov (United States)

    Blackburn, Octavia A; Edkins, Robert M; Faulkner, Stephen; Kenwright, Alan M; Parker, David; Rogers, Nicola J; Shuvaev, Sergey

    2016-04-28

    The importance of the directional dependence of magnetic susceptibility in magnetic resonance and of electric susceptibility in the optical spectroscopy of lanthanide coordination complexes is assessed. A body of more reliable shift, relaxation and optical emission data is emerging for well-defined isostructural series of complexes, allowing detailed comparative analyses to be undertaken. Such work is highlighting the limitations of the current NMR shift and relaxation theories, as well as emphasising the absence of a compelling theoretical framework to explain optical emission phenomena.

  19. Searching for biosignatures using electron paramagnetic resonance (EPR) analysis of manganese oxides.

    Science.gov (United States)

    Kim, Soon Sam; Bargar, John R; Nealson, Kenneth H; Flood, Beverly E; Kirschvink, Joseph L; Raub, Timothy D; Tebo, Bradley M; Villalobos, Mario

    2011-10-01

    Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (∼500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.

  20. Age of an Indonesian Fossil Tooth Determined by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, JS

    2004-04-07

    The first fossil hominid tooth recovered during 1999 excavations from the Cisanca River region in West Java, Indonesia, was associated with a series of bovid teeth from a single individual that was recovered 190 cm beneath the hominid tooth. The age of the fossil bovid teeth was determined using electron paramagnetic resonance (EPR) analysis as part of an effort to bracket the age of the hominid tooth. The EPR-derived age of the bovid teeth is (5.16 {+-} 2.01) x 10{sup 5} years. However, the age estimate reported here is likely an underestimate of the actual age of deposition since evidence of heating was detected in the EPR spectra of the bovid teeth, and the heating may have caused a decrease in the intensity of EPR components on which the age calculation is based.

  1. A novel programmable pulse generator with nanosecond resolution for pulsed electron paramagnetic resonance applications.

    Science.gov (United States)

    Devasahayam, N; Subramanian, S; Krishna, M C

    2008-02-01

    A pulse programmer with nanosecond time resolution needed for time-domain electron paramagnetic resonance (EPR) spectroscopic applications is described. This unit uses commercially available timing and input-output port modules and control software developed in our laboratory. The pulse programmer is operated through a personal computer front panel graphic user interface (GUI) inputs to control pulse widths, delays, and the associated acquisition trigger timings. Based on these parameters, all other associated gate and trigger timings are internally generated automatically without the need to enter them explicitly. The excitation pulse widths were of nanosecond resolution while all other gate pulses can be incremented in steps of 20 ns without compromising spectrometer performance. In the current configuration, the pulse programmer permits generation of a single pulse or multiple pulse sequences for EPR imaging with minimal data entry via the front panel GUI.

  2. Synthesis, electron paramagnetic resonance studies and molecular calculations of N-aminopyrimidine salicylaldiminato copper (II) complex

    Science.gov (United States)

    Yalçın, Şerife Pınar; Ceylan, Ümit; Sönmez, Mehmet; Hacıyusufoğlu, Mehmet Emin; Karavelioğlu, Hatice

    2017-11-01

    In this study, Cu(II) complex, C52H40CuN6O10, was synthesized and the molecular structure was characterized by experimental Electron Paramagnetic Resonance (EPR), vibrational frequencies, absorption wavelengths and compared with theoretical methods. The molecular geometry was calculated and optimized by using Gaussian 09 software and DFT-B3LYP and B3PW91 methods with the LanL2DZ basis sets in ground state. The theoretical vibrational frequencies, was optimized geometric parameters such as bond lengths, bond angles and torsion angles and absorption wavelengths, NBO, FMO analysis, HOMO-LUMO energy and nonlinear optical properties, molecular electrostatic potential, spin density have been calculated via quantum chemical methods. Theoretically calculated data were compared with experimentally measured data. Also, the results obtained by using the two basis sets were compared with each other.

  3. Electron Paramagnetic Resonance Spectrometry and Imaging in Melanomas: Comparison between Pigmented and Nonpigmented Human Malignant Melanomas

    Directory of Open Access Journals (Sweden)

    Quentin Godechal

    2013-06-01

    Full Text Available It has been known for a long time that the melanin pigments present in normal skin, hair, and most of malignant melanomas can be detected by electron paramagnetic resonance (EPR spectrometry. In this study, we used EPR imaging as a tool to map the concentration of melanin inside ex vivo human pigmented and nonpigmented melanomas and correlated this cartography with anatomopathology. We obtained accurate mappings of the melanin inside pigmented human melanoma samples. The signal intensity observed on the EPR images correlated with the concentration of melanin within the tumors, visible on the histologic sections. In contrast, no EPR signal coming from melanin was observed from nonpigmented melanomas, therefore demonstrating the absence of EPR-detectable pigments inside these particular cases of skin cancer and the importance of pigmentation for further EPR imaging studies on melanoma.

  4. A superheterodyne spectrometer for electronic paramagnetic. Resonance; Spectrometre superheterodyne de resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Laffon, J.L. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-12-15

    After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author) [French] Apres quelques generalites sur le phenomene de resonance paramagnetique electronique, une synthese des differentes techniques experimentales, permet de fixer le choix d'un type d'appareillage. Un spectrometre de RPE superheterodyne realise en laboratoire et comportant un circuit original est expose dans le detail. Cet appareil a permis de nombreux resultats experimentaux dont quelques-uns sont decrits a titre d'exemple. (auteur)

  5. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  6. Crystallite arrangement of hydroxyapatite microcrystals in human tooth cementum as revealed by electron paramagnetic resonance (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Skaleric, U.; Gaspirc, B. [Univ. of Ljubljana, Jozef Stefan Inst., Center for Dental Research, Ljubljana (Slovenia); Cevc, P.; Schara, M. [Univ. of Ljubljana, Jozef Stefan Inst., EPR Center Ljubljana, Ljubljana (Slovenia)

    1998-08-01

    Human dental cementum was analyzed by electron paramagnetic resonance (EPR). The measured EPR powder spectra of {gamma}-irradiated cementum resembled those of {gamma}irradiated enamel. Both spectra were characterized by the same line shapes and g values. The position of the extreme first derivate peaks can be described by g{sub 1}=2.0023 and g{sub 2}=1.9971{+-}0.0002, and are assignable to the CO{sub 3}{sup 3-} center. The angular dependence of the cementum EPR spectra indicates a different arrangement of the hydroxyapatite microcrystals compared to that of enamel. A corresponding model of cementum micro-crystal alignment has been proposed. The methodology presented can be utilized for studying the mineralization process of root cementum and other mineralized tissues. (au) 14 refs.

  7. Preliminary study for precision dosimetry using electron paramagnetic resonance (EPR) in radiotherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Shehzadi, N. N.; Kim, I. J.; Yi, C. Y. [Center for Ionizing Radiation, Korea Research for Standards and Science, Daejeon (Korea, Republic of)

    2015-10-15

    EPR (Electron paramagnetic resonance) dosimetry for radiotherapy dose range (1-10 Gy) is still being established.Alanine is an important material for EPR dosimetry because in terms of density and radiation absorption properties, it is water equivalent. High repeatability and high reproducibility of alanine spectrum measurement makes it possible to estimate the irradiation dose accurately. This baseline study has been carried out to establish precision EPR dosimetry in therapeutic photon range. For that purpose, an EPR dosimetry system has been setup and repeatability as well as reproducibility of measurements using alanine dosimeter have been evaluated. Effect of anisotropy of alanine dosimeter in spectrometer cavity has also been observed. EPR dosimetry system is set up at KRISS. It is found that reproducibility of the system at therapeutic photon range is 1.5 % - 6.6 %.

  8. Combustion Synthesized Cr3+-doped-BaMgAl10O17 Phosphor: An Electron Paramagnetic Resonance and Optical Study

    Science.gov (United States)

    Singh, Vijay; Sivaramaiah, G.; Rao, J. L.; Srivastava, Anoop K.; Ravikumar, R. V. S. S. N.; Dhoble, S. J.; Singh, P. K.; Mohapatra, Manoj

    2016-01-01

    BaMgAl10O17 phosphors doped with Cr3+ ions were prepared by a combustion route at a furnace temperature of 773 K. The X-ray diffraction pattern revealed that the BaMgAl10O17 phosphor was in a hexagonal phase. Energy-dispersive X-ray mapping images demonstrated the presence of the dopant ion in the BaMgAl10O17 matrix. The bands observed in the optical absorption spectrum were characteristic of Cr3+ ions in octahedral geometry. Upon 555-nm excitation, an intense narrow red emission line centred at 690 nm due to the 2Eg → 4A2g transition of Cr3+ ions was observed. The electron paramagnetic resonance (EPR) spectrum of Cr3+ ions in BaMgAl10O17 phosphor showed multiple absorption bands having at least 6 g values. Based on the EPR data, various parameters such as the absolute number of spins, Gibbs potential, magnetic susceptibility and magnetic moments, Curie constant, etc., for the system were evaluated.

  9. Analyzing Xanthine Dehydrogenase Iron-Sulfur Clusters Using Electron Paramagnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hodson, R.

    2004-02-05

    Xanthine dehydrogenase is a metalloenzyme that is present in a variety of eukaryotic and prokaryotic organisms. The oxidation of the xanthine occurs at the molybdenum site, and the catalytic cycle is completed by electron transfer to the iron-sulfur (Fe/S) clusters and finally the flavin, where they are accepted by nicotinamide adenine dinucleotide (NAD). Since the site giving rise to the Fe/S I electron paramagnetic resonance (EPR) signal is thought to be the initial recipient of the electrons from the Mo, we wish to understand which EPR signal is associated with which Fe/S cluster in the structure in order to develop an understanding of the electron flow within the molecule. Samples of xanthine dehydrogenase wild-type and mutant forms were analyzed with EPR spectroscopy techniques at low and high temperatures. The results showed an altered Fe/S I signal along with an unaltered Fe/S II signal. The converted Cysteine, in the mutant, did affect the Fe/S cluster immediately adjacent to it. Therefore, the Fe/S I signal arises from the Fe/S cluster closest to the Mo and immediately adjacent to the mutated amino acid, and the Fe/S II signal must arise from the more distant Fe/S cluster.

  10. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NARCIS (Netherlands)

    Alling, B.; Kormann, F.H.W.; Grabowski, B; Glensk, A; Abrikosov, I.A.

    2016-01-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite

  11. Polarized laser selective excitation and electron paramagnetic resonance of Er3+ centers in SrLaAlO4 crystals

    NARCIS (Netherlands)

    Wells, J. P. R.; Yamaga, M.; Mosses, R. W.; Han, T. P. J.; Gallagher, H. G.; Yosida, T.

    2000-01-01

    The crystal growth and optical and magnetic spectroscopies of perovskite phase, strontium lanthanium aluminate (SrLaAlO4) doped with trivalent erbium ape reported. Electron paramagnetic resonance of SrLaAlO4:1% Er3+ identifies two distinct Er3+ ion centers in this material: a tetragonal (C-4v)

  12. [Determination of lifetime and remoteness of mechanical injury using electron-paramagnetic resonance spectra of the skeletal muscles].

    Science.gov (United States)

    Shakar'iants, Zh E

    2009-01-01

    This study was designed to evaluate the possibility to use electron-paramagnetic resonance (EPMR) spectra of skeletal muscles for the post-mortem diagnosis of intravital character and prescription of mechanical injury. Objective criteria were developed for the determination of the prescription (intravital character) of the injury.

  13. Characterization of the Iron-Sulfur Clusters in Xanthine Dehydrogenase Using Electron Paramagnetic Resonance Spectroscopy and Magnetic Coupling Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J. Robert

    2004-02-04

    Xanthine dehydrogenase is a metalloenzyme that is present in numerous eukaryotic and prokaryotic organisms. It contains molybdenum, two different iron-sulfur clusters, and flavin. While the structures of both iron-sulfur clusters were known, it was unclear as to which structure was in which location. Electron paramagnetic resonance spectroscopy probes the paramagnetic qualities of molecules or ions. With this technology we wished to understand which EPR spectrum was associated with which iron-sulfur cluster by looking at magnetic coupling between the paramagnetic Mo(V) oxidation state and the reduced iron-sulfur clusters. We then assigned the clusters to their corresponding locations. The spin-spin interactions observed between Mo(V) and Fe-S I in xanthine dehydrogenase at low temperature show that Fe-S I is the closer site in contrast to Fe-S II.

  14. Electronic control of interface ferromagnetic order and exchange-bias in paramagnetic-antiferromagnetic epitaxial bilayers.

    Science.gov (United States)

    Pandey, Parul; Das, Tanmay; Rana, Rakesh; Parmar, Jayesh B; Bhattacharyya, Somnath; Rana, Dhanvir Singh

    2015-02-21

    The hetero-epitaxially engineered magnetic phases, formed due to entanglement of the spin, charge and lattice degrees of freedom, at the atomically sharp interfaces of complex oxide heterostructures are indispensable for devising multifunctional devices. In the quest for novel and superior spintronics functionalities, we have explored the interface magnetism in the epitaxial bilayer of atypical magnetic and electronic states, i.e., of paramagnetic metallic and antiferromagnetic (AFM) insulating phases. In this framework, we observe an unusually strong ferromagnetic order and large exchange-bias fields generated at the interface of the bilayers of metallic CaRuO3 and AFM insulating manganite. The magnetic moment of the interface ferromagnetic order increases linearly with increasing thickness (7-90 nm) of the metallic CaRuO3 layer. This linear scaling signifying an electronic (non-magnetic) control of the interface magnetism and a non-monotonic dependence of the exchange-bias on metallic layers evolve as novel spintronics attributes in atypical bilayers.

  15. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, A.; Duchamp, M.; Boothroyd, C. B.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Ney, A.; Ney, V. [Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Altenberger Str. 69, 4040 Linz (Austria); Galindo, P. L. [Departamento de Ingeniería Informática, Universidad de Cádiz, 11510 Cádiz (Spain); Kaspar, T. C.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)

    2013-12-28

    We study planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al{sub 2}O{sub 3}), as well as the Co:ZnO/Al{sub 2}O{sub 3} interface, using aberration-corrected transmission electron microscopy and electron energy-loss spectroscopy. Co:ZnO samples that were deposited using pulsed laser deposition and reactive magnetron sputtering are both found to contain extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3–4 Co:ZnO layers next to the Al{sub 2}O{sub 3} substrate. The stacking fault density is in the range of 10{sup 17} cm{sup −3}. We also measure the local lattice distortions around the stacking faults. It is shown that despite the relatively high density of planar defects, lattice distortions, and small compositional variation, the Co:ZnO films retain paramagnetic properties.

  16. Decomposition study of the electron paramagnetic resonance spectrum of irradiated alanine.

    Science.gov (United States)

    Vanhaelewyn, G C; Amira, S A; Mondelaers, W K; Callens, F J

    2000-02-01

    Recent Electron Paramagnetic Resonance (EPR) studies on alanine powders as a function of irradiation dose and temperature on the one hand and single crystal Electron Nuclear DOuble Resonance (ENDOR) studies on the other hand, showed the presence of at least three radicals contributing to the total alanine EPR spectrum. The latter spectrum obtained after irradiation at room temperature (RT), is dominated by the well-known stable-alanine-radical (SAR) CH3C*HCOO-, also denoted R1. Appropriate heating of irradiated alanine causes the relative contribution of R1 to decrease, resulting in a spectrum mainly caused by the H-abstraction radical CH3C*(NH3)COO-, denoted R2. Although the EPR spectrum of these two radicals could be satisfactorily simulated, their influence on dose reconstruction has not been reported yet. Therefore, a detailed Maximum Likelihood Common Factor Analysis (MLCFA) study has been performed on EPR spectra from polycrystalline alanine samples, after irradiation and heat treatments. Conclusions concerning the number of contributing radicals and their influence on the RT irradiated alanine EPR spectrum will be made.

  17. Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts

    Science.gov (United States)

    Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  18. Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture

    Science.gov (United States)

    Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.

    2018-01-01

    Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.

  19. Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells

    Science.gov (United States)

    Jiang, J. H.; Zhou, Y.; Korn, T.; Schüller, C.; Wu, M. W.

    2009-04-01

    Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells is studied via the fully microscopic kinetic spin Bloch equation approach where all the scatterings, such as the electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb, electron-hole exchange (the Bir-Aronov-Pikus mechanism) and the s-d exchange scatterings, are explicitly included. The Elliott-Yafet mechanism is also incorporated. From this approach, we study the spin relaxation in both n -type and p -type Ga(Mn)As quantum wells. For n -type Ga(Mn)As quantum wells, where most Mn ions take the interstitial positions, we find that the spin relaxation is always dominated by the D’yakonov-Perel’ (DP) mechanism in the metallic region. Interestingly, the Mn concentration dependence of the spin relaxation time is nonmonotonic and exhibits a peak. This is due to the fact that the momentum scattering and the inhomogeneous broadening have different density dependences in the nondegenerate and degenerate regimes. For p -type Ga(Mn)As quantum wells, we find that the Mn concentration dependence of the spin relaxation time is also nonmonotonic and shows a peak. The cause of this behavior is that the s-d exchange scattering (or the Bir-Aronov-Pikus) mechanism dominates the spin relaxation in the high Mn concentration regime at low (or high) temperature, whereas the DP mechanism determines the spin relaxation in the low Mn concentration regime. The Elliott-Yafet mechanism also contributes to the spin relaxation at intermediate temperatures. The spin relaxation time due to the DP mechanism increases with increasing Mn concentration due to motional narrowing, whereas those due to the spin-flip mechanisms decrease with it, which thus leads to the formation of the peak. The temperature, photoexcitation density, and magnetic field dependences of the spin relaxation time in p -type Ga(Mn)As quantum wells are investigated systematically with the underlying physics revealed. Our results are

  20. A study of Roman glass by reflectance and electron paramagnetic resonance spectroscopies

    Science.gov (United States)

    Mirti, P.; Ferrari, R. P.; Laurenti, E.; Casoli, A.

    1993-08-01

    Reflectance and electron paramagnetic resonance (EPR) spectroscopies were used to study 25 fragments of Roman glass. Colour coordinates were used for an unbiased classification of the glasses in colour groups, which accounted for the presence of blue, blue-green, green, yellow-green, yellow and purple samples. Reflectance spectra were recorded in the 250-2500 nm wavelength range and showed absorption bands characteristic of Fe II, Fe III and Mn III ions; furthermore, Co II and Cu II bands were observed in the spectra of the blue glasses. A decrease of the absorbance ratio of Fe II to Fe III ions was observed moving from blue-green to green and yellow-green glasses; however, yellow fragments still proved to be reduced glasses. EPR spectra displayed the characteristic patterns of Fe III and Mn II ions, with g-values in the 2-5 interval and spectral features depending on the relative content of the two elements. The characteristic pattern of the V IV ion ( g ≈ 2) and signals due to the formation of iron-sulphur complexes ( g ≈ 6) appeared in the spectrum of a dark yellow glass, recorded at 77 K.

  1. Antioxidant activity in hepatopancreas of the shrimp (Pleoticus muelleri) by electron paramagnetic spin resonance spectrometry.

    Science.gov (United States)

    Díaz, Ana C; Fernández Gimenez, Analía V; Mendiara, Sara N; Fenucci, Jorge L

    2004-05-19

    Free radical scavenging properties of hepatopancreas extracts of Pleoticus muelleri were evaluated by electron paramagnetic spin resonance spectrometry methods (EPR) against the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The present study was carried out to characterize different physiological stages of the shrimp under environmental and nutritional stress, evaluating the effect on growth, survival, and functional morphology of the hepatopancreas. Feeding trials were carried out on juveniles (1 g initial weight) held in aquaria. Each diet, with different concentrations of vitamins A and E, was tested in triplicate groups during 25 days. The control groups were fed with fresh squid mantle and with a vitamin-free diet. For all of the diets, the extracts exhibited strong DPPH radical scavenging activity, suggesting that the tissue is a powerful natural antioxidant. Individuals fed with different concentrations of vitamin E showed the strongest effect on the DPPH radicals, reducing the DPPH radicals to 50%, after an incubation period of 3 min. In contrast, the extracts of control animals, fed with squid mantle, had the weakest antioxidant activity (4%). These data indicated that the presence of vitamin E in the diet can provide immediate protection against free radicals.

  2. Investigation of Mn Implanted LiNbO{sub 3} applying electron paramagnetic resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.; Ila, D. [Alabama A and M Univ., Normal, AL (United States); Poker, D.B.; Hensley, D.K. [Oak Ridge National Lab., TN (United States). Solid State Div.

    1997-10-01

    The effect of ion implantation on the LiNbO{sub 3} crystal is studied using electron paramagnetic resonance spectroscopy (EPR). EPR measurements on these crystals were performed as a function of ion species Mn and Fe and fluence at room temperature. Also the effect of the laser illumination on the EPR signal was determined by illuminating the crystal in situ and measuring the decay and growth of the EPR signal. LiNbO{sub 3}:Mn{sup 2+} at a depth of approximately 200 nm was formed by implantation of 2.5 {times} 10{sup 14} Mncm{sup 2} and 1 {times} 10{sup 17} Mn/cm{sup 2} at 2 MeV. The implanted samples were compared with bulk doped crystals. It was found that the decay and growth of Mn EPR for the implanted crystal is very small compared with the bulk doped LiNbO{sub 3}:Mn crystal. This was found to be primarily due to the spin concentration on the crystals. On the other, hand the decay time of the high fluence is about 40% slower than the decay of the low fluence implanted crystal.

  3. Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization

    Science.gov (United States)

    Durand, Sylvain; Frapart, Yves-Michel; Kerebel, Maud

    2017-11-01

    Spatial electron paramagnetic resonance imaging (EPRI) is a recent method to localize and characterize free radicals in vivo or in vitro, leading to applications in material and biomedical sciences. To improve the quality of the reconstruction obtained by EPRI, a variational method is proposed to inverse the image formation model. It is based on a least-square data-fidelity term and the total variation and Besov seminorm for the regularization term. To fully comprehend the Besov seminorm, an implementation using the curvelet transform and the L 1 norm enforcing the sparsity is proposed. It allows our model to reconstruct both image where acquisition information are missing and image with details in textured areas, thus opening possibilities to reduce acquisition times. To implement the minimization problem using the algorithm developed by Chambolle and Pock, a thorough analysis of the direct model is undertaken and the latter is inverted while avoiding the use of filtered backprojection (FBP) and of non-uniform Fourier transform. Numerical experiments are carried out on simulated data, where the proposed model outperforms both visually and quantitatively the classical model using deconvolution and FBP. Improved reconstructions on real data, acquired on an irradiated distal phalanx, were successfully obtained.

  4. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  5. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    Science.gov (United States)

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  6. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging.

    Science.gov (United States)

    Pursley, Randall H; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C; Pohida, Thomas J

    2006-02-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (L(f)) of 300MHz to facilitate in vivo studies. This relatively low frequency L(f), in conjunction with our approximately 10MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented.

  7. Electron paramagnetic resonance in Zn{sub 1-x}Co{sub x}O

    Energy Technology Data Exchange (ETDEWEB)

    Acosta-Humanez, F. [Departamento de Fisica, Grupo de Fisica Aplicada, Universidad Nacional de Colombia-Sede Bogota, Carrera 30 No. 45-03, edificio 404 (Colombia); Cogollo Pitalua, R. [Departamento de Fisica, Grupo de Materiales y Fisica Aplicada, Universidad de Cordoba, Monteria, Carrera 6 No. 76 103 (Colombia); Almanza, O., E-mail: oaalmanzam@unal.edu.co [Departamento de Fisica, Grupo de Fisica Aplicada, Universidad Nacional de Colombia-Sede Bogota, Carrera 30 No. 45-03, edificio 404 (Colombia)

    2013-03-15

    In this paper is reported the Electron Paramagnetic Resonance (EPR) studies in Zn{sub 1-x}Co{sub x}O powder, with 0.01{<=}x{<=}0.05, at many temperatures (105-250 K). These samples were synthesized by the sol-gel method (citrate route). Results suggest that the ferromagnetism behavior of the materials is governed by ferromagnetic coupling among cobalt ions. For cobalt concentration higher than 3% were obtained mean size particle higher than 25 nm, measured by X-ray diffraction, and for this were also observed shallow free radical. - Highlights: Black-Right-Pointing-Pointer Zn{sub 1-x}Co{sub x}O with 0.01{<=}x{<=}0.05 were synthesized by sol-gel method (citrate rute). Black-Right-Pointing-Pointer For Co concentration higher than 3% the mean size particle are higher than 25 nm. Black-Right-Pointing-Pointer There are shallow free radicals when the mean size particle is higher than 25 nm. Black-Right-Pointing-Pointer Ferromagnetism is the behavior in Co-doped ZnO.

  8. Electron paramagnetic resonance and low-field microwave absorption in the manganese–gallium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, H., E-mail: herlinda_m@yahoo.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-186, México DF 04510 (Mexico); Alvarez, G., E-mail: memodin@yahoo.com [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P. Adolfo López Mateos, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico); Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Conde-Gallardo, A. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Zamorano, R. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P. Adolfo López Mateos, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico)

    2015-07-01

    Microwave absorption measurements in MnGa{sub 2}O{sub 4} powders are carried out at X-band (8.8–9.8 GHz) in 92–296 K temperature range. For all temperatures, the electron paramagnetic resonance (EPR) spectra show a single broad line due to Mn{sup 2+} ions. Temperature dependence of the EPR parameters: the peak-to-peak linewidth (ΔH{sub pp}), the integrated intensity (I{sub EPR}) and the g-factor, suggests the presence of magnetic fluctuations that precede to antiferromagnetic ordering at low temperature. Additionally, the low-field microwave absorption (LFMA) is used to give further information on this material, giving also evidence of these magnetic fluctuations. - Highlights: • We have investigated the microwave absorption in MnGa{sub 2}O{sub 4} powders in 92–296 K temperature range. • EPR spectra suggest the presence of magnetic fluctuations that proceed to antiferromagnetic ordering at low temperature. • LFMA signal give also evidence of these magnetic fluctuations.

  9. Characterization of self-assembling copolymers in aqueous solutions using Electron Paramagnetic Resonance and Fluorescence spectroscopy.

    Science.gov (United States)

    Beghein, N; Rouxhet, L; Dinguizli, M; Brewster, M E; Ariën, A; Préat, V; Habib, J L; Gallez, B

    2007-02-12

    Electron Paramagnetic Resonance and fluorescence spectroscopy have been used to determine the micropolarity and microviscosity of self-assembling systems based on mmePEG-p(CL-co-TMC) having different PEG chain lengths and different CL/TMC ratios and PEG/MOG/SA (45/5/50) polymers with different PEG chain lengths. Four reporter probes have been used: two spin probes, 16-doxyl stearic acid and 5-doxylstearic acid, and two fluorescent probes, pyrene and 1,3-bis(1-pyrenyl) propane (P3P). We found that the micelles based on mmePEG-p(CL-co-TMC) polymers are of a biphasic nature. The micelles are made of a hydrophilic corona with low viscosity while the core of the micelle is more hydrophobic and more viscous. The outer shell is made up of PEG chains, the hydrophobic part of the chains making the core. The partial hydration of the shell seems to lead to a looser chain network than that associated with deeper domains in the micelles. By contrast, in micelles composed of PEG/MOG/SA, there is no clear domain separation. This is consistent with a spatial configuration of random polymeric chains forming a loose network. In these micelles, the microviscosity is low and the hydrophobicity is high.

  10. Sensor fusion of electron paramagnetic resonance and magnetorelaxometry data for quantitative magnetic nanoparticle imaging

    Science.gov (United States)

    Coene, A.; Leliaert, J.; Crevecoeur, G.; Dupré, L.

    2017-03-01

    Magnetorelaxometry (MRX) imaging and electron paramagnetic resonance (EPR) are two non-invasive techniques capable of recovering the magnetic nanoparticle (MNP) distribution. Both techniques solve an ill-posed inverse problem in order to find the spatial MNP distribution. A lot of research has been done on increasing the stability of these inverse problems with the main objective to improve the quality of MNP imaging. In this paper a proof of concept is presented in which the sensor data of both techniques is fused into EPR-MRX, with the intention to stabilize the inverse problem. First, both techniques are compared by reconstructing several phantoms with different sizes for various noise levels and calculating stability, sensitivity and reconstruction quality parameters for these cases. This study reveals that both techniques are sensitive to different information from the MNP distributions and generate complementary measurement data. As such, their merging might stabilize the inverse problem. In a next step we investigated how both techniques need to be combined to reduce their respective drawbacks, such as a high number of required measurements and reduced stability, and to improve MNP reconstructions. We were able to stabilize both techniques, increase reconstruction quality by an average of 5% and reduce measurement times by 88%. These improvements could make EPR-MRX a valuable and accurate technique in a clinical environment.

  11. Isotope effect on electron paramagnetic resonance of boron acceptors in silicon

    Science.gov (United States)

    Stegner, A. R.; Tezuka, H.; Andlauer, T.; Stutzmann, M.; Thewalt, M. L. W.; Brandt, M. S.; Itoh, K. M.

    2010-09-01

    The fourfold degeneracy of the boron acceptor ground state in silicon, which is easily lifted by any symmetry-breaking perturbation, allows for a strong inhomogeneous broadening of the boron-related electron paramagnetic resonance (EPR) lines, e.g., by a random distribution of local strains. However, since EPR of boron acceptors in externally unstrained silicon was reported initially, neither the line shape nor the magnitude of the residual broadening observed in samples with high-crystalline purity were compatible with the low concentrations of carbon and oxygen point defects, being the predominant source of random local strain. Adapting a theoretical model which has been applied to understand the acceptor ground-state splitting in the absence of a magnetic field as an effect due to the presence of different silicon isotopes, we show that local fluctuations of the valence-band edge due to different isotopic configurations in the vicinity of the boron acceptors can quantitatively account for all inhomogeneous broadening effects in high-purity Si with a natural isotope composition. Our calculations show that such an isotopic perturbation also leads to a shift in the g value of different boron-related resonances, which we could verify in our experiments. Further, our results provide an independent test and verification of the valence-band offsets between the different Si isotopes determined in previous works.

  12. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S

    2017-11-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic radical formation activity on three types of lignin (two types of organosolv lignin, and a lignin rich residue from wheat straw hydrolysis) brought about by two different fungal laccases, derived from Trametes versicolor (Tv) and Myceliophthora thermophila (Mt), respectively. Laccase addition to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047-2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin. The experimental data verified that the laccases acted upon the insoluble lignin substrates in the suspensions. When the action on the lignin substrates of the two laccases were compared on equal enzyme dosage levels (by activity units on syringaldazine) the Mt laccase exerted a significantly faster radical formation than the Tv laccase on all three types of lignin substrates. When comparing the equal laccase dose rates on the three lignin substrates the enzymatic radical formation rate on the wheat straw lignin residue was consistently higher than those of the organosolv lignins. The pH-temperature optimum for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33°C and pH 5.8, 33°C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR methodology provides a new type of enzyme assay of laccases on lignin. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    Science.gov (United States)

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore types and help detect technologically important trace elements.

  14. Coordination and ion-ion interactions of chromium centers in alkaline earth zinc borate glasses probed by electron paramagnetic resonance and optical spectroscopy

    Science.gov (United States)

    Sumalatha, B.; Omkaram, I.; Rajavardana Rao, T.; Linga Raju, Ch

    2013-05-01

    Electron paramagnetic resonance (EPR), optical absorption and FT-IR studies have been carried out on chromium ions incorporated in alkaline earth zinc borate glasses. The EPR spectra exhibit two resonance signals with effective g values at g ≈ 1.99 and ≈1.97. The resonance signal at g ≈ 1.99 is attributed to the contribution from both the exchange coupled Cr3+-Cr3+ ion pairs and the isolated Cr3+ ions and the resonance signal at g ≈ 1.97 is due to Cr5+ ions. The paramagnetic susceptibility (χ) was calculated from the EPR data at various (123-303 K) temperatures and the Curie temperature (θp) was calculated from the 1/χ-T graph. The optical absorption spectra exhibit three bands at ˜360 nm, ˜440 nm and a broad band at ˜615 nm characteristic of Cr3+ ions in an octahedral symmetry. From the observed band positions, the crystal-field splitting parameter Dq and the Racah parameters (B and C) have been evaluated. From the ultraviolet edges, the optical band gap energies (Eopt) and Urbach energy (ΔE) are calculated. The theoretical optical basicity (Λth) of these glasses has also been evaluated. Chromium ions doped alkaline earth zinc borate glasses show BO3 and BO4 structural units in the FT-IR studies.

  15. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes.

    Science.gov (United States)

    Cangiotti, Michela; Battistelli, Michela; Salucci, Sara; Falcieri, Elisabetta; Mattioli, Michele; Giordani, Matteo; Ottaviani, Maria Francesca

    2017-01-01

    Different asbestiform zeolite fibers of the erionite (termed GF1 and MD8, demonstrated carcinogenic) and offretite (termed BV12, suspected carcinogenic) families were investigated by analyzing the electron paramagnetic resonance (EPR) spectra of selected surfactant spin probes and transmission electron microscopy (TEM) images in the presence of model membranes-cetyltrimethylammonium (CTAB) micelles, egg-lecithin liposomes, and dimyristoylphosphatidylcholine (DMPC) liposomes. This was undertaken to obtain information on interactions occurring at a molecular level between fibers and membranes which correlate with entrance of fibers into the membrane model or location of the fibers at the external or internal membrane interfaces. For CTAB micelles, all fibers were able to enter the micelles, but the hair-like structure and chemical surface characteristics of GF1 modified the micelle structure toward a bilayer-like organization, while MD8 and BV12, being shorter fibers and with a high density of surface interacting groups, partially destroyed the micelles. For liposomes, GF1 fibers partially penetrated the core solution, but DMPC liposomes showed increasing rigidity and organization of the bilayer. Conversely, for MD8 and BV12, the fibers did not cross the membrane demonstrating a smaller membrane structure perturbation. Scolecite fibers (termed SC1), used for comparison, presented poor interactions with the model membranes. The carcinogenicity of the zeolites, as postulated in the series SC1fibers.

  16. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  17. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    S.A. Mendanha

    2012-06-01

    Full Text Available Electron paramagnetic resonance (EPR spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2. The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h, which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  18. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il [KHNP Radiation Health Institute, Gyeongju (Korea, Republic of)

    2017-04-15

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  19. Characterization of iron, manganese, and copper synthetic hydroxyapatites by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  1. Analysis of Gamma-irradiated Soybean Components by Electron Paramagnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.R. R. de; Quadrado, M.G.O.; Mastro, N.L. del [Center of Radiation Technology, IPEN-CNEN/SP, P. O.BOX 11049, 05422-700 Sao Paulo (Brazil)

    2007-07-01

    Soybean (Glycine max) seeds contain besides oil and protein, important phytochemicals that have been shown in recent years to offer important health benefits. Soybean contains at least six classes of antioxidant compounds: flavonol, isoflavones, anthocyanins, proanthocyanidins, tocopherols, and poly carboxylic acids. An increasing number of studies have documented the significant value of many classes of these compounds, mainly isoflavones, not only as potent antioxidants, but also as antitumor agents and cardio protective compounds. Food irradiation is gaining increasing attention around the world but it is not a worldwide approved treatment yet. Electron paramagnetic resonance, EPR, is considered the most important technique to detect free-radicals on food. Results from a previous work showed that irradiated soybean could be detected by EPR only when higher doses were employed. This study was undertaken to investigate the radiation response of the diverse parts of the soy seed: hull or seed coat, cotyledons, hilum and hypocotyl axis or germ, from different soybean cultivars. Soybean samples were obtained from the National Soybean Research Center (Embrapa-Soja), Londrina, Brazil, separated in their components and gamma-irradiated in a Gamma cell 220 (AECL) with doses of 0.1 and 2.0 kGy at a dose rate of 2.9 kGy/h. EPR measurements were performed on an X-band spectrometer (ER 041 XG Microwave Bridge, Bruker). Both irradiation and EPR measurements were performed at room temperature (20-25 C). The results showed that the EPR signal intensity correlated with the ionizing radiation dose, although different cultivars presented differences in their radiation response. The main EPR peak corresponding to free radical presented differences in shape and intensity. The hull and the hilum presented signals higher and easier to be analyzed than the whole bean, indicating strong differences in radiation sensitivity of soybean components. (Author)

  2. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  3. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  4. Simulation of the S2 state multiline electron paramagnetic resonance signal of photosystem II: a multifrequency approach.

    OpenAIRE

    Ahrling, K A; Pace, R J

    1995-01-01

    The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at bot...

  5. A solid state paramagnetic maser device driven by electron spin injection

    NARCIS (Netherlands)

    Watts, S. M.; van Wees, B. J.

    2006-01-01

    In response to an external, microwave-frequency magnetic field, a paramagnetic medium will absorb energy from the field that drives the magnetization dynamics. Here we describe a new process by which an external spin-injection source, when combined with the microwave field spin pumping, can drive

  6. Measurement of free radicals using electron paramagnetic resonance spectroscopy during open aorto-iliac arterial reconstruction.

    Science.gov (United States)

    Majewski, Wacław; Krzyminiewski, Ryszard; Stanisić, Michał; Iskra, Maria; Krasiński, Zbigniew; Nowak, Marek; Dobosz, Bernadeta

    2014-11-27

    Aortic cross-clamping during abdominal aortic aneurysm (AAA) open repair leads to development of ischemia-reperfusion injury. Electron paramagnetic resonance spectroscopy (EPR) spin-trapping is a valuable method of direct measurement of free radicals. The objective of the study was to evaluate the results of EPR as a direct method of free radical measurement and degree of inflammatory response in open operative treatment of patients with AAA and aorto-iliac occlusive disease (AIOD). The study was performed on a group of 32 patients with AAA and 25 patients with AIOD scheduled for open repair. Peripheral venous blood for EPR spectroscopy and for SOD, GPx, ox-LDL, Il-6, TNF-alfa, CRP, and HO-1 were harvested. Selected parameters were established accordingly to specified EPR and immunohistochemical methods and analyzed between groups by Mann-Whitney U test and Wilcoxon matched-pairs signed-ranks test with Bonferroni correction. Free radicals level was correlated with the time of the aortic cross-clamping after the reperfusion of he first and second leg in AAA (r=0.7; r=0.47). ox-LDL in AAA decreased 5 min after reperfusion of the first leg (32.99 U/L, range: 14.09-77.12) and 5 min after reperfusion of the second leg (26.75 U/L, range: 11.56-82.12) and 24 h after the operation (25.85 U/L, range: 14.29-49.70). HO-1 concentration increased to above the level before intervention 24 h after surgery. The activities of GPx and SOD decreased 5 min after the first-leg reperfusion in AAA. Twenty-four hours after surgery, inflammatory markers increased in AAA to CRP was 14.76 ml/l (0.23-38.55), IL-6 was 141.22 pg/ml (84.3-591.03), TNF-alfa was 6.82 pg/ml (1.76-80.01) and AIOD: CRP was 18.44 mg/l (2.56-33.14), IL-6: 184.1 pg/ml (128.46-448.03), TNF-alfa was 7.74 pg/ml (1.74-74.74). EPR spin-trapping demonstrates temporarily elevated level of free radicals in early phase of reperfusion, leading to decrease antioxidants in AAA. Elevated free radical levels decreased 24 h after

  7. Biophysical Characterisation of Globins and Multi-Heme Cytochromes Using Electron Paramagnetic Resonance and Optical Spectroscopy

    Science.gov (United States)

    Desmet, Filip

    Heme proteins of different families were investigated in this work, using a combination of pulsed and continuous-wave electron paramagnetic resonance (EPR) spectroscopy, optical absorption spectroscopy, resonance Raman spectroscopy and laser flash photolysis. The first class of proteins that were investigated, were the globins. The globin-domain of the globin-coupled sensor of the bacterium Geobacter sulfurreducens was studied in detail using different pulsed EPR techniques (HYSCORE and Mims ENDOR). The results of this pulsed EPR study are compared with the results of the optical investigation and the crystal structure of the protein. The second globin, which was studied, is the Protoglobin of Methanosarcina acetivorans, various mutants of this protein were studied using laser flash photolysis and Raman spectroscopy to unravel the link between this protein's unusual structure and its ligand-binding kinetics. In addition to this, the CN -bound form of this protein was investigated using EPR and the influence of the strong deformation of the heme on the unusual low gz values is discussed. Finally, the neuroglobins of three species of fishes, Danio rerio, Dissostichus mawsoni and Chaenocephalus aceratus are studied. The influence of the presence or absence of two cysteine residues in the C-D and D-region of the protein on the EPR spectrum, and the possible formation of a disulfide bond is studied. The second group of proteins that were studied in this thesis belong to the family of the cytochromes. First the Mouse tumor suppressor cytochrome b561 was studied, the results of a Raman and EPR investigation are compared to the Human orthologue of the protein. Secondly, the tonoplast cytochrome b561 of Arabidopsis was investigated in its natural form and in two double-mutant forms, in which the heme at the extravesicular side was removed. The results of this investigation are then compared with two models in literature that predict the localisation of the hemes in this

  8. An electron paramagnetic resonance and magnetically modulated microwave absorption characterization of thermochromic (Ba, Li)-Mn oxides

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Coyoacan, DF 04510 (Mexico)]. E-mail: memodin@yahoo.com; Zamorano, R. [Departamento de Ciencias de los Materiales, ESFM-IPN, Edificio 9, Av. Instituto Politecnico Nacional S/N, Col. San Pedro Zacatenco, DF 07738 (Mexico); Heiras, J. [Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, 22800 Ensenada BC (Mexico); Castellanos, M. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, 04510 Mexico DF (Mexico); Valenzuela, R. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Coyoacan, DF 04510 (Mexico)

    2007-09-15

    We report electron paramagnetic resonance (EPR) and magnetically modulated microwave absorption spectroscopy (MAMMAS) studies on powdered BaMnO{sub 3} and Li{sub 2}MnO{sub 3} in the 77-300 K temperature range. The two oxides showed one single-line EPR spectra at room temperature. For Li{sub 2}MnO{sub 3} the absorption line changed continuously with temperature, and showed a paramagnetic behavior in the whole temperature range. For BaMnO{sub 3} an additional signal was observed below {approx}196 K; at low temperature (<135 K) the original signal has practically vanished. The changes in the g-factor, peak-to-peak linewidth ({delta}H {sub pp}) and integrated intensity (I {sub EPR}) as a function of temperature are studied. The MAMMAS spectrum for Li{sub 2}Mn0{sub 3} showed a monotonic increase with temperature; this result confirmed its paramagnetic behavior. For BaMnO{sub 3} the MAMMAS signal exhibited a maximum at T {sub max}=139 K, approximately the temperature for the color change.

  9. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    Science.gov (United States)

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  10. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    Science.gov (United States)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76

  11. Hyperfine interaction of Er3+ ions in Y2SiO5 : An electron paramagnetic resonance spectroscopy study

    Science.gov (United States)

    Guillot-Noël, O.; Goldner, Ph.; Du, Y. Le; Baldit, E.; Monnier, P.; Bencheikh, K.

    2006-12-01

    Electron paramagnetic resonance (EPR) spectroscopy of rare earth ions in crystals is a powerful tool to analyze the hyperfine structure of the rare earth ground state. This can be useful for coherent spectroscopy and quantum information applications where the hyperfine structure of the electronic levels is used. In this work, we give a detailed analysis of the hyperfine structure of the ground state [I15/24(0)] of Er3+ ions in Y2SiO5 . The electronic Zeeman, hyperfine, and quadrupole matrices are obtained from angular variations of the magnetic field in three orthogonal crystal planes. An excellent agreement is obtained between experimental and simulated magnetic field positions and relative intensities of EPR lines.

  12. Determination of the Antioxidant Status of the Skin by In Vivo-Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Silke Barbara Lohan

    2015-08-01

    Full Text Available Organisms produce free radicals which are essential for various metabolic processes (enzymatic oxidation, cellular respiration, signaling. Antioxidants are important chemical compounds that specifically prevent the oxidation of substances by scavenging radicals, especially reactive oxygen species (ROS. Made up of one or two unpaired electrons, ROS are free radicals that are highly reactive and can attack other metabolites. By using electron paramagnetic resonance (EPR spectroscopy, it is possible to measure paramagnetic substances such as free radicals. Therefore the dermal antioxidant activity can be determined by applying semi-stable radicals onto the skin and measuring the antioxidant-induced radical scavenging activity in the skin. In recent years, EPR has been developed as a spectroscopic method for determining the antioxidant status in vivo. Several studies have shown that an additional uptake of dietary supplements, such as carotenoids or vitamin C in physiological concentrations, provide a protective effect against free radicals. Using the EPR technique it could be demonstrated that the radical production in stress situations, such as irradiation with infrared and visible light, was reduced with time. However, not only the oral uptake of antioxidants, but also the topical application of antioxidants, e.g., a hyperforin-rich cream, is very useful against the development of oxidative stress. Regular application of a hyperforin-rich cream reduced radical formation. The skin lipids, which are very important for the barrier function of the skin, were also stabilized.

  13. Dissociation of O(2-)2 defects into paramagnetic O(-) in wide band-gap insulators - A magnetic susceptibility study of magnesium oxide

    Science.gov (United States)

    Batllo, F.; Leroy, R. C.; Parvin, K.; Freund, F.

    1990-01-01

    The magnetic susceptibility of single-crystal MgO has been measured in the temperature range 300-1000 K, using a Faraday balance. The high-purity crystal (less than 100 ppm transition metals), grown from the melt in a H2O-containing atmosphere, was found to be paramagnetic due to the presence of defects on the O(2-) sublattice. The defects derive from OH(-) introduced into the MgO matrix by the dissolution of traces of H2O during crystal growth. The OH(-) converts into O(2-)2 and H2. Each O(2-)2 represents two coupled, spin-paired O(-) states. The observed strongly temperature-dependent paramagnetism can be described by three contributions that overlay the intrinsic diamagnetism of MgO and arise from the low level of transition-metal impurities, O(-) generated by 0(2-)2 dissociation, and O(-) states trapped by quenching from high temperatures from previous experiments.

  14. Electron paramagnetic resonance and photoluminescence investigation of europium local structure in oxyfluoride glass ceramics containing SrF2 nanocrystals

    Science.gov (United States)

    Antuzevics, A.; Kemere, M.; Krieke, G.; Ignatans, R.

    2017-10-01

    Different compositions of europium doped aluminosilicate oxyfluoride glass ceramics prepared in air atmosphere have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy methods. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements show presence of homogenously distributed SrF2 nanocrystals after the heat treatment of the precursor glass. Efficient Eu3+ incorporation in the high symmetry environment of glass ceramics is observed from the photoluminescence spectra. EPR spectra indicate Eu3+ → Eu2+ reduction upon precipitation of crystalline phases in the glass matrix. For composition abundant with Eu2+ in the glassy state such behaviour is not detected. Local structure around europium ions is discussed based on differences in chemical compositions.

  15. A Mononuclear Mn(II) Pseudoclathrochelate Complex Studied by Multi-Frequency Electron-Paramagnetic-Resonance Spectroscopy.

    Science.gov (United States)

    Azarkh, Mykhailo; Penkova, Larysa V; Kats, Svitlana V; Varzatskii, Oleg A; Voloshin, Yan Z; Groenen, Edgar J J

    2014-03-06

    Knowledge of the correlation between structural and spectroscopic properties of transition-metal complexes is essential to deepen the understanding of their role in catalysis, molecular magnetism, and biological inorganic chemistry. It provides topological and, sometimes, functional insight with respect to the active site properties of metalloproteins. The electronic structure of a high-spin mononuclear Mn(II) pseudoclathrochelate complex has been investigated by electron-paramagnetic-resonance (EPR) spectroscopy at 9.5 and 275.7 GHz. A substantial, virtually axial zero-field splitting with D = -9.7 GHz (-0.32 cm(-1)) is found, which is the largest one reported to date for a Mn(II) complex with six nitrogen atoms in the first coordination sphere.

  16. High-field CW electron paramagnetic resonance spectroscopy with Gd(III) tags for structure-dynamics studies of proteorhodopsin

    Science.gov (United States)

    Clayton, Jessica A.; Han, Chung-Ta; Wilson, C. Blake; Qi, Mian; Godt, Adelheid; Goldfarb, Daniella; Sherwin, Mark S.; Han, Songi

    Proteorhodopsin (PR) is a seven-helical transmembrane protein that functions as a light-activated proton pump. Much of the structure of PR has been mapped by solution-state NMR and X-ray crystallography, however it remains difficult to study protein associations and conformational changes. Here we report development of 240 GHz CW electron paramagnetic resonance (EPR) as a tool to determine inter- and intra-protein distances in the range of 1-4 nm under biologically relevant conditions, using S = 7/2 Gd(III)-based complexes as an EPR-active paramagnetic tag. The dipolar coupling between Gd(III) pairs is determined via the width of the central transition in the CW EPR spectrum, allowing for the inference of an interspin distance. Proof-of-principle experiments are demonstrated on Gd-ruler molecules, from cryogenic temperatures up to room temperature. First results applying this method to inter-protein measurement of Gd(III) tagged PR oligomers reveals distances consistent with the penta- or hexameric organization determined by crystal structure. Finally, we present progress towards development of measurement methods that will enable observation of light-induced conformational changes in the EF-loop region of PR at temperatures above the protein dynamical transition. This work is supported by NSF MCB-1617025 and NSF MCB-1244651.

  17. Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, D. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: david.bravo@uam.es; Lagomacini, J.C. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, M.; Martin, P. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, A. [Department Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, F.J. [Department Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Ibarra, A. [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain)

    2009-06-15

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 fused silica irradiated with neutrons at fluences 10{sup 21} and 10{sup 22} n/m{sup 2}, and gamma-ray doses up to 12 MGy. The effects of post-irradiation thermal annealing treatments, up to 850 deg. C, have also been investigated. Paramagnetic oxygen-related defects (POR and NBOHC) and E'-type defects have been identified and their concentration has been measured as a function of neutron fluence, gamma dose and post-irradiation annealing temperature. It is found that neutrons at the highest fluence generate a much higher concentration of defects (mainly E' and POR, both at concentrations about 5 x 10{sup 18} spins/cm{sup 3}) than gamma irradiations at the highest dose (mainly E' at a concentration about 4 x 10{sup 17} spins/cm{sup 3}). Moreover, for gamma-irradiated samples a lower treatment temperature (about 400 deg. C) is required to annihilate most of the observed defects than for neutron-irradiated ones (about 600 deg. C)

  18. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    Science.gov (United States)

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  19. Time-Resolved Electron Paramagnetic Resonance and Theoretical Investigations of Metal-Free Room-Temperature Triplet Emitters.

    Science.gov (United States)

    Matsuoka, Hideto; Retegan, Marius; Schmitt, Lisa; Höger, Sigurd; Neese, Frank; Schiemann, Olav

    2017-09-20

    Utilization of triplets is important for preparing organic light-emitting diodes with high efficiency. Very recently, both electrophosphorescence and electrofluorescence could be observed at room temperature for thienyl-substituted phenazines without any heavy metals ( Ratzke et al. J. Phys. Chem. Lett. , 2016 , 7 , 4802 ). It was found that the phosphorescence efficiency depends on the orientation of fused thiophenes. In this work, the thienyl-substituted phenazines are investigated in more detail by time-resolved electron paramagnetic resonance (EPR) and quantum chemical calculations. Spin dynamics, zero-field splitting constants, and electron-spin structures of the excited triplet states for the metal-free room-temperature triplet emitters are correlated with phosphorescence efficiency. Complete active space self-consistent field (CASSCF) calculations clearly show that the electron spin density distributions of the first excited triplet states are strongly affected by the molecular geometry. For the phosphorescent molecules, the electron spins are localized on the phenazine unit, in which the sulfur atom of the fused thiophene points upward. The electron spins are delocalized onto the thiophene unit just by changing the orientation of the fused thiophenes from upward to downward, resulting in the suppression of phosphorescence. Time-resolved EPR measurements and time-dependent density functional theory (TD-DFT) calculations demonstrate that the electron spins delocalized onto the thiophene unit lead to the acceleration of nonradiative decays, in conjunction with the narrowing of the singlet-triplet energy gap.

  20. Comparative identification of irradiated herbs by the methods of electron paramagnetic resonance and thermoluminescence

    Science.gov (United States)

    Yordanov, N. D.; Gancheva, V.; Radicheva, M.; Hristova, B.; Guelev, M.; Penchev, O.

    1998-12-01

    Non irradiated and γ-irradiated dry herbs savoury ( Savoury), wild thyme ( Thymus serpollorium) and marjoram ( Origanum) with absorbed dose of 8 kGy have been investigated by the methods of elecrtron paramagnetic resonance (EPR) and thermoluminescence (TL). Non-irradiated herbs exhibit only one weak siglet EPR signal whereas in irradiated samples its intensity increase and in addition two satelite lines are recorded. This triplet EPR spectrum is attributed to cellulose free radical generated by irradiation. It has been found that upon keeping the samples under the normal stock conditions the life-time of the cellulose free radical in the examined samples is ˜60-80 days. Thus the conclusion has been made that the presence of the EPR signal of cellulose free radical is unambiguous indication that the sample under study has been irradiated but its absence can not be considered as the opposite evidence. In the case when EPR signal was absent the method of TL has been used to give the final decision about the previous radiation treatment of the sample.

  1. Electron paramagnetic resonance and electron-nuclear double resonance study of the neutral copper acceptor in ZnGeP sub 2 crystals

    CERN Document Server

    Stevens, K T; Setzler, S D; Schünemann, P G; Pollak, T M

    2003-01-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance have been used to characterize the neutral copper acceptor in ZnGeP sub 2 crystals. The copper substitutes for zinc and behaves as a conventional acceptor (i.e. the 3d electrons do not play a dominant role). Because of a high degree of compensation from native donors, the copper acceptors in our samples were initially in the nonparamagnetic singly ionized state (Cu sub Z sub n sup -). The paramagnetic neutral state (Cu sub Z sub n sup 0) was observed when the crystals were exposed to 632.8 nm or 1064 nm laser light while being held at a temperature below 50 K. The g matrix of the neutral copper acceptor is axial g sub p sub a sub r = 2.049 and g sub p sub e sub r sub p = 2.030), with the unique principal direction parallel to the tetragonal c axis of the crystal. The hyperfine and nuclear quadrupole matrices also exhibit c-axis symmetry (A sub p sub a sub r = 87.6 MHz, A sub p sub e sub r sub p = 34.8 MHz and P = 0.87 MHz for sup 6 su...

  2. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  3. Electronic structure of four-coordinate C3v nickel(II) scorpionate complexes: investigation by high-frequency and -field electron paramagnetic resonance and electronic absorption spectroscopies.

    Science.gov (United States)

    Desrochers, Patrick J; Telser, Joshua; Zvyagin, S A; Ozarowski, Andrew; Krzystek, J; Vicic, David A

    2006-10-30

    A series of complexes of formula TpNiX, where Tp*- = hydrotris(3,5-dimethylpyrazole)borate and X = Cl, Br, I, has been characterized by electronic absorption spectroscopy in the visible and near-infrared (NIR) region and by high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy. The crystal structure of TpNiCl has been previously reported; that for TpNiBr is given here: space group = Pmc2(1), a = 13.209(2) A, b = 8.082(2) A, c = 17.639(4) A, alpha = beta = gamma = 90 degrees , Z = 4. TpNiX contains a four-coordinate nickel(II) ion (3d8) with approximate C3v point group symmetry about the metal and a resulting S = 1 high-spin ground state. As a consequence of sizable zero-field splitting (zfs), TpNiX complexes are "EPR silent" with use of conventional EPR; however, HFEPR allows observation of multiple transitions. Analysis of the resonance field versus the frequency dependence of these transitions allows extraction of the full set of spin Hamiltonian parameters. The axial zfs parameter for TpNiX displays pronounced halogen contributions down the series: D = +3.93(2), -11.43(3), -22.81(1) cm(-1), for X = Cl, Br, I, respectively. The magnitude and change in sign of D observed for TpNiX reflects the increasing bromine and iodine spin-orbit contributions facilitated by strong covalent interactions with nickel(II). These spin Hamiltonian parameters are combined with estimates of 3d energy levels based on the visible-NIR spectra to yield ligand-field parameters for these complexes following the angular overlap model (AOM). This description of electronic structure and bonding in a pseudotetrahedral nickel(II) complex can enhance the understanding of similar sites in metalloproteins, both native nickel enzymes and nickel-substituted zinc enzymes.

  4. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.

    Science.gov (United States)

    Sun, Li; Savory, Joshua J; Warncke, Kurt

    2013-08-01

    The design, construction and implementation of a field-programmable gate array (FPGA) -based pulse programmer for pulsed-electron paramagnetic resonance (EPR) experiments is described. The FPGA pulse programmer offers advantages in design flexibility and cost over previous pulse programmers, that are based on commercial digital delay generators, logic pattern generators, and application-specific integrated circuit (ASIC) designs. The FPGA pulse progammer features a novel transition-based algorithm and command protocol, that is optimized for the timing structure required for most pulsed magnetic resonance experiments. The algorithm was implemented by using a Spartan-6 FPGA (Xilinx), which provides an easily accessible and cost effective solution for FPGA interfacing. An auxiliary board was designed for the FPGA-instrument interface, which buffers the FPGA outputs for increased power consumption and capacitive load requirements. Device specifications include: Nanosecond pulse formation (transition edge rise/fall times, ≤3 ns), low jitter (≤150 ps), large number of channels (16 implemented; 48 available), and long pulse duration (no limit). The hardware and software for the device were designed for facile reconfiguration to match user experimental requirements and constraints. Operation of the device is demonstrated and benchmarked by applications to 1-D electron spin echo envelope modulation (ESEEM) and 2-D hyperfine sublevel correlation (HYSCORE) experiments. The FPGA approach is transferrable to applications in nuclear magnetic resonance (NMR; magnetic resonance imaging, MRI), and to pulse perturbation and detection bandwidths in spectroscopies up through the optical range.

  5. Time-resolved electron paramagnetic resonance spectra of photoexcited triplet states of electron-donor-acceptor complexes in frozen solution: Methylated benzenes and chlorinated phthalic anhydrides

    Science.gov (United States)

    Murai, Hisao; Minami, Masashi; I'Haya, Yasumasa J.

    1994-09-01

    Phthalic anhydride (PA) and chlorinated PAs in frozen methyl substituted benzenes provided the time-resolved electron paramagnetic resonance (TREPR) spectra of the electron-donor-acceptor (EDA) complexes. The chlorine substitution of PA reduced the zero-field splitting parameters, D, due to the contribution of the spin-orbit interaction caused by heavy atoms such as chlorine. The increase of the number of methyl group on benzene, which apparently reduced the ionization potential, worked to decrease the D value of the EDA complex. The charge-transfer (CT) ratios were measured more exactly by the absolute value of (Delta m(sub s)) = 1 transition of the triplet states. The major axes of these systems were also safely presumed. The sign of the 100% charge transferred EDA complex was found negative because of the CT ratio plots and the spin-polarization pattern of the TREPR spectra.

  6. Investigation of electronic relaxation in a classic paramagnet by selective-excitation double-Mössbauer techniques: Theory and experiment

    Science.gov (United States)

    Balko, Bohdan

    1986-06-01

    Time dependence of hyperfine interactions, such as that due to electronic spin relaxation, can be observed in Mössbauer transmission spectra and is generally investigated to obtain important information about structure and function of materials. However, relaxation effects in transmission spectra are often masked by inhomogeneous broadening. Also, completely different kinetic paths may lead to similar transmission spectra, making it difficult to interpret the underlying physics. These difficulties can be overcome by using selective-excitation double-Mössbauer (SEDM) techniques. Earlier work indicated that SEDM could be used to (1) determine unambiguously the existence of relaxation, (2) determine directly the kinetic paths of the relaxing system, and (3) measure the relaxation rates between the various relaxing electronic levels. In this paper, these predicted advantages of SEDM are examined theoretically and experimentally. SEDM line-shape theory in the presence of relaxation is developed and calculations using superoperator techniques are used to determine the effects of various physical parameters and experimental conditions on the SEDM spectra and their physical interpretation. As a test and application of the SEDM theory, experiments were performed on tris-(pyrrolidine)dithiocarbamate [Fe(III)], TPDC[Fe(III)], a classic paramagnetic system, already extensively studied by other investigators and thus constituting in our study a well-known ``calibration'' sample. The calculated spectra were compared to the experimental results at 5.4, 8, and 78 K in zero external field. We obtained a base relaxation rate of Ω=5.24×109 sec-1 over the temperature range studied and determined kinetic paths not observed in this compound in previous transmission studies. Thus, SEDM provided new information about a well-known system. On the basis of our SEDM results we were able to determine the actual relaxation kinetics operating in the system at low temperatures and select

  7. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Andras; Ney, A.; Duchamp, Martial; Ney, V.; Boothroyd, Chris; Galindo, Pedro L.; Kaspar, Tiffany C.; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  8. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Simon Meyer

    2009-10-01

    Full Text Available MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs. Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlF(x structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 A. With GDP and AlF(x, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlF(x requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD.

  9. Mn(II) Binding and Subsequent Oxidation by the Multicopper Oxidase MnxG Investigated by Electron Paramagnetic Resonance Spectroscopy.

    Science.gov (United States)

    Tao, Lizhi; Stich, Troy A; Butterfield, Cristina N; Romano, Christine A; Spiro, Thomas G; Tebo, Bradley M; Casey, William H; Britt, R David

    2015-08-26

    The dynamics of manganese solid formation (as MnOx) by the multicopper oxidase (MCO)-containing Mnx protein complex were examined by electron paramagnetic resonance (EPR) spectroscopy. Continuous-wave (CW) EPR spectra of samples of Mnx, prepared in atmosphere and then reacted with Mn(II) for times ranging from 7 to 600 s, indicate rapid oxidation of the substrate manganese (with two-phase pseudo-first-order kinetics modeled using rate coefficients of: k(1obs) = 0.205 ± 0.001 s(-1) and k(2obs) = 0.019 ± 0.001 s(-1)). This process occurs on approximately the same time scale as in vitro solid MnOx formation when there is a large excess of Mn(II). We also found CW and pulse EPR spectroscopic evidence for at least three classes of Mn(II)-containing species in the reaction mixtures: (i) aqueous Mn(II), (ii) a specifically bound mononuclear Mn(II) ion coordinated to the Mnx complex by one nitrogenous ligand, and (iii) a weakly exchange-coupled dimeric Mn(II) species. These findings provide new insights into the molecular mechanism of manganese mineralization.

  10. Rapid and precise determination of zero-field splittings by terahertz time-domain electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Lu, Jian; Ozel, I Ozge; Belvin, Carina A; Li, Xian; Skorupskii, Grigorii; Sun, Lei; Ofori-Okai, Benjamin K; Dincă, Mircea; Gedik, Nuh; Nelson, Keith A

    2017-11-01

    Zero-field splitting (ZFS) parameters are fundamentally tied to the geometries of metal ion complexes. Despite their critical importance for understanding the magnetism and spectroscopy of metal complexes, they are not routinely available through general laboratory-based techniques, and are often inferred from magnetism data. Here we demonstrate a simple tabletop experimental approach that enables direct and reliable determination of ZFS parameters in the terahertz (THz) regime. We report time-domain measurements of electron paramagnetic resonance (EPR) signals associated with THz-frequency ZFSs in molecular complexes containing high-spin transition-metal ions. We measure the temporal profiles of the free-induction decays of spin resonances in the complexes at zero and nonzero external magnetic fields, and we derive the EPR spectra via numerical Fourier transformation of the time-domain signals. In most cases, absolute values of the ZFS parameters are extracted from the measured zero-field EPR frequencies, and the signs can be determined by zero-field measurements at two different temperatures. Field-dependent EPR measurements further allow refined determination of the ZFS parameters and access to the g -factor. The results show good agreement with those obtained by other methods. The simplicity of the method portends wide applicability in chemistry, biology and material science.

  11. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Shi Huahong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)]. E-mail: huahongshi@tom.com; Wang Xiaorong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Luo Yi [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Su Yan [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)

    2005-09-30

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants (BFRs). To confirm its putative oxidative stress-inducing activity, freshwater fish Carassius auratus were injected intraperitoneally with TBBPA. One experiment lasted 3 h to 28 days after a single injection of 100 mg/kg TBBPA, and the other lasted 24 h after a single injection of 0-300 mg/kg TBBPA. Reactive oxygen species (ROS) were trapped by phenyl-tert-butyl nitrone (PBN) and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation product (LPO) content were also determined. A six-line EPR spectrum was detected in the sample prepared in air, and a multiple one was obtained in nitrogen. The observed spectrum in nitrogen fits the simulation one with PBN/{center_dot}OCH{sub 3} and PBN/{center_dot}CH{sub 3} quite well. As compared to the control group, TBBPA significantly induced ROS production marked by the intensity of the prominent spectra in liver and bile. TBBPA (100 mg/kg) also significantly increased PCO content in liver starting 24 h and LPO content 3 days after injection. Either PCO or LPO content showed significant relation with ROS production. Based on the hyperfine constants and shape of the spectrum, ROS induced by TBBPA was determined as {center_dot}OH. The results clearly indicated that TBBPA could induce {center_dot}OH generation and result in oxidative damage in liver of C. auratus.

  12. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    Science.gov (United States)

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  13. Ultraviolet radiation and nanoparticle induced intracellular free radicals generation measured in human keratinocytes by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C

    2014-05-01

    Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Gd$^{3+}$ - Gd$^{3+}$ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance

    CERN Document Server

    Clayton, Jessica A; Godt, Adelheid; Goldfarb, Daniella; Han, Songi; Sherwin, Mark S

    2016-01-01

    Electron paramagnetic resonance spectroscopy in combination with site-directed spin-labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd$^{3+}$ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA---spacer---Gd-PyMTA, with Gd-Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central $|-1/2\\rangle\\rightarrow|1/2\\rangle$ transition occurs at 30 K for Gd-Gd distances up to $\\sim$ 3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to $\\sim$ 2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method i...

  15. Electron paramagnetic resonance and electron-nuclear double-resonance study of Ti sup 3 sup + centres in KTiOPO sub 4

    CERN Document Server

    Setzler, S D; Fernelius, N C; Scripsick, M P; Edwards, G J; Halliburton, L E

    2003-01-01

    Electron paramagnetic resonance and electron-nuclear double resonance have been used to characterize four Ti sup 3 sup + centres in undoped crystals of potassium titanyl phosphate (KTiOPO sub 4 or KTP). These 3d sup 1 defects (S = 1/2) are produced by ionizing radiation (either 60 kV x-rays or 355 nm photons from a tripled Nd:YAG laser), and form when the regular Ti sup 4 sup + ions in the crystal trap an electron. Two of these trapped-electron centres are only observed in hydrothermally grown KTP and the other two are dominant in flux-grown KTP. Both of the Ti sup 3 sup + centres in hydrothermally grown crystals have a neighbouring proton (i.e. an OH sup - molecule). In the flux-grown crystals, one of the Ti sup 3 sup + centres is adjacent to an oxygen vacancy and the other centre is tentatively attributed to a self-trapped electron (i.e. a Ti sup 3 sup + centre with no stabilizing entity nearby). The g matrix and phosphorus hyperfine matrices are determined for all four Ti sup 3 sup + centres, and the proto...

  16. The coupling of lattice vibrations to spin dynamics and electronic properties of paramagnetic Fe and CrN revealed by first-principles methods

    Science.gov (United States)

    Alling, BjöRn

    We report the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron employing the disordered local moments molecular dynamics (DLM-MD). Vibrations strongly affect the distribution of local magnetic moments and the electronic density of states in the paramagnetic regime. When the coupling between vibrations and magnetism is taken into account at the γ- δ transition temperature (1662 K), the lattice distortions cause very similar mean magnetic moments and total electronic density of states of both bcc and fcc structures. Consequently, our simulations suggest that at the γ- δ transition temperature, electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe. In the next step, going beyond the approximation of magnetism as an adiabatically fast degree of freedom, we study paramagnetic CrN using a combination of atomistic spin dynamics and ab-initio molecular dynamics. We demonstrate how the relaxation time scales of the transverse spin dynamics and atomic vibrations are rather similar and study the impact of their explicit coupling on properties such as pair-correlation functions, potential energies, and trajectories.

  17. Pulsed electron paramagnetic resonance study of domain docking in neuronal nitric oxide synthase: the calmodulin and output state perspective.

    Science.gov (United States)

    Astashkin, Andrei V; Chen, Li; Zhou, Xixi; Li, Huiying; Poulos, Thomas L; Liu, Ke Jian; Guillemette, J Guy; Feng, Changjian

    2014-08-28

    The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca(2+)], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca(2+)]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca(2+)-CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.

  18. Electron Paramagnetic Resonance Spectroscopy and Hall Effect Studies of the Effects of Low Energy Electron Irradiation on Gallium Nitride

    National Research Council Canada - National Science Library

    Greene, Kevin

    2003-01-01

    .... Samples produced via molecular beam epitaxy and hydride vapor phase epitaxy, both silicon doped and nominally undoped, were subjected to Van de Graff generator produced monoenergtic electron beams...

  19. Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance

    Directory of Open Access Journals (Sweden)

    Simona Mrakic-Sposta

    2012-01-01

    Full Text Available Despite the growing interest in the role of reactive oxygen species (ROS in health and disease, reliable quantitative noninvasive methods for the assessment of oxidative stress in humans are still lacking. EPR technique, coupled to a specific spin probe (CMH: 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine is here presented as the method of choice to gain a direct measurement of ROS in biological fluids and tissues. The study aimed at demonstrating that, differently from currently available “a posteriori” assays of ROS-induced damage by means of biomolecules (e.g., proteins and lipids spin-trapping EPR provides direct evidence of the “instantaneous” presence of radical species in the sample and, as signal areas are proportional to the number of excited electron spins, lead to absolute concentration levels. Using a recently developed bench top continuous wave system (e-scan EPR scanner, Bruker dealing with very low ROS concentration levels in small (50 μL samples, we successfully monitored rapid ROS production changes in peripheral blood of athletes after controlled exercise and sedentary subjects after antioxidant supplementation. The correlation between EPR results and data obtained by various enzymatic assays (e.g., protein carbonyls and thiobarbituric acid reactive substances was determined too. Synthetically, our method allows reliable, quick, noninvasive quantitative determination of ROS in human peripheral blood.

  20. Effect of Rabi splitting on the low-temperature electron paramagnetic resonance signal of anthracite.

    Science.gov (United States)

    Fedaruk, Ryhor; Strzelczyk, Roman; Tadyszak, Krzysztof; Markevich, Siarhei A; Augustyniak-Jabłokow, Maria Aldona

    2017-01-01

    Specific distortions of the EPR signal of bulk anthracite are observed at low temperatures. They are accompanied by variations in the microwave oscillator frequency and are explained by the manifestation of the Rabi splitting due to the strong coupling between electron spins and the cavity, combined with the use of an automatic frequency-control (AFC) system. EPR signals are recorded at negligible saturation in the temperature range of 4-300K with use of the AFC system to keep the oscillator frequency locked to the resonant frequency of the TM110 cylinder cavity loaded with the sample. For the sample with a mass of 3.6mg the line distortions are observed below 50K and increase with temperature lowering. The oscillator frequency variations are used to estimate the coupling strength as well as the number of spins in the sample. It is shown that the spin-cavity coupling strength is inversely proportional to temperature and can be used for the absolute determination of the number of spins in a sample. Our results indicate that at low temperatures even 10 16 spins of the anthracite sample, with a mass of about 0.5mg, can distort the EPR line. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. High-Frequency and -Field Electron Paramagnetic Resonance of High-Spin Manganese(III) in Porphyrinic Complexes.

    Science.gov (United States)

    Krzystek, J.; Telser, Joshua; Pardi, Luca A.; Goldberg, David P.; Hoffman, Brian M.; Brunel, Louis-Claude

    1999-12-27

    High-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopy has been used to study two complexes of high-spin manganese(III), d(4), S = 2. The complexes studied were (tetraphenylporphyrinato)manganese(III) chloride and (phthalocyanato)manganese(III) chloride. Our previous HFEPR study (Goldberg, D. P.; Telser, J.; Krzystek, J.; Montalban, A. G.; Brunel, L.-C.; Barrett, A. G. M.; Hoffman, B. M. J. Am. Chem. Soc. 1997, 119, 8722-8723) included results on the porphyrin complex; however, we were unable to obtain true powder pattern HFEPR spectra, as the crystallites oriented in the intense external magnetic field. In this work we are now able to immobilize the powder, either in an n-eicosane mull or KBr pellet and obtain true powder pattern spectra. These spectra have been fully analyzed using spectral simulation software, and a complete set of spin Hamiltonian parameters has been determined for each complex. Both complexes are rigorously axial systems, with relatively low magnitude zero-field splitting: D approximately -2.3 cm(-)(1) and g values quite close to 2.00. Prior to this work, no experimental nor theoretical data exist for the metal-based electronic energy levels in Mn(III) complexes of porphyrinic ligands. This lack of information is in contrast to other transition metal complexes and is likely due to the dominance of ligand-based transitions in the absorption spectra of Mn(III) complexes of this type. We have therefore made use of theoretical values for the electronic energy levels of (phthalocyanato)copper(II), which electronically resembles these Mn(III) complexes. This analogy works surprisingly well in terms of the agreement between the calculated and experimentally determined EPR parameters. These results show a significant mixing of the triplet (S = 1) excited state with the quintet (S = 2) ground state in Mn(III) complexes with porphyrinic ligands. This is in agreement with the experimental observation of lower spin ground states in

  2. Application of Electron Paramagnetic Resonance Spectroscopy to Comparative Examination of Different Groups of Free Radicals in Thermal Injuries Treated with Propolis and Silver Sulphadiazine

    Science.gov (United States)

    Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara

    2013-01-01

    Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies. PMID:23762162

  3. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Falchi, Mario; Bertelli, Aldo; Morelli, Roberto; Lo Scalzo, Roberto

    2009-01-01

    There is growing interest in natural chemical compounds from aromatic, spicy, medicinal and other plants with antioxidant properties in order to find new sources of compounds inactivating free radicals generated by metabolic pathways within body tissue and cells, mainly polymorphonuclear leukocytes (PMNs) whose overregulated recruitment and activation generate a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to an imbalance of redox homeostasis and oxidative stress. The aim of this study was to examine whether a propylene glycol extract of Calendula officinalis interferes with ROS and RNS during the PMN respiratory bursts, and to establish the lowest concentration at which it still exerts antioxidant activity by means of luminol-amplified chemiluminescence. Electron paramagnetic resonance (EPR) spectroscopy was also used in order to confirm the activity of the C. officinalis extract. The C. officinalis extract exerted its anti-ROS and anti-RNS activity in a concentration-dependent manner, with significant effects being observed at even very low concentrations: 0.20 microg/ml without L-arginine, 0.10 microg/ml when L-arginine was added to the test with phorbol 12-myristate 13-acetate and 0.05 microg/ml when it was added to the test with N-formyl-methionyl-leucyl-phenylalanine. The EPR study confirmed these findings, 0.20 microg/ml being the lowest concentration of C. officinalis extract that significantly reduced 2,2-diphenyl-1-picrylhydrazyl. These findings are interesting for improving the antioxidant network and restoring the redox balance in human cells with plant-derived molecules as well as extending the possibility of antagonizing the oxidative stress generated in living organisms when the balance is in favor of free radicals as a result of the depletion of cell antioxidants. Copyright 2009 S. Karger AG, Basel.

  4. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Energy Technology Data Exchange (ETDEWEB)

    Javier-Ccallata, Henry, E-mail: henrysjc@gmail.com [Escuela de Ingeniería Electrónica y Telecomunicaciones, Universidad Alas Peruanas Filial Arequipa, Urb. D. A. Carrión G-14, J. L. Bustamante y Rivero, Arequipa (Peru); Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Filho, Luiz Tomaz [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil); Faculdade de Tecnologia e Ciências Exatas, Universidade São Judas Tadeu, Rua Taquari 546, São Paulo, SP (Brazil); Sartorelli, Maria L. [Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Watanabe, Shigueo [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil)

    2013-09-15

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe{sup 2+}and Fe{sup 3+}. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe{sup 3+}. -- Abstract: Natural silicate mineral of pumpellyite, Ca{sub 2}MgAl{sub 2}(SiO{sub 4})(Si{sub 2}O{sub 7})(OH){sub 2}·(H{sub 2}O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe{sup 2+} and Fe{sup 3+}. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe{sup 2+} → e{sup −} + Fe{sup 3+}. On the other hand, EPR measurements reveal six lines of Mn{sup 2+}, and satellites due to hyperfine interaction, superimposed on the signal of Fe{sup 3+} around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe{sup 3+} hides all Mn{sup 2+} lines. The strong growth of this signal indicates that the transitions are due to Fe{sup 3+} dipole–dipole interactions.

  5. Application of the Electron paramagnetic resonance to the ionizing radiation dosimetry; Aplicacion de la Resonancia paramagnetica electronica a la dosimetria de las radiaciones ionizantes

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, 52045 Salazar, Estado de Mexico (Mexico)

    2000-07-01

    The Electron Paramagnetic Resonance (EPR) is defined as the resonant absorption of electromagnetic energy in paramagnetic substances by the spin transition of a non-pairing electron between different energy levels in presence of a magnetic field. (Slighter, 1989). One of the more important characteristic of EPR is that the electron spin levels are subdivided by the electron interaction with the magnetic dipoles of the nearby nucleus giving occasion for a spectral structure called hyperfine structure. In this kind of interactions two limit cases are distinguished: 1. when the non-pairing electron is located in a central ion surrounded of atoms belonging to coordinate molecules. 2. When a non-pairing electron interactioning in the same form with a number of equivalent nucleus, which is common in organic radicals, these will give as result spectra. Some EPR spectrometer can be used to dosimetric purposes by free radicals via. In this work, it is presented the application of EPR to dosimetry of ionizing radiations by free radicals via which allows to determinations of high doses. (Author)

  6. Characterization of Monomeric MnII/III/IV–Hydroxo Complexes from X- and Q-Band Dual Mode Electron Paramagnetic Resonance (EPR) Spectroscopy

    OpenAIRE

    Gupta, Rupal; Taguchi, Taketo; Borovik, A. S.; Hendrich, Michael P.

    2013-01-01

    Manganese–hydroxo species have been implicated in C–H bond activation performed by metalloenzymes, but the electronic properties of many of these intermediates are not well characterized. The present work presents a detailed characterization of three Mnn–OH complexes (where n = II, III, and IV) of the tris[(N′-tert-butylureaylato)-N-ethylene]aminato ([H3buea]3−) ligand using X- and Q-band dual mode electron paramagnetic resonance (EPR). Quantitative simulations for the [MnIIH3buea(OH)]2− comp...

  7. Cobalt(II) "scorpionate" complexes as models for cobalt-substituted zinc enzymes: electronic structure investigation by high-frequency and -field electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Krzystek, J; Swenson, Dale C; Zvyagin, S A; Smirnov, Dmitry; Ozarowski, Andrew; Telser, Joshua

    2010-04-14

    A series of complexes of formula Tp(R,R')CoL, where Tp(R,R'-) = hydrotris(3-R,5-R'-pyrazol-1-yl)borate ("scorpionate") anion (R = tert-butyl, R' = H, Me, 2'-thienyl (Tn), L = Cl(-), NCS(-), NCO(-), N(3)(-)), has been characterized by electronic absorption spectroscopy in the visible and near-infrared (near-IR) region and by high-frequency and -field electron paramagnetic resonance (HFEPR). Reported here are also crystal structures of seven members of the series that have not been reported previously: R' = H, L = NCO(-), N(3)(-); R' = Me, L = Cl(-), NCS(-), NCO(-), N(3)(-); R' = Tn, L = Cl(-), NCS(-). These include a structure for Tp(t-Bu,Me)CoCl different from that previously reported. All of the investigated complexes contain a four-coordinate cobalt(II) ion (3d(7)) with approximate C(3v) point group symmetry about the metal ion and exhibit an S = (3)/(2) high-spin ground state. The use of HFEPR allows extraction of the full set of intrinsic S = (3)/(2) spin Hamiltonian parameters (D, E, and g values). The axial zero-field splitting parameter, D, for all investigated Tp(R,R')CoL complexes is always positive, a fact not easily determined by other methods. However, the magnitude of this parameter varies widely: 2.4 cm(-1) zinc enzymes.

  8. SU-C-BRD-05: Non-Invasive in Vivo Biodosimetry in Radiotherapy Patients Using Electron Paramagnetic Resonance (EPR) Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bahar, N; Roberts, K; Stabile, F; Mongillo, N; Decker, RD; Wilson, LD; Husain, Z; Contessa, J; Carlson, DJ [Yale University School of Medicine, New Haven, Connecticut (United States); Williams, BB; Flood, AB; Swartz, HM [Geisel Medical School at Dartmouth University, Hanover, New Hampshire (United States)

    2015-06-15

    Purpose: Medical intervention following a major, unplanned radiation event can elevate the human whole body exposure LD50 from 3 to 7 Gy. On a large scale, intervention cannot be achieved effectively without accurate and efficient triage. Current methods of retrospective biodosimetry are restricted in capability and applicability; published human data is limited. We aim to further develop, validate, and optimize an automated field-deployable in vivo electron paramagnetic resonance (EPR) instrument that can fill this need. Methods: Ionizing radiation creates highly-stable, carbonate-based free radicals within tooth enamel. Using a process similar to nuclear magnetic resonance, EPR directly measures the presence of radiation-induced free radicals. We performed baseline EPR measurements on one of the upper central incisors of total body irradiation (TBI) and head and neck (H&N) radiotherapy patients before their first treatment. Additional measurements were performed between subsequent fractions to examine the EPR response with increasing radiation dose. Independent dosimetry measurements were performed with optically-stimulated luminescent dosimeters (OSLDs) and diodes to more accurately establish the relationship between EPR signal and delivered radiation dose. Results: 36 EPR measurements were performed over the course of four months on two TBI and four H & N radiotherapy patients. We observe a linear increase in EPR signal with increasing dose across the entirety of the tested range. A linear least squares-weighted fit of delivered dose versus measured signal amplitude yields an adjusted R-square of 0.966. The standard error of inverse prediction (SEIP) is 1.77 Gy. For doses up to 7 Gy, the range most relevant to triage, we calculate an SEIP of 1.29 Gy. Conclusion: EPR spectroscopy provides a promising method of retrospective, non-invasive, in vivo biodosimetry. Our preliminary data show an excellent correlation between predicted signal amplitude and delivered

  9. Overview of ligand versus metal centered redox reactions in tetraaza macrocyclic complexes of nickel with a focus on electron paramagnetic resonance studies

    OpenAIRE

    Telser,Joshua

    2010-01-01

    Copper(II) (3d9, S = 1/2) complexes are stable and widely investigated by electron paramagnetic resonance (EPR) spectroscopy. In contrast, isoelectronic nickel(I) is much less common and much less investigated. Nickel(I), however, is of biological interest as the active site of methyl coenzyme M reductase (MCR) contains a tetraaza macrocyclic ligand, F430, which coordinates NiI in its active form, MCRred1. As result, the redox behavior and spectroscopy of tetraaza macrocyclic complexes of nic...

  10. Precise Determination of Zero-Field Splitting Parameters of Hemin by High-Field and High-Frequency Electron Paramagnetic Resonance

    Science.gov (United States)

    Okamoto, Tsubasa; Ohmichi, Eiji; Okubo, Susumu; Ohta, Hitoshi

    2018-01-01

    The zero-field splitting (ZFS) parameters of Fe(III) protoporphyrin IX chloride, or hemin, a model substance of hemoproteins, were determined precisely by high-field and high-frequency electron paramagnetic resonance (HFEPR). From multi-frequency measurements up to 700 GHz, multiple EPR absorptions were clearly resolved, and the rhombic component of ZFS was directly determined, for the first time, as |E| = 0.055 ± 0.005 cm-1, in addition to the axial component D = 6.90 ± 0.01 cm-1. This finding indicates the essential role of the rhombic symmetry of excited states in the ZFS parameters.

  11. Electronic paramagnetic resonance (EPR) of spices treated by gamma irradiation; Ressonancia paramagnetica eletronica (RPE) aplicada a analise de especiarias irradiadas (com radiacao gama)

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Alexandre Soares; Rodrigues, Rogerio Rivail, E-mail: asleal@cdtn.b [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Serv. de Reator e Irradiacoes; Krambrock, Klaus; Guedes, Kassilio [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2004-07-15

    The treatment of food by ionizing radiation is a method that has been increased in many countries in substitution for the use of chemical products. The knowledge of safe and reliable techniques of detection of irradiated food is a factor that can contribute to the largest acceptance for the consuming market. This work presents the electron paramagnetic resonance (EPR) as method of detection of the irradiated spices rosemary and cilantro. The obtained results indicate that EPR can be used satisfactorily for that group of victuals in the identification of irradiated species and in the determination of the received dose. (author)

  12. Experimental Model for Retrospective Assessment of X-Ray Exposures in Dento-Maxillary Radiology Measured by Electron Paramagnetic Resonance in Tooth Enamel

    Directory of Open Access Journals (Sweden)

    Ioana Costina DÂNŞOREANU

    2009-12-01

    Full Text Available Electron paramagnetic resonance (EPR dosimetry of human tooth enamel has been widely used in measuring radiation doses in various scenarios. For experimental purposes in X-ray diagnostic or therapy human persons can not be involved. For such cases we have developed an EPR dosimetry technique making use of enamel of molars extracted from pigs. The method can evaluate doses and dose-profiles of irradiated teeth at low level as 50 – 100 mGy (in air. EPR-spectra acquisition, data processing and dose assessment were done using non-dedicated equipment, devices and software.

  13. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Second Edition (John A. Weil and James R. Bolton)

    Science.gov (United States)

    Williams, Ffrancon

    2009-01-01

    The detection of electron magnetic resonance by Zavoiskii in the mid 1940s (1) ushered in a golden age of physical and chemical applications. Perhaps no single book did more to stimulate this development of EPR spectroscopy than the classic text by Wertz and Bolton (2) , which appeared in 1972. A revised version, with John A. Weil added as a co-author, was published by Wiley in 1994. This 2007 text is formally described as the second edition of the 1994 version. Wertz died shortly after the publication of the 1994 edition leaving Weil and Bolton as authors. In noting that the senior author (JAW) takes most of the responsibility for the content of this 2007 version, the Preface refers to it at one point as the "third edition", which of course is precisely how older readers will regard it. The main thrust of the book is decidedly on the physical aspects of EPR, so that it nicely complements the more chemical emphasis provided in the recent comprehensive text by Gerson and Hüber (3) . As the authors remark, the 2007 edition does not differ dramatically from the 1994 version. The titles of the 13 chapters remain the same except for chapter 11, which now refers to the "Noncontinuous" instead of the "Time-Dependent" Excitation of Spins. Recent developments are generally accommodated by a few extra pages in each chapter. Thus, chapter 1 on Basic Principles of Paramagnetic Resonance has been expanded from 31 to 36 pages to introduce the topics of parallel-field EPR, time-resolved EPR, "computerology", and EPR imaging. Chapter 2 on Magnetic Interactions is essentially unchanged while chapter 3 on Isotropic Hyperfine Effects has been expanded to include new sections on Deviations from the Simple Multinomial Scheme (3.7) and Some Interesting π-Type Free Radicals (3.9). Section 3.9 provides a useful corrective to the notion that the EPR method can detect and characterize almost any type of radical species. This welcome touch of realism is nicely illustrated by mentioning

  14. Electronic miniband structure, heat capacity and magnetic susceptibility of monolayer and bilayer silicene in TI, VSPM and BI regimes

    Energy Technology Data Exchange (ETDEWEB)

    Yarmohammadi, Mohsen, E-mail: m.yarmohammadi69@gmail.com

    2017-04-11

    In the current work, we theoretically study the electronic band structure (EBS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of three structures including monolayer, AA-stacked and AB-stacked bilayer silicene based on the Kane–Mele Hamiltonian model and Green's function method. The particular attention of this study is paid to the effect of external electric field on the aforementioned physical properties. By variation of the electric field, three phases are found: Topological insulator (TI), valley–spin polarized metal (VSPM) and band insulator (BI). Marvellously, its electronic minibands show that the spin-up contribution of charge carriers with lowest energy bands behaves like relativistic Dirac fermions with linear (parabolic) energy dispersions in monolayer (bilayer) case near the Dirac points. An insightful analysis shows that the maximum and minimum value of EHC peak appear for (AA) AB-stacked bilayer and monolayer silicene in TI (BI) regime while in MS curves appear for (AB) AA-stacked bilayer and monolayer lattices in TI (BI) regime, respectively. Moreover, we have observed a phase transition from antiferromagnetic to ferromagnetic and paramagnetic in the monolayer and bilayer structures in the VSPM regime based on the MS findings, respectively. - Highlights: • Comparison of electronic miniband structure of monolayer and bilayer silicene by using the Kane–Mele model and Green's function technique. • Investigation and comparison the electronic contribution of heat capacity for different configurations of silicene structures. • Observation of phase transition from antiferromagnetic to ferromagnetic and paramagnetic phase in the monolayer and bilayer cases, respectively.

  15. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  16. Electron paramagnetic resonance study of iron(III) and manganese(II) in the glassy and crystalline environments of synthetic fayalite and tephroite

    Science.gov (United States)

    Sur, Sandip K.; Cooney, Thomas F.

    1989-09-01

    Crystals of the olivine minerals, tephroite (Mn2SiO4) and fayalite (Fe2SiO4) containing manganese(II) and iron (II and trace of III), respectively, were synthesized. Glasses were prepared from these crystalline materials by a splat-quench technique. Measurement of electron paramagnetic resonance (EPR) of all these powdered samples at room temperature show that the g-factors of Mn2+ in both glassy and crystalline environments (geff = 2.004) are the same, although the EPR linewidths (for glass, ΔHpp = 200 G; for crystals ΔHpp = 287 G) suggest less clustering of paramagnetic Mn2+ ions in the glass. Mn2+ probably occupies a distorted octahedral site in the tephroite crystal structure, although a four-fold coordination is suggested from other spectroscopic investigation on this glass. The EPR parameters of Fe3+ in synthetic fayalite glass (geff = 2.01 and 6.00; ΔHpp=150 and 1375 G, respectively, for the high and low field resonances) and powdered crystals (geff = 3.31 and ΔHpp = 900 G) indicated that Fe3+ ion in the crystals, is probably located in a distorted tetragonal site M2 and an axial environment has been proposed in the glassy system.

  17. Heterogeneous ordered-disordered structure of the mesodomain in frozen sucrose-water solutions revealed by multiple electron paramagnetic resonance spectroscopies.

    Science.gov (United States)

    Chen, Hanlin; Sun, Li; Warncke, Kurt

    2013-04-02

    The microscopic structure of frozen aqueous sucrose solutions, over concentrations of 0-75% (w/v), is characterized by using multiple continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic and relaxation techniques and the paramagnetic spin probe, TEMPOL. The temperature dependence of the TEMPOL EPR line-shape anisotropy reveals a mobility transition, specified at 205 K in pure water and 255 ± 5 K for >1% (w/v) added sucrose. The transition temperature is >Tg, where Tg is the homogeneous water glass transition temperature, which shows that TEMPOL resides in the mesoscopic domain (mesodomain) at water-ice crystallite boundaries and that the mesodomain sucrose concentrations are comparable at >1% (w/v) added sucrose. Electron spin-echo envelope modulation (ESEEM) spectroscopy of TEMPOL-(2)H2-sucrose hyperfine interactions also indicates comparable sucrose concentrations in mesodomains at >1% (w/v) added sucrose. Electron spin-echo (ESE) detected longitudinal and phase memory relaxation times (T1 and TM, respectively) at 6 K indicate a general trend of increased mesodomain volume with added sucrose, in three stages: 1-15, 20-50, and >50% (w/v). The calibrated TEMPOL concentrations indicate that the mesodomain volume is less than the predicted maximally freeze-concentrated value [80 (w/w); 120% (w/v)], with transitions at 15-20% and 50% (w/v) starting sucrose. An ordered sucrose hydrate phase, which excludes TEMPOL, and a disordered, amorphous sucrose-water glass phase, in which TEMPOL resides, are proposed to compose a heterogeneous mesodomain. The results show that the ratio of ordered and disordered volume fractions in the mesodomain is exquisitely sensitive to the starting sucrose concentration.

  18. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite; Estudo por ressonancia paramagnetica eletronica de defeitos induzidos pelas radiacoes ionizantes na hidroxiapatita do esmalte dentario

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures 65 refs., 40 figs., 5 tabs.

  19. Theoretical studies of the local structure and electron paramagnetic resonance parameters for tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping [Chongqing Jiaotong Univ. (China). School of Science; Li, Ling [Sichuan University of Arts and Science, Dazhou (China). Dept. of Maths and Finance-Economics

    2015-07-01

    The optical spectra, electron paramagnetic resonance parameters (i.e., the spin Hamiltonian parameters, including paramagnetic g factors and the hyperfine structure constants A{sub i}) and the local distortion structure for the tetragonal VO{sup 2+} in C{sub 6}H{sub 7}KO{sub 7} are theoretically studied based on the crystal-field theory and three-order perturbation formulas of a 3d{sup 1} centre in tetragonal site. The magnitude of orbital reduction factor, core polarisation constant κ, and local structure parameters are obtained by fitting the calculated optical spectra and electron paramagnetic resonance parameters to the experimental values. The theoretical results are in reasonable agreement with the experimental values.

  20. Hyperfine interactions of Er3 + ions in Y2SiO5 : Electron paramagnetic resonance in a tunable microwave cavity

    Science.gov (United States)

    Chen, Yu-Hui; Fernandez-Gonzalvo, Xavier; Horvath, Sebastian P.; Rakonjac, Jelena V.; Longdell, Jevon J.

    2018-01-01

    The hyperfine structure of the ground state of erbium-doped yttrium orthosilicate is analyzed with the use of electron paramagnetic resonance experiments in a tunable microwave resonator. This work was prompted by the disagreement between a recent measurement made at zero magnetic field and a previously published spin Hamiltonian. The ability to vary magnetic field strength, resonator frequency, and the orientation of our sample enabled us to monitor how the frequencies of hyperfine transitions change as a function of a vector magnetic field. We arrived at a different set of spin Hamiltonian parameters, which are also broadly consistent with the existing data. We discuss the reliability of our spin Hamiltonian parameters to make predictions outside the magnetic field and frequency regimes of our data. We also discuss why it proved to be difficult to determine spin Hamiltonian parameters for this material and present data collection strategies that improve the model reliability.

  1. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. Report of a co-ordinated research project

    CERN Document Server

    2002-01-01

    Electron paramagnetic resonance (EPR) dosimetry is a physical method for the assessment of absorbed dose from ionising radiation. It is based on the measurement of stable radiation induced radicals in human calcified tissues (primarily in tooth enamel). EPR dosimetry with teeth is now firmly established in retrospective dosimetry. It is a powerful method for providing information on exposure to ionising radiation many years after the event, since the 'signal' is 'stored' in the tooth or the bone. This technique is of particular relevance to relatively low dose exposures or when the results of conventional dosimetry are not available (e.g. in accidental circumstances). The use of EPR dosimetry, as an essential tool for retrospective assessment of radiation exposure is an important part of radioepidemiological studies and also provides data to select appropriate countermeasures based on retrospective evaluation of individual doses. Despite well established regulations and protocols for maintaining radiation pro...

  2. Negative electric susceptibility and magnetism from translational invariance and rotational invariance

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Je Huan, E-mail: koo@kw.ac.kr

    2015-02-01

    In this work we investigate magnetic effects in terms of the translational and rotational invariances of magnetisation. Whilst Landau-type diamagnetism originates from translational invariance, a new diamagnetism could result from rotational invariance. Translational invariance results in only conventional Landau-type diamagnetism, whereas rotational invariance can induce a paramagnetic susceptibility for localised electrons and also a new kind of diamagnetism that is specific to conducting electrons. In solids, the moving electron shows a paramagnetic susceptibility but the surrounding screening of electrons may produce a new diamagnetic response by Lenz's law, resulting in a total susceptibility that tends to zero. For electricity, similar behaviours are obtained. We also derive the DC-type negative electric susceptibility via two methods in analogy with Landau diamagnetism. - Highlights: • The translational invariance of magnetisation. • The rotational invariance of magnetisation. • An electron attached to an electric vortex. • A kind of Landau paramagnetism. • A kind of Pauli diamagnetism.

  3. Barnett effect in paramagnetic states

    Science.gov (United States)

    Ono, Masao; Chudo, Hiroyuki; Harii, Kazuya; Okayasu, Satoru; Matsuo, Mamoru; Ieda, Jun'ichi; Takahashi, Ryo; Maekawa, Sadamichi; Saitoh, Eiji

    2015-11-01

    We report the observation of the Barnett effect in paramagnetic states by mechanically rotating gadolinium (Gd) metal with a rotational frequency of up to 1.5 kHz above the Curie temperature. An in situ magnetic measurement setup comprising a high-speed rotational system and a fluxgate magnetic sensor was developed for the measurement. Temperature dependence of the observed magnetization follows that of paramagnetic susceptibility, indicating that any emergent magnetic field is proportional to the rotational frequency and is independent of temperature. From the proportionality constant of the emergent field, the gyromagnetic ratio of Gd is calculated to be -29 ±5 GHz /T . This study revisits the primordial issue of magnetism with modern technologies to shed new light on the fundamental spin-rotation coupling.

  4. Powderspec, a program for the efficient simulation of spectra of electron paramagnetic resonance of powders with orthorhombic symmetry; Powderspec, un programa para la simulacion eficiente de espectros de resonancia paramagnetica electronica de polvos con simetria ortorrombica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez T, L.; Beltran L, V

    1991-09-15

    In this report a FORTRAN source program which simulates the second order powder pattern and spectrum of electron paramagnetic resonance (EPR) in crystal fields with orthorhombic symmetry using Gauss-Legendre quadratures is given. Also the commentaries which describe each step in detail are presented. (Author)

  5. In-depth magnetic characterization of a [2 × 2] Mn(III) square grid using SQUID magnetometry, inelastic neutron scattering, and high-field electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Konstantatos, Andreas; Bewley, Robert; Barra, Anne Laure

    2016-01-01

    . Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single...

  6. Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V(IV) dopant ions.

    Science.gov (United States)

    Nevjestić, Irena; Depauw, Hannes; Gast, Peter; Tack, Pieter; Deduytsche, Davy; Leus, Karen; Van Landeghem, Melissa; Goovaerts, Etienne; Vincze, Laszlo; Detavernier, Christophe; Van Der Voort, Pascal; Callens, Freddy; Vrielinck, Henk

    2017-09-20

    X-ray diffraction (XRD) and electron paramagnetic resonance spectroscopy (EPR) were combined to study the structural transformations induced by temperature, pressure and air humidity of the "breathing" metal-organic framework (MOF) MIL-53(Al), doped with paramagnetic V(IV) ions, after activation. The correlation between in situ XRD and thermogravimetric analysis measurements showed that upon heating this MOF in air, starting from ambient temperature and pressure, the narrow pore framework first dehydrates and after that makes the transition to a large pore state (lp). The EPR spectra of V(IV)[double bond, length as m-dash]O molecular ions, replacing Al-OH in the structure, also allow to distinguish the as synthesized, hydrated (np-h) and dehydrated narrow pore (np-d), and lp states of MIL-53(Al). A careful analysis of EPR spectra recorded at microwave frequencies between 9.5 and 275 GHz demonstrates that all V(IV)[double bond, length as m-dash]O in the np-d and lp states are equivalent, whereas in the np-h state (at least two) slightly different V(IV)[double bond, length as m-dash]O sites exist. Moreover, the lp MIL-53(Al) framework is accessible to oxygen, leading to a notable broadening of the V(IV)[double bond, length as m-dash]O EPR spectrum at pressures of a few mbar, while such effect is absent for the np-h and np-d states for pressures up to 1 bar.

  7. Characterization of Monomeric MnII/III/IV–Hydroxo Complexes from X- and Q-Band Dual Mode Electron Paramagnetic Resonance (EPR) Spectroscopy

    Science.gov (United States)

    Gupta, Rupal; Taguchi, Taketo; Borovik, A. S.; Hendrich, Michael P.

    2013-01-01

    Manganese–hydroxo species have been implicated in C–H bond activation performed by metalloenzymes, but the electronic properties of many of these intermediates are not well characterized. The present work presents a detailed characterization of three Mnn–OH complexes (where n = II, III, and IV) of the tris[(N′-tert-butylureaylato)-N-ethylene]aminato ([H3buea]3−) ligand using X- and Q-band dual mode electron paramagnetic resonance (EPR). Quantitative simulations for the [MnIIH3buea(OH)]2− complex demonstrated the ability to characterize similar MnII species commonly present in the resting states of manganese-containing enzymes. The spin states of the MnIII and MnIV complexes determined from EPR spectroscopy are S = 2 and 3/2, respectively, as expected for the C3 symmetry imposed by the [H3buea]3− ligand. Simulations of the spectra indicated the constant presence of two MnIV species in solutions of [MnIVH3buea(OH)] complex. The simulations of perpendicular- and parallel-mode EPR spectra allow determination of zero-field splitting and hyperfine parameters for all complexes. For the MnIII and MnIV complexes, density functional theory calculations are used to determine the isotropic Mn hyperfine values, to compare the excited electronic state energies, and to give theoretical estimates of the zero-field energy. PMID:24156406

  8. Characterization of monomeric Mn(II/III/IV)-hydroxo complexes from X- and Q-band dual mode electron paramagnetic resonance (EPR) spectroscopy.

    Science.gov (United States)

    Gupta, Rupal; Taguchi, Taketo; Borovik, A S; Hendrich, Michael P

    2013-11-04

    Manganese-hydroxo species have been implicated in C-H bond activation performed by metalloenzymes, but the electronic properties of many of these intermediates are not well characterized. The present work presents a detailed characterization of three Mn(n)-OH complexes (where n = II, III, and IV) of the tris[(N'-tert-butylureaylato)-N-ethylene]aminato ([H3buea](3-)) ligand using X- and Q-band dual mode electron paramagnetic resonance (EPR). Quantitative simulations for the [Mn(II)H3buea(OH)](2-) complex demonstrated the ability to characterize similar Mn(II) species commonly present in the resting states of manganese-containing enzymes. The spin states of the Mn(III) and Mn(IV) complexes determined from EPR spectroscopy are S = 2 and 3/2, respectively, as expected for the C3 symmetry imposed by the [H3buea](3-) ligand. Simulations of the spectra indicated the constant presence of two Mn(IV) species in solutions of [Mn(IV)H3buea(OH)] complex. The simulations of perpendicular- and parallel-mode EPR spectra allow determination of zero-field splitting and hyperfine parameters for all complexes. For the Mn(III) and Mn(IV) complexes, density functional theory calculations are used to determine the isotropic Mn hyperfine values, to compare the excited electronic state energies, and to give theoretical estimates of the zero-field energy.

  9. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    Energy Technology Data Exchange (ETDEWEB)

    Shames, Alexander I. [Department of Physics, Ben-Gurion University of the Negev, Beersheba 84105 (Israel); Bounioux, Celine [Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990 (Israel); Katz, Eugene A. [Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990 (Israel); Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yerushalmi-Rozen, Rachel [Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Zussman, Eyal [Department of Mechanical Engineering, Technion, Haifa 32000 (Israel)

    2012-03-12

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  10. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    Science.gov (United States)

    Shames, Alexander I.; Bounioux, Céline; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-01

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  11. The impact of adsorption on the localization of spins in graphene oxide and reduced graphene oxide, observed with electron paramagnetic resonance

    Science.gov (United States)

    Kempiński, Mateusz; Florczak, Patryk; Jurga, Stefan; Śliwińska-Bartkowiak, Małgorzata; Kempiński, Wojciech

    2017-08-01

    We report the observations of electronic properties of graphene oxide and reduced graphene oxide, performed with electron paramagnetic resonance technique in a broad temperature range. Both materials were examined in pure form and saturated with air, helium, and heavy water molecules. We show that spin localization strongly depends on the type and amount of molecules adsorbed at the graphene layer edges (and possible in-plane defects). Physical and chemical states of edges play crucial role in electrical transport within graphene-based materials, with hopping as the leading mechanism of charge carrier transport. Presented results are a good basis to understand the electronic properties of other carbon structures made of graphene-like building blocks. Most active carbons show some degree of functionalization and are known of having good adsorptive properties; thus, controlling both phenomena is important for many applications. Sample treatment with temperature, vacuum, and various adsorbents allowed for the observation of a possible metal-insulator transition and sorption pumping effects. The influence of adsorption on the localization phenomena in graphene would be very important if to consider the graphene-based material as possible candidates for the future spintronics that works in ambient conditions.

  12. Application of Numerical Analysis of the Shape of Electron Paramagnetic Resonance Spectra for Determination of the Number of Different Groups of Radicals in the Burn Wounds

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-01-01

    Full Text Available Background. The evidence exists that radicals are crucial agents necessary for the wound regeneration helping to enhance the repair process. Materials and methods. The lineshape of the electron paramagnetic resonance (EPR spectra of the burn wounds measured with the low microwave power (2.2 mW was numerically analyzed. The experimental spectra were fitted by the sum of two and three lines. Results. The number of the lines in the EPR spectrum corresponded to the number of different groups of radicals in the natural samples after thermal treatment. The component lines were described by Gaussian and Lorentzian functions. The spectra of the burn wounds were superposition of three lines different in shape and in linewidths. The best fitting was obtained for the sum of broad Gaussian, broad Lorentzian, and narrow Lorentzian lines. Dipolar interactions between the unpaired electrons widened the broad Gaussian and broad Lorentzian lines. Radicals with the narrow Lorentzian lines existed mainly in the tested samples. Conclusions. The spectral shape analysis may be proposed as a useful method for determining the number of different groups of radicals in the burn wounds.

  13. Hyperfine Interactions in the Electron Paramagnetic Resonance Spectra of Point Defects in Wide-Band-Gap Semiconductors

    Science.gov (United States)

    2014-09-18

    between the 5s electron and the silver nucleus. Breit and Rabi [5] described this hyperfine interaction in the context of the Stern-Gerlach...experiment, and Rabi et al. [6] were the first to directly measure nuclear magnetic moments with this beam technique [7]. 1 quantum angular momentum or spin...is an interruption in the periodicity of a crystal lattice that is localized within a few lattice sites. A crystal lattice is composed of a Bravais

  14. Development of double-pulse lasers ablation system and electron paramagnetic resonance spectroscopy for direct spectral analysis of manganese doped PVA polymer

    Science.gov (United States)

    Khalil, A. A. I.; Morsy, M. A.; El-Deen, H. Z.

    2017-11-01

    Series of manganese-co-precipitated poly (vinyl alcohol) (PVA) polymer were quantitatively and qualitatively analyzed using laser ablation system (LAS) based on double-pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR) spectroscopy. The collinear nanosecond laser beams of 266 and 1064 nm were optimized to focus on the surface of the PVA polymer target. Both laser beams were employed to estimate the natural properties of the excited Mn-PVA plasma, such as electron number density (Ne), electron temperature (Te), and Mn concentration. Individual transition lines of manganese (Mn), carbon (C), lithium (Li), hydrogen (H) and oxygen (O) atoms are identified based on the NIST spectral database. The results show better responses with DP-LIBS than the single-pulse laser induced breakdown spectroscopy (SP-LIBS). On the other hand, the EPR investigation shows characteristic broad peak of Mn-nano-particles (Mn-NPs) in the range of quantum dots of superparamagnetic materials. The line width (peak-to-peak, ΔHpp) and g-value of the observed Mn-EPR peak are ∼20 mT and 2.0046, respectively. The intensities of Mn-emission line at a wavelength 403.07 nm and the Mn-EPR absorption peak were used to accurate quantify the Mn-content in the polymer matrix. The results produce linear trends within the studied concentration range with regression coefficient (R2) value of ∼0.99, and limit of detection (LOD) of 0.026 mol.% and 0.016 mol.%, respectively. The LOD values are at a fold change of about -0.2 of the studied lowest mol.%. The proposed protocols of trace element detection are of significant advantage and can be applied to the other metal analysis.

  15. Analysis of powder and single-crystal electron paramagnetic resonance spectra for manganese(II) protoporphyrin IX myoglobin at various microwave frequencies

    Science.gov (United States)

    Hori, Hiroshi; Ikeda-Saito, Masao; Reed, George H.; Yonetani, Takashi

    Powder and single-crystal electron paramagnetic resonance spectra for manganese(II protoporphyrin IX myoglobin (Mn 2+Mb) were measured at S-, X-, K-, and Q-band microwave frequencies to determine principal g values, hyperfine coupling constants, and zero-field splitting parameters. The effective EPR parameters for the lowest Kramers doublet were found to be g‖ = 1.99, g‖ = 5.90, A‖ = 8.64 mT, and A⊥ = 8.24 mT. Zerofield splitting between the lowest Kramers doublet ( M s = ± {1}/{2}) and the second Kramers doublet ( M s = ± {3}/{2}) was estimated to be 1.39 cm -1. The effective g tensor is approximately axially symmetric. Hyperfine coupling with the 55Mn nucleus was nearly isotropic, but also reflects axial symmetry. The orientation of manganese(II) protoporphyrin plane in single crystals of Mn 2+Mb is nearly identical to that for high-spin iron(III) myoglobin single crystals. The spin-Hamiltonian parameters for Mn 2+Mb are fully consistent with single-crystal or powder spectra obtained at all four microwave frequencies.

  16. Signature of ferro–paraelectric transition in biferroic LuCrO{sub 3} from electron paramagnetic resonance and non-resonant microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G., E-mail: memodin@yahoo.com [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico); Montiel, H. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-186, México DF 04510 (Mexico); Durán, A. [Centro de Nanociencias y Nanotecnología de la Universidad Nacional Autónoma de México, Km. 107, Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800 Ensenada, B.C. México (Mexico); Conde-Gallardo, A. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Zamorano, R. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico)

    2014-12-15

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO{sub 3} is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr{sup 3+} (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH{sub pp}), the g-factor and the integral intensity (I{sub EPR}). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO{sub 3} powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material.

  17. g-Anisotropy of the S2-state manganese cluster in single crystals of cyanobacterial photosystem II studied by W-band electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Matsuoka, Hideto; Furukawa, Ko; Kato, Tatsuhisa; Mino, Hiroyuki; Shen, Jian-Ren; Kawamori, Asako

    2006-07-06

    The multiline signal from the S2-state manganese cluster in the oxygen evolving complex of photosystem II (PSII) was observed in single crystals of a thermophilic cyanobacterium Thermosynechococcus vulcanus for the first time by W-band (94 GHz) electron paramagnetic resonance (EPR). At W-band, spectra were characterized by the g-anisotropy, which enabled the precise determination of the tensor. Distinct hyperfine splittings (hfs's) as seen in frozen solutions of PSII at X-band (9.5 GHz) were detected in most of the crystal orientations relative to the magnetic field. In some orientations, however, the hfs's disappeared due to overlapping of a large number of EPR lines from eight crystallographic symmetry-related sites of the manganese cluster within the unit cell of the crystal. Analysis of the orientation-dependent spectral features yielded the following g-tensor components: g(x) = 1.988, g(y) = 1.981, g(z) = 1.965. The principal values suggested an approximate axial symmetry around the Mn(III) ion in the cluster.

  18. Substitution mechanisms and location of Co2+ ions in congruent and stoichiometric lithium niobate crystals derived from electron paramagnetic resonance data

    Science.gov (United States)

    Grachev, V. G.; Hansen, K.; Meyer, M.; Kokanyan, E. P.; Malovichko, G. I.

    2017-03-01

    Electron paramagnetic resonance (EPR) spectra and their angular dependencies were measured for Co2+ trace impurities in stoichiometric samples of lithium niobate doped with rhodium. It was found that Co2+ substitutes for Li+ in the dominant axial center (CoLi) and that the principal substitution mechanism in stoichiometric lithium niobate is 4Co2+ ↔ 3Li+  +  Nb5+. The four Co2+ ions can occupy the nearest possible cation sites by occupying a Nb site and its three nearest-neighbor Li sites, creating a trigonal pyramid with C3 symmetry, as well as non-neighboring sites (e.g. a CoNb-CoLi pair at the nearest sites on the C3 axis with two nearby isolated single Co2+ ions substituted for Li+). In congruent crystals and samples with Li content enriched by vapor transport equilibrium treatment the excess charge of the Co2+ centers is compensated by lithium vacancies located rather far from the Co2+ ions for the dominant axial center or in the nearest neighborhood for low-symmetry satellite centers (the Co2+ ↔ 2Li+ substitution mechanism). The use of exact numerical diagonalization of the spin-Hamiltonian matrices explains all the details of the EPR spectra and gives a value for hyperfine interaction A || that is several times smaller than that obtained using perturbation formulae. The refined values of A and g-tensor components can be used as reliable cornerstones for ab initio and cluster calculations.

  19. Electron paramagnetic resonance investigations of alpha-Al sub 2 O sub 3 powders doped with Fe sup 3 sup + ions: experiments and simulations

    CERN Document Server

    Buzare, J Y; Klein, J; Scholz, G; Stoesser, R; Nofz, M

    2002-01-01

    Electron paramagnetic resonance (EPR) of Fe sup 3 sup + ions in Al sub 2 O sub 3 is studied in powder samples prepared by different routes and/or modified by thermal or mechanical treatments, with different doping levels and grain sizes. The measurements are performed in various frequency bands (S, X, K, Q and W) and with bimodal detection in X-band. Simulations of the spectra are achieved with a code designed for computing EPR powder spectra described by any spin Hamiltonian including second-, fourth-and sixth-order ZFS terms (S <= 7/2). The linewidths, intensities and lineshapes are accounted for. The lineshape is Gaussian at low Fe sup 3 sup + concentration whereas it is Lorentzian for higher concentration. The linewidths are interpreted as the superimposition of three main contributions: intrinsic linewidth, dipolar broadening and broadening due to lattice imperfections. The latter is tentatively interpreted in terms of quadrupolar spin Hamiltonian parameter distributions treated using first-order pert...

  20. Uniform Field Re-entrant Cylindrical TE[Formula: see text] Cavity for Pulse Electron Paramagnetic Resonance Spectroscopy at Q-band.

    Science.gov (United States)

    Sidabras, Jason W; Reijerse, Edward J; Lubitz, Wolfgang

    2017-01-01

    Uniform field (UF) resonators create a region-of-interest, where the sample volume receives a homogeneous microwave magnetic field ([Formula: see text]) excitation. However, as the region-of-interest is increased, resonator efficiency is reduced. In this work, a new class of uniform field resonators is introduced: the uniform field re-entrant cylindrical TE[Formula: see text] cavity. Here, a UF cylindrical TE[Formula: see text] cavity is designed with re-entrant fins to increase the overall resonator efficiency to match the resonator efficiency maximum of a typical cylindrical TE[Formula: see text] cavity. The new UF re-entrant cylindrical TE[Formula: see text] cavity is designed for Q-band (34 GHz) and is calculated to have the same electron paramagnetic resonance (EPR) signal intensity as a TE[Formula: see text] cavity, a 60% increase in average resonator efficiency [Formula: see text] over the sample, and has a [Formula: see text] profile that is 79.8% uniform over the entire sample volume (98% uniform over the region-of-interest). A new H-type T-junction waveguide coupler with inductive obstacles is introduced that increases the dynamic range of a movable short coupler while reducing the frequency shift by 43% during over-coupling. The resonator assembly is fabricated and tested both on the bench and with EPR experiments. This resonator provides a template to improve EPR spectroscopy for pulse experiments at high frequencies.

  1. Characterization of complexes metal-polymer by electron paramagnetic resonance (EPR); Caracterizacao de complexos polimero-metal por ressonancia paramagnetica eletronica (RPE)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Venina dos; Crespo, Janaina S.; Zeni, Mara [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia. Dept. de Fisica e Quimica]. E-mail: vsantos2@ucs.br; Mangrich, Antonio S. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica

    2003-07-01

    In this work polymeric films of the polyvinyl alcohol (Pva) containing manganese ions (II) were investigated and analysed with enzymes were immobilized from photochemical process. The coordination and structural analysis of the compounds (Pva, Pva-Mn{sup 2+} and Pva-Mn{sup 2+}-enzyme) were all characterized by Electron Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). The results EPR shows that the Pva is diamagnetic, films Pva-Mn{sup 2+} present specters complex of external sphere (g=2; A=96G). The commercial enzyme (DeniLite{sup TM} II S) presents a state triplet where two Cu{sup 2+} interact ferromagnetically. The enzyme when immobilized in the Pva-Mn{sup 2+} it causes to only one small widening of the line due the presence of the Cu{sup 2+}. The Pva-Mn{sup 2+} films present in the IR spectra an absorption at 715 cm{sup -1} attributed at the deformation in the PVA-Mn{sup 2+} complex in plane and out of plane. (author)

  2. Determination of susceptibility and specific heat critical exponents for weak itinerant-electron ferromagnets from vibrating reed experiments

    Science.gov (United States)

    Balakrishnan, K.; Kaul, S. N.

    2002-04-01

    We report the observation of a linear relationship between the magnetic contribution to Young's modulus, ΔE/E0, and inverse magnetic susceptibility χ-1 for amorphous weak itinerant-electron ferromagnets Fe90Zr10 and Fe91Zr9 in the asymptotic critical region near the ferromagnetic-paramagnetic phase transition. The proportionality ΔE(T)/E0~χ-1(T) is shown to provide as accurate a means of determining the asymptotic critical exponent γ and the leading ``correction-to-scaling'' amplitudes for susceptibilty from the ΔE/E0 data as a direct measurement of magnetic susceptibilty does. Similarly, the well-known relation between the magnetic contributions to sound velocity and specific heat is fully exploited to extract accurate estimates for the universal critical amplitude ratio A+/A- and the asymptotic critical exponents α+/- for the specific heat from the sound velocity data. The presently determined values of α+/- and γ, together with the reported value for spontaneous magnetization critical exponent β, not only obey the scaling equalities α+=α- and α+2β+γ=2 but also assert that the atomic magnetic moments in the alloys in question interact with one another through an attractive interaction which decays faster than 1/r5 with the interatomic spacing, r.

  3. Magnetovolume effect in the exchange-enhanced itinerant paramagnet YCo2: Theory and experiment

    Science.gov (United States)

    Zhuravleva, I. P.; Grechnev, G. E.; Panfilov, A. S.; Lyogenkaya, A. A.

    2017-05-01

    A detailed theoretical study of the anomalous magnetovolume effect in the exchange-enhanced itinerant paramagnet YCo2 was carried out based on DFT calculations of the electronic structure in an external magnetic field and further complemented with the experimental data on the behavior of the magnetic susceptibility χ under high hydrostatic pressure. The calculations of the magnetic susceptibility and magnetovolume effect dlnχ/dlnV are in reasonable agreement with the experimental data, indicating the proximity of YCo2 to the ferromagnetic instability.

  4. Electron paramagnetic resonance and optical properties of Cr{sup 3+} doped YAl{sub 3}(BO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Jon-Paul R [Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom); Yamaga, Mitsuo [Department of Mathematical and Design Engineering, Gifu University, Gifu (Japan); Han, Thomas P J [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Honda, Makoto [Faculty of Science, Naruto University of Education, Naruto (Japan)

    2003-01-29

    We report on the electron paramagnetic resonance (EPR) and optical absorption and fluorescence spectroscopy of YAl{sub 3}(BO{sub 3}){sub 4} single crystals doped with 0.2 mol% of trivalent chromium. From EPR we determine that the Cr{sup 3+} ions reside in sites of essentially octahedral symmetry with an orthorhombic distortion. The ground state {sup 4}A{sub 2} splitting is determined to be 2{radical}D{sup 2} + 3E{sup 2} {approx} 1.05 {+-} 0.04 cm{sup -1}, where D and E are fine-structure parameters, and we can attribute this splitting to the combined effect of a low-symmetry distortion and spin-orbit coupling. The g-values and fine-structure parameters D and E of the ground state {sup 4}A{sub 2} are measured to be g{sub x} {approx} g{sub y} {approx} g{sub z} = 1.978 {+-} 0.005, vertical bar D vertical bar = 0.52 {+-} 0.02 cm{sup -1} and vertical bar E vertical bar 0.010 {+-} 0.005 cm{sup -1} respectively. From 10 K optical absorption we have measured the position and crystal-field splittings of the {sup 2}E, {sup 2}T{sub 1}, {sup 4}T{sub 2}, {sup 2}T{sub 2} and {sup 4}T{sub 1} states with the {sup 4}T{sub 2} and {sup 4}T{sub 1} levels appearing as vibronically broadened bands.

  5. An electron paramagnetic resonance study on Sm{sup 3+} and Yb{sup 3+} in KY{sub 3}F{sub 10} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Honda, M. [Faculty of Science, Naruto University of Education, Naruto, Tokushima (Japan); Wells, J.P.R. [FELIX Free Electron Laser Facility, FOM-Institute for Plasma Physics, Rijnhuizen, Nieuwegein (Netherlands); Han, T.P.J.; Gallagher, H.G. [Department of Physics and Applied Physics, University of Strathclyde, Glasgow (United Kingdom)

    2000-10-09

    Electron paramagnetic resonance (EPR) spectra of Sm{sup 3+} and Yb{sup 3+} ions in KY{sub 3}F{sub 10} single crystals have been measured at X-band microwave frequencies and low temperatures. The EPR lines have been fitted to a tetragonal spin Hamiltonian to determine effective g-values (g{sub parallel},g{sub perpendicular}). The observed g-values, (g{sub parallel} = 0.714(2),g{sub perpendicular} = 0.11(1)), for Sm{sup 3+} are in agreement with those calculated via crystal-field J-mixing of the first excited-state multiplet {sup 6}H{sub 7/2} into the groundstate multiplet {sup 6}H{sub 5/2} of Sm{sup 3+} as the second-order perturbation. On the other hand, the observed g-values, (g{sub parallel}=5.363(5), g{sub perpendicular}=1.306(2)) for Yb{sup 3+} are coincident with those calculated via mixing in only the groundstate multiplet {sup 2}F{sub 7/2} as the first-order perturbation because the first excited-state multiplet {sup 2}F{sub 5/2} lies above {approx}10,000 cm{sup -1} from the groundstate. The groundstate eigenfunctions of Sm{sup 3+} and Yb{sup 3+} obtained from the EPR results are close to those calculated from a C{sub 4v} symmetry crystal-field analysis applied to their optical transitions. The distortions of the Sm{sup 3+} and Yb{sup 3+} complexes in KY{sub 3}F{sub 10} are discussed in the term of the crystal-field Hamiltonian in comparison with LiYF{sub 4}. (author)

  6. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    Science.gov (United States)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  7. Blood free Radicals Concentration Determined by Electron Paramagnetic Resonance Spectroscopy and Delayed Cerebral Ischemia Occurrence in Patients with Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala

    2017-09-25

    Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.

  8. An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Daniel R.; Schulthess, Cristian P.; Amonette, James E.; Walter, Eric D.

    2012-12-01

    The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium sized nanopore channels or smaller.

  9. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, D. Allan; Colvin, Joshua; Liu Jiangling; Wang Jianquan; Bachas, Leonidas; Bhattacharrya, Dibakar

    2002-10-11

    The immobilization of biological molecules onto polymeric membranes to produce biofunctional membranes is used for selective catalysis, separation, analysis, and artificial organs. Normally, random immobilization of enzymes onto polymeric membranes leads to dramatic reduction in activity due to chemical reactions involved in enzyme immobilization, multiple-point binding, etc., and the extent of activity reduction is a function of membrane hydrophilicity (e.g. activity in cellulosic membrane >> polysulfone membrane). We have used molecular biology to effect site-specific immobilization of enzymes in a manner that orients the active site away from the polymeric membrane surface, thus resulting in higher enzyme activity that approaches that in solution and in increased stability of the enzyme relative to the enzyme in solution. A prediction of this site-specific method of enzyme immobilization, which in this study with subtilisin and organophosphorus hydrolase consists of a fusion tag genetically added to these enzymes and subsequent immobilization via the anti-tag antibody and membrane-bound protein A, is that the active site conformation will more closely resemble that of the enzyme in solution than is the case for random immobilization. This hypothesis was confirmed using a new electron paramagnetic resonance (EPR) spin label active site titration method that determines the amount of spin label bound to the active site of the immobilized enzyme. This value nearly perfectly matched the enzyme activity, and the results suggested: (a) a spectroscopic method for measuring activity and thus the extent of active enzyme immobilization in membrane, which may have advantages in cases where optical methods can not be used due to light scattering interference; (b) higher spin label incorporation (and hence activity) in enzymes that had been site-specifically immobilized versus random immobilization; (c) higher spin label incorporation in enzymes immobilized onto hydrophilic

  10. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis.

    Science.gov (United States)

    Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M

    2015-03-04

    The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin.

  11. Effect of methanobactin on the activity and electron paramagnetic resonance spectra of the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath.

    Science.gov (United States)

    Choi, Dong W; Antholine, William E; Do, Young S; Semrau, Jeremy D; Kisting, Clint J; Kunz, Ryan C; Campbell, Damon; Rao, Vinay; Hartsel, Scott C; DiSpirito, Alan A

    2005-10-01

    Improvements in the purification of methanobactin (mb) from either Methylosinus trichosporium OB3b(T) or Methylococcus capsulatus Bath resulted in preparations that stimulated methane-oxidation activity in both whole-cell and cell-free fractions of Methylococcus capsulatus Bath expressing the membrane-associated methane monooxygenase (pMMO). By using washed membrane factions with pMMO activities in the 290 nmol propylene oxidized min(-1) (mg protein)(-1) range, activities approaching 400 nmol propylene oxidized min(-1) (mg protein)(-1) were commonly observed following addition of copper-containing mb (Cu-mb), which represented 50-75 % of the total whole-cell activity. The stimulation of methane-oxidation activity by Cu-mb was similar to or greater than that observed with equimolar concentrations of Cu(II), without the inhibitory effects observed with high copper concentrations. Stimulation of pMMO activity was not observed with copper-free mb, nor was it observed when the copper-to-mb ratio was <0.5 Cu atoms per mb. The electron paramagnetic resonance (EPR) spectra of mb differed depending on the copper-to-mb ratio. At copper-to-mb ratios of <0.4 Cu(II) per mb, Cu(II) addition to mb showed an initial coordination by both sulfur and nitrogen, followed by reduction to Cu(I) in <2 min. At Cu(II)-to-mb ratios between 0.4 and 0.9 Cu(II) per mb, the intensity of the Cu(II) signal in EPR spectra was more representative of the Cu(II) added and indicated more nitrogen coordination. The EPR spectral properties of mb and pMMO were also examined in the washed membrane fraction following the addition of Cu(II), mb and Cu-mb in the presence or absence of reductants (NADH or duroquinol) and substrates (CH4 and/or O2). The results indicated that Cu-mb increased electron flow to the pMMO, increased the free radical formed following the addition of O2 and decreased the residual free radical following the addition of O2 plus CH4. The increase in pMMO activity and EPR spectral changes

  12. Levitation in paramagnetic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.A. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)]. E-mail: pdunne2@tcd.ie; Hilton, J. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland); Coey, J.M.D. [School of Physics and CRANN, Trinity Collge, Dublin 2 (Ireland)

    2007-09-15

    Magnetic levitation of diamagnetic and paramagnetic substances in a paramagnetic liquid is explored. Materials ranging from graphite to tin and copper can be made to float at ambient temperature in concentrated solutions of dysprosium nitrate, when an electromagnet or four-block permanent magnet array is used to produce a gradient field. Simulations illustrate the stable regions for levitation above the permanent magnets; and a novel eight-block configuration is proposed, which allows denser materials such as gold or lead to be levitated.

  13. Paramagnetic spin seebeck effect.

    Science.gov (United States)

    Wu, Stephen M; Pearson, John E; Bhattacharya, Anand

    2015-05-08

    We report the observation of the longitudinal spin Seebeck effect in paramagnetic insulators. By using a microscale on-chip local heater, we generate a large thermal gradient confined to the chip surface without a large increase in the total sample temperature. Using this technique at low temperatures (Seebeck effect in the insulating paramagnets Gd3Ga5O12 (gadolinium gallium garnet) and DyScO3 (DSO), using either W or Pt as the spin detector layer. By taking advantage of the strong magnetocrystalline anisotropy of DSO, we eliminate contributions from the Nernst effect in W or Pt, which produces a phenomenologically similar signal.

  14. In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance.

    Science.gov (United States)

    Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2015-03-01

    Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR

  15. Electron paramagnetic resonance analyses of surface radical chemistries of gamma-sterilized orthopedic materials: implications pointing to cytotoxicity via wear debris-induced inflammation.

    Science.gov (United States)

    DiCicco, Michael; Compton, Ryan; Duong, Thanh; Jansen-Varnum, Susan A

    2005-10-01

    In this research, electron paramagnetic resonance (EPR) spin-trapping was utilized to determine if surface radical chemistries occur for gamma (gamma)-sterilized orthopedic materials-ultra-high molecular weight polyethylene (UHMWPE) and the novel, hybrid, diurethane dimethacrylate (DUDMA)-based RHAKOSS. The materials' ability to competitively chelate catalytic ferrous ions (Fe(2+)) or readily reduce ferric ions (Fe(3+)), and hydrogen peroxide (H(2)O(2)) directly, in facilitating the Fenton reaction (FR), is indicative of cytotoxicity. Validations with a radical scavenger aids to confirm a radical mechanism. In conjunction, materials were thermally annealed and characterized by attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) spectroscopy in order to explore accelerated oxidative degradation induced by residual radicals evolving from gamma-sterilization. Particularly, there was a significant decrease in spin-adduct peak areas obtained from the reduction of H(2)O(2) in the presence of RHAKOSS or UHMWPE, evaluated against their respective controls. Additionally, chelated Fe(2+) accelerated the rate of FR. This phenomenon suggests that the materials are not better chelators than the Fe-activating chelator, edta. Neither material had the propensity to readily reduce Fe(3+) to the relevant Fe(2+), as certified by a nonradical mechanism. Alternatively, the false spin-adduct signal acquired when chelated Fe(3+) is employed arises via the nucleophilic addition of water onto the DMPO spin trap. Residual radicals in UHMWPE did not recombine/terminate following thermal annealing in an inert atmosphere. The radicals in RHAKOSS, however, did recombine under mild heating in an oxidizing or inert atmosphere. Both materials displayed quenching of ( )OH; however, for UHMWPE, this mechanism was jointly accountable for its accelerated degradation, evidenced by ATR-FTIR. Quenching of ( )OH by the silica found in RHAKOSS manifested in a competing effect that

  16. Photo-electon paramagnetic resonance and photoacoustic

    Indian Academy of Sciences (India)

    The former appears less probable in view of the relatively slower recovery of. EPR signal. Keywords. Electron paramagnetic resonance; photoacoustic spectroscopy; polyvinyl alcohol. PACS Nos 76.30; 62.65; 61.40. 1. Introduction. Development of materials for holography and non-linear optics, that respond in real time.

  17. Collective modes in cold paramagnetic gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T L; Rubin, P L [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-02-28

    We have obtained a condition for the emergence of spin waves in paramagnetic gases Re >> ImÂ, which is fulfilled only at temperatures of the order of 1 μK. (laser applications and other topics in quantum electronics)

  18. Study of the nature and of the properties of paramagnetic centers observed by electron spin resonance in conjugated polymers; Etude de la nature des propriete des centres paramagnetiques observes par resonance paramagnetique electronique dans les polymeres conjugues

    Energy Technology Data Exchange (ETDEWEB)

    Nechtschein, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    Conjugated polymers contain paramagnetic centers. It is established that these centers are free radicals and a model which defines their electronic structure is proposed. The interactions between these centers are studied, notably by dynamic polarisation experiments. Finally it is shown that the centers have catalytic properties. (author) [French] Les polymeres conjugues contiennent des centres paramagnetiques. L'origine radicalaire de ces centres est etablie et un modele precisant leur structure electronique est propose. Les interactions entre ces centres sont etudiees, notamment a l'aide d'experiences de polarisation dynamique. Des proprietes catalytiques sont mises en evidence. (auteur)

  19. Electron paramagnetic resonance and optical spectroscopy of Yb sup 3 sup + ions in SrF sub 2 and BaF sub 2; an analysis of distortions of the crystal lattice near Yb sup 3 sup +

    CERN Document Server

    Falin, M L; Latypov, V A; Leushin, A M

    2003-01-01

    SrF sub 2 and BaF sub 2 crystals, doped with the Yb sup 3 sup + ions, have been investigated by electron paramagnetic resonance and optical spectroscopy. As-grown crystals of SrF sub 2 and BaF sub 2 show the two paramagnetic centres for the cubic (T sub c) and trigonal (T sub 4) symmetries of the Yb sup 3 sup + ions. Empirical diagrams of the energy levels were established and the potentials of the crystal field were determined. Information was obtained on the SrF sub 2 and BaF sub 2 phonon spectra from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyse the crystal lattice distortions in the vicinity of the impurity ion and the F sup - ion compensating for the excess positive charge in T sub 4. Within the frames of a superposition model, it is shown that three F sup - ions from the nearest surrounding cube, located symmetrically with respect to the C sub 3 axis from the side of the ion-compensator, approach the impurity ion and cling to the axis of the...

  20. Paramagnetic epoxy resin

    Directory of Open Access Journals (Sweden)

    E. C. Vazquez Barreiro

    2017-01-01

    Full Text Available This work illustrates that macrocycles can be used as crosslinking agents for curing epoxy resins, provided that they have appropriate organic functionalities. As macrocycles can complex metal ions in their structure, this curing reaction allows for the introduction of that metal ion into the resin network. As a result, some characteristic physical properties of the metallomacrocycle could be transferred to the new material. The bisphenol A diglycidyl ether (BADGE, n = 0 and hemin (a protoporphyrin IX containing the Fe(III ion, and an additional chloride ligand have been chosen. The new material has been characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier Transform Infrared (FT-IR, Nuclear Magnetic Resonance (NMR, Transmission Electron Microscopy (TEM, and magnetic susceptibility measurements. Fe(III remains in the high-spin state during the curing process and, consequently, the final material exhibits the magnetic characteristics of hemin. The loss of the chlorine atom ligand during the cure of the resin allows that Fe(III can act as Lewis acid, catalyzing the crosslinking reactions. At high BADGE n = 0/hemin ratios, the formation of ether and ester bonds occurs simultaneously during the process.

  1. Susceptibility and hardening of electronic systems to fast transient threats: new challenges ahead

    Directory of Open Access Journals (Sweden)

    F. Sabath

    2004-01-01

    Full Text Available The field of susceptibility and hardening of electronic systems to transient threats has experienced a significant growth during the past ten years. Driven by the development in the area of non-lethal electromagnetic weapons it has become necessary to extend the classical set of transient threats, consisting of LEMP, ESD and NEMP, by a fast transient threat with an extreme bandwidth. The investigation of the susceptibility to those UWB threats, characterized by a bandwidth of more than a quarter of the center frequency, rise times of less than 200 ps and pulse durations in the ns regime, is of special interest. This paper presents an overview of current challenges of the hardening against UWB threats. It discusses recent research trends in transient susceptibility measurements, protection concepts and methods of analysis.

  2. Paramagnetic Europium Salen Complex and Sickle-Cell Anemia

    Science.gov (United States)

    Wynter, Clive I.; Ryan, D. H.; May, Leopold; Oliver, F. W.; Brown, Eugene; Hoffman, Eugene J.; Bernstein, David

    2005-04-01

    A new europium salen complex, Eu(salen)2NH4, was synthesized, and its composition was confirmed by chemical analysis and infrared spectroscopy. Further characterization was carried out by 151 Eu Mössbauer spectroscopy and magnetic susceptibility measurements. Mössbauer spectroscopic measurements were made at varying temperatures between 9 K and room temperature and a value of Debye temperature of 133 ±5 K was computed. Both Mössbauer and magnetic susceptibility measurements confirmed the paramagnetic behavior of this complex and the trivalent state of the europium ion. In view of the fact that the "odd" paramagnetic molecule NO has been shown to reverse sickling of red blood cells in sickle cell anemia, the interaction between the paramagnetic europium salen complex and sickle cells was examined after incubation with this europium complex and shown to have similar effects.

  3. On the influence of heat conduction on paramagnetic dispersion and absorption curves

    NARCIS (Netherlands)

    Valkering, T.P.; van der Marel, L.C.

    1970-01-01

    Starting from the model of Casimir and Du Pré, which has been refined by Eisenstein, an expression for the differential paramagnetic susceptibility of a paramagnetic material, placed in a (gaseous or liquid) bath, is derived. This expression contains among others the coefficient of heat conduction

  4. Electron paramagnetic resonance studies of manganese centers in SrTiO.sub.3./sub.: Non-Kramers Mn.sup.3+./sup. ions and spin-spin coupled Mn.sup.4+./sup. dimers

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Dejneka, Alexandr; Lančok, Ján; Trepakov, Vladimír; Jastrabík, Lubomír; Badalyan, A. G.

    2012-01-01

    Roč. 111, č. 10 (2012), "104119-1"-"104119-6" ISSN 0021-8979. [International Symposium on Integrated Functionalities (ISIF) /22./. San Juan, Puerto Rico , 13.06.2010-16.06.2010] R&D Projects: GA TA ČR TA01010517; GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(CZ) CZ.2.16/3.1.00/22132 Institutional research plan: CEZ:AV0Z10100522 Keywords : electron paramagnetic resonance * X- and Q-band * SrTiO 3 doped with Mn Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.210, year: 2012

  5. Electron Paramagnetic Resonance (EPR) Spectroscopy in Studies of the Protective Effects of 24-Epibrasinoide and Selenium against Zearalenone-Stimulation of the Oxidative Stress in Germinating Grains of Wheat.

    Science.gov (United States)

    Filek, Maria; Łabanowska, Maria; Kurdziel, Magdalena; Sieprawska, Apolonia

    2017-05-27

    These studies concentrate on the possibility of using selenium ions and/or 24-epibrassinolide at non-toxic levels as protectors of wheat plants against zearalenone, which is a common and widespread mycotoxin. Analysis using the UHPLC-MS technique allowed for identification of grains having the stress-tolerant and stress-sensitive wheat genotype. When germinating in the presence of 30 µM of zearalenone, this mycotoxin can accumulate in both grains and hypocotyls germinating from these grains. Selenium ions (10 µM) and 24-epibrassinolide (0.1 µM) introduced together with zearalenone decreased the uptake of zearalenone from about 295 to 200 ng/g and from about 350 to 300 ng/g in the grains of tolerant and sensitive genotypes, respectively. As a consequence, this also resulted in a reduction in the uptake of zearalenone from about 100 to 80 ng/g and from about 155 to 128 ng/g in the hypocotyls from the germinated grains of tolerant and sensitive wheat, respectively. In the mechanism of protection against the zearalenone-induced oxidative stress, the antioxidative enzymes-mainly superoxide dismutase (SOD) and catalase (CAT)-were engaged, especially in the sensitive genotype. Electron paramagnetic resonance (EPR) studies allowed for a description of the chemical character of the long-lived organic radicals formed in biomolecular structures which are able to stabilize electrons released from reactive oxygen species as well as the changes in the status of transition paramagnetic metal ions. The presence of zearalenone drastically decreased the amount of paramagnetic metal ions-mainly Mn(II) and Fe(III)-bonded in the organic matrix. This effect was particularly found in the sensitive genotype, in which these species were found at a smaller level. The protective effect of selenium ions and 24-epibrassinolide originated from their ability to inhibit the destruction of biomolecules by reactive oxygen species. An increased ability to defend biomolecules against zearalenone

  6. Electron Paramagnetic Resonance (EPR Spectroscopy in Studies of the Protective Effects of 24-Epibrasinoide and Selenium against Zearalenone-Stimulation of the Oxidative Stress in Germinating Grains of Wheat

    Directory of Open Access Journals (Sweden)

    Maria Filek

    2017-05-01

    Full Text Available These studies concentrate on the possibility of using selenium ions and/or 24-epibrassinolide at non-toxic levels as protectors of wheat plants against zearalenone, which is a common and widespread mycotoxin. Analysis using the UHPLC-MS technique allowed for identification of grains having the stress-tolerant and stress-sensitive wheat genotype. When germinating in the presence of 30 µM of zearalenone, this mycotoxin can accumulate in both grains and hypocotyls germinating from these grains. Selenium ions (10 µM and 24-epibrassinolide (0.1 µM introduced together with zearalenone decreased the uptake of zearalenone from about 295 to 200 ng/g and from about 350 to 300 ng/g in the grains of tolerant and sensitive genotypes, respectively. As a consequence, this also resulted in a reduction in the uptake of zearalenone from about 100 to 80 ng/g and from about 155 to 128 ng/g in the hypocotyls from the germinated grains of tolerant and sensitive wheat, respectively. In the mechanism of protection against the zearalenone-induced oxidative stress, the antioxidative enzymes—mainly superoxide dismutase (SOD and catalase (CAT—were engaged, especially in the sensitive genotype. Electron paramagnetic resonance (EPR studies allowed for a description of the chemical character of the long-lived organic radicals formed in biomolecular structures which are able to stabilize electrons released from reactive oxygen species as well as the changes in the status of transition paramagnetic metal ions. The presence of zearalenone drastically decreased the amount of paramagnetic metal ions—mainly Mn(II and Fe(III—bonded in the organic matrix. This effect was particularly found in the sensitive genotype, in which these species were found at a smaller level. The protective effect of selenium ions and 24-epibrassinolide originated from their ability to inhibit the destruction of biomolecules by reactive oxygen species. An increased ability to defend biomolecules

  7. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    Avinash A. Deshpande

    2017-09-12

    Sep 12, 2017 ... Moreover, for a classical gas of such charged particles with paramagnetic orbital moment, the inherently positive feedback may lead to an enhanced magnetic susceptibility − possibly even to a spontaneous ordering of the classical orbital magnetic moments. 2. Stochastic dissipative dynamics in a magnetic.

  8. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    2006-01-01

    with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...

  9. The effect of PVP on morphology, optical properties and electron paramagnetic resonance of Zn0.5Co0.5Fe2-xPrxO4 nanoparticles

    Science.gov (United States)

    Bitar, Z.; El-Said Bakeer, D.; Awad, R.

    2017-07-01

    Zinc Cobalt nano ferrite doped with Praseodymium, Zn0.5Co0.5Fe2-xPrxO4 (0 ≤ x ≤ 0.2), were prepared by co-precipitation method from an aqueous solution containing metal chlorides and two concentrations of poly(vinylpyrrolidone) (PVP) 0 and 30g/L as capping agent. The samples were characterized using X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible optical spectroscopy, Fourier transform infrared (FTIR) and Electron Paramagnetic Resonance (EPR). XRD results display the formation of cubic spinel structure with space group Fd3m and the lattice parameter (a) is slightly decreased for PVP capping samples. The particle size that determined by TEM, decreases for PVP capping samples. The optical band energy Eg increases for PVP capping samples, confirming the variation of energy gap with the particle size. The FTIR results indicate that the metal oxide bands were shifted for the PVP capping samples. EPR data shows that the PVP addition increases the magnetic resonance field and hence decreases the g-factor.

  10. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  11. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    OpenAIRE

    YAVKIN B.V.; G.V. Mamin; Gafurov, M. R.; ORLINSKII S.B.

    2015-01-01

    Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...

  12. Ligand-Based Redox Isomers of [Zn(II)(C(28)H(40)NO(2))(2)]: Molecular and Electronic Structures of a Diamagnetic Green and a Paramagnetic Red Form.

    Science.gov (United States)

    Chaudhuri, Phalguni; Hess, Martina; Hildenbrand, Knut; Bill, Eckhard; Weyhermüller, Thomas; Wieghardt, Karl

    1999-06-14

    The tridentate trianion of N,N-bis(2-hydroxy-di-3,5-tert-butylphenyl)amine, H(3)L(3), forms 1:1 and 2:1 complexes with di-, tri-, or tetravalent transition metal ions where it can exist in four oxidation levels (C(28)H(40)NO(2))(3)(-)(,2)(-)(,1)(-)(,0), which are herein designated as L(3), L(2), L(1), and L(0), respectively; (L(2))(2)(-) and (L(0))(0) are paramagnetic (S = (1)/(2)), whereas the other two are diamagnetic (S = 0). We have synthesized the complexes [Zn(L(2))(NEt(3))] (1), green [Zn(L(1))(2)] (2), and red [Zn(L(2))(L(0))] (3). Complexes 1, 2 (Girgis, A. Y.; Balch, A. L. Inorg. Chem. 1975, 14, 2724), and 3 have been characterized by X-ray crystallography: 1, orthorhombic, Iba2, a = 23.194(4) Å, b = 25.132(4) Å, c = 11.741(2) Å, V = 6844(2) Å(3), Z = 8; 2, orthorhombic, C222(1), a = 19.494(3) Å, b = 24.065(4) Å, c = 23.458(4) Å, V = 11004(3) Å(3), Z = 8; 3, triclinic, P&onemacr;, a = 11.677(2) Å, b = 12.192(2) Å, c = 20.522(3) Å, alpha = 83.68(2), beta = 74.37(2), gamma = 75.40(2)(o), V = 2720.0(8) Å(3), Z = 2. Complexes 1 and 3 are paramagnetic with one and two (uncoupled) unpaired electrons per zinc ion (3-290 K), respectively, whereas 2 is diamagnetic. Complexes 2 and 3 are shown to be ligand-based redox isomers. Red 3 converts into the green form 2 in tetrahydrofuran solution under anaerobic conditions via an intramolecular process (k = 0.7 x 10(-)(3) s(-)(1) at 23 degrees C; DeltaH() = 15.6 +/- 0.6 kcal mol(-)(1), DeltaS() = -20.4 +/- 1.8 cal mol(-)(1) K(-)(1)). The electronic structures of 1 and 3 have been investigated by X-band EPR and (1)H NMR spectroscopy. The electro-, spectroelectrochemistry, and magnetochemistry of all complexes are reported.

  13. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge alloys

    Directory of Open Access Journals (Sweden)

    Shimakura Hironori

    2017-01-01

    Full Text Available For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  14. Paramagnetic states in pristine and metallofullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Bartl, A. [Inst. fuer Festkoerperforschung im Inst. fuer Festkoerper- und Werkstofforschung e.V. Dresden (Germany); Dunsch, L. [Inst. fuer Festkoerperforschung im Inst. fuer Festkoerper- und Werkstofforschung e.V. Dresden (Germany); Kirbach, U. [Inst. fuer Festkoerperforschung im Inst. fuer Festkoerper- und Werkstofforschung e.V. Dresden (Germany); Schandert, B. [Inst. fuer Festkoerperforschung im Inst. fuer Festkoerper- und Werkstofforschung e.V. Dresden (Germany)

    1995-03-15

    Most pristine fullerenes give very weak ESR signals. The ESR spectra of soot extract and of the C-60, C-70 and higher fullerene fractions show signals of the same ESR linewidths of 0.1 mT but the spin concentrations differ markedly. The lowest spin concentration is found in the soot extract. After different temperature treatments the spin concentration increases. In pure C-60 and C-70 material the spin concentration is about 10{sup 17} spins/g, this is one unpaired electron per 1 000 to 10 000 fullerene molecules. Remarkable alternations of the concentrations of paramagnetic states and of the ESR linewidths can be observed with increasing treatment temperature above 300 C at pure fullerenes. It is concluded that the structure of the paramagnetic states does change. The reason is the removal of oxygen. Furthermore ESR spectroscopy is used to characterize the electronic states of endohedral systems. Fullerenes produced in presence of lanthanum, scandium, holmium and yttrium show resolved ESR spectra in solutions and lanthanum, scandium and holmium already in the solid soot extract which can be interpreted in terms of hyperfine coupling of an unpaired fullerene electron with the nuclear magnetic moments of the metal atoms. In some cases two species of the same metallofullerenes can be observed. Using these results different geometrical models of the investigated metallofullerenes can be predicted. (orig.)

  15. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    Energy Technology Data Exchange (ETDEWEB)

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.

    1987-05-01

    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  16. A Biomimetic Manganese Model for Artificial Photosynthesis : Q-band Electron Paramagnetic Resonance Study of a Novel Mn2(II,III) Complex

    OpenAIRE

    Kiflemariam, Jordanos

    2005-01-01

    In natural oxygen-producing photosynthesis solar energy is stored as chemical energy, in carbohydrates, fats and amino acids, using water as electron source. The large transmembrane protein complex, PSII, is the key enzyme in the light-driven reactions. Water oxidation is accomplished by a triad in PSII in which the Mn-cluster plays an important role. In the artificial photosynthetic system, nature’s photosynthesis will be mimicked such that hydrogen, a sustainable energy source, can be produ...

  17. Single-crystal electron paramagnetic resonance study of the interstitial position of Mn(II) in dipotassium diaquabis(malonato-{kappa}{sup 2}O,O') zincate(II) dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, B; Mithira, S; Sambasiva Rao, P, E-mail: psr52in@yahoo.co.in [Department of Chemistry, Pondicherry University, Puducherry 605014 (India)

    2011-06-01

    A single-crystal electron paramagnetic resonance (EPR) spectroscopic investigation of Mn(II)-doped dipotassium diaquabis(malonato-{kappa}{sup 2}O,O') zincate dihydrate has been carried out at X-band frequencies at 300 K. The EPR spectrum at room temperature exhibits more than 30 lines along a crystallographic axis, suggesting the presence of two types of impurities in the lattice. Single crystals, rotated along the three mutually orthogonal axes, have yielded the spin-Hamiltonian parameters g, A and D as g{sub xx}=2.049, g{sub yy}=2.005, g{sub zz}=1.993; A{sub xx}=-9.17, A{sub yy}=-8.36, A{sub zz}=-8.06 mT; D{sub xx}=31.55, D{sub yy}=7.13, D{sub zz}=-38.68 mT, respectively. The other site, due to its low intensity, could not be followed during crystal rotations. The optical absorption spectrum contains characteristic bands of Mn(II) ions in distorted octahedral symmetry. From the observed optical spectrum, the crystal field parameters have been evaluated.

  18. Combined Electron Paramagnetic Resonance and Atomic Absorption Spectroscopy/Inductively Coupled Plasma Analysis As Diagnostics for Soluble Manganese Species from Mn-Based Positive Electrode Materials in Li-ion Cells.

    Science.gov (United States)

    Shilina, Yuliya; Ziv, Baruch; Meir, Aviv; Banerjee, Anjan; Ruthstein, Sharon; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2016-04-19

    Manganese dissolution from positive electrodes significantly reduces the durability of lithium-ion batteries. Knowledge of dissolution rates and oxidation states of manganese ions is essential for designing effective mitigation measures for this problem. We show that electron paramagnetic resonance (EPR) combined with atomic absorption spectroscopy (AAS) or inductively coupled plasma (ICP) can determine both manganese dissolution rates and relative Mn(3+) amounts, by comparing the correlation between EPR and AAS/ICP data for Mn(2+) standards with that for samples containing manganese cations dissolved from active materials (LiMn2O4 (LMO) and LiNi(0.5)Mn(1.5)O4 (LNMO)) into the same electrolyte solution. We show that Mn(3+), and not Mn(2+), is the dominant species dissolved from LMO, while Mn(2+) is predominant for LNMO. Although the dissolution rate of LMO varies significantly for the two investigated materials, due to particle morphology and the presence of Cr in one of them, the Mn speciation appears independent of such details. Thus, the relative abundance of dissolved manganese ions in various oxidation states depends mainly on the overall chemical identity of the active material (LMO vs LNMO). We demonstrate the relevance of our methodology for practical batteries with data for graphite-LMO cells after high-temperature cycling or stand at 4.2 V.

  19. Crossover from paramagnetic to diamagnetic ac-susceptibility in Bi2Sr2CaCu2O{}_{8+\\delta } superconductor for {\\bf{H}}| | c {-} {\\rm{axis}}

    Science.gov (United States)

    Pissas, M.; Tamegai, T.

    2017-10-01

    Ac-susceptibility measurements of the superconducting Bi2Sr2CaCu2O{}8+δ single crystal for {H}| | c-axis are presented. In low frequency measurements the first harmonic ac-susceptibility, {χ }1={χ }1{\\prime }-{{i}}{χ }1{\\prime\\prime }, is real and independent of the amplitude of the ac-magnetic field (linear behavior) and positive, implying that it represents the slope of the magnetization curve as the temperature changes below T c2. The positive ac-susceptibility before becoming negative, at low temperatures, forms a positive local maximum arising from the melting transition of the Abrikosov vortex lattice. For higher frequencies the response becomes diamagnetic due to the eddy currents. The signature of the discontinuous change of the magnetization, at the melting transition in higher frequency measurements, is a sharp shoulder near the complete screening. The presence of second harmonic susceptibility in the liquid regime implies nonlinear variation of the equilibrium magnetization.

  20. Catalase vs peroxidase activity of a manganese(II) compound: identification of a Mn(III)-(mu-O)(2)-Mn(IV) reaction intermediate by electrospray ionization mass spectrometry and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Lessa, Josane A; Horn, Adolfo; Bull, Erika S; Rocha, Michelle R; Benassi, Mario; Catharino, Rodrigo R; Eberlin, Marcos N; Casellato, Annelise; Noble, Christoper J; Hanson, Graeme R; Schenk, Gerhard; Silva, Giselle C; Antunes, O A C; Fernandes, Christiane

    2009-05-18

    Herein, we report reactivity studies of the mononuclear water-soluble complex [Mn(II)(HPClNOL)(eta(1)-NO(3))(eta(2)-NO(3))] 1, where HPClNOL = 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, toward peroxides (H(2)O(2) and tert-butylhydroperoxide). Both the catalase (in aqueous solution) and peroxidase (in CH(3)CN) activities of 1 were evaluated using a range of techniques including electronic absorption spectroscopy, volumetry (kinetic studies), pH monitoring during H(2)O(2) disproportionation, electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS], and gas chromatography (GC). Electrochemical studies showed that 1 can be oxidized to Mn(III) and Mn(IV). The catalase-like activity of 1 was evaluated with and without pH control. The results show that the pH decreases when the reaction is performed in unbuffered media. Furthermore, the activity of 1 is greater in buffered than in unbuffered media, demonstrating that pH influences the activity of 1 toward H(2)O(2). For the reaction of 1 with H(2)O(2), EPR and ESI(+)-MS have led to the identification of the intermediate [Mn(III)Mn(IV)(mu-O)(2)(PClNOL)(2)](+). The peroxidase activity of 1 was also evaluated by monitoring cyclohexane oxidation, using H(2)O(2) or tert-butylhydroperoxide as the terminal oxidants. Low yields (<7%) were obtained for H(2)O(2), probably because it competes with 1 for the catalase-like activity. In contrast, using tert-butylhydroperoxide, up to 29% of cyclohexane conversion was obtained. A mechanistic model for the catalase activity of 1 that incorporates the observed lag phase in O(2) production, the pH variation, and the formation of a Mn(III)-(mu-O)(2)-Mn(IV) intermediate is proposed.

  1. Semiconductor GaAs: electronic paramagnetic resonance new data; GaAs semi-isolant: nouvelles donnees de resonance paramagnetique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Benchiguer, T.

    1994-04-01

    The topic of this study was to put to the fore, thanks to our electron spin resonance experiments, one charge transfer process, which was optically induced between the deep donor As{sup +}{sub G}a and the different acceptors, which were present in the material. We described these processes through a theoretical model, which we named charge transfer model. With this latter, we were able to trace a graph network, representing the As{sup +}{sub G}a concentration kinetics. Then we verified the compatibility of our model with one transport experiment. One experimental verification of our model were delivered, thanks to neutronic transmutation doping. The following stage was the study of defects, induced by thermal strains, to which the crystal was submitted during the cooling phase. At last we wanted to get round the non solved super hyperfine structure problem for GaAs by studying another III-V material for which she was resolved, namely gallium phosphide. (MML). 150 refs., 72 figs., 16 tabs., 3 annexes.

  2. Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section

    Science.gov (United States)

    Khordad, R.; Bahramiyan, H.

    2014-03-01

    In this paper, optical phonon modes are studied within the framework of dielectric continuum approach for parallelogram and triangular quantum wires, including the derivation of the electron-phonon interaction Hamiltonian and a discussion on the effects of this interaction on the electronic energy levels. The polaronic energy shift is calculated for both ground-state and excited-state electron energy levels by applying the perturbative approach. The effects of the electron-phonon interaction on the expectation value of r2 and diamagnetic susceptibility for both quantum wires are discussed.

  3. Effect of paramagnetic manganese ions doping on frequency and ...

    Indian Academy of Sciences (India)

    The manganese doped layered ceramic samples (Na1.9Li0.1)Ti3O7 : XMn(0.01 ≤ X ≤ 0.1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions occur as ...

  4. Effect of paramagnetic manganese ions doping on frequency and ...

    Indian Academy of Sciences (India)

    Abstract. The manganese doped layered ceramic samples (Na1·9Li0·1)Ti3O7 : XMn(0·01≤X≤0·1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance. (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions ...

  5. Effect of Bi2O3 addition on electron paramagnetic resonance, optical absorption, and conductivity in vanadyl-doped Li2O-K2O-Bi2O3-B2O3 glasses.

    Science.gov (United States)

    Subhadra, M; Kistaiah, P

    2011-02-17

    Glasses with composition 15Li(2)O-15K(2)O-xBi(2)O(3)-(65 - x)-B(2)O(3)/5V(2)O(5) (3 ≤ x ≤ 15) have been prepared by the conventional melt quench technique. The electron paramagnetic resonance spectra of VO(2+) in these glasses have been recorded in the X-band frequency (≈9.3 GHz) at room temperature. The spin Hamiltonian parameters and covalency rates were evaluated. It was found that the V(4+) ions exist as vanadyl (VO(2+)) ions and are in an octahedral coordination with a tetragonal compression. The covalency rates (1 - α(2)) and (1 - γ(2)) indicate moderate covalency for the σ- and π-bonds. It was observed that the spin-Hamiltonian parameters depend slightly on the relative concentration of Bi(2)O(3). The optical properties of this glass system are studied from the optical absorption spectra recorded in the wavelength range 200-800 nm. The fundamental absorption edge has been identified from the optical absorption spectra. The values of optical band gap for indirect allowed transitions have been determined using available theories. The direct current electrical conductivity, σ, has been measured in the temperature range 373-573 K. The conductivity decreases with the increase in Bi(2)O(3) concentration. This has been discussed in terms of the decrease in the number of mobile ions and their mobility. An attempt is made to correlate the EPR, optical, and electrical results and to find the effect of Bi(2)O(3) content on these parameters.

  6. Effects of hydrostatic pressure and temperature on the electron paramagnetic resonance spectrum of off-centre Jahn-Teller [CuF sub 4 F sub 4] sup 6 sup - complexes in SrF sub 2 crystal

    CERN Document Server

    Ulanov, V A; Hoffmann, S K; Zaripov, M M

    2003-01-01

    Pressure and temperature variations of the spin-Hamiltonian parameters and electron paramagnetic resonance (EPR) linewidths of non-central Jahn-Teller [CuF sub 4 F sub 4] sup 6 sup - complexes in SrF sub 2 crystal were studied by continuous-wave EPR. It was found that the static spin-Hamiltonian parameters, found at T = 85 K and at normal pressure (g sub | sub | = 2.491, g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r = 2.083, a sub p sub a sub r sub a sub l sub l sub e sub l = 360, a sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r = 26, A sub x sub ' sub ' = 96, A sub y sub ' sub ' = 99, A sub z sub ' sub ' = 403 and beta sub e sub x sub p = 17 diameter), are slightly changed with hydrostatic pressure and, at T = 85 K and P = 550 MPa, become equal to g sub | sub | = 2.489, g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r = 2.083, a sub | sub | 348, a sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l s...

  7. Early specific free radical-related cytotoxicity of gas phase cigarette smoke and its paradoxical temporary inhibition by tar: An electron paramagnetic resonance study with the spin trap DEPMPO.

    Science.gov (United States)

    Culcasi, Marcel; Muller, Agnès; Mercier, Anne; Clément, Jean-Louis; Payet, Olivier; Rockenbauer, Antal; Marchand, Véronique; Pietri, Sylvia

    2006-12-15

    Electron paramagnetic resonance (EPR) spin trapping studies demonstrated aqueous tar particulate matter (TPM) and gas phase cigarette smoke (GPCS) to behave as different sources of free radicals in cigarette smoke (CS) but their cytotoxic implications have been only assessed in CS due to its relevance to the natural smoking process. Using a sensitive spin trapping detection with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO), this study compared the respective roles of CS- and GPCS-derived free radicals on smoke-induced cytotoxicity and lipid peroxidation of filtered and unfiltered, machine-smoked experimental and reference cigarettes yielding a wide range of TPM yields. In buffer bubbled with CS the DEPMPO/superoxide spin adduct was the major detected nitroxide. Use of appropriate control experiments with nitric oxide radical (NO*) or carbonyl sulfide, and a computer analysis of spin adduct diastereoisomery showed that the hydroxyl radical (HO*) adduct of DEPMPO seen in GPCS-bubbled was rather related to metal-catalyzed nucleophilic synthesis than to direct HO* trapping. Unexpectedly a protective effect of TPM on murine 3T3 fibroblasts was observed in early (<3h) free radical-, GPCS-induced cell death, and carbon filtering decreased free radical formation, toxicity and lipid peroxidation in three cell lines (including human epithelial lung cells) challenged with GPCS. These results highlight an acute, free radical-dependent, harmful mechanism specific to the GPCS phase, possibly involving NO* chemistry, whose physical or chemical control may be of great interest with the aim of reducing the toxicity of smoke.

  8. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N.; Vanwetswinkel, Sophie; Van de Water, Karen; Nuland, Nico A. J. van, E-mail: nvnuland@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2012-03-15

    Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, {Delta}{chi}. For most nuclei, the PCSs back-calculated from the {Delta}{chi} tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches-clustered around G41, N52, and A81-exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.

  9. Influence of electron beam welding parameters and metallurgical factors on intergranular liquation cracking susceptibility of cast alloy 718

    Science.gov (United States)

    Woo, Insu; Kang, Chungyun; Nishimoto, Kazutoshi

    2001-07-01

    The factors affecting intergranular liquation cracking susceptibility in electron beam welds were investigated for cast alloy 718. The materials used were as-received plates and heat-treated plates with three different levels of grain size. Liquation cracking susceptibility in HAZ was evaluated by a bead-on-plate test and a restraint/relaxation U-type hot cracking test. The penetrated shapes in the welds were classified into wine cup-like Type W and nail head-like Type N. For a given beam current, Type w and Type N were observed at the lower and higher welding speeds, respectively. Welding defects, i.e., underfills and microcracks were seen in the electron beam welds. Compared with Type W, the liquation cracking was more sensitive for the Type N bead cross sectional shape. Furthermore, it easily occurred at grain boundaries in Region II, i.e., very near the nail head necked part. According to the restraint/relaxation U-type hot cracking test, the liquation cracking susceptibility decreased with decreasing grain size or with homogenization heat treatment. These results suggested that the liquation cracking susceptibility in cast alloy 718 electron beam welds could be improved by using the Type W bead cross sectional shape, a decreasing the grain size and using appropriate heat treatment before welding.

  10. Theoretical explanation of electron paramagnetic resonance and ...

    Indian Academy of Sciences (India)

    2+ ion and hyperfine structure constants A in LiNbO3 are obtained. The comparisons between experimental and calculated values are presented in table 1. Following the point charge-dipole model containing an average covalence, the crystal-field parameter is given by [20,21]. Dq = − eq. 42. [. 3. (. 1 +. 5μ⊥. qR⊥. )/ R5. ⊥.

  11. Electron Paramagnetic Resonance Imaging: 2. Radiofrequency FT ...

    Indian Academy of Sciences (India)

    FT-EPR, Hahn-echo, acquisition delay, single-point imaging (SPI), gradient-echo, k-space, echo-SPI, carbogen, oxygen relaxivity, T2* T2- and T1-based oximetry, coregistration, cycling hypoxia, blood volume, angiogram, Warburg effect, metabolic imaging.

  12. Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-01-01

    Full Text Available respectively from Raman spectroscopy study. These particle sizes are known be affected by substrate temperature during the deposition. Electron spin resonance (ESR) results demonstrated a strange antiferromagnetic to paramagnetic transition at a room...

  13. Investigation of scavenging activities and distribution of paramagnetic species in Zanthoxylum limonella seeds.

    Science.gov (United States)

    Nakagawa, Kouichi; Promjareet, Apichet; Priprem, Aroonsri; Netweera, Vassana; Hara, Hideyuki

    2016-12-01

    We investigated the scavenging activities of methanol-extracted oil and the distribution of paramagnetic species in Zanthoxylum limonella (ZL) seeds using noninvasive 9 GHz electron paramagnetic resonance (EPR) imaging and continuous wave EPR. EPR detected three different stable paramagnetic species that were assigned to stable organic radicals, Mn 2+ , and other paramagnetic metal complexes. Two-dimensional EPR imaging showed that the stable paramagnetic species were located in the pigmented seed region with a strong intensity. Gas chromatography-mass spectrophotometric (GC-MS) analyses were then performed to identify the compound possibly related to the scavenging activity. The DPPH scavenging activities of ZL were slightly higher than those of Piper nigrum and Coriandrum sativum. Based on the results of EPR, GC-MS, and other methods, limonene in ZL is one of the major compounds that can be related to the scavenging activities.

  14. Electron paramagnetic resonance line shifts and line shape changes due to heisenberg spin exchange and dipole-dipole interactions of nitroxide free radicals in liquids 8. Further experimental and theoretical efforts to separate the effects of the two interactions.

    Science.gov (United States)

    Peric, Mirna; Bales, Barney L; Peric, Miroslav

    2012-03-22

    The work in part 6 of this series (J. Phys. Chem. A 2009, 113, 4930), addressing the task of separating the effects of Heisenberg spin exchange (HSE) and dipole-dipole interactions (DD) on electron paramagnetic resonance (EPR) spectra of nitroxide spin probes in solution, is extended experimentally and theoretically. Comprehensive measurements of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT) in squalane, a viscous alkane, paying special attention to lower temperatures and lower concentrations, were carried out in an attempt to focus on DD, the lesser understood of the two interactions. Theoretically, the analysis has been extended to include the recent comprehensive treatment by Salikhov (Appl. Magn. Reson. 2010, 38, 237). In dilute solutions, both interactions (1) introduce a dispersion component, (2) broaden the lines, and (3) shift the lines. DD introduces a dispersion component proportional to the concentration and of opposite sign to that of HSE. Equations relating the EPR spectral parameters to the rate constants due to HSE and DD have been derived. By employing nonlinear least-squares fitting of theoretical spectra to a simple analytical function and the proposed equations, the contributions of the two interactions to items 1-3 may be quantified and compared with the same parameters obtained by fitting experimental spectra. This comparison supports the theory in its broad predictions; however, at low temperatures, the DD contribution to the experimental dispersion amplitude does not increase linearly with concentration. We are unable to deduce whether this discrepancy is due to inadequate analysis of the experimental data or an incomplete theory. A new key aspect of the more comprehensive theory is that there is enough information in the experimental spectra to find items 1-3 due to both interactions; however, in principle, appeal must be made to a model of molecular diffusion to separate the two. The permanent diffusion model is used to

  15. Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Alzate-Carvajal, Natalia [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Henao-Holguín, Laura V. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Rybak-Akimova, Elena V. [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Department of Chemistry,Tufts University, 62 Talbot Avenue, Medford, MA 02155 (United States); Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2016-05-15

    Highlights: • [Ni(cyclam)]{sup 2+} and [Ni(tet b)]{sup 2+} cations coordinate to carboxylic groups of GO. • The coordination takes place under basic conditions in aqueous-based medium. • The coordination results in the conversion from low-spin to high-spin Ni(II). • Functionalized GO samples were characterized by various instrumental techniques. - Abstract: We describe a novel approach to functionalization of graphene oxide (GO) which allows for a facile generation of paramagnetic centers from two diamagnetic components. Coordination attachment of [Ni(cyclam)]{sup 2+} or [Ni(tet b)]{sup 2+} tetraazamacrocyclic cations to carboxylic groups of GO takes place under basic conditions in aqueous-based reaction medium. The procedure is very straightforward and does not require high temperatures or other harsh conditions. Changing the coordination geometry of Ni(II) from square-planar tetracoordinated to pseudooctahedral hexacoordinated brings about the conversion from low-spin to high-spin state of the metal centers. Even though the content of tetraazamacrocyclic complexes in functionalized GO samples was found to be relatively low (nickel content of ca. 1 wt%, as determined by thermogravimetric analysis, elemental analysis and energy dispersive X-ray spectroscopy), room temperature magnetic susceptibility measurements easily detected the appearance of paramagnetic properties in GO + [Ni(cyclam)] and GO + [Ni(tet b)] nanohybrids, with effective magnetic moments of 1.95 BM and 2.2 BM for, respectively. According to density functional theory calculations, the main spin density is localized at the macrocyclic complexes, without considerable extension to graphene sheet, which suggests insignificant ferromagnetic coupling in the nanohybrids, in agreement with the results of magnetic susceptibility measurements. The coordination attachment of Ni(II) tetraazamacrocycles to GO results in considerable changes in Fourier-transform infrared and X-ray photoelectron spectra

  16. SU-F-I-24: Feasibility of Magnetic Susceptibility to Relative Electron Density Conversion Method for Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Kadoya, N; Chiba, M; Matsushita, H; Jingu, K [Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Sato, K; Nagasaka, T; Yamanaka, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: The aim of this study is to develop radiation treatment planning using magnetic susceptibility obtained from quantitative susceptibility mapping (QSM) via MR imaging. This study demonstrates the feasibility of a method for generating a substitute for a CT image from an MRI. Methods: The head of a healthy volunteer was scanned using a CT scanner and a 3.0 T MRI scanner. The CT imaging was performed with a slice thickness of 2.5 mm at 80 and 120 kV (dual-energy scan). These CT images were converted to relative electron density (rED) using the CT-rED conversion table generated by a previous dual-energy CT scan. The CT-rED conversion table was generated using the conversion of the energy-subtracted CT number to rED via a single linear relationship. One T2 star-weighted 3D gradient echo-based sequence with four different echo times images was acquired using the MRI scanner. These T2 star-weighted images were used to estimate the phase data. To estimate the local field map, a Laplacian unwrapping of the phase and background field removal algorithm were implemented to process phase data. To generate a magnetic susceptibility map from the local field map, we used morphology enabled dipole inversion method. The rED map was resampled to the same resolution as magnetic susceptibility, and the magnetic susceptibility-rED conversion table was obtained via voxel-by-voxel mapping between the magnetic susceptibility and rED maps. Results: A correlation between magnetic susceptibility and rED is not observed through our method. Conclusion: Our results show that the correlation between magnetic susceptibility and rED is not observed. As the next step, we assume that the voxel of the magnetic susceptibility map comprises two materials, such as water (0 ppm) and bone (-2.2 ppm) or water and marrow (0.81ppm). The elements of each voxel were estimated from the ratio of the two materials.

  17. Finite pulse effects in CPMG pulse trains on paramagnetic materials.

    Science.gov (United States)

    Leskes, Michal; Grey, Clare P

    2015-09-14

    The Carr-Purcell-Meiboom-Gill (CPMG) sequence is commonly used in high resolution NMR spectroscopy and in magnetic resonance imaging for the measurement of transverse relaxation in systems that are subject to diffusion in internal or external gradients and is superior to the Hahn echo measurement, which is more sensitive to diffusion effects. Similarly, it can potentially be used to study dynamic processes in electrode materials for lithium ion batteries. Here we compare the (7)Li signal decay curves obtained with the CPMG and Hahn echo sequences under static conditions (i.e., in the absence of magic angle spinning) in paramagnetic materials with varying transition metal ion concentrations. Our results indicate that under CPMG pulse trains the lifetime of the (7)Li signal is substantially extended and is correlated with the strength of the electron-nuclear interaction. Numerical simulations and analytical calculations using Floquet theory suggest that the combination of large interactions and a train of finite pulses, results in a spin locking effect which significantly slows the signal's decay. While these effects complicate the interpretation of CPMG-based investigations of diffusion and chemical exchange in paramagnetic materials, they may provide a useful approach to extend the signal's lifetime in these often fast relaxing systems, enabling the use of correlation experiments. Furthermore, these results highlight the importance of developing a deeper understanding of the effects of the large paramagnetic interactions during multiple pulse experiments in order to extend the experimental arsenal available for static and in situ NMR investigations of paramagnetic materials.

  18. Magnetic susceptibility and heat capacity of graphene in two-band Harrison model

    Science.gov (United States)

    Mousavi, Hamze; Bagheri, Mehran; Khodadadi, Jabbar

    2015-11-01

    Using a two-band tight-binding Harrison model and Green's function technique, the influences of both localized σ and delocalized π electrons on the density of states, the Pauli paramagnetic susceptibility, and the heat capacity of a graphene sheet are investigated. We witness an extension in the bandwidth and an increase in the number of Van-Hove singularities as well. As a notable point, besides the magnetic nature which includes diamagnetism in graphene-based nanosystems, a paramagnetic behavior associated with the itinerant π electrons could be occurred. Further, we report a Schottky anomaly in the heat capacity. This study asserts that the contribution of both σ and π electrons play dominant roles in the mentioned physical quantities.

  19. Chains, clusters, inclusion compounds, paramagnetic labels, and organic rings

    CERN Document Server

    Zanello, P

    1994-01-01

    The role of stereochemistry to elucidate reaction patterns and physico-chemical properties in topical subjects ranging from inorganic to organic chemistry are treated in the fifth and final volume of this series. Detailed accounts are given to study: chaining in polyphosphates, electron-transfers in carbonyl clusters, inclusion of organometallic molecules in cyclodextrins, stereochemistry of paramagnetic metal complexes by labeling with nitroxyl radicals, stereocontrol in organic syntheses assisted by inorganic complexes.

  20. Hyperfine Structure and Exchange Narrowing of Paramagnetic Resonance

    Science.gov (United States)

    Townes, C. H.; Turkevich, J.

    1950-01-01

    Discussion of electronic paramagnetic resonance for the free radical á, á-diphenyl â-picryl hydrazyl as observed by its effect on the transmission of microwave through a TE{sub 01} cavity with a small amount of the free radical placed approximately on the axis of the cavity; the half-width of this resonance at half maximum absorption was 1.45 oersteds.

  1. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  2. Paramagnetism-ferromagnetism phase transition in a dyonic black hole

    Science.gov (United States)

    Cai, Rong-Gen; Yang, Run-Qiu

    2014-10-01

    Coupling an antisymmetric tensor field to the electromagnetic field in a dyonic Reissner-Nordström-anti-de Sitter black hole background, we build a holographic model for the paramagnetism/ferromagnetism phase transition. In the case of zero magnetic field, the time reversal symmetry is broken spontaneously and spontaneous magnetization happens at low temperatures. The critical exponents are in agreement with the ones from mean field theory. In the case of nonzero magnetic field, the model realizes the hysteresis loop of a single magnetic domain and the magnetic susceptibility satisfies the Curie-Weiss law.

  3. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn

    2009-01-01

    on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra...

  4. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4):

    DEFF Research Database (Denmark)

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel

    2014-01-01

    -gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder...

  5. Caracterização de adubos orgânicos por espectroscopia de ressonância paramagnética eletrônica Characterization of organic fertilizers by electron paramagnetic resonance

    Directory of Open Access Journals (Sweden)

    Marcelo Luiz Simões

    2007-12-01

    based on the evaluation of the humification degree obtained by quantification of organic free radicals (OFR, which are naturally present in organic matter and can be detected by electronic paramagnetic resonance (EPR. Nine samples of organic fertilizers of different origins were analyzed and two soils and vegetal coal were used as possible sources of adulteration. The results showed substantial variations in the OFR concentration in the samples (from 0.10 × 10(18 to 1.84 × 10(18 spins g-1. The Principal Component Analysis (PCA confirmed the statistically significant difference among samples for this parameter. This indicates that OFR concentration can be used to differentiate organic fertilizers. Analyzing spectral alterations in the EPR signals such as spin concentration, line width, g value, line shape and detection of new signals, it was also possible to detect adulterations in the samples caused by soil and vegetal coal additions. The detection limits of the adulterations were around 5 % and 10 %, depending on the type of impurity and EPR parameter under study.

  6. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures.

    Science.gov (United States)

    Berthold, Thomas; von Gromoff, Erika Donner; Santabarbara, Stefano; Stehle, Patricia; Link, Gerhard; Poluektov, Oleg G; Heathcote, Peter; Beck, Christoph F; Thurnauer, Marion C; Kothe, Gerd

    2012-03-28

    Crystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain. Results are presented first for the deuterated site-directed mutant PsaA-M684H in which electron transfer beyond the primary electron acceptor A0A on the PsaA branch of electron transfer is impaired. Analysis of the quantum oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the geometry of the B-side radical pair. The orientation of the g tensor of P700(+) in an external reference system is adapted from a time-resolved multifrequency EPR study of deuterated and 15N-substituted cyanobacteria (Link, G.; Berthold, T.; Bechtold, M.; Weidner, J.-U.; Ohmes, E.; Tang, J.; Poluektov, O.; Utschig, L.; Schlesselman, S. L.; Thurnauer, M. C.; Kothe, G. J. Am. Chem. Soc. 2001, 123, 4211-4222). Thus, we obtain the three-dimensional structure of the B-side radical pair following photoexcitation of PS I in its native membrane. The new structure describes the position and orientation of the reduced B-side quinone A1B(-) on a nanosecond time scale after light-induced charge separation. Furthermore, we present results for deuterated wild-type cells of C. reinhardtii demonstrating that both radical pairs P700(+)A1A(-) and P700(+)A1B(-) participate in the electron transfer process according to a mole ratio of 0.71/0.29 in favor of P700(+)A1A(-). A detailed comparison reveals different orientations of A1A(-) and A1B(-) in their

  7. Experimental and theoretical determination of the magnetic susceptibility of C60 and C70

    Science.gov (United States)

    Haddon, R. C.; Schneemeyer, L. F.; Waszczak, J. V.; Glarum, S. H.; Tycko, R.; Dabbagh, G.; Kortan, A. R.; Muller, A. J.; Mujsce, A. M.; Rosseinsky, M. J.; Zahurak, S. M.; Makhija, A. V.; Thiel, F. A.; Raghavachari, K.; Cockayne, E.; Elser, V.

    1991-03-01

    THE magnetic susceptibility of C60 and the possibility of magnetic-field-induced π-electron ring currents in this carbon spheroid have been of interest since the initial experiments on carbon clusters1. If the molecule is regarded as a sphere with a radius of 3.5 Å, on which 60 electrons are free to move, the Pauling ring-current model predicts a ring-current diamagnetic susceptibility 41 times the π-electron ring-current magnetic susceptibility of benzene with the field normal to the plane of the six-membered ring2,3. London theory predicts, however, that the π-electron ring currents in C60 should be weakly paramagnetic or diamagnetic, depending on the relative bond strengths used in the calculation2,3. With the availability of macroscopic quantities of C60 (ref. 4), it is now possible to study experimentally the magnetic properties of the molecule. Here we report on such measurements. We find that the diamagnetism of C60 is small, a result that we attribute to excited-state paramagnetic contributions to the π-electron ring-current magnetic susceptibility. Thus C60 seems to be an aromatic molecule with a vanishingly small π-electron ring-current magnetic susceptibility. We have performed similar measurements on C70, which indicate an appreciable π-electron diamagnetism, consistent with theoretical calculations. We attribute the differences in magnetic properties of these two molecules to their different fractions of five-membered ring structures. The fullerenes may thus constitute a class of compounds of 'ambiguous' aromatic character, traditional measures of which will not provide an adequate classification.

  8. Simple magnetic cell patterning using streptavidin paramagnetic particles.

    Science.gov (United States)

    Ho, Vincent H B; Müller, Karin H; Darton, Nicholas J; Darling, David C; Farzaneh, Farzin; Slater, Nigel K H

    2009-03-01

    A simple methodology for cell patterning has been developed that can potentially be used to position different types of mammalian cells with high precision. In this method, cell membrane proteins were first biotinylated and then bound to streptavidin paramagnetic particles. The magnetically labeled cells were then seeded onto culture dishes and patterned using low magnetic fields. Highly defined cell patterns were achieved using HeLa, TE671 cells and human monocytes. HeLa and TE671 cells were also sequentially patterned and successfully co-cultured on the same plate using this technique. Cell viability studies proved that this magnetic labeling method was not toxic to cells. Transmission electron microscopy showed that the magnetically labeled HeLa and TE671 cells internalized some of the paramagnetic particles after two days of culture, while the labeled human monocytes did the same after only one hour. Uptake of these particles did not affect the cell patterning and cell viability. This magnetic labeling process is fast, as it involves affinity-based attachment of paramagnetic particles and does not rely on cellular uptake of magnetic materials. It may be adaptable and scalable for various applications.

  9. A comparative study on the effects of electron beam irradiation on imidacloprid-resistant and -susceptible Aphis gossypii (Hemiptera: Aphididae)

    Science.gov (United States)

    Yun, Seung-Hwan; Koo, Hyun-Na; Lee, Seon-Woo; Kim, Hyun Kyung; Kim, Yuri; Han, Bumsoo; Kim, Gil-Hah

    2015-07-01

    The melon and cotton aphid, Aphis gossypii, is a polyphagous insect pest. This study compared the development, reproduction, DNA damage, recovery, and gene expression in imidacloprid-resistant (IMI-R) and -susceptible (S) strains of A. gossypii by electron beam irradiation. When 1st instar nymphs were irradiated with 100 Gy, the fecundity (nymphs of F1 generation) of the resultant adults were completely inhibited. When adults were irradiated with 200 Gy, the number of total 1st instar nymphs produced per adult was 3.0±1.7 and 1.9±1.4 in the S and IMI-R strains, respectively, but adult development was completely suppressed. However, electron beam irradiation did not affect adult longevity in either the S or IMI-R strain. There was no statistically significant difference between the effect of irradiation on the S and IMI-R strains. Therefore, electron beam irradiation at 200 Gy could be used as a phytosanitary irradiation treatment for both S and IMI-R strains of A. gossypii. The DNA damage caused by electron beam irradiation was evaluated by an alkaline comet assay. Exposure to an electron beam (50 Gy) induced DNA damage that was repaired to a similar level as the untreated control group (0 Gy) over time. However, at more than 100 Gy, the DNA damage was not completely repaired. The expression of P450, HSP70, cuticle protein, and elongation factor genes were higher in the IMI-R strain than in the S strain.

  10. Exposure to Advertisements and Susceptibility to Electronic Cigarette Use Among Youth.

    Science.gov (United States)

    Dai, Hongying; Hao, Jianqiang

    2016-12-01

    Despite the rapid increase in e-cigarette use among youth, little is known about the social and behavioral factors that have contributed to this rise. We investigated whether young e-cigarette users are susceptible to e-cigarette advertisements. Estimates of e-cigarette use and exposure to e-cigarette advertisements from the 2014 National Young Tobacco Survey were investigated. Factors associated with the prevalence and levels of e-cigarette use were analyzed using multinomial logistic regression. Of all respondents (n = 21,491), 19.8% had tried e-cigarettes and 9.4% were current e-cigarette users. Exposure to e-cigarette ads was prevalent among youth, with 38.6%/29.6%/53.2%/35.4% having medium to high exposure to e-cigarette ads from the Internet/newspapers/stores/TV, respectively. Current use of e-cigarettes among youth was associated with frequent exposure (high vs. low) to e-cigarette advertising from the Internet (odd ratio [OR] = 3.1, p advertisement channels and covariates, greater exposure to e-cigarette ads on the Internet (adjusted OR = 1.9, p advertising regulations and educational campaigns are critically needed. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  11. Ferromagnetic, dia-/paramagnetic and superparamagnetic components of Aral Sea sediments: significance for paleoenvironmental reconstruction

    Science.gov (United States)

    Kosareva, Lina; Nourgaliev, Danis; Kuzina, Dilyara; Spassov, Simo; Fattakhova, Leysan

    2015-04-01

    Modern lake sediments are a unique source of information for climate changes, regionally and globally, because all environmental variations are recorded by these sediments with high resolution. Magnetic minerals are hereby of particular interest, because they occur almost in any environment, because they are susceptible tracing environmental changes, which are closely related to their formation conditions, and because magnetic mineral concentrations in the ppm range can be detected. Our goal is to decipher the magnetic susceptibility signal in lake sediments by decomposing the bulk susceptibility signal of a lake sediment sequence into ferromagnetic (χf), dia-/paramagnetic (χp) and superparamagnetic (χsp) components. Each of these has a different origin: paramagnetic minerals are usually attributed to terrigenous sediment input, ferromagnetics are of biogenic origin, and superparamagnetic minerals may be of either biogenic or terrigenous origin. In sediments, paramagnetic components contribute most to the bulk susceptibility signal, because the ferromagnetic contributions are low. Most sediments of modern lakes contain a lot of organic material and water, which are both diamagnetic. High-field susceptibility changes reflect thus changes in terrigenous input. The latter increases with precipitation which augments the influx of terrigenous material carried by rivers into the lake, consequently the susceptibility increases sharply. However, under certain conditions, such for instance during shrinking water table or withering of tributaries, the lake biota grows stronger and the bacterial activity, including magnetotactic bacteria, increases. This results in an enhanced ferromagnetic component (χf). Superparamagnetic (SP) components may also be formed, but their magnetic grain size is much smaller, i.e. in the order of about 30-40 nm. This abstract presents a new method to discriminate and to quantify the contribution of dia- and paramagnetic, ferromagnetic and

  12. Evidence for competing order parameters in the paramagnetic phase of layered manganites.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, A.; Mitchell, J. F.; Miller, D. J.; Bader, S. D.

    2000-11-08

    The magnetic field and temperature dependence of the magnetic susceptibility and magnetization is studied for the ferromagnetic layered manganites SrO(La{sub t{minus}x}Sr{sub x}MnO{sub 3}){sub 2} in the composition range x = 0.32-0.40. In the paramagnetic phase, the susceptibility exhibits an anomalous maximum at an intermediate magnetic field value. The size of this field-induced susceptibility enhancement increases dramatically with x from 10% for x = 0.32 to 160% for x = 0.40. The temperature dependence of the effect shows a maximum at T {approx} 1.1 T{sub c} for all x. Quantitative analysis in terms of the Landau theory of phase transitions enables us to identify a distortion of the free energy F in the paramagnetic phase that is associated with the susceptibility anomaly. This free energy distortion corresponds to a magnetic system that approaches a first order magnetic phase transition as the temperature is lowered towards T{sub c}. Such a behavior is indicative of a second, competing order parameter, which is identified as the recently observed charge density wave. In the immediate vicinity of T{sub c}, the anomaly disappears and the system seems to undergo a more conventional second order paramagnetic-ferromagnetic phase transition.

  13. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  14. Magnetoelectric coupling in the paramagnetic state of a metal-organic framework

    Science.gov (United States)

    Wang, W.; Yan, L. -Q.; Cong, J. -Z.; Zhao, Y. -L.; Wang, F.; Shen, S. -P.; Zou, T.; Zhang, D.; Wang, S. -G.; Han, X. -F.; Sun, Y.

    2013-01-01

    Although the magnetoelectric effects - the mutual control of electric polarization by magnetic fields and magnetism by electric fields, have been intensively studied in a large number of inorganic compounds and heterostructures, they have been rarely observed in organic materials. Here we demonstrate magnetoelectric coupling in a metal-organic framework [(CH3)2NH2]Mn(HCOO)3 which exhibits an order-disorder type of ferroelectricity below 185 K. The magnetic susceptibility starts to deviate from the Curie-Weiss law at the paraelectric-ferroelectric transition temperature, suggesting an enhancement of short-range magnetic correlation in the ferroelectric state. Electron spin resonance study further confirms that the magnetic state indeed changes following the ferroelectric phase transition. Inversely, the ferroelectric polarization can be improved by applying high magnetic fields. We interpret the magnetoelectric coupling in the paramagnetic state in the metal-organic framework as a consequence of the magnetoelastic effect that modifies both the superexchange interaction and the hydrogen bonding. PMID:23778158

  15. Role of paramagnetic chromium in chromium(VI)-induced damage in cultured mammalian cells.

    OpenAIRE

    Sugiyama, M

    1994-01-01

    Chromium(VI) compounds are known to be potent toxic and carcinogenic agents. Because chromium(VI) is easily taken up by cells and is subsequently reduced to chromium(III), the formation of paramagnetic chromium such as chromium(V) and chromium(III) is believed to play a role in the adverse biological effects of chromium(VI) compounds. The present report, uses electron spin resonance (ESR) spectroscopy; the importance of the role of paramagnetic chromium in chromium(VI)-induced damage in intac...

  16. Independent Paramagnetic Restraints Through a Tagged Reporter Protein

    Science.gov (United States)

    Camacho-Zarco, Aldo R.; Munari, Francesca; Wegstroth, Melanie; Liu, Wei-Min; Ubbink, Marcellus; Becker, Stefan; Zweckstetter, Markus

    2017-01-01

    Paramagnetic effects provide structure and dynamics information of biomolecules. We developed a robust method that paramagnetically lightens up high-molecular weight proteins through binding of a reporter protein that carries lanthanide tags at distinct locations. Transmission of several independent molecular alignments provides a multitude of paramagnetic restraints for proteins of unknown 3D structure. PMID:25293958

  17. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer.

    Science.gov (United States)

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-05-02

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.

  18. Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties.

    Science.gov (United States)

    Della Vecchia, Nicola Fyodor; Luchini, Alessandra; Napolitano, Alessandra; D'Errico, Gerardino; Vitiello, Giuseppe; Szekely, Noemi; d'Ischia, Marco; Paduano, Luigi

    2014-08-19

    Despite the growing technological interest of polydopamine (dopamine melanin)-based coatings for a broad variety of applications, the factors governing particle size, shape, and electronic properties of this bioinspired multifunctional material have remained little understood. Herein, we report a detailed characterization of polydopamine growth, particle morphology, and paramagnetic properties as a function of dopamine concentration and nature of the buffer (pH 8.5). Dynamic Light Scattering data revealed an increase in the hydrodynamic radii (Rh) of melanin particles with increasing dopamine concentration in all buffers examined, especially in phosphate buffer. Conversely, a marked inhibition of particle growth was apparent in Tris buffer, with Rh remaining as low as polydopamine samples prepared in Tris buffer, denoting more homogeneous paramagnetic centers with respect to similar samples obtained in phosphate and bicarbonate buffers. Overall, these results disclose Tris buffer as an efficient modulator of polydopamine buildup and properties for the rational control and fine-tuning of melanin aggregate size, morphology, and free radical behavior.

  19. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    Science.gov (United States)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  20. Benign Synthesis of Black Microspheres of Anatase TiO2 with Paramagnetic Oxygen Vacancies through NH3 Treatment.

    Science.gov (United States)

    Maqbool, Qysar; Srivastava, Aasheesh

    2017-10-09

    Coloured TiO2 is coveted for its ability to extract energy from the visible region of electromagnetic spectrum. Here a facile synthesis of black anatase titania microspheres (B-TiO2 ) through a two-step process is reported. In the first step, amorphous white TiO2 microspheres (W-TiO2 ) are obtained by hydrolysing titanium tetraisopropoxide by ammonia vapours in ethanol. In the second step, the W-TiO2 is thermally annealed at 500 °C to obtain B-TiO2 . The diffuse reflectance analysis showed that B-TiO2 absorbs across visible spectrum with absorption extending well into NIR region. Raman scattering together with EPR analysis showed compelling evidence of the existence of oxygen deficiency within the crystal in B-TiO2 that induces black colouration in the sample. The defects present in the black anatase sample were confirmed to be single-electron-trapped (or paramagnetic) oxygen vacancies (Vo ⋅) by XPS and EPR studies. The magnetic susceptibility studies showed existence of antiferromagnetic interactions between these unpaired electron spins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Magnetic susceptibility and surface properties of EuAlO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, D., E-mail: ellhnas1@abv.bg [Department of Inorganic and Physical Chemistry, University of Food Technologies, 4002 Plovdiv (Bulgaria); Angelov, B., E-mail: bm_ang@abv.bg [Department of Inorganic and Physical Chemistry, University of Food Technologies, 4002 Plovdiv (Bulgaria); Lovchinov, V., E-mail: lovcinov@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria)

    2011-04-21

    Research highlights: > A modified sol-gel method with the aid of malic acid has resulted in nanocrystalline europium monoaluminate (EuAlO{sub 3}) at a relatively low temperature of synthesis. > The single phase of the material has been confirmed by XRD. > The binding energies of certain core-level electrons have been found chemically shifted in EuAlO{sub 3} and corresponding to ionic metal-oxygen bonds. > The AC magnetic susceptibility measurements reveal that this nanomaterial is paramagnetic in the range 2-300 K with nearly Curie-type paramagnetism below 20 K. - Abstract: Nanocrystalline single-phase europium aluminate (EuAlO{sub 3}) has been synthesized by modified sol-gel method with a new complexing agent - malic acid. The material has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis (EDS). The nanoparticles have an average size of 50 nm, a density of 7.01 g/cm{sup 3} at T = 293 K, a specific surface area 15.0 m{sup 2}/g and form agglomerates. The binding energies of core-level electrons of europium, aluminium, and oxygen in EuAlO{sub 3} have been found by means of X-ray photoelectron spectroscopy (XPS) and compared with the values for the respective elements. The temperature dependence between 300 K and 2 K of the experimental AC magnetic susceptibility of EuAlO{sub 3} nanocrystals has been determined and compared with the theoretical one for Eu{sup 3+}. It has been confirmed that the material is paramagnetic in the entire temperature range.

  2. Understanding the magnetic behavior of heat treated CaO–P{sub 2}O{sub 5}–Na{sub 2}O–Fe{sub 2}O{sub 3}–SiO{sub 2} bioactive glass using electron paramagnetic resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Shankhwar, Nisha, E-mail: n.nisha@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Kothiyal, G.P., E-mail: gpkothiyal@yahoo.co.in [Glass and Advanced Ceramics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Srinivasan, A., E-mail: asrini@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2014-09-01

    Bioactive glass of composition 41CaO–44SiO{sub 2}–4P{sub 2}O{sub 5}–8Fe{sub 2}O{sub 3}–3Na{sub 2}O has been heat treated in the temperature (T{sub A}) range of 750–1150 °C for time periods (t{sub A}) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with T{sub A} and t{sub A}. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.

  3. Magnetic and Magneto-Optical Properties in Paramagnetic NdF3 Under High Magnetic Field

    Science.gov (United States)

    Wang, Wei; Liu, Gong-Qiang

    2005-05-01

    In this paper, we first theoretically report the magnetic and magneto-optical properties in paramagnetic media under high external magnetic field. Considering the action of the external magnetic field He and indirect exchange interaction Hv, the characteristic of the magnetic saturation and the property of the Faraday rotation to be nonlinear with external magnetic field are presented in paramagnetic NdF3. In terms of our theory, the indirect exchange interaction plays an important role in the magnetization M and the Faraday rotation θ in NdF3 under high external magnetic field. The theory is in good agreement with experimental results. On the other hand, a reasonable explanation for the temperature dependence of the ratio of the Verdet constant to the magnetic susceptibility V/χ is obtained.

  4. Paramagnetic atom number and paramagnetic critical pressure of the sc, bcc and fcc Ising nanolattices

    Energy Technology Data Exchange (ETDEWEB)

    Şarlı, Numan, E-mail: numansarli82@gmail.com

    2015-01-15

    The effects of the magnetic atom number in the unit volume on the magnetic properties are investigated by using sc (n=8), bcc (n=9) and fcc (n=14) Ising NLs within the effective field theory with correlations. We find that the magnetic properties expand as the magnetic atom number increases in the unit volume and this expanding constitutes an elliptical path at T{sub C}. The effect of the magnetic atom number (n) in the unit volume on the magnetic properties (mp) appear as n{sub sc}paramagnetic hysteresis curves are directly proportional with the atom number in the unit volume. This proportion is the confirmation that the Curie's constant is directly proportional with the atom number in the unit volume (C α n). Hence, by using the slopes of the paramagnetic hysteresis curves of any nanosystem, it can be predicted that the number of particles in its unit volume. Moreover, the magnetic atoms in the paramagnetic region can be considered as particles in the gas. Because of the absence of an external magnetic field, the spin orientations of these atoms are random and free to rotate. Hence, they act on individually with no mutual interaction between two nearest-neighbor magnetic atoms. Therefore, we use the statistical mechanics form of the ideal gas law in the paramagnetic region and we obtain the critical paramagnetic pressure (P{sub C}=n{sub p}k{sub B}T{sub C}) of the Ising NLs at T{sub C}. We define the paramagnetic magnetic atom number in the unit volume as n{sub p}=n(1−M(T)). - Graphical abstract: The figures show the paramagnetic atom number (np=n(1−M(T))) of the Ising NLs. By using, np and T{sub C}, we define the paramagnetic critical pressure as P{sub C}=npk{sub B}T{sub C}. - Highlights: • Magnetic properties of the sc, bcc and fcc Ising

  5. Zn induced in-gap electronic states in La214 probed by uniform magnetic susceptibility: relevance to the suppression of superconducting T c

    Science.gov (United States)

    Islam, R. S.; Naqib, S. H.

    2018-02-01

    Substitution of isovalent non-magnetic defects, such as Zn, in the CuO2 plane strongly modifies the magnetic properties of strongly electron correlated hole doped cuprate superconductors. The reason for enhanced uniform magnetic susceptibility, χ, in Zn substituted cuprates is debatable. Generally the defect induced magnetic behavior has been analyzed mainly in terms of two somewhat contrasting scenarios. The first one is due to independent localized moments appearing in the vicinity of Zn arising because of the strong electronic/magnetic correlations present in the host compound and the second one is due to transfer of quasiparticle (QP) spectral weight and creation of weakly localized low-energy electronic states associated with each Zn atom in place of an in-plane Cu. If the second scenario is correct, one should expect a direct correspondence between Zn induced suppression of the superconducting transition temperature, T c, and the extent of the enhanced magnetic susceptibility at low temperature. In this case, the low-T enhancement of χ would be due to weakly localized QP states at low energy and these electronic states will be precluded from taking part in Cooper pairing. We explore this second possibility by analyzing the χ(T) data for La2‑x Sr x Cu1‑y Zn y O4 with different hole contents, p (=x), and Zn concentrations (y) in this paper. The results of our analysis support this scenario.

  6. Diamagnetism versus paramagnetism in charged spin-1 Bose gases.

    Science.gov (United States)

    Jian, Xiaoling; Qin, Jihong; Gu, Qiang

    2011-01-19

    It has been suggested that either the diamagnetism or paramagnetism of Bose gases, due to the charge or spin degrees of freedom respectively, appears solely to be extraordinarily strong. We investigate the magnetic properties of charged spin-1 Bose gases in an external magnetic field, focusing on the competition between the diamagnetism and paramagnetism, using the Lande-factor g of particles to evaluate the strength of the paramagnetic effect. We propose that a gas with g diamagnetism at all temperatures, while a gas with g > 1/2 always exhibits paramagnetism. Moreover, a gas with the Lande-factor in between shows a shift from paramagnetism to diamagnetism as the temperature decreases. The paramagnetic and diamagnetic contributions to the total magnetization density are also calculated in order to demonstrate some details of the competition.

  7. Magnetic refrigeration with paramagnetic semiconductors at cryogenic temperatures

    Science.gov (United States)

    Vlasov, Alexander; Guillemette, Jonathan; Gervais, Guillaume; Szkopek, Thomas

    2017-10-01

    We propose paramagnetic semiconductors as active media for refrigeration at cryogenic temperatures by adiabatic demagnetization. The paramagnetism of impurity dopants or structural defects can provide the entropy necessary for refrigeration at cryogenic temperatures. We present a simple model for the theoretical limitations to specific entropy and cooling power achievable by demagnetization of various semiconductor systems. Performance comparable to that of the commonly used paramagnetic salt cerous magnesium nitrate hydrate is predicted.

  8. Imaging the paramagnetic nonlinear Meissner effect in nodal gap superconductor

    OpenAIRE

    Zhuravel, Alexander P.; Bae, Seokjin; Shevchenko, Sergey N.; Omelyanchouk, Alexander N.; Lukashenko, Alexander V.; Ustinov, Alexey V.; Anlage, Steven M.

    2017-01-01

    Boundary surfaces of nodal gap superconductors can host Andreev bound states (ABS) which develop a paramagnetic response under external RF field in contrast to the bulk diamagnetic response of the bulk superconductor. At low temperature this surface paramagnetic response dominates and enhances the nonlinear RF response of the sample. With a recently developed photoresponse imaging technique, the anisotropy of this "paramagnetic" nonlinear Meissner response, and its current direction (angular)...

  9. Intermolecular nuclear relaxation in paramagnetic solutions: from free radicals to rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Belorizky, E. [Universite Joseph-Fourier, Lab. de Spectrometrie Physique, CNRS-UMR 5588, 38 - Saint Martin d' Heres (France); Fries, P.H.; Rast, S. [CEA Grenoble, Laboratoire de Reconnaissance ionique, Service de Chimie Inorganique et Biologique UMR 5046, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)

    2001-11-01

    The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln{sup 3+} aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the {sup 1}H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln{sup 3+} ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T{sub 1e} and T{sub 2e}. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T{sub 1e}, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes. (authors)

  10. An EPR study on tea: Identification of paramagnetic species, effect of heat and sweeteners

    Science.gov (United States)

    Bıyık, Recep; Tapramaz, Recep

    2009-10-01

    Tea ( Camellia Sinensis) is the most widely consumed beverage in the world, and is known to be having therapeutic, antioxidant and nutritional effects. Electron paramagnetic resonance (EPR) spectral studies made on the tea cultivated along the shore of Black Sea, Turkey, show Mn 2+ and Fe 3+ centers in green tea leaves and in black tea extract. Dry black tea flakes and dry extract show additional sharp line attributed to semiquinone radical. The origins of the paramagnetic species in black tea are defined and discussed. Effect of humidity and heat are investigated. It is observed that dry extract of black tea melts at 100 °C and the semiquinone radical lives up to 140 °C while Mn 2+ sextet disappears just above 100 °C in tea extract. Natural and synthetics sweeteners have different effects on the paramagnetic centers. White sugar (sucrose) quenches the Mn 2+ and semiquinone lines in black tea EPR spectrum, and glucose, fructose, lactose and maltose quench Fe 3+ line while synthetic sweeteners acesulfam potassium, aspartame and sodium saccharine do not have any effect on paramagnetic species in tea.

  11. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR); Dosimetrie d'accident en champ mixte (neutrons, photons) utilisant la spectrometrie par resonance paramagnetique electronique (RPE)

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.L

    2006-03-15

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  12. Magnetic Hetero-flocculation of Paramagnetic Colloidal Particles.

    Science.gov (United States)

    Ebner; Ritter; Ploehn

    2000-05-01

    The feasibility of a high-gradient magnetic separation process, utilizing magnetite as the energizable element in lieu of stainless steel wool, is evaluated by means of an equilibrium, two-particle, magnetic hetero-flocculation model. The model calculates the net force, defined as the sum of the magnetic, electrostatic, and van der Waals forces, exerted on a paramagnetic nanoparticle that is in the proximity of a fixed magnetite particle. Since the nanoparticle-magnetite system is assumed to be in direct contact with the moving fluid, the influence of the hydrodynamic force on the magnetic attractive force between the two particles is also explored. This model clearly reveals the ranges and conditions over which each of these various forces contributes to the net force relative to Brownian (thermal) motion. The model also reveals the feasibility of using magnetite particles instead of stainless steel as the energizable element for high-gradient magnetic separation. Important variables investigated include the size and surface charge of the particles, the magnetic field, the flow velocity, the electrolyte concentration, and the magnetic susceptibility of the nanoparticle. Copyright 2000 Academic Press.

  13. Thermophysical properties of paramagnetic Fe from first principles

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal elastic constants of α -, γ -, and δ -iron as functions of temperature in the range 1000-1800 K. The calculations accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and δ -iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α - and δ -Fe and about 30% for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013), 10.1016/j.epsl.2013.05.040]. Less agreement is found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and δ -iron.

  14. Effective optical Faraday rotations of semiconductor EuS nanocrystals with paramagnetic transition-metal ions.

    Science.gov (United States)

    Hasegawa, Yasuchika; Maeda, Masashi; Nakanishi, Takayuki; Doi, Yoshihiro; Hinatsu, Yukio; Fujita, Koji; Tanaka, Katsuhisa; Koizumi, Hitoshi; Fushimi, Koji

    2013-02-20

    Novel EuS nanocrystals containing paramagnetic Mn(II), Co(II), or Fe(II) ions have been reported as advanced semiconductor materials with effective optical rotation under a magnetic field, Faraday rotation. EuS nanocrystals with transition-metal ions, EuS:M nanocrystals, were prepared by the reduction of the Eu(III) dithiocarbamate complex tetraphenylphosphonium tetrakis(diethyldithiocarbamate)europium(III) with transition-metal complexes at 300 °C. The EuS:M nanocrystals thus prepared were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroanalysis (ICP-AES), and a superconducting quantum interference device (SQUID) magnetometer. Enhanced Faraday rotations of the EuS:M nanocrystals were observed around 550 nm, and their enhanced spin polarization was estimated using electron paramagnetic resonance (EPR) measurements. In this report, the magneto-optical relationship between the Faraday rotation efficiency and spin polarization is discussed.

  15. Paramagnetic and glass transitions in sudoku

    Science.gov (United States)

    Williams, A.; Ackland, G. J.

    2012-09-01

    We study the statistical mechanics of a model glassy system based on sudoku, a familiar and popular mathematical puzzle. Sudoku puzzles provide a very rare example of a class of frustrated systems with a unique ground state without symmetry. Here, the puzzle is recast as a thermodynamic system where the number of violated rules defines the energy. We use Monte Carlo simulation to show that the “sudoku Hamiltonian” exhibits two transitions as a function of temperature, a paramagnetic, and a glass transition. Of these, the intermediate condensed phase is the only one that visits the ground state (i.e., it solves the puzzle, though this is not the purpose of the study). Both transitions are associated with an entropy change, paramagnetism measured from the dynamics of the Monte Carlo run, showing a peak in specific heat, while the residual glass entropy is determined by finding multiple instances of the glass by repeated annealing. There are relatively few such simple models for frustrated or glassy systems that exhibit both ordering and glass transitions; sudoku puzzles are unique for the ease with which they can be obtained, with the proof of the existence of a unique ground state via the satisfiability of all constraints. Simulations suggest that in the glass phase there is an increase in information entropy with lowering temperature. In fact, we have shown that sudoku puzzles have the type of rugged energy landscape with multiple minima that typifies glasses in many physical systems. This puzzling result is a manifestation of the paradox of the residual glass entropy. These readily available puzzles can now be used as solvable model Hamiltonian systems for studying the glass transition.

  16. Electronic structure of metallic antiperovskite compound GaCMn$_3$

    OpenAIRE

    Shim, J. H.; Kwon, S. K.; Min, B. I.

    2002-01-01

    We have investigated electronic structures of antiperovskite GaCMn$_3$ and related Mn compounds SnCMn$_3$, ZnCMn$_3$, and ZnNMn$_3$. In the paramagnetic state of GaCMn$_3$, the Fermi surface nesting feature along the $\\Gamma{\\rm R}$ direction is observed, which induces the antiferromagnetic (AFM) spin ordering with the nesting vector {\\bf Q} $\\sim \\Gamma{\\rm R}$. Calculated susceptibilities confirm the nesting scenario for GaCMn$_3$ and also explain various magnetic structures of other antipe...

  17. Graphene susceptibility in Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Nano Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of)

    2011-06-15

    We study the effects of the electron-phonon interaction on the temperature dependence of the orbital magnetic susceptibility of monolayer graphene. We use the linear response theory and Green's function formalism within the Holstein Hamiltonian model. The results show that the effects of the electron-phonon interaction on the susceptibility of graphene sheet have different behaviors in two temperature regions. In the low temperature region, susceptibility increases when the electron-phonon coupling strength increases. On the other hand, the susceptibility reduces with increasing the electron-phonon coupling strength in the high temperature region. - Highlights: Effect of electron-phonon interaction on the susceptibility of graphene is studied. Linear response theory and Green's function technique in Holstein model are used. Effect of electron-phonon on susceptibility has different behaviors in two temperature regions.

  18. ALPHA-HYDROGEN, BETA-HYDROGEN AND DELTA-HYDROGEN ABSTRACTION IN THE THERMOLYSIS OF PARAMAGNETIC VANADIUM(III) DIALKYL COMPLEXES

    NARCIS (Netherlands)

    HESSEN, B; BUIJINK, JKF; MEETSMA, A; TEUBEN, JH; HELGESSON, G; HAKANSSON, M; JAGNER, S; SPEK, AL

    Electron deficient paramagnetic vanadium(III) dialkyls CpV(CH2CMe2R)2(PMe3) (14 electron, R = Me (2), Ph (3)) and CpV[CH(SiMe3)2]2 (12 electron, 4) have been synthesized. At ambient temperature 2 decomposes through a-hydrogen abstraction to produce, in the presence of dmpe

  19. Tunable-frequency high-field electron paramagnetic resonance

    Science.gov (United States)

    Krzystek, J.; Zvyagin, S. A.; Ozarowski, Andrew; Trofimenko, S.; Telser, Joshua

    2006-02-01

    A tunable-frequency methodology based on backward wave oscillator sources in high-frequency and -field EPR (HFEPR) is described. This methodology is illustrated by an application to three non-Kramers transition metal ion complexes and one Kramers ion complex. The complexes are of: Ni(II) ( S = 1) as found in dichlorobistriphenylphosphanenickel(II), Mn(III) ( S = 2) as found in mesotetrasulfonatoporphyrinatomanganese(III) chloride, Fe(II) ( S = 2) as found in ferrous sulfate tetrahydrate, and Co(II) ( S = 3/2) as found in azido(tris(3- tert-butylpyrazol-1-yl)hydroborate)cobalt(II). The above Ni(II) and Mn(III) complexes have been studied before by HFEPR using the multifrequency methodology based on Gunn oscillator sources, but not by the present method, while the Fe(II) and Co(II) complexes presented here have not been studied by any form of HFEPR. Highly accurate spin Hamiltonian parameters can be obtained by the experimental methodology described here, in combination with automated fitting procedures. This method is particularly successful in determining g-matrix parameters, which are very difficult to extract for high-spin systems from single frequency (or a very limited set of multi-frequency) HFEPR spectra, but is also able to deliver equally accurate values of the zero-field splitting tensor. The experimental methods involve either conventional magnetic field modulation or an optical modulation of the sub-THz wave beam. The relative merits of these and other experimental methods are discussed.

  20. Electron paramagnetic resonance study of ternary Cu II compounds ...

    Indian Academy of Sciences (India)

    , 74001-970, Goiânia (GO), Brazil; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, and Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina ...

  1. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    (L=P, D, F, G) states via the spin–orbit coupling interactions, respectively. By analysing the above ZFSs, the local .... be described as occupying the approximate face centers of a simple cubic lattice with a cube edge half the value of the full ..... Interestingly, decline of ζ4f by about 10% is needed so as to decrease the ...

  2. Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite

    Science.gov (United States)

    Prameena, B.; Anbalagan, G.; Gunasekaran, S.; Ramkumaar, G. R.; Gowtham, B.

    2014-03-01

    Chalcopyrite (CuFeS2) a variety of pyrite minerals was investigated through spectroscopic techniques and thermal analysis. The morphology and elemental analysis of the chalcopyrite have been done by high resolution SEM with EDAX. The lattice parameters were from the powder diffraction data (a = 5.3003 ± 0.0089 Å, c = 10.3679 ± 0.0289 Å; the volume of the unit cell = 291.266 Å3 with space group I42d (1 2 2)). The thermal decomposition behavior of chalcopyrite was studied by means of thermogravimetric analysis at three different heating rates 10, 15 and 20 °C/min. The values of effective activation energy (Ea), pre-exponential factor (ln A) for thermal decomposition have been measured at three different heating rates by employing Kissinger, Kim-Park and Flynn-Wall methods. Dielectric studies at different temperatures have also been carried out and it was found that both dielectric constant and dielectric loss decreases with the increase of frequency.

  3. Investigations of the electron paramagnetic resonance spectra of ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... The EPR spectra for VO2+ in CaO–Al2O3–SiO2 system are calculated using complete diagonalization method (CDM) and perturbation theory method (PTM). The calculated results are in good agreement with the observed values. By comparing the calculated results by CDM and PTM in a wide range of ...

  4. Theoretical evaluation of the electron paramagnetic resonance spin ...

    Indian Academy of Sciences (India)

    The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic factors) for a 3d5 (with high spin = 5/2) and a 4d5 (with low spin = 1/2) ion in trigonal symmetry, respectively. According ...

  5. Electron paramagnetic resonance parameters of Mn4+ ion in h ...

    Indian Academy of Sciences (India)

    The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, ...

  6. Investigations of the electron paramagnetic resonance spectra of ...

    Indian Academy of Sciences (India)

    Al2O3–SiO2 system. Q WEI1,∗, P X ZHANG2, D Y ZHANG3 and J H ZHOU1. 1Department of Physics, Baoji University of Arts and Science, Baoji 721007, Shaanxi,. China. 2College of Chemistry and Chemical Engineering, Shenzhen University, ...

  7. Low field electron paramagnetic resonance imaging with SQUID detection

    Science.gov (United States)

    Hahn, Inseob (Inventor); Day, Peter K. (Inventor); Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Cohen, Mark S. (Inventor)

    2012-01-01

    In one embodiment, a flux transformer with a gradiometer pickup coil is magnetically coupled to a SQUID, and a SQUID array amplifier comprising a plurality of SQUIDs, connected in series, is magnetically coupled to the output of the SQUID. Other embodiments are described and claimed.

  8. Paramagnetic Properties of Fullerene-Derived Nanomaterials and Their Polymer Composites: Drastic Pumping Out Effect

    Science.gov (United States)

    Konchits, Andriy A.; Shanina, Bela D.; Krasnovyd, Serhii V.; Burya, Alexander I.; Kuznetsova, Olga Yu

    2017-08-01

    The evolution of paramagnetic properties of the fullerene soot (FS), fullerene black (FB), and their polymer composites Phenylon C-2/FS, FB has been studied using the electron paramagnetic resonance (EPR) method. For the first time, a drastic growth of the EPR signals in the FB, FS, and composite samples was observed under pumping out at temperatures T = 20 ÷ 300 °C, which is attributed to the interaction between carbon defects and adsorbed gas molecules, mainly oxygen. It is shown that the ensemble of paramagnetic centers in the FB, FS, and the composite is heterogeneous. This ensemble consists of three spin subsystems 1, 2, and 3 related with different structural elements. The subsystems give three corresponding contributions, L 1, L 2 and L 3, into the overall contour of the EPR signal. The most intensive and broad signal L 3 is caused by 2D electrons from the surface of carbon flakes. Theoretical calculations of the L 3 signal line shape were carried out, and the decay rate of the integral intensity has been obtained for each component L 1, L 2, and L 3 after the contact of the sample with the ambient air. The signal decay process in the bulk composite samples is much slower due to their low gas permeability at room temperature (RT).

  9. Room temperature chiral discrimination in paramagnetic NMR spectroscopy

    CERN Document Server

    Soncini, Alessandro

    2016-01-01

    A recently proposed theory of chiral discrimination in NMR spectroscopy based on the detection of a molecular electric polarization $\\mathbf{P}$ rotating in a plane perpendicular to the NMR magnetic field [A. D. Buckingham, J. Chem. Phys. $\\mathbf{140}$, 011103 (2014)], is here generalized to paramagnetic systems. Our theory predicts new contributions to $\\mathbf{P}$, varying as the square of the inverse temperature. Ab initio calculations for ten Dy$^{3+}$ complexes, at 293K, show that in strongly anisotropic paramagnetic molecules $\\mathbf{P}$ can be more than 1000 times larger than in diamagnetic molecules, making paramagnetic NMR chiral discrimination amenable to room temperature detection.

  10. Paramagnetism in ion-implanted oxides

    CERN Document Server

    Mølholt, Torben Esmann; Gíslason, Hafliði Pétur; Ólafsson, Sveinn

    This thesis describes the investigation on para-magnetism in dilute ion-implanted single-crystal oxide samples studied by on- and off-line $^{57}$Fe emission Mössbauer spectroscopy. The ion-implantation of the radioactive isotopes ( $^{57}$Mn and $^{57}$Co) was performed at the ISOLDE facility at CERN in Geneva, Switzerland. The off-line measurements were performed at Aarhus University, Denmark. Mössbauer spectroscopy is a unique method, giving simultaneously local information on valence/spin state of the $^{57}$Fe probe atoms, site symmetry and magnetic properties on an atomic scale. The utilisation of emission Mössbauer spectroscopy opens up many new possibilities compared with traditional transmission Mössbauer spectroscopy. Among them is the possibility of working with a low concentration below 10$^{-4}$ –10$^{-3}$ at.%, where the implanted Mössbauer $^{57}$Fe probes are truly dilute impurities exclusively interacting with their nearest neighbours and therefore the possibility of crea...

  11. Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods.

    Science.gov (United States)

    Sharma, Ajay; Gaidamakova, Elena K; Matrosova, Vera Y; Bennett, Brian; Daly, Michael J; Hoffman, Brian M

    2013-04-09

    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) "antioxidant" Mn(2+)-metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)-scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn(2+) speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn(2+) of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn(2+) of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn(2+) speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn(2+) complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn(2+) speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants.

  12. Paramagnetic Manganese in the Atherosclerotic Plaque of Carotid Arteries

    Directory of Open Access Journals (Sweden)

    Yury Chelyshev

    2016-01-01

    Full Text Available The search for adequate markers of atherosclerotic plaque (AP instability in the context of assessment of the ischemic stroke risk in patients with atherosclerosis of the carotid arteries as well as for solid physical and chemical factors that are connected with the AP stability is extremely important. We investigate the inner lining of the carotid artery specimens from the male patients with atherosclerosis (27 patients, 42–64 years old obtained during carotid endarterectomy by using different analytical tools including ultrasound angiography, X-ray analysis, immunological, histochemical analyses, and high-field (3.4 T pulse electron paramagnetic resonance (EPR at 94 GHz. No correlation between the stable and unstable APs in the sense of the calcification is revealed. In all of the investigated samples, the EPR spectra of manganese, namely, Mn2+ ions, are registered. Spectral and relaxation characteristics of Mn2+ ions are close to those obtained for the synthetic (nano hydroxyapatite species but differ from each other for stable and unstable APs. This demonstrates that AP stability could be specified by the molecular organization of their hydroxyapatite components. The origin of the obtained differences and the possibility of using EPR of Mn2+ as an AP stability marker are discussed.

  13. Spin injection and spin transport in paramagnetic insulators

    OpenAIRE

    Okamoto, Satoshi

    2016-01-01

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transit...

  14. DEVELOPMENT AND RESEARCH OF THE ECONOMIC ALLOY PARAMAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2016-01-01

    Full Text Available The alloys of Fe-Cr-Ni-C system for the purpose of development the economic alloy paramagnetic (not magnetic steels are investigated. A series of alloys are melted for this purpose, deformation is carried out and a structural state was studied.The area for the selection of the chemical composition of the economic alloy steels with stable paramagnetic properties is defined.

  15. Accuracy of MRI-based Magnetic Susceptibility Measurements

    Science.gov (United States)

    Russek, Stephen; Erdevig, Hannah; Keenan, Kathryn; Stupic, Karl

    Magnetic Resonance Imaging (MRI) is increasingly used to map tissue susceptibility to identify microbleeds associated with brain injury and pathologic iron deposits associated with neurologic diseases such as Parkinson's and Alzheimer's disease. Field distortions with a resolution of a few parts per billion can be measured using MRI phase maps. The field distortion map can be inverted to obtain a quantitative susceptibility map. To determine the accuracy of MRI-based susceptibility measurements, a set of phantoms with paramagnetic salts and nano-iron gels were fabricated. The shapes and orientations of features were varied. Measured susceptibility of 1.0 mM GdCl3 solution in water as a function of temperature agreed well with the theoretical predictions, assuming Gd+3 is spin 7/2. The MRI susceptibility measurements were compared with SQUID magnetometry. The paramagnetic susceptibility sits on top of the much larger diamagnetic susceptibility of water (-9.04 x 10-6), which leads to errors in the SQUID measurements. To extract out the paramagnetic contribution using standard magnetometry, measurements must be made down to low temperature (2K). MRI-based susceptometry is shown to be as or more accurate than standard magnetometry and susceptometry techniques.

  16. One-electron spectra and susceptibilities of the three-dimensional electron gas from self-consistent solutions of Hedin's equations

    Science.gov (United States)

    Kutepov, A. L.; Kotliar, G.

    2017-07-01

    A few approximate schemes to solve the Hedin equations self-consistently introduced in Phys. Rev. B 94, 155101 (2016), 10.1103/PhysRevB.94.155101 are explored and tested for the three-dimensional (3D) electron gas at metallic densities. We calculate one-electron spectra, dielectric properties, compressibility, and correlation energy. Considerable reduction in the calculated bandwidth (as compared to the self-consistent G W result) has been found when vertex correction was used for both polarizability and self-energy. Generally, it is advantageous to obtain the diagrammatic representation of polarizability from the definition of this quantity as a functional derivative of the electronic density with respect to the total field (external plus induced). For self-energy, the first-order vertex correction seems to be sufficient for the range of densities considered. Whenever it is possible, we compare the accuracy of our vertex-corrected schemes with the accuracy of the self-consistent quasiparticle G W approximation (QSGW), which is less expensive computationally. We show that the QSGW approach performs poorly and we relate this poor performance with an inaccurate description of the screening in the QSGW method (with an error comprising a factor 2-3 in the physically important range of momenta).

  17. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  18. Magnetic susceptibilities of minerals

    Science.gov (United States)

    Rosenblum, Sam; Brownfield, I.K.

    2000-01-01

    Magnetic separation of minerals is a topic that is seldom reported in the literature for two reasons. First, separation data generally are byproducts of other projects; and second, this study requires a large amount of patience and is unusually tedious. Indeed, we suspect that most minerals probably are never investigated for this property. These data are timesaving for mineralogists who concentrate mono-mineralic fractions for chemical analysis, age dating, and for other purposes. The data can certainly be used in the ore-beneficiation industries. In some instances, magnetic-susceptibility data may help in mineral identification, where other information is insufficient. In past studies of magnetic separation of minerals, (Gaudin and Spedden, 1943; Tille and Kirkpatrick, 1956; Rosenblum, 1958; Rubinstein and others, 1958; Flinter, 1959; Hess, 1959; Baker, 1962; Meric and Peyre, 1963; Rojas and others, 1965; and Duchesne, 1966), the emphasis has been on the ferromagnetic and paramagnetic ranges of extraction. For readers interested in the history of magnetic separation of minerals, Krumbein and Pettijohn (1938, p. 344-346) indicated nine references back to 1848. The primary purpose of this paper is to report the magnetic-susceptibility data on as many minerals as possible, similar to tables of hardness, specific gravity, refractive indices, and other basic physical properties of minerals. A secondary purpose is to demonstrate that the total and best extraction ranges are influenced by the chemistry of the minerals. The following notes are offered to help avoid problems in separating a desired mineral concentrate from mixtures of mineral grains.

  19. Role of magnetic susceptibility weighted imaging in evaluation of ...

    African Journals Online (AJOL)

    Introduction: Susceptibility-weighted imaging (SWI) is a new method in MR imaging. SWI detects the signal loss created by disturbance of a homogeneous magnetic field; these disturbances can be caused by paramagnetic, ferromagnetic, or diamagnetic substances. There are many neurologic conditions that can benefit ...

  20. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    Science.gov (United States)

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®

  1. EPR-based approach for the localization of paramagnetic metal ions in biomolecules.

    Science.gov (United States)

    Abdullin, Dinar; Florin, Nicole; Hagelueken, Gregor; Schiemann, Olav

    2015-02-02

    Metal ions play an important role in the catalysis and folding of proteins and oligonucleotides. Their localization within the three-dimensional fold of such biomolecules is therefore an important goal in understanding structure-function relationships. A trilateration approach for the localization of metal ions by means of long-range distance measurements based on electron paramagnetic resonance (EPR) is introduced. The approach is tested on the Cu(2+) center of azurin, and factors affecting the precision of the method are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  3. Accuracy of magnetic resonance based susceptibility measurements

    Science.gov (United States)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  4. Impact of Exposure to Electronic Cigarette Advertising on Susceptibility and Trial of Electronic Cigarettes and Cigarettes in US Young Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Villanti, Andrea C; Rath, Jessica M; Williams, Valerie F; Pearson, Jennifer L; Richardson, Amanda; Abrams, David B; Niaura, Raymond S; Vallone, Donna M

    2016-05-01

    This study assessed the impact of brief exposure to four electronic cigarette (e-cigarette) print advertisements (ads) on perceptions, intention, and subsequent use of e-cigarettes and cigarettes in US young adults. A randomized controlled trial was conducted in a national sample of young adults from an online panel survey in 2013. Participants were randomized to ad exposure or control. Curiosity, intentions, and perceptions regarding e-cigarettes were assessed post-exposure and e-cigarette and cigarette use at 6-month follow-up. Analyses were conducted in 2014. Approximately 6% of young adults who had never used an e-cigarette at baseline tried an e-cigarette at 6-month follow-up, half of whom were current cigarette smokers at baseline. Compared to the control group, ad exposure was associated with greater curiosity to try an e-cigarette (18.3% exposed vs. 11.3% unexposed, AOR = 1.63, 95% CI = 1.18, 2.26) among never e-cigarette users and greater likelihood of e-cigarette trial at follow-up (3.6% exposed vs. 1.2% unexposed, AOR = 2.85; 95% CI = 1.07, 7.61) among never users of cigarettes and e-cigarettes. Exploratory analyses did not find an association between ad exposure and cigarette trial or past 30-day use among never users, nor cigarette use among smokers over time. Curiosity mediated the relationship between ad exposure and e-cigarette trial among e-cigarette never users. Exposure to e-cigarette ads may enhance curiosity and limited trial of e-cigarettes in never users. Future studies are needed to examine the net effect of curiosity and trial of e-cigarettes on longer-term patterns of tobacco use. This randomized trial provides the first evidence of the effect of e-cigarette advertising on a behavioral outcome in young adults. Compared to the control group, ad exposure was associated with greater curiosity to try an e-cigarette among never e-cigarette users and greater likelihood of e-cigarette trial at follow-up in a small number of never e

  5. AC susceptibility and EPR investigations of superspin dynamics in magnetite nanoparticles

    Science.gov (United States)

    Price, Alex D.

    In this investigation we use two complementary techniques to distinguish between superparamagnetic blocking (SPB) and superspin-glass (SSG) freezing phenomena in magnetite nanoparticles. While these manifestations of the superspin dynamics are fundamentally different, they have similar "signatures", especially in dc-magnetization experiments. Even if ac-susceptibility measurements are employed, careful use of mathematical models to analyze the data are needed to uncover which type of phenomena (SPB or SSG freezing) occurs within the material. Yet, by utilizing electron paramagnetic resonance (EPR) on a 10 nm Fe3O4 nano-powder as well as on a ferrofluid (based on the same nanoparticle ensemble) we found a very distinct difference in the absorption spectra between the two samples, which indicates markedly different EPR signatures from SPB and SSG freezing behaviors.

  6. Topological quantum paramagnet in a quantum spin ladder

    Science.gov (United States)

    Joshi, Darshan G.; Schnyder, Andreas P.

    2017-12-01

    It has recently been found that bosonic excitations of ordered media, such as phonons or spinons, can exhibit topologically nontrivial band structures. Of particular interest are magnon and triplon excitations in quantum magnets, as they can easily be manipulated by an applied field. Here, we study triplon excitations in an S =1 /2 quantum spin ladder and show that they exhibit nontrivial topology, even in the quantum-disordered paramagnetic phase. Our analysis reveals that the paramagnetic phase actually consists of two separate regions with topologically distinct triplon excitations. We demonstrate that the topological transition between these two regions can be tuned by an external magnetic field. The winding number that characterizes the topology of the triplons is derived and evaluated. By bulk-boundary correspondence, we find that the nonzero winding number implies the presence of localized triplon end states. Experimental signatures and possible physical realizations of the topological paramagnetic phase are discussed.

  7. Diamagnetic Torque Signal and Temperature-Dependent Paramagnetism in Bi2Sr2CaCu2O8+δ

    Science.gov (United States)

    Tsuchiya, Satoshi; Mochiku, Takashi; Ooi, Shuichi; Hirata, Kazuto; Sugii, Kaori; Terashima, Taichi; Uji, Shinya

    2017-11-01

    Magnetic torque and resistance measurements for the superconducting cuprate Bi2Sr2CaCu2O8+δ with Tc = 87 K have been performed to determine the phase diagram in a parallel magnetic field fields up to 14 T. The anisotropy of the magnetization, derived from the torque, is found to decrease with decreasing temperature below 125 K, which can be ascribed to the temperature dependent paramagnetic spin susceptibility. The angular dependence of the torque clearly shows small diamagnetism due to fluctuating or inhomogeneous superconductivity at temperatures between Tc and ˜100 K. The results suggest that the pseudogap is not of superconducting origin.

  8. Equilibrium susceptibilities of superparamagnets: longitudinal and transverse, quantum and classical.

    Science.gov (United States)

    García-Palacios, J L; Gong, J B; Luis, F

    2009-11-11

    The equilibrium susceptibility of uniaxial paramagnets is studied in a unified framework which permits us to connect traditional results of the theory of quantum paramagnets, S = 1/2,1,3/2,..., with molecular magnetic clusters, S∼5,10,20 all the way up (S = 30,50,100,...,) to the theory of classical superparamagnets. This is done using standard tools of quantum statistical mechanics and linear-response theory (the Kubo correlator formalism). Several features of the temperature dependence of the susceptibility curves (crossovers, peaks, deviations from Curie law) are studied and their scalings with S identified and characterized. Both the longitudinal and transverse susceptibilities are discussed, as well as the response of the ensemble with anisotropy axes oriented at random. For the latter case a simple approximate formula is derived too, and its range of validity assessed, which could be used in the modelization of experiments.

  9. Equilibrium susceptibilities of superparamagnets: longitudinal and transverse, quantum and classical

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Palacios, J L; Gong, J B [Department of Physics and Centre of Computational Science and Engineering, NUS, 117542 (Singapore); Luis, F [Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2009-11-11

    The equilibrium susceptibility of uniaxial paramagnets is studied in a unified framework which permits us to connect traditional results of the theory of quantum paramagnets, S = 1/2,1,3/2,..., with molecular magnetic clusters, Sapprox5,10,20 all the way up (S = 30,50,100,...,) to the theory of classical superparamagnets. This is done using standard tools of quantum statistical mechanics and linear-response theory (the Kubo correlator formalism). Several features of the temperature dependence of the susceptibility curves (crossovers, peaks, deviations from Curie law) are studied and their scalings with S identified and characterized. Both the longitudinal and transverse susceptibilities are discussed, as well as the response of the ensemble with anisotropy axes oriented at random. For the latter case a simple approximate formula is derived too, and its range of validity assessed, which could be used in the modelization of experiments.

  10. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    CERN Document Server

    Bastrukov, S I; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameter...

  11. Iron mapping using the temperature dependency of the magnetic susceptibility.

    Science.gov (United States)

    Birkl, Christoph; Langkammer, Christian; Krenn, Heinz; Goessler, Walter; Ernst, Christina; Haybaeck, Johannes; Stollberger, Rudolf; Fazekas, Franz; Ropele, Stefan

    2015-03-01

    The assessment of iron content in brain white matter (WM) is of high importance for studying neurodegenerative diseases. While R2 * mapping and quantitative susceptibility mapping is suitable for iron mapping in gray matter, iron mapping in WM still remains an unsolved problem. We propose a new approach for iron mapping, independent of diamagnetic contributions of myelin by assessing the temperature dependency of the paramagnetic susceptibility. We used unfixed human brain slices for relaxometry and calculated R2 ' as a measure for microscopic susceptibility variations at several temperatures (4°C-37°C) at 3 Tesla. The temperature coefficient of R2 ' (TcR2p) was calculated by linear regression and related to the iron concentration found by subsequent superconducting quantum interference device (SQUID) magnetometry and by inductively coupled plasma mass spectrometry. In line with SQUID measurements, R2 ' mapping showed a linear temperature dependency of the bulk susceptibility with the highest slope in gray matter. Even in WM, TcR2p yielded a high linear correlation with the absolute iron concentration. According to Curie's law, only paramagnetic matter exhibits a temperature dependency while the diamagnetism shows no effect. We have demonstrated that the temperature coefficient (TcR2p) can be used as a measure of the paramagnetic susceptibility despite of an unknown diamagnetic background. © 2014 Wiley Periodicals, Inc.

  12. Investigation of paramagnetic saturation in lanthanum manganese nitrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Meijer, H.C.; Bots, G.J.C.; Verheij, W.A.; van der Marel, L.C.

    1973-01-01

    Paramagnetic saturation of lanthanum manganese nitrate, La2Mn3(NO3)12·24H2O, has been investigated at liquid He temperatures in a static as well as a dynamical way. With the aid of the molecular-field theory the Casimir and Du Pré dispersion and absorption curves are adapted explicitly to the

  13. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  14. Image-based magnetic control of paramagnetic microparticles in water

    NARCIS (Netherlands)

    Keuning, Jasper D.; de Vries, Jeroen; Abelmann, Leon; Misra, Sarthak

    2011-01-01

    This paper describes the design of a system for controlling the position of spherical paramagnetic microparticles that have an average diameter of 100 µm. The focus of this study lies in designing and implementing a system that uses microscopic images and electromagnets. Preliminary experiments have

  15. Antivortices due to competing orbital and paramagnetic pair ...

    Indian Academy of Sciences (India)

    states with co-existing vortices and antivortices exist in a small interval close to θ = 0. The results are compared with recent predictions of antivortices in mesoscopic samples. Keywords. Superconductivity; antivortices; paramagnetic pair-breaking; orbital pair- breaking. PACS Nos 74.20.-z; 74.78.-w; 74.90.+n. 1. Introduction.

  16. On conduction mechanism in paramagnetic phase of Gd based ...

    Indian Academy of Sciences (India)

    On conduction mechanism in paramagnetic phase of Gd based manganites. S SAGAR1,2 and M R ANANTHARAMAN1,∗. 1Department of Physics, Cochin University of Science and Technology, Cochin 682 022, India. 2Present address: Department of Physics, Govt. Polytechnic College, Adoor 691 523, India. MS received ...

  17. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo–Anderson type non-Markovian noise. Natural spatial boundary condition was ...

  18. Spin filtration of unpolarized electrons by impurity centers in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, E. G.; Berdinskiy, V. L., E-mail: bvl@unpk.osu.ru [Orenburg State University (Russian Federation)

    2011-11-15

    It is shown that unpolarized paramagnetic centers can implement the spin filtration of unpolarized conduction electrons in semiconductors. This ability of paramagnetic centers is caused by the difference in the spin evolution of the states of electron-paramagnetic-center pairs and by the spin selectivity of electron capture exclusively from singlet pairs. The electron spin polarization should be opposite to the paramagneticcenter polarization. To implement spin filtration, an external magnetic field is necessary. The polarization can attain the largest values ({approx}10%) if the probability of spin-selective electron capture from singlet pairs exceeds the pair-decay rate by a factor of 5-7.

  19. CW EPR and 9 GHz EPR imaging investigation of stable paramagnetic species and their antioxidant activities in dry shiitake mushroom (Lentinus edodes).

    Science.gov (United States)

    Nakagawa, Kouichi; Hara, Hideyuki

    2016-01-01

    We investigated the antioxidant activities and locations of stable paramagnetic species in dry (or drying) shiitake mushroom (Lentinus edodes) using continuous wave (CW) electron paramagnetic resonance (EPR) and 9 GHz EPR imaging. CW 9 GHz EPR detected paramagnetic species (peak-to-peak linewidth (ΔHpp) = 0.57 mT) in the mushroom. Two-dimensional imaging of the sharp line using a 9 GHz EPR imager showed that the species were located in the cap and shortened stem portions of the mushroom. No other location of the species was found in the mushroom. However, radical locations and concentrations varied along the cap of the mushroom. The 9 GHz EPR imaging determined the exact location of stable paramagnetic species in the shiitake mushroom. Distilled water extracts of the pigmented cap surface and the inner cap of the mushroom showed similar antioxidant activities that reduced an aqueous solution of 0.1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. The present results suggest that the antioxidant activities of the edible mushroom extracts are much weaker than those of ascorbic acid. Thus, CW EPR and EPR imaging revealed the location and distribution of stable paramagnetic species and the antioxidant activities in the shiitake mushroom for the first time.

  20. Linear transformation of EPR spectra as a method proposed for improving identification of paramagnetic species in ceramic.

    Science.gov (United States)

    Dobosz, B; Krzyminiewski, R

    2007-04-01

    In the present paper the paramagnetic centres in pottery generated after gamma-irradiation were investigated. The computer resolution enhancement method (CREM) was used to increase the electron paramagnetic resonance (EPR) spectra resolution. The measurements were performed at room and liquid nitrogen temperatures. The paper shows the results of non-irradiated and gamma-irradiated pottery before and after resolution enhancement. Each EPR spectrum showed a multiple structure after the CREM procedure application. An aluminium hole centre [AlO(4)](0) has been ascribed to these lines. The g factors are: g(1)=2.0602, g(2)=2.0079, and g(3)=2.0019 and hyperfine splitting is A(1)=5.5G and A(2) approximately A(3)=6.3G.

  1. Linear transformation of EPR spectra as a method proposed for improving identification of paramagnetic species in ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, B. [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)]. E-mail: benia@hoth.amu.edu.pl; Krzyminiewski, R. [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2007-04-15

    In the present paper the paramagnetic centres in pottery generated after {gamma}-irradiation were investigated. The computer resolution enhancement method (CREM) was used to increase the electron paramagnetic resonance (EPR) spectra resolution. The measurements were performed at room and liquid nitrogen temperatures. The paper shows the results of non-irradiated and {gamma}-irradiated pottery before and after resolution enhancement. Each EPR spectrum showed a multiple structure after the CREM procedure application. An aluminium hole centre [AlO{sub 4}]{sup 0} has been ascribed to these lines. The g factors are: g {sub 1}=2.0602, g {sub 2}=2.0079, and g {sub 3}=2.0019 and hyperfine splitting is A {sub 1}=5.5 G and A {sub 2}{approx}A {sub 3}=6.3 G.

  2. pH-Dependent Cellular Internalization of Paramagnetic Nanoparticle.

    Science.gov (United States)

    Janic, Branislava; Bhuiyan, Mohammed Pi; Ewing, James R; Ali, Meser M

    2016-08-26

    A hallmark of the tumor microenvironment in malignant tumor is extracellular acidosis, which can be exploited for targeted delivery of drugs and imaging agents. A pH sensitive paramagnetic nanoaparticle (NP) is developed by incorporating GdDOTA-4AmP MRI contrast agent and pHLIP (pH Low Insertion Peptide) into the surface of a G5-PAMAM dendrimer. pHLIP showed pH-selective insertion and folding into cell membranes, but only in acidic conditions. We demonstrated that pHLIP-conjugated Gd44-G5 paramagnetic nanoparticle binds and fuses with cellular membrane at low pH, but not at normal physiological pH, and that it promotes cellular uptake. Intracellular trafficking of NPs showed endosomal/lysosomal path ways.

  3. Dynamics of paramagnetic squares in uniform magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Du, Di; He, Peng; Zeng, Yongchao; Biswal, Sibani Lisa, E-mail: biswal@rice.edu

    2016-11-01

    The magnetic forces between paramagnetic squares cannot be calculated using a classic dipolar model because the magnetic field distribution is not uniform within square particles. Here, we present the calculation of magnetic forces and torques on paramagnetic squares in a uniform 2-D magnetic field using a Laplace's equation solver. With these calculations, we simulate the variations in equilibrium configurations as a function of number of interacting squares. For example, a single square orients with its diagonal directed to the external field while a system of multiple squares will assemble into chain-like structures with their edges directed to the external field. Unlike chains of spherical magnetic particles, that easily stagger themselves to aggregate, chains consisting of magnetic squares are unable to aggregate due to interchain repulsion. - Highlights: • Numerical calculations demonstrate that the orientation dynamics of a magnetic square or rectangle is highly dependent on the magnetic field distribution within the particle and its interactions with neighboring particles. • A paramagnetic square acquires an asymmetric field distribution that results in a torque that rotates it so that its diagonal aligns with the magnetic field. • Chains of magnetic square particles will not combine into bundles as observed in chains of magnetic disk particles.

  4. Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets

    Directory of Open Access Journals (Sweden)

    Alexei Bogdanov

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity (R1/Gd. The observed relaxivity changes are largely due to an increase in the rotational correlation time τr of the lanthanide. Three applications of the developed system are demonstrated: (1 imaging of nanomolar amounts of an oxidoreductase (peroxidase; (2 detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3 imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.

  5. Solid State C-13 and H-2 NMR Investigations of Paramagnetic Ni(II)(acac)(2)L-2 Complexes

    DEFF Research Database (Denmark)

    Lennartson, A.; Christensen, Lene Ulrikke; McKenzie, C. J.

    2014-01-01

    Nine structurally related paramagnetic acetylacetonato nickel(II) complexes: [Ni(acac)(2)] and trans-[Ni(acac)(2)(X)(2)]nH/D2O, X = H2O, D2O, NH3, MeOH, PMePh2, PMe2Ph, or [dppe](1/2), n = 0 or 1, dppe = 1,2-his(diphenylphosphino)ethane, as well as cis-[Ni(F-6-acac)(2)(D2O)(2)], F-6-acac = hexafl......Nine structurally related paramagnetic acetylacetonato nickel(II) complexes: [Ni(acac)(2)] and trans-[Ni(acac)(2)(X)(2)]nH/D2O, X = H2O, D2O, NH3, MeOH, PMePh2, PMe2Ph, or [dppe](1/2), n = 0 or 1, dppe = 1,2-his(diphenylphosphino)ethane, as well as cis-[Ni(F-6-acac)(2)(D2O)(2)], F-6-acac...... = hexafluoroacetylonato, have been characterized by solid state C-13 MAS NMR spectroscopy. H-2 MAS NMR was used to probe the local hydrogen bonding network in [Ni(acac)(2)(D2O)(2)]D2O and cis-[Ni(F-6-acac)(2)(D2O)(2)]. The complexes serve to benchmark the paramagnetic shift, which can be associated with the resonances...... of atoms of the coordinated ligands. The methine (CH) and methyl (CH3) have characteristic combinations of the isotropic shift (delta) and anisotropy parameters (d, eta). The size of the anisotropy (d), which is the sum of the chemical shift anisotropy (CSA) and the paramagnetic electron-nuclei dipolar...

  6. Magnetization and magnetic susceptibility of kunzite

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowska, J.A. E-mail: jobart@polsl.katowice.pl; Cisowski, J.; Voiron, J.; Heimann, J.; Czaja, M.; Mazurak, Z

    2000-11-01

    We have studied the high-field magnetization up to 14.5 T and magnetic susceptibility in the temperature range 1.6-400 K of three different samples of natural kunzite crystals, being a variety of spodumene (LiAlSi{sub 2}O{sub 6}) and containing transition metal ions. It appears that the total magnetization and susceptibility consist of the paramagnetic contribution following from the temperature-dependent Brillouin-type behavior of magnetic ions and temperature-independent diamagnetic contribution of the spodumene matrix which we have found as being equal to -3.5x10{sup -7} emu/g. We have identified the Mn{sup 2+} ions as the dominant ones in the kunzites studied and we have determined the molar concentration of these ions as lying in the range 0.2-0.4%.

  7. Observation of Paramagnetic Raman Optical Activity of Nitrogen Dioxide

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Bouř, Petr

    2014-01-01

    Roč. 53, č. 35 (2014), s. 9236-9239 ISSN 1433-7851 R&D Projects: GA ČR GAP208/11/0105; GA ČR(CZ) GA14-00431S; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200550902 Institutional support: RVO:61388963 Keywords : angular momentum theory * nitrogen dioxide * paramagnetic gases * Raman optical activity * spectral simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.261, year: 2014

  8. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Science.gov (United States)

    Deshpande, Avinash A.; Kumar, N.

    2017-09-01

    We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital magnetic moment turns out to be paramagnetic for our choice of parameters, varied over a wide range. This is shown specifically for the case of classical dynamics driven by a Kubo-Anderson type non-Markovian noise. Natural spatial boundary condition was imposed through (1) a soft (harmonic) confining potential, and (2) a hard potential, approximating a reflecting wall. There was no noticeable qualitative difference. What appears to be crucial to the orbital magnetic effect noticed here is the non-Markovian property of the driving noise chosen. Experimental realization of this effect on the laboratory scale, and its possible implications are briefly discussed. We would like to emphasize that the above steady-state classical orbital paramagnetic moment complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the absence of classical orbital diamagnetism in thermodynamic equilibrium.

  9. The precise control of cell labelling with streptavidin paramagnetic particles.

    Science.gov (United States)

    Ho, Vincent H B; Barcza, Alexander; Chen, Rongjun; Müller, Karin H; Darton, Nicholas J; Slater, Nigel K H

    2009-11-01

    A previously developed cell labelling methodology has been evaluated to assess its potential to precisely control the degree of magnetic labelling. The two-step method provides a quick way of labelling cells by first biotinylating the cell membrane proteins and then binding streptavidin paramagnetic particles onto the biotinylated proteins. Characterisation studies on biotinylated HeLa cells have revealed that the biotin concentration on the cell surface can be varied by changing the biotinylating reagent concentration. At the optimal concentration (750 microm), a substantial surface biotin density (approximately 10(8) biotin per cell) could be achieved within 30 min. The degree of magnetic labelling could be altered by adjusting the concentration of paramagnetic particles added to the cells and the binding of the particles onto the cell surface was not considerably affected by the biotin density on the cell surface. The magnetic moment of the labelled cells was measured and correlated well with the degree of magnetic labelling. Cell viability studies indicated that the magnetic labelling was not cytotoxic. Magnetically labelled cells were then successfully targeted and manipulated by magnetic fields to form three dimensional multicellular structures.

  10. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    Science.gov (United States)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  11. Lifshitz scaling effects on the holographic paramagnetism-ferromagnetism phase transition

    Science.gov (United States)

    Zhang, Cheng-Yuan; Wu, Ya-Bo; Jin, Yong-Yi; Chai, Yun-Tian; Hu, Mu-Hong; Zhang, Zhuo

    2016-06-01

    In the probe limit, we investigate holographic paramagnetism-ferromagnetism phase transition in the four-dimensional and five-dimensional Lifshitz black holes by means of numerical and semianalytical methods, which is realized by introducing a massive 2-form field coupled to the Maxwell field. We find that the Lifshitz dynamical exponent z contributes evidently to the magnetic moment and hysteresis loop of single magnetic domain quantitatively, not qualitatively. Concretely, in the case without an external magnetic field, the spontaneous magnetization and ferromagnetic phase transition happen when the temperature gets low enough, and the critical exponent for the magnetic moment is always 1 /2 , which is in agreement with the result from mean field theory. And the increasing z enhances the phase transition and increases the dc resistivity, which behaves as the colossal magnetic resistance effect in some materials. Furthermore, in the presence of the external magnetic field, the magnetic susceptibility satisfies the Cure-Weiss law with a general z . But the increase of z will result in shortening the period of the external magnetic field.

  12. Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

    Directory of Open Access Journals (Sweden)

    Jacek Wojnarowicz

    2015-09-01

    Full Text Available Zinc oxide nanopowders doped with 1–15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999% and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD, helium pycnometry density, specific surface area (SSA, inductively coupled plasma optical emission spectrometry (ICP-OES, extended X-ray absorption fine structure (EXAFS spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS and with magnetometry using superconducting quantum interference device (SQUID. Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co–Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.

  13. The feasibility of a stationary maser effect due to thermal and UHF excitation of paramagnetic crystals

    Science.gov (United States)

    Vaisfeld, M. P.

    1985-10-01

    Consideration is given to a novel type of maser scheme based on thermal and UHF excitation of paramagnetic yttrium ethyl sulfate (YES) crystal. The crystal is doped with 143-Nd(3+), 172-Yb(3+), and 168-Er(3+) ions of types A, B, and C, respectively. In contrast to classical three-level schemes, quantum amplification in the YES crystal is achieved by partial population inversion of hyperfine sublevels in the A-type working ions. The effective electron spin of the A-type working ions is S(A) = 1/2 and the nuclear spin I is not equal to zero. The crystal matrix, the ion type, and the direction of the external magnetic field are chosen to ensure an optimum thermal contact between the nuclear spins I and the electron spins S(B) = 1/2 of the B-type ions. Inversion is achieved by means of dynamic polarization of teh S(B) spins using UHF pumping; and a frequency shift of the Zeeman sublevels of C-type ions having an electron spin S(C) = 1/2 is obtained. The mechanism for creating the population inversion in the maser scheme is found to be similar to the operating principle of a partial inversion gasdynamic laser.

  14. Magnetic susceptibility measurements of {sigma} plutonium alloys. Contribution to the study of the 5f electrons localization in the plutonium; Mesure de la susceptibilite magnetique d`alliages de plutonium en phase delta. Contribution a l`etude de la localisation des electrons 5f dans le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Meot-Reymond, S

    1996-12-31

    Physical properties of actinide metals are essentially ruled by the 5f electrons localization. From a theoretically point of view, this localization is more important in the {delta}-phase than in the {alpha}-one. To compare their magnetic behaviour, low temperature magnetic susceptibility measurements have been performed and previous-resistivity data have been analysed. Experimental results and theoretical data can be conciliate by the existence of a Kondo effect in the {delta}-Pu phase. (author) 63 refs.

  15. Comparison of different methods for calculating the paramagnetic relaxation enhancement of nuclear spins as a function of the magnetic field

    Science.gov (United States)

    Belorizky, Elie; Fries, Pascal H.; Helm, Lothar; Kowalewski, Jozef; Kruk, Danuta; Sharp, Robert R.; Westlund, Per-Olof

    2008-02-01

    The enhancement of the spin-lattice relaxation rate for nuclear spins in a ligand bound to a paramagnetic metal ion [known as the paramagnetic relaxation enhancement (PRE)] arises primarily through the dipole-dipole (DD) interaction between the nuclear spins and the electron spins. In solution, the DD interaction is modulated mostly by reorientation of the nuclear spin-electron spin axis and by electron spin relaxation. Calculations of the PRE are in general complicated, mainly because the electron spin interacts so strongly with the other degrees of freedom that its relaxation cannot be described by second-order perturbation theory or the Redfield theory. Three approaches to resolve this problem exist in the literature: The so-called slow-motion theory, originating from Swedish groups [Benetis et al., Mol. Phys. 48, 329 (1983); Kowalewski et al., Adv. Inorg. Chem. 57, (2005); Larsson et al., J. Chem. Phys. 101, 1116 (1994); T. Nilsson et al., J. Magn. Reson. 154, 269 (2002)] and two different methods based on simulations of the dynamics of electron spin in time domain, developed in Grenoble [Fries and Belorizky, J. Chem. Phys. 126, 204503 (2007); Rast et al., ibid. 115, 7554 (2001)] and Ann Arbor [Abernathy and Sharp, J. Chem. Phys. 106, 9032 (1997); Schaefle and Sharp, ibid. 121, 5387 (2004); Schaefle and Sharp, J. Magn. Reson. 176, 160 (2005)], respectively. In this paper, we report a numerical comparison of the three methods for a large variety of parameter sets, meant to correspond to large and small complexes of gadolinium(III) and of nickel(II). It is found that the agreement between the Swedish and the Grenoble approaches is very good for practically all parameter sets, while the predictions of the Ann Arbor model are similar in a number of the calculations but deviate significantly in others, reflecting in part differences in the treatment of electron spin relaxation. The origins of the discrepancies are discussed briefly.

  16. Specific and nonspecific interactions in ultraweak protein−protein associations revealed by solvent paramagnetic relaxation enhancements

    DEFF Research Database (Denmark)

    Johansson, Helle; Jensen, Malene Ringkjøbing; Gesmar, Henrik

    2014-01-01

    of human growth hormone (hGH, KD = 0.90 ± 0.03 mM) at neutral pH by the paramagnetic relaxation enhancement (PRE) of the amide protons induced by the soluble paramagnetic relaxation agent, gadodiamide (Gd(DTPA-BMA)). Primarily, it was found that the PREs are in agreement with the general Hwang-Freed model...

  17. Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.

    Science.gov (United States)

    Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam

    2014-03-01

    A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.

  18. Quantum Paramagnet in a π Flux Triangular Lattice Hubbard Model.

    Science.gov (United States)

    Rachel, Stephan; Laubach, Manuel; Reuther, Johannes; Thomale, Ronny

    2015-04-24

    We propose the π flux triangular lattice Hubbard model (π THM) as a prototypical setup to stabilize magnetically disordered quantum states of matter in the presence of charge fluctuations. The quantum paramagnetic domain of the π THM that we identify for intermediate Hubbard U is framed by a Dirac semimetal for weak coupling and by 120° Néel order for strong coupling. Generalizing the Klein duality from spin Hamiltonians to tight-binding models, the π THM maps to a Hubbard model which corresponds to the (J_{H},J_{K})=(-1,2) Heisenberg-Kitaev model in its strong coupling limit. The π THM provides a promising microscopic testing ground for exotic finite-U spin liquid ground states amenable to numerical investigation.

  19. Paramagnetism in Mn/Fe implanted ZnO

    CERN Document Server

    Gunnlaugsson, HP; Weyer, G; Kobayashi, Y; Bharuth-Ram, K; Olafsson, S; Gislason, H P; Gunnlaugsson, H P; Yoshida, Y; Langouche, G; Molholt, T E; Masenda, H; Johnston, K; Sielemann, R; Dlamini, W B; ISOLDE Collaboration; Naidoo, D; Mantovan, R

    2010-01-01

    Prompted by the generally poor understanding of the nature of magnetic phenomena in 3d-metal doped ZnO, we have undertaken on-line Fe-57 Mossbauer spectroscopy on ZnO single crystals in an external magnetic field of 0.6 T, following the implantation of radioactive Mn-57 ions at room temperature. The Mossbauer spectra of the dilute Fe impurities are dominated by sextets whose angular dependence rules out an ordered magnetic state (which had been previously proposed) but are well accounted for on the basis of Fe3+ paramagnetic centers on substitutional Zn sites with unusually long relaxation times (> 20 ns). (C) 2010 American Institute of Physics. {[}doi:10.1063/1.3490708

  20. Polaritons and retarded interactions in nonlinear optical susceptibilities

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1989-01-01

    The role of retarded intermolecular interactions (polariton effects) in the nonlinear optical susceptibilities of condensed phases is studied. A systematic method for calculating these susceptibilities is developed, based on the derivation of reduced equations of motion which couple the electronic

  1. Paramagnetic proton nuclear magnetic relaxation in the Ni2 hexa-aquo complex

    Science.gov (United States)

    Westlund, Per-Olof; Benetis, Nikolas; Wennerström, Håkan

    The nuclear magnetic relaxation of the protons in the Ni2+(H2O)6 complex is analysed using a previously developed formalism (Benetis et al. 1983, Molec. Phys., 48, 329) for the description of paramagnetic nuclear spin relaxation in systems with a complex electron spin relaxation. The nuclear spin relaxation can be described within the Redfield theory and the transverse relaxation rate is expressed in terms of a spectral density K1, -1(ωI), which is the Fourier-Laplace transform of a complex correlation function. In the Ni2+(H2O) complex the electron spin relaxation is caused by the zero field splitting (ZFS) and to evaluate the correlation function it is necessary to specify the dynamics of the ZFS. Three models are considered for this motion: (i) modulation of the ZFS by quantized vibrations, (ii) a classical pseudo-rotation of the ZFS at constant amplitude and (iii) a classical motion of the ZFS in an harmonic potential governed by the Smoluchowski equation.

  2. Local structure, paramagnetic properties, and porosity of natural coals: Spectroscopic studies

    Science.gov (United States)

    Konchits, A. A.; Shanina, B. D.; Valakh, M. Ya.; Yanchuk, I. B.; Yukhymchuk, V. O.; Alexeev, A. D.; Vasilenko, T. A.; Molchanov, A. N.; Kirillov, A. K.

    2012-08-01

    Using methods of the scanning electron microscopy, Raman scattering of light(RS), and electron paramagnetic resonance (EPR), consistent research of the local structure and magnetic features of different types of raw coal samples from Donetsk basin is carried out. It is established that the ratio of the main peak intensities of RS spectrum D and G is inversely related to the volatile substance amount Vdaf in the coal samples. The study of the kinetic behavior of the EPR line width in hydrogen, oxygen, and methane sorption-desorption processes in each coal sample helped determine that the diffusion coefficient value for hydrogen in coal at room temperature is equal to DН = (2 ÷ 7) × 10-5 cm2/s. It is demonstrated that the oxygen diffusion occurs with time according to two different exponential laws with diffusion coefficients DO,1 = 5 × 10-6 cm2/s and DO,2 = 5.5 × 10-7 cm2/s, respectively. The smaller coefficient corresponds to the diffusion caused by the hopping process. Finally, it is established that the anthracite is a unique type of coal which does not possess the ability "to conserve" the significant EPR line width after oxygen pumping out from the samples.

  3. Tailoring the super-paramagnetic nature of MgFe{sub 2}O{sub 4} nanoparticles by In{sup 3+} incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Naik, M.Z.; Salker, A.V., E-mail: sal_arun@rediffmail.com

    2016-09-15

    Highlights: • In{sup 3+} doped MgFe{sub 2}O{sub 4} nanoparticles are prepared by sol-gel method. • XRD and IR showed the formation of pure spinel ferrites. • XPS confirmed the valance states as Fe{sup 3+}, Mg{sup 2+}, In{sup 3+} and O{sup 2−}. • Super-paramagnetic nature of nanoparticles is observed. • Blocking temperature is obtained at RT under applied field of 250 Oe. - Abstract: MgFe{sub 1−x}In{sub x}O{sub 4} nanoparticles (where x = 0.00, 0.04, 0.08, 0.12 and 0.16) have been prepared by sol-gel method using citric acid. The appearance of two distinct bands corresponding to tetrahedral and octahedral occupied M−O bonds has been demonstrated in Fourier Transform Infra Red spectra (FT-IR). X-ray powder pattern confirmed the presence of a cubic spinel phase. X-ray Photoelectron Spectroscopy (XPS) has been employed to confirm the valence states of the metal ions present. Mössbauer spectroscopy shows the sextet for pristine sample and on In{sup 3+} doping the super-paramagnetic doublet becomes prominent. AC susceptibility profiles shows transition from single domain structure to super-paramagnetic particles on doping. The magnetic properties have been studied using Vibrating Sample Magnetometer (VSM), here the M-H and M-T curves showed the formation of super-paramagnetic nanoparticles at room temperature, where the saturation magnetisation (M{sub s}), remnant magnetisation (M{sub r}) and coercivity (H{sub c}) values decreased with In{sup 3+} incorporation.

  4. Optical manifestation of the Stoner ferromagnetic transition in two-dimensional electron systems

    Science.gov (United States)

    Van'kov, A. B.; Kaysin, B. D.; Kukushkin, I. V.

    2017-12-01

    We perform a magneto-optical study of a two-dimensional electron systems in the regime of the Stoner ferromagnetic instability for even quantum Hall filling factors on MgxZn1 -xO /ZnO heterostructures. Under conditions of Landau-level crossing, caused by enhanced spin susceptibility in combination with the tilting of the magnetic field, the transition between two rivaling phases, paramagnetic and ferromagnetic, is traced in terms of optical spectra reconstruction. Synchronous sharp transformations are observed both in the photoluminescence structure and parameters of collective excitations upon transition from paramagnetic to ferromagnetic ordering. Based on these measurements, a phase diagram is constructed in terms of the two-dimensional electron density and tilt angle of the magnetic field. Apart from stable paramagnetic and ferromagnetic phases, an instability region is found at intermediate parameters with the Stoner transition occurring at ν ≈2 . The spin configuration in all cases is unambiguously determined by means of inelastic light scattering by spin-sensitive collective excitations. One indicator of the spin ordering is the intra-Landau-level spin exciton, which acquires a large spectral weight in the ferromagnetic phases. The other is an abrupt energy shift of the intersubband charge density excitation due to reconstruction of the many-particle energy contribution. From our analysis of photoluminescence and light scattering data, we estimate the ratio of surface areas occupied by the domains of the two phases in the vicinity of a transition point. In addition, the thermal smearing of a phase transition is characterized.

  5. Electronic structure study of wide band gap magnetic semiconductor (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} nanocrystals in paramagnetic and ferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, G. D.; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L. [Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Joshi, Amish G. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Shiv; Ghosh, A. K. [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Chatterjee, Sandip, E-mail: schatterji.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-04-25

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} near Fermi-level. XMCD results indicate that Mn{sup 3+} and Mn{sup 4+} spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below T{sub C}. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  6. Synthesis of super-paramagnetic iron oxide nanoparticles assisted by brown seaweed Turbinaria decurrens for removal of reactive navy blue dye

    Science.gov (United States)

    Khaleelullah, Mohamed Mathar Sahib Ibrahim; Murugan, Muralidharan; Radha, K. V.; Thiyagarajan, Devasena; Shimura, Yosuke; Hayakawa, Yasuhiro

    2017-10-01

    Super-paramagnetic iron oxide nanoparticles (SPIONs) were synthesized using Turbinaria decurrens extract for the first time. The produced Fe3O4 was characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM). The XRD results showed the presence of crystalline Fe3O4, while the FTIR analysis confirmed the presence of organic molecules on the Fe3O4 surface. The homogeneous distribution of the Fe3O4 nanoparticles was observed from the TEM images. The super-paramagnetic nature of the particles was revealed by the VSM studies. The SPIONs also showed good adsorption ability for navy blue dye, with the adsorption kinetics following the Langmuir pattern.

  7. The Use of Portable X-ray Flourescence, Magnetic Susceptibility and Scanning Electron Microscope to Classify, characterize, and Determine Redox State of Granites

    Science.gov (United States)

    Abbott, J. R.; Fellows, S. A.

    2016-12-01

    Utah contains granitic intrusions associated with various ore deposits that vary spatially, temporally, and chemically. Utah is a great location to study mineralization associated with granites because it encompasses three unique geologic provinces and offers a wide array of emplacement configurations. Past studies in Utah have primarily focused on major elements and there is also a paucity of trace analyses and most studies are only on one discrete location. Trace element analysis can be used for classifying granites and also locating potential mineralized granites. Trace element analysis of granites may also lend insight into magma redox, which is important for ore formation. Trace element and redox analyses are both expensive and time consuming. We wanted to determine redox and trace element distribution using tools that are cost effective and readily available. Portable x-ray fluorescence (pXRF) offers an affordable solution to quickly acquire large counts for key trace elements in granites. These semi-quantitative results may also help determine redox. We present a technique to better determine the redox state of granitic rocks using pXRF and magnetic susceptibility a tool that is underutilized in the field. Additionally, we show that mineral mapping of oxides and sulfur-bearing minerals in thin section by SEM, aids in determining the redox state of granites by looking at Fe and Ti ratios and observing the presence of sulfate or sulfide. By utilizing equipment that is readily available and cost effective we are able to better understand the redox state, and mineralizing potential of various granites. This is important to workers interested in locating ore deposits or understanding the granitic system.

  8. Pauli paramagnetic effects on vortices in superconducting TmNi2B2C

    DEFF Research Database (Denmark)

    DeBeer-Schmitt, L.; Eskildsen, Morten Ring; Ichioka, M.

    2007-01-01

    The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to 0.6H(c2) followed by a sharp decrease at higher...... fields. The data are fitted well by solutions to the Eilenberger equations when paramagnetic effects due to the exchange interaction with the localized 4f Tm moments are included. The induced paramagnetic moments around the vortex cores act to maintain the field contrast probed by the form factor....

  9. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  10. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    Science.gov (United States)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  11. Dynamical spin dependent susceptibility of graphene like structure

    Science.gov (United States)

    Moradian, Rostam; Rezania, Hamed; Marvi, Saeed

    2018-02-01

    Spin dependent susceptibility of gapped graphene is calculated using Hubbard model. We found that by increasing the electron density, energy gap and repulsive coulomb interaction the imaginary part of the susceptibility peaks will be shifted towards higher frequencies and by increasing the magnetization the imaginary part of the susceptibility peaks will be shifted towards lower frequencies. It means that plasmonic frequency depends on electrons band filling, electronic coulomb repulsion, magnetization and graphene initial energy gap.

  12. Magnetic field distribution in the presence of paramagnetic plates in magnetic resonance imaging: a combined numerical and experimental study.

    Science.gov (United States)

    Mertens, Philipp; Machann, Juergen; Mueller-Bierl, Bernd; Steidle, Guenter; Bellemann, Matthias E; Schick, Fritz

    2008-05-01

    The amount and geometric distribution of paramagnetic components in tissue is considered as the basis of T2*-weighted magnetic resonance imaging (MRI). Such techniques are routinely applied for assessment of iron in parenchymal organs such as the liver (hemosiderosis). Furthermore, susceptibility sensitive MRI is discussed as an alternative method to x-ray techniques for quantitative assessment of paramagnetic spongy bone components in patients with osteoporosis. The presented work is dedicated to systematically examining the possible influences of macroscopic arrangements of paramagnetic plates on the magnetic field. In a theoretical approach magnetic field distribution was simulated applying decomposition of the plates in single dipoles. Plate size and distances between parallel plates, as well as plate orientation with respect to the static field, were varied for these numerical simulations. Experiments on corresponding plate arrangements were carried out on a 3 T whole body MR scanner using the field-sensitive MR sequence technique for B0 field mapping. Further examinations were carried out on a bone preparation of the femur, where T2* maps were measured and analyzed on a pixel-by-pixel basis at two orientations with respect to the static field. A series of experiments were performed using isotropic and anisotropic volume elements in three-dimensional gradient echo sequences. Resulting magnetic field distributions in the experimentally recorded B0 field maps were in good agreement with the numerical simulations. Field distortions dominated in areas close to the plates and especially near the edges. Those areas showed strong local field gradients, leading to pronounced signal dephasing effects. The examination of the bone preparations revealed different T2* values for identical regions in the bone when the orientation of the bone or the pixel geometry was changed with respect to the magnetic field. Those effects amounted to nearly 70% (22.9 ms versus 13.6 ms in

  13. Efficiency of electronically monitored amblyopia treatment between 5 and 16 years of age: new insight into declining susceptibility of the visual system.

    Science.gov (United States)

    Fronius, Maria; Cirina, Licia; Ackermann, Hanns; Kohnen, Thomas; Diehl, Corinna M

    2014-10-01

    The notion of a limited, early period of plasticity of the visual system has been challenged by more recent research demonstrating functional enhancement even into adulthood. In amblyopia ("lazy eye") it is still unclear to what extent the reduced effect of treatment after early childhood is due to declining plasticity or lower compliance with prescribed patching. The aim of this study was to determine the dose-response relationship and treatment efficiency from acuity gain and electronically recorded patching dose rates, and to infer from these parameters on a facet of age dependence of functional plasticity related to occlusion for amblyopia. The Occlusion Dose Monitor was used to record occlusion in 27 participants with previously untreated strabismic and/or anisometropic amblyopia aged between 5.4 and 15.8 (mean 9.2) years during 4months of conventional treatment. Group data showed improvement of acuity throughout the age span, but significantly more in patients younger than 7years despite comparable patching dosages. Treatment efficiency declined with age, with the most pronounced effects before the age of 7years. Thus, electronic recording allowed this first quantitative insight into occlusion treatment spanning the age range from within to beyond the conventional age for patching. Though demonstrating improvement in over 7year old patients, it confirmed the importance of early detection and treatment of amblyopia. Treatment efficiency is presented as a tool extending insight into age-dependent functional plasticity of the visual system, and providing a basis for comparisons of effects of patching vs. emerging alternative treatment approaches for amblyopia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of paramagnetic manganese cations on (1)H MRS of the brain

    DEFF Research Database (Denmark)

    Madsen, Kathrine Skak; Holm, David Alberg; Vejby Søgaard, Lise

    2008-01-01

    Manganese cations (Mn(2+)) can be used as an intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn(2+) is neurotoxic and may influence the concentration of (1)H MR-detectable metabolites. Furthermore, the paramagnetic Mn......(2+) cations may also influence the relaxation of the metabolites under investigation. Consequently, the purpose of this study was to investigate the effect of paramagnetic Mn(2+) cations on (1)H-MR spectra of the brain using in vivo and phantom models at 4.7 T. To investigate the direct paramagnetic...... would be expected at this concentration. Consequently, this study indicates that, in this model, the presence of Mn(2+) cations does not significantly affect (1)H-MR spectra despite possible toxic and paramagnetic effects. Copyright (c) 2008 John Wiley & Sons, Ltd....

  15. Effect of paramagnetic manganese cations on H-1 MRS of the brain

    DEFF Research Database (Denmark)

    Madsen, K. S.; Holm, David Alberg; Søgaard, L. V.

    2008-01-01

    Manganese cations (Mn2+) call be used as all intracellular contrast agent for structural, functional and neural pathway imaging applications. However, at high concentrations, Mn2+ is neurotoxic and play influence the concentration of H-1 MR-detectable metabolites. Furthermore, the paramagnetic Mn2......+ cations may also influence the relaxation of the metabolites under investigation. Consequently, the purpose of this study was to investigate the effect of paramagnetic Mn2+ cations on H-1-MR spectra of the brain using in vivo and phantom models at 4.7T. To investigate the direct paramagnetic effects of Mn...... be expected at this concentration. Consequently, this study indicates that. ill this model. the presence of Mn2+ cations does not significantly affect H-1-MR spectra despite possible toxic and paramagnetic effects....

  16. Susceptibility of murine norovirus and hepatitis A virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks.

    Science.gov (United States)

    Praveen, Chandni; Dancho, Brooke A; Kingsley, David H; Calci, Kevin R; Meade, Gloria K; Mena, Kristina D; Pillai, Suresh D

    2013-06-01

    Consumption of raw oysters is an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, efficient postharvest oyster treatment technology is needed to reduce public health risks. This study evaluated the inactivation of HAV and the NoV research surrogate, murine norovirus-1 (MNV-1), in oysters (Crassostrea virginica) by electron beam (E-beam) irradiation. The reduction of potential infection risks was quantified for E-beam irradiation technology employed on raw oysters at various virus contamination levels. The E-beam dose required to reduce the MNV and HAV titer by 90% (D(10) value) in whole oysters was 4.05 (standard deviations [SD], ±0.63) and 4.83 (SD, ±0.08) kGy, respectively. Microbial risk assessment suggests that if a typical serving of 12 raw oysters was contaminated with 10(5) PFU, a 5-kGy treatment would achieve a 12% reduction (from 4.49 out of 10 persons to 3.95 out of 10 persons) in NoV infection and a 16% reduction (from 9.21 out of 10 persons to 7.76 out of 10 persons) in HAV infections. If the serving size contained only 10(2) PFU of viruses, a 5-kGy treatment would achieve a 26% reduction (2.74 out of 10 persons to 2.03 out of 10 persons) of NoV and 91% reduction (2.1 out of 10 persons to 1.93 out of 100 persons) of HAV infection risks. This study shows that although E-beam processing cannot completely eliminate the risk of viral illness, infection risks can be reduced.

  17. Protonated paramagnetic redox forms of di-o-quinone bridged with p-phenylene-extended TTF: A EPR spectroscopy study

    Directory of Open Access Journals (Sweden)

    Nikolay O. Chalkov

    2016-11-01

    Full Text Available The chemical oxidation and reduction processes of deprotonated, direduced o-quinone-exTTF-o-quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distribution in the semiquinone–quinone and semiquinone–catechol redox forms indicates that the p-phenylene-extended tetrathiafulvalene connector provides a quite effective electronic communication channel between dioxolene coordination sites. It was found that the deprotonated, direduced o-quinone-exTTF-o-quinone is capable to reduction of the metal copper in solution. The radical anion species formed in this reaction exists in solution as a solvent-separated ion pair with a copper cation. A character of spin-density distribution in a radical anion species leads to the conclusion that the ligand corresponds to type III of the Robin–Day classification.

  18. Protonated paramagnetic redox forms of di-o-quinone bridged with p-phenylene-extended TTF: A EPR spectroscopy study.

    Science.gov (United States)

    Chalkov, Nikolay O; Cherkasov, Vladimir K; Abakumov, Gleb A; Starikov, Andrey G; Kuropatov, Viacheslav A

    2016-01-01

    The chemical oxidation and reduction processes of deprotonated, direduced o-quinone-exTTF-o-quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distribution in the semiquinone-quinone and semiquinone-catechol redox forms indicates that the p-phenylene-extended tetrathiafulvalene connector provides a quite effective electronic communication channel between dioxolene coordination sites. It was found that the deprotonated, direduced o-quinone-exTTF-o-quinone is capable to reduction of the metal copper in solution. The radical anion species formed in this reaction exists in solution as a solvent-separated ion pair with a copper cation. A character of spin-density distribution in a radical anion species leads to the conclusion that the ligand corresponds to type III of the Robin-Day classification.

  19. How can [Mo(IV)(CN)6](2-), an apparently octahedral (d)(2) complex, be diamagnetic? Insights from quantum chemical calculations and magnetic susceptibility measurements.

    Science.gov (United States)

    Radoń, Mariusz; Rejmak, Paweł; Fitta, Magdalena; Bałanda, Maria; Szklarzewicz, Janusz

    2015-06-14

    Quantum chemical calculations are employed to elucidate the origin of a puzzling diamagnetism for a hexacyanomolybdate(IV) anion, [Mo(CN)6](2-), which was previously reported by Szklarzewicz et al. [Inorg. Chem., 2007, 46, 9531-9533]. The diamagnetism is surprising because for the octahedral (d)(2) complex one would rather expect a (paramagnetic) triplet ground state, clearly favored over a (diamagnetic) singlet state by an exchange interaction between two d electrons in the t2g orbitals. Nevertheless, the present calculations reveal that the minimum energy structure of isolated [Mo(CN)6](2-) is not an octahedron, but a trigonal prism; the latter geometry allows maximization of a σ-donation from the cyanides to the electron-deficient Mo(iv) center. Unlike for the octahedron, for the trigonal prism structure the singlet and triplet spin states are close in energy to within a few kcal mol(-1). Although the actual relative energy of the two spin states turns out to be method-dependent, the complete active space calculations (CASPT2; with the appropriate choice of the IPEA shift parameter) can reproduce the singlet ground state, in agreement with the experimentally observed diamagnetism. Moreover, magnetic measurements reveal a slight increase of the magnetic susceptibility with the increase of temperature from 100 to 300 K, suggesting an admixture of a thermally induced paramagnetism (possibly due to Boltzmann population of the low-energy triplet state) on top of the dominant diamagnetism. Our prediction that the geometry of [Mo(CN)6](2-) should significantly deviate from the ideal octahedron, not only in the gas phase, but also in a periodic DFT model of the crystalline phase, as well as the experimentally confirmed diamagnetic properties, does not agree with the previously reported ideal octahedral structure. We suggest that this crystal structure might have been determined incorrectly (e.g., due to overlooked merohedral twinning or superstructure properties) and

  20. Magnetic order and electronic properties of Li{sub 2}Mn{sub 2}(MoO{sub 4}){sub 3} material for lithium-ion batteries: ESR and magnetic susceptibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, N.M. [E. K. Zavoisky Physical-Technical Institute of Russian Academy of Sciences, Kazan (Russian Federation); Kazan State Power Engineering University, Kazan (Russian Federation); Prabaharan, S.R.S. [VIT University, School of Electronics Engineering, Chennai (India); Khantimerov, S.M.; Nizamov, F.A. [E. K. Zavoisky Physical-Technical Institute of Russian Academy of Sciences, Kazan (Russian Federation); Michael, M.S. [SSN College of Engineering, Department of Chemistry, Chennai (India); Drulis, H.; Wisniewski, P. [Institute of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland)

    2016-08-15

    We describe the application of electron spin resonance (ESR) and magnetic susceptibility methods to study the magnetic properties and valence state of transition metal ions in Li{sub 2}Mn{sub 2}(MoO4){sub 3} polyanion compound previously studied for its cathode-active properties in lithium containing batteries. ESR measurements of Li{sub 2}Mn{sub 2}(MoO{sub 4}){sub 3} have shown the presence of Mn{sup 2+} ions in the octahedral environment of oxygen ions. It is found that the part of manganese ions occupy the anti-site positions in lithium sublattice. The absence of the ESR signal from molybdenum ions indicates that they are non-magnetic and adopt the 6{sup +} valence state. Considerable overlapping between 3d orbitals of transition metal and 2p oxygen orbitals has been experimentally established. This leads to the indirect exchange interaction and antiferromagnetic ordering of manganese ions at 1.4 K. (orig.)

  1. The 3 Hours-hydrothermal Synthesis of High Surface Area Super Paramagnetic Fe3o4 Core-shell Nano Particles

    OpenAIRE

    Octiana Sari, Esty; Fadli, Ahmad; Amri, Amun

    2017-01-01

    THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPER PARAMAGNETIC Fe3O4 CORE-SHELL NANO PARTICLES. The monodisperse core-shell Fe3O4 nanoparticles have been successfully synthesized by short times (3 hours) hydrothermal method at 220-oC from FeCl3, citrate, urea and PEG. The as-synthesized samples have been characterized using X-RayDiffraction (XRD), Transmission Electron Microscope (TEM), Bruneur-Emmet-Teller (BET) surface area analyzer, and Vibrating Sample Magnetometer (VSM). The ...

  2. Mechanical membrane for the separation of a paramagnetic constituent from a fluid

    Science.gov (United States)

    Maurice, David

    2017-05-02

    The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.

  3. Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.

    Science.gov (United States)

    Du, Zhenming; Unno, Masaki; Matsui, Toshitaka; Ikeda-Saito, Masao; La Mar, Gerd N

    2010-10-01

    Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, chi, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of chi that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase; pertinence for determining magnetic axes in paramagnetic substrate complexes

    Science.gov (United States)

    Du, Zhenming; Unno, Masaki; Matsui, Toshitaka; Ikeda-Saito, Masao; La Mar, Gerd N.

    2010-01-01

    Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, χ, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of χ that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference. The implications of these diamagnetic chemical shifts for characterizing the hydrogen bonding in the physiologically relevant, resting-state, high-spin aquo complex are discussed. The pattern of labile proton exchange in the distal H-bond network of substrate-free HmuO allowed comparison of changes in dynamic stability of tertiary contacts in the substrate-free and substrate-bound HmuO and with the same complexes of human heme oxygenase. PMID:20655112

  5. Electron paramagnetic resonance, NIR studies on zoisite, clinozoisite and chrom-zoisite minerals

    Science.gov (United States)

    Reddy, S. Lakshmi; Maheswaramma, K. Sesha; Reddy, R. Ramasubba; Reddy, A. Varada; Nakamura, Y.; Reddy, B. J.; Endo, Tamio; Frost, Ray L.

    2011-04-01

    A zoisite group of mineral samples from different localities are used in the present study. An EPR study on powdered samples confirms the presence of Mn(II), Fe(III) and Cr(III) in the minerals. NIR studies confirm the presence of these ions in the minerals.

  6. Electron paramagnetic resonance, optical absorption, IR and Raman spectral studies on pelecypod shell

    Science.gov (United States)

    Lakshmi Reddy, S.; Reddy, K. N. M.; Siva Reddy, G.; Reddy, B. J.; Frost, R. L.; Endo, Tamio

    2008-02-01

    Pelecypod shell originated from Kolleru lake of Andhra Pradesh is used in the present work. It contains Mn(II) and Fe(III) in traces. The EPR spectrum of the compound is due to Mn(II) which is in three independent sites. The three g values are evaluated with slight differences. The hyperfine component varies from 9.33 to 9.49 mT. The zero field splitting parameter is also ranges from 43.8(1) to 44.1(1) mT. Using the covalence parameter the number of ligands around metal is estimated as 20. In EPR spectrum Fe(III) is identified. The optical absorption spectrum is attributed to Mn(II) in octahedral geometry. Further 10 Dq band is attributed to Fe(II) in the optical absorption spectrum. NIR spectral results are due to water fundamentals, whereas IR and Raman spectrum is due to carbonate ion fundamentals.

  7. Age of the Harrison Street Beast: Electron paramagnetic resonance spectra from tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, R.A. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Mechanical Engineering; Elam, J.M.; Davenport, C. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Anthropology; Bogard, J.S. [Oak Ridge National Lab., TN (United States). Life Sciences Div.

    1998-04-01

    Workers doing road reconstruction in 1993 in Fort Wayne, Indiana, uncovered remains of a large skeleton and contacted archaeologists for assessment prior to continuing work. The archaeologists excavated the remains which were located in a 19-cm thick layer of blue glay, a pedological deposit which forms from wet, anaerobic environments associated with bogs. This glay layer was located some 2 meters below the current ground level (Davenport 1996). In this paper, the authors present the results of an EPR analysis of tooth enamel (biogenic hydroxyapatite) from the Harrison Street Beast. The objectives of this study are: (1) determine an age for the specimen through EPR analysis of molar tooth enamel; (2) resolve and identify the radiation sensitive EPR spectral components; and (3) develop a provisional model for the creation of radiation-sensitive components in the EPR spectra.

  8. Approaches to structure and dynamics of biological systems by electron-paramagnetic-resonance spectroscopy

    NARCIS (Netherlands)

    Scarpelli, Francesco

    2009-01-01

    Proteins and enzymes play a key role in all biological systems. Understanding the mechanism of biological functions and reactions in which proteins and enzymes are involved requires a detailed characterization of protein structure and dynamics. Structure refers to geometrical structure, as a result

  9. Electron paramagnetic resonance and luminescence of chromium in calcium germanate crystals

    CERN Document Server

    Gorshkov, O N; Tyurin, S A; Chigineva, A B; Chigirinskij, Y I

    2002-01-01

    One observed luminescence of Cr sup 4 sup + :Ca sub 2 GeO sub 4 single crystals near 1.3 mu m wave length at excitation by a semiconducting laser up to 573 K. At T < 110 K one detected the EPR spectrum identified as one belonging to Cr sup 4 sup + ions substituting for germanium. One determined the components of g-tensor and its basic axes. In calcium germanate this impurity centre slightly violates crystal symmetry. Detected deviation from the Curie law in EPR temperature dependence is explained by transition into the excited state with activation low energy. The giant efficient multiplicity of degeneration of the excited state is explained by induction of soft phonon modes of crystal at excitation of a defect

  10. Quantitative evaluation of contributions to electron paramagnetic resonance line widths in ferric hemoglobin single crystals.

    Science.gov (United States)

    Brill, A S; Hampton, D A

    1979-02-01

    The contributions to the dipolar broadening of ferric magnetic resonances, from crystals of hemoglobin for which the atomic coordinates are known, have been calculated. The total second moment of the g = 2 resonance so determined is about 50 (MHz)2 or 5.0 G (peak-to-trough), figures consistent with the range of values found from analysis of experimental data. Two-thirds of this second moment comes from the two protons of the H2O molecule coordinated to the iron. Treatment with D2O is predicted to reduce the total second moment at g = 2 to about 25 (MHz)2, whereas the experimental measurements on single crystals show no decrease. If the structure of the tetramer is assumed to be the same when in solution as in the crystal, the total second moment is readily redetermined for hemoglobin in solution; the value so obtained is found to be significantly smaller than that from analysis of the g = 2 resonance measured in frozen solution. These two unexpected observations can be explained in terms of distributions in spin Hamiltonian parameters, the spread depending upon the nature of the sample--crystal or solution, ordinary or heavy water-treated. This distribution in H2O and D2O solutions appears to be about the same, since the measured differences in component line width agree with the calculated difference in dipolar contributions.

  11. Radiation oxygen biology with pulse electron paramagnetic resonance imaging in animal tumors.

    Science.gov (United States)

    Redler, Gage; Elas, Martyna; Epel, Boris; Barth, Eugene D; Halpern, Howard J

    2013-01-01

    The reduced oxygen in tumors (hypoxia) generates radiation resistance and limits tumor control probability (TCP) at radiation doses without significant normal tissue complication. Modern radiation therapy delivery with intensity-modulated radiation therapy (IMRT) enables complex, high-dose gradient patterns, which avoid sensitive human tissues and organs. EPR oxygen images may allow selection of more resistant parts of a tumor to which to deliver more radiation dose to enhance TCP. EPR O2 images are obtained using injected narrow-line, low relaxation rate trityl spin probes that enable pulse radiofrequency EPR O2 images of tumors in the legs of mice, rats, and rabbits, the latter exceeding 4 cm in size. Low relaxation rates of trityls have enabled novel T1-, rather than T2-, based oximetry, which provides near absolute pO2 imaging. Tomographic image formation and filtered back projection reconstruction are used to generate these images with fixed, linear stepped gradients. Images obtained both with T2 and T1 oximetric images have demonstrated the complex in vivo mechanism explaining the unexpected efficacy of TNFerade, a radiation-inducible adenoviral construct to locally produce TNF-induced vascular as well as radiation damage [1, 2]. The unexpected efficacy of large-dose radiation fractions is seen to be due to an interaction between host microvasculature and tumor cells producing a prompt (15 min) postradiation hypoxia, paralyzing tumor cell repair, and sensitizing tumors. Finally, cure of tumors treated to a single 50 % control dose shows a significant dependence on EPR O2 image hypoxic fractions, best shown with the fraction of voxels less than 10 Torr (HF10). We show that these O2 images provide a quantitative basis for measuring tumor and normal tissue response to abnormally low O2 levels. Measurements of vascular endothelial growth factor (VEGF) production in a specific syngeneic mouse fibrosarcoma, FSa versus fraction of tissue voxels with pO2 less than 10 Torr, produced a slope of 0.14 pg VEGF protein/mg total protein/% HF10. We argue that this quantification may be diagnostic of tumor versus normal tissue, and it may be etiologic in the development of malignancy.

  12. An improved approach to identify irradiated dog feed by electron paramagnetic resonance study and thermoluminescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Bhaskar, E-mail: bhaskar_sanyal@rediffmail.co [Food Technology Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Chawla, S.P.; Sharma, Arun [Food Technology Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India)

    2011-05-15

    In the present study, probably for the first time, a detailed analysis of the radiation induced radical species and thermoluminescence measurements of irradiated dog feed are reported. The EPR spectrum of non-irradiated ready-to-eat dog feed was characterized by singlet g=2.0047{+-}0.0003. Irradiated samples exhibited a complex EPR spectrum. During high power (50.0 mW) EPR spectroscopy, a visible change in the shape of the EPR spectrum was observed and characterized by EPR spectrum simulation technique. An axially symmetric anisotropic signal with g{sub ||}=2.0028 and g{sub perpendicular}=1.9976 was identified. However, a negligible change in the matrix of irradiated edible dog chew was observed using EPR spectroscopy. Therefore, thermoluminescence study of the isolated minerals from dog chew was carried out. The composition of the poly-minerals was studied using SEM and EDX analysis and a complete verdict on identification of irradiation is proposed.

  13. ASSESSMENT OF RADIATION SAFETY OF CHILLED MEAT USING THE METHOD OF ELECTRON PARAMAGNETIC RESONANCE

    Directory of Open Access Journals (Sweden)

    R. T. Timakova

    2016-01-01

    Full Text Available In the world practice, the radiation technologies for food product processing are extensively used; with that, free radicals are found in products. Scientists have not made a final conclusion about the complete safety of the method of radiation sterilization, so it is very important to control irradiated food products to determinea fact of irradiation and residual effects. The experimental data obtained on the domestic spectrometer EPR series Labrador Expert X, which was developed by Spektr LLC with the assistance of the research team of the authors from the Institute of Natural Sciences of UrFU named after Yeltsin B. N., indicate the presence of free radicals in the samples of boneless beef, which is probably associated with °Ccurrence of ante-mortem technological and slaughter stress in animals. Irradiation of the chicken meat samples carried out in laboratory conditions allows a comparison of the spectra before and after irradiation. The dose of irradiation of poultry was 12 kGy. This dose was selected based on the practice of recognizing the radiation doses of 10-12 kGy as safe, which was established in many countries. It was found that in the range of the magnetic fields from 3272 to 3280 Gs, there was a weak EPR signal with an amplitude of 7.28 e-05 and D less than 1. Such a background signal can be explained by stress in the birds, peculiarities of feeding and other factors. After irradiation at a dose of 12 kGy, the ESR signal increased in the range of the magnetic fields from 3273 to 3286 Gs and D was higher than 1. This technology or, in other words, radappertization, is an industrialsterilization of food products for long storage at positive temperatures, which precludes re-contamination by microorganisms. After irradiation, the fivefold increase in the amplitude of the ESR signal was observed and two additional signals with small amplitude appeared. The fact of irradiation/absence of irradiation of the samples was also confirmed by calculation according to GOST R 52529-2006. The need for further research of meat and meat products by the EPR method is obvious: to determine a fact of sterilization or radurization, to determine a radiation dose, to accumulate reliablyestablished information on radiation sensitivity and to develop a methodological base for the use of an EPR spectrometer.

  14. Evaluation of paramagnetic species in coals with iodine doping technique; Yoso tenkaho wo mochiita sekitanchu no jojiseishu no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, S.; Kumagai, H.; Chiba, T. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology

    1996-10-28

    Electron paramagnetic resonance (EPR) of coals was considered by using iodine doping technique. Sub-bituminous coal (WA) and bituminous coal (UF) were used to observe EPR spectra using microwaves. With the UF coal, strength of the narrow component of the spectra was found constant regardless of amount of the doped iodine, wherein radicals without interaction with iodine were detected. Strength of the broad component increased with the iodine doping amount, where in deviation of {pi} electrons was detected, which have been generated as a result of interaction between aromatic rings and iodine in the coals. Spin concentration of the WA coal with low coalification degree is constant regardless of the iodine doping amount, and the interaction of the iodine with the aromatic rings was found small. The higher the coalification degree, the more the aromatic ring structure grows, and electron donor capability for the iodine increases. In a system with the entire spin being uniform, the spectrum height shows a saturation phenomenon against increase in microwave output. A non-uniform system, in which the oriented spin forms small groups and is in local thermal equilibrium, does not show saturation, but increases monotonously. 2 refs., 5 figs.

  15. Electron spin resonance microscopic imaging of oxygen concentration in cancer spheroids

    Science.gov (United States)

    Hashem, Mada; Weiler-Sagie, Michal; Kuppusamy, Periannan; Neufeld, Gera; Neeman, Michal; Blank, Aharon

    2015-07-01

    Oxygen (O2) plays a central role in most living organisms. The concentration of O2 is important in physiology and pathology. Despite the importance of accurate knowledge of the O2 levels, there is very limited capability to measure with high spatial resolution its distribution in millimeter-scale live biological samples. Many of the current oximetric methods, such as oxygen microelectrodes and fluorescence lifetime imaging, are compromised by O2 consumption, sample destruction, invasiveness, and difficulty to calibrate. Here, we present a new method, based on the use of the pulsed electron spin resonance (ESR) microimaging technique to obtain a 3D mapping of oxygen concentration in millimeter-scale biological samples. ESR imaging requires the incorporation of a suitable stable and inert paramagnetic spin probe into the desirable object. In this work, we use microcrystals of a paramagnetic spin probe in a new crystallographic packing form (denoted tg-LiNc-BuO). These paramagnetic species interact with paramagnetic oxygen molecules, causing a spectral line broadening that is linearly proportional to the oxygen concentration. Typical ESR results include 4D spatial-spectral images that give an indication about the oxygen concentration in different regions of the sample. This new oximetry microimaging method addresses all the problems mentioned above. It is noninvasive, sensitive to physiological oxygen levels, and easy to calibrate. Furthermore, in principle, it can be used for repetitive measurements without causing cell damage. The tissue model used in this research is spheroids of Human Colorectal carcinoma cell line (HCT-116) with a typical diameter of ∼600 μm. Most studies of the microenvironmental O2 conditions inside such viable spheroids carried out in the past used microelectrodes, which require an invasive puncturing of the spheroid and are also not applicable to 3D O2 imaging. High resolution 3D oxygen maps could make it possible to evaluate the

  16. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    DEFF Research Database (Denmark)

    Westereng, Bjorge; Cannella, David; Wittrup Agger, Jane

    2015-01-01

    cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds...

  17. Magnetic susceptibility of La{sub x}Nd{sub 1-x}F{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Paradowski, M.L. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Fizyki; Pacyna, A.W. [Henryk Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Bombik, A. [Academy of Mining and Metallarugy, Krakow (Poland). Dept. of Physics and Nuclear Techniques; Korczak, W. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Fizyki]|[Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Centre de Recherches sur les Tres Basses Temperatures; Korczak, S.Z. [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Fizyki

    1997-02-01

    The AC susceptibility of La{sub x}Nd{sub 1-x}F{sub 3} single crystals, for 0{<=}x{<=}0.1, has been measured from 1.5 up to 40 K and their DC susceptibility for 0{<=}x{<=}1 has been measured from 3 up to 300 K in magnetic fields up to 0.2 T. In both susceptibilities the magnetic fields were applied parallel to the crystallographic a-axis (perpendicular to the c-axis). The effective Bohr magneton number p{sub eff} and paramagnetic Curie temperature {theta}{sub p} have been obtained, using the Curie-Weiss law in the temperature range 100-300 K. Also the g-values corresponding to the five Kramers doublets in the {sup 4}I{sub 9/2} ground multiplet of Nd{sup 3+} ion in La{sub x}Nd{sub 1-x}F{sub 3} have been determined in the direction perpendicular to the c-axis, using the Van Vleck theory of paramagnetic susceptibility. The effect of the dilution of the paramagnetic Nd{sup 3+} ions with diamagnetic La{sup 3+} ions is also discussed. (orig.).

  18. In vitro study of deep capture of paramagnetic particle for targeting therapeutics

    Science.gov (United States)

    Pei, Ning; Huang, Zheyong; Ma, Wenli; Ge, Junbo; Zheng, Wenling

    2009-09-01

    Magnetic targeting, a promising therapeutic strategy for localizing systemically delivered drug to target tissue, is limited by magnetic attenuation. To satisfy the need of deep magnetic targeting, a special apparatus in which the magnetic flux density can be focused at a distance from the pole was designed. To test the aggregation property of this apparatus, we observed the accumulation of 500-nm paramagnetic particles as flowing through a tube served as a model of blood vessels. The relationship of the accumulation of the paramagnetic particles, the magnetic flux density, the magnetic field gradient and the fluid velocity was studied by theoretical considerations.

  19. Premartensitic phenomena in the ferro- and paramagnetic phases of Ni2MnGa

    DEFF Research Database (Denmark)

    Stuhr, U.; Vorderwisch, P.; Kokorin, V.V.

    1997-01-01

    Low-energy phonons were studied in the ferromagnetic and paramagnetic phases of the Heusler alloy Ni2MnGa. The investigated sample shows a martensitic phase transformation with a transition temperature T-M approximate to 284 K, only about 80 K below the Curie temperature. Therefore, premartensitic...... phenomena could be studied in the ferromagnetic as well as in the paramagnetic state. The (xi xi 0) TA(2)-phonon branch shows a strong but incomplete softening at xi approximate to 1/3 in the premartensitic phase when the temperature approaches T-M. The temperature dependence of this softening changes...

  20. Paramagnetic defects in KH{sub 2}PO{sub 4} crystals with high concentration of embedded TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grachev, Valentin G., E-mail: grachev@physics.montana.edu; Tse, Romand; Malovichko, Galina I. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Pritula, Igor M.; Bezkrovnaya, Olga N.; Kosinova, Anna V. [Institute for Single Crystals, NAS of Ukraine, Kharkiv (Ukraine)

    2016-01-21

    Qualitative transformations of spectra of Electron Paramagnetic Resonance, EPR, were found in KH{sub 2}PO{sub 4} crystals grown from liquor with 10{sup −5}–10{sup −1 }wt. % of anatase TiO{sub 2} nanoparticles in comparison with nominally pure KH{sub 2}PO{sub 4}. The nanoparticles have larger segregation coefficient for prismatic parts of the crystals than for pyramidal ones. Significant decrease in resonance absorption, complete disappearance of EPR lines of Fe{sup 3+} and Cr{sup 3+} centers, and appearance of four weak lines of equal intensities together with broad asymmetric lines with g-factors about 2.07–2.5 was observed in pyramidal parts grown with concentration of TiO{sub 2} nanoparticles larger than the threshold value 10{sup −2 }wt. %. The four lines were attributed to non-controlled impurity As substituted for P. In the presence of TiO{sub 2} nanoparticles, non-paramagnetic AsO{sub 4}{sup 3−} clusters trap electrons becoming AsO{sub 4}{sup 4−}. Disappearance of Fe{sup 3+} and Cr{sup 3+} centers was explained by their recharge to “EPR-silent” states and/or pairing at the surface of TiO{sub 2} nanoparticles.

  1. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  2. On the influence of heat transport on low- frequency paramagnetic spin-Lattice relaxation experiments

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Hartemink, G.A.; van der Marel, L.C.

    1974-01-01

    In low-frequency relaxation experiments on paramagnetic crystals, placed in liquid helium, often dispersion- and absorption curves are found, strongly deviating from those following from the thermodynamic theory of Casimir and Du Pré. For the relaxation time τabs, related to the maximum in the

  3. Magnetic-based minimum input motion control of paramagnetic microparticles in three-dimensional space

    NARCIS (Netherlands)

    Khalil, I.S.M.; Metz, R.M.P.; Reefman, B.A.; Misra, Sarthak

    2013-01-01

    Magnetic drug carriers such as microrobots and paramagnetic microparticles have the potential to increase the therapeutic indices by selectively targeting the diseased tissue. These magnetic microobjects can be controlled using magnetic-based manipulation systems. In this study, we analyze a minimum

  4. Quasiclassical Theory on Third-Harmonic Generation in Conventional Superconductors with Paramagnetic Impurities

    Science.gov (United States)

    Jujo, Takanobu

    2018-02-01

    We investigate the third-harmonic generation (THG) of s-wave superconductors under microwave pulse irradiation. We consider the effect of paramagnetic impurities on the THG intensity of dirty superconductors. The nonlinear response function is calculated using the method of the quasiclassical Green function. It is shown that the amplitude mode is included as the vertex correction and makes a predominant contribution to the THG intensity. When the effect of paramagnetic impurities is weak, the THG intensity shows a peak at the temperature at which the superconducting gap is about the same as the frequency of the incident pulse, similarly to in experiments. As the effect of paramagnetic impurities is strengthened, the peak of the THG intensity disappears. This indicates that time-reversal symmetry breaking due to paramagnetic impurities eliminates the well-defined amplitude mode. The result of our calculation shows that the existence of the amplitude mode can be confirmed through the THG intensity. The result of a semiquantitative calculation is in good agreement with the experimental result, and it also shows that the diamagnetic term is negligible.

  5. RGD-targeted paramagnetic liposomes for early detection of tumor: In vitro and in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei; Su Bo; Meng Shuyan; Ju Lixia; Yan Linghua; Ding Yongmei; Song Yin; Zhou Wei; Li Heyan; Tang Liang; Zhao Yinmin [Research Institute of Oncology, Tongji University Medical School, 507 Zhenmin Road, Shanghai 200433 (China); Zhou Caicun, E-mail: caicunzhou@yahoo.com.cn [Research Institute of Oncology, Tongji University Medical School, 507 Zhenmin Road, Shanghai 200433 (China)

    2011-11-15

    Magnetic resonance molecular imaging has emerged as a potential approach for tumor diagnosis in the last few decades. This approach consists of the delivery of MR contrast agents to the tumor by specific targeted carriers. For this purpose, a lipopeptide was constructed by using a cyclic RGD peptide headgroup coupled to palmitic acid anchors via a KGG tripeptide spacer. Targeted paramagnetic liposomes were then prepared by the incorporation of RGD-coupled-lipopeptides into lipid bilayers for specific bounding to tumor. In vitro, study demonstrated that RGD-targeted liposomes exhibited a better binding affinity to targeted cells than non-targeted liposomes. MR imaging of mice bearing A549 tumors with the RGD-targeted paramagnetic liposomes also resulted in a greater signal enhancement of tumor compared to non-targeted liposomes and pure contrast agents groups. In addition, biodistribution study also showed specific tumor targeting of RGD-targeted paramagnetic liposomes in vivo. Therefore, RGD-targeted paramagnetic liposomes prepared in the present study may be a more promising method for early tumor diagnosis.

  6. Dynamic nuclear-polarization studies of paramagnetic species in solution

    Energy Technology Data Exchange (ETDEWEB)

    Glad, W.E.

    1982-07-01

    Dynamic Nuclear Polarization (DNP) was used to measure the electron spin lattice relaxation times, T/sub 1/, of transition metal ions in aqueous solution. Saturation which is induced in the electron spin system is transferred to the solvent proton spins by dipole-dipole interactions. The change in the polarization of the proton spins is much larger than it is in the electron spins. The change in proton polarization is easily measured by proton Nuclear Magnetic Resonance (NMR). In one experimental arrangement the sample solution was continuously flowed through a microwave cavity to the NMR coil. The NMR was observed with a continuous wave NMR spectrometer. In a second arrangement the whole sample tube was moved from within the microwave cavity to the NMR coil in less than 40 ms by a blast of compressed air. The NMR was then observed with a pulse-Fourier-transform spectrometer. With the second arrangement a mean-square microwave magnetic field at the sample of more than 10 G/sup 2/ is obtainable with 14 W of microwave power. Measurements of DNP at 9 GHz were made on aqueous solutions of VO/sup 2 +/, Mn/sup 2 +/, Cr(CN)/sub 6//sup 3 -/, Cu/sup 2 +/ and Cu(ethylenediamine)/sub 2/(H/sub 2/0)/sub 2//sup 2 +/ ions from 3 to 60/sup 0/C. It was also possible to observe DNP on resolved proton resonances from mixed water-acetonitrile solutions of VO/sup 2 +/ and Cr(CN)/sub 6//sup 3 -/ ions.

  7. Susceptibility to malignant hyperthermia

    NARCIS (Netherlands)

    Snoeck, Marcus Matheus Johannes

    2004-01-01

    In this thesis the author studied the diagnostic procedures for susceptibility to malignant hyperthermia (MH), with special emphasis upon refining the biological diagnostic test and improving protocols and guidelines for investigation of MH susceptibility. MH is a pharmacogenetic disease of skeletal

  8. Spin susceptibility of Anderson impurities in arbitrary conduction bands

    Science.gov (United States)

    Fang, Tie-Feng; Tong, Ning-Hua; Cao, Zhan; Sun, Qing-Feng; Luo, Hong-Gang

    2015-10-01

    Spin susceptibility of Anderson impurities is a key quantity in understanding the physics of Kondo screening. Traditional numerical renormalization group (NRG) calculation of the impurity contribution χimp to susceptibility, defined originally by Wilson in a flat wide band, has been generalized before to structured conduction bands. The results brought about non-Fermi-liquid and diamagnetic Kondo behaviors in χimp, even when the bands are not gapped at the Fermi energy. Here, we use the full density-matrix (FDM) NRG to present high-quality data for the local susceptibility χloc and to compare them with χimp obtained by the traditional NRG. Our results indicate that those exotic behaviors observed in χimp are unphysical. Instead, the low-energy excitations of the impurity in arbitrary bands only without gap at the Fermi energy are still a Fermi liquid and paramagnetic. We also demonstrate that unlike the traditional NRG yielding χloc less accurate than χimp, the FDM method allows a high-precision dynamical calculation of χloc at much reduced computational cost, with an accuracy at least one order higher than χimp. Moreover, artifacts in the FDM algorithm to χimp and origins of the spurious non-Fermi-liquid and diamagnetic features are clarified. Our work provides an efficient high-precision algorithm to calculate the spin susceptibility of impurity for arbitrary structured bands, while negating the applicability of Wilson's definition to such cases.

  9. Vascular malformation mimicking multiple sclerosis active plaque: Usefulness of susceptibility weighted imaging (SWI) to perform correct diagnosis

    OpenAIRE

    Marsecano, Claudia; Perri, Marco; Michelini, Giulia; Varrassi, Marco; Splendiani, Alessandra; Di Cesare, Ernesto; Masciocchi, Carlo; Gallucci, Massimo

    2015-01-01

    Brain focal hyperdensity areas are common findings in computed tomography examinations, often further evaluated in magnetic resonance imaging exams. These are usually haemosiderin and calcified perivascular clusters known as cerebral microbleeds and may be secondary signs of brain disorders. Cerebral microbleeds are paramagnetic and ferromagnetic substances determining magnetic field inhomogeneity. Susceptibility weighted imaging (SWI) performed at 3T with phase post-processing is very useful...

  10. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility; Estudo de semicondutores amorfos dopados com terras raras (Gd e Er) e de polimeros condutores atraves das tecnicas de RPE e susceptibilidade magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Sercheli, Mauricio da Silva

    1999-07-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er{sup 3+} ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO{sub 4}{sup -}, which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  11. Super paramagnetic iron oxide nanoparticle modified mancozeb imprinted polymer

    Science.gov (United States)

    Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    An electrochemical sensor for detection of mancozeb from soil and vegetable sample using molecularly imprinted star polymer modified with iron oxide nanoparticles (SPIONs) is described in this work. We have prepared SPIONS by hydrothermal method and modified with vinyl silane to introduce double bond at their surface. The vinyl group modified SPIONs were used to form mancozeb imprinted star polymer (ISP). The ISPs have specific recognition ability high adsorption capacity towards their template molecule and could be easily extracted from complex matrices using a simple magnet. The prepared polymer was well characterized by field emissive scanning electron microscopy (FE-SEM). Under the optimum condition, the prepared sensor shows good response for mancozeb in the range of 5.96 to 222.39 µg L-1 (detection limit=0.98 µg L-1). The proposed sensors have highly selective for detection of mancozeb in soil and vegetable samples also.

  12. Enhancement of T1 and T2 relaxation by paramagnetic silica-coated nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, D; Herberg, J; Gjersing, E; Ramon, E; Maxwell, R; Gray, J W; Budinger, T F; Chen, F F

    2006-08-28

    We present the first comprehensive investigation on water-soluble nanoparticles embedded into a paramagnetic shell and their properties as an MRI contrast agent. The nanoprobes are constructed with an inorganic core embedded into an ultra-thin silica shell covalently linked to chelated Gd{sup 3+} paramagnetic ions that act as an MRI contrast agent. The chelator contains the molecule DOTA and the inorganic core contains a fluorescent CdSe/ZnS qdots in Au nanoparticles. Optical properties of the cores (fluorescence emission or plasmon position) are not affected by the neither the silica shell nor the presence of the chelated paramagnetic ions. The resulting complex is a MRI/fluorescence probe with a diameter of 8 to 15 nm. This probe is highly soluble in high ionic strength buffers at pH ranging from {approx}4 to 11. In MRI experiments at clinical field strengths of 60 MHz, the QDs probes posses spin-lattice (T{sub 1}) and a spin-spin (T{sub 2}) relaxivities of 1018.6 +/- 19.4 mM{sup -1} s{sup -1} and 2438.1 +/- 46.3 mM{sup -1} s{sup -1} respectively for probes having {approx}8 nm. This increase in relaxivity has been correlated to the number of paramagnetic ions covalently linked to the silica shell, ranging from approximately 45 to over 320. We found that each bound chelated paramagnetic species contributes by over 23 mM{sup -1} s{sup -1} to the total T{sub 1} and by over 54 mM{sup -1} s{sup -1} to the total T{sub 2} relaxivity respectively. The contrast power is modulated by the number of paramagnetic moieties linked to the silica shell and is only limited by the number of chelated paramagnetic species that can be packed on the surface. So far, the sensitivity of our probes is in the 100 nM range for 8-10 nm particles and reaches 10 nM for particles with approximately 15-18 nm in diameter. The sensitivities values in solutions are equivalent of those obtained with small superparamagnetic iron oxide nanoparticles of 7 nm diameter clustered into a 100 nm polymeric

  13. Theoretical foundations of electron spin resonance

    CERN Document Server

    Harriman, John E

    2013-01-01

    Theoretical Foundations of Electron Spin Resonance deals with the theoretical approach to electron paramagnetic resonance. The book discusses electron spin resonance in applications related to polyatomic, probably organic, free radicals in condensed phases. The book also focuses on essentially static phenomena, that is, the description and determination of stationary-state energy levels. The author reviews the Dirac theory of the electron in which a four-component wave function is responsible for the behavior of the electron. The author then connects this theory with the nonrelativistic wave f

  14. Electronic Structure of ZnO Quantum Dots studied by High-frequency EPR, ESE, ENDOR and ODMR Spectroscopy

    NARCIS (Netherlands)

    Baranov, P.G.; Romanov, N.G.; Bundakova, A.P.; de Mello-Donega, Celso; Schmidt, J.

    2016-01-01

    High-frequency electron paramagnetic resonance (EPR), electron spin echo (ESE), electron-nuclear double resonance (ENDOR) and optically detected magnetic resonance (ODMR) were applied for the investigation of the electronic properties of ZnO colloidal quantum dots (QDs) which consist of a ZnO

  15. Thermally Activated Paramagnets from Diamagnetic Polymers of Biphenyl-3,5-diyl Bis(tert-butyl Nitroxides Carrying Methyl and Fluoro Groups at the 2’- and 5’-Positions

    Directory of Open Access Journals (Sweden)

    Toru Yoshitake

    2016-03-01

    Full Text Available Three new biradicals—2’,5’-dimethyl-, 2’-fluoro-5’-methyl-, and 5’-fluoro-2’-methyl- biphenyl-3,5-diyl bis(tert-butyl nitroxides—were synthesized. The magnetic susceptibility measurements revealed their diamagnetism below and around room temperature. The nitroxide groups are located close to each other in an intermolecular fashion to form a weakly covalent head-to-tail (NO2 ring. Biradical molecules are connected on both radical sites, constructing a diamagnetic chain. The dimethyl derivative underwent a structural phase transition at 83 °C, clarified via differential scanning calorimetry and powder X-ray diffraction, and a paramagnetic solid phase with S = 1 irreversibly appeared. The other analogues exhibited a similar irreversible upsurge of the magnetic susceptibility on heating, but the transition was characterized as the melting.

  16. A Series of Linear {FeIII2FeII} Complexes with Paramagnetic Building-Block-Modified Spin Crossover Behaviors.

    Science.gov (United States)

    Hu, Ji-Xiang; Meng, Yin-Shan; Zhao, Liang; Zhu, Hai-Lang; Liu, Lei; Liu, Qiang; Jiao, Cheng-Qi; Liu, Tao

    2017-11-13

    Tuning of the spin crossover (SCO) behavior through paramagnetic building blocks with different steric hindrance effects is of great interest in terms of the synergy between SCO and magnetic interactions. Herein, the steric effect of specified Fe III building blocks is modified, from the large Tp* (hydridotris(3,5-dimethylpyrazol-1-yl)borate) analogue to a small Tp (hydrotris(pyrazolyl)borate) derivative; the Fe II SCO unit and Fe III paramagnetic ions are incorporated into three well isolated trinuclear complexes featuring thermally induced and light-induced SCO properties. Reanalysis of the structures reveals that π-π stacking interactions play a key role in the thermal hysteresis and anomalous octahedral distortion parameter Σ around the Fe II ion. The Tp* ligand showing the largest steric hindrance induces elongated Fe II -N bond lengths and bending of the C≡N-Fe II angle in 1, as well as having a relatively large electron donor effect, which leads to the lowest thermal transition temperature among the three compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y

    Directory of Open Access Journals (Sweden)

    Vítězslav Jarý

    2015-10-01

    Full Text Available Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K. Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed.

  18. Possible nematic spin liquid in spin-1 antiferromagnetic system on the square lattice: Implications for the nematic paramagnetic state of FeSe

    Science.gov (United States)

    Gong, Shou-Shu; Zhu, W.; Sheng, D. N.; Yang, Kun

    2017-05-01

    The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand its novel properties, we study the ground state of a highly frustrated spin-1 system with bilinear-biquadratic interactions using an unbiased large-scale density matrix renormalization group. Remarkably, with increasing biquadratic interactions, we find a paramagnetic phase between Néel and stripe magnetic ordered phases. We identify this phase as a candidate of nematic quantum spin liquid by the compelling evidences, including vanished spin and quadrupolar orders, absence of lattice translational symmetry breaking, and a persistent nonzero lattice nematic order in the thermodynamic limit. The established quantum phase diagram naturally explains the observations of enhanced spin fluctuations of FeSe in neutron scattering measurement and the phase transition with increasing pressure. This identified paramagnetic phase provides a possibility to understand the novel properties of FeSe.

  19. Synthesis, structure, and paramagnetism of manganese(II) iminophosphate complexes.

    Science.gov (United States)

    Woodruff, Daniel N; McInnes, Eric J L; Sells, Daniel O; Winpenny, Richard E P; Layfield, Richard A

    2012-08-20

    The coordination chemistry of the bidentate bis(imino)bis(amino)phosphate ligands [Me(3)SiN═P{NR}{N(H)R}(2)](-), where R = n-propyl is [L(1)H(2)](-), R = cyclohexyl is [L(2)H(2)](-), and R = tert-butyl is [L(3)H(2)](-), with manganese(II), is described. The bis(imino)bis(amino)phosphate-manganese(II) complexes [(η(5)-Cp)Mn(μ-L(1)H(2))](2) (1), [Mn(L(2)H(2))(2)]·THF (2·THF), and [(η(5)-Cp)Mn(L(3)H(2))] (3) were synthesized by monodeprotonation of the respective pro-ligands by manganocene, Cp(2)Mn. The molecular structures of 1-3 reveal that the steric demands of the ligand N-substituents play a dominant role in determining the aggregation state and overall composition of the manganese(II) complexes. The coordination geometries of the Mn(II) centers are six-coordinate pseudotetrahedral in 1, four-coordinate distorted tetrahedral in 2, and five-coordinate in 3, resulting in formal valence electron counts of 17, 13, and 15, respectively. EPR studies of 1-3 at Q-band reveal high-spin manganese(II) (S = 5/2) in each case. In the EPR spectrum of 1, no evidence of intramolecular magnetic exchange was found. The relative magnitudes of the axial zero-field splitting parameter, D, in 2 and 3 are consistent with the symmetry of the manganese environment, which are D(2d) in 2 and C(2v) in 3.

  20. Oxygen as a paramagnetic probe for nuclear magnetic resonance: structure and paramagnetic profile of a lipid bilayer/membrane model system

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abdul Wahid, M.S

    2005-07-01

    Paramagnetic contact shifts and relaxation rate enhancements from molecular oxygen dissolved in a model membrane, were studied by nuclear magnetic resonance spectroscopy. The model membrane system was an isotropic bicelle formed using 1-myristelaidoyl-2-myristoyl-d27-sn- glycero-3-phosphocholine (MLMPC), a custom phospholipid, and 1-2-dihexanoyl-d22-sn-glycero-3-phosphocholine (DHPC). The {sup 13}C and {sup 1}H spectra of MLMPC were assigned. Molecular oxygen was delivered at external pressures of 20 and 50 atm. Paramagnetic contact shifts were found to scale with the oxygen solubility gradient in the lipid bilayer, were found to be invariant to temperature changes in the region studied (288K to 331K), and scaled linearly with changes in oxygen pressure. Relaxation rate enhancements from oxygen were low in the headgroup region and increased to a roughly constant rate in the acyl chain region. Rates were comparable to values predicted by simple thermodynamic theories which take into account the observed gradients in diffusion rates and solubility of oxygen in bilayers. (author)

  1. Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells.

    Science.gov (United States)

    Kashevsky, B E; Zholud, A M; Kashevsky, S B

    2015-09-07

    We investigate the magnetically driven motion in suspensions of paramagnetic particles. Our object is diluted deoxygenated whole blood with paramagnetic red blood cells (RBCs). We use direct observations in a closed vertical Hele-Shaw channel, and a well-defined magnetic force field applied horizontally in the channel plane. At very low cell concentrations, we register single-particle motion mode, track individual cells and determine their hydrodynamic and magnetic characteristics. Above 0.2 volume percent concentration, we observe local swirls and a global transient quasi-periodic vortex structure, intensifying with increasing cell concentration, but surprisingly this does not influence the time and purity of the magnetic extraction of RBCs. Our observations shed light on the behavioral complexity of magnetically driven submagnetic suspensions, an important issue for the emerging microfluidic technology of direct magnetic cell separation and intriguing for the mechanics of particulate soft matter.

  2. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods.

    Science.gov (United States)

    Pilla, Kala Bharath; Gaalswyk, Kari; MacCallum, Justin L

    2017-11-01

    The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A caged lanthanide complex as a paramagnetic shift agent for protein NMR.

    Science.gov (United States)

    Prudêncio, Miguel; Rohovec, Jan; Peters, Joop A; Tocheva, Elitza; Boulanger, Martin J; Murphy, Michael E P; Hupkes, Hermen-Jan; Kosters, Walter; Impagliazzo, Antonietta; Ubbink, Marcellus

    2004-07-05

    A lanthanide complex, named CLaNP (caged lanthanide NMR probe) has been developed for the characterisation of proteins by paramagnetic NMR spectroscopy. The probe consists of a lanthanide chelated by a derivative of DTPA (diethylenetriaminepentaacetic acid) with two thiol reactive functional groups. The CLaNP molecule is attached to a protein by two engineered, surface-exposed, Cys residues in a bidentate manner. This drastically limits the dynamics of the metal relative to the protein and enables measurements of pseudocontact shifts. NMR spectroscopy experiments on a diamagnetic control and the crystal structure of the probe-protein complex demonstrate that the protein structure is not affected by probe attachment. The probe is able to induce pseudocontact shifts to at least 40 A from the metal and causes residual dipolar couplings due to alignment at a high magnetic field. The molecule exists in several isomeric forms with different paramagnetic tensors; this provides a fast way to obtain long-range distance restraints.

  4. NMR resonance assignment of selectively labeled proteins by the use of paramagnetic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, Brian; Strauss, Andre; Fendrich, Gabriele; Manley, Paul W.; Jahnke, Wolfgang [Novartis Institutes of Biomedical Research (Switzerland)], E-mail: wolfgang.jahnke@pharma.novartis.com

    2004-10-15

    Selective isotopic labeling of larger proteins greatly simplifies protein NMR spectra and reduces signal overlap, but selectively labeled proteins cannot be easily assigned since the sequential assignment method is not applicable. Here we describe a strategy for resonance assignment in selectively labeled proteins. Our approach involves a spin-labeled analog of a ligand of which the three-dimensional structure in complex with the target protein is known. Other methods for introduction of the spin label are possible. The paramagnetic center causes faster relaxation of all neighboring nuclei in a distance-dependent manner. Measurement of this effect allows to deduce distances between isotopically labeled residues and the paramagnetic center which can be used for resonance assignment. The method is demonstrated for the catalytic domain of Abl kinase in complex with the inhibitor, STI571.

  5. Exposure of the hidden anti-ferromagnetism in paramagnetic CdSe:Mn nanocrystals.

    Science.gov (United States)

    Zou, Shou-Jyun; Wang, Sheng-Tsung; Wu, Ming-Fan; Jian, Wen-Bin; Cheng, Shun-Jen

    2015-01-27

    We present theoretical and experimental investigations of the magnetism of paramagnetic semiconductor CdSe:Mn nanocrystals and propose an efficient approach to the exposure and analysis of the underlying anti-ferromagnetic interactions between magnetic ions therein. A key advance made here is the development of an analysis method with the exploitation of group theory technique that allows us to distinguish the anti-ferromagnetic interactions between aggregative Mn(2+) ions from the overall pronounced paramagnetism of magnetic-ion-doped semiconductor nanocrystals. By using the method, we clearly reveal and identify the signatures of anti-ferromagnetism from the measured temperature-dependent magnetisms and furthermore determine the average number of Mn(2+) ions and the fraction of aggregative ones in the measured CdSe:Mn nanocrystals.

  6. Frequency dependence of the complex susceptibility for a spin-1 Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, Riza [Department of Physics, Gaziosmanpasa University, 60250 Tokat (Turkey)], E-mail: rerdem29@hotmail.com

    2009-09-15

    The complex susceptibility or the dynamic susceptibility ({chi}({omega})={chi}'({omega})-i{chi}''({omega})) for a spin-1 Ising system with bilinear and biquadratic interactions is obtained on the basis of Onsager theory of irreversible processes. If the logarithm of the susceptibilities is plotted as a function of the logarithm of frequency, then the real part ({chi}') displays a sequence of plateau regions and the imaginary part ({chi}'') has a sequence of maxima in the ordered or ferromagnetic phase. On the other hand, only one plateau region in {chi}' and one maximum in {chi}'' is observed in the disordered or paramagnetic phase. Argand or Cole-Cole plots ({chi}''-{chi}') for a selection of temperatures are also shown, and a sequence of semicircles is illustrated in the ordered phase and only one semicircle for the disordered phase in these plots.

  7. Frequency dependence of the complex susceptibility for a spin-1 Ising model

    Science.gov (United States)

    Erdem, Rıza

    2009-09-01

    The complex susceptibility or the dynamic susceptibility ( χ( ω)= χ'( ω)- iχ″( ω)) for a spin-1 Ising system with bilinear and biquadratic interactions is obtained on the basis of Onsager theory of irreversible processes. If the logarithm of the susceptibilities is plotted as a function of the logarithm of frequency, then the real part ( χ') displays a sequence of plateau regions and the imaginary part ( χ″) has a sequence of maxima in the ordered or ferromagnetic phase. On the other hand, only one plateau region in χ' and one maximum in χ″ is observed in the disordered or paramagnetic phase. Argand or Cole-Cole plots ( χ″- χ') for a selection of temperatures are also shown, and a sequence of semicircles is illustrated in the ordered phase and only one semicircle for the disordered phase in these plots.

  8. Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles.

    Science.gov (United States)

    Zhao, Guanjia; Wang, Hong; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin

    2013-06-07

    In this work, we will show that ferromagnetic microjets can pick-up paramagnetic beads while not showing any interaction with diamagnetic silica microparticles for the active separation of microparticles in solution.

  9. Formation of Native and Non-native Interactions in Ensembles of Denatured ACBP Molecules from Paramagnetic Relaxation Enhancement Studies

    DEFF Research Database (Denmark)

    Kristjansdottir, S.; Lindorff-Larsen, Kresten; Fieber, W.

    2005-01-01

    Paramagnetic relaxation enhancement measurements in the denatured state of ACBP have provided distance restraints that have been used in computer simulations to determine the conformational ensembles representing the denatured states of ACBP under a variety of conditions. A detailed comparison......HCl, guanidinium chloride; HSQC, heteronuclear single quantum coherence; MTSL, (1-oxyl-2,2,5,5-tetrametyl-3-pyrroline-3-methyl)methane sulfonate; PRE, paramagnetic relaxation enhancement...

  10. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yin; Huang, Feng [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China); Huber, Thomas [Australian National University, Research School of Chemistry (Australia); Su, Xun-Cheng, E-mail: xunchengsu@nankai.edu.cn [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2016-02-15

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

  11. Thermodynamic properties of paramagnetic α - and β -Mn from first principles: The effect of transverse spin fluctuations

    Science.gov (United States)

    Ehteshami, Hossein; Korzhavyi, Pavel A.

    2017-12-01

    First-principles-based thermodynamic modeling of cubic α and β phases of Mn represent a challenge due to their structural complexity and the necessity of simultaneous treatment of several types of disorder (electronic, magnetic, and vibrational) that have very different characteristic time scales. Here we employ mean-field theoretical models to describe the different types of disorder and then we connect each layer of theory to the others using the adiabatic principle of separating faster and slower degrees of freedom. The slowest (vibrational) degrees of freedom are treated using the Moruzzi, Janak, and Schwarz formalism [Phys. Rev. B 37, 790 (1988), 10.1103/PhysRevB.37.790] of the Debye-Grüneisen model parametrized based on the first-principles calculated equation of state which includes the free-energy contributions due to the fast (electronic and magnetic) degrees of freedom via the Fermi-Dirac distribution function and a mean-field theory of transverse spin fluctuations. The magnetic contribution due to transverse spin fluctuations has been computed self-consistently within the disordered local moment picture of the paramagnetic state. The obtained results for thermodynamic properties such as lattice parameter, linear thermal expansion coefficient, and heat capacity of both phases show a good agreement with available experimental data. We also tested the assumption about the nature (localized versus delocalized) of magnetic moment on site IV in α -Mn and site I in β -Mn on the thermodynamic properties of these two phases. Similar to the findings of experimental studies, we conclude that magnetic moment on site IV in α -Mn is not of a localized character. However, a similar analysis suggests that the magnetic moment of site I in β -Mn should be treated as localized.

  12. Single crystal EPR studies of paramagnetic ions doped zinc potassium phosphate hexahydrate. Part III: Mn(II)—a case of rhombic distortion

    Science.gov (United States)

    Anandalakshmi, H.; Sougandi, I.; Velavan, K.; Venkatesan, R.; Rao, P. S.

    2004-09-01

    Single crystal electron paramagnetic resonance (EPR) studies of Mn(II) doped zinc potassium phosphate hexahydrate have been carried out at room temperature. Single crystal rotations along the three orthogonal axes indicate orthorhombic symmetry with spin-Hamiltonian parameters as: gxx=1.9997; gyy=1.9538; gzz=1.9524, Dxx=15.49 mT; Dyy=0.22 mT; Dzz=-15.71 mT, Axx=11.70 mT; Ayy=10.53 mT; Azz=10.42 mT and a=0.8×10 -4 cm -1. A large E term indicates considerable distortion from axial symmetry. The impurity is found to enter the lattice substitutionally. The distortion axis for the impurity has been identified along one of the ZnO bond directions in the crystal.

  13. Single crystal EPR studies of paramagnetic ions doped zinc potassium phosphate hexahydrate; Part III: Mn(II)-a case of rhombic distortion.

    Science.gov (United States)

    Anandalakshmi, H; Sougandi, I; Velavan, K; Venkatesan, R; Rao, P S

    2004-09-01

    Single crystal electron paramagnetic resonance (EPR) studies of Mn(II) doped zinc potassium phosphate hexahydrate have been carried out at room temperature. Single crystal rotations along the three orthogonal axes indicate orthorhombic symmetry with spin-Hamiltonian parameters as: g(xx) = 1.9997; g(yy) = 1.9538; g(zz) = 1.9524, D(xx) = 15.49 mT; D(yy) = 0.22 mT; D(zz) = -15.71 mT, A(xx) = 11.70 mT; A(yy) = 10.53 mT; A(zz) = 10.42 mT and a = 0.8 x 10(-4) cm(-1). A large E term indicates considerable distortion from axial symmetry. The impurity is found to enter the lattice substitutionally. The distortion axis for the impurity has been identified along one of the Zn-O bond directions in the crystal.

  14. Effect of oxygen on free radicals in DOPA-melanin complexes with netilmicin, diamagnetic Zn(II), and paramagnetic Cu(II)

    Science.gov (United States)

    Zdybel, Magdalena; Pilawa, Barbara; Buszman, Ewa; Wrześniok, Dorota

    2013-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine interactions between molecules of oxygen O2 and free radicals of DOPA-melanin and its complexes with netilmicin, Zn(II) and Cu(II). EPR spectra were measured for evacuated samples and then compared to earlier data for the samples in air. The concentrations of free radicals in the evacuated samples were higher than for samples in air. The strongest effect was observed for DOPA-melanin and melanin samples containing Cu(II). Evacuation of DOPA-melanin and DOPA-melanin-Cu(II) samples causes high EPR line broadening. Faster spin-lattice relaxation processes exist in evacuated melanin samples than in samples in air.

  15. Electron gas interacting in a metal, submitted to a strong magnetic field; Gas de eletrons interagentes num metal, sujeito a um campo magnetico forte

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Francisco Castilho

    1977-07-01

    Using the propagator's technique in the grand ensemble developed by Montroll and Ward we investigate the magnetic properties of an interacting electron gas in a strong magnetic field. The free propagator properly constructed shows that the spin paramagnetism does not have a term with strong temperature dependence, contrary to the result of Isihara. Considering the electron density to be constant, the dHVA oscillations in the magnetic susceptibility and sound velocity, considering the effects of first exchange interactions, show only one phase in agreement with experimental result, while Ichimura and Isihara obtained two phases differing by {pi}/2. The effects of first order exchange interactions in the dHVA oscillations of the magnetic susceptibility and sound velocity give rise to an exponential factor in the amplitudes of oscillator (Dingle factor), being the Dingle temperature linearly dependent of the Fermi velocity. The calculations of the ring diagram contribution to the grand partition function, show that the approximation used by Isihara for this calculations is not good and the dHVA oscillations of the contributions from the ring diagrams for the grand partition function have a phase differing by {pi}/2 from that obtained by Isihara. (author)

  16. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  17. Genetic susceptibility of periodontitis

    NARCIS (Netherlands)

    Laine, M.L.; Crielaard, W.; Loos, B.G.

    2012-01-01

    In this systematic review, we explore and summarize the peer-reviewed literature on putative genetic risk factors for susceptibility to aggressive and chronic periodontitis. A comprehensive literature search on the PubMed database was performed using the keywords ‘periodontitis’ or ‘periodontal

  18. Fourie susceptible.pmd

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    a number of cultivars exhibited field resistance to halo blight and bacterial brown spot, all cultivars were more or less susceptible to .... Cerillos. Alubia. I. 91. 57. Kranskop. Red speckled sugar. II. 97. 63. OPS-RS1. Red speckled sugar. II. 96. 63. OPS-RS2. Red speckled sugar. I. 100. 61. OPS-RS3. Red speckled sugar. II. 97.

  19. Magnetic susceptibility of La{sub x}Ce{sub 1-x}F{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Paradowski, M.L. E-mail: mlpar@tytan.umcs.lublin.pl; Pacyna, A.W.; Bombik, A.; Korczak, W.; Korczak, S.Z

    2000-04-01

    The magnetic susceptibility of La{sub x}Ce{sub 1-x}F{sub 3} single crystals, for 0paramagnetic Curie temperature {theta}{sub p} have been obtained, using the Curie-Weiss law in the temperature range 100-300 K. The interconfiguration excited energy E{sub ex}, the spin-fluctuation temperature T{sub sf}, and the g-values, corresponding to three Kramers doublets in the {sup 2}F{sub 5/2} ground multiplet of Ce{sup 3+} ion in La{sub x}Ce{sub 1-x}F{sub 3} have been determined, using quantum theory of paramagnetic susceptibility. The mixed-valent and crystal field effects influence significantly the g-values. The effect of the dilution of the paramagnetic Ce{sup 3+} ions with diamagnetic La{sup 3+} ions is also discussed.

  20. Paramagnetism at ambient temperature, diamagnetism at low temperature in a Ru2(6+) core: structural evidence for zero-field splitting.

    Science.gov (United States)

    Cotton, F Albert; Murillo, Carlos A; Reibenspies, Joseph H; Villagrán, Dino; Wang, Xiaoping; Wilkinson, Chad C

    2004-12-27

    Variable temperature magnetic studies of the Ru(2)(6+) guanidinate compounds Ru(2)(hpp)(4)Cl(2) (1) and Ru(2)(hpp)(4)(CF(3)SO(3))(2) (2) show that they are paramagnetic with two unpaired electrons at room temperature and that they appear essentially diamagnetic at 2 K. In neither compound do the Ru-Ru distances vary by more than 0.008(1) A from 27 to 296 K. This argues strongly that the ground state electronic configuration remains constant over this temperature range and that the decrease in magnetism as the temperature is lowered must be attributable to zero-field splitting of the (3)A(2g) ground state arising from the electronic configuration sigma(2)pi(4)delta(2)pi(2). The Ru-Ru distance in 1 is about 0.04-0.05 A longer than that in 2 which indicates that the Ru(2)(hpp)(4)(2+) core is quite sensitive to the nature of the axial ligands. The electronic spectra show three absorption bands for each compound.

  1. 1H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular structure.

    Science.gov (United States)

    Ma, Li-Hua; Liu, Yangzhong; Zhang, Xuhong; Yoshida, Tadashi; La Mar, Gerd N

    2009-01-01

    Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex.

  2. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    Energy Technology Data Exchange (ETDEWEB)

    Ceccon, Alberto; Marius Clore, G., E-mail: mariusc@mail.nih.gov; Tugarinov, Vitali, E-mail: vitali.tugarinov@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2016-09-15

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ{sub 2}{sup app}) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k{sub ex} between the species is fast on the PRE time scale (k{sub ex} ≫ Γ{sub 2}). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd{sup 3+}, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k{sub ex} ≫ Γ{sub 2}) the ratio of the apparent proton to carbon methyl PREs, ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ{sub Η}/γ{sub C}){sup 2}. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ{sub 2} is comparable in magnitude to k{sub ex}) the ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}) ratio provides a reliable measure of the ‘true’ methyl PREs.

  3. Instability of paramagnetic state toward glassy state in random Ising antiferromagnet on tetrahedron cactus lattices

    Science.gov (United States)

    Yokota, Terufumi

    2018-01-01

    Ising antiferromagnet on tetrahedron cactus lattices with randomness in the exchange interactions is studied. Instability line of the paramagnetic state, beyond which glassy or antiferromagnetic state is (meta)stable is obtained. The model is investigated by the replica method. Instability toward antiferromagnetic state does not occur for M ≤ 4 where M is the number of corner sharing tetrahedra for the cactus lattices. Instability toward glassy state occurs at as weak randomness as J /(-J0) ≃ 0 . 056 , 0 . 020, and ≤ 10-4 for M = 2 , 3, and 4, respectively, where J0 and J2 are the mean and variance of the Gaussian random exchange interaction, respectively.

  4. EPR study of VO/sup 2 +/ in some paramagnetic Tutton salt single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Upreti, G.C. (Indian Inst. of Tech., Kanpur. Dept. of Physics); Saraswat, R.S. (Indian Inst. of Tech., Kharagpur. Dept. of Physics)

    1984-04-01

    The EPR spectra of VO/sup 2 +/ in single crystals of some paramagnetic salts Me(II)(NH/sub 4/)/sub 2/(SO/sub 4/)/sub 2/x6H/sub 2/O (Me = Co, Fe, or Ni) and NiK/sub 2/(SO/sub 4/)/sub 2/x6H/sub 2/O have been recorded and analyzed. The vanadyl ions doped in Co and Fe double salt crystals showed sharp and well resolved EPR spectra consisting in two sets of eight-line hyperfine patterns. The spin-Hamiltonian parameters and the molecular orbital coefficients are given and the bonding in vanadyl complexes is discussed.

  5. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling

    Directory of Open Access Journals (Sweden)

    Daqiang Gao

    2011-12-01

    Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.

  6. Application of electron spin resonance for evaluation of the level of ...

    Indian Academy of Sciences (India)

    Unknown

    logic processes, ranging from intermediates in enzyme reaction to effectors. Electron spin resonance (ESR) or electron paramagnetic resonance (EPR) can be used to provide insight into the free radical state of cells, bio- chemical reactions and measure free radical levels in human tissues (Zyrianov and Sumovskaya 2001).

  7. Genetic Susceptibility to Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sanja Kovacic

    2012-01-01

    Full Text Available Atherosclerosis is a complex multifocal arterial disease involving interactions of multiple genetic and environmental factors. Advances in techniques of molecular genetics have revealed that genetic ground significantly influences susceptibility to atherosclerotic vascular diseases. Besides further investigations of monogenetic diseases, candidate genes, genetic polymorphisms, and susceptibility loci associated with atherosclerotic diseases have been identified in recent years, and their number is rapidly increasing. This paper discusses main genetic investigations fields associated with human atherosclerotic vascular diseases. The paper concludes with a discussion of the directions and implications of future genetic research in arteriosclerosis with an emphasis on prospective prediction from an early age of individuals who are predisposed to develop premature atherosclerosis as well as to facilitate the discovery of novel drug targets.

  8. Increasing the sensitivity of NMR diffusion measurements by paramagnetic longitudinal relaxation enhancement, with application to ribosome–nascent chain complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Sammy H. S.; Waudby, Christopher A.; Cassaignau, Anaïs M. E.; Cabrita, Lisa D.; Christodoulou, John, E-mail: j.christodoulou@ucl.ac.uk [University College London and Birkbeck College, Institute of Structural and Molecular Biology (United Kingdom)

    2015-10-15

    The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of {sup 15}N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of {sup 1}H magnetization without adversely affecting storage on N{sub z} during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ∼1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies.Graphical Abstract.

  9. Magnetic studies reveal near-perfect paramagnetism in the molecular semiconductor vanadyl phthalocyanine (C{sub 32}H{sub 16}N{sub 8}VO)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengjun [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States); Pi, Li [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China); Seehra, Mohindar S., E-mail: mseehra@wvu.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States); Bindra, Jasleen; Van Tol, Hans; Dalal, Naresh S. [National High Magnetic Field Laboratory, and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States)

    2017-01-15

    Temperature (0.5–300 K) and magnetic field (H up to 90 kOe) dependences of the magnetization (M) of a powder sample of vanadyl phthalocyanine (VOPc) having the Phase II-triclinic structure are measured and analyzed. The data of χ = M/H vs. T measured in H = 1 kOe fit the modified Curie-Weiss (CW) law, χ = χ{sub o}+C/(T−θ), with C = 6.266×10{sup −4} emuK/gOe, θ = −0.1 K and χ{sub o} = −9.3×10{sup −7} emu/gOe. The Curie constant C yields magnetic moment μ = 1.704 μ{sub B}, S = 1/2, and g = 1.967 characteristic of VO{sup 2+}. The magnitude of θ = −0.1 K signifying very weak inter-ion antiferromagnetic exchange coupling is supported by the analysis of the variable frequency (9.8–336 GHz) electron paramagnetic resonance data. The isothermal data of M vs. H at ten temperatures between 0.5 K and 300 K when plotted as M vs. H/(T+0.1) collapses on to a single curve given by M = M{sub o}tanh {gμ_BH/[2k_B(T+0.1)]} with M{sub o} = Ngμ{sub B}S = 9.48 emu/g expected for S = 1/2 system, thus signifying near perfect paramagnetism in VOPc. - Highlights: • Magnetization M vs. temperature T from 0.5 K to 300 K in H = 1 kOe is reported. • M vs. T data fit Curie-Weiss law with θ = −0.1 K, S = 1/2, &g = 1.967 for VO{sup 2+}. • Isothermal M vs. H data (H up to 90 kOe) for ten T from 0.5 K to 300 K is reported. • M vs. H/(T−θ) plot for various T fit a single Brillouin function curve for S = 1/2. • Analysis of magnetic and EPR data in VOPc shows near perfect S = 1/2 paramagnetism.

  10. Mössbauer, EPR, and magnetic susceptibility studies on members of a new family of cyano-bridged 3d-4f complexes. Demonstration of anisotropic exchange in a Fe-Gd complex

    Science.gov (United States)

    Stoian, Sebastian A.; Paraschiv, Carmen; Kiritsakas, Nathalie; Lloret, Francesc; Münck, Eckard; Bominaar, Emile L.; Andruh, Marius

    2010-01-01

    The synthesis and crystallographic characterization of a new family of M(μ-CN)Ln complexes are reported. Two structural series have been prepared by reacting in water rare earth nitrates (LnIII = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho) with K3[M(CN)6] (MIII = Fe, Co) in the presence of hexamethylenetetramine (hmt). The first series consists of six isomorphous heterobinuclear complexes, [(CN)5M-CNLn(H2O)8]·2hmt ([FeLa] 1, [FePr] 2, [FeNd] 3, [FeSm] 4, [FeEu] 5, [FeGd] 6), while the second series consists of four isostructural ionic complexes, [Ln(H2O)8][M(CN)6]·hmt ([FeDy] 7, [FeHo] 8, [CoEu] 9, [CoGd] 10). The hexamethylenetetramine molecules contribute to the stabilization of the crystals by participating in an extended network of hydrogen bond interactions. In both series the aqua ligands are hydrogen bonded to the nitrogen atoms from both the terminal CN groups and the hmt molecules. The [FeGd] complex has been analyzed with 57Fe Mössbauer spectroscopy, EPR, and magnetic susceptibility measurements. We have also analyzed the [FeLa] complex, in which the paramagnetic GdIII is replaced by diamagnetic LaIII, to obtain information about the low-spin FeIII site that is not accessible in the presence of a paramagnetic ion at the complementary site. For the same reason, the [CoGd] complex, containing diamagnetic CoIII, was studied with EPR and magnetic susceptibility measurements, which confirmed the S = 7/2 spin of GdIII. Prior knowledge about the paramagnetic sites in [FeGd] allows a detailed analysis of the exchange interactions between them. In particular, the question of whether the exchange interaction in [FeGd] is isotropic or anisotropic has been addressed. Standard variable-temperature magnetic susceptibility measurements provide only the value for a linear combination of Jx, Jy, and Jz but contain no information about the values of the individual exchange parameters Jx, Jy, and Jz. In contrast, the spin-Hamiltonian analysis of the variable-field, variable

  11. Marijuana Usage and Hypnotic Susceptibility

    Science.gov (United States)

    Franzini, Louis R.; McDonald, Roy D.

    1973-01-01

    Anonymous self-reported drug usage data and hypnotic susceptibility scores were obtained from 282 college students. Frequent marijuana users (more than 10 times) showed greater susceptibility to hypnosis than nonusers. (Author)

  12. Development of an automated SNP analysis method using a paramagnetic beads handling robot.

    Science.gov (United States)

    Hagiwara, Hiroko; Sawakami-Kobayashi, Kazumi; Yamamoto, Midori; Iwasaki, Shoji; Sugiura, Mika; Abe, Hatsumi; Kunihiro-Ohashi, Sumiko; Takase, Kumiko; Yamane, Noriko; Kato, Kaoru; Son, Renkon; Nakamura, Michihiro; Segawa, Osamu; Yoshida, Mamiko; Yohda, Masafumi; Tajima, Hideji; Kobori, Masato; Takahama, Yousuke; Itakura, Mitsuo; Machida, Masayuki

    2007-10-01

    Biological and medical importance of the single nucleotide polymorphism (SNP) has led to development of a wide variety of methods for SNP typing. Aiming for establishing highly reliable and fully automated SNP typing, we have developed the adapter ligation method in combination with the paramagnetic beads handling technology, Magtration(R). The method utilizes sequence specific ligation between the fluorescently labeled adapter and the sample DNAs at the cohesive end produced by a type IIS restriction enzyme. Evaluation of the method using human genomic DNA showed clear discrimination of the three genotypes without ambiguity using the same reaction condition for any SNPs examined. The operations following PCR amplification were automatically performed by the Magtration(R)-based robot that we have previously developed. Multiplex typing of two SNPs in a single reaction by using four fluorescent dyes was successfully preformed at the almost same sensitivity and reliability as the single typing. These results demonstrate that the automated paramagnetic beads handling technology, Magtration(R), is highly adaptable to the automated SNP analysis and that our method best fits to an automated in-house SNP typing for laboratory and medical uses. (c) 2007 Wiley Periodicals, Inc.

  13. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong

    2010-11-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T1) times of 31P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The 31P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τc, the r-6-weighted, time-averaged distances between the spin-labels and the 31P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth. © 2010 Elsevier Inc. All rights reserved.

  14. Evaluation of radiofrequency safety by high temperature resolution MR thermometry using a paramagnetic lanthanide complex.

    Science.gov (United States)

    Dharmadhikari, Shalmali; James, Judy R; Nyenhuis, John; Bansal, Navin

    2016-05-01

    The current practice of calculating the specific absorption rate (SAR) relies on local temperature measurements made using temperature probes. For an accurate SAR measurement, a temperature imaging method that provides high temperature sensitivity is desirable, because acceptable levels of SAR produce small temperature changes. MR thermometry using paramagnetic lanthanide complexes can be used to obtain absolute temperature measurements with sub-degree temperature and sub-millimeter spatial resolution. The aim of this study was to develop and evaluate a high temperature resolution MR technique to determine SAR. MR thermometry using a paramagnetic lanthanide complex thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylene phosphonate) (TmDOTP(5-)), which has an almost 10(2) times stronger chemical shift temperature dependence than water, was used to develop a novel method for SAR measurement. Three-dimensional temperature and SAR images were calculated using MR images acquired with a conventional gradient recalled echo sequence and SAR-intensive T1ρ sequence. Effects of the presence of conducting wire and increasing T1ρ spin-lock pulse duration were also examined. SAR distribution could be visualized clearly and surges associated with conducting wires and increasing pulse duration were identified clearly in the computed high spatial resolution SAR images. A novel method with high temperature sensitivity is proposed as a tool to evaluate radiofrequency safety in MRI. © 2015 Wiley Periodicals, Inc.

  15. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit

    Energy Technology Data Exchange (ETDEWEB)

    Agosta, Charles C.; Fortune, Nathanael A.; Hannahs, Scott T.; Gu, Shuyao; Liang, Lucy; Park, Ju-Hyun; Schleuter, John A.

    2017-06-01

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor. kappa-(BEDT-TTF)(2) Cu(NCS)(2) as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements-including the observation of a phase transition into the FFLO phase at Hp-is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.

  16. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    Science.gov (United States)

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2*) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  17. Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3

    Science.gov (United States)

    Yang, C.; Tong, P.; Lin, J. C.; Lin, S.; Cui, D. P.; Wang, B. S.; Song, W. H.; Lu, W. J.; Sun, Y. P.

    2014-07-01

    We report a systematic study of the specific heat and dc magnetic susceptibility on the paramagnetic to ferrimagnetic transition (TC ˜ 141 K) in CuNMn3. A large magnetocaloric effect (MCE) at TC is observed with the entropy change of 3.49 J/kg K (6.38 J/kg K) for the field change of ΔH = 20 kOe (45 kOe). The analysis of the isothermal magnetizations, including the derived Arrott plots and magnetic entropy change, shows a second-order like transition at TC. However, the existence of latent heat around TC is unambiguously manifested by the reduced slope of the temperature-time relaxations recorded during the specific heat measurement, indicating the transition is in fact weakly first-order in nature. The large MCE comparable with those observed the antiperovskite manganese carbides suggests it is equivalently interesting to explore the MCE in the antiperovskite manganese nitrides as in the carbides.

  18. Paramagnetic-to-nonmagnetic transition in antiperovskite nitride Cr3GeN studied by 14N-NMR and µSR

    Science.gov (United States)

    Takao, K.; Liu, Z.; Uji, K.; Waki, T.; Tabata, Y.; Watanabe, I.; Nakamura, H.

    2017-06-01

    The antiperovskite-related nitride Cr3GeN forms a tetragonal structure with the space group P\\bar{4}{2}1m at room temperature. It shows a tetragonal (P\\bar{4}{2}1m) to tetragonal (I4/mcm) structural transition with a large hysteresis at 300-400 K. The magnetic susceptibility of Cr3GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out µSR and 14N-NMR microscopy measurements to reveal the magnetic ground state of Cr3GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr3GeN is magnetically inactive. In the 14N-NMR measurement, a quadrupole-split spectrum was obtained at around 14 K = 0. The temperature dependence of 14(1/T1) satisfies the Korringa relation. These experimental results indicate that the ground state of Cr3GeN is Pauli paramagnetic, without antiferromagnetic long-range order.

  19. AC susceptibility of the Fe(Al, Co) system

    Science.gov (United States)

    Abu-Aljarayesh, I.; Al-Hussein, K.

    1993-08-01

    The temperature and field dependence of the low-field ac susceptibility of the FeAl 1- xCo x (for 0.1 ≤ x ≤ 0.45) system are studied in the temperature range 160-300 K. The results of the κ'- T curves show broad maxima for samples with x ≤ 0.3. The positions of the maxima for samples with x = 0.25 and 0.3 show a weak frequency dependence. For samples with x ≥ 0.3 the susceptibility continues to increase with temperature in the range studied. When an external transverse dc magnetic field is applied, κ' decreases rapidly with increasing the magnitude of the dc field for all studied samples. The obtained paramagnetic temperature θ p, increases rapidly with x. The results are discussed within the context of the Néel theory of superparamagnetism. The environmental effects on the magnetic moment of Fe and Co atoms are used to interpret the results.

  20. Application of Flow Focusing to the Break-Up of a Magnetite Suspension Jet for the Production of Paramagnetic Microparticles

    Directory of Open Access Journals (Sweden)

    Lucía Martín-Banderas

    2011-01-01

    Full Text Available Paramagnetic particles offer an extensive improvement in the magnetic separation or purification of a wide variety of protein molecules. Most commercial paramagnetic particles are synthesized by laborious and costly procedures. A straightforward production of paramagnetic microparticles with homogeneous and selectable sizes using flow focusing (FF technology is described in this work. The development of an initial formulation of a stable iron oxide suspension compatible with the FF requirements is also reported. The obtained particles, below 10 microns in diameter and presenting smooth and reactive surface, were codified with an organic fluorophore and showed excellent properties for covalent attachment of biomolecules such as proteins and its subsequent recognition by flow cytometry. Furthermore, particles with suitable magnetite content resulted as well-suited for commercial magnet separators for these purposes.

  1. Anisotropies of anhysteretic remanence and magnetic susceptibility of marly clays from Central Italy

    Directory of Open Access Journals (Sweden)

    L. Sagnotti

    1994-06-01

    Full Text Available Marly clays from an Upper Pliocene unit at Valle Ricca (Rorne were investigated for their Anisotropy of Anhysteretic Remanence (AAR and Anisotropy of Magnetic Susceptibility (AMS. The study of AAR was accomplished for the first time in ltaly, developing a suitable laboratory technique and adapting a standard statistical procedure. The comparison between anhysteretic remanence and magnetic susceptibility anisotropies discriminates the fabric of the ferromagnetic fraction from that of the paramagnetic matrix of the rock. The separation of fabric components was applied to distinguish subsequent geological processes that affected the total rock fabric. The results indicate that the clayey units are particularly suitable for the empirical investigation of fabric to strain relationship in weakly deformed rocks.

  2. EXPERIMENTAL AND THEORETICAL STUDY OF THE STRUCTURAL, MAGNETIC AND ELECTRONIC PROPERTIES OF THE BA2GDSBO6 PEROVSKITE

    Directory of Open Access Journals (Sweden)

    R. Moreno Mendoza

    2017-06-01

    Full Text Available In this work the procedure to the synthesis of Ba2GdSbO6 complex perovskite by the solid-state reaction method is reported. Theoretically a study of the crystalline and electronic structure was performed into the framework of the Density Functional Theory (DFT. The most stable structure is obtained to be a rhombohedral perovskite with a lattice constant a=6,0840 Å.  Due the occurrence of a mean energy gap of 2,84 eV close to the Fermi level for both up and down spin polarizations this material is classifies as insulator.  The effective magnetic moment of material obtained from the calculations was 7,0 mB. The crystalline structure was analyzed through the X-ray diffraction technique and Rietveld refinement of the experimental data. Results are strongly in agreement with those theoretically predicted. Magnetic response was studied from measurements of magnetic susceptibility as a function of temperature. Results reveal the paramagnetic feature of this material in the temperature regime from 50 K up to 300 K. From the fitting with the Curie law the effective magnetic moment was obtained to be 8,1 mB, which is slightly higher that the theoretical value for the Gd3+ isolated cation predicted by the theory of paramagnetism. The energy gap obtained from experiments of diffuse reflectance is relatively in agreement with the theoretical predictions. The dielectric constant as a function of applied frequencies at room temperature was measured. Results reveal a decreasing behavior with a high value of dielectric constant at low applied frequencies

  3. Local nematic susceptibility in stressed BaFe2As2 from NMR electric field gradient measurements

    Science.gov (United States)

    Kissikov, T.; Sarkar, R.; Lawson, M.; Bush, B. T.; Timmons, E. I.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.; Fernandes, R. M.; Goh, W. F.; Pickett, W. E.; Curro, N. J.

    2017-12-01

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe2As2 . We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.

  4. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes.

    Science.gov (United States)

    Summers, J S; Hoogstraten, C G; Britt, R D; Base, K; Shaw, B R; Ribeiro, A A; Crumbliss, A L

    2001-12-17

    Methyl phosphite ((CH(3)O)P(H)(O)(2)(-); MeOPH) and methylethyl phosphate ((CH(3)O)P(OCH(2)CH(3))(O)(2)(-); MEP) are two members of a class of anionic ligands whose (31)P T(2) relaxation rates are remarkably sensitive to paramagnetic metal ions. The temperature dependence of the (31)P NMR line broadenings caused by the Mn(H(2)O)(6)(2+) ion and a water-soluble manganese(III) porphyrin (Mn(III)TMPyP(5+)) indicates that the extent of paramagnetic relaxation enhancement is a measure of the rate at which the anionic probes come into physical contact with the paramagnetic center (i.e., enter the inner coordination shell); that is, piDeltanu(par) = k(assn)[M], where Deltanu(par) is the difference between the line widths of the resonance in paramagnetic and diamagnetic solutions, and k(assn) is the second-order rate constant for association of the phosphorus ligand with the metal, M. Comparison of the (31)P T(1) and T(2) relaxation enhancements shows that rapid T(2) relaxation by the metal ion is caused by scalar interaction with the electronic spin. Relaxation of the phosphorus-bound proton of MeOPH ((1)H-P) by Mn(III)TMPyP(5+) displayed intermediate exchange kinetics over much of the observable temperature range. The field strength dependence of (1)H-P T(2) enhancement and the independence of the (31)P T(2) support these assertions. As in the case of the (31)P T(2), the (1)H-P T(2) relaxation enhancement results from scalar interaction with the electronic spin. The scalar coupling interpretation of the NMR data is supported by a pulsed EPR study of the interactions of Mn(H(2)O)(6)(2+) with the P-deuterated analogue of methyl phosphite, CH(3)OP((2)H)(O)(2)(-). The electron to (31)P and (2)H nuclear scalar coupling constants were found to be 4.6 and 0.10 MHz, respectively. In contrast, the effects of paramagnetic ions on the methoxy and ethoxy (1)H resonances of MeOPH and MEP are weak, and the evidence suggests that relaxation of these nuclei occurs by a dipolar mechanism

  5. Brain Susceptibility Changes in a Patient with Natalizumab-Related Progressive Multifocal Leukoencephalopathy: A Longitudinal Quantitative Susceptibility Mapping and Relaxometry Study

    Directory of Open Access Journals (Sweden)

    Giuseppe Pontillo

    2017-06-01

    Full Text Available BackgroundBrain MRI plays an essential role in both diagnosis and follow-up of the JC virus infection of the brain. Recently, MR studies with susceptibility-weighted imaging (SWI sequences have shown hypointensities in U-fibers adjacent to white matter (WM lesions of progressive multifocal leukoencephalopathy (PML. This finding has been confirmed with the use of quantitative susceptibility mapping (QSM, allowing to hypothesize a paramagnetic effect in these regions. Here, we report the first longitudinal assessment of QSM and R2* maps in natalizumab-associated PML to evaluate serial changes in susceptibility contrast images and their role in PML diagnosis and follow-up.Case presentationWe report the case of a 42-year-old woman with multiple sclerosis (MS who eventually developed, after the 28th natalizumab infusion, subacute cognitive decline and received a laboratory-confirmed diagnosis of PML, leading to immediate drug discontinuation. Three months later, she suffered a new clinical exacerbation, with a brain scan revealing significant inflammatory activity compatible with the radiological diagnosis of an Immune Reconstitution Inflammatory Syndrome (IRIS. She was then treated with corticosteroids until the clinico-radiological spectrum became stable, with the final outcome of a severe functional impairment. Quantitative maps obtained in the early symptomatic stage clearly showed increased QSM and R2* values in the juxtacortical WM adjacent to PML lesions, which persisted during the subsequent disease course.Discussion and conclusionHigh QSM and R2* values in U-fibers adjacent to WM lesions were early and seemingly time-independent radiological findings in the presented PML case. This, coupled to the known absence of significant paramagnetic effect of new active MS lesions, could support the use of quantitative MRI as an additional tool in the diagnosis and follow-up of natalizumab-related PML in MS.

  6. The Electric Dipole Moment of the Electron

    Science.gov (United States)

    Commins, Eugene D.; Demille, David

    The following sections are included: * Introduction * Overview of relevant particle theory * Electron EDM in the Standard Model * Electron EDM in extensions of the Standard Model * Introduction to experimental basis for electron EDM searches * Other sources of atomic and molecular EDMs * Theoretical Basis of Electron EDM Experiments * Proper-Lorentz-invariant EDM Lagrangian density * Schiff's theorem * Enhancement factors for paramagnetic atoms * Is there a simple intuitive explanation for the Sandars effect? * P,T-odd electron-nucleon interaction * Paramagnetic molecules * Electron EDM Experiments * General overview * A simple model experiment * Noise * Systematic errors * The Berkeley thallium atomic beam experiment * Cesium optical pumping experiments * Cesium optical trap experiments * The francium optical trap experiment * The YbF experiment * The PbO experiment * The ThO experiment * The proposed HfF+ experiment * Electron EDM solid-state experiments * Basic ideas * The Indiana GGG experiment * The Amherst GdIG experiment * Atomic T,P-odd polarizability. Molecular T,P-odd magnetic moment * Acknowledgments * References

  7. Electron spin resonance study of a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 single crystal

    CERN Document Server

    Joh, K W; Lee, C E; Hur, N H; Ri, H C

    2003-01-01

    Comprehensive measurements of electron spin resonance were carried out on a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 single crystal over a wide temperature range covering the ferromagnetic as well as the paramagnetic phases. Our analysis of the asymmetric lineshapes indicates that the phase segregation of good and poor conducting regions persists far above the ferromagnetic-paramagnetic phase transition temperature.

  8. Alcohol increases hypnotic susceptibility.

    Science.gov (United States)

    Semmens-Wheeler, Rebecca; Dienes, Zoltán; Duka, Theodora

    2013-09-01

    One approach to hypnosis suggests that for hypnotic experience to occur frontal lobe activity must be attenuated. For example, cold control theory posits that a lack of awareness of intentions is responsible for the experience of involuntariness and/or the subjective reality of hypnotic suggestions. The mid-dorso-lateral prefrontal cortex and the ACC are candidate regions for such awareness. Alcohol impairs frontal lobe executive function. This study examined whether alcohol affects hypnotisability. We administered 0.8 mg/kg of alcohol or a placebo to 32 medium susceptible participants. They were subsequently hypnotised and given hypnotic suggestions. All participants believed they had received some alcohol. Participants in the alcohol condition were more susceptible to hypnotic suggestions than participants in the placebo condition. Impaired frontal lobe activity facilitates hypnotic responding, which supports theories postulating that attenuation of executive function facilitates hypnotic response, and contradicts theories postulating that hypnotic response involves enhanced inhibitory, attentional or other executive function. Copyright © 2013. Published by Elsevier Inc.

  9. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules.

    Science.gov (United States)

    Karra, Mallikarjun; Sharma, Ketan; Friedrich, Bretislav; Kais, Sabre; Herschbach, Dudley

    2016-03-07

    Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quantum computer. DeMille [Phys. Rev. Lett. 88, 067901 (2002)] has detailed a prototype design based on Stark states of polar (1)Σ molecules as qubits. Herein, we consider an array of polar (2)Σ molecules which are, in addition, inherently paramagnetic and whose Hund's case (b) free-rotor pair-eigenstates are Bell states. We show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric and magnetic fields, the entanglement of the array's Stark and Zeeman states can be tuned and the qubit sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the inhomogeneity of the electric and magnetic fields.

  10. NATO Advanced Research Workshop on Nuclear Magnetic Resonance of Paramagnetic Macromolecules

    CERN Document Server

    1995-01-01

    Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.

  11. Paramagnetism and clustering in Fe-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Torres, C.E., E-mail: torres@fisica.unlp.edu.a [IFLP, CCT-La Plata, CONICET, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 y 49, C. C. 67, 1900 La Plata, Buenos Aires (Argentina); Stewart, S.J. [IFLP, CCT-La Plata, CONICET, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 y 49, C. C. 67, 1900 La Plata, Buenos Aires (Argentina); Adan, C. [Instituto de Catalisis y Petroleoquimica, CSIC, 49706 Cantoblanco, Madrid (Spain); Cabrera, A.F. [IFLP, CCT-La Plata, CONICET, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 y 49, C. C. 67, 1900 La Plata, Buenos Aires (Argentina)

    2010-04-16

    The magnetic behavior of Fe-doped TiO{sub 2} anatase nanoparticles (2.8 and 5.4 at.%) was investigated throughout magnetizations versus applied field measurements between 2 and 300 K temperatures. The experimental results were well-fitted by using the Brillouin function, giving rise to a moment per isolated Fe atom of about 5 {mu}{sub B}. The thermal evolution of the number of magnetic ions shows that a decrease of ions in paramagnetic state occurs below 50 K for the most diluted sample. However for the 5.4 at.% sample the fall even at room temperature is evident. These moments probably order antiferromagnetically via superexchange interactions. Taking into account the low concentration of dopant and the high fraction of interacting ions, a correlated substitution of Fe in cation sites of TiO{sub 2} structure needs to be considered.

  12. Paramagnetic Cellulose DNA Isolation Improves DNA Yield and Quality Among Diverse Plant Taxa

    Directory of Open Access Journals (Sweden)

    Jackson R. Moeller

    2014-10-01

    Full Text Available Premise of the study: The chemical diversity of land plants ensures that no single DNA isolation method results in high yield and purity with little effort for all species. Here we evaluate a new technique originally developed for forensic science, based on MagnaCel paramagnetic cellulose particles (PMC, to determine its efficacy in extracting DNA from 25 plant species representing 21 families and 15 orders. Methods and Results: Yield and purity of DNA isolated by PMC, DNeasy Plant Mini Kit (silica column, and cetyltrimethylammonium bromide (CTAB methods were compared among four individuals for each of 25 plant species. PMC gave a two-fold advantage in average yield, and the relative advantage of the PMC method was greatest for samples with the lowest DNA yields. PMC also produced more consistent sample purity based on absorbance ratios at 260 : 280 and 260 : 230 nm. Conclusions: PMC technology is a promising alternative for plant DNA isolation.

  13. Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Theillet, Francois-Xavier; Binolfi, Andres; Liokatis, Stamatis; Verzini, Silvia; Selenko, Philipp, E-mail: selenko@fmp-berlin.de [Leibniz Institute of Molecular Pharmacology (FMP), Department of NMR-assisted Structural Biology, In-cell NMR Group (Germany)

    2011-12-15

    We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni{sup 2+}-chelated DO2A. In proton-detected {sup 1}H-{sup 15}N SOFAST-HMQC and carbon-detected (H-flip){sup 13}CO-{sup 15}N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line broadening effects. At 40 mmol{center_dot}L{sup -1} of the PRE agent, we obtain a 1.7- to 1.9-fold larger signal to noise (S/N) for the respective 2D NMR experiments. High solvent accessibility of intrinsically disordered protein (IDP) residues renders this class of proteins particularly amenable to the outlined approach.

  14. Paramagnetic Gd IIIFe III heterobimetallic complexes of DTPA-bis-salicylamide

    Science.gov (United States)

    Aime, S.; Botta, M.; Fasano, M.; Terreno, E.

    1993-08-01

    The reaction between DTPA (diethylenetriaminepenta-acetic acid)-anhydride and p-aminosalicylic acid (PAS) affords a novel ligand, [DTPA(PAS) 2], able to form stable heterobimetallic complexes with Gd 3+ and Fe 3+ ions. The lanthanide ion occupies an internal coordination cage formed by three nitrogen atoms, two carboxylate and two carboxoamido groups of the ligand, whereas the outer salicylic moieties form stable chelate rings with Fe III ions. The stoichiometry of the resulting heterobimetallic complexes, established by measurements of water proton relaxation enhancement, is [(H 2O)-Gd-DTPA(PAS) 2] 2-Fe(H 2O) 2 or [(H 2O)-Gd-DTPA(PAS) 2] 3-Fe depending on the pH of the aqueous solution. The individual contributions to the observed relaxation enhancement from Gd 3+ and Fe 3+ paramagnetic ions have been clearly distinguished and analysed.

  15. Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen.

    Science.gov (United States)

    Hu, Huping; Wu, Maoxin

    2004-01-01

    A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the "mind-pixel". The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize that human brain works as follows: through action potential modulated nuclear spin interactions and paramagnetic O2/NO driven activations, the nuclear spins inside neural membranes and proteins form various entangled quantum states some of which survive decoherence through quantum Zeno effects or in decoherence-free subspaces and then collapse contextually via irreversible and non-computable means producing consciousness and, in turn, the collective spin dynamics associated with said collapses have effects through spin chemistry on classical neural activities thus influencing the neural networks of the brain. Our proposal calls for extension of associative encoding of neural memories to the dynamical structures of neural membranes and proteins. Thus, according our theory, the nuclear spin ensembles are the "mind-screen" with nuclear spins as its pixels, the neural membranes and proteins are the mind-screen and memory matrices, and the biologically available paramagnetic species such as O2 and NO are pixel-activating agents. Together, they form the neural substrates of consciousness. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies. Further, experimental realizations of intra-/inter-molecular nuclear spin coherence and entanglement, macroscopic entanglement of spin ensembles and NMR quantum computation, all in room temperatures, strongly suggest the possibility of a spin

  16. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Mayoral, Elena [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Departamento de Quimica Inorganica y Quimica Tecnica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Negri, Viviana; Soler-Padros, Jordi [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain); Cerdan, Sebastian [Laboratorio de Imagen Espectroscopica por Resonancia Magnetica (LIERM), Instituto de Investigaciones Biomedicas ' Alberto Sols' , CSIC/UAM, c/Arturo Duperier 4, E-28029 Madrid (Spain); Ballesteros, Paloma [Laboratorio de Sintesis Organica e Imagen Molecular por Resonancia Magnetica, Facultad de Ciencias, UNED, Paseo Senda del Rey 9, E-28040 Madrid (Spain)], E-mail: pballesteros@ccia.uned.es

    2008-09-15

    We provide a brief overview of the chemistry and most relevant properties of paramagnetic and diamagnetic contrast agents (CAs) for Magnetic Resonance Imaging and Magnetic Resonance Spectroscopic Imaging. Paramagnetic CAs for MRI consist mainly of Gd(III) complexes from linear or macrocyclic polyaminopolycarboxylates. These agents reduce, the relaxation times T{sub 1} and T{sub 2} of the water protons in a concentration dependent manner, increasing selectively MRI contrast in those regions in which they accumulate. In most instances they provide anatomical information on the localization of lesions and in some specific cases they may allow to estimate some physiological properties of tissues including mainly vascular performance. Because of its ability to discriminate easily between normal and diseased tissue, extracellular pH (pH{sub e}) has been added recently, to the battery of variables amenable to MRI investigation. A variety of Gd(III) containing macrocycles sensitive to pH, endogenous or exogenous polypeptides or even liposomes have been investigated for this purpose, using the pH dependence of their relaxivity or magnetization transfer rate constant (chemical exchange saturation transfer, CEST). Many environmental circumstances in addition to pH affect, however, relaxivity or magnetization transfer rate constants of these agents, making the results of pH measurements by MRI difficult to interpret. To overcome these limitations, our laboratory synthesized and developed a novel series of diamagnetic CAs for Magnetic Resonance Spectroscopic Imaging, a new family of monomeric and dimeric imidazolic derivatives able to provide unambiguous measurements of pH{sub e}, independent of water relaxivity, diffusion or exchange.

  17. SrCo{sub 2}P{sub 2}. A rare case of strong T dependence in the uncorrelated electronic DOS

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Christoph; Rosner, Helge; Prots, Yurii; Geibel, Christoph [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2015-07-01

    Since the discovery of high temperature superconductivity in doped RFeAsO, transition metal pnictides have attracted considerable attention, especially those being close to a transition from a magnetic ordered to a non-magnetic ground state. SrCo{sub 2}P{sub 2}, a structural homologue of the AFe{sub 2}As{sub 2} series of compounds, is such a system. Earlier investigation on polycrystals indicated a paramagnetic ground state, but a close proximity to magnetic ordering. Using a flux technique, we grew high quality single crystals with a residual resistivity ratio up to 150, and performed an in-depth study of the physical properties. Despite DFT calculation indicate a pronounced peak in the density of states at the Fermi level prone for electronic instability. We did not find any evidence for a phase transition. However we observed a quite unusual temperature dependence of the susceptibility with two distinct maxima, and Non-Fermi-liquid behavior in the resistivity at low temperature. Temperature dependent x-ray scattering experiments reveal an unusual behavior of the structural parameters, which induces a strong temperature dependence of the DOS at the Fermi edge. This provides a mechanism for the low temperature maximum, observed in the magnetic susceptibility.

  18. The structure of the cytochrome P450cam-putidaredoxin complex determined by paramagnetic NMR spectroscopy and crystallography

    NARCIS (Netherlands)

    Hiruma, Yoshitaka

    2014-01-01

    By utilizing paramagnetic NMR techniques, the structure and dynamics of the P450cam system were investigated. The analysis of PCS and RDC illuminated the stereo-specific final complex of Pdx and P450cam, while the results of PRE demonstrated the presence of a transient encounter complex.

  19. Topological susceptibility from slabs

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, Wolfgang [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Forcrand, Philippe de [Institute for Theoretical Physics, ETH Zürich,CH-8093 Zürich (Switzerland); CERN, Physics Department, TH Unit, CH-1211 Geneva 23 (Switzerland); Gerber, Urs [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Distrito Federal, C.P. 04510 (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Apdo. Postal 2-82, Morelia, Michoacán, C.P. 58040 (Mexico)

    2015-12-14

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ{sub t}. In principle it seems straightforward to measure χ{sub t} by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ{sub t} even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ{sub t}, as we demonstrate with numerical results for non-linear σ-models.

  20. Topological Susceptibility from Slabs

    CERN Document Server

    Bietenholz, Wolfgang; Gerber, Urs

    2015-01-01

    In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility chi_t. In principle it seems straightforward to measure chi_t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure chi_t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of chi_t, as we demonstrate with numerical results for non-linear sigma-models.

  1. Organic matter transformation in the environment investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy: studies on lignins

    Science.gov (United States)

    Czechowski, Franciszek; Golonka, Iwona; Jezierski, Adam

    2004-05-01

    The lignins separated from angiosperm and gymnosperm trees, peat and xylitic brown coal were investigated by quantitative EPR. Observed free radicals in lignins are sensitive to alkaline environment. Gaseous ammonia interacting with solid lignins in resonance cavity shifts quinone-hydroquinone equilibria towards formation of semiquinone anions. Complexation of copper(II) by lignins causes drastic decrease of the semiquinones in the matrices. Formation of lignin-Pb(II) complexes yielded radicals characterised by unusually low g-value (1.9999-2.0003). Monomeric structural units of the investigated lignins were recognised by pyrolysis with in situ methylation by tetramethylammonium hydroxide. Although for the natural lignins the mixture of normal semiquinone signals at g about 2.0034 and signals at g 1.9999 were observed, some monomeric components of lignins (e.g., caffeic acid, pyrogallol) gave pure lines at g=1.9999. The bacterial oxidative biodegradation of lignin monomeric components and their Pb(II) complexes resulted in increase of the radical signals.

  2. Studies by electron-paramagnetic-resonance spectroscopy of the molybdenum centre of spinach (Spinacia oleracea) nitrate reductase.

    Science.gov (United States)

    Gutteridge, S; Bray, R C; Notton, B A; Fido, R J; Hewitt, E J

    1983-01-01

    The molybdenum centre of spinach (Spinacia oleracea) nitrate reductase has been investigated by e.p.r. spectroscopy of molybdenum(V) in reduced forms of the enzyme. The resting enzyme gives no signals attributable to Mo(V). However, on reduction with NADH, Mo(V) signals appeared at relatively short reaction times but decreased again on prolonged exposure to excess of the substrate as the enzyme was further reduced. On brief treatment of such samples with nitrate, Mo(V) signals reappeared but disappeared again on longer exposure to excess nitrate as the enzyme became fully reoxidized. Detailed investigation of the signals carried out in both 1H2O and 2H2O revealed the presence of two signal-giving species, referred to as 'signal A' and 'signal B', analogous to corresponding signals from nitrate reductase from Escherichia coli and from liver sulphite oxidase. Signal A has gav. 1.9767 and shows coupling to a single proton, exchangeable with the solvent, with A(1H)av. 1.3mT, whereas signal B shows no more than weak coupling to protons. Investigation of interconversion between the two species indicated that decreasing the pH from 8.0 to 6.7 had little effect, but that signal A was favoured by the presence of Cl-. This suggests, by analogy with recent work on sulphite oxidase by Bray, Gutteridge, Lamy & Wilkinson [Biochem. J. (1983) 211, 227-236] that Cl- is a ligand of molybdenum in the species giving signal A. PMID:6311159

  3. Organic matter transformation in the environment investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy: studies on lignins

    Energy Technology Data Exchange (ETDEWEB)

    Czechowski, F.; Golonka, I.; Jezierski, A. [University of Wroclaw, Wroclaw (Poland). Faculty of Chemistry

    2004-05-01

    The lignins separated from angiosperm and gymnosperm trees, peat and xylitic brown coal were investigated by quantitative EPR. Observed free radicals in lignins are sensitive to alkaline environment. Gaseous ammonia interacting with solid lignins in resonance cavity shifts quinone-hydroquinone equilibria towards formation of semiquinone anions. Complexation of copper(II) by lignins causes drastic decrease of the semiquinones in the matrices. Formation of lignin-Pb(II) complexes yielded radicals characterised by unusually low g-value (1.9999-2.0003). Monomeric structural units of the investigated lignins were recognised by pyrolysis with in situ methylation by tetramethylammonium hydroxide. Although for the natural lignins the mixture of normal semiquinone signals at g about 2.0034 and signals at g 1.9999 were observed, some monomeric components of lignins (e.g., caffeic acid, pyrogallol) gave pure lines at g = 1.9999. The bacterial oxidative biodegradation of lignin monomeric components and their Pb(II) complexes resulted in increase of the radical signals.

  4. Metal Ion Interactions with Immunoglobulin G (IgG). 1. Preliminary Studies with Electron Paramagnetic Resonance (EPR) Spectroscopy and Ultrafiltration

    Science.gov (United States)

    1978-12-12

    Preliminary Interpretation of Spectra 60 sUltrafiltration eStudy of Cu(II)-IgGoSystems 74 < CONCLUSIONS 79 i Findings 79 Significance 79 Directions... cases , purchased standards, and making dilutions as required for the concentration (in ppm) range desired. By making solutions of standard concentration...hydration content in several cases , specifically chromium, iron, and nickel, the stock metal solutions were prepared by adding solid metal chloride to

  5. Electron paramagnetic resonance studies of magnetically aligned phospholipid bilayers utilizing a phospholipid spin label: the effect of cholesterol.

    Science.gov (United States)

    Dave, Paresh C; Nusair, Nisreen A; Inbaraj, Johnson J; Lorigan, Gary A

    2005-08-15

    X-band EPR spectroscopy has been employed to study the dynamic properties of magnetically aligned phospholipid bilayers (bicelles) utilizing a variety of phosphocholine spin labels (n-PCSL) as a function of cholesterol content. The utilization of both perpendicular and parallel aligned bicelles in EPR spectroscopy provides a more detailed structural and orientational picture of the phospholipid bilayers. The magnetically aligned EPR spectra of the bicelles and the hyperfine splitting values reveal that the addition of cholesterol increases the phase transition temperature and alignment temperature of the DMPC/DHPC bicelles. The corresponding molecular order parameter, Smol, of the DMPC/DHPC bicelles increased upon addition of cholesterol. Cholesterol also decreased the rotational motion and increased the degree of anisotropy in the interior region of the bicelles. This report reveals that the dynamic properties of DMPC/DHPC bicelles agree well with other model membrane systems and that the magnetically aligned bicelles are an excellent model membrane system.

  6. Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1

    DEFF Research Database (Denmark)

    Nygaard, Eva B; Lagerstedt, Jens O; Bjerre, Gabriel

    2011-01-01

    We previously presented evidence that transmembrane domain (TM) IV and TM X-XI are important for inhibitor binding and ion transport by the human Na(+)/H(+) exchanger, hNHE1 (Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., and Cala, P. M. (2007) J. Biol. Chem. 282, 19716-19727). Here,...

  7. Local magnetic susceptibility in rare-earth compounds

    CERN Document Server

    Shiozawa, H; Obu, K

    2003-01-01

    The element specific magnetic susceptibilities of some rare-earth compounds are estimated by measuring magnetic circular dichroism at rare-earth M sub 4 sub , sub 5 absorption edges. The temperature dependences of the rare-earth 4f local magnetic susceptibilities in dense Kondo materials, CeNi, CeSn sub 3 and CeRu sub 4 Sb sub 1 sub 2 , are remarkably different from those of the bulk magnetic susceptibilities measured by a conventional magnetometer, although the 4f electron is regarded to mainly hold the magnetic moment in these compounds. In contrast, the rare-earth 4f local magnetic susceptibility of ferromagnetic NdFe sub 4 P sub 1 sub 2 shows almost as similar behavior as the bulk one.

  8. Microwave susceptibility experiments

    Energy Technology Data Exchange (ETDEWEB)

    McConaghy, C.

    1984-05-29

    In certain experimental environments, systems can be affected or damaged by microwave pulses. I have conducted tests at LLNL to understand the phenomenology of microwave susceptibility of system components and subsystem components. To date, my experiments have concentrated on bipolar transistors, similar to what might be used in discrete analog circuits, and on CMOS RAM chips, which might be used in a computer memory system. I observed a decrease in failure energies for both the transistor and the integrated curcuit as I shortened the microwave pulse width. An S band (2.86 GHz) transmit/receive (T/R) tube has also been tested both at S band and at X band (8.16 GHz). The S band pulse had limitations in rise-time from zero power, which had an effect on the amount of power that could be transmitted through the T/R tube, as much as 0.7% of the incident power passed through the tube. All tests were conducted in closed-waveguide or coax test-fixtures, in contrast to the anechoic chambers utilized by other experimenters. I have used both S band and X band Klystron generators. For very high power (greater than 1 MW), I used an additional pulse-compression cavity at S band. Other subsystem components such as an X band mixer and an X band T/R tube will be tested in the future. 8 references.

  9. [Antimicrobial susceptibility cumulative reports].

    Science.gov (United States)

    Canut-Blasco, Andrés; Calvo, Jorge; Rodríguez-Díaz, Juan Carlos; Martínez-Martínez, Luis

    2016-10-01

    Cumulative reports on antimicrobial susceptibility tests data are important for selecting empirical treatments, as an educational tool in programs on antimicrobial use, and for establishing breakpoints defining clinical categories. These reports should be based on data validated by clinical microbiologists using diagnostic samples (not surveillance samples). In order to avoid a bias derived from including several isolates obtained from the same patient, it is recommended that, for a defined period, only the first isolate is counted. A minimal number of isolates per species should be presented: a figure of >=30 isolates is statistically acceptable. The report is usually presented in a table format where, for each cell, information on clinically relevant microorganisms-antimicrobial agents is presented. Depending on particular needs, multiple tables showing data related to patients, samples, services or special pathogens can be prepared. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  10. Magnetic susceptibility and dielectric properties of peat in Central Kalimantan, Indonesia

    Science.gov (United States)

    Budi, Pranitha Septiana; Zulaikah, Siti; Hidayat, Arif; Azzahro, Rosyida

    2017-07-01

    Peatlands dominate almost all regions of Borneo, yet its utilization has not been developed optimally. Any information in this field could be obtained using soil magnetization methods by determining the magnetic succeptibility in terms of magnetic susceptibility value that could describe the source and type of magnetic minerals which could describe the source and type of magnetic minerals. Moreover, the dielectric properties of peat soil were also investigated to determine the level of water content by using the dielectric constant value. Samples was taken at six different locations along Pulang pisau to Berengbengkel. Magnetic susceptibility mass value at these locations ranged between -0.0009 - 0.712 (×10-6 m3/kg). Based on the average magnetic susceptibility value, samples that were taken from T1, T3 and T5 belonged to the type of paramagnetic mineral, while samples which were taken from T2, T4 and T6 belonged to the group of diamagnetic mineral. The low value of magnetic susceptibility of peat was probably derived from the pedogenic process. The average value of peat soil in six locations has a large dielectric constant value that is 28.2 which indicated that there was considerable moisture content due to the hydrophilic nature of peatland which means that the ability of peat in water binding is considerably high.

  11. Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: implications for steric ligand tilt.

    Science.gov (United States)

    Peng, Dungeng; Ogura, Hiroshi; Ma, Li-Hua; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2013-04-01

    Solution 2D (1)H NMR was carried out on the azide-ligated substrate complex of human heme oxygenase, hHO, to provide information on the active site molecular structure, chromophore electronic/magnetic properties, and the distal H-bond network linked to the exogenous ligand by catalytically relevant oriented water molecules. While 2D NMR exhibited very similar patterns of two-dimensional nuclear Overhauser spectroscopy cross peaks of residues with substrate and among residues as the previously characterized cyanide complex, significant, broadly distributed chemical shift differences were observed for both labile and non-labile protons. The anisotropy and orientation of the paramagnetic susceptibility tensor, χ, were determined for both the azide and cyanide complexes. The most significant difference observed is the tilt of the major magnetic axes from the heme normal, which is only half as large for the azide than cyanide ligand, with each ligand tilted toward the catalytically cleaved α-meso position. The difference in chemical shifts is quantitatively correlated with differences in dipolar shifts in the respective complexes for all but the distal helix. The necessity of considering dipolar shifts, and hence determination of the orientation/anisotropy of χ, in comparing chemical shifts involving paramagnetic complexes, is emphasized. The analysis shows that the H-bond network cannot detect significant differences in H-bond acceptor properties of cyanide versus azide ligands. Lastly, significant retardation of distal helix labile proton exchange upon replacing cyanide with azide indicates that the dynamic stability of the distal helix is increased upon decreasing the steric interaction of the ligand with the distal helix. Copyright © 2013. Published by Elsevier Inc.

  12. Diffusion of Paramagnetically Labeled Proteins in Cartilage: Enhancement of the 1-D NMR Imaging Technique

    Science.gov (United States)

    Foy, Brent D.; Blake, Joseph

    2001-01-01

    Quantifying the diffusive transport of large molecules in avascular cartilage tissue is important both for planning potential pharamacological treatments and for gaining insight into the molecular-scale structure of cartilage. In this work, the diffusion coefficients of gadolinium-DTPA and Gd-labeled versions of four proteins-lysozyme, trypsinogen, ovalbumin, and bovine serum albumin (BSA) with molecular weights of 14,300, 24,000, 45,000, and 67,000, respectively-have been measured in healthy and degraded calf cartilage. The experimental technique relies on the effect of the paramagnetic on the relaxation properties of the surrounding water, combined with the time course of a 1-dimensional spatial profile of the water signal in the cartilage sample. The enhanced technique presented here does not require a prior measurement of the relaxivity of the paramagnetic compound in the sample of interest. The data are expressed as the ratio of the diffusion coefficient of a compound in cartilage to its diffusion coefficient in water. For healthy cartilage, this ratio was 0.34 ± 0.07 for Gd-DTPA, the smallest compound, and fell to 0.3 ± 0.1 for Gd-lysozyme, 0.08 ± 0.04 for Gd-trypsinogen, and 0.07 ± 0.04 for Gd-ovalbumin. Gd-BSA did not appear to enter healthy cartilage tissue beyond a surface layer. After the cartilage had been degraded by 24-h trypsinization, these ratios were 0.60 ± 0.03 for Gd-DTPA, 0.40 ± 0.08 for Gd-lysozyme, 0.42 ± 0.09 for Gd-trypsinogen, 0.16 ± 0.14 for Gd-ovalbumin, and 0.11 ± 0.05 for Gd-BSA. Thus, degradation of the cartilage led to increases in the diffusion coefficient of up to fivefold for the Gd-labeled proteins. These basic transport parameters yield insights on the nature of pore sizes and chemical-matrix interactions in the cartilage tissue and may prove diagnostically useful for identifying the degree and nature of damage to cartilage.

  13. Gene susceptibility in Iranian asthmatic patients: a narrative review ...

    African Journals Online (AJOL)

    Hence, we carried out a systematic review to assess the susceptible genes for asthma in Iranian population. We conducted a literature search by using the electronic database PubMed, Biological Abstracts Web of Science, Current Contents Connect, Cinahl, ScienceDirect, Scopus, IranMedex, and Scientific Information ...

  14. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  15. Determination of the solution-bound conformation of an amino acid binding protein by NMR paramagnetic relaxation enhancement: use of a single flexible paramagnetic probe with improved estimation of its sampling space.

    Science.gov (United States)

    Bermejo, Guillermo A; Strub, Marie-Paule; Ho, Chien; Tjandra, Nico

    2009-07-15

    We demonstrate the feasibility of elucidating the bound ("closed") conformation of a periplasmic binding protein, the glutamine-binding protein (GlnBP), in solution, using paramagnetic relaxation enhancements (PREs) arising from a single paramagnetic group. GlnBP consists of two globular domains connected by a hinge. Using the ligand-free ("open") conformation as a starting point, conjoined rigid-body/torsion-angle simulated annealing calculations were performed using backbone (1)H(N)-PREs as a major source of distance information. Paramagnetic probe flexibility was accounted for via a multiple-conformer representation. A conventional approach where the entire PRE data set is enforced at once during simulated annealing yielded poor results due to inappropriate conformational sampling of the probe. On the other hand, significant improvements in coordinate accuracy were obtained by estimating the probe sampling space prior to structure calculation. Such sampling is achieved by refining the ensemble of probe conformers with intradomain PREs only, keeping the protein backbone fixed in the open form. Subsequently, while constraining the probe to the previously found conformations, the domains are allowed to move relative to each other under the influence of the non-intradomain PREs, giving the hinge region torsional degrees of freedom. Thus, by partitioning the protocol into "probe sampling" and "backbone sampling" stages, structures significantly closer to the X-ray structure of ligand-bound GlnBP were obtained.

  16. SEPARATION OF CELL POPULATIONS BY SUPER-PARAMAGNETIC PARTICLES WITH CONTROLLED SURFACE FUNCTIONALITY

    Directory of Open Access Journals (Sweden)

    Lootsik M. D.

    2014-02-01

    Full Text Available The recognition and isolation of specific mammalian cells by the biocompatible polymer coated super-paramagnetic particles with determined surface functionality were studied. The method of synthesis of nanoscaled particles on a core of iron III oxide (Fe2O3, magemit coated with a polymer shell containing reactive oligoperoxide groups for attachment of ligands is described. By using the developed superparamagnetic particles functionalized with peanut agglutinin (PNA we have separated the sub-populations of PNA+ and PNA– cells from ascites of murine Nemeth-Kellner lymphoma. In another type of experiment, the particles were opsonized with proteins of the fetal calf serum that improved biocompatibility of the particles and their ingestion by cultivated murine macrophages J774.2. Macrophages loaded with the particles were effeciently separated from the particles free cells by using the magnet. Thus, the developed surface functionalized superparamagnetic particles showed to be a versatile tool for cell separation independent on the mode of particles’ binding with cell surface or their engulfment by the targeted cells.

  17. Nonadiabatic, stochastic model for the classic relaxing paramagnet ferrichrome A: Theory and experiment

    Science.gov (United States)

    Hoy, G. R.; Corson, M. R.; Balko, B.

    1983-03-01

    Mössbauer spectroscopy is an important tool for the study of systems showing ionic spin relaxation. Progress in stochastic theoretical models for such systems has made possible a detailed analysis of Mössbauer spectra showing relaxation effects in terms of meaningful physical parameters. In order to test the applicability of these methods, we have performed Mössbauer-effect measurements on the classic relaxing paramagnet ferrichrome A down to 115 mK, and have analyzed our spectra using the nonadiabatic stochastic relaxation theory of Clauser and Blume. We have obtained good theoretical fits to our data over the temperature range from 4.2 K down to 115 mK holding fixed all parameters except sample temperature. From our results we obtain the values for the crystal-field spin-Hamiltonian parameters D=-0.29 cm-1 and ED=0.25. In addition, we determined that the hyperfine interaction is not isotropic or axial, and that the major component of the hyperfine interaction tensor has a value in the principal-axis system corresponding to a field at the nucleus of 215 kOe/unit spin. We find that from 4.2 K to 115 mK the spin-spin interaction is the dominant relaxation mechanism. A series of calculations and theoretical Mössbauer spectra are discussed in order to show the effects of various physical situations and their interpretations.

  18. Critical behavior in the antiperovskite Mn3CuN at ferromagnetic to paramagnetic phase transition

    Science.gov (United States)

    Yin, Y.; Han, J. C.; Yuan, Q.; Ling, L. S.; Song, B.

    2013-11-01

    We have investigated the critical behavior of Mn3CuN in the ferromagnetic (FM) to paramagnetic (PM) transition. Critical behavior of Mn3CuN can be divided into two stages around Curie temperature (TC): i) ZI (T>TC) and ii) ZII (T

  19. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    Science.gov (United States)

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Automated genomic DNA purification options in agricultural applications using MagneSil paramagnetic particles

    Science.gov (United States)

    Bitner, Rex M.; Koller, Susan C.

    2002-06-01

    The automated high throughput purification of genomic DNA form plant materials can be performed using MagneSil paramagnetic particles on the Beckman-Coulter FX, BioMek 2000, and the Tecan Genesis robot. Similar automated methods are available for DNA purifications from animal blood. These methods eliminate organic extractions, lengthy incubations and cumbersome filter plates. The DNA is suitable for applications such as PCR and RAPD analysis. Methods are described for processing traditionally difficult samples such as those containing large amounts of polyphenolics or oils, while still maintaining a high level of DNA purity. The robotic protocols have ben optimized for agricultural applications such as marker assisted breeding, seed-quality testing, and SNP discovery and scoring. In addition to high yield purification of DNA from plant samples or animal blood, the use of Promega's DNA-IQ purification system is also described. This method allows for the purification of a narrow range of DNA regardless of the amount of additional DNA that is present in the initial sample. This simultaneous Isolation and Quantification of DNA allows the DNA to be used directly in applications such as PCR, SNP analysis, and RAPD, without the need for separate quantitation of the DNA.